WO2019181936A1 - 車両駆動装置 - Google Patents

車両駆動装置 Download PDF

Info

Publication number
WO2019181936A1
WO2019181936A1 PCT/JP2019/011430 JP2019011430W WO2019181936A1 WO 2019181936 A1 WO2019181936 A1 WO 2019181936A1 JP 2019011430 W JP2019011430 W JP 2019011430W WO 2019181936 A1 WO2019181936 A1 WO 2019181936A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
capacitor
battery
motor
voltage
Prior art date
Application number
PCT/JP2019/011430
Other languages
English (en)
French (fr)
Inventor
任田 功
晴洋 平野
米盛 敬
英樹 佐内
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018143357A external-priority patent/JP7146168B2/ja
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US16/981,292 priority Critical patent/US11718168B2/en
Priority to EP19771573.3A priority patent/EP3753771B1/en
Priority to CN201980019004.5A priority patent/CN111867867B/zh
Publication of WO2019181936A1 publication Critical patent/WO2019181936A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle drive device, and more particularly, to a vehicle drive device provided with a motor for driving a vehicle wheel.
  • Patent Document 1 describes a drive control device for a vehicle.
  • a drive device is provided on the rear wheel side of the vehicle, and two electric motors provided in the drive device respectively drive the rear wheels of the vehicle.
  • a drive unit in which an internal combustion engine and an electric motor are connected in series is provided at the front of the vehicle. The power of the drive unit is transmitted to the front wheels via the transmission and the main drive shaft, and the power of the drive device is transmitted to the rear wheels of the vehicle.
  • the two electric motors of the drive device are driven, and this driving force is transmitted to the rear wheels of the vehicle.
  • the drive unit when the vehicle is accelerated, the drive unit also generates a driving force, and four-wheel drive is performed by the two electric motors of the drive unit and the drive device.
  • two electric motors provided mainly for the rear wheels of the vehicle generate driving force.
  • the hybrid drive device mainly composed of the driving force of the electric motor it is necessary to mount a large-capacity battery in order to ensure sufficient traveling performance. Further, in order to obtain a sufficient driving force by the electric motor, it is necessary to operate the electric motor at a relatively high voltage. For this reason, in the hybrid drive device mainly composed of the driving force of the electric motor, a large-capacity battery is required, and an electric system for supplying a high voltage to the electric motor needs to be electrically sufficiently insulated. Increase the overall weight of the vehicle and worsen the fuel consumption of the vehicle. Furthermore, in order to drive a heavy vehicle with an electric motor, there is a problem that a battery with a larger capacity and a higher voltage are required, which causes a vicious circle that further increases the weight.
  • an object of the present invention is to provide a vehicle drive device that can drive a vehicle efficiently using a motor without falling into a vicious circle of strengthening drive by an electric motor and increasing vehicle weight.
  • the present invention is a vehicle drive device including a motor for driving the wheels of a vehicle, and for driving a front wheel motor for driving a front wheel of the vehicle and a front wheel motor.
  • a battery and a capacitor for supplying electric power, and a voltage for the battery and the capacitor connected in series is applied to the front wheel motor, and the capacitor is disposed between the left and right front wheels of the vehicle. It is characterized by.
  • the voltage of the battery and the capacitor connected in series is applied to the front wheel motor, and the front wheel of the vehicle is driven by the front wheel motor.
  • the capacitor is disposed between the left and right front wheels of the vehicle.
  • the front wheel motor since the voltage of the battery and the capacitor connected in series is applied to the front wheel motor, even when a low voltage battery is used, the front wheel motor is driven with a higher voltage. can do. Thereby, the current for driving the front wheel motor can be kept low, and the conductor for supplying electric power can be prevented from becoming excessive.
  • the front wheel motor in order to apply a high voltage from the battery and capacitor connected in series to the front wheel motor, it is necessary to increase the dielectric strength of the high voltage portion.
  • the front wheel motor is close to the capacitor placed between the left and right front wheels of the vehicle, the path that requires high dielectric strength is shortened, minimizing the increase in weight and cost. it can.
  • the capacitor is preferably arranged at a position at least partially overlapping the front wheel as viewed from the side of the vehicle.
  • the capacitor is disposed at a position at least partially overlapping with the front wheel as viewed from the side of the vehicle, the power supply path from the capacitor to the front wheel motor is further shortened.
  • the weight and cost increase due to the insulating member can be further suppressed.
  • the present invention preferably, it further includes an internal combustion engine for driving the vehicle, and the capacitor is disposed on the front side of the internal combustion engine, and at a position at least partially overlapping with the internal combustion engine as viewed from the front of the vehicle. Has been placed.
  • the capacitor since the capacitor is arranged on the front side of the internal combustion engine, in the unlikely event that the vehicle collides from the front, the capacitor is damaged first.
  • the capacitor in general, the capacitor is formed of a material that hardly burns. For this reason, even when the vehicle collides, the flame retardant capacitor suppresses damage to the internal combustion engine, so that the safety of the vehicle can be further improved.
  • the front wheel motor is preferably an in-wheel motor provided on each of the left and right front wheels of the vehicle.
  • the front wheel motor is an in-wheel motor
  • the drive shaft connecting the front wheel motor and the wheel can be eliminated or shortened, and the vehicle can be made lighter. it can.
  • the battery is preferably disposed below the vehicle compartment or at the rear of the vehicle.
  • the battery since the battery is disposed below the vehicle compartment or at the rear of the vehicle, even if the vehicle collides from the front, the impact of the collision affects the battery. It is difficult to suppress damage to the battery.
  • the maximum terminal voltage of the capacitor is set higher than the battery terminal voltage.
  • the voltage applied to the front wheel motor can be made sufficiently high. Sufficient output can be obtained while suppressing the flowing current.
  • the battery pack further includes a first voltage converter connected between the capacitor and the battery, and the first voltage converter boosts the voltage of the battery and is stored in the battery.
  • the capacitor is configured to charge at least one of charging the capacitor, reducing the voltage of the capacitor, and charging the battery with the power stored in the capacitor.
  • the battery includes the first voltage converter that charges the capacitor with the power stored in the battery or charges the battery with the power stored in the capacitor. And the amount of electricity stored in the capacitor can be adjusted, and the electric power stored in both can be used effectively.
  • the battery pack further includes a second voltage converter connected between the battery and an electrical component provided in the vehicle, and the second voltage converter steps down the voltage of the battery. To supply power to electrical components.
  • the second voltage converter steps down the voltage of the battery and supplies electric power to the electrical component, the battery used for driving the front wheel motor can be provided in the vehicle.
  • the vehicle can be reduced in weight.
  • the vehicle drive device of the present invention it is possible to efficiently drive a vehicle using a motor without falling into a vicious cycle of strengthening drive by an electric motor and increasing vehicle weight.
  • FIG. 1 is a layout diagram of a vehicle equipped with a hybrid drive device according to a first embodiment of the present invention. It is the perspective view which looked at the front part of the vehicle carrying the hybrid drive device by a 1st embodiment of the present invention from the upper part. It is the perspective view which looked at the front part of the vehicle carrying the hybrid drive device by 1st Embodiment of this invention from the side surface.
  • FIG. 4 is a sectional view taken along line iv-iv in FIG. 2. It is a block diagram which shows the input / output of various signals in the hybrid drive device by 1st Embodiment of this invention. It is a block diagram which shows the power supply structure of the hybrid drive device by 1st Embodiment of this invention.
  • the hybrid drive device by a 1st embodiment of the present invention it is a figure showing typically an example of change of voltage when electric power is regenerated to a capacitor. It is a figure which shows the relationship between the output of each motor currently used in the hybrid drive device by 1st Embodiment of this invention, and a vehicle speed. It is sectional drawing which shows typically the structure of the sub drive motor employ
  • the hybrid drive device according to the first embodiment of the present invention it is a diagram schematically showing a change in acceleration acting on the vehicle when the transmission is shifted down or up.
  • FIG. 1 is a layout diagram of a vehicle equipped with a hybrid drive apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the front portion of the vehicle on which the hybrid drive device of this embodiment is mounted as viewed from above, and
  • FIG. 3 is a perspective view of the front portion of the vehicle as viewed from the side.
  • 4 is a cross-sectional view taken along line iv-iv in FIG.
  • a vehicle 1 equipped with a hybrid drive device that is a vehicle drive device according to a first embodiment of the present invention is equipped with an engine 12 that is an internal combustion engine in front of the vehicle, ahead of the driver's seat.
  • This is a so-called FR (Front engine, Rear drive) vehicle that drives a pair of left and right rear wheels 2a that are main driving wheels.
  • FR Front engine, Rear drive
  • the rear wheel 2a is also driven by a main drive motor that is a main drive motor
  • the pair of left and right front wheels 2b that are sub drive wheels are driven by a sub drive motor that is a sub drive motor.
  • the hybrid drive device 10 mounted on a vehicle 1 drives an engine 12 that drives a rear wheel 2a, a power transmission mechanism 14 that transmits a driving force to the rear wheel 2a, and a rear wheel 2a.
  • the main drive motor 16 the battery 18 that is a battery
  • the sub drive motor 20 that drives the front wheels 2b
  • the capacitor 22 the control device 24 that is a controller.
  • the engine 12 is an internal combustion engine for generating a driving force for the rear wheel 2a, which is the main driving wheel of the vehicle 1.
  • an in-line four-cylinder engine is adopted as the engine 12, and the engine 12 disposed in the front portion of the vehicle 1 is connected to the rear wheel 2 a via the power transmission mechanism 14. Is supposed to drive.
  • the engine 12 is a flywheelless engine that does not include a flywheel, and is mounted on the subframe 4 a of the vehicle 1 via an engine mount 6 a. Further, the sub frame 4a is fastened and fixed to the lower part of the front side frame 4b and the lower part of the dash panel 4c at the rear end.
  • the power transmission mechanism 14 is configured to transmit the driving force generated by the engine 12 to the rear wheel 2a that is the main driving wheel.
  • the power transmission mechanism 14 includes a propeller shaft 14 a connected to the engine 12, a clutch 14 b, and a transmission 14 c that is a stepped transmission.
  • the propeller shaft 14 a extends from the engine 12 disposed at the front of the vehicle 1 through the propeller shaft tunnel 4 d (FIG. 2) toward the rear of the vehicle 1.
  • the rear end of the propeller shaft 14a is connected to the transmission 14c via the clutch 14b.
  • the output shaft of the transmission 14c is connected to the axle (not shown) of the rear wheel 2a, and drives the rear wheel 2a.
  • the transmission 14c has a so-called transaxle arrangement.
  • the main body of the transmission having a large outer diameter does not exist immediately after the engine 12, so that the width of the floor tunnel (propeller shaft tunnel 4d) can be reduced, and the foot space on the center side of the occupant is secured.
  • This makes it possible for the occupant to take a symmetrical lower body posture facing directly in front.
  • the main drive motor 16 is an electric motor for generating a driving force for the main drive wheels, and is provided on the vehicle body of the vehicle 1 and is disposed on the rear side of the engine 12 adjacent to the engine 12. Functions as a side motor. Further, an inverter (INV) 16 a is disposed adjacent to the main drive motor 16, and the current from the battery 18 is converted into alternating current by the inverter 16 a and supplied to the main drive motor 16. Further, as shown in FIGS. 2 and 3, the main drive motor 16 is connected in series with the engine 12, and the driving force generated by the main drive motor 16 is also transmitted to the rear wheel 2 a via the power transmission mechanism 14. .
  • the present invention can be configured such that the main drive motor 16 is connected to the middle of the power transmission mechanism 14 and the driving force is transmitted to the rear wheel 2a via a part of the power transmission mechanism 14.
  • a 25 kW permanent magnet motor (permanent magnet synchronous motor) driven at 48 V is adopted as the main drive motor 16.
  • the battery 18 is a capacitor for storing electric power mainly for operating the main drive motor 16. Further, as shown in FIG. 2, in the present embodiment, the battery 18 is disposed inside the propeller shaft tunnel 4d below the passenger compartment of the vehicle 1 so as to surround the torque tube 14d that covers the propeller shaft 14a. Yes. Furthermore, in this embodiment, a 48 V, 3.5 kWh lithium ion battery (LIB) is used as the battery 18. As described above, since the transaxle arrangement is employed in the present embodiment, the volume for accommodating the battery 18 is expanded toward the space ahead of the floor tunnel (propeller shaft tunnel 4d) generated thereby. be able to. As a result, the capacity of the battery 18 can be secured and expanded without increasing the width of the floor tunnel and narrowing the center space of the passenger. As a modification, the battery 18 can be arranged at the rear of the vehicle 1.
  • the sub drive motor 20 that is a front wheel motor is provided on each of the left and right front wheels 2 b under the spring of the vehicle 1 so as to generate a driving force for the front wheel 2 b that is a sub drive wheel.
  • each wheel of the front wheel 2b is supported by a double wishbone type suspension, and is suspended by an upper arm 8a, a lower arm 8b, a spring 8c, and a shock absorber 8d.
  • the auxiliary drive motor 20 is an in-wheel motor, and is accommodated in each wheel of the front wheel 2b. Accordingly, the auxiliary drive motor 20 is provided in a so-called “unsprung” state of the vehicle 1 and is configured to drive the front wheels 2b. Further, as shown in FIG.
  • each sub drive motor 20 is supplied with a current from a capacitor (CAP) 22 after being converted into an alternating current by each inverter 20a. Furthermore, in this embodiment, the sub drive motor 20 is not provided with a speed reducer as a speed reduction mechanism, and the driving force of the sub drive motor 20 is directly transmitted to the front wheels 2b, so that the wheels are directly driven. In this embodiment, a 17 kW induction motor is employed as each sub drive motor 20.
  • CAP capacitor
  • the capacitor (CAP) 22 is provided so as to accumulate electric power regenerated by the sub drive motor 20.
  • the capacitor 22 is disposed immediately before the engine 12 (front side) and between the left and right front wheels 2b, and is connected to the auxiliary drive motor 20 provided on each wheel of the front wheel 2b of the vehicle 1.
