WO2004029127A1 - 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板 - Google Patents

印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板 Download PDF

Info

Publication number
WO2004029127A1
WO2004029127A1 PCT/JP2003/012399 JP0312399W WO2004029127A1 WO 2004029127 A1 WO2004029127 A1 WO 2004029127A1 JP 0312399 W JP0312399 W JP 0312399W WO 2004029127 A1 WO2004029127 A1 WO 2004029127A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
resin composition
cyanate ester
printed wiring
epoxy resin
Prior art date
Application number
PCT/JP2003/012399
Other languages
English (en)
French (fr)
Inventor
Yasuyuki Mizuno
Daisuke Fujimoto
Hiroshi Shimizu
Kazuhito Kobayashi
Takayuki Sueyoshi
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to US10/529,738 priority Critical patent/US7816430B2/en
Priority to AU2003266671A priority patent/AU2003266671A1/en
Priority to EP03798536A priority patent/EP1550678B1/en
Priority to DE60320004T priority patent/DE60320004T2/de
Priority to JP2004539564A priority patent/JP4639806B2/ja
Publication of WO2004029127A1 publication Critical patent/WO2004029127A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins

Definitions

  • the present invention relates to a resin composition for a printed wiring board, and a varnish, a pre-preda and a metal-clad laminate using the same.
  • the present invention relates to a resin composition for a printed wiring board, and a varnish, a pre-predder and a metal-clad laminate using the same. More specifically, the present invention relates to a resin composition for a printed wiring board used in electronic devices having an operating frequency of more than 1 GHz, as well as a varnish, a pre-reader and a metal-clad laminate using the same. Background art
  • network-related electronic devices such as mobile communication devices such as mobile phones, servers, and routers have been required to transmit and process large amounts of information with low loss and high speed.
  • the frequency of electric signals handled on printed wiring boards is increasing.
  • electric signals are more likely to be attenuated at higher frequencies, and printed wiring boards used in these fields must be made of materials with low transmission loss. That is, in a high frequency band of 1 GHz or more, it is necessary to use a material having excellent dielectric properties represented by low relative permittivity and low dielectric loss tangent.
  • a cyanate ester resin having an excellent cured dielectric property in a resin composition for a printed wiring board Conventional epoxy resins such as bisphenol A epoxy resin, brominated bisphenol A epoxy resin, phenol novolak epoxy resin, and cresol nopolak epoxy resin have been mixed with cyanate ester resin.
  • a composition has been proposed, and it is known that the moisture resistance and the heat resistance upon moisture absorption are improved as compared with the cyanate ester resin alone (for example, Japanese Patent Publication No. 46-41112, Japanese Patent Application Laid-Open No. Sho 50-133209 and Japanese Patent Application Laid-Open No. Sho 57-143320).
  • these resin compositions had inferior dielectric properties as compared with those without the epoxy resin.
  • an epoxy resin containing a naphthalene skeleton Select specific epoxy resins such as epoxy resin, epoxy resin containing aralkylene skeleton, phenol salicylaldehyde nopolak type epoxy resin substituted with lower alkyl group, and epoxy resin containing dicyclopentadiene skeleton, and mix them with cyanate ester resin. Therefore, a resin composition having improved dielectric properties in a high frequency band compared to the case of using the above-mentioned general epoxy resin has been proposed (for example, Japanese Patent Application Laid-Open No. 8-1766373). Gazette, Japanese Patent Application Laid-Open No. Hei 8-17664 and Japanese Patent Application Laid-Open No. Hei 11-66092).
  • the present inventors further modified the cyanate ester resin with a specific monovalent phenol ester conjugate to form a phenol-modified cyanate ester resin composition, thereby further improving the dielectric properties of the cyanate ester resin. Therefore, a resin composition having sufficient dielectric properties has been proposed even when an epoxy resin is blended (for example, Japanese Patent Application Laid-Open No. 2001-240723).
  • the moisture resistance and heat resistance of the cured product are improved as compared with the case where the cyanate ester resin or the modified cyanate ester resin is used alone, but the effect of the epoxy resin.
  • the results show that the relative permittivity and the dielectric loss tangent in the high frequency band increase, and that the stability of the dielectric properties with respect to temperature decreases (for example, the drift of the dielectric properties increases with temperature). There was room for improvement.
  • the temperature of the printed wiring board during device start-up may be as high as 85 to 90 ° C. If the relative permittivity changes or the dielectric loss tangent increases due to the change of the impedance, a serious problem may occur in that the impedance mismatching and the transmission error accompanying the increase in the transmission loss may occur. Therefore, there is an increasing need for a resin composition for a printed wiring board having excellent dielectric properties including temperature dependency.
  • Epoxy resins such as bisphenol A epoxy resin, brominated bisphenol A epoxy resin, phenol nopolak epoxy resin, and cresol nopolak epoxy resin were mixed with cyanate ester resin and polyphenylene ether.
  • a resin composition has been proposed (for example, Japanese Patent Publication No. 4-5767696).
  • Japanese Patent Publication No. 4-5767696 Japanese Patent Publication No. 4-5767696.
  • the temperature of the printed wiring board during device start-up may be as high as 85 to 90 ° C.
  • the present inventor aims to further improve the dielectric properties of the cyanate ester resin by modifying the cyanate ester resin with a specific monovalent phenol compound to form a phenol-modified cyanate ester resin composition.
  • a resin composition in which a polyphenylene ether resin is blended which is excellent in heat resistance, moldability and workability, and has good dielectric properties in a high frequency band (for example, Japanese Patent Laid-Open No. No. 1-221452 and Japanese Patent Application Laid-Open No. H11-21453).
  • these resin compositions have good dielectric properties including temperature dependency, and further improve the moisture resistance under strict conditions such as a long-term pressure cooker test and under other conditions. Had been.
  • the present invention has been made in view of such circumstances, and has the same moldability and workability as thermosetting resin materials such as epoxy resins, and has excellent moisture resistance and heat resistance. It is an object of the present invention to provide a resin composition for a printed wiring board that exhibits excellent dielectric properties in a frequency band and excellent stability against temperature change of the dielectric properties, and a varnish, a prep, and a metal-clad laminate using the same. Aim.
  • the present inventors have found that when compounding an epoxy resin with a cyanate ester resin (component (A)), at least one of the epoxy resins is included in the molecule.
  • biphenyl skeleton-containing epoxy resin component (B)
  • moisture resistance is improved, and at the same time, excellent dielectric properties in a high frequency band and temperature of the dielectric properties are improved.
  • component (B) biphenyl skeleton-containing epoxy resin
  • the first invention of the present invention in a cyanate ester resin thread compounded with a conventional epoxy resin, in addition to a triazine ring, an isocyanuric ring, an oxazolidinone ring and the like having a higher polarity than the triazine ring are formed.
  • the dielectric properties especially the dielectric loss tangent
  • the resin composition containing the epoxy resin having a biphenyl skeleton according to the present invention since the biphenyl group exhibits hydrophobicity and low polarity, the adverse effect on the dielectric properties due to the combined use of the epoxy resin is more difficult than in the past. Is thought to be reduced.
  • a rigid biphenyl skeleton is introduced into the cured product, it is thought that the temperature dependence of the dielectric properties will also be reduced, especially when the mobility of molecular chains in a high temperature region is reduced.
  • the resin composition for a printed wiring board according to the first invention of the present invention is compared with a case where a cyanate ester resin or the like is used alone or a case where a conventional epoxy resin is used in combination with a cyanate ester resin or the like. It has excellent heat resistance when absorbing moisture, and has high strength and elongation in the glassy area and high elongation in the high temperature area, so crack resistance during drilling and reflowing and severe heat resistance are required. It is preferable for a laminated board used for a multilayer printed wiring board having 10 or more layers and for a pre-preda.
  • a cyanate ester resin component (a)
  • a monovalent phenol compound component (b)
  • a polyphenylene ether resin component In blending the epoxy resin with the resin composition containing (c)
  • at least one of the epoxy resins has an epoxy resin having a biphenyl skeleton in a molecule (hereinafter referred to as an epoxy resin having a bifuunyl skeleton (component (d) ))
  • Excellent moisture resistance can be ensured, and at the same time, excellent dielectric properties in a high frequency band and low drift properties of the dielectric properties with respect to temperature change, and excellent stability are exhibited.
  • the resin composition containing the biphenyl skeleton-containing epoxy resin of the present invention since the bifuunyl group shows hydrophobicity and low polarity, the adverse effect on the dielectric properties due to the combined use of the epoxy resin is reduced as compared with the conventional one. It is considered to be.
  • the rigidity of the bifurnyl skeleton is introduced into the cured product, so the temperature dependence of the dielectric properties is thought to be reduced, especially because the mobility of molecular chains in the high-temperature region is reduced.
  • the biphenyl skeleton-introduced system exhibits higher strength and elongation in the glassy region and higher elongation in the high temperature region than the conventional epoxy resin-based system. Thus, a cured resin with high heat resistance has been obtained.
  • the resin composition for a printed wiring board according to the first invention and the second invention of the present invention can be used when a cyanate ester resin or the like is used alone, or a conventional epoxy resin is used in combination with a cyanate ester resin or the like.
  • a cyanate ester resin or the like is used alone, or a conventional epoxy resin is used in combination with a cyanate ester resin or the like.
  • it has better heat resistance when absorbing moisture, and has higher strength and elongation in the glass-like area and higher elongation in the high-temperature area, so it has crack resistance and severe heat resistance when drilling and reflowing.
  • This is preferable for a laminated board used for a multilayer printed wiring board having 10 or more layers and for a pre-preda application. Disclosure of the invention
  • the resin composition for a printed wiring board of the present invention comprises a cyanate ester compound having two or more cyanato groups in a molecule and / or a prepolymer thereof.
  • Epoxy resin containing at least one epoxy resin having a biphenyl skeleton in the molecule Epoxy resin containing at least one epoxy resin having a biphenyl skeleton in the molecule
  • a composition comprising:
  • the resin composition for a printed wiring board of the present invention comprises a cyanate ester compound having two or more cyanato groups in the molecule and Z or a prepolymer thereof.
  • a composition comprising:
  • the resin composition for a printed wiring board of the present invention is a phenol-modified cyanate obtained by reacting a cyanate ester compound having two or more cyanato groups in the molecule and / or Z or a prepolymer thereof with a monovalent phenol compound.
  • a composition comprising:
  • the resin composition for a printed wiring board of the present invention is a phenol-modified cyanate obtained by reacting a cyanate ester compound having two or more cyanato groups in the molecule and / or Z or a prepolymer thereof with a monovalent phenol compound.
  • a composition comprising:
  • the resin composition for a printed wiring board of the present invention contains at least one type of a cyanate ester compound having two or more cyanato groups in the molecule and / or a prepolymer thereof, or an epoxy resin having a biphenyl skeleton in the molecule.
  • Epoxy phenol-modified cyanate ester oligomer obtained by reacting an epoxy resin and a monovalent phenol compound
  • a composition comprising:
  • the resin composition for a printed wiring board of the present invention contains at least one type of a cyanate ester compound having two or more cyanato groups in a molecule and / or a prepolymer thereof, and an epoxy resin having a biphenyl skeleton in a molecule.
  • An epoxy phenol-modified cyanate ester oligomer obtained by reacting an epoxy resin and a monovalent phenol compound;
  • a composition comprising:
  • the resin composition for a printed wiring board of the present invention comprises a phenol-modified cyanate ester oligomer in the presence of a polyphenylene ether resin, a cyanate ester compound having two or more cyanate groups in a molecule and / or
  • the present invention relates to a composition obtained by reacting a prevolima with a monovalent phenol compound.
  • the resin composition for a printed wiring board of the present invention is a resin composition for an epoxy / phenol-modified cyanate ester oligomer in the presence of a polyphenylene ether resin, a cyanate ester compound having two or more cyanate groups in the molecule and Z or
  • the present invention relates to a composition obtained by reacting a prepolymer as described above with an epoxy resin containing a monovalent phenol compound and at least one epoxy resin having a bifuunyl skeleton in the molecule.
  • the cyanate ester compound having two or more cyanato groups in the molecule and Z or a prepolymer thereof are the component (A), and the epoxy resin having a biphenyl skeleton in the molecule.
  • the epoxy resin containing at least one is a component (B), and the monovalent phenol compound is a component (C).
  • the resin composition for a printed wiring board according to the first invention of the present invention comprises: (A) a cyanate ester compound having two or more cyanate groups in a molecule and / or a prepolymer thereof;
  • the present invention relates to a composition containing an epoxy resin containing at least one epoxy resin having a biphenyl skeleton, and further relates to the above-mentioned resin composition for a printed wiring board, which comprises a (C) -valent phenol compound.
  • the first invention of the present invention relates to a resin for a printed wiring board, a varnish using the composition, a prepreg, and a metal-clad laminate.
  • the first invention of the present invention provides (A) reacting a cyanate ester compound having two or more cyanato groups in a molecule and / or a prepolymer thereof with (C) a monovalent phenol compound.
  • C a monovalent phenol compound.
  • a phenol-modified cyanate ester oligomer obtained and (B) a resin composition for a printed wiring board containing an epoxy resin containing at least one epoxy resin having a biphenyl skeleton in a molecule; Use Varnish, prepredder and metal-clad laminate.
  • the first invention of the present invention comprises (A) a cyanate ester compound having two or more cyanato groups in the molecule and Z or a prepolymer thereof, and (B) an epoxy resin having a biphenyl skeleton in the molecule.
  • the present invention relates to a resin composition for a printed wiring board containing an epoxy Z phenol-modified cyanate ester oligomer obtained by reacting a monovalent phenol compound, and also relates to a varnish, a pre-preda and a metal-clad laminate using the same.
  • the first embodiment of the resin composition for a printed wiring board according to the present invention comprises: (A) a cyanate ester compound having two or more cyanato groups in a molecule and / or a prepolymer thereof, and (B) an epoxy containing a biphenyl skeleton. And an epoxy resin containing at least one resin.
  • the (A) cyanate ester compound having two or more cyanato groups in the molecule of the present invention is not particularly limited. If there are two or more cyanato groups in the molecule, it can be crosslinked and cured.
  • R 2 and R 3 represent a hydrogen atom or an alkyl group having 14 carbon atoms, and may be the same or different,
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • m represents an integer of 1 to 7
  • the prepolymer of the cyanate ester compound having two or more cyanato groups in the molecule of the component (A) of the present invention is not particularly limited.
  • the prepolymer is a cyanate ester oligomer in which a cyanate ester compound forms a triazine ring by a cyclization reaction, and is mainly composed of 3, 5, 7, 9 and 11 monomer of a cyanate ester compound. Is mentioned.
  • the conversion of the cyanate group is not particularly limited, but it is usually preferable to use a prepolymer converted within the range of 20 to 70%, and more preferably 30 to 65%.
  • a prepolymer of a cyanate ester compound represented by the formula (I) or (II) may be mentioned.
  • Preferred examples of the component (A) of the present invention include 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, and bis (3,5-dimethyl-14-cyanatophenyl).
  • Methane 2,2-bis (4-cyanatophenyl) 1,1,1,1,3,3,3-hexafluoropropane, a, a'-bis (4-cyanatopheninole) 1 m-diisopropynolebenzene, phenate-added dicyclopentadiene polymer cyanate ester compounds, phenol novolak type cyanate ester compounds, cresol novolak type cyanate ester compounds, and prepolymers thereof;
  • the epoxy resin of the present invention containing at least one epoxy resin having a biphenyl skeleton (B) is not particularly limited as long as the epoxy resin containing a biphenyl skeleton is contained as an essential component.
  • the epoxy resin having a biphenyl skeleton and another skeleton is a biphenyl skeleton. It is classified as a phenolic skeleton containing epoxy resin.
  • the biphenyl skeleton-containing epoxy resin is not particularly limited.
  • R 5 represents a hydrogen atom or a methyl group
  • n represents an integer of 0 to 6
  • n is preferably 0 to 5, more preferably 0 to 3, further preferably 0 or 1, and particularly preferably 0.
  • a mixture of epoxy resins of the formula (III) having different values of n may be used. Specific examples include biphenol diglycidyl ether and 3,3 ', 5,5'-tetramethylbiphenyldiglycidyl ether.
  • the epoxy resin represented by the formula (IV) includes biphenyl diglycidyl ether. Lalkyren novolac type epoxy resin is exemplified. Also, a mixture of epoxy resins of the formula (IV) having different values of p may be used.
  • biphenyl skeleton-containing epoxy resins may be used alone or in combination of two or more.
  • these biphenyl skeleton-containing epoxy resins are advantageous in terms of cost and have slightly superior strength and dielectric properties of the cured product. Resins are more preferred.
  • the component (B) of the present invention comprises at least one biphenyl skeleton-containing epoxy resin,
  • the epoxy resin is a combination of one or more other epoxy resins other than the phenyl skeleton-containing epoxy resin
  • the other epoxy resin is not particularly limited.
  • phenol novolak epoxy resin and cresol nopolak epoxy resin can be suitably used in combination with high glass transition temperature (T g) and cost, and brominated bisphenol A epoxy resin can be used for the purpose of adding flame resistance.
  • T g glass transition temperature
  • brominated bisphenol A epoxy resin can be used for the purpose of adding flame resistance.
  • a brominated phenol novolak type epoxy resin or the like can be suitably used in combination.
  • the compounding amount of the component (B) of the present invention is preferably from 100 to 250 parts by weight, based on 100 parts by weight of the component (A), for moisture resistance under severe conditions and for moisture absorption. It is preferable from the viewpoints of improvement in heat resistance, strength and elongation, and dielectric properties in a high frequency band.
  • the compounding amount of the component (B) is more preferably from 10 to 150 parts by weight, and particularly preferably from 10 to 100 parts by weight.
  • the proportion of the epoxy resin containing biphenyl skeleton in the component (B) is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably. Is 100% by weight, that is, the (B) component is an epoxy resin containing a biphenyl skeleton.
  • the resin thread of the first embodiment may contain (C) a monovalent phenol compound.
  • component (C) By blending the component (C), unreacted cyanato groups in the cured product can be reduced, which is preferable in terms of moisture resistance and dielectric properties.
  • the component (C) of the present invention is not particularly limited.
  • R 6 and R 7 represent a hydrogen atom or a methyl group, which may be the same or different, and q represents an integer of 1 to 3,
  • R 8 represents a hydrogen atom or a methyl group
  • R 9 is
  • Examples of the monovalent phenol compound represented by the formula (V) include p- ( ⁇ -tamyl) phenol, mono, gee or tree ( ⁇ -methylbenzyl) phenol.
  • Examples of the monovalent phenol compound represented by the formula (VI) include ⁇ -tert-butylphenol, 2,4_ or 2,6-di-tert-butylisophenol, p-tert-aminophenol and p-tert-butylphenol. tert-octylphenol; These monovalent phenol compounds may be used alone or in combination of two or more.
  • the amount of the component (C) of the present invention is preferably in the range of 2 to 60 parts by weight, more preferably 3 to 45 parts by weight, based on 100 parts by weight of the component (A). Particularly preferably, it is 4 to 30 parts by weight.
  • the component (C) is blended in this range, it is preferable from the viewpoint of the dielectric properties.
  • the component having a sufficiently low dielectric loss tangent in a high frequency band tends to be obtained. The effect is obtained, and there is a tendency that it does not adversely affect the heat resistance when absorbing moisture.
  • the resin composition of the first embodiment preferably contains a metal catalyst.
  • the metal-based catalyst is used as an accelerator in the self-polymerization reaction of the component (A) and, when the component (C) is blended, in the reaction between the component (A) and the component (C), and curing during the production of a laminate. It functions as a promoter, for example, a transition metal or a metal salt of a Group 12 metal. And chelate complexes. Examples of the metal include copper, cobalt, manganese, iron, nickel, zinc, and the like.
  • chelate complex examples include an acetylacetone complex.
  • metal catalysts may be used alone or in combination of two or more. Further, even if the accelerator for the self-polymerization reaction of the component (A) and the reaction between the components (A) and (C) is the same as the curing accelerator for producing the laminated board, Different and different metal-based catalysts may be used.
  • the amount of the metal-based catalyst is preferably from l to 300 ppm, more preferably from 1 to 20 ppm, particularly preferably from 2 to 15 ppm, based on the component (A). It is. When the metal catalyst is blended within this range, the reactivity and curability are sufficient and the curing speed is appropriate. The addition of the metal-based catalyst may be performed all at once or may be performed several times.
  • a compound having a catalytic function to promote the reaction of the glycidyl group of the component (B) can be blended.
  • Specific examples include alkali metal compounds, alkaline earth metal compounds, imidazole compounds, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These compounds may be used alone or in combination of two or more.
  • Additives such as a flame retardant and a filler can be added to the resin composition of the first embodiment, if necessary, as long as the properties such as the dielectric properties and heat resistance of the cured product are not deteriorated.
  • the flame retardant to be added as required is not particularly limited, but a flame retardant having no reactivity with a cyanate group is preferable.
  • the term “have no reactivity with cyanate group” means that when a flame retardant is added to a printed wiring board resin composition, even if the flame retardant is mixed at a temperature of 300 ° C. or less, the flame retardant is cyanate.
  • the printed wiring board resin composition As it is, without reacting with the cyanato group of the ester compound, in a form of dispersion or dissolution. This reaction does not include the reaction of the flame retardant when the resin composition is heated and burned.
  • the production and use of resin compositions for printed wiring boards, and varnishes, prepregs, metal-clad laminates, printed wiring boards, and the like using the same are performed within a temperature range of 300 ° C. or less. .
  • Examples of such a flame retardant include a flame retardant substantially free of an alcoholic hydroxyl group, a phenolic hydroxyl group, an amino group, and a maleimide group, which are known as groups that react with a cyanate group under the above conditions.
  • “substantially has no” means that the flame retardant does not contain any of these groups and that the flame retardant does not interact with the cyanate ester compound even if the flame retardant contains these groups ( For example, the case where the flame retardant is a polymer having a large molecular weight and these groups are located at the extreme end thereof and thus have no effect as a functional group).
  • the flame retardant classified as an epoxy resin such as a brominated epoxy resin such as a brominated bisphenol A type epoxy resin and a brominated phenol novolak type epoxy resin is referred to as the component (B) in the present invention.
  • flame retardants classified as epoxy compounds having only one glycidyl group can react with cyanate ester compounds and be inserted into triazine rings or isocyanuric rings. It may be used as a flame retardant, as it is considered to have a small effect.
  • Specific flame retardants are, for example, 1,2-dibutene methoxy (1,2-dibutene), cyclohexane, tetrabromocyclooctane and hexapromocyclododecane, bis (tripromophenoxy) ) Ethane, brominated polyphenylene ether, brominated polystyrene, and formula (VII):
  • Formula (W) In the formula, s, t, and u each represent an integer of 1 to 5, and may be the same or different,
  • Triphenyl cyanurate bromide flame retardant etc. represented by the following formulas. From the viewpoint of the dielectric properties, 1,2-dibutene 4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, Mocyclododecane and 2, 4, 6-tris (Tripromophenoxy) -1,3,5-triazine is preferred.
  • the flame retardant should be blended in an amount of 5 to 100 parts by weight, based on the total of 100 parts by weight of the components (A), (B) and (C) (if blended). Is more preferable, more preferably 5 to 80 parts by weight, and particularly preferably 5 to 60 parts by weight. When blended in this range, the resin composition has sufficient flame resistance, and the cured product also preferably has heat resistance.
  • the filler to be added as required is not particularly limited, but is usually an inorganic filler, for example, alumina, titanium oxide, myriki, silica, beryllia, barium titanate, potassium titanate, strontium titanate , Calcium titanate, aluminum carbonate, aluminum hydroxide, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay (calcined clay, etc.), talc, aluminum borate, boric acid Aluminum, silicon carbide and the like.
  • inorganic fillers may be used alone or in combination of two or more.
  • the shape and particle size of the inorganic filler are not particularly limited, but usually, the particle size is from 0.01 to 50 ⁇ , preferably from 0.1 to 15 ⁇ .
  • the amount of these inorganic fillers is not particularly limited, but is preferably 1% by weight based on 100 parts by weight of the components (C), ( ⁇ ) and (C) (if present). The amount is preferably from 100 to 100 parts by weight, more preferably from 1 to 800 parts by weight.
  • the resin composition of the first embodiment can be produced by blending the component (I), the component (II), and optionally the component (C) and other additives by a known method and mixing.
  • the second embodiment of the resin composition for a printed wiring board according to the present invention comprises: ( ⁇ ) reacting a cyanate ester compound and / or prevolima having two or more cyanato groups in a molecule with (C) a monovalent phenol compound; A composition comprising a phenol-modified cyanate ester oligomer obtained by the above-mentioned method and ( ⁇ ) an epoxy resin containing at least one epoxy resin having a biphenyl skeleton.
  • phenol-modified cyanate oligomer examples include a cyanate ester oligomer in which the component (A) alone forms a triazine ring by a cyclization reaction, and an imide in which the phenolic hydroxyl group of the component (C) is added to the cyanato group of the component (A).
  • component (A), component (C) and component (B) applies.
  • Component (C) used to produce the phenol-modified cyanate ester oligomer is preferably in the range of 2 to 60 parts by weight, more preferably 3 to 100 parts by weight, per 100 parts by weight of component (A). To 45 parts by weight, particularly preferably 4 to 30 parts by weight.
  • the compounding amount of the component (B) of the present invention is preferably from 100 to 250 parts by weight based on 100 parts by weight of the component (A) used for producing the phenol-modified cyanate ester oligomer. It is more preferably from 10 to 150 parts by weight, particularly preferably from 10 to 100 parts by weight. From the viewpoint of the dielectric properties, the proportion of the biphenyl skeleton-containing epoxy resin in the component (B) is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 1% by weight or more. 0% by weight, ie
  • the resin composition of the second embodiment may further contain a component (C), in which case the component (C) and the component (C) used for producing a phenol-modified cyanate ester oligomer are used.
  • the total is preferably in the range of 2 to 60 parts by weight based on 100 parts by weight of the component (A).
  • the component (C) is reacted in advance in a range of at least 0.4 part by weight and less than 60 parts by weight to obtain a phenol-modified cyanate ester oligomer.
  • the component (C) can be additionally blended in an amount in the range of 2 to 60 parts by weight with the component (C) used for producing the phenol-modified cyanate ester oligomer.
