WO2003061991A1 - Pneu radial et procede de production - Google Patents

Pneu radial et procede de production Download PDF

Info

Publication number
WO2003061991A1
WO2003061991A1 PCT/JP2003/000661 JP0300661W WO03061991A1 WO 2003061991 A1 WO2003061991 A1 WO 2003061991A1 JP 0300661 W JP0300661 W JP 0300661W WO 03061991 A1 WO03061991 A1 WO 03061991A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt
belt layer
pneumatic radial
organic fiber
Prior art date
Application number
PCT/JP2003/000661
Other languages
English (en)
French (fr)
Other versions
WO2003061991B1 (fr
Inventor
Takeshi Yano
Hiroyuki Mori
Masaaki Nakamura
Seiji Itai
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to JP2003561901A priority Critical patent/JP4424989B2/ja
Priority to US10/502,548 priority patent/US7712499B2/en
Priority to EP03701867.8A priority patent/EP1477333B1/en
Publication of WO2003061991A1 publication Critical patent/WO2003061991A1/ja
Publication of WO2003061991B1 publication Critical patent/WO2003061991B1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0661Rigid cores therefor, e.g. annular or substantially toroidal cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/10Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/10Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre
    • B29D30/16Applying the layers; Guiding or stretching the layers during application
    • B29D30/1628Applying the layers; Guiding or stretching the layers during application by feeding a continuous band and winding it helically, i.e. the band is fed while being advanced along the core axis, to form an annular element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/70Annular breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/26Folded plies
    • B60C9/263Folded plies further characterised by an endless zigzag configuration in at least one belt ply, i.e. no cut edge being present
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C2009/1871Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers with flat cushions or shear layers between belt layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/02Tyres specially adapted for particular applications for aircrafts
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10783Reinforcing plies made up from wound narrow ribbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10792Structure where each bias angle reinforcing cord ply has no opposingly angled ply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10801Structure made up of two or more sets of plies wherein the reinforcing cords in one set lie in a different angular position relative to those in other sets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10855Characterized by the carcass, carcass material, or physical arrangement of the carcass materials
    • Y10T152/10873Characterized by the carcass, carcass material, or physical arrangement of the carcass materials with two or more differing cord materials