  • the capacitor 22 has brackets 22a protruding from the side surfaces on both sides thereof and supported by the front side frame 4b via the capacitor mount 6b.
  • a harness 22b extending from the auxiliary drive motor 20 to the capacitor 22 is passed through the upper end of the side of the wheel house wall and into the engine room. Further, the capacitor 22 is configured to store electric charges at a higher voltage than the battery 18, and is disposed in a region between the left and right front wheels 2b that are auxiliary driving wheels.
  • the sub drive motor 20 driven mainly by the electric power stored in the capacitor 22 is driven at a higher voltage than the main drive motor 16.
  • the control device 24 is configured to control the engine 12, the main drive motor 16, and the sub drive motor 20 to execute the electric motor travel mode and the internal combustion engine travel mode.
  • the control device 24 can be configured by a microprocessor, a memory, an interface circuit, and a program (not shown) for operating these. Details of the control by the control device 24 will be described later.
  • a high voltage DC / DC converter 26a and a low voltage DC / DC converter 26b which are voltage converters, are arranged in the vicinity of the capacitor 22, respectively.
  • the high voltage DC / DC converter 26a, the low voltage DC / DC converter 26b, the capacitor 22, and the two inverters 20a are unitized to form an integrated unit.
  • FIG. 5 is a block diagram showing input / output of various signals in the hybrid drive apparatus 10 according to the first embodiment of the present invention.
  • FIG. 6 is a block diagram showing a power supply configuration of the hybrid drive apparatus 10 according to the first embodiment of the present invention.
  • FIG. 7 is a diagram schematically illustrating an example of a change in voltage when electric power is regenerated in the capacitor 22 in the hybrid drive device 10 of the present embodiment.
  • FIG. 8 is a diagram showing the relationship between the output of each motor used in the hybrid drive device 10 of the present embodiment and the vehicle speed.
  • the control device 24 includes a mode selection switch 40, a vehicle speed sensor 42, an accelerator opening sensor 44, a brake sensor 46, an engine speed sensor 48, an automatic transmission (AT) input rotation sensor 50, an automatic Detection signals detected by a transmission (AT) output rotation sensor 52, a voltage sensor 54, and a current sensor 56 are input.
  • the control device 24 also includes an inverter 16a for the main drive motor, an inverter 20a for the sub drive motor 20, a high voltage DC / DC converter 26a, a low voltage DC / DC converter 26b, a fuel injection valve 58, a spark plug 60, and a transmission 14c. Control signals are respectively sent to the hydraulic solenoid valves 62 and are controlled.
  • the power supply configuration of the hybrid drive device 10 will be described.
  • the battery 18 and the capacitor 22 provided in the hybrid drive apparatus 10 are connected in series.
  • the main drive motor 16 is driven at about 48 V, which is the reference output voltage of the battery 18, and the sub drive motor 20 is higher than 48 V, which is the sum of the output voltage of the battery 18 (voltage between terminals) and the voltage between terminals of the capacitor 22. It is driven with a voltage of 120V. That is, in the present embodiment, the maximum inter-terminal voltage of the capacitor 22 is 72 V, which is higher than the inter-terminal voltage of the battery 18. For this reason, the sub drive motor 20 is always driven by the electric power supplied via the capacitor 22.
  • an inverter 16a is attached to the main drive motor 16, and the main drive motor 16 that is a permanent magnet motor is driven after the output of the battery 18 is converted into an alternating current.
  • an inverter 20a is attached to each sub drive motor 20, and the sub drive motor 20 that is an induction motor is driven after the outputs of the battery 18 and the capacitor 22 are converted into alternating current. Since the sub drive motor 20 is driven at a voltage higher than that of the main drive motor 16, the harness (electric wire) 22b that supplies power to the sub drive motor 20 is required to have high insulation. However, since the capacitors 22 are arranged close to each sub drive motor 20, an increase in weight due to increasing the insulation of the harness 22b can be minimized.
  • the main drive motor 16 and each sub drive motor 20 function as a generator, and regenerates the kinetic energy of the vehicle 1 to generate electric power.
  • the power regenerated by the main drive motor 16 is stored in the battery 18, and the power regenerated by each sub drive motor 20 is stored mainly in the capacitor 22.
  • a high voltage DC / DC converter 26a which is a first voltage converter, is connected between the battery 18 and the capacitor 22, and the high voltage DC / DC converter 26a lacks the electric charge accumulated in the capacitor 22.
  • the voltage of the battery 18 is boosted to charge the capacitor 22.
  • the inter-terminal voltage of the capacitor 22 rises to a predetermined voltage or more due to energy regeneration by each sub drive motor 20, the charge accumulated in the capacitor 22 is stepped down and applied to the battery 18, and the battery 18 Charge the battery. That is, after the electric power regenerated by the auxiliary drive motor 20 is accumulated in the capacitor 22, a part of the accumulated electric charge is charged in the battery 18 via the high-voltage DC / DC converter 26a.
  • a low voltage DC / DC converter 26b which is a second voltage converter, is connected between the battery 18 and the 12V electrical component 25 of the vehicle 1. Since most of the control device 24 of the hybrid drive device 10 and the electrical component 25 of the vehicle 1 operate at a voltage of 12V, the charge accumulated in the battery 18 is stepped down to 12V by the low-voltage DC / DC converter 26b, Supply to equipment.
  • the voltage of the capacitor 22 is the sum of the base voltage by the battery 18 and the voltage across the terminals of the capacitor 22 itself.
  • the vehicle 1 is decelerated or the like, power is regenerated by each sub drive motor 20, and the regenerated power is charged in the capacitor 22.
  • the capacitor 22 is charged, the voltage between the terminals rises relatively rapidly.
  • the voltage of the capacitor 22 rises to a predetermined voltage or higher due to charging, the voltage of the capacitor 22 is stepped down by the high voltage DC / DC converter 26a, and the battery 18 is charged.
  • the charging from the capacitor 22 to the battery 18 is performed more slowly than the charging to the capacitor 22, and the voltage of the capacitor 22 is lowered relatively slowly to an appropriate voltage.
  • the electric power regenerated by each sub drive motor 20 is temporarily stored in the capacitor 22 and then slowly charged into the battery 18. Depending on the period during which regeneration is performed, the regeneration of electric power by each sub drive motor 20 and the charging from the capacitor 22 to the battery 18 may be performed in an overlapping manner. On the other hand, the electric power regenerated by the main drive motor 16 is directly charged in the battery 18.
  • FIG. 8 is a graph showing the relationship between the speed of the vehicle 1 and the output of each motor at each speed in the hybrid drive device 10 of the present embodiment.
  • the output of the main drive motor 16 is indicated by a broken line
  • the output of one sub drive motor 20 is indicated by a one-dot chain line
  • the sum of the outputs of two sub drive motors 20 is indicated by a two-dot chain line.
  • the total is shown by a solid line.
  • FIG. 8 shows the speed of the vehicle 1 on the horizontal axis and the output of each motor on the vertical axis.
  • the horizontal axis is Even in the case of the motor rotation speed, the output of each motor draws the same curve as in FIG.
  • the output of the main drive motor 16 is large and the vehicle speed is low in a low vehicle speed range where the motor speed is low.
  • the motor output that can be output decreases as the speed increases. That is, in this embodiment, the main drive motor 16 is driven at about 48 V, outputs a torque of about 200 Nm, which is the maximum torque up to about 1000 rpm, and the torque decreases with an increase in the rotational speed at about 1000 rpm or more.
  • the main drive motor 16 is configured to obtain a continuous output of about 20 kW in the lowest speed range and a maximum output of about 25 kW.
  • the output of the secondary drive motor 20 is extremely small and the vehicle speed is low in the low vehicle speed range, as shown by the one-dot chain line and the two-dot chain line in FIG.
  • the output increases as the speed increases, and the motor output decreases after the maximum output is obtained around the vehicle speed of about 130 km / h.
  • the auxiliary drive motor 20 is driven at about 120 V, and is configured to obtain an output of about 17 kW per unit at a vehicle speed of about 130 km / h, and a total output of about 34 kW. That is, in the present embodiment, the auxiliary drive motor 20 has a peak torque curve at about 600 to 800 rpm, and a maximum torque of about 200 Nm is obtained.
  • the vehicle is driven only by the main drive motor 16 and only when the high output is required in the high vehicle speed range (when the vehicle 1 is accelerated at the high vehicle speed range)
  • the sub drive motor 20 generates an output.
  • the induction motor (sub drive motor 20) capable of generating a large output in the high rotation speed region is used only in the high speed region, the increase in the vehicle weight is kept low, and when necessary (predetermined speed). Sufficient output can be obtained during acceleration and the like.
  • FIG. 9 is a cross-sectional view schematically showing the structure of the sub drive motor 20.
  • the sub drive motor 20 is an outer rotor type induction motor that includes a stator 28 and a rotor 30 that rotates around the stator 28.
  • the stator 28 includes a substantially disk-shaped stator base 28a, a stator shaft 28b extending from the center of the stator base 28a, and a stator coil 28c attached around the stator shaft 28b.
  • the stator coil 28c is housed in the electric insulating liquid chamber 32, and is immersed in the electric insulating liquid 32a filled therein, thereby being cooled by boiling.
  • the rotor 30 is configured in a substantially cylindrical shape so as to surround the periphery of the stator 28, and has a rotor body 30 a configured in a generally cylindrical shape with one end closed, and a rotor disposed on the inner peripheral wall surface of the rotor body 30 a.
  • the rotor coil 30b is arranged to face the stator coil 28c so that an induced current is generated by the rotating magnetic field generated by the stator coil 28c. Further, the rotor 30 is supported by a bearing 34 attached to the tip of the stator shaft 28b so as to rotate smoothly around the stator 28.
  • the stator base 28a is supported by an upper arm 8a and a lower arm 8b (FIG. 4) that suspend the front wheel of the vehicle 1.
  • the rotor body 30a is directly fixed to the wheel (not shown) of the front wheel 2b.
  • An alternating current converted into an alternating current by the inverter 20a flows through the stator coil 28c, and a rotating magnetic field is generated.
  • This rotating magnetic field causes an induced current to flow through the rotor coil 30b, generating a driving force that rotates the rotor body 30a.
  • the driving force generated by each auxiliary drive motor 20 directly rotates and drives the wheel (not shown) of each front wheel 2b.
  • FIG. 10 is a flowchart of control by the control device 24, and FIG. 11 is a graph showing an example of operation in each mode. Note that the flowchart shown in FIG. 10 is repeatedly executed at predetermined time intervals during operation of the vehicle 1.
  • the speed of the vehicle 1 the torque generated by the engine 12, the torque generated by the main drive motor 16, the torque generated by the auxiliary drive motor 20, the voltage of the capacitor 22, the current of the capacitor 22, And the battery 18 current.
  • a positive value means that each motor is generating torque
  • a negative value means that each motor is in motion of the vehicle 1. It means a state of regenerating energy.
  • a negative value means a state in which power is supplied (discharged) to each motor, and a positive value charges the power regenerated in each motor. Means the state.
  • step S1 of FIG. 10 it is determined whether or not the vehicle 1 is set to the internal combustion engine traveling mode (ENG mode). That is, the vehicle 1 is provided with a mode selection switch 40 (FIG. 5) for selecting either the internal combustion engine travel mode or the motor travel mode (EV mode).
  • step S1 which mode is set. Is determined.
  • the processing in the flowchart in FIG. 10 proceeds to step S2.
  • step S2 it is determined whether or not the vehicle 1 is equal to or higher than a predetermined vehicle speed. If it is equal to or higher than the predetermined vehicle speed, the process proceeds to step S6. At time t 1 in FIG. 11, since the driver starts the vehicle 1 and the vehicle speed is low, the process in the flowchart proceeds to step S3.
  • step S3 it is determined whether or not the vehicle 1 is decelerated (the brake pedal (not shown) of the vehicle 1 is operated). If decelerated, the process proceeds to step S5, where acceleration is performed. Alternatively, when the vehicle is traveling at a constant speed (the operation of the brake pedal is not detected by the brake sensor 46 (FIG. 5)), the process proceeds to step S4. At time t 1 in FIG. 11, the driver starts the vehicle 1 and accelerates (the accelerator pedal position sensor 44 (FIG. 5) detects an operation of a predetermined amount or more of the accelerator pedal of the vehicle 1. Therefore, the process in the flowchart proceeds to step S4, and one process according to the flowchart of FIG.
  • step S4 the main drive motor 16 generates torque, and the vehicle speed increases (time t 1 to t 2 in FIG. 11).
  • a discharge current flows from the battery 18 that supplies power to the main drive motor 16, while the sub drive motor 20 does not generate torque. Therefore, the discharge current from the capacitor 22 remains zero, and the voltage of the capacitor 22 also increases. It does not change.
  • These currents and voltages are detected by the voltage sensor 54 and the current sensor 56 (FIG. 5) and input to the control device 24.
  • the engine 12 is not driven. That is, since the control device 24 stops fuel injection by the fuel injection valve 58 of the engine 12 and does not perform ignition by the spark plug 60, the engine 12 does not generate torque.
  • step S5 the driving by the main drive motor 16 is stopped (no torque is generated), and the kinetic energy of the vehicle 1 is regenerated as electric power by the sub drive motor 20.
  • the vehicle 1 is decelerated by the regeneration of the kinetic energy, and the discharge current from the battery 18 becomes zero.
  • the regeneration of the electric power by the auxiliary drive motor 20 causes a charging current to flow through the capacitor 22 and the voltage of the capacitor 22 increases.
  • step S1 ⁇ S2 ⁇ S3 ⁇ S4 is repeatedly executed.
  • step S1 ⁇ S2 ⁇ S3 ⁇ S4 is repeatedly executed.
  • steps S 1 ⁇ S 2 ⁇ S 3 ⁇ S 5 is repeatedly executed in the flowchart of FIG. 10, and power regeneration by the sub drive motor 20 is performed.
  • the motor driving mode is set, the vehicle 1 functions purely as an electric vehicle (EV), and the engine 12 does not generate torque. .
  • step S6 it is determined whether the vehicle 1 is decelerating (operating a brake pedal). Since the vehicle 1 is not decelerating at time t 9, the processing in the flowchart proceeds to step S7.
  • step S7 it is determined whether the vehicle 1 is accelerated by a predetermined value or more (whether the accelerator pedal of the vehicle 1 is operated by a predetermined amount or more).
  • step S8 since the vehicle 1 is accelerated more than a predetermined value at time t 9, the process proceeds to step S8, where along with the main drive motor 16 is driven, the auxiliary drive motor 20 is also driven.