  • Ingredient 100 weight When the phenol-modified cyanate ester oligomer is obtained by pre-reacting the component (C) in the range of 2 to 60 parts by weight with respect to parts, the additional component (C) may not be blended. And used to produce phenol-modified cyanate ester oligomers
  • the component (C) used for producing the phenol-modified cyanate ester oligomer and the additional component (C) may be the same or different, and two or more of each may be mixed. Can also be used.
  • the phenol-modified cyanate ester oligomer is, for example, a component (A)
  • the reaction can be carried out by dissolving the component (C) in a solvent such as toluene, xylene or mesitylene, and then heating at 70 to 120 ° C for 0.5 to 10 hours.
  • a solvent such as toluene, xylene or mesitylene
  • the metal-based catalyst described in the first embodiment may be added.
  • These metal-based catalysts also promote phenol modification.
  • the phenol-modified cyanate ester oligomer can have an initial cyanato group conversion of, for example, 20 to 70%, preferably 30 to 65%.
  • the resin composition of the second embodiment is obtained by further combining the component (B) and, if necessary, the component (C) with the phenol-modified cyanate ester oligomer obtained as described above.
  • these include, similarly to the resin composition of the first embodiment, a metal catalyst, a compound having a catalytic function of accelerating the reaction of the glycidyl group of the epoxy resin, a flame retardant, a filler, and other additives.
  • a metal catalyst similarly to the resin composition of the first embodiment, a metal catalyst, a compound having a catalytic function of accelerating the reaction of the glycidyl group of the epoxy resin, a flame retardant, a filler, and other additives.
  • the description of the first embodiment is applied to specific examples, suitable examples, amounts, and methods for producing the resin composition.
  • the third embodiment of the resin composition for a printed wiring board of the present invention comprises (A) a cyanate ester compound having two or more cyanato groups in a molecule and / or a prepolymer thereof, and (B) a biphenyl skeleton-containing epoxy resin.
  • a composition comprising: an epoxy resin containing at least one epoxy resin; and (c) an epoxy Z-phenol-modified cyanate ester oligomer obtained by reacting a monovalent phenol compound.
  • the component (B) is preferably 10 to 250 parts by weight, more preferably 10 to 150 parts by weight, per 100 parts by weight of the component (A). Parts by weight, particularly preferably 10 to 100 parts by weight. From the viewpoint of the dielectric properties, the proportion of the biphenyl skeleton-containing epoxy resin in the component (B) is
  • the component (B) is a biphenyl skeleton-containing epoxy resin.
  • the component (C) is preferably used in an amount of 2 to 60 parts by weight, more preferably 3 to 45 parts by weight, per 100 parts by weight of the component (A). And particularly preferably 4 to 30 parts by weight.
  • the resin composition of the third embodiment may further contain the component (C).
  • the component (c) and the component (C) used for the production of the epoxy Z phenol-modified cyanate ester oligomer Is 2 to 100 parts by weight of the component (A).
  • component (C) is in the range of 60 parts by weight.
  • 10 parts to 250 parts by weight of component (B) and 0.4 parts by weight or more and less than 60 parts by weight of component (C) are reacted in advance with 100 parts by weight of component (A) to obtain epoxy / phenol.
  • the component (C) is additionally used in an amount within a range of 2 to 60 parts by weight in total with the component (C) used for forming the epoxy / phenol-modified cyanate ester oligomer. Can be blended.
  • the component (C) used to form the epoxy / phenol-modified cyanate ester oligomer and the additional component (C) may be the same or different, and two or more of each may be used in combination.
  • the epoxy Z phenol-modified cyanate ester resin composition is prepared, for example, by dissolving the component (A), the component (B), and the component (C) in a solvent such as toluene, xylene, and mesitylene. And by heating for 0.5 to 10 hours. At this time, the metal-based catalyst described in the first embodiment may be added. These metal-based catalysts also promote phenol modification.
  • the epoxy / phenol-modified cyanate ester oligomer is, for example, an initial cyanate group. Can be in the range of 20 to 70%, preferably 30 to 65%.
  • the resin composition of the third embodiment includes a metal catalyst, a compound having a catalytic function of accelerating the reaction of the glycidyl group of the epoxy resin, a flame retardant, and a filler. , Other additives and the like can be blended.
  • the description of the first embodiment is applied to specific examples, suitable examples, blending amounts, and the method of producing the resin composition.
  • a pre-predator for a printed wiring board or a metal-clad laminate can be manufactured by a known method.
  • the resin composition for a printed wiring board of the present invention is impregnated on a substrate such as a glass cloth as it is, or in the form of a varnish dissolved or dispersed in a solvent, and then usually dried in a drying oven or the like.
  • the temperature should be higher than the temperature at which the solvent can be volatilized), preferably at a temperature of 100 to 180 ° C, for 3 to 30 minutes, preferably Is dried for 3 to 15 minutes to obtain a prepredder.
  • a plurality of the prepregs are stacked, a metal foil is disposed on one or both surfaces thereof, and the resulting prepreg is heated and molded to produce a double-sided or single-sided metal-clad laminate.
  • the solvent used for the above varnishing is not particularly limited, but examples thereof include alcohols such as methanol, ethanol, ethylene glycolone, ethylene glycolone monomethinole ether, acetone, methyl ethyl ketone, and methyl.
  • Ketones such as isobutyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and mesitylene; esters such as methoxethyl acetate, ethoxyxyl acetate, butoxyethyl acetate, and ethyl acetate; Solvents such as amides such as methylformamide, N, N-dimethylformamide, N, N-dimethylacetamide and N-methylvirolidone.
  • aromatic hydrocarbons such as toluene, xylene, and mesitylene are more preferable. These may be used alone or in combination of two or more.
  • the resin composition for a printed wiring board of the present invention and a varnish, a pre-preparer, and a metal-clad laminate using the same, are used for information-communication-related devices (signals for mobile communications
  • information-communication-related devices signals for mobile communications
  • Built-in filter, components such as VCO and wireless base station equipment It can be used for printed circuit boards used in signal processors, power amplifiers and antennas, or in high-speed computers where the operating frequency of servers, routers and microprocessors exceeds 1 GHz.
  • the cyanate ester compound having two or more cyanato groups in the molecule and the Z or a prepolymer thereof are the component (a), and include an epoxy resin having a biphenyl skeleton in the molecule.
  • the epoxy resin containing at least one component is component (b)
  • the polyphenylene ether resin is component (c)
  • the monovalent phenol compound is component (d)
  • the flame retardant is component (e).
  • the antioxidant is the component (f).
  • the second invention of the present invention comprises: (a) a cyanate ester compound having two or more cyanato groups in a molecule and Z or a prepolymer thereof, (b) a -valent phenol compound,
  • a polyphenylene ether resin (c) a polyphenylene ether resin, and (d) a resin composition for a printed wiring board obtained by using an epoxy resin containing at least one epoxy resin having a biphenyl skeleton in a molecule; and It relates to varnishes, prepredders and metal-clad laminates.
  • the second invention of the present invention relates to a resin composition for a printed wiring board, which comprises the components (a) to (d), and a varnish, a pre-preda and a metal-clad laminate using the same.
  • a second invention of the present invention provides a phenol-modified cyanate ester oligomer obtained by reacting the component (a) with the component (b), a component (c), and a component (d).
  • the present invention relates to a resin composition for a printed wiring board, and also relates to a varnish, a pre-preda and a metal-clad laminate using the same.
  • the present invention is, (a) component and, (b) component and (d) an epoxy / phenol-modified Xia esters oligomers obtained we have a component are reacted, and (c) including Ingredient, printed circuit board TECHNICAL FIELD
  • the present invention relates to a resin composition for use, a varnish, a pre-preda and a metal-clad laminate using the same.
  • the resin composition for a printed wiring board according to the second invention of the present invention comprises: (a) a cyanate ester compound having two or more cyanate groups in a molecule and / or a prepolymer thereof; , (C) a polyphenylene ether resin, and
  • a first aspect of the resin composition for a printed wiring board of the present invention is a resin composition for a printed wiring board containing the components (a) to (d).
  • the component (a) of the present invention is preferably a compound represented by the formula (I) and its prepolymer in terms of dielectric properties, and a compound represented by the formula (II) having a high T g in terms of heat resistance. Is preferred. These can be selected according to the desired properties, and when used together, the mixing ratio can be arbitrarily adjusted.
  • the cyanate ester compounds of the present invention represented by the formula (I) and their prepolymers include 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, and bis (3,5). —Dimethyl-1,4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) 1-1,1,1,1,3,3,3-hexaphenylenopropane, ⁇ , ⁇ ′-bis ( 4-cyanatopheninole) 1 m-diisopropylbenzene, cyanate ester compounds of phenoleno-added dicyclopent pentadiene polymers and their prepolymers, and cyanateester compounds of the formula (II) and their prepolymers Examples thereof include phenol novolak type cyanate ester compounds, cresol novolak type cyanate ester compounds, and prepolymers thereof. Can be These may be used alone or in combination of two or more.
  • the (b) -valent phenol compound of the present invention is not particularly limited.
  • a triazine ring can be efficiently formed during curing, and the cyanato group remaining unreacted in the cured product is converted to imidocarbonate to reduce its polarity. It reduces the dielectric constant and dielectric loss tangent of the cured product.
  • the triazine ring In a normal curing reaction of a single cyanate ester, since the triazine ring always has three cyanato groups, the triazine ring always becomes a cross-linking point as the reaction proceeds, but the resin composition of the present invention
  • one or two molecules of component (b) are incorporated as a component of a triazine ring, so that one or two cyanato groups are extended from the triazine ring, and the triazine ring is not necessarily a crosslink point.
  • the molecular weight between cross-linking points is larger than that of The cured product has the characteristic that the degree is small.
  • the component is not particularly limited as long as it is suitable for this purpose.
  • a monofunctional phenol compound which is monofunctional has a relatively low molecular weight, and has good compatibility with the cyanate ester resin is suitable. It is thought that it is.
  • the (c) polyphenylene ether resin of the present invention is not particularly limited.
  • the cyanate ester compound and the polyphenylene ether resin are originally incompatible with each other, and it is difficult to obtain a uniform resin.
  • the compatibilization does not mean that each component forms a chemical bond, but the cured component is entangled with the molecular chain of the polymer of the polyphenylene ether resin and oligomerized, and finally the phase is formed. It is thought that it exists as a resin contained in the resin.
  • the component (b) since the component (b) is blended with the component (a), the molecular weight between crosslink points of the cured product becomes large, and the cured component and the polyphenylene ether are easily entangled with each other. The tolerability is improved.
  • the component (c) of the present invention is, for example, poly (2,6-dimethyl-1,4-phenylene) ether, an alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and polystyrene. And alloyed polymers of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer.
  • polystyrene Polystyrene and poly (2,6-dimethyl-1,4-phenylene) ether with styrene-butadiene copolymer If an alloyed polymer is used, (2,6-Dimethyl-1,4-phenylene) More preferably, the polymer contains 50% or more of an ether component.
  • the preferred ranges of the amounts of the components (a) to (d) are as follows.
  • the blending amount of the component (b) of the present invention is preferably 2 to 60 parts by weight, more preferably 3 to 45 parts by weight, and particularly preferably 100 parts by weight of the component (a). 4 to 30 parts by weight.
  • the component (b) is blended in this range, the dielectric loss tangent in a high frequency band is sufficiently low, good dielectric properties are obtained, and good heat resistance during moisture absorption is obtained.
  • the amount of component (c) of the present invention is preferably 5 to 300 parts by weight, more preferably 10 to 200 parts by weight, and particularly preferably 1 to 100 parts by weight, per 100 parts by weight of component (a). 5-100 parts by weight.
  • amount of the component (c) is within this range, sufficient dielectric properties can be obtained, and the melt viscosity of the resin is appropriate, so that the fluidity is sufficient and the moldability is good. Also tend to be good.
  • the blending amount of the component (d) of the present invention is preferably from 10 to 250 parts by weight based on 100 parts by weight of the component (a). It is preferable from the viewpoints of improvement in strength and elongation, and dielectric characteristics in a high frequency band.
  • the compounding amount of the component is more preferably 10 to 150 parts by weight, and particularly preferably 10 to 100 parts by weight. From the viewpoint of the dielectric properties, the proportion of the biphenyl skeleton-containing epoxy resin in the component (d) is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 100% by weight or more. % By weight, that is, (d) all components are biphenyl skeleton-containing epoxy resins.
  • a flame retardant can be added to the resin composition of the first embodiment.
  • the component is not particularly limited, but a flame retardant having no reactivity with a cyanate group is preferable.
  • the term “not reactive with cyanate group” means that when a flame retardant is added to a resin composition of a printed wiring board, even if the flame retardant is mixed at a temperature of 300 ° C or less, the flame retardant is a cyanate ester. It means that it is contained in the printed wiring board resin composition as it is without reacting with the cyanato group of the tell compound in a dispersed or dissolved form. This reaction does not include the reaction of the flame retardant when the resin composition is heated and burned.
  • a flame retardant examples include a flame retardant substantially free of an alcoholic hydroxyl group, a phenolic hydroxyl group, an amino group, and a maleimide group, which are known to react with a cyanate group under the above conditions.
  • substantially has no means that the flame retardant does not contain any of these groups and that the flame retardant does not interact with the cyanate ester compound even if the flame retardant contains these groups ( For example, the case where the flame retardant is a polymer having a large molecular weight and these groups are located at the extreme end thereof and thus have no effect as a functional group).
  • the flame retardant classified as an epoxy resin such as a brominated epoxy resin such as a brominated bisphenol A type epoxy resin and a brominated phenol novolak type epoxy resin is referred to as the component (d) in the present invention.
  • flame retardants classified as epoxy compounds having a glycidyl group can react with cyanate ester compounds and have the ability to be inserted into triazine or isocyanuric rings. It is possible to use it as a flame retardant.
  • the description of the flame retardant of the first invention of the present invention applies to the specific examples of the flame retardant of the second invention of the present invention.
  • the compounding amount of the flame retardant is preferably 5 to 100 parts by weight, more preferably 5 to 80 parts by weight, based on 100 parts by weight of the total of the components (a) to (d). It is particularly preferably 5 to 60 parts by weight. When blended in this range, the resin composition has sufficient flame resistance, and the heat resistance of the cured product is also preferable.
  • An antioxidant can be added to the resin composition of the first embodiment. Incorporating an antioxidant to suppress the occurrence of metal migration and further improve insulation reliability when the resin thread for printed wiring boards is cured and processed into laminated boards, etc. Can be.
  • antioxidants are classified based on their skeleton. For example, “Antioxidants Handbook”, pp. 12-17 (Showa 51), “ Specific antioxidants are exemplified by the category of “antioxidants based on sulfur” and “sulfur-based antioxidants”.
  • phenol-based antioxidant examples include monogalactones such as pyrogallol, butylated hydroxyanisole, 2,6-di-tert-butynole-1,4-methinolephenol, and 2,2'-methylene-bis.
  • Bisphenols such as i- (4-methynole-6-tert-butylphenol), 4, A'butylidenebis (3-methyl-6-tert-butylinophenol) and 1,3,5-trimethyl-1,2,4,6 tri (3,5-Di-tert-butyl / le-4-hydroxybenzinole) benzene, tetrax- [methylene-1- (3'-5'-di-tert-butynole-1'-hydroxyphenyl) propionate]
  • sulfur-based antioxidant include dilauryl thiodipropionate, distearyl thiodipropionate and the like. These antioxidants may be used alone or in combination of two or more.
  • the compounding amount of the component (f) of the present invention is preferably 0.1 to 20 parts by weight, more preferably 0 to 100 parts by weight based on 100 parts by weight of the total of the components (a) to (d). It is 1 to 10 parts by weight, particularly preferably 0.1 to 5 parts by weight.
  • a resin composition for a printed wiring board which is preferable from the viewpoint of an effect of improving the insulation reliability of a cured product or a laminate, can be obtained.
  • the resin composition of the first embodiment preferably contains a metal catalyst.
  • the metal-based catalyst is used as an accelerator in the self-polymerization reaction of the component (a), the reaction of the components (a) and (b), the reaction of the components (a) and (d), and the curing acceleration in the production of a laminate. It functions as an agent, and examples thereof include metal salts of transition metals or Group 12 metals and chelate complexes.
  • the description of the metal-based catalyst of the first invention of the present invention applies to the examples of the metal of the metal-based catalyst of the second invention of the present invention, the examples of the metal-based catalyst, and the blending amounts.
  • a compound having a catalytic function to promote the reaction of the glycidyl group of the component (d) can be blended.
  • additives such as a filler can be blended within a range that does not deteriorate the properties such as the dielectric properties and heat resistance of the cured product.
  • the filler to be added as required is not particularly limited, but usually, an inorganic filler is suitably used.
  • the description of the filler of the first invention of the present invention applies to the example of the filler of the second invention of the present invention.
  • the amount of the inorganic filler is not particularly limited, but is preferably 1 to 1,000 parts by weight, more preferably 1 to 800 parts by weight, based on 100 parts by weight of the total of the components (a) to (d). It is.
  • the resin composition of the first embodiment can be produced by blending the components (a) to (d) and other additives by a known method and mixing them.
  • a second aspect of the present invention is a phenol-modified cyanate ester oligomer obtained by reacting (a) a cyanate ester compound having two or more cyanato groups in the molecule and Z or prepolymer, and (b) a monovalent phenol compound.
  • a composition comprising (c) a polyphenylene ether resin; and (d) an epoxy resin containing at least one biphenyl skeleton-containing epoxy resin.
  • phenol-modified cyanate oligomer examples include a cyanate ester oligomer in which the component (a) alone forms a triazine ring by a cyclization reaction, and an imide in which the phenolic hydroxyl group of the component (b) is added to the cyanate group of the component (a).
  • a modified oligomer in which one or two of the components (b) are introduced into the structure of a triazine ring formed by the cyclization reaction of the component (a) alone in this case, a component extending from the triazine ring
  • One or two of the three chains are replaced by (b) a molecule derived from component).
  • the component (b) used for producing the phenol-modified cyanate ester oligomer is preferably 2 to 60 parts by weight based on 100 parts by weight of the component (a). It is more preferably 3 to 45 parts by weight, particularly preferably 4 to 30 parts by weight.
  • the compounding amount of the component (c) of the present invention is preferably 5 to 300 parts by weight, more preferably 100 parts by weight of the component (a) used for producing the phenol-modified cyanate ester oligomer. It is preferably from 10 to 200 parts by weight, particularly preferably from 15 to 100 parts by weight, and the amount of component (d) is preferably from 10 to 250 parts by weight, more preferably from 10 to 250 parts by weight.
  • the amount is 150 parts by weight, particularly preferably 10 to 100 parts by weight.
  • the proportion of the biphenyl skeleton-containing epoxy resin in the component (d) is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 1% by weight or more. 00% by weight, that is, (d) all components are biphenyl skeleton-containing epoxy resins.
  • the resin composition of the second embodiment may further contain the component (b), in which case the component (b) and the component (b) used for producing the phenol-modified cyanate ester oligomer are used.
  • the total amount is preferably in the range of 2 to 60 parts by weight based on 100 parts by weight of the component (a).
  • 100 parts by weight of (a) component and 100 parts by weight of component (b) are reacted in advance in a range of not less than 0.4 parts by weight and less than 60 parts by weight to obtain a phenol-modified cyanate ester oligomer.
  • component (b) can be added in an amount in the range of 2 to 60 parts by weight in total with component (b) used for producing the phenol-modified cyanate ester oligomer.
  • component (b) used for producing the phenol-modified cyanate ester oligomer.
  • additional component (b) was added. It does not have to be blended or used for the production of phenol-modified cyanate ester oligomer.
  • the component (b) used for producing the phenol-modified cyanate ester oligomer and the additional component (b) may be the same or different, and two or more of each may be mixed. Can also be used.
  • the phenol-modified cyanate ester oligomer is composed of, for example, the component (a)
  • the phenol-modified cyanate ester oligomer can have, for example, an initial cyanato group conversion of 20 to 70%, preferably 30 to 65%.
  • the phenol-modified cyanate ester oligomer is preferably produced in the presence of the component (c).
  • the component (c) can be a heated melt or a solution dissolved in a solvent.
  • a so-called "semi-IPN-Dani" in which the phenol-modified cyanate ester oligomer and the component (c) are uniformly compatible is possible.
  • the solvent may be alcohols such as methanol, ethanol, ethylene daryl, and ethylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and hexahexanone; toluene, xylene, and mesitylene.
  • alcohols such as methanol, ethanol, ethylene daryl, and ethylene glycol monomethyl ether
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and hexahexanone
  • toluene xylene, and mesitylene.
  • Aromatic hydrocarbons such as methoxyshetyl acetate, ethoxyxyl acetate, butoxyshetyl acetate, esters such as ethyl acetate, N-methylformamide, N, N-dimethylformamide, N, N-dimethyl Solvents such as amides such as acetoamide and N-methylpyrrolidone.
  • aromatic hydrocarbons such as toluene, xylene and mesitylene are more preferable.
  • the resin composition of the second embodiment may contain (e) a flame retardant similarly to the resin composition of the first embodiment.
  • the description of the resin composition of the first embodiment is applied to the examples and the amounts of the component (e).
  • the resin composition of the second embodiment may contain (f) an antioxidant.
  • the description of the resin composition of the first embodiment is applied to the examples and the amounts of the component (f).
  • the total of the components (a) to (d) includes the components ( a ) and (b) of the raw materials of the phenol-modified cyanate ester oligomer.
  • the resin and the composition of the second embodiment can contain a metal catalyst, a compound having a catalytic function to promote the reaction of the glycidyl group of the epoxy resin, a filler, and other additives.
  • the description of the first embodiment is applied to the examples, the amounts, and the method of producing the resin composition.
  • the total of the components (a) to (d) includes the components (a) and (b) of the raw material of the phenol-modified cyanate ester oligomer.
  • the resin composition of the third embodiment comprises: (a) a cyanate ester compound having two or more cyanato groups in the molecule and Z or prepolymer, (b) a phenol compound having a valence, and (d) an epoxy resin having a biphenyl skeleton.
  • a composition comprising an epoxy Z phenol-modified cyanate ester oligomer obtained by reacting an epoxy resin containing at least one of the following, and a component (c).
  • the component (b) is preferably 2 to 60 parts by weight, more preferably 3 to 60 parts by weight, per 100 parts by weight of the component (a). It is 45 parts by weight, particularly preferably 4 to 30 parts by weight.
  • the component (d) is preferably used in an amount of 10 to 250 parts by weight, more preferably 10 to 150 parts by weight, and particularly preferably 100 to 100 parts by weight of the component (a). It is 10 to 100 weight parts.
  • the proportion of the biphenyl skeleton-containing epoxy resin in the component (d) is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 100% by weight or more. % By weight, that is, all of the component (d) is a biphenyl skeleton-containing epoxy resin.
  • the description of the component (c) in the first embodiment also applies to the component (c).
  • the amount of component (c) is preferably 5 to 300 parts by weight, more preferably 1 to 100 parts by weight, based on 100 parts by weight of component (a) used to produce epoxy Z phenol-modified cyanate ester oligomer. 0 to 200 parts by weight, particularly preferably 15 to 100 parts by weight.
  • the epoxy / phenol-modified cyanate ester oligomer may further contain (b) a component, in which case, the component (b) and the (b) component used to produce the epoxy / phenol-modified cyanate ester oligomer
  • the total amount of the components is preferably in the range of 2 to 60 parts by weight based on 100 parts by weight of the component (a).
  • component (a) 100 parts by weight of component (a), 0.4 parts by weight or more of component (b) and less than 60 parts by weight, and 100 to 250 parts by weight of component (d) are reacted in advance.
  • the component (b) was additionally used for the production of epoxy Z-phenol-modified cyanate ester oligomer.
  • the component (b) can be added in an amount in the range of 2 to 60 parts by weight in total with the component. (b) 2 to 60 parts by weight of component (b), and 100 parts by weight of component (a)
  • the additional component (b) may not be blended, and the epoxy / phenol-modified cyanate ester oligomer may be omitted. You may mix
  • the component (b) used for producing the epoxy // phenol-modified cyanate ester oligomer may be the same as or different from the component (b) of the pudding. Two or more types can be used in combination.
  • the epoxy / phenol-modified cyanate ester oligomer can be obtained, for example, by dissolving the component (a), the component (b) and the component (d) in a solvent such as toluene, xylene and mesitylene, and then, It can be carried out by heating for 0.5 to 10 hours. At this time, the metal catalyst described in the first embodiment may be added.
  • the epoxy / phenol-modified cyanate ester oligomer may have an initial cyanato group conversion of, for example, 20 to 70%, preferably 30 to 65%.
  • the production of the epoxyphenol-modified cyanate ester oligomer is as follows.
  • the epoxy / phenol modification can be carried out in a heated melt of the component (c) or in a solution dissolved in a solvent.
  • a solvent those mentioned in the second embodiment are applied.
  • a so-called "semi-IPN-Dani" in which the epoxy z-phenol-modified cyanate ester oligomer and the component (C) are uniformly compatible is obtained.
  • the resin composition of the third embodiment can be blended with (e) a flame retardant similarly to the resin composition of the first embodiment.
  • the description of the resin composition of the first embodiment is applied to the examples and the amounts of the components (e).
  • the resin composition of the third embodiment may contain (f) an antioxidant.
  • the description of the resin composition of the first embodiment is applied to the examples and the amounts of the component (f).
  • the total of the components (a) to (d) includes the components ( a ), (b) and (d) of the raw materials of the epoxy / phenol-modified cyanate ester oligomer. Including Shall be considered.
  • the resin composition of the third embodiment can contain a metal catalyst, a compound having a catalytic function of accelerating the reaction of the glycidyl group of the epoxy resin, a filler, other additives, and the like.
  • the description of the first embodiment is applied to the content, the amount, and the method for producing the resin composition.
  • the total of the components (a) to (d) includes the components ( a ), (b) and (d) of the raw materials of the epoxy / phenol-modified cyanate ester / oligomer. Shall be included.
  • a pre-predator for a printed wiring board and a metal-clad laminate can be manufactured by a known method.
  • the resin composition for a printed wiring board of the present invention is impregnated on a substrate such as a glass cloth as it is, or in the form of a varnish dissolved or dispersed in a solvent, and then usually dried in a drying oven or the like. 0 to 200 ° C (however, if a solvent is used, the temperature must be higher than the temperature at which the solvent can volatilize), preferably at 100 to 180 ° C, for 3 to 30 minutes, preferably Is dried for 3 to 15 minutes to obtain a prepredder.