Definitions

  • the present invention relates to a pneumatic radial tire, and a method for manufacturing a pneumatic radial tire, and particularly to an improvement in durability against cutting of foreign matters and the like.
  • the present invention relates to a pneumatic radial tire suitable for an aircraft capable of achieving weight reduction at the same time, and a method of manufacturing the same.
  • radial tires for aircraft are used under conditions of high internal pressure and high load.Therefore, when passing over a foreign object, the entire tire rides on the foreign object and does not damage the tread.
  • the tread rubber of the tire is stretched in the circumferential direction of the tire, there is a problem that, in particular, the resistance to foreign matter becomes weak, and the crushed foreign matter easily enters the inside of the tread and easily damages the tire. .
  • the difference in diameter caused by the amount of protrusion at the center in the tire width direction being larger than the vicinity of both ends in the tire width direction causes dragging of the rotating tire, and the vicinity of the shoulder is faster than the center of the tire.
  • so-called uneven wear which shortens tire life due to wear.
  • the carcass layer 16 can be used to suppress the bulging deformation of the tread and improve the wear characteristics of the tread and, at the same time, to improve the envelopability.
  • a belt layer 20 disposed between the crown area of the main rubber layer 24 and the tread rubber layer 24 is added to a conventional general main belt layer 26 composed of a wide belt ply and an outer peripheral side of the main belt layer 26. It is composed of a sub-belt layer 28 composed of a narrow belt ply, whereby the sub-belt layer 28 disposed at the center of the main belt layer 26 increases the belt rigidity.
  • a pneumatic radial tire 102 born from technology that restrains swelling deformation in the region is considered.
  • Aromatic polyamide cord exerts high tension even in the low elongation area and maintains the internal pressure compared to aliphatic polyamide, which has been generally used for aircraft tires, so that tire protrusion can be effectively performed. Can be suppressed.
  • the present invention suppresses the radial growth of the tread surface, improves the durability against cuts such as foreign matter, and at the same time, achieves a lightweight pneumatic radial tire suitable for aircraft.
  • the purpose is to provide.
  • DISCLOSURE OF THE INVENTION As a result of the inventor's detailed examination of the tension load on the belt layer, as shown in the graph of FIG. 12, as shown in the graph of FIG. Distribution.
  • the vertical axis indicates tension
  • the horizontal axis indicates the position in the belt width direction
  • SBW indicates the maximum width of the belt layer.
  • the belt layer needs to have a strength that satisfies both conditions. From various experiments and investigations, the inventor has specified that the equatorial plane strength should be greater than the strength at 2/3 of the maximum width of the belt layer with respect to the tension under no load, thereby suppressing the growth of diameter. It has been found that both weight reduction can be achieved.
  • the invention according to claim 1 has been made in view of the above fact, and includes a pair of bead cores and at least one or more carcass plies extending in a toroidal shape from one bead core to the other bead core.
  • a pneumatic radial tire comprising: a carcass layer; and a belt layer including at least one or more belt plies including an organic fiber cord on an outer peripheral surface of a crown area of the carcass layer in the radial direction of the tire,
  • the total strength of the belt layer in the circumferential direction of the tire per unit width at the tire equatorial plane position P 0 is K 0, and the maximum width of the belt layer around the tire equatorial plane is 2 ⁇ 3 at the width position ⁇ 2.
  • the belt layer satisfies 1: 2 ⁇ 1 ⁇ 0.
  • the total strength ⁇ 0 of the belt layer in the tire circumferential direction per unit width at the tire equatorial plane position ⁇ 0 is defined as the maximum width of the belt layer around the tire equatorial plane. 2/3 width position ⁇
  • the total strength of the belt layer in the tire circumferential direction per unit width at 2 is set to be greater than that of the belt layer.
  • the total strength here refers to the strength in the circumferential direction of the belt layer, and is calculated by multiplying the strength of one cord by the number of cords per unit width (here, 10 mm).
  • the total strength when the cord is inclined at an angle of 6 with respect to the circumferential direction is calculated by multiplying the total strength per unit width by cos0.
  • the cord in the tire extends in a zigzag pattern in the circumferential direction of the tire, it is embedded in the tire instead of straightening to calculate the strength.
  • the shape that is, the strength when the wave-shaped one is stretched in the circumferential direction is calculated.
  • the organic fiber cord located near the shoulder may be subjected to excessive tension, which may cause a decrease in pressure resistance.
  • the strength ratio ⁇ 2 / ⁇ 0 satisfies 0.2 ⁇ ⁇ 2 / ⁇ 0 ⁇ 0.8.
  • the invention according to claim 3 is the pneumatic radial tire according to claim 1 or 2, wherein in the belt layer, the lamination thickness of the organic fiber cord is the largest at the tire equatorial plane position ⁇ 0, The lamination thickness of the organic fiber cord at the tire equatorial plane position ⁇ 0 was G 0, and the lamination thickness of the organic fiber cord at the width position ⁇ 2 of the maximum width of the belt layer ⁇ 2 was G 2. Sometimes, G2 is satisfied with GO.
  • the lamination thickness of the organic fiber cords is the total diameter of the organic fiber cords laminated in the tire radial direction when the belt layer is viewed in the tire radial cross section.
  • the laminated thickness is AX12.