  • the control device 24 causes the main drive motor 16 to generate a driving force to start the vehicle 1 (time t 8 ), and then the traveling speed of the vehicle 1 detected by the vehicle speed sensor 42 is the first.
  • the sub driving motor 20 When the vehicle speed is reached (time t 9 ), the sub driving motor 20 generates driving force. At this time, power is supplied from the battery 18 to the main drive motor 16, and power is supplied from the capacitor 22 to the sub drive motor 20. As power is supplied from the capacitor 22 in this way, the voltage of the capacitor 22 decreases. While the vehicle 1 is being driven by the main drive motor 16 and the sub drive motor 20 (time t 9 to t 10 ), in the flowchart, the processes of steps S 1 ⁇ S 2 ⁇ S 6 ⁇ S 7 ⁇ S 8 are repeatedly executed.
  • the auxiliary drive motor 20 generates a driving force when the traveling speed of the vehicle 1 is equal to or higher than a predetermined first vehicle speed, and the generation of the driving force is prohibited when the traveling speed is lower than the first vehicle speed.
  • the first vehicle speed is set to about 100 km / h, but the first vehicle speed is set to an arbitrary vehicle speed of about 50 km / h or more according to the output characteristics of the adopted sub drive motor 20. Can be set.
  • the main drive motor 16 is configured to generate a driving force when the traveling speed of the vehicle 1 is less than a predetermined second vehicle speed including zero and when it is equal to or higher than the second vehicle speed.
  • the predetermined second vehicle speed can be set to the same vehicle speed as the first vehicle speed, or can be set to a different vehicle speed.
  • the main drive motor 16 always generates a drive force when a drive force is required in the electric motor travel mode.
  • step S9 the drive by the sub drive motor 20 is stopped (no torque is generated), and the vehicle 1 is driven only by the main drive motor 16. As described above, even when the vehicle 1 is traveling at a predetermined vehicle speed or higher, the vehicle 1 is driven only by the main drive motor 16 in a state where acceleration of a predetermined amount or more is not performed.
  • the control unit 24 at time t 10 sends a signal to the high-voltage DC / DC converter 26a,
  • the capacitor 22 is charged. That is, the high voltage DC / DC converter 26 a boosts the charge accumulated in the battery 18 and charges the capacitor 22.
  • the current for driving the main drive motor 16 and the current for charging the capacitor 22 are discharged from the battery 18.
  • the control device 24 sends a signal to the high voltage DC / DC converter 26a to step down the voltage of the capacitor 22. Then, the battery 18 is charged. As described above, the electric power regenerated by the sub drive motor 20 is consumed by the sub drive motor 20 or once stored in the capacitor 22 and then charged to the battery 18 via the high voltage DC / DC converter 26a. .
  • step S10 the kinetic energy of the vehicle 1 is regenerated as electric power by both the main drive motor 16 and the sub drive motor 20.
  • the power regenerated by the main drive motor 16 is stored in the battery 18, and the power regenerated by the sub drive motor 20 is stored in the capacitor 22.
  • the brake pedal is operated at a speed equal to or higher than the predetermined vehicle speed, power is regenerated by both the main drive motor 16 and the sub drive motor 20, and charges are accumulated in the battery 18 and the capacitor 22.
  • step S11 the process after step S11 is executed.
  • step S11 it is determined whether or not the vehicle 1 is stopped. If the vehicle 1 is not stopped (running), whether or not the vehicle 1 is decelerating in step S12 ( It is determined whether or not a brake pedal (not shown) is operated. At time t 12 of FIG. 11, the vehicle 1 is traveling, because the driver is operating the accelerator pedal, the processing in the flowchart of FIG. 10 proceeds to step S13.
  • step S13 the supply of fuel to the engine 12 is started, and the engine 12 generates torque. That is, in the present embodiment, since the output shaft (not shown) of the engine 12 is directly connected to the output shaft (not shown) of the main drive motor 16, the output shaft of the engine 12 is always the main drive motor 16. It is rotated with the drive. However, since no fuel is supplied to the engine 12 in the electric motor travel mode, the engine 12 does not generate torque. In the internal combustion engine travel mode, fuel is supplied (fuel injection by the fuel injection valve 58 and an ignition plug). Torque is generated when the ignition by 60) is started.
  • the control device 24 Immediately after switching from the motor travel mode to the internal combustion engine travel mode, the control device 24 generates torque for starting the engine by the main drive motor 16 (time t 12 to t 13 in FIG. 11).
  • the engine starting torque is generated by causing the vehicle 12 to run and the engine 12 generating torque after the fuel supply to the engine 12 is started and until the engine 12 actually generates torque. Generated to suppress front and rear torque unevenness.
  • fuel supply to the engine 12 is not started, and the engine is started by engine starting torque.
  • Fuel supply is started when 12 reaches a predetermined number of revolutions or more. In the present embodiment, the fuel supply is started when the rotational speed of the engine 12 detected by the engine rotational speed sensor 48 increases to 2000 rpm or more.
  • steps S1 ⁇ S11 ⁇ S12 ⁇ S13 are repeatedly executed (time t in FIG. 11). 13 to t 14 ).
  • the power for driving the vehicle 1 is exclusively output from the engine 12, and the main drive motor 16 and the sub drive motor 20 output the power for driving the vehicle 1. Absent. For this reason, the driver can enjoy the driving feeling of the vehicle 1 driven by the internal combustion engine.
  • step S12 ⁇ S14 fuel supply to the engine 12 is stopped, and fuel consumption is suppressed.
  • step S15 the kinetic energy of the vehicle 1 is regenerated as electric energy by the main drive motor 16 and the sub drive motor 20, and charging current flows through the battery 18 and the capacitor 22, respectively.
  • the control device 24 drives the auxiliary drive motor 20 to perform downshift torque adjustment when the transmission 14c, which is a stepped transmission, is switched (at the time of shifting). To do.
  • the torque generated by this torque adjustment complements instantaneous torque loss and does not correspond to the torque for driving the vehicle 1. Details of the torque adjustment will be described later.
  • step S 11 ⁇ S16 the processing in the flowchart of FIG. 10 will be moves to step S11 ⁇ S16.
  • step S ⁇ b> 16 the control device 24 supplies the minimum amount of fuel necessary to maintain the engine 12 idling. Further, the control device 24 generates assist torque by the main drive motor 16 so that the engine 12 can maintain idling at a low rotational speed. In this way, while the vehicle 1 is stopped, the processes of steps S1 ⁇ S11 ⁇ S16 are repeatedly executed (time t 15 to t 16 in FIG. 11).
  • the engine 12 is a flywheelless engine, but the assist torque generated by the main drive motor 16 acts as a pseudo flywheel, and the engine 12 maintains a smooth idling at a low rotational speed. Can do. Further, by adopting the flywheelless engine, the high response of the engine 12 can be obtained during the traveling in the internal combustion engine traveling mode, and a pleasant driving can be enjoyed.
  • FIG. 12 is a diagram schematically showing changes in acceleration acting on the vehicle when the transmission 14c is downshifted or upshifted. From the upper stage, downshift torque down, downshift torque assist, and upshift torque assist are sequentially illustrated. An example is shown respectively.
  • the control device 24 controls the clutch 14b and the automatic transmission according to the vehicle speed and the engine speed.
  • the transmission 14c as a machine is automatically switched. As shown in the upper part of FIG. 12, when the transmission 14 c is shifted down (shifted to the low speed side) while negative acceleration is acting on the vehicle 1 during deceleration (time t 101 in FIG. 12), the control device 24, the clutch 14b is disconnected, and the output shaft of the engine 12 and the main drive wheel (rear wheel 2a) are disconnected.
  • the control device 24 sends a control signal to the transmission 14c, and switches the built-in hydraulic solenoid valve 62 (FIG. 5) to increase the reduction ratio of the transmission 14c. Further, the acceleration is changed to the negative side again when downshifting completion time controller at time t 102 of 24 connects the clutch 14b.
  • the period from the start of shift down to the completion (time t 101 to t 102 ) is 300 to 1000 msec, but a so-called torque shock in which the torque acting on the vehicle changes instantaneously gives the occupant a feeling of running idle. May cause discomfort.
  • the control device 24 sends a control signal to the auxiliary drive motor 20 at the time of downshifting to adjust the torque and suppress the feeling of idling of the vehicle 1.
  • the control device 24 sends a signal to the clutch 14b and the transmission 14c to perform a downshift
  • the control device 24 includes an automatic transmission input rotation sensor 50 and an automatic transmission output rotation sensor 52 (FIG. 5).
  • the rotation speeds of the input shaft and the output shaft of the transmission 14c detected by the above are read.
  • a change in acceleration generated in the vehicle 1 is predicted based on the read rotation speeds of the input shaft and the output shaft, and the auxiliary drive motor 20 is caused to perform energy regeneration.
  • the instantaneous increase (change to the positive side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the idling feeling can be suppressed.
  • the torque shock in the main drive wheel (rear wheel 2a) that accompanies the downshift is supplemented by the sub drive motor 20 with the sub drive wheel (front wheel 2b). Therefore, torque adjustment can be performed without being affected by the dynamic characteristics of the power transmission mechanism 14 that transmits power from the engine 12 to the main drive wheels.
  • the control device 24 shifts down, a change in acceleration generated in the vehicle 1 based on detection signals of the automatic transmission input rotation sensor 50 and the automatic transmission output rotation sensor 52. And the sub-driving motor 20 generates a driving force.
  • the instantaneous decrease (change to the negative side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the feeling of stall is suppressed.
  • the shift-up is started at time t 105 in a state where positive acceleration is acting on the vehicle 1 during acceleration (the positive acceleration decreases with time). Then, the output shaft of the engine 12 and the main drive wheel (rear wheel 2a) are separated. Thus, no longer acts on the rear wheels 2a is driving torque by the engine 12, the torque shock occurs, which may stall feeling occupant until the upshift is complete is given at time t 106. That is, instantaneously acceleration of the vehicle 1 is changed to the negative side at time t 105 to upshift is initiated, acceleration in the shift-up is completed time t 106 is changed to the positive side.
  • the control device 24 predicts a change in acceleration generated in the vehicle 1 based on detection signals of the automatic transmission input rotation sensor 50 and the automatic transmission output rotation sensor 52 when shifting up, A driving force is generated in the driving motor 20.
  • the instantaneous decrease (change to the negative side) of the acceleration of the vehicle 1 due to the torque shock is suppressed, and the feeling of stall is suppressed.
  • the adjustment of the drive torque by the sub drive motor 20 when the transmission 14c is shifted down or up is performed in a very short time, and does not substantially drive the vehicle 1. Therefore, the power generated by the sub drive motor 20 can be generated by the electric charge regenerated by the sub drive motor 20 and accumulated in the capacitor 22.
  • the adjustment of the drive torque by the auxiliary drive motor 20 can be applied to an automatic transmission with a torque converter, an automatic transmission without a torque converter, an automated manual transmission, and the like.
  • the voltage of the battery 18 and the capacitor 22 connected in series is applied to the auxiliary drive motor 20 that is the front wheel motor (FIG. 6).
  • the sub drive motor 20 can be driven with a higher voltage.
  • the electric current for driving the sub drive motor 20 can be suppressed low, and it can prevent that the conductor for supplying electric power becomes excessive.
  • a high voltage is applied to the sub drive motor 20 from the battery 18 and the capacitor 22 connected in series, it is necessary to increase the withstand voltage of the high voltage portion.
  • the auxiliary drive motor 20 is close to the capacitor 22 disposed between the left and right front wheels 2b of the vehicle (FIG. 1), the path requiring high withstand voltage is shortened, and the weight and cost are increased. Can be minimized.
  • the capacitor 22 is disposed at a position at least partially overlapping the front wheel 2b when viewed from the side of the vehicle 1 (FIG. 3).
  • the power supply path to the motor 20 can be further shortened, and an increase in weight and cost due to the insulating member can be further suppressed.
  • the capacitor 22 is disposed on the front side of the engine 12 (FIG. 2), in the unlikely event that the vehicle 1 collides from the front, the capacitor 22 Will be damaged.
  • the capacitor 22 is formed of a material that hardly burns. For this reason, even when the vehicle 1 collides, the flame retardant capacitor 22 suppresses damage to the engine 12, and thus the safety of the vehicle 1 can be further improved.
  • the auxiliary drive motor 20 that is the front wheel motor is an in-wheel motor
  • the drive shaft that connects the auxiliary drive motor 20 and the wheels can be eliminated or shortened.
  • the vehicle 1 can be further reduced in weight.
  • the hybrid drive device 10 of the present embodiment since the battery 18 is disposed below the passenger compartment of the vehicle 1, even if the vehicle 1 collides from the front, the influence of the collision is exerted on the battery 18. The damage of the battery 18 can be suppressed.
  • the voltage applied to the sub drive motor 20 is sufficiently high. Therefore, a sufficient output can be obtained while suppressing the current flowing to the auxiliary drive motor 20.
  • the capacitor 22 is charged with the electric power stored in the battery 18, and the first voltage converter is used to charge the battery 18 with the electric power stored in the capacitor 22. Since the high-voltage DC / DC converter 26a is provided, the amounts of electricity stored in the battery 18 and the capacitor 22 can be adjusted, and the electric power stored in both can be used effectively.
  • the low voltage DC / DC converter 26b which is the second voltage converter, steps down the voltage of the battery 18 and supplies power to the electrical component 25, so that the main drive motor
  • the battery 18 used to drive the motor 16 and the auxiliary drive motor 20 can be used also as the electrical component 25 provided in the vehicle 1, and the vehicle 1 can be reduced in weight.
  • the vehicle driving apparatus has been described above.
  • the vehicle drive device of the present invention is applied to an FR vehicle.
  • an engine and / or a main drive motor is arranged in the front portion of the vehicle and the front wheels are used as main drive wheels.
  • the present invention can be applied to various types of vehicles such as a car and a so-called RR vehicle in which an engine and / or a main drive motor is disposed in a rear portion of the vehicle and a rear wheel is a main drive wheel.
  • the present invention is applied to a hybrid drive apparatus including an engine and an electric motor.
  • the present invention is applied to a vehicle drive apparatus that does not include an engine and drives a vehicle only by an electric motor. You can also.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電動機による駆動の強化と車両重量増加の悪循環に陥ることなく、モータを使用して、効率的に車両を駆動することができる車両駆動装置を提供する。 本発明は、車両の車輪を駆動するモータを備えた車両駆動装置(10)であって、車両(1)の前輪(2b)を駆動するための前輪用モータ(20)と、前輪用モータ(20)を駆動するための電力を供給するバッテリ(18)及びキャパシタ(22)と、を有し、前輪用モータ(20)には、直列に接続されたバッテリ(18)及びキャパシタ(22)の電圧が印加され、キャパシタ(22)は、車両(1)の左右の前輪(2b)の間に配置されていることを特徴としている。