  • a plurality of the prepregs are stacked, a metal foil is disposed on one or both surfaces thereof, and the resulting prepreg is heated and molded to produce a double-sided or single-sided metal-clad laminate.
  • the solvent used for the above varnishing is not particularly limited, but, for example, alcohols such as methanol, ethanol, ethylene glycol and ethylene glycol / lemonomethinole ether, acetone, methyl ethyl ketone, Ketones such as methylisobutyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene and mesitylene, esters such as methoxethyl acetate, ethoxyxyl acetate, butoxyethyl acetate, and ethyl acetate And amides such as N-methylformamide, N, N-dimethylformamide, N, N-dimethylacetamide and N-methylvirolidone.
  • alcohols such as methanol, ethanol, ethylene glycol and ethylene glycol / lemonomethinole ether
  • acetone such as methylisobutyl ketone and cyclohexanone
  • aromatic hydrocarbons such as toluene, xylene, and mesitylene are more preferable. These may be used alone or in combination of two or more.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • the viscosity of the varnish can be reduced, so ⁇ ⁇ ⁇ ⁇ It is preferable in that varnish can be obtained.
  • the amount of the ketone solvent is aromatic It is preferably used in an amount of 30 to 300 parts by weight, more preferably 30 to 250 parts by weight, and even more preferably 30 to 220 parts by weight, per 100 parts by weight of the hydrocarbon solvent.
  • the resin composition for printed wiring boards of the present invention, as well as varnishes, pre-predas, and metal-clad laminates using the same, are used in information-communication-related equipment for which high frequency and high speed signals are required.
  • reaction solution is cooled, and when the internal temperature reaches 80 ° C, 457 g of methyl ethyl ketone and 3, 3 ', 5, 5'-tetramethylbiphenol diglycidyl ether (YX-4000, Japan 547 g was mixed with stirring to confirm dissolution, and after cooling to room temperature, 92 g of p- ( ⁇ -tamyl) phenol and zinc naphthenate as a hardening accelerator (Wako Pure Chemical Industries) 0.15 g was blended to prepare a resin varnish having a nonvolatile content of about 65% by weight.
  • 457 g of methyl ethyl ketone and 3, 3 ', 5, 5'-tetramethylbiphenol diglycidyl ether YX-4000, Japan 547 g was mixed with stirring to confirm dissolution, and after cooling to room temperature, 92 g of p- ( ⁇ -tamyl) phenol and zinc naphthenate as a hardening accelerator (Wak
  • Example 4 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether (YX-4000, manufactured by Japan Epoxy Resin) was replaced with a biphenylalkyryl nopolak epoxy resin (NC—3000 S— H, Nippon Kayaku) In addition, a resin varnish was prepared in the same manner as in Example 4 except that the components were blended in the amounts shown in Table 1. .
  • Example 1 bisphenol A type epoxy resin (DER-331L, manufactured by Dow Chemical) was used in place of 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether as shown in Table 1.
  • a resin varnish having a nonvolatile content of about 65% was prepared in the same manner as in Example 1 except that the varnish was blended.
  • Example 1 instead of 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether, a phenol nopolak epoxy resin (N_770, manufactured by Dainippon Ink and Chemicals, Inc.) was used as shown in Table 1.
  • N_770 phenol nopolak epoxy resin
  • a resin varnish having a nonvolatile content of about 65% was prepared in the same manner as in Example 1 except that the resin varnish was blended in an amount.
  • Example 1 bisphenol A novolak type epoxy resin (N-865, manufactured by Dainippon Ink and Chemicals, Inc.) was used instead of 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether in Table 1.
  • a resin varnish having a nonvolatile content of about 65% was prepared in the same manner as in Example 1 except that the varnish was blended in the amount shown.
  • Example 1 instead of 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether, a methyl- and tert-butyl-substituted phenol salicyl aldehyde donovolak epoxy resin (TMH-574, Sumitomo Resin varnish having a non-volatile content of about 65% was prepared in the same manner as in Example 1 except that the following chemical amounts were used.
  • TSH-574 Sumitomo Resin varnish having a non-volatile content of about 65%
  • Example 1 instead of 3,3,5,5'-tetramethylbiphenol diglycidyl ether, an epoxy resin having a dicyclopentadiene skeleton (HP-7200, manufactured by Dainippon Ink and Chemicals, Inc.) is shown in Table 1.
  • HP-7200 manufactured by Dainippon Ink and Chemicals, Inc.
  • a resin varnish having a nonvolatile content of about 65% was prepared in the same manner as in Example 1 except that the varnish was blended in the amount shown.
  • Example 6 In Example 1, instead of 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether,] 3-naphtholalkylene type epoxy resin (ESN-175, manufactured by Nippon Steel Chemical Co., Ltd.) was used. A resin varnish having a nonvolatile content of about 65% was prepared in the same manner as in Example 1 except that the varnish was blended in the amounts shown in Table 1.
  • the resin varnish obtained in Examples 1 to 5 and Comparative Examples 1 to 6 was impregnated into a 0.15 mm thick glass cloth (E glass), and then heated and dried at 160 ° C for 5 to 15 minutes. It was obtained Puripureda resin solid content 52 wt 0/0. Next, four pieces of this pre-predder were stacked, and a copper foil with a thickness of 18 ⁇ was placed on the outermost layer, and heated and pressed at 230 ° C for 70 minutes and 2.5 MPa to produce a double-sided copper-clad laminate. .
  • the obtained copper-clad laminate was evaluated for dielectric properties, copper foil peel strength, solder heat resistance, water absorption, bending properties, coefficient of thermal expansion (a), and Tg (glass transition temperature). Table 2 shows the evaluation results.
  • the method for evaluating the characteristics of the copper-clad laminate is as follows.
  • the relative permittivity ( ⁇ r) and dielectric loss tangent (ta ⁇ ⁇ ) of the copper-clad laminate were measured by a triplate-structured straight-line resonator method using a betattle network analyzer.
  • the measurement conditions were frequency: lGHz, measurement temperature: room temperature (25 ° C) and 90 ° C.
  • the thermal expansion coefficient) and Tg of the copper-clad laminate (copper foil etched whole product) were measured by TMA.
  • the copper foil peeling strength of the copper-clad laminate was measured in accordance with the copper-clad laminate test standard JIs-c-6481.
  • the soldering heat resistance of the copper-clad laminate (copper foil fully etched product) is measured at 260 ° C and 288 ° C after keeping it in a pressure cooker tester (condition: 121 ° C, 2.2 atm) for 1 to 5 hours. They were immersed in molten solder at ° C for 20 seconds, and their appearance was visually inspected. No abnormality in the table means that no measling or swelling occurs.
  • the water absorption of the copper-clad laminate (copper foil entirely etched product) was calculated from the difference between the normal state and the weight difference after holding for 5 hours in a pressure Tatsu tester (condition: 121 ° C, 2.2 atm). :weight%).
  • the bending characteristics of the copper-clad laminate are as follows: The flexural modulus at room temperature and 200 ° C in accordance with the copper clad laminate test standard JI SC-6481, as well as the breaking strength and rupture at room temperature The elongation, the yield point strength at 200 ° C and the yield point elongation were measured. Table 2
  • the laminates produced using the varnishes of Examples 1 to 5 had a higher dielectric property at 1 GHz at room temperature (25 ° C) than the laminates of Comparative Examples 1 to 6 (particularly, In particular, the dielectric properties of the laminates of Examples 3 and 4 in which a monovalent phenol compound was used in combination were even better. Furthermore, the dielectric properties (especially the dielectric loss tangent) at 90 ° C. of each of the examples are good, and the dependence on the temperature change is small. Further, the laminate of the example has better solder heat resistance when absorbing moisture (especially 288 ° C.) than the laminate of the comparative example. Furthermore, the laminate of the example has higher breaking strength and breaking elongation at room temperature (25 ° C) and a higher yield point at high temperature (200 ° C) than the laminate of the comparative example.
  • Resin varnishes for metal-clad laminates were manufactured according to the amounts shown in Table 3.
  • reaction mixture is cooled, and when the internal temperature reaches 80 ⁇ , 480 g of methyl ethyl ketone and a mixed biphenyl containing 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether and biphenyl englycidyl ether Type epoxy resin (YL-6121H, manufactured by Japan Epoxy Resin) 28 Og is mixed with stirring to confirm dissolution, then cooled to room temperature, and zinc naphthenate is used as a curing accelerator.
  • 480 g of methyl ethyl ketone and a mixed biphenyl containing 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether and biphenyl englycidyl ether Type epoxy resin (YL-6121H, manufactured by Japan Epoxy Resin) 28 Og is mixed with stirring to confirm dissolution, then cooled to room temperature, and zinc naphthenate is used as a curing accelerator.
  • the solution temperature was maintained at 11 o ° C, and 0.16 g of manganese naphthenate (manufactured by Wako Pure Chemical Industries) was added as a reaction accelerator, and the mixture was heated and reacted for about 3 hours to make it compatible with the polyphenylene ether resin.
  • the resulting phenol-modified cyanate ester oligomer solution was synthesized.
  • the reaction solution is cooled, and when the internal temperature reaches 80 ° C, 520 g of methylethylketone and 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether (YX-4000, manufactured by Japan Epoxy Resin) are used.
  • the solution temperature was kept at 110 ° C, 0.14 g of iron naphthenate (Kanto Chemical) was added as a reaction accelerator, and the mixture was heated and reacted for about 3 hours to form a phase with polyphenylene ether resin.
  • a solution of the phenol modified denatured cyanate ester oligomer was synthesized.
  • the reaction solution was cooled, and when the internal temperature reached 80 ° C, 53.5 g of methylethylketone and 330 g of biphenyl aralkylene novolak type epoxy resin (NC-3000SH, Nippon Kayaku) were stirred.
  • Example 6 except for 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether (YX-4000), and methylethyl ketone in a compounding amount such that the non-volatile content concentration was about 55%.
  • a resin varnish having a volatile matter concentration of about 55% was prepared in the same manner as in Example 6 except that it was blended.
  • Example 6 bisphenol A type epoxy resin (DER-331L, manufactured by Dow Chemical) was used in place of 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether as shown in Table 3. And a resin varnish having a nonvolatile content of about 55% was prepared in the same manner as in Example 6 except that methylethyl ketone was blended in such an amount that the nonvolatile content was about 55%.
  • DER-331L manufactured by Dow Chemical
  • Example 6 p-tert-amylphenol (manufactured by Tokyo Chemical Industry) was used instead of p-tert-butylphenol, and phenol novolak was used instead of 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether.
  • Epoxy resin N-770, manufactured by Dainippon Ink and Chemicals, Inc.
  • methylethyl ketone in such an amount that the non-volatile content is about 55%.
  • a resin varnish having a nonvolatile content of about 55% was prepared. Comparative Example 10
  • Example 7 Biff enol diglycidyl ether and 3, 3;, 5, 5 'over mixed Bifue sulfonyl type Epoki sheet resin with tetramethyl Biff enol diglycidyl ether - bisphenol instead of (YL 6 121 H)
  • a Novolak type epoxy resin (N_865, manufactured by Dainippon Ink and Chemicals) is blended with zinc naphthenate (manufactured by Wako Pure Chemical Industries) in place of cobalt naphthenate (manufactured by Wako Pure Chemical Industries) in the amounts shown in Table 3, respectively.
  • a resin mixture having a nonvolatile content of about 55% was prepared in the same manner as in Example 7, except that methylethylketone was blended in such an amount that the nonvolatile content was about 55%. Comparative Example 1 1
  • Example 6 ⁇ -tert-octylphenol (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of p-tert-butylphenol, and instead of 3,3 ′, 5,5′-tetramethylbiphenyldiglycidyl ether.
  • the phenol salicylaldehyde novolak epoxy resin EP PN-502H, manufactured by Nippon Kayaku
  • a resin varnish having a nonvolatile content of about 55% was prepared in the same manner as in Example 6 except that the compound was added.
  • Comparative Example 10 p-tert-octylphenol was replaced with p-a-cumyl) phenol (manufactured by Tokyo Chemical Industry), and bisphenol A novolak-type epoxy resin (N-6 & 5) was substituted for diphenol.
  • the cyclopentadiene skeleton-containing epoxy resin HP-7200, manufactured by Dainippon Ink and Chemicals, Inc.
  • HP-7200 manufactured by Dainippon Ink and Chemicals, Inc.
  • a resin varnish having a non-volatile content of about 55% was prepared in the same manner as in Comparative Example 10 except that was blended.
  • the resin varnish obtained in Examples 6 to 10 and Comparative Examples 7 to 12 was impregnated into a glass cloth (E glass) having a thickness of 0.15 mm, and then dried by heating at 160 ° C for 4 to 7 minutes. A prepredder having a solid content of 52% by weight was obtained. Next, four pieces of the pre-predder are stacked, and a copper foil having a thickness of 18 ⁇ is placed on the outermost layer, and is heated and pressed under a press condition of 230 ° C., 70 minutes, and 2.5 MPa. A double-sided copper-clad laminate was produced.
  • the obtained copper-clad laminate was evaluated for its dielectric properties, copper foil peeling strength, solder heat resistance, water absorption, bending properties, and coefficient of thermal expansion (c and Tg (glass transition temperature)). The results are shown in Table 4.
  • the method for evaluating the characteristics of the copper-clad laminate is as follows.
  • the laminates prepared using the varnishes of Examples 6 to 10 were more dielectric than the laminates of Comparative Examples 8 to 11 at room temperature (25 ° C) at 1 GHz. (Especially dielectric loss tangent), and dielectric properties at 90 ° C compared to Comparative Examples 8-12
  • the laminate of the example had a lower water absorption than the laminates of Comparative Examples 8 to 12, and the solder heat resistance at the time of absorbing moisture (particularly 28 88) was lower than the laminates of Comparative Examples 7 to 12. ° C) is good.
  • the laminates of Examples 6 to 10 are more room temperature than the laminates of Comparative Examples 7 to 12.
  • Resin varnishes for metal-clad laminates were manufactured according to the amounts shown in Table 5.
  • reaction solution was cooled, and when the internal temperature reached 80 ° C, 608 g of methyl ethyl ketone and 3,3 ′, 5,5′-tetramethylbiphenyl diglycidyl ether (tetramethylbiphenyl type epoxy resin, YX-400, manufactured by Japan Epoxy Resin; 308 g and brominated polystyrene (PDB S-80, manufactured by Great Lakes) 207 g are mixed with stirring to confirm dissolution, and then cooled to room temperature. Then, 0.1 g of zinc naphthenate was added as a curing accelerator to prepare a resin varnish having a nonvolatile content of about 55% by weight.
  • PDB S-80 brominated polystyrene
  • reaction solution was cooled and when the internal temperature reached 80 ° C, 560 g of methyl ethyl ketone and 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether (YX-400000, Japan 1 4 8 g, Cresol Lovo 90 g of rack epoxy resin (ESCN-190-3, manufactured by Sumitomo Chemical) and 157 g of hexapromocyclododecane (CD-75P, manufactured by Great Lakes) are mixed with stirring to confirm dissolution, and then cooled to room temperature.
  • rack epoxy resin (ESCN-190-3, manufactured by Sumitomo Chemical)
  • CD-75P hexapromocyclododecane
  • reaction solution is cooled, and when the internal temperature reaches 80 ° C, 623 g of methyl ethyl ketone and 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether (YX-4000, manufactured by Japan Epoxy Resin) ) 160 g and 230 g of brominated bisphenol A type epoxy resin (ESB400T, manufactured by Sumitomo Chemical Co., Ltd.) were mixed with stirring to confirm dissolution, and after cooling to room temperature, p-tert-octylphenol was added.
  • a resin varnish having a nonvolatile content of about 55% by weight was prepared by mixing 45 g of Kogaku Yakuhin Kogyo Co., Ltd. and 0.1 g of zinc naphthenate (Wako Junyaku Kogyo Co., Ltd.) as a curing accelerator.
  • Example 11 brominated polystyrene (PDB S-80, manufactured by Great Lakes) was used as shown in Table 5, except for 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether (YX-4000).
  • a resin varnish having a non-volatile content of about 55% was prepared in the same manner as in Example 11 except that the amount was changed to a compounding amount, and that methyl ethyl ketone was added in such an amount that the non-volatile content was about 55%.
  • Example 11 bisphenol A type epoxy resin (DER-331L, manufactured by Dow Chemical) was used in place of 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether as shown in Table 5
  • the brominated polystyrene (PDB S-80, manufactured by Great Lakes) was changed to the amount shown in Table 5, and methylethyl ketone was added in such an amount that the non-volatile content was about 55%.
  • a resin varnish having a non-volatile content of about 55% was prepared in the same manner as in Example 11 except for the above.
  • Example 11 p-tert-amylphenol (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used instead of p-tert-butyl phenol, and 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether was used instead of p-tert-butylphenol.
  • phenol novolak type epoxy resin N_770, manufactured by Dainippon Ink and Chemicals, Inc.
  • PDB S_80 brominated polystyrene
  • a resin varnish having a nonvolatile content of about 55% was prepared in the same manner as in Example 11, except that methyl ethyl ketone was blended in such an amount that the content of the nonvolatile content was about 55%.
  • Example 12 instead of p-tert-octylphenol, brominated bisphenol A (TBA, manufactured by Teijin Chemicals), biphenol diglycidyl ether, and 3, 3 ', 5, 5'-tetramethylbiphenol diphenol were used.
  • TSA brominated bisphenol A
  • Example 11 In Example 11, brominated bisphenol A (TBA, manufactured by Teijin Chemicals) was used instead of p-tert-butylphenol, and 3,3 ′, 5,5 ; -tetramethylbiphenoldiglycidyl ether was used instead of p-tert-butylphenol. And phenol salicylaldehyde novolak type epoxy resin (EP PN-502H, manufactured by Nippon Kayaku) in the amounts shown in Table 5, and brominated polystyrene (PDB S-80, manufactured by Great Lakes). A resin varnish having a nonvolatile content of about 55% was prepared in the same manner as in Example 11 except that methylethyl ketone was blended in such an amount that the nonvolatile content was about 55%.
  • TSA brominated bisphenol A
  • PDA brominated bisphenol A
  • PDB S-80 brominated polystyrene
  • a resin varnish having a non-volatile content of about 55% was prepared in the same manner as in Comparative Example 16 except that methyl ethyl ketone was mixed in such an amount as to obtain a non-volatile content of about 55%. Produced.
  • the resin varnishes obtained in Examples 11 to 16 and Comparative Examples 1.3 to 18 were impregnated into a glass cloth (E glass) having a thickness of 15%, and then heated at 160 for 4 to 7 minutes. It was dried to obtain a pre-preda having a resin solid content of 52% by weight. Then, four pieces of this pre-predder are stacked, and a copper foil having a thickness of 18 m is arranged on the outermost layer, and heated and pressed under a pressing condition of 230 ° C, 70 minutes, and 2.5 MPa to form a double-sided copper foil. A laminated laminate was produced. The obtained copper-clad laminate was evaluated for copper foil peeling strength, dielectric properties, solder heat resistance, water absorption, flame resistance, bending properties, and coefficient of thermal expansion (c and Tg (glass transition temperature)). Table 6 shows the evaluation results.
  • the method for evaluating the properties of the copper-clad laminate is as described above.
  • the fire resistance of the copper-clad laminate was measured in accordance with the UL-94 vertical test method.
  • the laminates prepared using the varnishes of Examples 11 to 16 had better dielectric properties at 1 GHz at room temperature (25 ° C) than the laminates of Comparative Examples 8 to 12.
  • the laminates of the examples had a lower water absorption than the laminates of Comparative Examples 14 to 18, and the solder heat resistance when absorbing moisture (particularly 288 ° C) than the laminates of Comparative Examples 13 to 18. Is good.
  • the laminates of Examples 11 to 16 have a higher breaking strength at room temperature (25 ° C) and a higher yield strength at a higher temperature (200 ° C) than the laminates of Comparative Examples 13 to 18. High elongation.
  • the excellent characteristics of the laminates of Examples 11 to 16 were achieved after securing good flame resistance (V-0).
  • Resin varnishes for metal-clad laminates were manufactured according to the amounts shown in Table 7.
  • Example 18 275 g of toluene and 100 g of polyphenylene ether resin (PKN4752, manufactured by GE Japan) are charged into a 3-liter 4-separable flask equipped with a thermometer, a cooling pipe, and a stirrer, and heated to 90 ° C. And dissolved by stirring. Next, 500 g of bis (3,5-dimethyl-14-cyanatophenyl) methane (Arocy M-10, Ciba-Geigy) and 47 g of p-tert-octylphenol (Wako Pure Chemical Industries) were added.
  • PPN4752 polyphenylene ether resin
  • the solution temperature was kept at 110 ° C, 0.25 g of naphthenic acid copart (Wako Pure Chemical Industries) was added as a reaction accelerator, and the mixture was heated and reacted for about 3 hours.
  • a solution containing a phenol-modified cyanate ester resin made compatible with the ether resin was synthesized. Then, the reaction mixture is cooled, and when the internal temperature reaches 80 ° C, 482 g of methylethyl ketone and a mixed biphenyl of biphenol englycidyl ether and 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether are mixed.
  • epoxidized epoxy resin (YL-6121H, manufactured by Japan Epoxy Resin) were mixed with stirring to confirm dissolution, and after cooling to room temperature, 2,2'-methylene was used as an antioxidant.
  • a a'-bis (4-cyanatopheninole) -m-diisopropylbenzene (RTX-366, manufactured by Ciba Geigy) 450 g and p-tert-amylphenol (manufactured by Tokyo Chemical Industry) 4 g
  • RTX-366 a'-bis (4-cyanatopheninole) -m-diisopropylbenzene
  • p-tert-amylphenol manufactured by Tokyo Chemical Industry
  • Example 17 except for 3, 3 ', 5, 5'-tetramethylbiphenol diglycidyl ether (YX-4000) and 2,6-di-tert-butyl-l-4_methylphenol (TBMP), A resin varnish having a nonvolatile content of about 55% was prepared in the same manner as in Example 17, except that methylethyl ketone was blended in such an amount that the content of the nonvolatile content was about 55%.
  • Example 17 2,6-di-tert-butyl-14-methylphenol (T BMP) was excluded, and instead of 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether, Bisphenol A type epoxy resin (DER-331L, manufactured by Dow Chemical) was blended in the blending amount shown in Table 3, and was blended with methyl ethyl ketone in a blending amount that resulted in a nonvolatile content of about 55%. A resin varnish having a nonvolatile content of about 5.5% was prepared in the same manner as in Example 17 except for the above.
  • Example 17 2,6-di_tert-butyl-1-methylphenol (T BMP) was excluded, and instead of p-tert-butylphenol, p-tert-amylphenol (manufactured by Tokyo Chemical Industry) was used. 3,3 ', 5,5'-Phenol novolak type epoxy resin (N_770, manufactured by Dainippon Ink and Chemicals, Inc.) in place of tetramethylbiphenyldiglycidyl ether in the amounts shown in Table 7 respectively, and Methyl ethyl ketone was blended in such an amount that the non-volatile content was about 55%. Except for this, a resin varnish having a nonvolatile content of about 55% was prepared in the same manner as in Example 17.
  • Example 18 except for 2,2'-methylene-bis- (4-methyl-16-tert-butyl-phenol) (MBMTBP), biphenol diglycidyl ether and 3,3 ', 5,5'-tetra Bisphenol
  • N_865 manufactured by Dainippon Ink and Chemicals, Inc.
  • YL-6121H mixed biphenyl type epoxy resin
  • ZD zinc-oxide-semiconductor
  • cobalt naphthenate Wako Pure
  • Zinc naphthenate manufactured by Wako Pure Chemical Industries, Ltd.
  • Yakuhin Kogyo A resin varnish having a volatile matter concentration of about 55% was prepared in the same manner as in Example 18 except for the above.
  • Example 17 p-tert-octylphenol (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of p-tert-butylphenol, except for 2,6-di-tert-butyl-14-methylphenol (T BMP). Instead of 3,3 ', 5,5'-tetramethylbiphenyldiglycidyl ether, phenol salicylaldehyde novolak type epoxy resin (EPPN-502H, Nippon Kayaku) was used in the amounts shown in Table 7 respectively. A resin varnish having a non-volatile content of about 55% was prepared in the same manner as in Example 17, except that the compounding was carried out and methylethyl ketone was added in such an amount that the non-volatile content was about 55%.
  • Comparative Example 21 instead of p-tert-octynolephenol, the following were used: — ( ⁇ -cumyl) phenol (manufactured by Tokyo Kasei Kogyo) and bisphenol enoporak type epoxy resin (N-685) Instead, a dicyclopentadiene skeleton-containing epoxy resin (HP-7200, manufactured by Dainippon Ink & Chemicals, Inc.) was blended in the blending amounts shown in Table 7, respectively, and the blending amount was adjusted to a non-volatile content of about 55%. A resin varnish having a nonvolatile content of about 55% was prepared in the same manner as in Comparative Example 21 except that tyl ketone was added.
  • the resin varnishes obtained in Examples 17 to 21 and Comparative Examples 19 to 24 were impregnated into a glass cloth (E glass) having a thickness of 15 mm, and then heated at 160 ° C for 4 to 7 minutes. Dried to obtain a pre-preda having a resin solid content of 52% by weight. Next, four pieces of this pre-predder are stacked, and a copper foil with a thickness of 18 / zm is placed on the outermost layer, and heated and pressed at 230 ° C for 70 minutes and 2.5 MPa to form a double-sided copper clad. A laminate was prepared. The obtained copper-clad laminate was evaluated for copper foil peeling strength, dielectric properties, solder heat resistance, water absorption, electric corrosion resistance, bending properties, coefficient of thermal expansion ( ⁇ ), and Tg (glass transition temperature). Table 8 shows the evaluation results.
  • the method for evaluating the characteristics of the copper-clad laminate is as described above.
  • the electrolytic corrosion resistance of copper-clad laminates is determined by drilling through holes with a hole spacing of 350 ⁇ m using a 0.4 mm diameter drill in the copper-clad laminates (drill conditions: rotation speed 80,000 rpm, feed rate 2, After that, a test pattern wiring board with through-hole plating was manufactured according to a conventional method. With respect to each of the test pieces, the time until the occurrence of conduction breakdown when a voltage of 100 V was applied in an atmosphere of 85 ° C / 85% RH was measured.
  • the laminates prepared using the varnishes of Examples 17 to 21 were less than the laminates of Comparative Examples 20 to 23 at 1 GHz at room temperature (25 ° C). It has excellent dielectric properties (especially, dielectric loss tangent), and has better dielectric properties at 90 ° C (especially, dielectric loss tangent) than Comparative Examples 20 to 24, and has little dependence on temperature changes.
  • the laminates of the examples had lower water absorption than the laminates of Comparative Examples 20 to 24, and had a lower solder heat resistance when absorbing moisture than the laminates of Comparative Examples 19 to 24 (particularly, 288 ° C) is good.
  • the laminates of Examples 17 to 21 exhibited higher breaking strength at room temperature (25 ° C) and higher breaking elongation and higher temperatures (200 ° C) than the laminates of Comparative Examples 19 to 24. ° C) yield point elongation is high. Further, the laminates of Examples 1.7 to 21 have better electric corrosion resistance than the laminates of the comparative examples. The invention's effect
  • a cured product using the resin composition for a printed wiring board of the present invention has excellent dielectric properties in a high frequency band, and has a small drift property due to a temperature change in the dielectric properties. I understood that.
  • the bending strength and elongation in the glassy region and the elongation in the high temperature region are high.
  • the metal-clad laminate produced using the resin composition for a printed wiring board has excellent resistance to moisture and heat under severe conditions using a pressure cooker tester. Therefore, it is expected to be used as a member and component for printed wiring boards used in various electric and electronic devices that handle high-frequency signals of 1 GHz or more.
  • the excellent high-frequency characteristics and bending characteristics and high resistance to moisture and heat that are characteristic of the resin composition of the present invention are required for heat resistance under severe conditions, high-speed servers and routers that require crack resistance. It is effective as a laminated board used for high multilayer printed wiring boards such as office equipment and as a pre-preda.
  • a cured product obtained by using the resin composition for a printed wiring board of the present invention has excellent dielectric properties in a high frequency band, and has a drift property due to a temperature change of the dielectric properties. Was also small. Also, the bending strength and elongation in the glassy region and the elongation in the high temperature region are high. Furthermore, metal-clad laminates made using the resin composition for printed wiring boards have low moisture absorption, excellent resistance to moisture and heat under severe conditions using a pressure tucker tester, and high Tg. . In addition, books containing flame retardants The resin composition for a printed wiring board of the present invention has good flame retardancy in addition to these excellent properties.
  • the resin composition for a printed wiring board of the present invention containing an antioxidant has good electrolytic corrosion resistance in addition to these excellent properties. Therefore, it is expected to be used as a member and component for printed wiring boards used in various electric and electronic devices that handle high-frequency signals of 1 GHz or more.
  • the excellent high-frequency characteristics, bending characteristics, and high resistance to humidity and heat which are the characteristics of the resin composition of the present invention, are required for heat resistance under severe conditions, high-speed servers, routers, base station devices, etc., which require crack resistance. This is effective as a laminated board used for high multilayer printed wiring boards and as a pre-preda.

Abstract

本発明は、動作周波数が1GHzを超えるような電子機器に使用される印刷配線板用樹脂組成物、並びにこれを用いたワニス、プリプレグ及び金属張積層板を提供する。本発明の一つの発明は、分子中にシアナト基を2つ以上有するシアネートエステル化合物及び/又はこれらのプレポリマと、分子中にビフェニル骨格を有するエポキシ樹脂を少なくとも1種含有するエポキシ樹脂とを含む印刷配線板用樹脂組成物、並びにこれを用いたワニス、プリプレグ及び金属張積層板である。

Description

明 細 書
印刷配線板用樹脂組成物並びにこれを用いたワニス、 プリプレダ及び金属張積層 板 技術分野
本発明は、 印刷配線板用樹脂組成物、 並びにこれを用いたワニス、 プリプレダ 及び金属張積層板に関する。 より詳しくは、 動作周波数が 1 GHz を超えるような 電子機器に使用される印刷配線板用樹脂組成物、 並ぴにこれを用いたワニス、 プ リプレダ及ぴ金属張積層板に関する。 背景技術
近年、 携帯電話に代表される移動体通信機器やサーバー、 ルーター等のネット ワーク関連電子機器には、 大容量の情報を、 低損失かつ高速で伝送 ·処理するこ とが要求されているため、 印刷配線板上で扱われる電気信号の高周波数化が進ん でいる。 し力 し、 高周波になるほど、 電気信号は減衰しやすいため、 これらの分 野で使用される印刷配線板には、 低伝送損失を有する材料を用いる必要がある。 すなわち、 1 GHz 以上の高周波数帯において、 比誘電率及ぴ誘電正接の低さに代 表される、 優れた誘電特性を有する材料を用いる必要がある。
これらを背景に、 印刷配線板用樹脂組成物に、 硬化物の誘電特性が優れるシァ ネートエステル樹脂を使用することが注目されている。 従来から、 ビスフエノー ル A型エポキシ樹脂、 臭素化ビスフエノール A型エポキシ樹脂、 フエノールノボ ラック型ェポキシ樹脂及びクレゾールノポラック型ェポキシ樹脂といつた一般的 なエポキシ樹脂を、 シァネートエステル樹脂に配合した樹脂組成物が提案されて おり、 シァネートエステル樹脂単独系よりも耐湿性や吸湿時の耐熱性が向上する ことが知られている (例えば特公昭 4 6 - 4 1 1 1 2号公報、 特開昭 5 0— 1 3 2 0 9 9号公報及ぴ特開昭 5 7— 1 4 3 3 2 0号公報)。 しかし、 これらの 樹脂組成物は、 エポキシ樹脂の影響により、 エポキシ樹脂を配合しないものより も誘電特性が劣っていた。
さらに、 本発明者らにより、 エポキシ樹脂として、 ナフタレン骨格含有ェポキ シ樹脂、 ァラルキレン骨格含有エポキシ樹脂、 低級アルキル基置換フエノールサ リチルアルデヒドノポラック型エポキシ樹脂、 及ぴジシクロペンタジェン骨格含 有エポキシ樹脂といった特定のエポキシ樹脂を選択して、 シァネートエステル樹 脂に配合することにより、 上記の一般的なエポキシ樹脂を利用した場合に比べて、 高周波数帯での誘電特性が向上した樹脂組成物が提案されている (例えば特開平 8 - 1 7 6 2 7 3号公報、 特開平 8— 1 7 6 2 7 4号公報及ぴ特開平 1 1 一 6 0 6 9 2号公報)。
また、 本発明者らにより、 シァネートエステル樹脂を特定の一価フエノールイ匕 合物で変性し、 フエノール変性シァネートエステル樹脂組成物とすることにより、 シァネートエステル樹脂が有する誘電特性の一層の改善を図り、 エポキシ樹脂を 配合した場合にも、 十分な誘電特性を有する樹脂組成物が提案されている (例え ば特開 2 0 0 1— 2 4 0 7 2 3号公報)。
しかしながら、 上記のいずれの樹脂組成物においても、 シァネートエステル樹 脂又は変性シァネートエステル樹脂を単独で用いた場合よりも、 硬化物の耐湿性 や耐熱性は改善されるものの、 エポキシ樹脂の影響から、 高周波数帯での比誘電 率及び誘電正接が増加したり、 誘電特性の温度に対する安定性の低下 (例えば、 誘電特性の温度変化に伴う ドリフトの増大) が見られ、 誘電特性の点では改善の 余地があった。
特に、 無線基地局装置用途や高速サーバー、 ルーター等に使用される多層印刷 配線板では、 装置起動中の印刷配線板の温度が 8 5〜 9 0 °Cと高温になることが あるため、 温度が変化することによって比誘電率が変化したり、 誘電正接が高く なると、 インピーダンスのミスマツチングゃ伝送損失の増加に伴う伝送ェラーを 引き起こすという重大な問題が生じかねない。 したがって、 温度依存性を含めた 誘電特性に優れた印刷配線板用樹脂組成物に対する必要性が高まっている。
また、 これらを背景に、 印刷配線板用樹脂組成物として、 誘電特性が優れるシ ァネートエステルとポリフエ二レンエーテルとを混練した樹脂組成物が提案され ている (例えば特公昭 6 1 - 1 8 9 3 7号公報)。 しかし、 これらの樹脂組成物 では、 シァネートエステルの配合量が多いと、 誘電正接が比誘電率の値の割に高 くなる傾向がある。 一方、 誘電正接を低下させるために、 ポリフエ二レンエーテ ルの配合量を増加させると、 樹脂組成物の溶融粘度が高くなって流動性が不足す るため、 成形性が悪化するという問題点があった。
また、 ビスフエノール A型エポキシ樹脂、 臭素化ビスフエノール A型エポキシ 樹脂、 フエノールノポラック型エポキシ樹脂及ぴクレゾールノポラック型ェポキ シ樹脂といったエポキシ樹脂を、 シァネートエステル樹脂とポリフエ二レンエー テルに配合した樹脂組成物が提案されている (例えば特公平 4— 5 7 6 9 6号公 報)。 しかし、 これらの樹脂組成物においては、 シァネートエステル樹脂及ぴポ リフエ二レンエーテル以外の成分の影響によって高周波数帯での誘電特性は依然 として要求のレベルを満たしていないという問題点があった。 特に、 無線基地局 装置用途や高速サーバー、 ルーター等に使用される多層印刷配線板では、 装置起 動中の印刷配線板の温度が 8 5〜9 0 °Cと高温になることがあるため、 温度が変 化することによって比誘電率が変化したり、 誘電正接が高くなると、 インピーダ ンスのミスマツチングゃ伝送損失の増加に伴う伝送ェラーを引き起こすという重 大な問題が生じかねない。 したがって、 温度依存性を含めた誘電特性に優れた印 刷配線板用樹脂組成物に対する必要性が高まっている。
また、 本発明者により、 シァネートエステル樹脂を特定の一価フエノール化合 物で変性し、 フエノール変性シァネートエステル樹脂組成物とすることにより、 シァネートエステル樹脂が有する誘電特性の一層の改善を図るとともに、 これに ポリフエ二レンエーテル樹脂を配合した、 耐熱性、 成形性及ぴ加工性に優れ、 か つ高周波数帯での誘電特性が良好な樹脂組成物が提案されている (例えば特開平 1 1 - 2 1 4 5 2号公報及ぴ特開平 1 1— 2 1 4 5 3号公報)。 しかしこれらの 樹脂組成物においては、 温度依存性を含めた良好な誘電特性を有しつつ、 長時間 のプレッシャークッカ一試験等の厳しレ、条件下での耐湿性をさらに向上させるこ とが求められていた。
本発明は、 かかる状況に鑑みなされたもので、 エポキシ樹脂等の熱硬化性樹脂 材料と同様な成形性と加工性を具備し、 かつ優れた耐湿性と耐熱性を有し、 併せ て特に高周波数帯での優れた誘電特性及び誘電特性の温度変化に対する優れた安 定性を発現する印刷配線板用樹脂組成物、 並びにこれを用いたワニス、 プリ グ及ぴ金属張積層板を提供することを目的とする。 本発明の第一の発明では、 本発明者らは、 鋭意研究を行った結果、 シァネート エステル樹脂 (成分 (A) ) に、 エポキシ樹脂を配合するに際し、 エポキシ樹脂 の少なくとも 1種を分子中にビフエニル骨格を有するエポキシ樹脂 (以下、 ビ フエニル骨格含有エポキシ樹脂 (成分 (B ) ) という) とした場合に、 耐湿性を 改善し、 併せて高周波数帯での優れた誘電特性及び誘電特性の温度変化に対する ドリフト性が小さく、 優れた安定性を発現する印刷配線板用樹脂組成物が得られ ることを見出し、 本発明を完成するに至った。
本発明の第一の発明では、 従来のエポキシ樹脂を配合したシァネートエステル 樹脂糸且成物では、 トリアジン環以外にも、 トリァジン環よりも極性の高いィソシ ァヌル環、 ォキサゾリジノン環等が生成するために、 誘電特性 (特に誘電正接) が悪化すると考えられる。 一方、 本発明のビフエ二ル骨格含有エポキシ樹脂を含 む樹脂組成物は、 ビフヱニル基が疎水性及び低極性を示すため、 従来よりもェポ キシ樹脂が併用されることによる誘電特性への悪影響が軽減されるものと考えら れる。 また、 硬化物中に剛直な構造のビフエ二ル骨格が導入されるため、 特に高 温領域における分子鎖の運動性が低くなることによって、 誘電特性の温度依存性 も小さくなると考えられる。
さらに、 本発明の第一の発明である印刷配線板用樹脂組成物は、 シァネートェ ステル樹脂等を単独で用いた場合や、 シァネートエステル樹脂等に従来のェポキ シ樹脂を併用した場合と比較して、 吸湿時の耐熱性に優れ、 またガラス状領域に おける強度と伸びや、 高温領域における伸びが高いため、 ドリル加工時ゃリフ ロー時等での耐クラック性や厳しい耐熱性が要求される 1 0層以上の多層印刷配 線板に使用される積層板及ぴプリプレダ用途に好ましいものである。
本発明の第二の発明では、 本発明者らは、 鋭意研究を行った結果、 シァネート エステル樹脂 (成分 (a ) )、 一価フユノール化合物 (成分 (b ) ) 及びポリフエ 二レンエーテル樹脂 (成分 (c ) ) を含む樹脂組成物に、 エポキシ樹脂を配合す るにあたり、 エポキシ樹脂の少なくとも 1種を分子中にビフエ二ル骨格を有する エポキシ樹脂 (以下、 ビフユニル骨格含有エポキシ樹脂 (成分 (d ) ) という) とした場合に、 優れた耐湿性を確保でき、 併せて高周波数帯での優れた誘電特性 及び誘電特性の温度変化に対するドリフト性が小さく、 優れた安定性を発現する 印刷配線板用樹脂組成物が得られることを見出し、 本発明を完成するに至った。 本発明の第二の発明によれば、 従来のエポキシ樹脂を配合したシァネートエス テル樹脂 ,袓成物では、 トリアジン環以外にも、 トリアジン環よりも極性の高いィ ソシァヌル環、 ォキサゾリジノン環等が生成するために、 誘電特性 (特に誘電正 接) が悪化すると考えられる。 一方、 本発明のビフエ二ル骨格含有エポキシ樹脂 を含む樹脂組成物は、 ビフユニル基が疎水性及び低極性を示すため、 従来よりも エポキシ樹脂が併用されることによる誘電特性への悪影響が軽減されるものと考 えられる。 また、 硬化物中に剛直な構造のビフユ二ル骨格が導入されるため、 特 に高温領域における分子鎖の運動性が低くなることによって、 誘電特性の温度依 存性も小さくなると考えられる。 加えて、 ビフヱニル骨格導入系は従来のェポキ シ樹脂を併用下系と比べて、 ガラス状領域での高い強度と伸び、 高温領域での高 い伸びを発現するため、 耐クラック性に優れかつ非常に耐熱性の高い樹脂硬化物 が得られるようになった。
また、 本発明の第一の発明及ぴ第二の発明による印刷配線板用樹脂組成物は、 シァネートエステル樹脂等を単独で用いた場合や、 シァネートエステル樹脂等に 従来のエポキシ樹脂を併用した場合と比較して、 吸湿時の耐熱性に優れ、 またガ ラス状領域における強度と伸びや、 高温領域における伸びが高いため、 ドリルカロ ェ時ゃリフロー時等での耐クラック性や厳しい耐熱性が要求される 1 0層以上の 多層印刷配線板に使用される積層板及びプリプレダ用途に好ましいものである。 発明の開示
本発明の印刷配線板用樹脂組成物は、 分子中にシアナト基を 2つ以上有するシ ァネートエステル化合物及び/又はこれらのプレポリマと、
分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂と
を含む組成物に関する。
本発明の印刷配線板用樹脂組成物は、 分子中にシアナト基を 2つ以上有するシ ァネートエステル化合物及ぴ Z又はこれらのプレボリマと、
分子中にビフエニル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂と、
一価フエノール化合物と
を含む組成物に関する。
本発明の印刷配線板用樹脂組成物は、 分子中にシアナト基を 2つ以上有するシ ァネートエステル化合物及ぴ Z又はこれらのプレボリマとー価フエノール化合物 とを反応させて得られるフエノール変性シァネートエステルオリゴマー、 並びに 分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂
を含む組成物に関する。
本発明の印刷配線板用樹脂組成物は、 分子中にシアナト基を 2つ以上有するシ ァネートエステル化合物及ぴ Z又はこれらのプレボリマと一価フエノール化合物 とを反応させて得られるフエノール変性シァネートエステルオリゴマー、 並びに 分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂を含み、 かつ
一価フエノール化合物
を含む組成物に関する。
本発明の印刷配線板用樹脂組成物は、 分子中にシアナト基を 2つ以上有するシ ァネートエステル化合物及ぴ Z又はこれらのプレポリマ、 分子中にビフエニル骨 格を有するエポキシ樹脂を少なくとも 1種含有するエポキシ樹脂、 及び一価フエ ノール化合物を反応させて得られるエポキシ Zフエノール変性シァネートエステ ノレオリゴマー
を含む組成物に関する。
本発明の印刷配線板用樹脂組成物は、 分子中にシアナト基を 2つ以上有するシ ァネートエステル化合物及び/又はこれらのプレボリマ、 分子中にビフエニル骨 格を有するエポキシ樹脂を少なくとも 1種含有するエポキシ樹脂、 及び一価フエ ノール化合物を反応させて得られるエポキシ フエノール変性シァネートエステ ルオリゴマ一と、
一価フエノール化合物と
を含む組成物に関する。 本発明の印刷配線板用樹脂組成物は、 フエノール変性シァネートエステルオリ ゴマーを、 ポリフエ二レンエーテル樹脂の存在下で、 分子中にシアナト基を 2つ 以上有するシァネートエステル化合物及ぴ /又はこれらのプレボリマと一価フェ ノール化合物とを反応させて得る組成物に関する。
本発明の印刷配線板用樹脂組成物は、 エポキシ/フエノール変性シァネートェ ステルオリゴマーを、 ポリフエ二レンエーテル樹脂の存在下で、 分子中にシアナ ト基を 2つ以上有するシァネートエステル化合物及び Z又はこれらのプレボリマ と、 一価フヱノール化合物及び分子中にビフユニル骨格を有するェポキシ樹脂を 少なくとも 1種含有するェポキシ樹脂とを反応させて得る組成物に関する。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明の第一の発明について、 以下に説明する。 本発明の第一の発明では、 分 子中にシアナト基を 2つ以上有するシァネートエステル化合物及び Z又はこれら のプレポリマは、 (A) 成分であり、 分子中にビフエ二ル骨格を有するエポキシ 樹脂を少なくとも 1種含有するエポキシ樹脂は、 (B ) 成分であり、 一価フエ ノール化合物は、 (C ) 成分である。
本発明の第一の発明である印刷配線板用樹脂組成物は、 (A) 分子中にシアナ ト基を 2つ以上有するシァネートエステル化合物及び/又はこれらのプレポリマ と、 (B ) 分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくとも 1種含有 するエポキシ樹脂とを含む組成物に関し、 またさらに (C ) —価フエノール化合 物を含む、 上記の印刷配線板用樹脂組成物に関する。 本発明の第一の発明は、 こ れらの印刷配線板用樹脂,袓成物を用いたワニス、 プリプレダ及び金属張積層板に 関する。
さらに、 本発明の第一の発明は、 (A) 分子中にシアナト基を 2つ以上有する シァネートエステル化合物及び/又はこれらのプレボリマと、 ( C ) 一価フエ ノール化合物のとを反応させて得られるフエノール変性シァネートエステルオリ ゴマー、 並びに (B ) 分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくと も 1種含有するエポキシ樹脂を含む印刷配線板用樹脂組成物、 並ぴにこれを用い たワニス、 プリプレダ及び金属張積層板に関する。
また、 本発明の第一の発明は、 (A) 分子中にシアナト基を 2つ以上有するシ ァネートエステル化合物及ぴ Z又はこれらのプレボリマ、 (B ) 分子中にビフエ ニル骨格を有するエポキシ樹脂を少なくとも 1種含有するエポキシ樹脂、 及ぴ
(C ) 一価フヱノール化合物を反応させて得られるエポキシ Zフエノール変性シ ァネートエステルオリゴマーを含む印刷配線板用樹脂組成物、 並ぴにこれを用い たワニス、 プリプレダ及ぴ金属張積層板に関する。
本発明の印刷配線板用樹脂組成物の第一の態様は、 (A) 分子中にシアナト基 を 2つ以上有するシァネートェステル化合物及び/又はこれらのプレボリマと、 (B ) ビフエニル骨格含有エポキシ樹脂を少なくとも 1種含有するエポキシ樹脂 とを含む組成物である。
本発明の (A) 分子中にシアナト基を 2つ以上有するシァネートエステル化合 物は、 特に限定されない。 分子中にシアナト基が 2つ以上存在すれば、 架橋して 硬化することが可能だからである。 例えば、 式 (I ) :
式 ( I )
Figure imgf000009_0001
式中、 は、
-CHg- -CH- -C-
Figure imgf000009_0002
を示し、 R2及ぴ R3は、 水素原子又は炭素数 1 4のアルキル基を示し, それぞれ同じであっても、 異なってもよい、
で示されるシァネートエステル化合物、 及ぴ式 (II)
式 (Π )
Figure imgf000009_0003
式中、 R 4は、 水素原子又は炭素数 1〜4のアルキル基を示し、 mは、 1〜 7の整数を示す、
で示されるシァネートエステル化合物が挙げられる。
本発明の (A) 成分の分子中にシアナト基を 2つ以上有するシァネートエステ ル化合物のプレボリマは、 特に限定されない。 ここで、 プレポリマとは、 シァ ネートエステル化合物同士が、 環化反応により トリアジン環を形成したシァネー トエステルオリゴマーをいい、 主にシァネートエステル化合物の 3、 5、 7、 9及ぴ 1 1量体が挙げられる。 プレポリマにおいて、 シアナト基の転化率は特に 限定されないが、 通常は 2 0〜 7 0 %の範囲内で転ィヒされたプレボリマを用いる ことが好ましく、 より好ましくは 3 0〜6 5 %である。 例えば、 式 (I ) 又は式 (II) で示されるシァネートエステル化合物のプレポリマが挙げられる。
本発明の (A) 成分の好ましい例としては、 2, 2—ビス (4—シアナトフェ ニル) プロパン、 ビス (4ーシアナトフェニル) ェタン、 ビス (3 , 5—ジメチ ル一 4—シアナトフェニル) メタン、 2, 2—ビス (4—シアナトフェニル) 一 1, 1 , 1 , 3 , 3, 3—へキサフルォロプロパン、 a , a ' —ビス (4—シァ ナトフエ二ノレ) 一m—ジイソプロピノレベンゼン、 フエノール付加ジシクロペンタ ジェン重合体のシァネートエステル化合物、 フエノールノボラック型シァネート エステル化合物及ぴクレゾールノボラック型シァネートエステル化合物、 及びこ れらのプレポリマ等が挙げられ、 2, 2 _ビス (4—シアナトフェニル) プロパ ン、 CK , a ' 一ビス (4—シアナトフェニノレ) 一m—ジイソプロピノレベンゼン、 ビス (3, 5—ジメチルー 4ーシアナトフェニル) メタン、 及ぴこれらのプレポ リマが好ましい。 これらは単独でも、 2種以上を組み合わせて用いてもよい。 本発明の (B ) ビフエニル骨格含有エポキシ樹脂を少なくとも 1種含むェポキ シ樹脂は、 ビフヱニル骨格含有エポキシ樹脂が必須成分として含有されるもので あれば、 特に限定されない。 例えば、 ビフエ二ル骨格含有エポキシ樹脂 1種のみ からなるェポキシ樹脂、 ビフエニル骨格含有ェポキシ樹脂 2種以上の組み合わせ からなるェポキシ樹脂、 ビフエニル骨格含有ェポキシ樹脂 1種以上と他のェポキ シ樹脂 1種以上の組み合わせからなるエポキシ樹脂のいずれでもよい。 なお、 ビ フエニル骨格と、 他の骨格とを有するエポキシ樹脂は、 本発明においては、 ビ フエ二ル骨格含有ェポキシ樹脂に分類する。
ビフエニル骨格含有エポキシ樹脂は、 特に限定されないが、 例えば、 式
(III) :
Figure imgf000011_0001
式 (m) 式中、 R5は、 水素原子又はメチル基を示し、 nは、 0〜 6の整数を示す、 で示されるエポキシ樹脂、 及び式 (IV) :
式 (IV)
Figure imgf000011_0002
式中、 pは、 1〜5の整数を示す、
で示されるェポキシ樹脂が挙げられる。
式 (III) で示されるエポキシ樹脂において、 nは好ましくは 0〜 5であり、 より好ましくは 0〜 3であり、 さらに好ましくは 0又は 1であり、 特に好ましく は 0である。 また、 nの値が異なる式 (III) のエポキシ樹脂の混合物を用いて も よい。 具体的には、 ビフエノ ールジグリ シジルエーテル、 及ぴ 3, 3 ' , 5 , 5 ' ーテトラメチルビフエノ一ルジグリシジルエーテル等が挙げ られ、 式 (IV) で示されるエポキシ樹脂としては、 ビフエ二ルァラルキレンノボ ラック型エポキシ樹脂が挙げられる。 また、 pの値が異なる式 (IV) のエポキシ 樹脂の混合物を用いてもよい。 これらのビフエ二ル骨格含有ェポキシ榭脂は単独 でも、 2種以上を組み合わせて用いてもよレ、。 加えて、 これらのビフエ二ル骨格 含有エポキシ樹脂としては、 コスト的に有利であり、 かつ硬化物の強度及ぴ誘電 特性が若干優れているため、 式 (IV) よりも式 (m) のエポキシ樹脂の方がより 好ましい。
本発明の (B ) 成分が、 ビフヱニル骨格含有エポキシ樹脂 1種以上と、 ビフエ ニル骨格含有エポキシ樹脂以外の他のエポキシ樹脂の 1種以上とを組み合わせた ものである場合、 他のエポキシ樹脂は特に限定されないが、 例えば、 ビスフエ ノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 臭素化ビスフエ ノール A型エポキシ樹脂、 フエノールノボラック型エポキシ樹脂、 クレゾールノ ポラック型エポキシ樹脂、 臭素化フエノールノポラック型エポキシ樹脂、 ビス フエノール Aノボラック型エポキシ樹脂、 ナフタレン骨格含有エポキシ樹脂、 ァ ラルキレン骨格含有ェポキシ樹脂、 フエノールサリチルァルデヒドノポラック型 エポキシ樹脂、 低級アルキル基置換フエノールサリチルアルデヒドノポラック型 エポキシ樹脂及ぴジシクロペンタジェン骨格含有エポキシ樹脂等が挙げられる。 中でもフエノールノボラック型ェポキシ樹脂及びクレゾールノポラック型ェポキ シ樹脂が高いガラス転移温度 (T g ) とコストの面から好適に併用でき、 耐燃性 の付加を目的とすれば臭素化ビスフエノール A型エポキシ樹脂及ぴ臭素化フエ ノールノボラック型エポキシ樹脂等が好適に併用できる。
本発明の (B ) 成分の配合量は、 (A) 成分 1 0 0重量部に対して、 1 0〜 2 5 0重量部であることが、 厳しい条件下での耐湿性や、 吸湿時の耐熱性や強度 及び伸び等の向上、 並びに高周波数帯域での誘電特性の点から好ましい。 (B ) 成分の配合量は、 より好ましくは 1 0〜1 5 0重量部であり、 特に好ましくは 1 0〜1 0 0重量部である。 誘電特性の点からは、 (B ) 成分中のビフエ二ル骨 格含有エポキシ樹脂の割合が、 5 0重量%以上であることが好ましく、 より好ま しくは 7 0重量%以上であり、 特に好ましくは 1 0 0重量%、 すなわち (B ) 成 分がすべてビフヱニル骨格含有ェポキシ樹脂である。
第一の態様の樹脂糸且成物には、 (C ) 一価フエノール化合物を配合してもよレ、。 ( C ) 成分を配合することにより、 硬化物中の未反応のシアナト基を減少させる ことができるため、 耐湿性及ぴ誘電特性の点から好ましい。
本発明の (C ) 成分は、 特に限定されないが、 例えば、 式 (V) :
式 (V)
Figure imgf000012_0001
式中、 R6、 R7は、 水素原子又はメチル基を示し、 それぞれ同じであって も、 異なってもよく、 qは、 1〜3の整数を示す、
で示される一価フエノール化合物、 及び式 (VI) :
式 (VI)
Figure imgf000013_0001
式中、 R8は水素原子又はメチル基を示し、 R9
CH3
一 CH3, -CH2-CH3又は一 CH2-? - CH3
CH3 を示し、 rは、 1〜2の整数を示す、
で示される一価フエノール化合物が挙げられる。
式 (V) で示される一価フエノール化合物としては、 p— ( α—タミル) フエ ノール、 モノー、 ジー又はトリー ( α—メチルベンジル) フエノールが挙げられ る。 式 (VI) で示される一価フエノール化合物としては、 ρ— tert—ブチルフエ ノーノレ、 2 , 4 _又は 2, 6—ジ一 ter—ブチゾレフエノーノレ、 p— tert—アミノレ フエノール及ぴ p— tert—ォクチルフエノールが挙げられる。 これらの一価フエ ノール化合物は、 単独でも、 2種以上を組み合わせて用いてもよい。
本発明の (C ) 成分の配合量は、 (A ) 成分 1 0 0重量部に対して、 2〜 6 0重量部の範囲とするのが好ましく、 より好ましくは 3〜4 5重量部であり、 特に好ましくは 4〜 3 0重量部である。 (C ) 成分をこの範囲で配合すると、 誘 電特性の点から好ましく、 特に高周波数帯域での誘電正接が十分低いものが得ら れる傾向にあることに加えて、 耐湿性の点から十分な効果が得られ、 吸湿時の耐 熱性等に悪影響を及ぼすこともないという傾向がある。
第一の態様の樹脂組成物には、 金属系触媒を配合することが好ましい。 金属系 触媒は、 (A) 成分の自己重合反応、 及び (C ) 成分を配合した場合には (A) 成分と (C) 成分との反応における促進剤、 並びに積層板を製造する際の硬化促 進剤として機能するものであり、 例えば、 遷移金属若しくは 1 2属金属の金属塩 及ぴキレート錯体が挙げられる。 金属としては、 例えば銅、 コバルト、 マンガン、 鉄、 ニッケル、 亜鉛等が挙げられ、 これらの塩としては、 例えばカルボン酸塩
(好ましくは 2—ェチルへキサン酸塩、 ナフテン酸塩) 等の金属塩が挙げられ、 キレート錯体としては、 例えばァセチルアセトン錯体が挙げられる。 これらの金 属系触媒は、 単独でも、 2種以上を組み合わせて用いてもよい。 また、 (A) 成 分の自己重合反応、 及び (A) 成分と (C) 成分との反応における促進剤と、 積 層板を製造する際の硬化促進剤とは、 同一であっても、 それぞれ異なる別の金属 系触媒であってもよい。
金属系触媒の量は、 (A) 成分に対して、 重量で l〜3 0 0 ppm とすることが 好ましく、 より好ましくは 1〜 2 0 O ppm であり、 特に好ましくは 2〜 1 5 O ppmである。 この範囲で、 金属系触媒を配合すると、 反応性 ·硬化性が十 分であり、 また硬化速度も適切である。 金属系触媒の添加は、 一度にまとめてで も、 複数回にわけて行ってもよい。
第一の態様の樹脂組成物には、 (B ) 成分のグリシジル基の反応を促進させる ような触媒機能を有する化合物を配合することができる。 具体的には、 アルカリ 金属化合物、 アルカリ土類金属化合物、 イミダゾール化合物、 有機リン化合物、 第二級ァミン、 第三級ァミン、 第四級アンモニゥム塩等が挙げられる。 これらの 化合物は単独でも、 2種以上を組み合わせて用いてもよい。
第一の態様の樹脂組成物には、 必要に応じて難燃剤、 充填剤等の添加剤を、 硬 化物の誘電特性や耐熱性等の特性を悪化させない範囲で配合することができる。 必要に応じて配合される難燃剤は、 特に限定されないが、 シアナト基と反応性 を有しない難燃剤が好ましい。 ここで、 シアナト基と反応性を有しないとは、 印 刷配線板樹脂組成物中に難燃剤を添加した場合に、 3 0 0 °C以下の範囲で混合し ても、 難燃剤がシァネートエステル化合物のシアナト基と反応せずに、 分散ある いは溶解といった形態でそのまま印刷配線板樹脂組成物中に含まれていることを いう。 この反応には、 樹脂組成物を加熱燃焼した場合における難燃剤の反応は含 まない。 一般に、 印刷配線板用樹脂組成物、 並びにこれを用いたワニス、 プリプ レグ、 金属張積層板、 印刷配線板等の製造、 使用は、 3 0 0 °C以下の範囲内で行 われるものである。 このような難燃剤としては、 上記の条件下で、 シアナト基と反応する基として 知られる、 アルコール性水酸基、 フエノール性水酸基、 アミノ基、 マレイミド基 を実質的にもたない難燃剤が挙げられる。 ここで、 「実質的にもたない」 には、 難燃剤にこれらの基が全く含まれない場合及び難燃剤がこれらの基を含んでいて もシァネートエステル化合物との相互作用がない場合 (例えば、 難燃剤が分子量 の大きいポリマーであり、 かつこれらの基がその最末端にあるため、 官能基とし ての効果がない場合) が含まれる。
なお、 臭素化ビスフヱノール A型エポキシ樹脂及ぴ臭素化フエノールノボラッ ク型ェポキシ樹脂等の臭素化工ポキシ樹脂のようなェポキシ樹脂に分類される難 燃剤については、 本発明においては (B ) 成分とする。 ただし、 グリシジル基を 1つのみ有するエポキシ化合物に分類される難燃剤は、 シァネートエステル化合 物と反応し、 トリアジン環又はイソシァヌル環に挿入され得るが、 適切な配合量 であれば、 誘電特性への影響も小さいと考えられるため、 難燃剤として使用して もよい。
具体的な難燃剤は、 例えば、 1, 2—ジブ口モー 4一 (1, 2—ジブ口モェチ ノレ) シクロへキサン、 テトラブロモシクロオクタンつへキサプロモシクロドデカ ン、 ビス (トリプロモフエノキシ) ェタン、 臭素化ポリフエ二レンエーテル、 臭 素化ポリスチレン、 及ぴ式 (VII) :
式 (W)
Figure imgf000015_0001
式中、 s、 t、 uは 1〜5の整数を表し、 それぞれ同じ値であっても異 なってもよい、
で示される臭化トリフエ二ルシアヌレート難燃剤等が挙げられ、 誘電特性の点か ら、 1, 2—ジブ口モー 4 _ ( 1, 2—ジブロモェチル) シクロへキサン、 テト ラブロモシクロオクタン、 へキサブ口モシクロドデカン及ぴ 2 , 4 , 6—トリス (トリプロモフエノキシ) ー1, 3, 5—トリアジンが好ましい。
難燃剤の配合量は、 (A) 成分、 (B ) 成分及び (C ) 成分 (配合されている場 合) の合計 1 0 0重量部に対して、 5〜1 0 0重量部とすることが好ましく、 よ り好ましくは 5〜8 0重量部であり、 特に好ましくは 5〜6 0重量部である。 こ の範囲で配合すると、 樹脂組成物において耐燃性が十分であり、 かつ硬化物の耐 熱性も好ましい。
必要に応じて配合される充填剤は、 特に限定されないが、 通常は、 無機充填剤 であり、 例えば、 アルミナ、 酸化チタン、 マイ力、 シリカ、 ベリリア、 チタン酸 バリウム、 チタン酸カリウム、 チタン酸ストロンチウム、 チタン酸カルシウム、 炭酸アルミニウム、 水酸化アルミニウム、 ケィ酸アルミニウム、 炭酸カルシウム、 ケィ酸カルシウム、 ケィ酸マグネシウム、 窒化ケィ素、 窒化ホウ素、 クレー (焼 成クレー等)、 タルク、 ホウ酸アルミニウム、 ホウ酸アルミニウム、 炭化ケィ素 等である。 これらの無機充填剤は、 単独でも、 2種類以上組み合わせて用いても よい。 また、 無機充填剤の形状、 粒径等も特に限定されないが、 通常、 粒径 0 . 0 1〜5 0 μ ιη、 好ましくは 0 . 1〜1 5 μ ηι のものである。 さらに、 これ らの無機充填剤の配合量も特に限定されないが、 (Α) 成分、 (Β ) 成分及び ( C ) 成分 (配合されている場合) の合計 1 0 0重量部に対して、 1〜 1 0 0 0重量部が好ましく、 より好ましくは 1〜8 0 0重量部である。