Description

車両駆動装置
 本発明は車両駆動装置に関し、特に、車両の車輪を駆動するモータを備えた車両駆動装置に関する。
 近年、世界各国において車両の排出ガス規制が強化され、車両の燃費、走行距離当たりの二酸化炭素排出量等に対する要求が厳しくなっている。また、内燃機関で走行する車両の市街地への進入を規制している都市も存在する。これらの要求を満足するため、内燃機関及び電動機を備えたハイブリッド駆動の車両や、電動機のみによって駆動される電気自動車が開発され、広く普及している。
 特許第5280961号公報(特許文献1)には、車両の駆動制御装置が記載されている。この駆動制御装置においては、車両の後輪側に駆動装置が設けられており、この駆動装置に備えられた2つの電動機が、車両の後輪を夫々駆動する。また、この駆動装置とは別に、内燃機関と電動機が直列に接続された駆動ユニットが車両の前部に設けられている。駆動ユニットの動力はトランスミッション及び主駆動軸を介して前輪に伝達され、駆動装置の動力は車両の後輪に伝達される。また、この駆動制御装置において、車両の発進時には、駆動装置の2つの電動機が駆動され、この駆動力が車両の後輪に夫々伝達される。さらに、車両の加速時には駆動ユニットも駆動力を発生し、駆動ユニット、及び駆動装置の2つの電動機による四輪駆動となる。このように、特許文献1記載の駆動制御装置においては、主に車両の後輪用に夫々設けられた2つの電動機が駆動力を発生している。
特許第5280961号
 電動機による車両の駆動は、走行中に二酸化炭素を排出しないため、年々強化される排出ガス規制をクリアするためには有利であるが、バッテリに蓄積可能な電力に限界があり、十分に長い航続距離を確保することが困難である。このため、車両用の駆動装置として、電動機と共に内燃機関を搭載したハイブリッド駆動装置が広く普及している。また、このようなハイブリッド駆動装置においても、走行中の二酸化炭素排出量を低減するため、特許文献1に記載されている車両のように、主として電動機による駆動力を利用する車両が増加している。
 このように、電動機の駆動力を主体とするハイブリッド駆動装置では、十分な走行性能を確保するために大容量のバッテリを搭載する必要がある。また、電動機により十分な駆動力を得るためには、比較的高電圧で電動機を作動させる必要がある。このため、電動機の駆動力を主体とするハイブリッド駆動装置では、大容量のバッテリが要求されると共に、電動機に高電圧を供給する電気系統を電気的に十分に絶縁する必要があり、これらが車両の全体的な重量を増加させ、車両の燃費を悪化させる。さらに、重量の大きい車両を電動機で駆動するために、更なる大容量のバッテリや高電圧が必要となり、これが更なる重量の増加を生む悪循環に陥るという問題がある。
 特に、電動機を駆動する電圧を低く抑えながら高出力を得ようとすると、電動機を駆動するための電流が大きくなるため、電力を伝送するための導体の断面積を大きくする必要があり、これが重量の増加、及びコスト高の原因となる。一方、電動機を駆動する電流を低く抑えながら高出力を得ようとすると、電源電圧を高くする必要があり、高電圧を使用すると、電動機に電力を伝送するための電力供給系統に高い絶縁性をもたせる必要があり、これも重量の増加や、コスト高に繋がるという問題がある。
 従って、本発明は、電動機による駆動の強化と車両重量増加の悪循環に陥ることなく、モータを使用して、効率的に車両を駆動することができる車両駆動装置を提供することを目的としている。
 上述した課題を解決するために、本発明は、車両の車輪を駆動するモータを備えた車両駆動装置であって、車両の前輪を駆動するための前輪用モータと、前輪用モータを駆動するための電力を供給するバッテリ及びキャパシタと、を有し、前輪用モータには、直列に接続されたバッテリ及びキャパシタの電圧が印加され、キャパシタは、車両の左右の前輪の間に配置されていることを特徴としている。
 このように構成された本発明においては、直列に接続されたバッテリ及びキャパシタの電圧が前輪用モータに印加され、この前輪用モータにより車両の前輪が駆動される。キャパシタは、車両の左右の前輪の間に配置されている。
 このように構成された本発明によれば、直列に接続したバッテリ及びキャパシタの電圧が前輪用モータに印加されるので、低電圧のバッテリを使用した場合でも、より高い電圧で前輪用モータを駆動することができる。これにより、前輪用モータを駆動するための電流を低く抑えることができ、電力を供給するための導体が過大なものになるのを防止することができる。一方、直列に接続したバッテリ及びキャパシタから高い電圧を前輪用モータに印加するため、高電圧部分の絶縁耐圧を高くすることが必要になる。しかしながら、前輪用モータは車両の左右の前輪の間に配置されたキャパシタと近接しているため、高い絶縁耐圧を要求される経路が短くなり、重量や、コストの増加を最小限に抑えることができる。
 本発明において、好ましくは、キャパシタは、車両の側方から見て前輪と少なくとも一部が重なる位置に配置されている。
 このように構成された本発明によれば、車両の側方から見て前輪と少なくとも一部が重なる位置にキャパシタが配置されているので、キャパシタから前輪用モータへの電力供給経路をより短縮することができ、絶縁部材による重量や、コストの増加をより抑制することができる。
 本発明において、好ましくは、さらに、車両を駆動するための内燃機関を有し、キャパシタは、内燃機関の前側に配置されると共に、車両の前方から見て内燃機関と少なくとも一部が重なる位置に配置されている。
 このように構成された本発明によれば、キャパシタが内燃機関の前側に配置されているので、万一、車両が正面から衝突した場合には、キャパシタが先に損傷される。ここで、一般に、キャパシタは燃焼しにくい素材で形成されている。このため、車両が衝突した場合でも、難燃性のキャパシタが内燃機関の損傷を抑制するので、車両の安全性を、より高めることができる。
 本発明において、好ましくは、前輪用モータは、車両の左右の前輪に夫々設けられたインホイールモータである。
 このように構成された本発明によれば、前輪用モータがインホイールモータであるため、前輪用モータと車輪を連結する駆動軸を排除又は短縮することができ、車両をより軽量化することができる。
 本発明において、好ましくは、バッテリは、車両の車室の下方、又は車両の後部に配置されている。
 このように構成された本発明によれば、バッテリが車両の車室の下方、又は車両の後部に配置されているので、万一、車両が正面から衝突した場合でも衝突の影響がバッテリに及びにくく、バッテリの損傷を抑制することができる。
 本発明において、好ましくは、キャパシタの最大の端子間電圧は、バッテリの端子間電圧よりも高い電圧に設定されている。
 このように構成された本発明によれば、キャパシタの最大の端子間電圧がバッテリの端子間電圧よりも高いので、前輪用モータに印加する電圧を十分に高くすることができ、前輪用モータへ流れる電流を抑制しながら十分な出力を得ることができる。
 本発明において、好ましくは、さらに、キャパシタとバッテリの間に接続された第1の電圧変換器を有し、この第1の電圧変換器は、バッテリの電圧を昇圧して、バッテリに蓄積された電力をキャパシタに充電、キャパシタの電圧を降圧して、キャパシタに蓄積された電力をバッテリに充電、のうち少なくとも一方を行うように構成されている。
 このように構成された本発明によれば、バッテリに蓄積された電力をキャパシタに充電し、又は、キャパシタに蓄積された電力をバッテリに充電する第1の電圧変換器を備えているので、バッテリとキャパシタの蓄電量を調整することができ、両者に蓄積された電力を有効に活用することができる。
 本発明において、好ましくは、さらに、バッテリと車両に備えられた電装品との間に接続された第2の電圧変換器を有し、この第2の電圧変換器は、バッテリの電圧を降圧して電装品に電力を供給する。
 このように構成された本発明によれば、第2の電圧変換器がバッテリの電圧を降圧して電装品に電力を供給するので、前輪用モータの駆動に使用されるバッテリを車両に備えられた電装品と兼用にすることができ、車両を軽量化することができる。
 本発明の車両駆動装置によれば、電動機による駆動の強化と車両重量増加の悪循環に陥ることなく、モータを使用して、効率的に車両を駆動することができる。
本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両のレイアウト図である。 本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両の前部を上方から見た透視図である。 本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両の前部を側面から見た透視図である。 図2のiv-iv線に沿う断面図である。 本発明の第1実施形態によるハイブリッド駆動装置における各種信号の入出力を示すブロック図である。 本発明の第1実施形態によるハイブリッド駆動装置の電源構成を示すブロック図である。 本発明の第1実施形態によるハイブリッド駆動装置において、キャパシタに電力が回生された場合における電圧の変化の一例を模式的に示す図である。 本発明の第1実施形態によるハイブリッド駆動装置において使用されている各モータの出力と車速の関係を示す図である。 本発明の第1実施形態によるハイブリッド駆動装置に採用されている副駆動モータの構造を模式的に示す断面図である。 本発明の第1実施形態によるハイブリッド駆動装置における制御装置による制御のフローチャートである。 本発明の第1実施形態によるハイブリッド駆動装置の各モードにおける動作の一例を示すグラフである。 本発明の第1実施形態によるハイブリッド駆動装置において、トランスミッションをシフトダウン又はシフトアップした場合における車両に作用する加速度の変化を模式的に示す図である。
 次に、添付図面を参照して、本発明の好ましい実施形態を説明する。
 図1は、本発明の第1実施形態によるハイブリッド駆動装置を搭載した車両のレイアウト図である。図2は本実施形態のハイブリッド駆動装置を搭載した車両の前部を上方から見た透視図であり、図3は車両の前部を側面から見た透視図である。図4は、図2のiv-iv線に沿う断面図である。
 図1に示すように、本発明の第1実施形態による車両駆動装置であるハイブリッド駆動装置を搭載した車両1は、運転席よりも前方の、車両の前部に内燃機関であるエンジン12が搭載され、主駆動輪である左右1対の後輪2aを駆動する所謂FR(Front engine, Rear drive)車である。また、後述するように、後輪2aは主駆動電動機である主駆動モータによっても駆動され、副駆動輪である左右1対の前輪2bは、副駆動電動機である副駆動モータによって駆動される。
 車両1に搭載された本発明の第1実施形態によるハイブリッド駆動装置10は、後輪2aを駆動するエンジン12と、後輪2aに駆動力を伝達する動力伝達機構14と、後輪2aを駆動する主駆動モータ16と、蓄電器であるバッテリ18と、前輪2bを駆動する副駆動モータ20と、キャパシタ22と、制御器である制御装置24と、を有する。
 エンジン12は、車両1の主駆動輪である後輪2aに対する駆動力を発生するための内燃機関である。図2乃至4に示すように、本実施形態においては、エンジン12として直列4気筒エンジンが採用されており、車両1の前部に配置されたエンジン12が動力伝達機構14を介して後輪2aを駆動するようになっている。また、図4に示すように、本実施形態においては、エンジン12は、フライホイールを備えていないフライホイールレスエンジンであり、車両1のサブフレーム4aにエンジンマウント6aを介して装着されている。さらに、サブフレーム4aは、フロントサイドフレーム4bの下部、及びその後端のダッシュパネル4c下部に締結固定されている。
 動力伝達機構14は、エンジン12が発生した駆動力を主駆動輪である後輪2aに伝達するように構成されている。図1乃至図3に示すように、動力伝達機構14は、エンジン12に接続されたプロペラシャフト14a、クラッチ14b、及び有段変速機であるトランスミッション14cを備えている。プロペラシャフト14aは、車両1の前部に配置されたエンジン12から、プロペラシャフトトンネル4d(図2)の中を車両1の後方へ向けて延びている。プロペラシャフト14aの後端は、クラッチ14bを介してトランスミッション14cに接続されている。トランスミッション14cの出力軸は後輪2aの車軸(図示せず)に接続され、後輪2aを駆動する。
 なお、本実施形態において、トランスミッション14cは、所謂トランスアクスル配置である。これにより、エンジン12の直後の位置に外径の大きな変速機の本体が存在しなくなるので、フロアトンネル(プロペラシャフトトンネル4d)の幅を小さくすることができ、乗員の中央側足元空間を確保して乗員に真正面に正対した左右対称な下半身姿勢をとらせることが可能となる。更に、この乗員の姿勢を確保しつつ主駆動モータ16の外径や、長さを出力に応じた十分な大きさにすることが容易になる。
 主駆動モータ16は、主駆動輪に対する駆動力を発生するための電動機であって、車両1の車体上に設けられ、エンジン12の後ろ側に、エンジン12に隣接して配置されており、車体側モータとして機能する。また、主駆動モータ16に隣接してインバータ(INV)16aが配置されており、このインバータ16aにより、バッテリ18からの電流が交流に変換されて主駆動モータ16に供給される。さらに、図2及び図3に示すように、主駆動モータ16はエンジン12と直列に接続されており、主駆動モータ16が発生した駆動力も動力伝達機構14を介して後輪2aに伝達される。或いは、主駆動モータ16を動力伝達機構14の途中に接続し、動力伝達機構14の一部を介して駆動力が後輪2aに伝達されるように本発明を構成することもできる。また、本実施形態においては、主駆動モータ16として、48Vで駆動される25kWの永久磁石電動機(永久磁石同期電動機)が採用されている。