第一の態様の樹脂組成物は、 (Α) 成分、 (Β ) 成分及び場合により (C ) 成分 やその他の添加剤を、 公知の方法で配合し、 混合することにより製造することが できる。
本発明の印刷配線板用樹脂組成物の第二の態様は、 (Α) 分子中にシアナト基 を 2つ以上有するシァネートエステル化合物及ぴ Ζ又はプレボリマと ( C ) 一価 フエノール化合物とを反応させて得られるフエノール変性シァネートエステルオ リゴマーと、 (Β ) ビフエニル骨格含有エポキシ樹脂を少なくとも 1種含有する エポキシ樹脂とを含む組成物である。 予め (Α) 成分をフエノール変性し、 これ にビフエニル骨格含有エポキシ樹脂を含むエポキシ樹脂を配合することにより、 硬化物に残存するシアナト基を減少させ、 耐湿性及び誘電特性をより向上させる ことができる。 フエノール変性シァネートオリゴマーは、 例えば (A) 成分が単独で環化反応 により トリアジン環を形成するシァネートエステルオリゴマー、 (A) 成分のシ アナト基に (C ) 成分のフエノール性水酸基が付加したイミドカーボネート化変 性オリゴマー、 及ぴ Z又は (C ) 成分の 1つ又は 2つが (A) 成分が単独で環化 反応により形成するトリアジン環の構造内へと導入された変性オリゴマー (この 場合、 トリアジン環から伸びる 3つの鎖のうち、 1つ又は 2つが (C ) 成分に由 来する分子に置き換わる) を含む混合オリゴマーとなる。
フエノール変性シァネートエステルオリゴマーの生成に用いられる (A) 成分 及び (C ) 成分の例、 並びに (B ) 成分の例については、 第一の態様についての
(A) 成分、 (C ) 成分、 (B ) 成分の記載が適用される。
フエノール変性シァネートエステルオリゴマーの生成に用いられる ( C ) 成分 は、 (A) 成分 1 0 0重量部に対して、 2〜6 0重量部の範囲とするのが好まし く、 より好ましくは 3〜4 5重量部であり、 特に好ましくは 4〜 3 0重量部であ る。
本発明の (B ) 成分の配合量は、 フエノール変性シァネートエステルオリゴ マーの生成に用いられる (A) 成分 1 0 0重量部に対して、 1 0〜2 5 0重量部 であることが好ましく、 より好ましくは 1 0〜1 5 0重量部であり、 特に好まし くは 1 0〜1 0 0重量部である。 誘電特性の点からは、 (B ) 成分中のビフエ二 ル骨格含有エポキシ樹脂の割合が、 5 0重量%以上であることが好ましく、 より 好ましくは 7 0重量%以上であり、 特に好ましくは 1 0 0重量%、 すなわち
( B ) '成分がすべてビフヱニル骨格含有ェポキシ樹脂である。
第二の態様の樹脂組成物は、 さらに (C ) 成分を含んでいてもよく、 その場合、 該 ( C ) 成分と、 フエノール変性シァネートエステルオリゴマーの生成に用いら れる (C ) 成分との合計が、 (A) 成分 1 0 0重量部に対して、 2〜6 0重量部 の範囲であることが好ましい。 例えば、 (A) 成分 1 0 0重量部に対して、 (C ) 成分を 0 . 4重量部以上、 かつ 6 0重量部未満の範囲で予め反応させて、 フエ ノール変性シァネートエステルオリゴマーとした後、 追加で ( C ) 成分を、 フエ ノール変性シァネートエステルオリゴマーの生成に用いた (C ) 成分との合計が 2〜6 0重量部となる範囲の量で配合することができる。 (A) 成分 1 0 0重量 部に対して、 (C ) 成分を 2〜6 0重量部の範囲で予め反応させて、 フエノール 変性シァネートエステルオリゴマーを得た場合は、 追加の (C ) 成分は配合しな くてもよいし、 フエノール変性シァネートエステルオリゴマーの生成に用いた
( C ) 成分との合計が 2〜6 0重量部となる範囲で配合してもよい。 なお、 上記 の場合において、 フエノール変性シァネートエステルオリゴマーの生成に用いら れる (C ) 成分と、 追加の (C ) 成分は、 同じでも、 異なっていてもよく、 また それぞれ 2種以上を混合して用いることもできる。
フエノール変性シァネートエステルオリゴマ一は、 例えば、 ( A ) 成分と
( C ) 成分を、 トルエン、 キシレン、 メシチレン等の溶媒に溶解した後、 7 0〜 1 2 0 °Cで、 0 . 5〜1 0時間加熱することにより行うことができる。 この際に、 第一の態様で記載した金属系触媒を添カ卩してもよレ、。 これらの金属系触媒はフェ ノール変性を促進するものでもある。 なお、 フエノール変性シァネートエステル オリゴマーは、 例えば当初のシアナト基の転換率が 2 0〜7 0 %、 好ましくは 3 0〜6 5 %の範囲のものとすることができる。
第二の態様の樹脂組成物は、 上記のようにして得られたフエノール変性シァ ネートエステルオリゴマーに (B ) 成分、 及び場合により ( C ) 成分をさらに配 合して得られる。 これらには、 第一の態様の樹脂組成物と同様に、 金属系触媒、 ェポキシ樹脂のグリシジル基の反応を促進させるような触媒機能を有する化合物、 難燃剤、 充填剤、 その他の添加剤等を配合することができ、 具体的な例、 好適な 例、 配合量、 及び樹脂組成物の製造方法については、 第一の態様についての記載 が適用される。
本発明の印刷配線板用樹脂組成物の第三の態様は、 (A) 分子中にシアナト基 を 2つ以上有するシァネートエステル化合物及び/又はこれらのプレポリマ、 ( B ) ビフエニル骨格含有エポキシ樹脂を少なくとも 1種含有するエポキシ樹脂、 及び (c) 一価フエノール化合物を反応させて得られるエポキシ Zフエノール変 性シァネートエステルオリゴマーを含む組成物である。 フエノール変性とェポキ シ変性を行うことにより、 所望の溶融粘度を有し、 かつ硬化物に残存するシアナ ト基を減少させ、 耐湿性及び誘電特性の向上を図ることができる。
エポキシ/フエノール変性シァネートエステルオリゴマーの生成に用いられる (A) 成分、 (B) 成分、 (C) 成分の例については、 第一の態様について (A) 成分、 (B) 成分、 (C) 成分の記載が適用される。 エポキシ/フユノール変性シ ァネートエステルオリゴマーの生成において、 (B) 成分は、 (A) 成分 100重 量部に対して、 1 0〜 2 50重量部であることが好ましく、 より好ましくは 10〜150重量部であり、 特に好ましくは 10〜100重量部である。 誘電特 性の点からは、 (B) 成分中のビフエ二ル骨格含有エポキシ樹脂の割合が、
50重量%以上であることが好ましく、 より好ましくは 70重量%以上であり、 特に好ましくは 100重量%、 すなわち (B) 成分がすべてビフヱニル骨格含有 エポキシ樹脂である。 エポキシ/フエノール変性シァネートエステルオリゴマー の生成において、 (C) 成分は、 (A) 成分 100重量部に対して、 2〜60重量 部の範囲とするのが好ましく、 より好ましくは 3〜45重量部であり、 特に好ま しくは 4〜30重量部である。
第三の態様の樹脂組成物は、 さらに (C) 成分を含んでいてもよく、 その場合、 該 (c)成分と、 エポキシ Zフエノール変性シァネートエステルオリゴマーの生 成に用いられる (C) 成分との合計が、 (A) 成分 100重量部に対して、 2〜
60重量部の範囲であることが好ましい。 例えば、 (A) 成分 100重量部に対 して、 (B) 成分 10〜250重量部、 (C) 成分 0. 4重量部以上、 かつ 60重 量部未満を予め反応させて、 エポキシ/フエノール変性シァネートエステルオリ ゴマーとした後、 追加で (C) 成分を、 エポキシ/フエノール変性シァネートェ ステルオリゴマーの生成に用いた (C) 成分との合計が 2〜60重量部となる範 囲の量で配合することができる。 エポキシ/フエノール変性シァネートエステル オリゴマーの生成に用いられる (C) 成分と、 追加の (C) 成分は、 同じでも、 異なっていてもよく、 またそれぞれ 2種以上を混合して用いることもできる。 エポキシ Zフエノール変性シァネートエステル樹脂組成物は、 例えば、 (A) 成分と、 (B) 成分及び (C) 成分を、 トルエン、 キシレン、 メシチレン等の溶 媒に溶解した後、 70〜 120 °Cで、 0. 5〜 10時間加熱することにより行う ことができる。 この際に、 第一の態様で記載した金属系触媒を添加してもよい。 これらの金属系触媒はフエノール変性を促進するものでもある。 なお、 ェポキ シ /フエノール変性シァネートエステルオリゴマ一は、 例えば当初のシアナト基 の転換率が 2 0〜 7 0 %、 好ましくは 3 0〜 6 5 %の範囲のものとすることがで きる。
第三の態様の樹脂組成物には、 第一の態様の樹脂組成物と同様に、 金属系触媒、 エポキシ樹脂のグリシジル基の反応を促進させるような触媒機能を有する化合物、 難燃剤、 充填剤、 その他の添加剤等を配合することができ、 具体的な例、 好適な 例、 配合量、 及び樹脂組成物の製造方法については、 第一の態様についての記載 が適用される。
本発明の第一から第三の態様の印刷配線板用樹脂組成物を用いて、 公知の方法 により、 印刷配線板用プリプレダや金属張積層板を製造することができる。 例え ば、 本発明の印刷配線板用樹脂組成物をそのままで、 又は溶媒に溶解若しくは分 散させたワニスの形態で、 ガラス布等の基材に含浸させた後、 乾燥炉中等で通常、 8 0〜2 0 0 °C (ただし、 溶媒を使用した場合は溶媒の揮発可能な温度以上とす る)、 好ましくは 1 0 0〜1 8 0 °Cの温度で、 3〜3 0分間、 好ましくは 3〜 1 5分間乾燥させることによってプリプレダが得られる。 次いで、 このプリプレ グを複数枚重ね、 その片面又は両面に金属箔を配置し、 加熱成形することによつ て両面又は片面の金属張積層板と製造することができる。
なお、 上記のワニス化に用いられる溶媒は、 特に限定されないが、 例えば、 メ タノ一ノレ、 エタノーノレ、 エチレングリコーノレ、 エチレングリコーノレモノメチノレ エーテル等のアルコール類、 アセトン、 メチルェチルケトン、 メチルイソブチル ケトン、 シクロへキサノン等のケトン類、 トルエン、 キシレン、 メシチレン等の 芳香族炭化水素類、 メ トキシェチルアセテート、 エトキシェチルアセテート、 ブ トキシェチルアセテート、 酢酸ェチル等のエステル類、 N—メチルホルムアミ ド、 N, N—ジメチルホルムアミ ド、 N, N—ジメチルァセトアミ ド、 N—メチルビ ロリ ドン等のアミド類等の溶媒が挙げられる。 特にトルエン、 キシレン、 メシチ レン等の芳香族炭化水素類がより好ましい。 これらは単独でも、 2種以上を組み 合わせて用いてもよい。
本発明の印刷配線板用樹脂組成物、 並びにこれを用いたワニス、 プリプレダ、 金属張積層版は、 信号の高周波数ィ匕 ·高速化が要求されている情報通信関連機器 (移動体通信機器に内蔵されるフィルタ、 V C O等の部品や無線基地局装置を構 成するシグナルプロセッサ、 パワーアンプ及ぴアンテナ、 あるいはサーバー、 ルーター及ぴマイクロプロセッサの動作周波数が 1 GHz を超えるような高速コン ピュータ等) に使用される印刷配線板に用いることができる。
本発明の第二の発明について、 以下に説明する。 本発明の第二の発明では、 分 子中にシアナト基を 2つ以上有するシァネートエステル化合物及ぴ Z又はこれら のプレポリマは、 (a) 成分であり、 分子中にビフエニル骨格を有するエポキシ 樹脂を少なくとも 1種含有するエポキシ樹脂は、 (b) 成分であり、 ポリフエ二 レンエーテル樹脂は、 (c) 成分であり、 一価フエノール化合物は、 (d) 成分で あり、 難燃剤は、 (e) 成分であり、 酸化防止剤は、 (f ) 成分である。
本発明の第二の発明は、 (a) 分子中にシアナト基を 2つ以上有するシァネー トエステル化合物及び Z又はこれらのプレポリマ、 (b) —価フエノール化合物、
(c) ポリフエ二レンエーテル樹脂、 並びに (d) 分子中にビフヱニル骨格を有 するエポキシ樹脂を少なくとも 1種含有するエポキシ榭脂を用いて得られる印刷 配線板用樹脂組成物、 並びにこれを用いたワニス、 プリプレダ及び金属張積層板 に関する。
また、 本発明の第二の発明は、 (a) 〜 (d) 成分を含む、 印刷配線板用樹脂 組成物、 並びにこれを用いたワニス、 プリプレダ及ぴ金属張積層板に関する。 さらに、 本発明の第二の発明は、 (a) 成分と (b) 成分とを反応させて得ら れるフエノール変性シァネートエステルオリゴマー、 (c) 成分、 及ぴ (d) 成 分を含む、 印刷配線板用樹脂組成物、 並ぴにこれを用いたワニス、 プリプレダ及 び金属張積層板に関する。 ·
また、 本発明は、 (a) 成分と、 (b) 成分及び (d) 成分とを反応させて得ら れるエポキシ/フエノール変性シァネートエステルオリゴマー、 並びに (c) 成 分を含む、 印刷配線板用樹脂組成物、 並びにこれを用いたワニス、 プリプレダ及 ぴ金属張積層板に関する。
本発明の第二の発明である印刷配線板用樹脂組成物は、 (a) 分子中にシアナ ト基を 2つ以上有するシァネートエステル化合物及び/又はこれらのプレボリマ、 (b ) 一価フユノール化合物、 (c) ポリフエ二レンエーテル樹脂、 並びに
(d) 分子中にビフエニル骨格を有するエポキシ樹脂を少なくとも 1種含有する エポキシ樹脂を用いて得られる組成物である。 本発明の印刷配線板用樹脂組成物 の第一の態様は、 (a ) 〜 (d ) 成分を含む印刷配線板用樹脂組成物である。
本発明の第二の発明の (a ) 成分の例については、 本発明の第一の発明の (A) 成分についての記載が適用される。
本発明の (a ) 成分は、 誘電特性の点からは、 式 (I) で示される化合物及ぴ そのプレボリマが好ましく、 耐熱性の点からは、 T gが高い式 (II) で示される 化合物が好ましい。 これらは所望の特性に併せて選択することができ、 また、 併 用する場合には、 配合割合を任意に調整することができる。
本発明の式 (I ) で示されるシァネートエステル化合物及ぴそれらのプレポリ マとしては、 2, 2—ビス (4ーシアナトフェニル) プロパン、 ビス (4ーシァ ナトフエニル) ェタン、 ビス ( 3 , 5—ジメチル一 4—シアナトフェニル) メタ ン、 2 , 2一ビス ( 4—シアナトフェニル) 一 1 , 1 , 1 , 3 , 3, 3—へキサ フノレオ口プロパン、 α , α ' 一ビス ( 4—シアナトフェニノレ) 一 m—ジイソプロ ピルベンゼン、 フエノーノレ付加ジシク口ペンタジェン重合体のシァネートエステ ル化合物及ぴこれらのプレボリマが挙げられ、 式 (II) で示されるシァネートェ ステル化合物及ぴそれらのプレポリマとしては、 フエノールノボラック型シァ ネートエステル化合物及ぴクレゾールノボラック型シァネートエステル化合物及 ぴこれらのプレポリマ等が挙げられる。 これらは単独でも、 2種以上を組み合わ せて用いてもよい。
本発明の (b ) —価フエノール化合物は、 特に限定されない。 (b ) 成分を配 合することにより、 硬化の際に効率的にトリアジン環を形成させ、 かつ硬化物内 に未反応として残存するシアナト基をィミドカーボネート化してその極性を減じ ることで、 硬化物の比誘電率や誘電正接を低下させるものである。 通常のシァ ネートエステル単独系の硬化反応では、 トリァジン環が常に 3個のシアナト基を 有しているため、 反応が進行するに従い、 トリアジン環は必ず架橋点となるが、 本発明の樹脂組成物の硬化においては、 (b ) 成分の 1又は 2分子がトリアジン 環の構成成分として取り込まれるため、 トリアジン環から延びているシアナト基 が 1個又は 2個となり、 トリアジン環は必ずしも架橋点にはならなレ、。 すなわち、 シァネートエステル単独系の硬化物と比べて、 架橋点間分子量が大きく、 架橋密 度が小さいという特徴がある硬化物となる。 この硬化反応によれば、 架橋点間分 子量が大きいことにより分子鎖の運動性が向上し、 シアナト基の反応性が高くな るとともに、 反応が進行しても粘度の上昇が少なくなる。 よって、 反応系が流動 性を失うまでの時間が長くなるため効率的にトリアジン環を形成できる。 その結 果、 硬化物内に残存するシアナト基が減少し、 誘電特性が良好となる。 (b ) 成 分は、 この目的に適したものであれば、 特に限定されず、 単官能で比較的低分子 量でありかつシァネートエステル樹脂との相溶性がよい一価のフエノール化合物 が適していると考えられる。
本発明の第二の発明の (b ) 成分の例については、 本発明の第一の発明の ( C ) 成分についての記載が適用される。
本発明の (c ) ポリフエ二レンエーテル樹脂は、 特に限定されない。 (c ) 成 分を配合することにより、 更なる誘電特性の向上を可能とするものである。 なお、 シァネートエステル化合物とポリフエユレンエーテル樹脂とは本来、 非相溶系で あり、 均一な樹脂を得ることが困難であるが、 本発明においては、 硬化時、 及ぴ
( b ) 成分による ( a ) 成分の変性時に、 ポリフエ二レンエーテルを存在させる ことにより、 いわゆる "セミ I P N化" によって均一な樹脂を得ることが可能と なる。 この際の相溶化 (均一化) は、 それぞれの成分が化学的結合を形成するの ではなく、 硬化成分がポリフエ二レンエーテル樹脂のポリマーの分子鎖に絡み合 いながらオリゴマー化し、 最終的に相容した樹脂として存在すると考えられる。 上記で述べたように、 本発明においては (a ) 成分に (b ) 成分が配合されてい るため、 硬化物の架橋点間分子量が大きくなり、 硬化成分とポリフエ二レンエー テルが絡み合い易く、 相容性の向上が見られる。
本発明の (c ) 成分は、 例えば、 ポリ (2 , 6 _ジメチルー 1, 4一フエユレ ン) エーテル、 ポリ (2, 6 _ジメチルー 1, 4—フエ二レン) エーテルとポリ スチレンのァロイ化ポリマー、 ポリ (2, 6—ジメチルー 1, 4一フエ二レン) エーテルとスチレン一ブタジエンコポリマーのァロイ化ポリマー等が挙げられる。 ポリ (2, 6 _ジメチルー 1 , 4—フエ二レン) エーテルとポリスチレンのァロ ィ化ポリマー及ぴポリ (2 , 6—ジメチルー 1, 4一フエ二レン) エーテルとス チレン一ブタジエンコポリマー等のァロイ化ポリマーを用いる場合は、 ポリ (2, 6—ジメチルー 1 , 4一フエ二レン) エーテル成分を 50%以上含有する ポリマーであることがより好ましい。
本発明の第二の発明の (d) 成分の例については、 本発明の第一の発明の (B) 成分についての記載が適用される。
第一の態様の樹脂,袓成物において、 (a) 〜 (d) 成分の配合量の好ましい範 囲は以下である。
本発明の (b) 成分の配合量は、 (a) 成分 1 0 0重量部に対して、 2〜 60重量部であることが好ましく、 より好ましくは 3〜45重量部であり、 特に 好ましくは 4〜 30重量部である。 この範囲で、 (b) 成分を配合すると、 特に 高周波数帯域での誘電正接が十分に低い、 良好な誘電特性が得られ、 かつ、 良好 な吸湿時の耐熱性が得られる。
本発明の (c) 成分の配合量は、 (a ) 成分 1 00重量部に対して、 5〜 300重量部とすることが好ましく、 より好ましくは 10〜200重量部であり、 特に好ましくは 1 5〜100重量部である。 (c) 成分の配合量がこの範囲であ ると、 十分な誘電特性が得られ、 また樹脂の溶融粘度が適切なため、 流動性が十 分で、 かつ成形性良好で、 (a) 成分の反応性もまた、 良好であるという傾向に ある。
本発明の (d) 成分の配合量は、 (a) 成分 1 00重量部に対して、 1 0〜 250重量部であることが、 厳しい条件下での耐湿性や、 吸湿時の耐熱性や強度 及び伸び等の向上、 並びに高周波数帯域での誘電特性の点から好ましい。 (d) 成分の配合量は、 より好ましくは 1 0〜 1 50重量部であり、 特に好ましくは 10〜100重量部である。 誘電特性の点からは、 (d) 成分中のビフエ二ル骨 格含有エポキシ樹脂の割合が、 50重量%以上であることが好ましく、 より好ま しくは 70重量%以上であり、 特に好ましくは 100重量%、 すなわち (d) 成 分がすべてビフエ二ル骨格含有エポキシ樹脂である。
第一の態様の樹脂組成物には、 (e) 難燃剤を添加することができる。 (e) 成 分は、 特に限定されないが、 シアナト基と反応性を有しない難燃剤が好ましい。 ここで、 シアナト基と反応性を有しないとは、 印刷配線板樹脂組成物中に難燃剤 を添加した場合に、 300°C以下の範囲で混合しても、 難燃剤がシァネートエス テル化合物のシアナト基と反応せずに、 分散あるいは溶解といった形態でそのま ま印刷配線板樹脂組成物中に含まれていることをいう。 この反応には、 樹脂組成 物を加熱燃焼した場合における難燃剤の反応は含まない。 一般に、 印刷配線板用 樹脂組成物、 並びにこれを用いたワニス、 プリプレダ、 金属張積層板、 印刷配線 板等の製造、 使用は、 3 0 0 °C以下の範囲内で行われるものである。
このような難燃剤としては、 上記の条件下で、 シアナト基と反応する基として 知られる、 アルコール性水酸基、 フヱノール性水酸基、 アミノ基、 マレイミド基 を実質的にもたない難燃剤が挙げられる。 ここで、 「実質的にもたない」 には、 難燃剤にこれらの基が全く含まれない場合及び難燃剤がこれらの基を含んでいて もシァネートエステル化合物との相互作用がない場合 (例えば、 難燃剤が分子量 の大きいポリマーであり、 かつこれらの基がその最末端にあるため、 官能基とし ての効果がない場合) が含まれる。
なお、 臭素化ビスフエノール A型エポキシ樹脂及ぴ臭素化フエノールノボラッ ク型エポキシ樹脂等の臭素化エポキシ樹脂のようなエポキシ樹脂に分類される難 燃剤については、 本発明においては (d ) 成分とする。 ただし、 グリシジル基を 有するエポキシ化合物に分類される難燃剤は、 シァネートエステル化合物と反応 し、 トリアジン環又はイソシァヌル環に挿入され得る力 適切な配合量であれば、 誘電特性への影響も小さいと考えられるため、 難燃剤として使用してもよレ、。 本発明の第二の発明の具体的な難燃剤の例については、 本発明の第一の発明の 難燃剤についての記載が適用される。
難燃剤の配合量は、 (a ) 〜 (d ) 成分の合計 1 0 0重量部に対して、 5〜 1 0 0重量部とすることが好ましく、 より好ましくは 5〜8 0重量部であり、 特 に好ましくは 5〜6 0重量部である。 この範囲で配合すると、 樹脂組成物におい て耐燃性が十分であり、 かつ硬化物の耐熱性も好ましい。
第一の態様の樹脂組成物には、 (f ) 酸化防止剤を添加することができる。 酸 化防止剤を配合することにより、 印刷配線板用樹脂糸且成物を硬化させ、 積層板等 に加工した場合に、 金属マイグレーションの発生を抑制し、 絶縁信頼性の更なる 向上を図ることができる。
本発明の (ί ) 成分は、 特に限定されないが、 フエノール系酸化防止剤、 硫黄 系酸化防止剤が好ましい。 なお、 酸化防止剤をその骨格から分類することは当業 者によく知られており、 例えば、 「酸化防止剤ハンドブック」 第 1 2〜第 1 7頁 (昭和 5 1年) にも 「フ ノール系酸化防止剤」 「硫黄系酸化防止剤」 という分 類で、 具体的な酸化防止剤が例示されている。
フエノール系酸ィ匕防止剤の具体例としては、 ピロガロール、 ブチル化ヒドロキ シァニソール、 2, 6—ジー tert—ブチノレ一 4ーメチノレフエノーノレなどのモノ フエノーノレ系や、 2, 2' ーメチレン一ビス一 (4ーメチノレ一 6—tert—ブチル フエノーノレ)、 4, A' ーブチリデンビス (3—メチルー 6— tert—プチノレフエ ノール) 等のビスフエノール系及び、 1, 3, 5—トリメチル一 2, 4, 6 トリ ス (3, 5—ジ一 tert—プチ/レー 4ーヒドロキシベンジノレ) ベンゼン、 テトラキ スー 〔メチレン一 3— (3' — 5' —ジ一 tert—ブチノレ一 4' ーヒ ドロキシフエ ニル) プロピオネート〕 メタン等の高分子型フエノール系がある。 硫黄系酸化防 止剤の具体例としては、 ジラウリルチオジプロピオネート、 ジステアリルチオジ プロピオネート等がある。 これらの酸化防止剤は単独でも、 2種以上を混合して 用いてもよい。
本発明の (f ) 成分の配合量は、 (a ) 〜 (d) 成分の合計 1 0 0重量部に対 して、 0. 1〜 2 0重量部とすることが好ましく、 より好ましくは 0. 1〜 1 0重量部であり、 特に好ましくは 0. 1〜 5重量部である。 この範囲で配合す ると、 硬化物や積層板の絶縁信頼性の向上効果の点から好ましい印刷配線板用樹 脂組成物が得られる。
第一の態様の樹脂組成物には、 金属系触媒を配合することが好ましい。 金属系 触媒は、 (a ) 成分の自己重合反応、 (a ) 成分と (b ) 成分、 (a ) 成分と (d) 成分との反応における促進剤、 並びに積層板を製造する際の硬化促進剤と して機能するものであり、 例えば、 遷移金属若しくは 1 2属金属の金属塩及びキ レート錯体が挙げられる。 本発明の第二の発明の金属系触媒の金属の例、 金属系 触媒の例、 配合量については、 本発明の第一の発明の金属系触媒についての記載 が適用される。
第一の態様の樹脂組成物には、 (d) 成分のグリシジル基の反応を促進させる ような触媒機能を有する化合物を配合することができる。 具体的には、 アル力リ 金属化合物、 アルカリ土類金属化合物、 イミダゾール化合物、 有機リン化合物、 第二級ァミン、 第三級ァミン、 第四級アンモニゥム塩等が挙げられる。 これらの 化合物は単独でも、 2種以上を組み合わせて用いてもよい。
第一の態様の樹脂組成物には、 充填剤等の添加剤を、 硬化物の誘電特性や耐熱 性等の特性を悪化させなレ、範囲で配合することができる。
必要に応じて配合される充填剤は、 特に限定されないが、 通常は、 無機充填剤 が好適に用いられる。 本発明の第二の発明の充填剤の例については、 本発明の第 一の発明の充填剤についての記載が適用される。 さらに、 無機充填剤の配合量も 特に限定されないが、 (a) 〜 (d) 成分の合計 1 0 0重量部に対して、 1〜 1 000重量部が好ましく、 より好ましくは 1〜800重量部である。
第一の態様の樹脂組成物は、 (a) 〜 (d) 成分及びその他の添加剤を、 公知 の方法で配合し、 混合することにより製造することができる。
本発明の第二の態様は、 (a) 分子中にシアナト基を 2つ以上有するシァネー トエステル化合物及び Z又はプレボリマと (b) 一価フエノール化合物とを反応 させて得られるフエノール変性シァネートエステルオリゴマー、 (c) ポリフエ 二レンエーテル樹脂、 並びに (d) ビフエ二ル骨格含有エポキシ樹脂を少なくと も 1種含有するエポキシ樹脂を含む組成物である。
フエノール変性シァネートオリゴマーは、 例えば (a) 成分が単独で環化反応 により トリアジン環を形成するシァネートエステルオリゴマー、 (a) 成分のシ アナト基に (b) 成分のフエノール性水酸基が付加したイミドカーボネート化変 性オリゴマー、 (b) 成分の 1つ又は 2つが (a) 成分が単独で環化反応により 形成するトリァジン環の構造内へと導入された変性オリゴマー (この場合、 トリ ァジン環から伸びる 3つの鎖のうち、 1つ又は 2つが (b) 成分に由来する分子 に置き換わる) を含む混合オリゴマーとなる。
フエノール変性シァネートエステルオリゴマーの生成に用いられる (a) 成分 及ぴ (b) 成分の例、 並びに (c) 成分、 (d) 成分の例については、 第一の態 様についての (a) 〜 (d) 成分の記載が適用される。
フエノール変性シァネートエステルオリゴマーの生成に用いられる (b) 成分 は、 (a) 成分 1 00重量部に対して、 2〜6 0重量部であることが好ましく、 より好ましくは 3〜4 5重量部であり、 特に好ましくは 4〜 30重量部である。 本発明の (c) 成分の配合量は、 フエノール変性シァネートエステルオリゴ マーの生成に用いられる (a) 成分 1 00重量部に対して、 5〜300重量部と することが好ましく、 より好ましくは 1 0〜200重量部であり、 特に好ましく は 1 5〜1 00重量部であり、 (d) 成分の配合量は、 1 0〜250重量部であ ることが好ましく、 より好ましくは 1 0〜 1 50重量部であり、 特に好ましくは 1 0〜1 0 0重量部である。 誘電特性の点からは、 (d) 成分中のビフエ二ル骨 格含有エポキシ樹脂の割合が、 50重量%以上であることが好ましく、 より好ま しくは 70重量%以上であり、 特に好ましくは 1 00重量%、 すなわち. (d) 成 分がすべてビフ ニル骨格含有ェポキシ樹脂である。
第二の態様の樹脂組成物は、 さらに (b) 成分を含んでいてもよく、 その場合、 該 (b) 成分と、 フエノール変性シァネートエステルオリゴマーの生成に用いら れる (b) 成分との合計が、 (a) 成分 1 00重量部に対して、 2〜6 0重量部 の範囲であることが好ましい。 例えば、 (a) 成分 1 00重量部に対して、 (b) 成分を 0. 4重量部以上、 かつ 6 0重量部未満の範囲で予め反応させて、 フエ ノール変性シァネートエステルオリゴマーとした後、 追加で (b) 成分を、 フエ ノール変性シァネートエステルオリゴマーの生成に用いた (b) 成分との合計が 2〜6 0重量部となる範囲の量で配合することができる。 (a) 成分 1 00重量 部に対して、 (b) 成分を 2〜6 0重量部の範囲で予め反応させて、 フエノール 変性シァネートエステルオリゴマーを得た場合は、 追加の (b) 成分は配合しな くてもよいし、 フエノール変性シァネートエステルオリ ゴマーの生成に用いた
(b) 成分との合計が 2〜6 0重量部となる範囲で配合してもよい。 なお、 上記 の場合において、 フエノール変性シァネートエステルオリゴマーの生成に用いら れる (b) 成分と、 追加の (b) 成分は、 同じでも、 異なっていてもよく、 また それぞれ 2種以上を混合して用いることもできる。
フエノール変性シァネートエステルオリ ゴマーは、 例えば、 (a ) 成分と
(b) 成分を、 トルエン、 キシレン、 メシチレン等の溶媒に溶解した後、 70〜 1 20°Cで、 0. 5〜1 0時間加熱することにより行うことができる。 この際に、 第一の態様で記載した金属系触媒を添加してもよレ、。 これらの金属系触媒はフエ ノール変性を促進するものでもある。 なお、 フエノール変性シァネートエステル オリゴマーは、 例えば当初のシアナト基の転換率が 2 0〜 7 0 %、 好ましくは 3 0〜6 5 %の範囲のものとすることができる。
なお、 フエノール変性シァネートエステルオリゴマーの生成は、 (c ) 成分存 在下で行うことが好ましい。 (c ) 成分は、 加熱溶融物又は溶媒に溶解した溶液 とすることができる。 これにより、 フエノール変性シァネートエステルオリゴ マーと、 (c ) 成分とが均一に相容化した、 いわゆる "セミ I P Nィ匕" が可能と なる。 溶液とする場合、 溶媒としては、 メタノール、 エタノール、 エチレンダリ コール、 エチレングリコールモノメチルエーテル等のアルコール類、 アセトン、 メチルェチルケトン、 メチルイソブチルケトン、 シク口へキサノン等のケトン類、 トルエン、 キシレン、 メシチレン等の芳香族炭化水素類、 メ トキシェチルァセ テート、 エトキシェチルアセテート、 ブトキシェチルアセテート、 酢酸ェチル等 のエステル類、 N—メチルホルムアミ ド、 N, N—ジメチルホルムアミ ド、 N, N—ジメチルァセトアミド、 N—メチルピロリ ドン等のアミド類等の溶媒が 挙げられる。 特にトルエン、 キシレン、 メシチレン等の芳香族炭化水素類がより 好ましい。
第二の態様の樹脂組成物は、 第一の態様の樹脂組成物と同様に、 (e ) 難燃剤 を配合することができる。 (e ) 成分についての例、 配合量は、 第一の態様の樹 脂組成物についての記載が適用される。 また、 第二の態様の樹脂組成物は、 ( f ) 酸化防止剤を配合することができる。 (f ) 成分についての例、 配合量は、 第一の態様の樹脂組成物についての記載が適用される。 難燃剤、 酸化防止剤の配 合量において、 (a ) 〜 (d ) 成分の合計には、 フエノール変性シァネートエス テルオリゴマーの原料の (a ) 成分及び (b ) 成分を含むものとする。
第二の態様の樹脂,組成物は、 金属系触媒、 エポキシ樹脂のグリシ.ジル基の反応 を促進させるような触媒機能を有する化合物、 充填剤、 その他の添加剤等を配合 することができ、 それらの例、 配合量、 及び樹脂組成物の製造方法については、 第一の態様についての記載が適用される。 なお、 充填剤の配合量において、 ( a ) 〜 ( d ) 成分の合計には、 フエノール変性シァネートエステルオリゴマー の原料の (a ) 成分及ぴ (b ) 成分を含むものとする。 第三の態様の樹脂組成物は、 (a) 分子中にシアナト基を 2つ以上有するシァ ネートエステル化合物及び Z又はプレボリマと、 (b) —価フエノール化合物及 ぴ ( d ) ビフエニル骨格含有ェポキシ樹脂を少なくとも 1種含有するェポキシ樹 脂を反応させて得られるエポキシ Zフエノール変性シァネートエステルオリ ゴ マー、 並びに (c) 成分を含む組成物である。
エポキシ zフエノール変性シァネートエステルオリゴマーの生成に用いられる
(a ) 成分、 (b) 成分及び (d) 成分の例については、 第一の態様について (a) 成分、 (b) 成分及び (d) 成分の記載が適用される。 エポキシ Zフエ ノール変性シァネートエステルオリゴマーの生成において、 (b) 成分は、 (a) 成分 1 00重量部に対して、 2〜6 0重量部であることが好ましく、 より好まし くは 3〜4 5重量部であり、 特に好ましくは 4〜30重量部である。 (d) 成分 は、 (a) 成分 1 00重量部に対して、 1 0〜2 5 0重量部であることが好まし く、 より好ましくは 1 0〜 1 50重量部であり、 特に好ましくは 1 0〜 1 0 0重 量部である。 誘電特性の点からは、 (d) 成分中のビフエニル骨格含有エポキシ 樹脂の割合が、 5 0重量%以上であることが好ましく、 より好ましくは 7 0重 量%以上であり、 特に好ましくは 1 00重量%、 すなわち (d) 成分がすべてビ フエニル骨格含有エポキシ樹脂である。 (c) 成分についても、 第一の態様につ いての (c) 成分の記載が適用される。 (c) 成分の配合量は、 エポキシ Zフエ ノール変性シァネー トエステルオリ ゴマ一の生成に用いられる ( a ) 成分 1 00重量部に対して、 5〜300重量部とすることが好ましく、 より好ましく は 1 0〜200重量部であり、 特に好ましくは 1 5〜1 00重量部である。
エポキシ/フエノール変性シァネートエステルオリゴマーは、 さらに (b) 成 分を含んでいてもよく、 その場合、 該 (b) 成分と、 エポキシ/フエノール変性 シァネートエステルオリ ゴマーの生成に用いられる (b ) 成分との合計が、 (a) 成分 1 00重量部に対して、 2〜 6 0重量部の範囲であることが好ましい。 例えば、 (a) 成分 1 0 0重量部に対して、 (b) 成分 0. 4重量部以上、 かつ 60重量部未満、 及ぴ (d) 成分 1 0〜250重量部を予め反応させて、 ェポキ シ /フエノール変性シァネートエステルオリゴマーとした後、 追加で (b) 成分 を、 エポキシ Zフエノール変性シァネートエステルオリゴマーの生成に用いた (b) 成分との合計が 2〜 6 0重量部となる範囲の量で配合することができる。 (a) 成分 1 00重量部に対して、 (b) 成分 2〜6 0重量部、 及び (d) 成分
1 0〜250重量部で予め反応させて、 エポキシ Zフエノール変性シァネートェ ステルオリゴマーを得た場合は、 追加の (b) 成分は配合しなくてもよいし、 ェ ポキシ /フエノール変性シァネートエステルオリゴマーの生成に用いた (b) 成 分との合計が 2〜60重量部となる範囲で配合してもよい。 なお、 上記の場合に おいて、 エポキシ//フエノール変性シァネートエステルオリゴマーの生成に用い られる (b) 成分と、 追カ卩の (b) 成分は、 同じでも、 異なっていてもよく、 ま たそれぞれ 2種以上を混合して用いることもできる。
エポキシ/フエノール変性シァネートエステルオリゴマーは、 例えば、 (a) 成分と、 (b) 成分及び (d) 成分を、 トルエン、 キシレン、 メシチレン等の溶 媒に溶解した後、 70〜 1 20でで、 0. 5〜 1 0時間加熱することにより行う ことができる。 この際に、 第一の態様で記載した金属系触媒を添カ卩してもよい。 なお、 エポキシ/フエノール変性シァネートエステルオリゴマーは、 例えば当初 のシアナト基の転換率が 20〜70%、 好ましくは 30〜6 5%の範囲のものと することができる。
なお、 エポキシフエノール変性シァネートエステルオリゴマーの生成は、
(c) 成分存在下で行うことが好ましい。 エポキシ/フエノール変性は、 (c) 成分の加熱溶融物中で、 又は溶媒に溶解した溶液中で行うことができる。 溶媒は、 第二の態様で挙げられたものが適用される。 これにより、 エポキシ zフエノール 変性シァネートエステルオリゴマーと、 (C ) 成分とが均一に相容化した、 いわ ゆる "セミ I PNィ匕" が得られる。
第三の態様の樹脂組成物は、 第一の態様の樹脂組成物と同様に、 (e) 難燃剤 を配合することができる。 (e) 成分についての例、 配合量は、 第一の態様の樹 脂組成物についての記載が適用される。 また、 第三の態様の樹脂組成物は、 ( f ) 酸化防止剤を配合することができる。 (f ) 成分についての例、 配合量は、 第一の態様の樹脂組成物についての記載が適用される。 難燃剤、 酸化防止剤の配 合量において、 (a) 〜 (d) 成分の合計には、 エポキシ/フエノール変性シァ ネートエステルオリゴマーの原料の (a) 成分、 (b) 成分及び (d) 成分を含 むものとする。
第三の態様の樹脂組成物は、 金属系触媒、 エポキシ樹脂のグリシジル基の反応 を促進させるような触媒機能を有する化合物、 充填剤、 その他の添加剤等を配合 することができ、 それらの例、 配合量、 及ぴ樹脂組成物の製造方法については、 第一の態様についての記載が適用される。 なお、 充填剤の配合量において、 ( a ) 〜 (d ) 成分の合計には、 エポキシ/フエノール変性シァネートエステ/レ オリゴマーの原料の (a ) 成分、 (b ) 成分及び (d ) 成分を含むものとする。 本発明の第一から第三の態様の印刷配線板用樹脂,組成物を用いて、 公知の方法 により、 印刷配線板用プリプレダや金属張積層板を製造することができる。 例え ば、 本発明の印刷配線板用樹脂組成物をそのままで、 又は溶媒に溶解若しくは分 散させたワニスの形態で、 ガラス布等の基材に含浸させた後、 乾燥炉中等で通常、 8 0〜2 0 0 °C (ただし、 溶媒を使用した場合は溶媒の揮発可能な温度以上とす る)、 好ましくは 1 0 0〜 1 8 0 °Cの温度で、 3〜 3 0分間、 好ましくは 3〜 1 5分間乾燥させることによってプリプレダが得られる。 次いで、 このプリプレ グを複数枚重ね、 その片面又は両面に金属箔を配置し、 加熱成形することによつ て両面又は片面の金属張積層板と製造することができる。
なお、 上記のワニス化に用いられる溶媒は、 特に限定されないが、 例えば、 メ タノ一ノレ、 ェタノ一ノレ、 エチレングリ コーノレ、 エチレングリ コー/レモノメチノレ エーテル等のアルコール類、 アセトン、 メチルェチルケトン、 メチルイソプチル ケトン、 シク口へキサノン等のケトン類、 トルエン、 キシレン、 メシチレン等の 芳香族炭化水素類、 メ トキシェチルアセテート、 エトキシェチルアセテート、 ブ トキシェチルアセテート、 酢酸ェチル等のエステル類、 N—メチルホルムアミ ド、 N, N—ジメチルホルムアミ ド、 N, N—ジメチルァセトアミ ド、 N—メチルビ ロリ ドン等のアミド類等の溶媒が挙げられる。 特にトルエン、 キシレン、 メシチ レン等の芳香族炭化水素類がより好ましい。 これらは単独でも、 2種以上を組み 合わせて用いてもよい。 混合溶媒として用いる場合は、 上記芳香族炭化水素類と アセトン、 メチルェチルケトン、 メチルイソブチルケトン、 シク口へキサノン等 のケトン類を併用すると、 ワニスの粘度を低めることができるため、 高濃度のヮ ニスを得られるという点から好ましい。 ケトン系溶媒の配合量としては、 芳香族 炭化水素系溶媒 100重量部に対して 30〜300重量部用いるのが好ましく、 30〜250重量部がより好ましく、 30〜220重量部がさらに好ましい。 本発明の印刷配線板用樹脂組成物、 並ぴにこれを用いたワニス、 プリプレダ、 金属張積層版は、 信号の高周波数化 ·高速化が要求されている情報通信関連機器
(移動体通信機器に内蔵されるフィルタ、 V C O等の部品や無線基地局装置を構 成するシグナルプロセッサ、 パワーアンプ及ぴアンテナ、 あるいはサーバー、 ルーター及ぴマイクロプロセッサの動作周波数が 1 GHz を超えるような高速コン ピュータ等) に使用される印刷配線板に用いることができる。 実施例
以下、 具体例を挙げて本発明を具体的に説明するが、 本発明はこれらに限られ るものではない。
本発明の第一の発明について、 以下の例を用いて説明する。
実施例 1
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 833 g、 2, 2—ビス (4—シアナトフェニル) プロパンのプレポリ マ ( A r o c y B _ 1 0 、 チバガイ ギー製) l O O O g及び 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシジルエーテル (テトラ メチルビフエニル型エポキシ樹脂、 YX—4000、 ジャパンエポキシレジン 製) 547 gを投入し、 80°Cに加熱して攪拌溶解した。 次いで、 溶解確認後室 温まで冷却し、 硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 1. 25 g を配合して不揮発分濃度約 65重量%の樹脂ワニスを調製した。
実施例 2
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 780 g、 2, 2—ビス (4ーシアナトフェニル) プロパンのビス (3 , 5—ジメチル一 4ーシアナトフェニル) メタンのプレポリマ (Ar o c y M- 30、 チバガイギー製) 1000 g及ぴビフェノ一ルジグリシジルエーテル と 3, 3 , 5, 5' —テトラメチルビフエノールジグリシジルエーテルとの混 合ビフエ-ル型エポキシ樹脂 (YL— 6121H、 ジャパンエポキシレジン製) 44 7 gを投入し、 8 0°Cに加熱して攪拌溶解した。 次いで、 溶解確認後室温ま で冷却し、 硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 1. 2 5 gを配 合して不揮発分濃度約 6 5重量%の樹脂ワニスを調製した。
実施例 3
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トノレェン 8 8 5 g、 a, a' 一ビス (4—シアナトフェニル) 一m—ジイソプロ ピルベンゼン (RTX— 3 6 6、 チバガイギー製) 1 000 g、 ビフエ二ルァラ ルキレンノポラック型エポキシ樹脂 (NC— 3 0 0 0 S— H、 日本化薬製) 5 8 6 gを投入し、 8 0°Cに加熱して攪拌溶解した。 次いで、 溶解確認した後に 室温まで冷却し、 _tert—ォクチノレフエノール (和光純薬工業製) 6 2 gと硬 化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. 4 gを配合して不揮発分 濃度約 6 5重量%の樹脂ワニスを調製した。
実施例 4
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トノレェン 438 gと 2, 2—ビス (4ーシアナトフェニル) プロパン (Ar o c y B_ 1 0、 チバガイギー製) 1 0 0 0 gと p— (α—タミル) フエノール (東京化成工業製) 3 0 gを投入し、 溶解確認後に液温を 1 1 0°Cに保った後で 反応促進剤としてナフテン酸マンガン (和光純薬工業製) 0. 3 gを配合し、 約 1時間加熱反応させてフエノール変性シァネートオリゴマー溶液を合成した。 次 いで反応液を冷却し、 内温が 8 0°Cになったらメチルェチルケトン 4 5 7 gと 3, 3' , 5, 5' —テトラメチルビフエノールジグリシジルエーテル (YX— 4000、 ジャパンエポキシレジン製) 547 gを攪拌しながら配合して溶解を 確認した後、 室温まで冷却した後に p— (α—タミル) フエノール 9 2 gと硬化 促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. 1 5 gを配合して不揮発分 濃度約 6 5重量%の樹脂ワニスを調製した。
実施例 5
実施例 4において、 3, 3' , 5, 5' —テトラメチルビフエノールジグリシ ジルエーテル (YX— 4000, ジャパンエポキシレジン製) をビフエ二ルァラ ルキレンノポラック型エポキシ樹脂 (NC— 3000 S— H, 日本化薬製) に代 えて、 表 1に示す配合量で配合したこと以外は実施例 4と同様にして樹脂ワニス を調製した。 .
比較例 1
実施例 1において、 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシ ジルエーテルの代わりに、 ビスフエノール A型エポキシ樹脂 (DER— 331 L、 ダウケミカル製) を表 1に示す配合量で配合したこと以外は、 実施例 1と同様に して不揮発分濃度約 65%の樹脂ワニスを調製した。
比較例 2
実施例 1において、 3, 3' , 5, 5' —テトラメチルビフエノールジグリシ ジルエーテルの代わりに、 フエノールノポラック型エポキシ樹脂 (N_ 770、 大日本インキ化学工業製) を表 1に示す配合量で配合したこと以外は、 実施例 1と同様にして不揮発分濃度約 65%の樹脂ワニスを調製した。
比較例 3
実施例 1において、 3, 3' , 5, 5' —テトラメチルビフエノールジグリシ ジルエーテルの代わりに、 ビスフエノール Aノボラック型エポキシ樹脂 (N— 865、 大日本インキ化学工業製) を表 1に示す配合量で配合したこと以外は、 実施例 1と同様にして不揮発分濃度約 65%の樹脂ワニスを調製した。
比較例 4
実施例 1において、 3, 3' , 5, 5' —テトラメチルビフエノールジグリシ ジルエーテルの代わり'に、 メチル基、 tert—ブチル基置換型フエノールサリチル アルデヒ ドノボラック型エポキシ樹脂 (TMH— 574、 住友化学製) を表 1に 示す配合量で配合したこと以外は、 実施例 1と同様にして不揮発分濃度約 65% の樹脂ワニスを調製した。
比較例 5
実施例 1において、 3, 3 , 5, 5' —テトラメチルビフエノールジグリシ ジルエーテルの代わりに、 ジシクロペンタジェン骨格含有エポキシ樹脂 (HP— 7200、 大日本インキ化学工業製) を表 1に示す配合量で配合したこと以外は、 実施例 1と同様にして不揮発分濃度約 65%の樹脂ワニスを調製した。
比較例 6 実施例 1において、 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシ ジルエーテルの代わりに、 ]3—ナフトールァラルキレン型エポキシ樹脂 (ESN - 1 75, 新日鐡化学製) を表 1に示す配合量で配合したこと以外は、 実施例 1と同様にして不揮発分濃度約 65%の樹脂ワニスを調製した。
Figure imgf000037_0001
実施例 1〜 5及ぴ比較例 1〜 6で得られた樹脂ワニスを厚さ 0. 15■ のガ ラス布 (Eガラス) に含浸した後、 160°Cで 5〜15分間加熱乾燥して樹脂固 形分 52重量0 /0のプリプレダを得た。 次いで、 このプリプレダ 4枚を重ね、 その 最外層に厚み 18 μιη の銅箔を配置し、 230°C、 70分、 2. 5MPa のプレス 条件で加熱加圧成形し両面銅張積層板を作製した。 得られた銅張積層板について、 誘電特性、 銅箔引きはがし強さ、 はんだ耐熱性、 吸水率、 曲げ特性、 熱膨張係数 (a) 及び Tg (ガラス転移温度) を評価した。 その評価結果を表 2に示す。 銅張積層板の特性評価方法は以下の通りである。
銅張積層板の比誘電率 (ε r) 及ぴ誘電正接 (t a η δ) は、 ベタトル型ネッ トワークアナライザを用いたトリプレート構造直線線路共振器法により測定した。 なお、 測定条件は周波数: lGHz、 測定温度:室温 (25°C) 及ぴ 90°Cとした。 銅張積層板 (銅箔全面エッチング品) の熱膨張係数 ) と Tgは、 TMAに より測定した。
銅張積層板の銅箔引きはがし強さは、 銅張積層板試験規格 J I s-c- 6481に準拠して測定した。
銅張積層板 (銅箔全面エッチング品) のはんだ耐熱性は、 プレッシャークッ カーテスター (条件: 1 2 1°C、 2. 2気圧) 中に 1〜5時間保持した後、 260°C及び 288 °Cの溶融はんだに 20秒浸漬して、 外観を目視で調べた。 表 中の異常無しとは、 ミーズリングや膨れ (ふくれ) の発生が無いことを意味する。 銅張積層板 (銅箔全面エッチング品) の吸水率は、 常態とプレッシャータツ カーテスター (条件: 121°C、 2. 2気圧) 中に 5時間保持した後の重量差か ら算出した (単位:重量%)。
銅張積層板 (銅箔全面エッチング品) の曲げ特性は、 銅張積層板試験規格 J I S-C- 6481に準拠して室温における及ぴ 200°Cにおける曲げ弾性率、 並 びに室温における破断強度と破断伸ぴ、 200°Cにおける降伏点強度と降伏点伸 びを測定した。 表 2
Figure imgf000039_0001
表 2から明らかなように、 実施例 1〜5のワニスを用いて作製した積層板は、 比較例 1〜6の積層板よりも室温 (25°C) における 1 GHz での誘電特性 (特に 誘電正接) に優れ、 特に一価フエノール化合物を併用した実施例 3及び 4の積層 板の誘電特性はさらに良好な結果であった。 さらに、 各実施例の 90°Cにおける 誘電特性 (特に誘電正接) も良好であり、 温度変化に対する依存性が小さい。 ま た、 実施例の積層板は、 比較例の積層板と比較して吸湿時のはんだ耐熱性 (特に 288 °C) が良好である。 さらに、 実施例の積層板は、 比較例の積層板よりも室 温 (25°C) での破断強度と破断伸び率、 及ぴ高温 (200°C) での降伏点伸ぴ 率が高い。
本発明の第二の発明について、 以下の例を用いて説明する。
〔実施例 6〜 10、 比較例 7〜 12〕
表 3に示す配合量に従って金属張積層板用樹脂ワニスを製造した。
実施例 6
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 300 gとポリフエ二レンエーテル樹脂 (PKN4752、 日本 GE 製) 1 75 gを投入し、 90°Cに加熱し攪拌溶解した。 次に、 2, 2—ビス (4—シアナトフェニル) プロパン (Ar o c y B— 10、 チバガイギー製) 500 gと: p— tert—ブチルフエノール (関東化学製) 32 gを投入し、 溶解確 認後に液温を 110°Cに保った後で反応促進剤としてナフテン酸亜鉛 (和光純薬 工業製) 0. 13 gを配合し、 約 3時間加熱反応させてポリフエ二レンエーテル 樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液を合成した。 次いで反応液を冷却し、 内温が 80 °Cになったらメチルェチルケトン 530 gと 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシジルエーテル (テトラ メチルビフエニル型エポキシ樹脂、 YX—4000、 ジャパンエポキシレジン 製) 308 gを攪拌しながら配合して溶解を確認した後、 室温まで冷却し、 硬化 促進剤としてナフテン酸亜鉛 0. 1 gを配合して不揮発分濃度約 55重量%の樹 脂ワニスを調製した。
実施例 7
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 275 gとポリフエ二レンエーテル樹脂 (PKN4752、 日本 GE 製) 100 gを投入し、 90°Cに加熱し攪拌溶解した。 次に、 ビス (3, 5—ジ メチル一4—シアナトフェニル) メタン (Ar o c y M— 10、 チバガイギー 製) 500 gと p— tert—オタチルフヱノール (和光純薬工業製) 47 gを投入 し、 溶解確認後に液温を 1 10°Cに保った後で反応促進剤としてナフテン酸コバ ルト (和光純薬工業製) 0. 25 gを配合し、 約 3時間加熱反応させてポリフエ 二レンエーテル樹脂と相容化したフエノール変性シァネートエステルオリゴマー 溶液を合成した。 次いで反応液を冷却し、 内温が 80^になったらメチルェチル ケトン 480 g及ぴビフエノールジグリシジルエーテルと 3, 3' , 5, 5' — テトラメチルビフエノールジグリシジルエーテルとの混合ビフエ二ル型エポキシ 樹脂 (YL— 6121H、 ジャパンエポキシレジン製) 28 O gを攪拌しながら 配合して溶解を確認した後、 室温まで冷却し、 硬化促進剤としてナフテン酸亜鉛
(和光純薬工業製) 0. 1 gを配合して不揮発分濃度約 55重量。/。の樹脂ワニス を調製した。
実施例 8
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 285 gとポリフエ二レンエーテル樹脂 (PKN4752、 日本 GE 製) 1 50 gを投入し、 90。Cに加熱し攪拌溶解した。 次に、 2, 2—ビス (4ーシアナトフェニル) プロパン (Ar o c y B— 10、 チバガイギー製) 500 gと p— (α—タミル) フエノール (東京化成工業製) 15 gを投入し、 溶解確認後に液温を 11 o°cに保った後で反応促進剤としてナフテン酸マンガン (和光純薬工業製) 0. 16 gを配合し、 約 3時間加熱反応させてポリフエユレ ンエーテル樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液 を合成した。 次いで反応液を冷却し、 内温が 80°Cになったらメチルェチルケト ン 520 gと 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシジルエー テル (YX—4000、 ジャパンエポキシレジン製) 273 gを攪拌しながら配 合して溶解を確認した後、 室温まで冷却した後に p— (ひ一タミル) フエノール 46 gと硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. 1 gを配合し て不揮発分濃度約 55重量%の樹脂ワニスを調製した。 実施例 9
温度計、 冷却管、 攪拌装置を備えた 3リッ トルの 4っロセパラブルフラスコに、 トルエン 2 70 gとポリフエ二レンエーテル樹脂 (PKN4 7 5 2、 日本 GE 製) 1 8 0 gを投入し、 90°Cに加熱し攪拌溶解した。 次に、 a, a' —ビス (4ーシアナトフェニル) _m—ジイソプロピルベンゼン (RTX— 36 6、 チ パガィギー製) 450 gと p— tert—アミルフ-ノール (東京化成工業製) 4 g を投入し、 溶解確認後に液温を 1 1 0°Cに保った後で反応促進剤としてナフテン 酸鉄 (関東化学製) 0. 14 gを配合し、 約 3時間加熱反応させてポリフエニレ ンエーテル樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液 を合成した。 次いで反応液を冷却し、 内温が 80°Cになったらメチルェチルケト ン 5 3 5 g と ビフエニルァラルキレンノボラック型エポキシ樹脂 (NC— 3000 S— H、 日本化薬製) 330 gを攪拌しながら配合して溶解を確認した 後、 室温まで冷却した後に p— tert—ォクチルフ ノール (和光純薬工業製) 23 gと硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. 1 gを配合し て不揮発分濃度約 5 5重量%の樹脂ワニスを調製した。
実施例 1 0
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 2 9 0 gとポリフエ二レンエーテル樹脂 (PKN4 7 5 2、 日本 GE 製) 2 2 5 gを投入し、 9 0°Cに加熱し攪拌溶解した。 次に、 フエノールノボ ラック型シァネートエステル樹脂 (REX- 3 7 1、 チパガィギー製) 4 50 g と p— ( 一タミル) フ ノール (東京化成工業製) 1 3 gを投入し、 溶解確認 後に液温を 1 1 0°Cに保った後で反応促進剤としてナフテン酸マンガン (和光純 薬工業製) 0. 1 5 gを配合し、 約 2時間加熱反応させてポリフエ二レンエーテ ル樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液を合成し た。 次いで反応液を冷却し、 内温が 8 0°Cになったらメチルェチルケトン 500 gと 3, 3' , 5, 57 ーテトラメチルビフェノ一ルジグリシジルエーテ ル (YX—4 000、 ジャパンエポキシレジン製) 1 4 8 g とクレゾ一ルノボ ラック型エポキシ樹脂 (ES CN— 1 90— 3、 住友化学製) 90 gを攪拌しな がら配合して溶解を確認した後、 室温まで冷却した後に p—tert—ォクチルフエ ノール (和光純薬工業製) 45 gと硬化促進剤としてナフテン酸亜 & (和光純薬 工業製) 0. 1 gを配合して不揮発分濃度約 55重量。 /0の樹脂ワニスを調製した。 比較例 7
実施例 6において、 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシ ジルエーテル (YX—4000) を除き、 かつ不揮発分濃度約 55%となるよう な配合量のメチルェチルケトンを配合したこと以外は実施例 6と同様にして不揮 発分濃度約 55%の樹脂ワニスを調製した。
. 比較例 8
実施例 6において、 3, 3' , 5, 5' —テトラメチルビフエノールジグリシ ジルエーテルの代わりに、 ビスフエノール A型エポキシ樹脂 (DER— 331 L、 ダウケミカル製) を表 3に示す配合量で配合し、 かつ不揮発分濃度約 55 %とな るような配合量のメチルェチルケトンを配合したこと以外は実施例 6と同様にし て不揮発分濃度約 55%の樹脂ワニスを調製した。
比較例 9
実施例 6において、 p一 tert—ブチルフェノールの代わりに p— tert—アミル フエノール (東京化成工業製) を、 3, 3' , 5, 5' ーテトラメチルビフエ ノールジグリシジルエーテルの代わりにフエノールノボラック型エポキシ樹脂 (N— 770、 大日本インキ化学工業製) をそれぞれ表 3に示す配合量で配合し、 かつ不揮発分濃度約 55 %となるような配合量のメチルェチルケトンを配合した こと以外は実施例 6と同様にして不揮発分濃度約 55%の樹脂ワニスを調製した。 比較例 10
実施例 7において、 ビフエノールジグリシジルエーテルと 3, 3; , 5, 5' ーテトラメチルビフエノールジグリシジルエーテルとの混合ビフエ二ル型ェポキ シ樹脂 (YL - 6 121 H) の代わりにビスフエノール Aノボラック型エポキシ 樹脂 (N_865、 大日本インキ化学工業製) を、 ナフテン酸コバルト (和光純 薬工業製) の代わりにナフテン酸亜鉛 (和光純薬工業製) をそれぞれ表 3に示す 配合量で配合し、 不揮発分濃度約 55 %となるような配合量のメチルェチルケト ンを配合したこと以外は実施例 7と同様にして不揮発分濃度約 55 %の樹脂ヮニ スを調製した。 比較例 1 1
実施例 6において、 p—tert—ブチルフェノールの代わりに ρ— tert—ォクチ ルフエノール (和光純薬工業製) を、 3, 3' , 5, 5' —テトラメチルビフエ ノ一ルジグリシジルエーテルの代わりにフエノールサリチルアルデヒドノボラッ ク型エポキシ樹脂 (EP PN— 502H、 日本化薬製) をそれぞれ表 3に示す配 合量で配合し、 かつ不揮発分濃度約 5 5 %となるような配合量のメチルェチルケ トンを配合したこと以外は実施例 6と同様にして不揮発分濃度約 5 5%の樹脂ヮ ニスを調製した。
比較例 1 2
比較例 10において、 p—tert—ォクチルフエノールの代わりに p— a—ク ミル) フエノール (東京化成工業製) を、 ビスフエノール Aノボラック型ェポキ シ樹脂 (N— 6 & 5) の代わりにジシクロペンタジェン骨格含有エポキシ樹脂 (HP— 7200、 大日本インキ化学工業製) をそれぞれ表 3に示す配合量で配 合し、 不揮発分濃度約 5 5 %となるような配合量のメチルェチルケトンを配合し たこと以外は比較例 1 0と同様にして不揮発分濃度約 55%の樹脂ワニスを調製 した。
Figure imgf000045_0001
実施例 6〜 10及ぴ比較例 7〜 12で得られた樹脂ワニスを厚さ 0. 15mm のガラス布 (Eガラス) に含浸した後、 160°Cで 4〜7分間加熱乾燥して樹脂 固形分 5 2重量%のプリプレダを得た。 次いで、 このプリプレダ 4枚を重ね、 そ の最外層に厚み 1 8 μ ηι の銅箔を配置し、 2 3 0 °C、 7 0分、 2 . 5 MPa のプレ ス条件で加熱加圧成形し両面銅張積層板を作製した。 得られた銅張積層板につい て、 誘電特性、 銅箔引きはがし強さ、 はんだ耐熱性、 吸水率、 曲げ特性、 熱膨張 係数 (c 及ぴ T g (ガラス転移温度) を評価した。 その評価結果を表 4に示す。 銅張積層板の特性評価方法は以下の通りである。
表 4
Figure imgf000047_0001