 バッテリ18は、主として主駆動モータ16を作動させる電力を蓄積するための蓄電器である。また、図2に示すように、本実施形態においてバッテリ18は、車両1の車室の下方に、プロペラシャフト14aをカバーするトルクチューブ14dを取り囲むように、プロペラシャフトトンネル4dの内部に配置されている。さらに、本実施形態においては、バッテリ18として、48V、3.5kWhのリチウムイオンバッテリ(LIB)が使用されている。
 なお、上記のように、本実施形態においてはトランスアクスル配置が採用されているため、これにより生じたフロアトンネル(プロペラシャフトトンネル4d)前方の空間に向けて、バッテリ18を収容する容積を拡大することができる。これにより、フロアトンネルの幅を大きくして乗員の中央側空間を狭めることなく、バッテリ18容量の確保、拡大が可能になる。また、変形例として、車両1の後部にバッテリ18を配置することもできる。
 図4に示すように、前輪用モータである副駆動モータ20は、副駆動輪である前輪2bに対する駆動力を発生するように、車両1のバネ下に、左右の前輪2b各輪に設けられている。本実施形態においては、前輪2b各輪はダブルウイッシュボーンタイプのサスペンションで支持され、アッパアーム8a、ロアアーム8b、スプリング8c、及びショックアブソーバ8dにより懸架されている。また、副駆動モータ20はインホイールモータであり、前輪2b各輪のホイール内に夫々収容されている。従って、副駆動モータ20は、車両1の所謂「バネ下」に設けられて前輪2bを夫々駆動するように構成されている。また、図1に示すように、各副駆動モータ20には、キャパシタ(CAP)22からの電流が、各インバータ20aにより夫々交流に変換されて供給される。さらに、本実施形態においては、副駆動モータ20には減速機構である減速機が設けられておらず、副駆動モータ20の駆動力は前輪2bに直接伝えられ、車輪が直接駆動される。また、本実施形態においては、各副駆動モータ20として、17kWの誘導電動機が夫々採用されている。
 キャパシタ(CAP)22は、副駆動モータ20によって回生された電力を蓄積するように設けられている。図2及び図3に示すように、キャパシタ22はエンジン12の直前(前側)、且つ左右の前輪2bの間に配置されると共に、車両1の前輪2b各輪に設けられた副駆動モータ20に電力を供給する。即ち、キャパシタ22は、図3に示すように車両1の側方から見て前輪2bと重なる位置に、且つ、図2に示すように車両1の前方から見てエンジン12と少なくとも一部が重なる位置に配置されている。図4に示すように、キャパシタ22は、その両側の側面から突出したブラケット22aが、キャパシタ用マウント6bを介してフロントサイドフレーム4bに支持されている。また、副駆動モータ20からキャパシタ22へ延びるハーネス22bは、ホイールハウス壁面の側部上端を通ってエンジンルーム内に通されている。さらに、キャパシタ22は、バッテリ18よりも高い電圧で電荷を蓄積するように構成されると共に、副駆動輪である左右の前輪2bの間の領域内に配置される。主としてキャパシタ22に蓄積された電力により駆動される副駆動モータ20は、主駆動モータ16よりも高い電圧で駆動される。
 制御装置24は、エンジン12、主駆動モータ16、及び副駆動モータ20を制御して、電動機走行モード及び内燃機関走行モードを実行するように構成されている。具体的には、制御装置24は、マイクロプロセッサ、メモリ、インタフェイス回路、及びこれらを作動させるプログラム(以上、図示せず)等によって構成することができる。制御装置24による制御の詳細は後述する。
 また、図1に示すように、キャパシタ22の近傍には、電圧変換器である高圧DC/DCコンバータ26a及び低圧DC/DCコンバータ26bが夫々配置されている。これらの高圧DC/DCコンバータ26a、低圧DC/DCコンバータ26b、キャパシタ22、及び2つのインバータ20aはユニット化され、統合ユニットを構成している。
 次に、図5乃至図8を参照して、本発明の第1実施形態によるハイブリッド駆動装置10の全体構成、電源構成、及び各モータによる車両1の駆動を説明する。
 図5は、本発明の第1実施形態によるハイブリッド駆動装置10における各種信号の入出力を示すブロック図である。図6は、本発明の第1実施形態によるハイブリッド駆動装置10の電源構成を示すブロック図である。図7は、本実施形態のハイブリッド駆動装置10において、キャパシタ22に電力が回生された場合における電圧の変化の一例を模式的に示す図である。図8は、本実施形態のハイブリッド駆動装置10において使用されている各モータの出力と車速の関係を示す図である。
 まず、本発明の第1実施形態によるハイブリッド駆動装置10における各種信号の入出力を説明する。図5に示すように、制御装置24には、モード選択スイッチ40、車速センサ42、アクセル開度センサ44、ブレーキセンサ46、エンジン回転数センサ48、自動変速機(AT)入力回転センサ50、自動変速機(AT)出力回転センサ52、電圧センサ54、及び電流センサ56によって検出された検出信号が夫々入力される。また、制御装置24は、主駆動モータ用のインバータ16a、副駆動モータ20用のインバータ20a、高圧DC/DCコンバータ26a、低圧DC/DCコンバータ26b、燃料噴射弁58、点火プラグ60、及びトランスミッション14cの油圧ソレノイド弁62に制御信号を夫々送り、これらを制御するように構成されている。
 次に、本発明の第1実施形態によるハイブリッド駆動装置10の電源構成を説明する。図6に示すように、ハイブリッド駆動装置10に備えられているバッテリ18とキャパシタ22は直列に接続されている。主駆動モータ16はバッテリ18の基準出力電圧である約48Vで駆動され、副駆動モータ20はバッテリ18の出力電圧(端子間電圧)とキャパシタ22の端子間電圧を合算した48Vよりも高い、最大120Vの電圧で駆動される。即ち、本実施形態において、キャパシタ22の最大の端子間電圧は、バッテリ18の端子間電圧よりも高い72Vである。このため、副駆動モータ20は、常にキャパシタ22を介して供給された電力によって駆動される。
 また、主駆動モータ16にはインバータ16aが取り付けられており、バッテリ18の出力を交流に変換した上で永久磁石電動機である主駆動モータ16が駆動される。同様に、各副駆動モータ20にはインバータ20aが夫々取り付けられており、バッテリ18及びキャパシタ22の出力を交流に変換した上で誘導電動機である副駆動モータ20が駆動される。なお、副駆動モータ20は、主駆動モータ16よりも高い電圧で駆動されるため、副駆動モータ20に電力を供給するハーネス(電線)22bには高い絶縁性が要求される。しかしながら、各副駆動モータ20に近接してキャパシタ22が配置されているため、ハーネス22bの絶縁性を高くすることによる重量の増加を最小限に抑えることができる。
 さらに、車両1の減速時等には、主駆動モータ16及び各副駆動モータ20は発電機として機能し、車両1の運動エネルギーを回生して電力を生成する。主駆動モータ16によって回生された電力はバッテリ18に蓄積され、各副駆動モータ20によって回生された電力は主としてキャパシタ22に蓄積される。
 また、バッテリ18とキャパシタ22の間には第1の電圧変換器である高圧DC/DCコンバータ26aが接続されており、この高圧DC/DCコンバータ26aはキャパシタ22に蓄積された電荷が不足しているとき(キャパシタ22の端子間電圧が低下したとき)、バッテリ18の電圧を昇圧してキャパシタ22に充電する。一方、各副駆動モータ20によるエネルギーの回生により、キャパシタ22の端子間電圧が所定電圧以上に上昇した場合には、キャパシタ22に蓄積された電荷を降圧してバッテリ18に印加し、バッテリ18の充電を行う。即ち、副駆動モータ20によって回生された電力はキャパシタ22に蓄積された後、蓄積された電荷の一部が、高圧DC/DCコンバータ26aを介してバッテリ18に充電される
 さらに、バッテリ18と車両1の12V電装品25の間には、第2の電圧変換器である低圧DC/DCコンバータ26bが接続されている。ハイブリッド駆動装置10の制御装置24や、車両1の電装品25の多くは12Vの電圧で作動するので、バッテリ18に蓄積された電荷を低圧DC/DCコンバータ26bにより12Vに降圧して、これらの機器に供給する。
 次に、図7を参照して、キャパシタ22に対する充電及び放電を説明する。
 図7に示すように、キャパシタ22の電圧は、バッテリ18によるベース電圧と、キャパシタ22自体の端子間電圧の合計となる。車両1の減速時等には、各副駆動モータ20により電力の回生が行われ、回生された電力はキャパシタ22に充電される。キャパシタ22への充電が行われると比較的急激に端子間電圧が上昇する。充電によりキャパシタ22の電圧が所定電圧以上に上昇すると、高圧DC/DCコンバータ26aによりキャパシタ22の電圧が降圧され、バッテリ18への充電が行われる。図7に示すように、このキャパシタ22からバッテリ18への充電は、キャパシタ22への充電よりも比較的緩やかに行われ、キャパシタ22の電圧は適正電圧まで比較的緩やかに低下される。
 即ち、各副駆動モータ20により回生された電力は一時的にキャパシタ22に蓄積され、その後、バッテリ18へ緩やかに充電される。なお、回生が行われる期間によっては、各副駆動モータ20による電力の回生と、キャパシタ22からバッテリ18への充電がオーバーラップして行われる場合もある。
 一方、主駆動モータ16によって回生された電力は、バッテリ18に直接充電される。
 次に、図8を参照して、本発明の第1実施形態によるハイブリッド駆動装置10における車速と各モータの出力の関係を説明する。図8は、本実施形態のハイブリッド駆動装置10において、車両1の速度と、各速度における各モータの出力の関係を示すグラフである。図8において、主駆動モータ16の出力を破線で示し、1つの副駆動モータ20の出力を一点鎖線で、2つの副駆動モータ20の出力の合計を二点鎖線で、全てのモータの出力の合計を実線で示している。なお、図8は、車両1の速度を横軸とし、各モータの出力を縦軸として示しているが、車両1の速度とモータの回転数には一定の関係が存在するので、横軸をモータ回転数とした場合でも、各モータの出力は図8と同様の曲線を描く。
 本実施形態においては主駆動モータ16には永久磁石電動機が採用されているため、図8に破線で示すように、モータ回転数が低い低車速域で主駆動モータ16の出力が大きく、車速が速くなるにつれて出力可能なモータ出力が減少する。即ち、本実施形態において、主駆動モータ16は、約48Vで駆動され、1000rpm程度まで最大トルクである約200Nmのトルクを出力し、約1000rpm以上で回転数の増加と共にトルクが低下する。また、本実施形態において、主駆動モータ16は、最低速域において約20kW程度の連続出力が得られ、最大出力約25kWが得られるように構成されている。
 これに対して、副駆動モータ20には誘導電動機が採用されているため、図8に一点鎖線及び二点鎖線で示すように、低車速域では副駆動モータ20の出力は極めて小さく、車速が速くなるにつれて出力が増大し、車速約130km/h付近で最大出力が得られた後、モータ出力は減少する。本実施形態において、副駆動モータ20は、約120Vで駆動され、車速約130km/h付近で1台当たり約17kW、2台合計で約34kWの出力が得られるように構成されている。即ち、本実施形態において、副駆動モータ20は、約600乃至800rpmでトルクカーブがピークをもち、最大トルク約200Nmが得られる。
 図8の実線には、これら主駆動モータ16及び2台の副駆動モータ20の出力の合計が示されている。このグラフから明らかなように、本実施形態においては、車速約130km/h付近で最大出力約53kWが得られており、この車速における、この最大出力でWLTP試験において要求される走行条件を満足することができる。なお、図8の実線では、低車速域においても2台の副駆動モータ20の出力値が合算されているが、後述するように、実際には低車速域では各副駆動モータ20が駆動されることはない。即ち、発進時及び低車速域においては主駆動モータ16のみで車両が駆動され、高車速域で大出力が必要とされたとき(高車速域で車両1を加速させるとき等)のみ2台の副駆動モータ20が出力を発生する。このように、高回転数領域で大きな出力を発生することができる誘導電動機(副駆動モータ20)を、高速域のみで使用することにより、車両重量の増加を低く抑えながら必要なとき(所定速度以上での加速時等)に十分な出力を得ることができる。
 次に、図9を参照して、本発明の第1実施形態のハイブリッド駆動装置10に採用されている副駆動モータ20の構成を説明する。図9は、副駆動モータ20の構造を模式的に示す断面図である。
 図9に示すように、副駆動モータ20は、ステータ28と、このステータの周囲で回転するロータ30から構成されたアウターロータタイプの誘導電動機である。
 ステータ28は、概ね円板状のステータベース28aと、このステータベース28aの中心から延びるステータシャフト28bと、このステータシャフト28bの周囲に取り付けられたステータコイル28cと、を有する。また、ステータコイル28cは電気絶縁液室32に収納されており、この中に満たされた電気絶縁液32aに浸漬され、これにより沸騰冷却される。
 ロータ30は、ステータ28の周囲を取り囲むように概ね円筒状に構成されており、一端が閉塞された概ね円筒形に構成されたロータ本体30aと、ロータ本体30aの内周壁面に配置されたロータコイル30bと、を有する。ロータコイル30bは、ステータコイル28cが生成する回転磁界により誘導電流が発生するように、ステータコイル28cに対向するように配置されている。また、ロータ30は、ステータ28の周囲で円滑に回転するように、ステータシャフト28bの先端に取り付けられたベアリング34によって支持されている。
 ステータベース28aは、車両1の前輪を懸架するアッパアーム8a及びロアアーム8b(図4)によって支持されている。一方、ロータ本体30aは、前輪2bのホイール(図示せず)に直接固定されている。ステータコイル28cには、インバータ20aによって交流に変換された交流電流が流され、回転磁界が生成される。この回転磁界によりロータコイル30bに誘導電流が流れ、ロータ本体30aを回転させる駆動力が発生する。このように、各副駆動モータ20により生成された駆動力は、直接、各前輪2bのホイール(図示せず)を回転駆動する。
 次に、図10及び図11を参照して、制御装置24により実行される電動機走行モード及び内燃機関走行モードの動作を説明する。図10は、制御装置24による制御のフローチャートであり、図11は、各モードにおける動作の一例を示すグラフである。なお、図10に示すフローチャートは、車両1の作動中、所定の時間間隔で繰り返し実行される。
 図11に示すグラフは、上段から順に、車両1の速度、エンジン12が発生するトルク、主駆動モータ16が発生するトルク、副駆動モータ20が発生するトルク、キャパシタ22の電圧、キャパシタ22電流、及びバッテリ18電流を示している。なお、主駆動モータ16のトルク、及び副駆動モータ20のトルクを示すグラフにおいて、正の値は各モータがトルクを発生している状態を意味し、負の値は各モータが車両1の運動エネルギーを回生している状態を意味する。また、キャパシタ22電流、及びバッテリ18電流を示すグラフにおいて、負の値は各モータに電力を供給(放電)している状態を意味し、正の値は各モータにおいて回生された電力を充電している状態を意味する。
 まず、図10のステップS1においては、車両1が内燃機関走行モード(ENGモード)に設定されているか否かが判断される。即ち、車両1には内燃機関走行モードか、電動機走行モード(EVモード)の何れかを選択するモード選択スイッチ40(図5)が備えられており、ステップS1においては、どちらのモードに設定されているかが判断される。図11の時刻t1においては、電動機走行モードに設定されているため、図10のフローチャートにおける処理はステップS2に移行する。
 次に、ステップS2においては、車両1が所定車速以上であるか否かが判断され、所定車速以上である場合にはステップS6に進み、所定車速未満である場合にはステップS3に進む。図11の時刻t1においては、運転者が車両1を発進させており、車速が低いためフローチャートにおける処理はステップS3に移行する。
 さらに、ステップS3においては、車両1が減速されているか(車両1のブレーキペダル(図示せず)が操作されているか)否かが判断され、減速されている場合にはステップS5に進み、加速又は定速走行中である(ブレーキセンサ46(図5)によりブレーキペダルの操作が検出されていない)場合にはステップS4に進む。図11の時刻t1においては、運転者が車両1を発進させ、加速している(アクセル開度センサ44(図5)により、車両1のアクセルペダルの所定量以上の操作が検出されている)のでフローチャートにおける処理はステップS4に移行して、図10のフローチャートによる1回の処理が終了する。ステップS4においては、主駆動モータ16がトルクを発生し、車速が上昇する(図11の時刻t1~t2)。この際、主駆動モータ16に電力を供給するバッテリ18から放電電流が流れる一方、副駆動モータ20はトルクを発生させないため、キャパシタ22からの放電電流はゼロのままであり、キャパシタ22の電圧も変化しない。これらの電流、電圧は、電圧センサ54及び電流センサ56(図5)によって検出され、制御装置24に入力される。また、図11の時刻t1~t2では、電動機走行モードに設定されているため、エンジン12は駆動されない。即ち、制御装置24がエンジン12の燃料噴射弁58による燃料噴射を停止させ、点火プラグ60による点火を行わないため、エンジン12はトルクを発生しない。
 図11に示す例では、時刻t1~t2の間、車両1を加速させた後、時刻t3まで車両1は定速走行されている。この間、図10のフローチャートによる処理は、ステップS1→S2→S3→S4の処理が繰り返し実行される。この低速走行中は、主駆動モータ16が発生するトルクが加速中よりも小さくなるため、バッテリ18から放電される電流も小さくなる。
 次に、図11の時刻t3において、運転者が車両1のブレーキペダル(図示せず)を操作すると、図10のフローチャートにおける処理は、ステップS3→S5に移行するようになる。ステップS5においては、主駆動モータ16による駆動が停止(トルクを発生しない)されると共に、副駆動モータ20により、車両1の運動エネルギーが電力として回生される。運動エネルギーの回生により車両1は減速され、バッテリ18からの放電電流がゼロとなる一方、副駆動モータ20による電力の回生により、キャパシタ22に充電電流が流れ、キャパシタ22の電圧が上昇する。
 図11の時刻t4において、車両1が停止すると、キャパシタ22への充電電流がゼロとなり、キャパシタ22の電圧も一定になる。次いで、時刻t5において再び車両1が発進され、定速走行に至った(時刻t6)後、車両1の減速が開始(時刻t7)されるまでは、図10のフローチャートにおいて、ステップS1→S2→S3→S4の処理が繰り返し実行される。時刻t7において車両の減速が開始されると、図10のフローチャートにおいてはステップS1→S2→S3→S5の処理が繰り返し実行され、副駆動モータ20による電力の回生が行われる。このように、市街地の中などで比較的低速で発進、停止が繰り返される間は、電動機走行モードに設定され、車両1は純粋に電気自動車(EV)として機能し、エンジン12はトルクを発生しない。
 さらに、図11の時刻t8において車両1が発進されると、図10のフローチャートにおいてはステップS1→S2→S3→S4の処理が繰り返し実行され、車両1が加速される。次いで、時刻t9において、車速センサ42(図5)によって検出された車両1の速度が所定の第1車速を超えると、フローチャートにおける処理は、ステップS2→S6に移行するようになる。ステップS6においては、車両1が減速しているか(ブレーキペダルを操作しているか)否かが判断される。時刻t9において車両1は減速していないため、フローチャートにおける処理はステップS7に進む。ステップS7においては、車両1が所定値以上加速されているか(車両1のアクセルペダルが所定量以上操作されているか)否かが判断される。なお、本実施形態において、所定の第1車速は、走行速度=0km/hよりも大きい、時速約100km/hに設定されている。
 図11に示す例においては、時刻t9において車両1が所定値以上加速されているため、ステップS8に進み、ここでは主駆動モータ16が駆動されると共に、副駆動モータ20も駆動される。このように、電動機走行モードにおいて、所定の第1車速以上の車速で、所定値以上の加速が行われると、必要な動力を得るために主駆動モータ16及び副駆動モータ20に電力が供給され、これらによって車両1が駆動される。換言すれば、制御装置24は、主駆動モータ16に駆動力を発生させることにより、車両1を発進(時刻t8)させた後、車速センサ42によって検出された車両1の走行速度が第1車速に到達する(時刻t9)と、副駆動モータ20に駆動力を発生させるようになる。この際、主駆動モータ16にはバッテリ18から電力が供給され、副駆動モータ20にはキャパシタ22から電力が供給される。このようにキャパシタ22から電力が供給されることにより、キャパシタ22の電圧は低下する。主駆動モータ16及び副駆動モータ20により車両1が駆動されている間(時刻t9~t10)、フローチャートにおいては、ステップS1→S2→S6→S7→S8の処理が繰り返し実行される。
 このように、副駆動モータ20は、車両1の走行速度が所定の第1車速以上の場合において駆動力を発生し、第1車速未満の場合には駆動力の発生が禁止される。なお、本実施形態においては、第1車速=約100km/hに設定されているが、採用した副駆動モータ20の出力特性に応じて、第1車速を約50km/h以上の任意の車速に設定することができる。一方、主駆動モータ16は、車両1の走行速度がゼロを含む所定の第2車速未満のとき、及び第2車速以上のとき、駆動力を発生するように構成されている。所定の第2車速は、第1車速と同じ車速に設定することも、異なる車速に設定することもできる。また、本実施形態においては、主駆動モータ16は、電動機走行モードにおいて駆動力が要求される場合には、常に駆動力を発生している。
 次に、図11の時刻t10において、車両1が定速走行に移行する(アクセルペダルの操作が所定量未満になる)と、フローチャートにおいては、ステップS1→S2→S6→S7→S9の処理が繰り返し実行されるようになる。ステップS9においては、副駆動モータ20による駆動が停止され(トルクを発生しなくなる)、主駆動モータ16のみによって車両1が駆動される。このように、車両1が所定車速以上で走行している状態であっても、所定量以上の加速が行われていない状態では、主駆動モータ16のみにより車両1が駆動される。
 また、時刻t9~t10の間の副駆動モータ20の駆動により、キャパシタ22の電圧が所定値以下に低下したため、時刻t10において制御装置24は高圧DC/DCコンバータ26aに信号を送り、キャパシタ22への充電を行う。即ち、高圧DC/DCコンバータ26aは、バッテリ18に蓄積されている電荷を昇圧してキャパシタ22に充電を行う。これにより、図11の時刻t10~t11においては、主駆動モータ16を駆動するための電流及びキャパシタ22を充電するための電流が、バッテリ18から放電される。なお、副駆動モータ20により大きな電力が回生され、キャパシタ22の電圧が所定値以上に上昇した場合には、制御装置24は高圧DC/DCコンバータ26aに信号を送り、キャパシタ22の電圧を降圧してバッテリ18への充電を行う。このように、副駆動モータ20により回生された電力は、副駆動モータ20によって消費されるか、又はキャパシタ22に一旦蓄積された後、高圧DC/DCコンバータ26aを介してバッテリ18に充電される。
 図11の時刻t11において、車両1が減速する(ブレーキペダルが操作される)と、フローチャートにおいては、ステップS1→S2→S6→S10の処理が繰り返し実行されるようになる。ステップS10においては、主駆動モータ16及び副駆動モータ20の両方で車両1の運動エネルギーが電力として回生される。主駆動モータ16によって回生された電力はバッテリ18へ蓄積され、副駆動モータ20によって回生された電力はキャパシタ22に蓄積される。このように、所定車速以上でブレーキペダルが操作された場合には、主駆動モータ16及び副駆動モータ20の両方で電力の回生が行われ、バッテリ18及びキャパシタ22に電荷が蓄積される。
 次に、図11の時刻t12において、運転者によってモード選択スイッチ40(図5)が操作され、車両1が電動機走行モードから内燃機関走行モードに切り替えられると共に、アクセルペダル(図示せず)が踏み込まれる。車両1が内燃機関走行モードに切り替えられると、制御装置24における図10のフローチャートの処理はステップS1→S11に移行するようになり、ステップS11以下の処理が実行されるようになる。
 まず、ステップS11においては、車両1が停車しているか否かが判断され、停車していない場合(走行している場合)には、ステップS12において、車両1が減速中であるか否か(ブレーキペダル(図示せず)が操作されているか否か)が判断される。図11の時刻t12においては、車両1が走行中であり、運転者がアクセルペダルを操作しているので、図10のフローチャートにおける処理はステップS13に移行する。
 ステップS13においては、エンジン12への燃料の供給が開始され、エンジン12がトルクを発生するようになる。即ち、本実施形態においては、エンジン12の出力軸(図示せず)は主駆動モータ16の出力軸(図示せず)と直結されているため、エンジン12の出力軸は常に主駆動モータ16の駆動と共に回転されている。しかしながら、電動機走行モードにおいては、エンジン12への燃料供給が行われないためエンジン12はトルクを発生しておらず、内燃機関走行モードにおいて燃料供給(燃料噴射弁58による燃料の噴射、及び点火プラグ60による点火)が開始されることによりトルクを発生するようになる。
 また、電動機走行モードから内燃機関走行モードに切り替えられた直後は、制御装置24は、主駆動モータ16によりエンジン始動用のトルクを発生させる(図11の時刻t12~t13)。このエンジン始動用のトルクは、エンジン12への燃料供給が開始された後、エンジン12が実際にトルクを発生するようになるまでの間、車両1を走行させると共に、エンジン12がトルクを発生する前後のトルクムラを抑制するために発生される。また、本実施形態においては、内燃機関走行モードに切り替えられた時点におけるエンジン12の回転数が所定回転数未満の場合にはエンジン12への燃料供給は開始されず、エンジン始動用のトルクによりエンジン12が所定回転数以上になった時点で燃料供給が開始される。本実施形態においては、エンジン回転数センサ48によって検出されたエンジン12の回転数が2000rpm以上に上昇したとき、燃料供給が開始される。
 エンジン12が始動された後、車両1が加速又は定速走行している間は、図10のフローチャートにおいては、ステップS1→S11→S12→S13の処理が繰り返し実行される(図11の時刻t13~t14)。このように、内燃機関走行モードにおいては、車両1を駆動するための動力は専らエンジン12から出力され、主駆動モータ16及び副駆動モータ20が車両1を駆動するための動力を出力することはない。このため、運転者は、内燃機関により駆動される車両1の運転フィーリングを楽しむことができる。