表 4から明らかなように、 実施例 6〜1 0のワニスを用いて作製した積層板は、 比較例 8〜 1 1の積層板よりも室温 (2 5°C) における 1 GHz での誘電特性 (特 に誘電正接) に優れ、 さらに比較例 8〜1 2と比べて 9 0°Cにおける誘電特性
(特に誘電正接) も良好であり、 温度変化に対する依存性が小さい。 また、 実施 例の積層板は、 比較例 8〜1 2の積層板と比較して吸水率が低く、 かつ比較例 7〜1 2の積層板よりも吸湿時のはんだ耐熱性 (特に 2 8 8°C) が良好である。 さらに加えて、 実施例 6〜 1 0の積層板は、 比較例 7〜 1 2の積層板よりも室温
(2 5°C) での破断強度と破断伸ぴ及ぴ高温 (2 0 0°C) での降伏点伸びが高い。
〔実施例 1 1〜 1 6、 比較例 1 3〜 1 8〕
表 5に示す配合量に従って金属張積層板用樹脂ワニスを製造した。
実施例 1 1
温度計、 冷却管、 攪拌装置を備えた 3リ ッ トルの 4っロセパラブルフラスコに、 トルエン 3 9 0 gとポリフエ二レンエーテル樹脂 (P KN4 7 5 2、 日本 GE 製) 1 7 5 gを投入し、 9 0°Cに加熱し攪拌溶解した。 次に、 2 , 2 _ビス
(4—シアナトフェニル) プロパン (A r o c y B— 1 0、 チバガイギー製) 5 0 0 gと!)一 tert—プチルフヱノール (関東化学製) 3 2 gを投入し、 溶解確 認後に液温を 1 1 0°Cに保った後で反応促進剤としてナフテン酸亜鉛 (和光純薬 工業製) 0. 1 3 gを配合し、 約 4時間加熱反応させてポリフエ二レンエーテル 樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液を合成した。 次いで反応液を冷却し、 内温が 8 0°Cになったらメチルェチルケトン 6 0 8 gと 3, 3' , 5, 5' —テトラメチルビフエノールジグリシジルエーテル (テトラ メチルビフエニル型エポキシ樹脂、 YX- 4 0 0 0、 ジャパンエポキシレジン 製) 3 0 8 gと臭素化ポリスチレン (PDB S— 8 0、 グレートレイクス製) 20 7 gを攪拌しながら配合して溶解を確認した後、 室温まで冷却し、 硬化促進 剤としてナフテン酸亜鉛 0. 1 gを配合して不揮発分濃度約 5 5重量%の樹脂ヮ ニスを調製した。
実施例.1 2
温度計、 冷却管、 攪拌装置を備えた 3リッ トルの 4っロセパラブルフラスコに、 トルエン 3 5 0 gとポリフエ二レンエーテル樹脂 (PKN4 7 5 2、 日本 GE 製) l O O gを投入し、 9 0°Cに加熱し攪拌溶解した。 次に、 ビス (3, 5—ジ メチルー 4ーシアナトフェニル) メタン (A r o c y M— 1 0、 チバガイギー 製) 5 0 0 gと p— tert—ォクチルフエノール (和光純薬工業製) 4 7 gを投入 し、 溶解確認後に液温を 1 1 o°cに保った後で反応促進剤としてナフテン酸コパ ルト (和光純薬工業製) 0. 2 5 gを配合し、 約 4時間加熱反応させてポリフ 二レンエーテル樹脂と相容化したフエノール変性シァネートエステルオリゴマー 溶液を合成した。 次いで反応液を冷却し、 内温が 8 0°Cになったらメチルェチル ケトン 5 5 0 g及びビフェノ一ルジグリシジルエーテルと 3 , 3' , 5, 5' — テトラメチルビフエノールジグリシジルェ一テルとの混合ビフエ二ル型ェポキシ 樹脂 (Y L— 6 1 2 1 H、 ジャパンエポキシレジン製) 2 8 0 gと臭素化ポリ フエ-レンエーテル (PO— 6 4 P、 グレートレイクス製) 1 7 8 gを攪拌しな がら配合して溶解を確認した後、 室温まで冷却し、 硬化促進剤としてナフテン酸 亜鉛 (和光純薬工業製) 0. 1 gを配合して不揮発分濃度約 5 5重量%の樹脂ヮ ニスを調製した。
実施例 1 3
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 3 5 7 gとポリフエ二レンエーテル樹脂 (PKN 4 7 5 2、 日本 GE 製) 1 5 0 gを投入し、 9 0 °Cに加熱し攪拌溶解した。 次に、 2, 2—ビス
(4—シアナトフェニル) プロパン (A r o c y B_ 1 0、 チバガイギー製) 5 0 0 gと p— (α—タミル) フエノール (東京化成工業製) 1 5 gを投入し、 溶解確認後に液温を 1 1 o°cに保った後で反応促進剤としてナフテン酸マンガン
(和光純薬工業製) 0. 1 6 gを配合し、 約 4時間加熱反応させてポリフエニレ ンエーテル樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液 を合成した。 次いで反応液を冷却し、 内温が 8 0°Cになったらメチルェチルケト ン 5 8 7 gと 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシジルエー テル (YX— 4 0 0 0、 ジャパンエポキシレジン製) 2 7 3 gと臭素化トリフエ 二ルシアヌレート (ピロガード S R— 24 5、 第一工業製薬製) 1 7 2 gを攪拌 しながら配合して溶解を確認した後、 室温まで冷却した後に; _ ( a—タミル) フエノール 4 6 gと硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. 1 gを配合して不揮発分濃度約 5 5重量%の樹脂ワニスを調製した。
実施例 14
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 340 gとポリフエ二レンエーテル樹脂 (PKN4 75 2、 日本 GE 製) 1 8 0 gを投入し、 9 0°Cに加熱し攪拌溶解した。 次に、 α, ' 一ビス (4—シアナトフェニル) 一m—ジイソプロピルベンゼン (RTX- 3 6 6、 チ バガイギー製) 450 gと p— tert—ァミルフエノール (東京化成工業製) 4 g を投入し、 溶解確認後に液温を 1 1 0°Cに保った後で反応促進剤としてナフテン 酸鉄 (関東化学製) 0. 14 gを配合し、 約 4時間加熱反応させてポリフエニレ ンエーテル樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液 を合成した。 次いで反応液を冷却し、 内温が 80 °Cになったらメチルェチルケト ン 6 0 0 g とビフエニルァラルキレンノボラック型エポキシ樹脂 (NC— 3000 S—H、 3本化薬製) 3 30 gとビス (トリブロモフエノキシ) ェタン (FF— 6 80、 グレートレイクス製) 1 64 gを攪拌しながら配合して溶解を 確認した後、 室温まで冷却した後に p— tert—ォクチルフエノール (和光純薬ェ 業製) 23 gと硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. l gを 配合して不揮発分濃度約 5 5重量%の樹脂ワニスを調製した。
実施例 1 5
温度計、 冷却管、 攪拌装置を備えた 3 リッ トルの 4っロセパラブルフラスコに、 トルエン 3 6 0 gとポリフエ二レンエーテル樹脂 (PKN4 7 5 2、 日本 GE 製) 2 2 5 gを投入し、 9 0°Cに加熱し攪拌溶解した。 次に、 フエノールノポ ラック型シァネートエステル樹脂 (REX— 3 7 1、 チバガイギー製) 4 50 g と p— (α;—タミル) フエノール (東京化成工業製) 1 3 gを投入し、 溶解確認 後に液温を 1 1 0°Cに保った後で反応促進剤としてナフテン酸マンガン (和光純 薬工業製) 0. 1 5 gを配合し、 約 3時間加熱反応させてポリフエ二レンエーテ ル樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液を合成し た。 次いで反応液を冷却し、 内温が 8 0°Cになったらメチルェチルケトン 5 60 gと 3, 3' , 5, 5' —テトラメチルビフエノールジグリシジルエーテ ル (YX- 40 00、 ジャパンエポキシレジン製) 1 4 8 g、 クレゾ一ルノボ ラック エポキシ樹脂 (ESCN— 190— 3、 住友化学製) 90 g及びへキサ プロモシクロドデカン (CD— 75 P、 グレートレイクス製) 157 gを攪拌し ながら配合して溶解を確認した後、 室温まで冷却した後に p— tertーォクチル フエノール (和光純薬工業製) 45 gと硬化促進剤としてナフテン酸亜鉛 (和光 純薬工業製) 0. 1 gを配合して不揮発分濃度約 55重量%の樹脂ワニスを調製 した。
実施例 16
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 290 gとポリフエ二レンエーテル樹脂 (PKN4752、 日本 GE 製) 225 gを投入し、 90°Cに加熱し攪拌溶解した。 次に、 フエノールノボ ラック型シァネートエステル樹脂 (REX—371、 チバガイギー製) 450 g と p_ (ひ一タミル) フエノール (東京化成工業製) 13 gを投入し、 溶解確認 後に液温を 1 10°Cに保った後で反応促進剤としてナフテン酸マンガン (和光純 薬工業製) 0. 15 gを配合し、 約 4時間加熱反応させてポリフエ二レンエーテ ル樹脂と相容化したフエノール変性シァネートエステルオリゴマー溶液を合成し た。 次いで反応液を冷却し、 内温が 80°Cになったらメチルェチルケトン 623 gと 3, 3' , 5, 5' ーテトラメチルビフエノールジグリシジルエーテ ル (YX— 4000、 ジャパンエポキシレジン製) 160 gと臭素化ビスフエ ノール A型エポキシ樹脂 (E S B 400 T、 住友化学工業製) 230 gを攪拌し ながら配合して溶解を確認した後、 室温まで冷却した後に p— tert—ォクチル フエノール (和光純薬工業製) 45 gと硬化促進剤としてナフテン酸亜鉛 (和光 純薬工業製) 0. 1 gを配合して不揮発分濃度約 55重量%の樹脂ワニスを調製 した。
比較例 13
実施例 11において、 3, 3' , 5, 5' —テトラメチルビフエノールジグリ シジルエーテル (YX— 4000) を除き、 臭素化ポリスチレン (PDB S— 80、 グレートレイクス製) を表 5に示すような配合量に変更し、 かつ不揮発分 濃度約 55 %となるような配合量のメチルェチルケトンを配合したこと以外は実 施例 11と同様にして不揮発分濃度約 55%の樹脂ワニスを調製した。 比較例 14
実施例 1 1において、 3, 3' , 5, 5' ーテトラメチルビフエノールジグリ シジルエーテルの代わりに、 ビスフエノール A型エポキシ樹脂 (DER— 331 L、 ダウケミカル製) を表 5に示す配合量で配合し、 臭素化ポリスチレン (PDB S— 80、 グレートレイクス製) を表 5に示すような配合量に変更し、 かつ不揮発分濃度約 55 %となるような配合量のメチルェチルケトンを配合した こと以外は実施例 1 1と同様にして不揮発分濃度約 55%の樹脂ワニスを調製し た。
比較例 15
実施例 1 1において、 p— tert—プチルフエノールの代わりに p— tert—アミ ルフエノール (東京化成工業製) を、 3, 3' , 5, 5' ーテトラメチルビフエ ノ一ルジグリシジルエーテルの代わりにフエノールノボラック型エポキシ樹脂 (N_770、 大日本インキ化学工業製) をそれぞれ表 5に示す配合量で配合し、 臭素化ポリスチレン (PDB S_80、 グレートレイクス製) を表 5に示すよう な配合量に変更し、 かつ不揮発分濃度約 55 %となるような配合量のメチルェチ ルケトンを配合したこと以外は実施例 1 1と同様にして不揮発分濃度約 55 %の 樹脂ワニスを調製した。
比較例 16
実施例 1 2において、 p— tert—ォクチルフエノールの代わりに臭素化ビス フエノール A (TBA、 帝人化成製)、 ビフエノールジグリシジルエーテルと 3, 3' , 5, 5' —テトラメチルビフエノールジグリシジルエーテルとの混合 ビフエニル型エポキシ樹脂 (YL— 6 121H) の代わりにビスフエノール Aノ ポラック型エポキシ樹脂 (N—865、 大日本インキ化学工業製) を、 ナフテン 酸コバルト (和光純薬工業製) の代わりにナフテン酸亜鉛 (和光純薬工業製) を それぞれ表 5に示す配合量で配合し、 臭素化ポリフエ二レンエーテル (PO— 64 P) を除いて、 かつ不揮発分濃度約 55 %となるような配合量のメチルェチ ルケトンを配合したこと以外は実施例 12と同様にして不揮発分濃度約 55 %の 樹脂ワニスを調製した。
比較例 17 実施例 1 1において、 p—tert—ブチルフエノールの代わりに臭素化ビスフエ ノール A (TBA、 帝人化成製) を、 3, 3' , 5, 5; ーテトラメチルビフエ ノ一ルジグリシジルエーテルの代わりにフエノールサリチルアルデヒ ドノボラッ ク型エポキシ樹脂 (E P PN— 5 0 2H、 日本化薬製) をそれぞれ表 5に示す配 合量で配合し、 臭素化ポリスチレン (PDB S— 8 0、 グレートレイクス製) を 除いて、 かつ不揮発分濃度約 5 5 %となるような配合量のメチルェチルケトンを 配合したこと以外は実施例 1 1と同様にして不揮発分濃度約 5 5 %の樹脂ワニス を調製した。
比較例 1 8
比較例 1 6において、 臭素化ビスフエノール A (TBA) の代わりに p— (a 一タミル) フエノール (東京化成工業製) を、 ビスフエノール Aノボラック型ェ ポキシ樹脂 (N— 6 8 5) の代わりにジシクロペンタジェン骨格含有エポキシ樹 脂 (HP— 7 2 00、 大日本インキ化学工業製) と高分子量型臭素化エポキシ樹 脂 (5 2 0 3、 ジャパンエポキシレジン製) をそれぞれ表 5に示す配合量で配合 し、 かつ不揮発分濃度約 5 5 %となるような配合量のメチルェチルケトンを配合 したこと以外は比較例 1 6と同様にして不揮発分濃度約 5 5 %の樹脂ワニスを調 製した。
表 5
Figure imgf000054_0001
Figure imgf000055_0001
実施例 11〜 16及ぴ比較例 1.3〜 18で得られた樹脂ワニスを厚さ. 15膽のガラス布 (Eガラス) に含浸した後、 160でで4〜7分間加熱 乾燥して樹脂固形分 5 2重量%のプリプレダを得た。 次いで、 このプリプレダ 4枚を重ね、 その最外層に厚み 1 8 m の銅箔を配置し、 2 3 0 °C、 7 0分、 2 . 5 MP aのプレス条件で加熱加圧成形し両面銅張積層板を作製した。 得られ た銅張積層板について、 銅箔引きはがし強さ、 誘電特性、 はんだ耐熱性、 吸水率、 耐燃性、 曲げ特性、 熱膨張係数 (c 及び T g (ガラス転移温度) を評価した。 その評価結果を表 6に示す。
銅張積層板の特性評価方法は、 上記の通りである。 なお、 銅張積層板の耐燃性 は、 U L— 9 4垂直試験法に準拠して測定した。
表 6
Figure imgf000057_0001
表 6から明らかなように、 実施例 11〜16のワニスを用いて作製した積層板 は、 比較例 8〜12の積層板よりも室温 (25°C) における 1GHz での誘電特性
(特に誘電正接) に優れ、 さらに比較例 14〜18と比べて 90°Cにおける誘電 特性 (特に誘電正接) も良好であり、 温度変化に対する依存性が小さい。 また、 実施例の積層板は、 比較例 14〜18の積層板と比較して吸水率が低く、 かつ比 較例 13〜 18の積層板よりも吸湿時のはんだ耐熱性 (特に 288°C) が良好で ある。 さらに加えて、 実施例 1 1〜 16の積層板は、 比較例 13〜 18の積層板 よりも室温 (25°C) での破断強度と破断伸ぴ及ぴ高温 (200°C) での降伏点 伸びが高い。 また、 これら実施例 11〜16の積層板における優れた特性は、 良 好な耐燃性 (V— 0) を確保した上で達成されている。
〔実施例 17〜 21、 比較例 19〜 24〕
表 7に示す配合量に従って金属張積層板用樹脂ワニスを製造した。
実施例 17
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 300 gとポリフエ二レンエーテル樹脂 (PKN4752、 日本 GE 製) 1 75 gを投入し、 90°Cに加熱し攪拌溶解した。 次に、 2, 2—ビス (4ーシアナトフェニル) プロパン (Ar o c y B— 10、 チバガイギー製)
500 gと p—tert—ブチルフエノール (関東化学製) 32 gを投入し、 溶解確 認後に液温を 110°Cに保った後で反応促進剤としてナフテン酸亜鉛 (和光純薬 工業製) 0. 13 gを配合し、 約 3時間加熱反応させてポリフエ二レンエーテル 樹脂と相容化したフエノール変性シァネートエステル樹脂含有溶液を合成した。 次いで反応液を冷却し、 内温が 80°Cになったらメチルェチルケトン 530 gと
3, 3' , 5, 5' —テトラメチルビフエノールジグリシジルエーテル (テトラ メチルビフエニル型エポキシ樹脂、 YX— 4000、 ジャパンエポキシレジン 製) 308 gを攪拌しながら配合して溶解を確認した後、 室温まで冷却した後に 酸化防止剤として 2, 6—ジー tert—ブチルー 4—メチルフエノール (TBM
P) 3. 0 g、 硬化促進剤としてナフテン酸亜鉛 0. l gを配合して不揮発分濃 度約 55重量%の樹脂ワニスを調製した。
実施例 18 温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 275 gとポリフエ二レンエーテル樹脂 (PKN475 2、 日本 GE 製) 100 gを投入し、 90°Cに加熱し攪拌溶解した。 次に、 ビス (3, 5—ジ メチル一4—シアナトフェニル) メタン (Ar o c y M— 10、 チバガイギー 製) 500 gと p— tert—ォクチルフエノール (和光純薬工業製) 47 gを投入 し、 溶解確認後に液温を 1 10°Cに保った後で反応促進剤としてナフテン酸コパ ルト (和光純薬工業製) 0. 25 gを配合し、 約 3時間加熱反応させてポリフエ 二レンエーテル樹脂と相容化したフエノール変性シァネートエステル樹脂含有溶 液を合成した。 次いで反応液を冷却し、 内温が 80°Cになったらメチルェチルケ トン 482 g及ぴビフエノールジグリシジルエーテルと 3, 3' , 5, 5' —テ トラメチルビフエノールジグリシジルエーテルとの混合ビフェ二ル型ェポキシ樹 脂 (YL— 6 1 21H、 ジャパンエポキシレジン製) 280 gを攪拌しながら配 合して溶解を確認した後、 室温まで冷却した後に酸化防止剤として 2, 2' ーメ チレン一ビス一 (4—メチルー 6— tert—プチルフエノール) (MBMTB P) 2. 8 g、 硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. l gを配合 して不揮発分濃度約 55重量%の樹脂ワニスを調製した。
実施例 19
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 285 gとポリフエ二レンエーテル樹脂 (PKN475 2、 日本 GE 製) 1 5 0 gを投入し、 90°Cに加熱し攪拌溶解した。 次に、 2, 2—ビス (4—シアナトフェニル) プロパン (Ar o c y B— 10、 チバガイギー製) 500 §と1>ー (ひ一タミル) フ ノール (東京化成工業製) 15 gを投入し、 溶解確認後に液温を 1 10°Cに保った後で反応促進剤としてナフテン酸マンガン (和光純薬工業製) 0. 16 gを配合し、 約 3時間加熱反応させてポリフエニレ ンエーテル樹脂と相容化したフエノール変性シァネートエステル樹脂含有溶液を 合成した。 次いで反応液を冷却し、 内温が 80 °Cになったらメチルェチルケトン 522 gと 3, 3' , 5, 57 —テトラメチルビフエノールジグリシジルエーテ ル (YX—4000、 ジャパンエポキシレジン製) 273 gを攪拌しながら配合 して溶解を確認した後、 室温まで冷却した後に p— ( a—タミル) フエノール 46 g, 酸化防止剤として4, ' —ブチリデンビス (3—メチルー 6— tert— ブチルフエノール) (BBMTB P) 3. 0 g、 硬化促進剤としてナフテン酸亜 鉛 (和光純薬工業製) 0. 1 gを配合して不揮発分濃度約 5 5重量%の樹脂ヮニ スを調製した。
実施例 20
温度計、 冷却管、 攪拌装置を備えた 3リ ッ トルの 4っロセパラブルフラスコに、 トルエン 2 70 gとポリフエ二レンエーテル樹脂 (PK 4 75 2、 日本 GE 製) 1 8 0 gを投入し、 9 0°Cに加熱し攪拌溶解した。 次に、 ひ, a' 一ビス (4—シアナトフェニノレ) 一 m—ジイソプロピルベンゼン (RTX— 36 6、 チ バガイギー製) 450 gと p— tert—ァミルフエノール (東京化成工業製) 4 g を投入し、 溶解確認後に液温を 1 1 0°Cに保った後で反応促進剤としてナフテン 酸鉄 (関東化学製) 0. 1 4 gを配合し、 約 3時間加熱反応させてポリフユニレ ンエーテル樹脂と相容化したフヱノール変性シァネートエステル樹脂含有溶液を 合成した。 次いで反応液を冷却し、 内温が 8 0°Cになったらメチルェチルケトン
5 4 0 g とビフエニルァラルキレンノポラック型エポキシ樹脂 (N C— 3000 S— H、 日本化薬製) 3 30 gを攪拌しながら配合して溶解を確認した 後、 室温まで冷却した後に: — tert—ォクチルフェノール (和光純薬工業製) 2 3 g、 酸化防止剤として 4, 4' —ブチリデンビス (3—メチルー 6—tert— ブチルフエノール) (BBMTB P) 3. 0 g、 硬化促進剤としてナフテン酸亜 鉛 (和光純薬工業製) 0. 1 gを配合して不揮発分濃度約 5 5重量%の樹脂ヮ- スを調製した。 .
実施例 2 1
温度計、 冷却管、 攪拌装置を備えた 3リットルの 4っロセパラブルフラスコに、 トルエン 2 9 0 gとポリフエ二レンエーテル樹脂 (PKN4 7 5 2、 日本 GE 製) 2 2 5 gを投入し、 9 0°Cに加熱し攪拌溶解した。 次に、 フエノールノボ ラック型シァネートエステル樹脂 (REX— 3 7 1、 チバガイギー製) 4 5 0 g と p— (a—タミル) フエノール (東京化成工業製) 1 3 gを投入し、 溶解確認 後に液温を 1 1 0。Cに保った後で反応促進剤としてナフテン酸マンガン (和光純 薬工業製) 0. 1 5 gを配合し、 約 2時間加熱反応させてポリフエ二レンエーテ ル樹脂と相容化したフヱノール変性シァネートエステル樹脂含有溶液を合成した。 次いで反応液を冷却し、 内温が 80°Cになったらメチルェチルケトン 500 gと 3, 3' , 5, 5' —テトラメチルビフエノールジグリシジルエーテル (YX— 4000、 ジャパンエポキシレジン製) 148 gとクレゾ一ルノボラック型ェポ キシ樹脂 (ESCN— 190— 3、 住友化学製) 90 gを攪拌しながら配合して 溶解を確認した後、 室温まで冷却した後に p— tert—ォクチルフエノール (和光 純薬工業製) 4 5 g、 酸化防止剤としてジラウリルチオジプロピオネート 2. 7 g、 硬化促進剤としてナフテン酸亜鉛 (和光純薬工業製) 0. l gを配合 して不揮発分濃度約 55重量%の樹脂ワニスを調製した。
比較例 19
実施例 1 7において、 3, 3' , 5, 5' —テトラメチルビフエノールジグリ シジルエーテル (YX- 4000) 及ぴ 2, 6—ジ一tert—プチル一 4_メチル フエノール (TBMP) を除き、 かつ不揮発分濃度約 55%となるような配合量 のメチルェチルケトンを配合したこと以外は実施例 1 7と同様にして不揮発分濃 度約 55%の樹脂ワニスを調製した。
比較例 20
実施例 1 7において、 2, 6—ジ _tert—ブチル一 4_メチルフエノーノレ (T BMP) を除き、 また、 3, 3' , 5, 5' —テトラメチルビフエノールジグリ シジルエーテルの代わりにビスフエノール A型エポキシ樹脂 (DER— 331 L、 ダウケミカル製) を表 3に示す配合量で配合し、 かつ不揮発分濃度約 55 %とな るような配合量のメチルェチルケトンを配合したこと以外は実施例 17と同様に して不揮発分濃度約 5 · 5 %の樹脂ワニスを調製した。
比較例 21
実施例 17において、 2, 6—ジ _tert—ブチル一4—メチルフエノール (T BMP) を除き、 また、 p— tert—ブチルフエノールの代わりに p— tert—アミ ルフエノール (東京化成工業製) を、 3, 3' , 5, 5' —テトラメチルビフエ ノ一ルジグリシジルエーテルの代わりにフエノールノボラック型エポキシ樹脂 (N_770、 大日本インキ化学工業製) をそれぞれ表 7に示す配合量で配合し、 かつ不揮発分濃度約 55 %となるような配合量のメチルェチルケトンを配合した こと以外は実施例 1 7と同様にして不揮発分濃度約 55%の樹脂ワニスを調製し た。
比較例 22
実施例 18において、 2, 2' ーメチレン一ビス一 (4—メチル一 6— tert— プチルフエノール) (MBMTB P) を除き、 ビフエノールジグリシジルエーテ ルと 3, 3' , 5, 5' ーテトラメチノレビフエノールジグリシジルエーテルとの 混合ビフエ二ル型エポキシ樹脂 (YL— 6121H) の代わりにビスフエノール Aノポラック型エポキシ樹脂 (N_865、 大日本インキ化学工業製) を、 ナフ テン酸コバルト (和光純薬工業製) の代わりにナフテン酸亜鉛 (和光純薬工業 製) をそれぞれ表 7に示す配合量で配合し、 不揮発分濃度約 55 %となるような 配合量のメチルェチルケトンを配合したこと以外は実施例 18と同様にして不揮 発分濃度約 55%の樹脂ワニスを調製した。
比較例 23
実施例 17において、 2, 6—ジ一 tert—ブチル一 4—メチルフエノール (T BMP) を除き、 p—tert—ブチルフエノールの代わりに p—tert—ォクチル フエノール (和光純薬工業製) を、 3, 3' , 5, 5' ーテトラメチルビフエ ノ一ルジグリシジルエーテルの代わりにフエノールサリチルアルデヒ ドノボラッ ク型エポキシ樹脂 (EPPN— 502H、 日本化薬製) をそれぞれ表 7に示す配 合量で配合し、 かつ不揮発分濃度約 55 %となるような配合量のメチルェチルケ トンを配合したこと以外は実施例 17と同様にして不揮発分濃度約 55%の樹脂 ワニスを調製した。
比較例 24
比較例 21において、 p— tert—ォクチノレフエノーノレの代わりに: — (α—ク ミル) フエノール (東京化成工業製) を、 ビスフエノール Αノポラック型ェポキ シ榭脂 (N— 685) の代わりにジシクロペンタジェン骨格含有エポキシ樹脂 (HP— 7200、 大日本ィンキ化学工業製) をそれぞれ表 7に示す配合量で配 合し、 不揮発分濃度約 55 %となるような配合量のメチルェチルケトンを配合し たこと以外は比較例 21と同様にして不揮発分濃度約 55%の樹脂ワニスを調製 した。
Figure imgf000063_0001
実施例 1 7〜 2 1及び比較例 1 9〜 24で得られた樹脂ワニスを厚さ . 15mmのガラス布 (Eガラス) に含浸した後、 160 °Cで4〜 7分間加熱 乾燥して樹脂固形分 52重量%のプリプレダを得た。 次いで、 このプリプレダ 4枚を重ね、 その最外層に厚み 1 8 /zm の銅箔を配置し、 230°C、 70分、 2. 5 MP aのプレス条件で加熱カ卩圧成形し両面銅張積層板を作製した。 得られ た銅張積層板について、 銅箔引きはがし強さ、 誘電特性、 はんだ耐熱性、 吸水率、 耐電食性、 曲げ特性、 熱膨張係数 (α) 及び Tg (ガラス転移温度) を評価した。 その評価結果を表 8に示す。
銅張積層板の特性評価方法は上記の通りである。
銅張積層板の耐電食性は、 銅張積層板に直径 0. 4mm のドリルを用いて穴壁 間隔が 350 μ m のスルーホールをあけ (ドリル条件;回転数 80, 000 rpm、 送り速度 2, 400mm/min)、 その後常法に従いスルーホールめつきを施したテ ストパターン配線板を作製した。 その各試験片について、 85°C/85%RH雰 囲気中 100V印加での導通破壊が発生するまでの時間を測定した。
表 8
Figure imgf000065_0001
表 8から明らかなように、 実施例 1 7〜2 1のワニスを用いて作製した積層板 は、 比較例 2 0〜 2 3の積層板よりも室温 ( 2 5 °C) における 1 GHz での誘電特 性 (特に誘電正接) に優れ、 さらに比較例 2 0〜 2 4と比べて 9 0 °Cにおける誘 電特性 (特に誘電正接) も良好であり、 温度変化に対する依存性が小さい。 また、 実施例の積層板は、 比較例 2 0〜2 4の積層板と比較して吸水率が低く、 かつ比 較例 1 9〜 2 4の積層板よりも吸湿時のはんだ耐熱性 (特に 2 8 8 °C) が良好で ある。 さらに加えて、 実施例 1 7〜 2 1の積層板は、 比較例 1 9〜 2 4の積層板 よりも室温 (2 5 °C) での破断強度と破断伸ぴ及ぴ高温 (2 0 0 °C) での降伏点 伸びが高い。 また、 実施例 1· 7〜 2 1の積層板は、 比較例の積層板に比べて耐電 食性が良好である。 発明の効果
本発明の第一の発明によれば、 本発明の印刷配線板用樹脂組成物を用いた硬化 物は、 高周波数帯域での誘電特性に優れ、 しかも誘電特性の温度変化によるドリ フト性も小さいことも分かった。 また、 ガラス状領域での曲げ強度と伸ぴ及ぴ高 温領域における伸びが高い。 さらに、 本印刷配線板用樹脂組成物を用いて作製し た金属張積層板は、 プレッシャークッカーテスターを用いた厳しい条件下での耐 湿耐熱性に優れている。 したがって、 1 GHz 以上の高周波信号を扱う各種電気 · 電子機器に用いる印刷配線板用の部材 ·部品用途として期待される。 特に、 本発 明の樹脂組成物の特徴である優れた高周波特性と曲げ特性及び高い耐湿耐熱性は、 厳しい条件下での耐熱性ゃ耐クラック性が要求される高速サーバー、 ルータ一及 ぴ基地局装置等の高多層印刷配線板に使用される積層板及びプリプレダ用途とし て有効である。
本発明の第二の発明によれば、 本発明の印刷配線板用樹脂組成物を用レ、た硬化 物は、 高周波数帯域での誘電特性に優れ、 しかも誘電特性の温度変化によるドリ フト性も小さいことも分かった。 また、 ガラス状領域での曲げ強度と伸び及ぴ高 温領域における伸びが高い。 さらに、 本印刷配線板用樹脂組成物を用いて作製し た金属張積層板は低吸湿性であり、 プレッシャータッカーテスターを用いた厳し い条件下での耐湿耐熱性に優れ、 かつ T gが高い。 さらに、 難燃剤を含有する本 発明の印刷配線板用樹脂組成物は、 これらの優れた特性と併せて、 良好な難燃性 が得られる。 また、 酸化防止剤を含む本発明の印刷配線板用樹脂組成物は、 これ らの優れた特性と併せて、 良好な耐電食性が得られる。 したがって、 1 GHz 以上 の高周波信号を扱う各種電気 ·電子機器に用いる印刷配線板用の部材 ·部品用途 として期待される。 特に、 本発明の樹脂組成物の特徴である優れた高周波特性と 曲げ特性及び高い耐湿耐熱性は、 厳しい条件下での耐熱性ゃ耐クラック性が要求 される高速サーバー、 ルーター及び基地局装置等の'高多層印刷配線板に使用され る積層板及ぴプリプレダ用途として有効である。