 次いで、図11の時刻t14において、運転者がブレーキペダル(図示せず)を操作すると、図10のフローチャートにおける処理は、ステップS12→S14に移行するようになる。ステップS14においては、エンジン12への燃料供給が停止され、燃料の消費が抑制される。さらに、ステップS15においては、主駆動モータ16及び副駆動モータ20により、車両1の運動エネルギーが電気エネルギーとして回生され、バッテリ18及びキャパシタ22に夫々充電電流が流れる。このように、車両1の減速中においては、ステップS1→S11→S12→S14→S15の処理が繰り返し実行される(図11の時刻t14~t15)。
 なお、内燃機関走行モードにおける車両1の減速中において、制御装置24は、有段変速機であるトランスミッション14cの切り替え時(変速時)に、副駆動モータ20を駆動してダウンシフトトルク調整を実行する。このトルク調整トにより発生されるトルクは瞬間的なトルク抜け等を補完するものであり、車両1を駆動するトルクには該当しない。トルク調整の詳細については後述する。
 一方、図11の時刻t15において、車両1が停止すると、図10のフローチャートにおける処理は、ステップS11→S16に移行するようになる。ステップS16において、制御装置24は、エンジン12のアイドリングを維持するために必要な最小限の燃料を供給する。また、制御装置24は、エンジン12が低回転数でアイドリングを維持できるよう、主駆動モータ16によりアシストトルクを発生させる。このように、車両1の停車中においては、ステップS1→S11→S16の処理が繰り返し実行される(図11の時刻t15~t16)。
 本実施形態においては、エンジン12はフライホイールレスエンジンであるが、主駆動モータ16が発生するアシストトルクが擬似的なフライホイールとして作用し、エンジン12は低回転数で滑らかなアイドリングを維持することができる。また、フライホイールレスエンジンを採用することにより、内燃機関走行モードの走行中には、エンジン12の高い応答性が得られ、フィーリングの良い運転を楽しむことができる。
 また、内燃機関走行モードにおいて車両1が停車している状態から発進する場合には、制御装置24は主駆動モータ16に信号を送り、主駆動モータ16の回転数(=エンジン12の回転数)を所定回転数まで上昇させる。エンジン回転数が所定回転数まで上昇した後、制御装置24は、エンジン12にエンジン駆動用の燃料を供給して、エンジン12による駆動を発生させ、内燃機関走行モードによる走行が行なわれる。
 次に、図12を参照して、トランスミッション14cの切り替え時(変速時)におけるトルク調整を説明する。
 図12は、トランスミッション14cをシフトダウン又はシフトアップした場合において、車両に作用する加速度の変化を模式的に示す図であり、上段から順にダウンシフトトルクダウン、ダウンシフトトルクアシスト、アップシフトトルクアシストの一例を夫々示している。
 本発明の第1実施形態によるハイブリッド駆動装置10は、内燃機関走行モードにおいて、自動変速モードに設定されている場合には、車速やエンジン回転数に応じて、制御装置24がクラッチ14b及び自動変速機であるトランスミッション14cを自動的に切り替えるように構成されている。図12の上段に示すように、減速時に車両1に負の加速度が作用している状態で、トランスミッション14cのシフトダウン(低速側に変速)を行う際(図12の時刻t101)、制御装置24はクラッチ14bを切り離し、エンジン12の出力軸と主駆動輪(後輪2a)が切り離される。このように、エンジン12が主駆動輪から切り離されると、エンジン12の回転抵抗が主駆動輪に作用しなくなるので、図12上段の破線に示すように、車両1に作用する加速度は瞬間的に正の側に変化する。次いで、制御装置24はトランスミッション14cに制御信号を送り、内蔵されている油圧ソレノイド弁62(図5)を切り替えてトランスミッション14cの減速比を上げる。さらに、シフトダウン完了時の時刻t102において制御装置24がクラッチ14bを接続すると加速度は再び負の側に変化する。一般に、シフトダウン開始から完了までの期間(時刻t101~t102)は300~1000msecであるが、車両に作用するトルクが瞬間的に変化する所謂トルクショックにより、乗員に空走感が与えられ、不快感を与えてしまうことがある。
 本実施形態のハイブリッド駆動装置10においては、制御装置24は、シフトダウン時において副駆動モータ20に制御信号を送ってトルク調整を行い、車両1の空走感を抑制する。具体的には、制御装置24がクラッチ14b及びトランスミッション14cに信号を送ってシフトダウンを行う際、制御装置24には、自動変速機入力回転センサ50及び自動変速機出力回転センサ52(図5)によって夫々検出されたトランスミッション14cの入力軸及び出力軸の回転数が読み込まれる。さらに、読み込んだ入力軸及び出力軸の回転数に基づいて車両1に発生する加速度の変化を予測し、副駆動モータ20にエネルギーの回生を実行させる。これにより、図12上段の実線に示すように、トルクショックによる車両1の加速度の瞬間的な上昇(正側への変化)が抑制され、空走感を抑制することができる。また、本実施形態においては、シフトダウンに伴う主駆動輪(後輪2a)におけるトルクショックを、副駆動モータ20により副駆動輪(前輪2b)で補完している。このため、エンジン12から主駆動輪に動力を伝達する動力伝達機構14の動特性の影響を受けることなくトルク調整を行うことができる。
 また、図12中段の破線に示すように、加速時に車両1に正の加速度が作用している状態で、時刻t103においてシフトダウンが開始されると、エンジン12の出力軸と主駆動輪(後輪2a)が切り離される。これにより、エンジン12による駆動トルクが後輪2aに作用しなくなり、トルクショックが発生するので、時刻t104においてシフトダウンが完了するまでの間に乗員に失速感が与えられる場合がある。即ち、シフトダウンが開始される時刻t103において瞬間的に車両1の加速度が負の側に変化し、シフトダウンが完了する時刻t104において加速度が正の側に変化する。
 本実施形態のハイブリッド駆動装置10において、制御装置24はシフトダウンを行う際、自動変速機入力回転センサ50及び自動変速機出力回転センサ52の検出信号に基づいて、車両1に発生する加速度の変化を予測し、副駆動モータ20に駆動力を発生させる。これにより、図12中段の実線に示すように、トルクショックによる車両1の加速度の瞬間的な低下(負側への変化)が抑制され、失速感が抑制される。
 さらに、図12下段の破線に示すように、加速時に車両1に正の加速度が作用している状態(正の加速度は時間と共に低下している)で、時刻t105においてシフトアップが開始されると、エンジン12の出力軸と主駆動輪(後輪2a)が切り離される。これにより、エンジン12による駆動トルクが後輪2aに作用しなくなり、トルクショックが発生するので、時刻t106においてシフトアップが完了するまでの間に乗員に失速感が与えられる場合がある。即ち、シフトアップが開始される時刻t105において瞬間的に車両1の加速度が負の側に変化し、シフトアップが完了する時刻t106において加速度が正の側に変化する。
 本実施形態において、制御装置24はシフトアップを行う際、自動変速機入力回転センサ50及び自動変速機出力回転センサ52の検出信号に基づいて、車両1に発生する加速度の変化を予測し、副駆動モータ20に駆動力を発生させる。これにより、図12下段の実線に示すように、トルクショックによる車両1の加速度の瞬間的な低下(負側への変化)が抑制され、失速感が抑制される。
 上記のように、トランスミッション14cのシフトダウン又はシフトアップ時における副駆動モータ20による駆動トルクの調整は、ごく短時間に行われるものであり、実質的に車両1を駆動するものではない。このため、副駆動モータ20が発生する動力は、副駆動モータ20によって回生され、キャパシタ22に蓄積された電荷によって生成することができる。また、副駆動モータ20による駆動トルクの調整は、トルクコンバータ付きの自動変速機や、トルクコンバータの無い自動変速機、自動化したマニュアルトランスミッション等に適用することができる。
 本発明の第1実施形態のハイブリッド駆動装置10によれば、直列に接続したバッテリ18及びキャパシタ22の電圧が前輪用モータである副駆動モータ20に印加される(図6)ので、低電圧のバッテリ18を使用した場合でも、より高い電圧で副駆動モータ20を駆動することができる。これにより、副駆動モータ20を駆動するための電流を低く抑えることができ、電力を供給するための導体が過大なものになるのを防止することができる。一方、直列に接続したバッテリ18及びキャパシタ22から高い電圧を副駆動モータ20に印加するため、高電圧部分の絶縁耐圧を高くすることが必要になる。しかしながら、副駆動モータ20は車両の左右の前輪2bの間に配置されたキャパシタ22と近接しているため(図1)、高い絶縁耐圧を要求される経路が短くなり、重量や、コストの増加を最小限に抑えることができる。
 また、本実施形態のハイブリッド駆動装置10によれば、車両1の側方から見て前輪2bと少なくとも一部が重なる位置にキャパシタ22が配置されている(図3)ので、キャパシタ22から副駆動モータ20への電力供給経路をより短縮することができ、絶縁部材による重量や、コストの増加をより抑制することができる。
 さらに、本実施形態のハイブリッド駆動装置10によれば、キャパシタ22がエンジン12の前側に配置されているので(図2)、万一、車両1が正面から衝突した場合には、キャパシタ22が先に損傷される。ここで、一般に、キャパシタ22は燃焼しにくい素材で形成されている。このため、車両1が衝突した場合でも、難燃性のキャパシタ22がエンジン12の損傷を抑制するので、車両1の安全性を、より高めることができる。
 また、本実施形態のハイブリッド駆動装置10によれば、前輪用モータである副駆動モータ20がインホイールモータであるため、副駆動モータ20と車輪を連結する駆動軸を排除又は短縮することができ、車両1をより軽量化することができる。
 さらに、本実施形態のハイブリッド駆動装置10によれば、バッテリ18が車両1の車室の下方に配置されているので、万一、車両1が正面から衝突した場合でも衝突の影響がバッテリ18に及びにくく、バッテリ18の損傷を抑制することができる。
 また、本実施形態のハイブリッド駆動装置10によれば、キャパシタ22の最大の端子間電圧がバッテリ18の端子間電圧よりも高い(図7)ので、副駆動モータ20に印加する電圧を十分に高くすることができ、副駆動モータ20へ流れる電流を抑制しながら十分な出力を得ることができる。
 さらに、本実施形態のハイブリッド駆動装置10によれば、バッテリ18に蓄積された電力をキャパシタ22に充電すると共に、キャパシタ22に蓄積された電力をバッテリ18に充電する第1の電圧変換器である高圧DC/DCコンバータ26aを備えているので、バッテリ18とキャパシタ22の蓄電量を調整することができ、両者に蓄積された電力を有効に活用することができる。
 また、本実施形態のハイブリッド駆動装置10によれば、第2の電圧変換器である低圧DC/DCコンバータ26bがバッテリ18の電圧を降圧して電装品25に電力を供給するので、主駆動モータ16及び副駆動モータ20の駆動に使用されるバッテリ18を車両1に備えられた電装品25と兼用にすることができ、車両1を軽量化することができる。
 以上、本発明の第1実施形態による車両駆動装置を説明した。上述した第1実施形態においては、本発明の車両駆動装置をFR車に適用していたが、車両の前方部分にエンジン及び/又は主駆動モータを配置して前輪を主駆動輪とする所謂FF車や、車両の後方部分にエンジン及び/又は主駆動モータを配置して後輪を主駆動輪とする所謂RR車等、様々なタイプの車両に本発明を適用することができる。
 以上、本発明の好ましい実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態においては、エンジン及び電動機を備えたハイブリッド駆動装置に本発明を適用していたが、エンジンを備えない、電動機のみによって車両を駆動する車両駆動装置に本発明を適用することもできる。
  1  車両
  2a 後輪(主駆動輪)
  2b 前輪(副駆動輪)
  4a サブフレーム
  4b フロントサイドフレーム
  4c ダッシュパネル
  4d プロペラシャフトトンネル
  6a エンジンマウント
  6b キャパシタ用マウント
  8a アッパアーム
  8b ロアアーム
  8c スプリング
  8d ショックアブソーバ
 10  ハイブリッド駆動装置(車両駆動装置)
 12  エンジン(内燃機関)
 14  動力伝達機構
 14a プロペラシャフト
 14b クラッチ
 14c トランスミッション(有段変速機、自動変速機)
 14d トルクチューブ
 16  主駆動モータ(主駆動電動機、車体側モータ)
 16a インバータ
 18  バッテリ(蓄電器)
 20  副駆動モータ(前輪用モータ、インホイールモータ)
 20a インバータ
 22  キャパシタ
 22a ブラケット
 22b ハーネス
 24  制御装置(制御器)
 25  電装品
 26a 高圧DC/DCコンバータ(第1の電圧変換器)
 26b 低圧DC/DCコンバータ(第2の電圧変換器)
 28  ステータ
 28a ステータベース
 28b ステータシャフト
 28c ステータコイル
 30  ロータ
 30a ロータ本体
 30b ロータコイル
 32  電気絶縁液室
 32a 電気絶縁液
 34  ベアリング
 40  モード選択スイッチ
 42  車速センサ
 44  アクセル開度センサ
 46  ブレーキセンサ
 48  エンジン回転数センサ
 50  自動変速機入力回転センサ
 52  自動変速機出力回転センサ
 54  電圧センサ
 56  電流センサ
 58  燃料噴射弁
 60  点火プラグ
 62  油圧ソレノイド弁
101  車両
102a 前輪(主駆動輪)
102b 後輪(副駆動輪)
201  車両
202a 前輪(主駆動輪)
301  車両
302b 後輪(主駆動輪)

Claims (8)

  1.  車両の車輪を駆動するモータを備えた車両駆動装置であって、
     上記車両の前輪を駆動するための前輪用モータと、
     上記前輪用モータを駆動するための電力を供給するバッテリ及びキャパシタと、を有し、
     上記前輪用モータには、直列に接続された上記バッテリ及び上記キャパシタの電圧が印加され、
     上記キャパシタは、上記車両の左右の前輪の間に配置されていることを特徴とする車両駆動装置。
  2.  上記キャパシタは、上記車両の側方から見て上記前輪と少なくとも一部が重なる位置に配置されている請求項1記載の車両駆動装置。
  3.  さらに、上記車両を駆動するための内燃機関を有し、上記キャパシタは、上記内燃機関の前側に配置されると共に、上記車両の前方から見て上記内燃機関と少なくとも一部が重なる位置に配置されている請求項1又は2に記載の車両駆動装置。
  4.  上記前輪用モータは、上記車両の左右の前輪に夫々設けられたインホイールモータである請求項1乃至3の何れか1項に記載の車両駆動装置。
  5.  上記バッテリは、上記車両の車室の下方、又は上記車両の後部に配置されている請求項1乃至4の何れか1項に記載の車両駆動装置。
  6.  上記キャパシタの最大の端子間電圧は、上記バッテリの端子間電圧よりも高い電圧に設定されている請求項1乃至5の何れか1項に記載の車両駆動装置。
  7.  さらに、上記キャパシタと上記バッテリの間に接続された第1の電圧変換器を有し、
     この第1の電圧変換器は、上記バッテリの電圧を昇圧して、上記バッテリに蓄積された電力を上記キャパシタに充電、
     上記キャパシタの電圧を降圧して、上記キャパシタに蓄積された電力を上記バッテリに充電、のうちの少なくとも一方を行うように構成されている請求項1乃至6の何れか1項に記載の車両駆動装置。
  8.  さらに、上記バッテリと上記車両に備えられた電装品との間に接続された第2の電圧変換器を有し、この第2の電圧変換器は、上記バッテリの電圧を降圧して上記電装品に電力を供給する請求項1乃至7の何れか1項に記載の車両駆動装置。
PCT/JP2019/011430 2018-03-20 2019-03-19 車両駆動装置 WO2019181936A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/981,292 US11718168B2 (en) 2018-03-20 2019-03-19 Vehicle drive device
EP19771573.3A EP3753771B1 (en) 2018-03-20 2019-03-19 Vehicle drive device
CN201980019004.5A CN111867867B (zh) 2018-03-20 2019-03-19 车辆驱动装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-052636 2018-03-20
JP2018052636 2018-03-20
JP2018-143357 2018-07-31
JP2018143357A JP7146168B2 (ja) 2018-03-20 2018-07-31 車両駆動装置

Publications (1)

Publication Number Publication Date
WO2019181936A1 true WO2019181936A1 (ja) 2019-09-26

Family

ID=67986462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011430 WO2019181936A1 (ja) 2018-03-20 2019-03-19 車両駆動装置

Country Status (1)

Country Link
WO (1) WO2019181936A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066472A1 (ja) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha バッテリ用電力回路
JP2005289182A (ja) * 2004-03-31 2005-10-20 Mitsubishi Motors Corp エンジンルームの構造
JP2006345606A (ja) * 2005-06-07 2006-12-21 Toyota Motor Corp 車両用電源システムおよび車両
JP2009268343A (ja) * 2008-04-03 2009-11-12 Panasonic Corp 電源装置
WO2012157036A1 (ja) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 車両の電源システム
JP5280961B2 (ja) 2009-07-31 2013-09-04 本田技研工業株式会社 車両の駆動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066472A1 (ja) * 2003-01-24 2004-08-05 Mitsubishi Denki Kabushiki Kaisha バッテリ用電力回路
JP2005289182A (ja) * 2004-03-31 2005-10-20 Mitsubishi Motors Corp エンジンルームの構造
JP2006345606A (ja) * 2005-06-07 2006-12-21 Toyota Motor Corp 車両用電源システムおよび車両
JP2009268343A (ja) * 2008-04-03 2009-11-12 Panasonic Corp 電源装置
JP5280961B2 (ja) 2009-07-31 2013-09-04 本田技研工業株式会社 車両の駆動制御装置
WO2012157036A1 (ja) * 2011-05-13 2012-11-22 トヨタ自動車株式会社 車両の電源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753771A4 *

Similar Documents

Publication Publication Date Title
JP7146168B2 (ja) 車両駆動装置
JP7051048B2 (ja) ハイブリッド駆動装置
WO2020026905A1 (ja) 車両駆動装置
WO2019181936A1 (ja) 車両駆動装置
WO2019181935A1 (ja) 車両駆動装置
WO2019181934A1 (ja) 車両駆動装置
WO2019181799A1 (ja) ハイブリッド駆動装置
WO2019181933A1 (ja) 車両駆動装置
WO2019181932A1 (ja) 車両駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019771573

Country of ref document: EP

Effective date: 20200917