Claims

請 求 の 範 囲
1 . 分子中にシアナト基を 2つ以上有するシァネートエステル化合物及ぴノ又 はこれらのプレボリマと、
分子中にビフ ニル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂と
を含むことを特徴とする印刷配線板用樹脂組成物。
2 . 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物及 ぴ Z又はこれらのプレポリマ 1 0 0重 部に対して、 前記の分子中にビフエニル 骨格を有するエポキシ樹脂を少なくとも 1種含有するエポキシ樹脂が 1 0〜 2 5 0重量部である、 請求の範囲第 1項記載の印刷配線板用樹脂組成物。
3 . さらに、 ポリフエ二レンエーテル樹脂を含む、 請求の範囲第 1項又は第 2項記載の印刷配線板用樹脂組成物。
4 . 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物及 ぴ Z又はこれらのプレポリマが、 式 (I ) :
式 ( I )
Figure imgf000068_0001
式中、 は、
Figure imgf000068_0002
を示し、 R2及ぴ は、 水素原子又は炭素数 1〜4のアルキル基を示し、 それぞれ同じであっても、 異なってもよい、
で示されるシァネートエステル化合物、 及ぴ式 (II) : 式 (H )
Figure imgf000069_0001
式中、 R4は、 水素原子又は炭素数 1〜4のアルキル基を示し、 mは、
1〜 7の整数を示す、
で示されるシァネートエステル化合物、 並びにこれらのプレポリマからなる群よ り選択される 1種以上である、 請求の範囲第 1項〜第 3項のいずれか 1項記載の 印刷配線板用樹脂組成物。
5 . 前記の分子中にビフエニル骨格を有するエポキシ樹脂を少なくとも 1種含 有するェポキシ樹脂における、 分子中にビフェニル骨格を有するェポキシ榭脂が、 式 (III) :
Figure imgf000069_0002
式 (M) 式中、 R5は、 水素原子又はメチル基を示し、 nは、 0〜 6の整数を示す、 で示されるエポキシ樹脂、 及び式 (IV) :
式 (IV)
Figure imgf000069_0003
式中、 pは、 1〜5の整数を示す、
で示されるエポキシ樹脂からなる群より選択される 1種以上である、 請求の範囲 第 1項〜第 4項のいずれか 1項記載の印刷配線板用樹脂組成物。
6 . 難燃剤として、 さらに、 1, 2—ジブロモ一 4一 (1 , 2—ジブ口モェチ ル) シク口へキサン、 テトラブロモシク口才クタン、 へキサブ口モシクロドデカ ン、 ビス (トリブロモフエノキシ) ェタン、 式 (VII) : 式 (
' w)
Br. -Br 式中、 s、 t、 uは 1〜5の整数を表し、 それぞれ同じ値であっても異 なってもよい、
で示される臭素化トリフエ二ルシアヌレート、 臭素化ポリフエ二レンエーテル及 ぴ臭素化ポリスチレンからなる群より選択される 1種以上を含む、 請求の範囲第
1項〜第 5項のいずれか 1項記載の印刷配線板用樹脂組成物。
7 . さらに、 酸化防止剤を含む、 請求の範囲第 1項〜第 6項のいずれか 1項記 載の印刷配線板用樹脂組成物。
8 . 分子中にシアナト基を 2つ以上有するシァネートエステル化合物及び/又 はこれらのプレボリマと、
分子中にビフエニル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂と、
一価フユノール化合物と
を含むことを特徴とする印刷配線板用樹脂組成物。
9 . 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物及 ぴ Z又はこれらのプレポリマ 1 0 0重量部に対して、 前記の分子中にビフエ二ル 骨格を有するエポキシ榭脂を少なくとも 1種含有するエポキシ樹脂が 1 0〜 2 5 0重量部であり、 そして前記一価フエノール化合物が 2〜6 0重量部である、 請求の範囲第 8項記載の印刷配線板用樹脂組成物。
1 0 . さらに、 ポリフエ二レンエーテル樹脂を含む、 請求の範囲第 8項又は第 9項記載の印刷配線板用樹脂組成物。
1 1 . 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物 及び/又はこれらのプレボリマが、 式 (I ) : 式 (I
Figure imgf000071_0001
式中、 は、
-CHa—
Figure imgf000071_0002
を示し、 R2及び R3は、 水素原子又は炭素数 1〜4のアルキル基を示し、 それぞれ同じであっても、 異なってもよい、
で示されるシァネートエステル化合物、 及び式 (II) :
式 ( Π )
Figure imgf000071_0003
式中、 R4は、 水素原子又は炭素数 1 〜 4のアルキル基を示し、 mは、
1〜 7の整数を示す、
で示されるシァネートエステル化合物、 並びにこれらのプレボリマからなる群よ り選択される 1種以上である、 請求の範囲第 8項〜第 1 0項記載の印刷配線板用 樹脂組成物。
1 2 . 前記の分子中にビフ ニル骨格を有するエポキシ樹脂を少なくとも 1種 含有するェポキシ樹脂における、 分子中にビフエ二ル骨格を有するェポキシ樹脂 が、 式 (III) :
Figure imgf000071_0004
式 (m) 式中、 Rsは、 水素原子又はメチル基を示し、 nは、 0〜 6の整数を示す、 で示されるエポキシ樹脂、 及び式 (IV)
式 (IV)
Figure imgf000072_0001
式中、 pは、 1〜5の整数を示す、
で示されるエポキシ樹脂からなる群より選択される 1種以上である、 請求の範囲 第 8項〜第 1 1項のいずれか 1項記載の印刷配線板用樹脂糸且成物。
1 3 . 難燃剤として、 さらに、 1 , 2—ジブロモ一 4— ( 1, 2—ジブロモェ チル) シク口へキサン、 テトラブロモシクロオクタン、 へキサブ口モシクロ ドデ カン、 ビス (トリブロモフエノキシ) ェタン、 式 (VII) :
式 (W)
Figure imgf000072_0002
式中、 s、 t、 uは 1〜5の整数を表し、 それぞれ同じ値であっても異 なってもよい、
で示される臭素化トリフエ二ルシアヌレート、 臭素化ポリフエ二レンエーテル及 ぴ臭素化ポリスチレンからなる群より選択される 1種以上を含む、 請求の範囲第
8項〜第 1 2項のいずれか 1項記載の印刷配線板用樹脂組成物。
1 4 . さらに、 酸化防止剤を含む、 請求の範囲第 8項〜第 1 3項のいずれか 1項記載の印刷配線板用樹脂組成物。
1 5 . 分子中にシアナト基を 2つ以上有するシァネートエステル化合物及び Z 又はこれらのプレポリマと一価フエノール化合物とを反応させて得られるフエ ノール変性シァネートエステルオリゴマー、 並びに
分子中にビフユニル骨格を有するェポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂 を含むことを特徴とする印刷配線板用樹脂組成物。
16. フエノール変性シァネートエステルオリゴマーが、 (A) 成分 100重 量部と、 (C) 成分 2〜60重量部を反応させて得られるフユノール変性シァ ネートエステルオリゴマーであり、 (B) 成分が 10〜250重量部である、 請 求の範囲第 15項記載の印刷配線板用樹脂組成物。
17. さらに、 ポリフエ二レンエーテル樹脂を含む、 請求の範囲第 15項又は 第 16項記載の印刷配線板用樹脂組成物。
18. 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物 及ぴ Z又はこれらのプレボリマが、 式 (I) :
式 (I)
Figure imgf000073_0001
式中、 R,は、
Figure imgf000073_0002
を示し、 R2及ぴ13は、 水素原子又は炭素数 1〜4のアルキル基を示し、 それぞれ同じであっても、 異なってもよい、
で示されるシァネートエステル化合物、 及ぴ式 (Π) :
式 (E)
Figure imgf000073_0003
式中、 R4は、 水素原子又は炭素数 1〜4のアルキル基を示し、 mは、
1〜 7の整数を示す、
で示されるシァネートエステル化合物、 並びにこれらのプレポリマからなる群よ り選択される 1種以上である、 請求の範囲第 15項〜第 17項のいずれか 1項記 載の印刷配線板用樹脂組成物。
1 9 . 前記の分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくとも 1種 含有するェポキシ樹脂における、 分子中にビフエ二ル骨格を有するェポキシ樹脂 が、 式 (III) :
Figure imgf000074_0001
式 (Π) 式中、 R5は、 水素原子又はメチル基を示し、 nは、 0〜6の整数を示す、 で示されるエポキシ樹脂、 及ぴ式 (IV) :
式 (IV)
Figure imgf000074_0002
式中、 pは、 1〜5の整数を示す、
で示されるエポキシ樹脂からなる群より選択される 1種以上である、 請求の範囲 第 1 5項〜第 1 8項のいずれか 1項記載の印刷配線板用樹脂組成物。
2 0 . 難燃剤として、 さらに、 1 , 2—ジブロモ一 4一 (1, 2—ジブロモェ チル) シク口へキサン、 テトラブロモシクロォクタン、 へキサブ口モシク口ドデ カン、 ビス (トリブロモフエノキシ) ェタン、 式 (VII) :
式 (M)
Figure imgf000074_0003
式中、 s、 t、 uは 1〜5の整数を表し、 それぞれ同じ値であっても異 なってもよい、
で示される臭素化トリフエ二ルシアヌレート、 臭素化ポリフエ二レンエーテル及 ぴ臭素化ポリスチレンからなる群より選択される 1種以上を含む、 請求の範囲第 1 5項〜第 1 9項のいずれか 1項記載の印刷配線板用樹脂組成物。
2 1 . さらに、 酸化防止剤を含む、 請求の範囲第 1 5項〜第 2 0項のいずれか 1項記載の印刷配線板用樹脂組成物。
2 2 . 分子中にシアナト基を 2つ以上有するシァネートエステル化合物及び Z 又はこれらのプレボリマと一価フエノール化合物とを反応させて得られるフエ ノール変性シァネートエステルオリゴマー、 並びに
分子中にビフエニル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂を含み、 かつ
一価フエノール化合物
を含むことを特徴とする印刷配線板用樹脂組成物。
2 3 . フエノール変性シァネートエステルオリゴマーが、 前記の分子中にシァ ナト基を 2つ以上有するシァネートエステル化合物及び/又はこれらのプレポリ マ 1 0 0重量部と、 前記一価フエノール化合物 0 . 4重量部以上、 かつ 6 0重量 部未満とを反応させて得られるフエノール変性シァネートエステルオリゴマーで あり、 前記の分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくとも 1種含 有するエポキシ樹脂が 1 0〜 2 5 0重量部であり、 追加で前記一価フエノ一ルイ匕 合物を、 該フエノール変性シァネートエステルオリゴマーの生成に用いられる前 記ー価フェノール化合物との合計が 2〜 6 0重量部となる量で含む、 請求の範囲 第 2 2項記載の印刷配線板用樹脂組成物。
2 4 . さらに、 ポリフエ二レンエーテル樹脂を含む、 請求の範囲第 2 2項又は 第 2 3項記載の印刷配線板用樹脂組成物。
2 5 . 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物 及び/又はこれらのプレボリマが、 式 (I ) :
式 (I )
Figure imgf000075_0001
式中、 は、 -CHg-
Figure imgf000076_0001
を示し、 R2及ぴ R3は、 水素原子又は炭素数 1〜4のアルキル基を示し、 それぞれ同じであっても、 異なってもよい、
で示されるシァネートエステル化合物、 及ぴ式 (Π) :
式 ( Π )
Figure imgf000076_0002
式中、 R4は、 水素原子又は炭素数 1〜4のアルキル基を示し、 mは、
1〜 7の整数を示す、
で示されるシァネートエステル化合物、 並びにこれらのプレポリマからなる群よ り選択される 1種以上である、 請求の範囲第 2 2〜第 2 4項記載の印刷配線板用 樹脂組成物。
2 6 . 前記の分子中にビフエニル骨格を有するエポキシ樹脂を少なくとも 1種 含有するェポキシ樹脂における、 分子中にビフヱニル骨格を有するェポキシ樹脂 が、 式 (III) :
Figure imgf000076_0003
式 (no 式中、 R5は、 水素原子又はメチル基を示し、 nは、 0〜6の整数を示す、 で示されるエポキシ樹脂、 及び式 (IV) :
CH2— CHCH2-0 0-CH2CH-CH2
O O
式 (IV) 式中、 pは、 1〜5の整数を示す、
で示されるエポキシ樹脂からなる群より選択される 1種以上である、 請求の範囲 第 2 2〜第 2 5項のいずれか 1項記載の印刷配線板用樹脂組成物。
2 7 . 難燃剤として、 さらに、 1, 2—ジブ口モー 4一 ( 1 , 2—ジブロモェ チル) シクロへキサン、 テトラブロモシクロオクタン、 へキサブ口モシクロ ドデ カン、 ビス (トリプロモフエノキシ) ェタン、 式 (VII) :
式 (W)
Figure imgf000077_0001
式中、 s、 t、 uは 1〜5の整数を表し、 それぞれ同じ値であっても異 なってもよい、
で示される臭素化トリフエ二ルシアヌレート、 臭素化ポリフエ二レンエーテル及 ぴ臭素化ポリスチレンからなる群より選択される 1種以上を含む、 請求の範囲第
2 2項〜第 2 6項のいずれか 1項記載の印刷配線板用樹脂組成物。
2 8 . さらに、 酸化防止剤を含む、 請求の範囲第 2 2項〜第 2 7項のいずれか 1項記載の印刷配線板用樹脂組成物。
2 9 . 分子中にシアナト基を 2つ以上有するシァネートエステル化合物及ぴ Z 又はこれらのプレボリマ、 分子中にビフエ二ル骨格を有するェポキシ樹脂を少な くとも 1種含有するエポキシ樹脂、 及ぴー価フエノール化合物を反応させて得ら れるエポキシ/フエノール変性シァネートエステルオリゴマー
を含むことを特徴とする印刷配線板用樹脂組成物。
3 0 . エポキシ/フエノール変性シァネートエステルオリゴマーが、 前記の分 子中にシアナト基を 2つ以上有するシァネートエステル化合物及び Z又はこれら のプレボリマ 1 0 0重量部、 前記の分子中にビフエニル骨格を有するエポキシ樹 脂を少なくとも 1種含有するエポキシ樹脂 1 0〜2 5 0重量部、 及び前記一価 フエノール化合物 2〜 6 0重量部を反応させて得られるエポキシ Zフヱノール変 性シァネートエステルオリゴマーである、 請求の範囲第 2 9項記載の印刷配線板 用樹脂組成物。
3 1 . さらに、 ポリフエ二レンエーテル樹脂を含む、 請求の範囲第 2 9項又は 第 3 0項記載の印刷配線板用樹脂組成物。
3 2 . 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物 及び Z又はこれらのプレボリマが、 式 (I ) :
式 (I )
Figure imgf000078_0001
式中、 は、
Figure imgf000078_0002
を示し、 R2及び R3は、 水素原子又は炭素数 1〜4のアルキル基を示し、 それぞれ同じであっても、 異なってもよい、
で示されるシァネートエステル化合物、 及び式 (II) :
式 ( Π )
Figure imgf000078_0003
式中、 R4は、 水素原子又は炭素数 1〜4のアルキル基を示し、 mは、
1〜7の整数を示す、
で示されるシァネートエステル化合物、 並びにこれらのプレボリマからなる群よ り選択される 1種以上である、 請求の範囲第 2 9項〜第 3 1項のいずれか 1項記 載の印刷配線板用樹脂組成物。
3 3 . 前記の分子中にビフエ二ル骨格を有するエポキシ樹脂を少なくとも 1種 含有するエポキシ樹脂における、 分子中にビフ ニル骨格を有するエポキシ樹脂 が、 式 (III) :
Figure imgf000079_0001
式 (m) 式中、 R5は、 水素原子又はメチル基を示し、 nは、 0〜 6の整数を示す、 で示されるエポキシ樹脂、 及ぴ式 (IV) :
式 (IV)
Figure imgf000079_0002
式中、 pは、 1〜5の整数を示す、
で示されるエポキシ樹脂からなる群より選択される 1種以上である、 請求の範囲 第 2 9項〜第 3 2項のいずれか 1項記載の印刷配線板用樹脂組成物。
3 4 . 難燃剤として、 さらに、 1, 2—ジブロモ一 4— ( 1 , 2—ジブロモェ チル) シク口へキサン、 テトラブロモシクロオクタン、 へキサブ口モシクロ ドデ カン、 ビス (トリブロモフエノキシ) ェタン、 式 (VII) :
式 (W)
Br-
Figure imgf000079_0003
u 式中、 s、 t、 uは 1〜5の整数を表し、 それぞれ同じ値であっても異 なってもよい、
で示される臭素化トリフエ二ルシアヌレート、 臭素化ポリフエ二レンエーテル及 び臭素化ポリスチレンからなる群より選択される 1種以上を含む、 請求の範囲第
2 9項〜第 3 3項のいずれか 1項記載の印刷配線板用樹脂組成物。
3 5 . さらに、 酸化防止剤を含む、 請求の範囲第 2 9項〜第 3 4項のいずれか 1項記載の印刷配線板用樹脂組成物。
3 6 . 分子中にシアナト基を 2つ以上有するシァネートエステル化合物及ぴ/ 又はこれらのプレボリマ、 分子中にビフエニル骨格を有するェポキシ樹脂を少な くとも 1種含有するエポキシ樹脂、 及ぴー価フエノール化合物を反応させて得ら れるエポキシ Zフエノール変性シァネートエステルオリゴマーと、
—価フエノール化合物と
を含むことを特徴とする印刷配線板用樹脂組成物。 ,
3 7 . エポキシ ^ /フエノール変性シァネートエステルオリゴマーが、 前記の分 子中にシアナト基を 2つ以上有するシァネートエステル化合物及び Z又はこれら のプレポリマ 1 0 0重量部、 前記の分子中にビフエ二ル骨格を有するエポキシ樹 脂を少なくとも 1種含有するエポキシ樹脂 1 0〜2 5 0重量部、 及び前記一価 フエノール化合物 0 . 4重量部以上、 かつ 6 0重量部未満を反応させて得られる エポキシ Zフエノール変性シァネートエステルオリゴマーであり、 追加で前記一 価フエノール化合物を、 該ェポキシ /フエノール変性シァネートエステルオリゴ マーの生成に用いられる前記ー価フェノール化合物との合計が 2〜 6 0重量部と なる量で含む、 請求の範囲第 3 6項記載の印刷配線板用樹脂組成物。
3 8 . さらに、 ポリフエ二レンエーテル樹脂を含む、 請求の範囲第 3 6項又は 第 3 7項記載の印刷配線板用樹脂組成物。
3 9 . 前記の分子中にシアナト基を 2つ以上有するシァネートエステル化合物 及び/又はこれらのプレボリマが、 式 (I ) :
式 (I )
Figure imgf000080_0001
式中、 は、
Figure imgf000080_0002
を示し、 R2及ぴ R3は、 水素原子又は炭素数 1〜4のアルキル基を示し、 それぞれ同じであっても、 異なってもよい、
で示されるシァネートエステル化合物、 及ぴ式 (II)
式 ( Π )
Figure imgf000081_0001
式中、 R4は、 水素原子又は炭素数 1〜4のアルキル基を示し、 mは、
1〜 7の整数を示す、
で示されるシァネートエステル化合物、 並びにこれらのプレボリマからなる群よ り選択される 1種以上である、 請求の範囲第 3 6項〜第 3 8項のいずれか 1項記 載の印刷配線板用樹脂組成物。
4 0 . 前記の分子中にビフ 二ル骨格を有するエポキシ樹脂を少なくとも 1種 含有するエポキシ樹脂における、 分子中にビフ ニル骨格を有するエポキシ樹脂 が、 式 (III) :
Figure imgf000081_0002
式 (no 式中、 R5は、 水素原子又はメチル基を示し、 nは、 0〜6の整数を示す、 で示されるエポキシ樹脂、 及び式 (IV) :
式 (w)
Figure imgf000081_0003
式中、 pは、 1〜5の整数を示す、
で示されるエポキシ樹脂からなる群より選択される 1種以上である、 請求の範囲 第 3 6項〜第 3 9項のいずれか 1項記載の印刷配線板用樹脂組成物。
4 1 . 難燃剤として、 さらに、 1, 2—ジブ口モー 4一 ( 1 , 2—ジブロモェ チル) シクロへキサン、 テトラブロモシクロォクタン、 へキサブ口モシクロドデ カン、 ビス (トリブロモフエノキシ) ェタン、 式 (VII) :
式 (W)
Figure imgf000082_0001
式中、 s、 t、 uは 1〜5の整数を表し、 それぞれ同じ値であっても異 なってもよレ、、
で示される臭素化トリフエ二ルシアヌレート、 臭素化ポリフエ二レンエーテル及 ぴ臭素化ポリスチレンからなる群より選択される 1種以上を含む、 請求の範囲第
3 6項〜第 4 0項のいずれか 1項記載の印刷配線板用樹脂組成物。
4 2 . さらに、 酸化防止剤を含む、 請求の範囲第 3 6項〜第 4 1項のいずれか 1項記載の印刷配線板用樹脂組成物。
4 3 . フエノール変性シァネートエステルオリゴマーを、 ポリフエ二レンエー テル樹脂の存在下で、 分子中にシアナト基を 2つ以上有するシァネートエステル 化合物及ぴ Z又はこれらのプレボリマと一価フエノール化合物とを反応させて得 る印刷配線板用樹脂組成物。
4 4 . エポキシ/フエノール変性シァネートエステルオリゴマーを、 ポリフエ 二レンエーテル樹脂の存在下で、 分子中にシアナト基を 2つ以上有するシァネー トエステル化合物及ぴノ又はこれらのプレポリマと、 一価フエノール化合物及ぴ 分子中にビフ ニル骨格を有するエポキシ樹脂を少なくとも 1種含有するェポキ シ樹脂とを反応させて得ることを特徴とする印刷配線板用樹脂組成物。
4 5 . 請求の範囲第 1項〜第 4 4項のいずれか 1項記載の印刷配線板用樹脂組 成物を、 溶媒に溶解又は分散させて得られる印刷配線板用樹脂ワニス。
4 6 . 請求の範囲第 1項〜第 4 4項のいずれか 1項記載の印刷配線板用樹脂組 成物又は請求の範囲第 4 5項記載の印刷配線板用樹脂ワニスを基材に含浸後、 8 0〜 2 0 0 °Cで乾燥させて得られる印刷配線板用プリプレグ。
4 7 . 請求の範囲第 4 6項記載の印刷配線板用プリプレダを 1枚以上重ね、 少 なくともその片面に金属箔を積層し、 加熱加圧して得られる金属張積層板。
PCT/JP2003/012399 2002-09-30 2003-09-29 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板 WO2004029127A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/529,738 US7816430B2 (en) 2002-09-30 2003-09-29 Composition of polycyanate ester and biphenyl epoxy resin
AU2003266671A AU2003266671A1 (en) 2002-09-30 2003-09-29 Resin composition for printed wiring board, and vanish, prepreg and metal-clad laminate using same
EP03798536A EP1550678B1 (en) 2002-09-30 2003-09-29 Resin composition for printed wiring board, and vanish, prepreg and metal-clad laminate using same
DE60320004T DE60320004T2 (de) 2002-09-30 2003-09-29 Harzzusammensetzung für leiterplatte und lack, prepreg und metallplattiertes laminat unter verwendung davon
JP2004539564A JP4639806B2 (ja) 2002-09-30 2003-09-29 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-287071 2002-09-30
JP2002287071 2002-09-30
JP2002-286878 2002-09-30
JP2002286878 2002-09-30

Publications (1)

Publication Number Publication Date
WO2004029127A1 true WO2004029127A1 (ja) 2004-04-08

Family

ID=32044657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012399 WO2004029127A1 (ja) 2002-09-30 2003-09-29 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板

Country Status (10)

Country Link
US (1) US7816430B2 (ja)
EP (1) EP1550678B1 (ja)
JP (5) JP4639806B2 (ja)
KR (2) KR100990316B1 (ja)
CN (1) CN100528927C (ja)
AT (1) ATE390450T1 (ja)
AU (1) AU2003266671A1 (ja)
DE (1) DE60320004T2 (ja)
TW (1) TWI235020B (ja)
WO (1) WO2004029127A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131743A (ja) * 2004-11-05 2006-05-25 Hitachi Chem Co Ltd 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、プリント配線板
US7255925B2 (en) * 2003-09-05 2007-08-14 Lg Chem, Ltd. Thermosetting resin composition for high speed transmission circuit board
WO2009040921A1 (ja) * 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ及び金属張積層板
JP2009298981A (ja) * 2008-06-17 2009-12-24 Sumitomo Bakelite Co Ltd 樹脂組成物、プリプレグおよびそれを用いたプリント配線板
JPWO2009041137A1 (ja) * 2007-09-27 2011-01-20 パナソニック電工株式会社 エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ、金属張積層板、及びプリント配線板
JP2012012555A (ja) * 2010-07-05 2012-01-19 Sumitomo Bakelite Co Ltd 樹脂組成物、プリプレグ、樹脂層、回路基板および半導体装置
WO2013084819A1 (ja) * 2011-12-07 2013-06-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ及び積層板
US10155835B2 (en) 2011-08-09 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound and method for producing the same, and curable resin composition comprising the compound, and cured product thereof composition
JP2019529677A (ja) * 2016-12-28 2019-10-17 ションイー テクノロジー カンパニー リミテッド 難燃性ポリフェニレンエーテル樹脂組成物
JP7469748B1 (ja) 2023-07-27 2024-04-17 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、並びに硬化物
JP7469747B1 (ja) 2023-07-27 2024-04-17 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、並びに硬化物

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639806B2 (ja) * 2002-09-30 2011-02-23 日立化成工業株式会社 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
US20050186434A1 (en) * 2004-01-28 2005-08-25 Ajinomoto Co., Inc. Thermosetting resin composition, adhesive film and multilayer printed wiring board using same
TW200602427A (en) * 2004-03-30 2006-01-16 Taiyo Ink Mfg Co Ltd Thermosetting resin composition and multilayered printed wiring board comprising the same
KR101109397B1 (ko) * 2009-07-17 2012-01-30 삼성전기주식회사 인쇄회로기판용 수지 조성물 및 이를 이용한 인쇄회로기판
US8889770B2 (en) 2011-08-25 2014-11-18 Chemtura Corporation Brominated flame retardant, antimony oxide free polymer formulations
KR101939429B1 (ko) 2011-09-29 2019-01-16 히타치가세이가부시끼가이샤 에폭시 수지 조성물 및 전자 부품 장치
CN103131130B (zh) * 2011-11-22 2015-01-21 台光电子材料股份有限公司 环氧树脂组成物及应用其的低介电常数绝缘材料
KR20130066527A (ko) * 2011-12-12 2013-06-20 주식회사 엘지화학 연성 금속박 적층판
WO2013097133A1 (zh) * 2011-12-29 2013-07-04 广东生益科技股份有限公司 热固性树脂组合物以及用其制作的预浸料与印刷电路板用层压板
CN103319853B (zh) * 2012-03-23 2016-01-13 台光电子材料股份有限公司 绝缘膜用树脂组成物及含有其的绝缘膜、电路板
US9247636B2 (en) 2013-03-12 2016-01-26 International Business Machines Corporation Area array device connection structures with complimentary warp characteristics
JP6156075B2 (ja) * 2013-05-17 2017-07-05 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
JP5881179B2 (ja) * 2013-08-28 2016-03-09 信越化学工業株式会社 半導体封止用樹脂組成物及びその硬化物を備えた半導体装置
KR101556658B1 (ko) * 2013-11-26 2015-10-01 주식회사 두산 내열성 및 저유전 손실 특성을 가진 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
DE102014101413A1 (de) 2014-02-05 2015-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Chemisch Abbaubares Epoxidharzsystem
DE102014106885B4 (de) 2014-05-15 2022-01-20 Pictiva Displays International Limited Verfahren zur Herstellung einer Isolatorschicht, Verfahren zur Herstellung eines organischen optoelektronischen Bauelements umfassend eine Isolatorschicht und organisches optoelektronisches Bauelement umfassend eine Isolatorschicht
US9879163B2 (en) 2014-06-06 2018-01-30 General Electric Company Composition for bonding windings or core laminates in an electrical machine, and associated method
US9911521B2 (en) 2014-06-06 2018-03-06 General Electric Company Curable composition for electrical machine, and associated method
US10280148B2 (en) 2014-09-10 2019-05-07 Canon Kabushiki Kaisha Electroconductive member for electrophotography and quaternary ammonium salt
KR101843331B1 (ko) * 2015-01-30 2018-03-28 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판용 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
JP6631834B2 (ja) * 2016-01-26 2020-01-15 パナソニックIpマネジメント株式会社 金属張積層板、樹脂付き金属部材、及び配線板
CN107325277B (zh) * 2016-04-28 2020-01-03 江苏和成新材料有限公司 聚苯醚树脂及其应用
TWI656158B (zh) * 2017-12-25 2019-04-11 聯茂電子股份有限公司 樹脂組合物、膠片、與銅箔基板
CN110628310A (zh) * 2018-06-22 2019-12-31 联茂电子股份有限公司 多层结构与基板
KR20210098990A (ko) 2018-12-04 2021-08-11 나믹스 가부시끼가이샤 밀리파 기판용 수지 조성물, 밀리파 기판용 접착 필름, 밀리파 기판, 밀리파 레이더 기판, 및 반도체 장치
CN114685944B (zh) * 2020-12-28 2024-01-30 陕西生益科技有限公司 一种热固性树脂组合物、包含其的预浸料、层压板及印制电路板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100349A (ja) * 1995-10-02 1997-04-15 Shin Etsu Chem Co Ltd 熱硬化性樹脂組成物
JP2000191776A (ja) * 1998-12-24 2000-07-11 Mitsubishi Gas Chem Co Inc シアン酸エステル・コ−プレポリマー
JP2001240723A (ja) * 1999-12-22 2001-09-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物並びにそれを用いたプリプレグ、金属張積層板及び印刷配線板
JP2002309085A (ja) * 2001-04-13 2002-10-23 Sumitomo Bakelite Co Ltd 耐熱性樹脂組成物、これを用いたプリプレグ及び積層板

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143320A (en) * 1981-02-28 1982-09-04 Mitsubishi Gas Chem Co Inc Novel curable resin composition
US4477629A (en) 1983-07-27 1984-10-16 The Dow Chemical Company Cyanate-containing polymers
CN1100816C (zh) 1995-06-27 2003-02-05 日立化成工业株式会社 印刷线路板用预浸坯料、树脂漆以及树脂组合物,及用其制成的印刷线路用层压板
TW462922B (en) 1996-03-21 2001-11-11 Hitachi Chemical Co Ltd Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
JP3261076B2 (ja) * 1997-07-04 2002-02-25 日立化成工業株式会社 積層板用変性シアネートエステル系硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
DE69807793T2 (de) * 1997-07-04 2003-08-14 Hitachi Chemical Co Ltd Mit einem Cyanatester modifizierte härtbare Harzzusammensetzung und daraus hergestellter Lack, Prepreg, mit Metall bedeckte Schichtplatte, Film, gedruckte Leiterplatte und Mehrschichtleiterplatte
JPH11106613A (ja) * 1997-10-08 1999-04-20 Hitachi Chem Co Ltd 印刷配線板用樹脂組成物及びそれを用いた印刷配線板
JPH11228806A (ja) * 1998-02-18 1999-08-24 Hitachi Chem Co Ltd シアネートエステル樹脂組成物及びその製造方法
JP2000336188A (ja) * 1999-03-23 2000-12-05 Hitachi Chem Co Ltd プリプレグ及び積層板
JP2000319509A (ja) 1999-05-14 2000-11-21 Hitachi Chem Co Ltd 難燃性樹脂組成物の製造方法及び積層板
JP2001048982A (ja) 1999-08-09 2001-02-20 Mitsubishi Gas Chem Co Inc 感光性樹脂。
JP2001172473A (ja) 1999-10-07 2001-06-26 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
KR20050055042A (ko) * 2000-03-21 2005-06-10 히다치 가세고교 가부시끼가이샤 유전 특성이 우수한 수지 조성물, 수지 조성물의 제조방법, 이것을 사용하여 제조되는 바니시, 이의 제조 방법,이들을 사용한 프리프레그, 및 금속을 입힌 적층판
JP4872160B2 (ja) * 2000-03-21 2012-02-08 日立化成工業株式会社 誘電特性に優れる樹脂組成物並びにこれを用いて作製されるワニス、ワニスの製造方法、プリプレグ及び金属張積層板
JP2002194121A (ja) 2000-12-26 2002-07-10 Mitsubishi Gas Chem Co Inc プリプレグ及び金属箔張り積層板
US7022777B2 (en) * 2001-06-28 2006-04-04 General Electric Moldable poly(arylene ether) thermosetting compositions, methods, and articles
KR20070073998A (ko) * 2002-03-05 2007-07-10 히다치 가세고교 가부시끼가이샤 수지 부착 금속박, 금속 피복 적층판, 그를 이용한 프린트배선판 및 그의 제조 방법
JP4639806B2 (ja) * 2002-09-30 2011-02-23 日立化成工業株式会社 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100349A (ja) * 1995-10-02 1997-04-15 Shin Etsu Chem Co Ltd 熱硬化性樹脂組成物
JP2000191776A (ja) * 1998-12-24 2000-07-11 Mitsubishi Gas Chem Co Inc シアン酸エステル・コ−プレポリマー
JP2001240723A (ja) * 1999-12-22 2001-09-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物並びにそれを用いたプリプレグ、金属張積層板及び印刷配線板
JP2002309085A (ja) * 2001-04-13 2002-10-23 Sumitomo Bakelite Co Ltd 耐熱性樹脂組成物、これを用いたプリプレグ及び積層板

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255925B2 (en) * 2003-09-05 2007-08-14 Lg Chem, Ltd. Thermosetting resin composition for high speed transmission circuit board
JP2006131743A (ja) * 2004-11-05 2006-05-25 Hitachi Chem Co Ltd 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、プリント配線板
JP5335683B2 (ja) * 2007-09-27 2013-11-06 パナソニック株式会社 エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ、金属張積層板、及びプリント配線板
WO2009040921A1 (ja) * 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ及び金属張積層板
WO2009041137A1 (ja) * 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ、金属張積層板、及びプリント配線板
JPWO2009041137A1 (ja) * 2007-09-27 2011-01-20 パナソニック電工株式会社 エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ、金属張積層板、及びプリント配線板
JP2009298981A (ja) * 2008-06-17 2009-12-24 Sumitomo Bakelite Co Ltd 樹脂組成物、プリプレグおよびそれを用いたプリント配線板
JP2012012555A (ja) * 2010-07-05 2012-01-19 Sumitomo Bakelite Co Ltd 樹脂組成物、プリプレグ、樹脂層、回路基板および半導体装置
US10155835B2 (en) 2011-08-09 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound and method for producing the same, and curable resin composition comprising the compound, and cured product thereof composition
WO2013084819A1 (ja) * 2011-12-07 2013-06-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ及び積層板
US9706651B2 (en) 2011-12-07 2017-07-11 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, and laminate
JP2019529677A (ja) * 2016-12-28 2019-10-17 ションイー テクノロジー カンパニー リミテッド 難燃性ポリフェニレンエーテル樹脂組成物
JP7469748B1 (ja) 2023-07-27 2024-04-17 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、並びに硬化物
JP7469747B1 (ja) 2023-07-27 2024-04-17 三菱瓦斯化学株式会社 シアン酸エステル化合物及びその製造方法、樹脂組成物、並びに硬化物

Also Published As

Publication number Publication date
CN100528927C (zh) 2009-08-19
DE60320004D1 (de) 2008-05-08
TW200415964A (en) 2004-08-16
KR20050055734A (ko) 2005-06-13
KR20100094586A (ko) 2010-08-26
JP2011006685A (ja) 2011-01-13
TWI235020B (en) 2005-06-21
JP2010212689A (ja) 2010-09-24
EP1550678A1 (en) 2005-07-06
JP4639806B2 (ja) 2011-02-23
CN1684995A (zh) 2005-10-19
EP1550678A4 (en) 2006-10-11
JP5605035B2 (ja) 2014-10-15
AU2003266671A1 (en) 2004-04-19
JP2010196059A (ja) 2010-09-09
US7816430B2 (en) 2010-10-19
KR100990316B1 (ko) 2010-10-26
JP2010189646A (ja) 2010-09-02
US20060167189A1 (en) 2006-07-27
ATE390450T1 (de) 2008-04-15
EP1550678B1 (en) 2008-03-26
JPWO2004029127A1 (ja) 2006-01-26
DE60320004T2 (de) 2009-04-16

Similar Documents

Publication Publication Date Title
WO2004029127A1 (ja) 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP5381438B2 (ja) 熱硬化性絶縁樹脂組成物、並びにこれを用いたプリプレグ、樹脂付フィルム、積層板、及び多層プリント配線板
JP5832444B2 (ja) 樹脂組成物、それを用いたプリプレグ及び積層板
JP2005248147A (ja) 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板
JP2017101152A (ja) 変性ポリイミド樹脂組成物およびその製造方法、並びにそれを用いたプリプレグおよび積層板
JP2011006683A (ja) 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板
TW201823336A (zh) 馬來醯亞胺樹脂組合物、預浸料、層壓板和印刷電路板
JPH03115426A (ja) 硬化可能な誘電性ポリフェニレンエーテル‐ポリエポキシド組成物
JP7279716B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2015067729A (ja) エポキシ樹脂組成物及びその硬化物
CN101492527B (zh) 印刷电路板用树脂组合物以及使用它的清漆、预浸物及镀金属膜层叠板
JP3399774B2 (ja) 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板
JP2001240723A (ja) 熱硬化性樹脂組成物並びにそれを用いたプリプレグ、金属張積層板及び印刷配線板
JPH1121452A (ja) 積層板用変性シアネートエステル系硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP3261061B2 (ja) 積層板用樹脂組成物、該組成物を用いたプリプレグ及び積層板
JP2005154739A (ja) 樹脂組成物ならびにそれを用いたプリプレグおよび積層板
WO2000039216A1 (fr) Composition de cyanate et de resine epoxy, et preimpregne, plaque stratifiee en papier metallique et carte de circuit imprime utilisant cette composition
JP3442240B2 (ja) 熱硬化性樹脂組成物並びにそれを用いたプリプレグおよび積層板
JP3261073B2 (ja) 印刷配線板用樹脂組成物、ワニス、プリプレグ及びそれを用いた印刷配線板用積層板
JP3261062B2 (ja) 印刷配線板用樹脂ワニス及びそれを用いたプリプレグ、金属張り積層板の製造方法
JP3261078B2 (ja) 積層板用変性シアネートエステル系硬化性樹脂組成物及びこれを用いたプリプレグ,積層板
JPH11106613A (ja) 印刷配線板用樹脂組成物及びそれを用いた印刷配線板
TW202407038A (zh) 樹脂組成物、預浸體、積層板、樹脂膜、印刷線路板及半導體封裝體
JP2001261958A (ja) 誘電特性に優れる樹脂組成物、これを用いて作製されるワニス、プリプレグ及び金属張積層板
JP2002194211A (ja) 印刷配線板用樹脂組成物、ワニス、プリプレグ及びそれを用いた印刷配線板用積層板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004539564

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006167189

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038233495

Country of ref document: CN

Ref document number: 10529738

Country of ref document: US

Ref document number: 1020057005503

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003798536

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057005503

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003798536

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529738

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003798536

Country of ref document: EP