  • the ratio G 2 / G 0 of the thickness of the organic fiber cords to be laminated is less than 0.35, there is a possibility that the organic fiber cords located in the vicinity of a part of the shoulders may be subjected to excessive tension, thereby deteriorating the pressure resistance performance. There is.
  • the ratio G 2 / G 0 of the lamination thickness of the organic fiber cord satisfies 0.35 G2Z G 0 ⁇ 0.85.
  • a width position P of ⁇ a maximum width of the belt layer is set in the belt layer.
  • the belt layer has a lamination thickness in a region outside the width position P2 of the maximum width of the belt layer 2Z3 in the tire width direction. It is characterized in that a portion having a larger lamination thickness than G2 is provided.
  • the invention according to claim 6 is the pneumatic radial tire according to any one of claims 1 to 5, wherein the belt layer has a tensile breaking strength of 6.3 cN / dtex or more, and an elongation.
  • the elongation at 0.3 c NZd te X load in the direction is 0.2 to 2.0%
  • the elongation at 2.1 c NZd te X load in the elongation direction is 1.5 to 7.0%
  • elongation Direction 3.2 c NZ dte X Main belt layer composed of at least two belt plies including organic fiber cords with an elongation percentage under load of 2.2 to 9.3% It is characterized by
  • the main belt layer is composed of at least two or more belt plies including a high elasticity organic fiber cord having a tensile breaking strength of 6.3 cN / dtex or more.
  • the elongation of the organic fiber cord in the elongation direction under a load of 2.1 cN / dtex is 1.5 to 7.0%
  • the elongation in the elongation direction under a load of 3.2 c NZd te X is 2.
  • the target diameter growth could be easily suppressed by setting it to 2 to 9.3%.
  • pneumatic radial tires for aircraft use approximately 2.1 at normal internal pressure load.
  • the reason why the elongation percentage under the load of 0.3 c NZ dteX in the elongation direction of the organic fiber cord is set to 0.2 to 2.0% is as described below.
  • the tire outer diameter is set so that the raw tires usually expand in the tire mold by about 0.2 to 2.0%. You.
  • the specified internal pressure is 1620 kPa and the specified load is 24860 kg.
  • the organic fiber cord has an elongation of 0.2 to 1.5% under 0.3 cN / dtex load in the elongation direction and an elongation of 2.1 cN / dte X in the elongation direction. More preferably, it has an elongation of 2.2 to 8.3% under a load of 1.5 to 6.5% and an elongation of 3.2 cN // dteX.
  • the invention according to claim 7 is the pneumatic radial tire according to claim 6, wherein at least two belt plies are laminated at an end in the tire width direction of the main belt layer. I have.
  • the invention according to claim 8 is the pneumatic radial tire according to claim 6 or 7, wherein the main belt layer is made of an aromatic polyamide-based fiber and has a lower twist coefficient of 0.12. And a belt ply including an organic fiber cord having a twist factor of 0.40 to 0.80.
  • the organic fiber cord constituting the main belt layer is composed of an aromatic polyamide-based fiber and has a lower twist coefficient of 0.12 to 0.85, preferably 0.17 to 0.51, and By setting the twist coefficient to 0.40 to 0.80, the organic fiber cord has the physical properties specified in claim 6, that is, a tensile breaking strength of 6.3 c NZd teX or more and 0.3 c in the stretching direction.
  • the elongation under dte X load can be set to 2.2 to 9.3%.
  • NT NX (0. 1 3 9 X ⁇ / p) 1 2 X 1 0- 3
  • N Number of twists per 100 mm of organic fiber cord
  • Twisted "D” Denier number of entire cord ⁇ 2
  • the invention according to claim 9 is the pneumatic radial tire according to any one of claims 6 to 8, wherein the main belt layer is formed of an aromatic polyamide-based fiber and an aliphatic polyamide. And a belt ply containing an organic fiber cord having a weight ratio of aromatic polyamide-based fibers to aliphatic polyamide-based fibers of 100: 170 to 170. It is characterized by:
  • the organic fiber cord constituting the main belt layer is composed of an aromatic polyamide fiber and an aliphatic polyamide fiber, and is composed of an aromatic polyamide fiber and an aliphatic polyamide fiber.
  • the organic fiber cord has the physical properties defined in claim 6, that is, a tensile breaking strength of 6.3 cN / dtex or more, and 0 in the stretching direction.
  • 3 c NZ dte X The elongation under load is 0.2 ⁇ 2.0 ° /.
  • the elongation at 1.5 cN / dte X load in the elongation direction is 1.5-7.0%, and the elongation at 3.2 cN dte X load in the elongation direction is 2.2-9. Can be set to 3%.
  • the weight of the aliphatic polyamide-based fiber is less than 100 with respect to the weight of the aromatic polyamide-based fiber of 100, the cord elongation becomes small when the above-mentioned load is applied, so that a claim is made. It will be difficult to achieve the physical properties specified in Item 6.
  • the weight ratio between the aromatic polyamide fiber and the aliphatic polyamide fiber is more preferably 100: 17 to 86.
  • the aliphatic polyamide fiber is, for example, 6-nylon, 6,6-nylon, 4,6-nylon fiber or the like.
  • the organic fiber cord may be composed of an aromatic polyamide fiber and an aliphatic polyamide fiber, and may be composed of an aromatic polyamide organic fiber cord and an aliphatic polyamide organic fiber cord.
  • the aromatic polyamide fiber and the aliphatic polyamide fiber may be combined and then twisted.
  • the aromatic polyamide-based organic fiber cord is A and the aliphatic polyamide-based organic fiber cord is B, A or B is twisted (Z-twisted), aligned, and aligned in the opposite direction to the twisting.
  • twist S twist
  • the organic fiber cord constituting the main belt layer can be obtained.
  • a or B may be twisted independently, or A and B may be combined and then twisted.
  • the number of A, B or AB (combined yarn) at the time of the first twist or the first twist may be one or more.
  • the thickness of the A or B yarns may be the same or different.
  • the form of the twisted yarn may be such that a loop is formed around the core yarn.
  • the main belt layer is formed by twisting an aromatic polyamide cord and an aliphatic polyamide cord.
  • the lower twist coefficient of the aromatic polyamide cord be 0.17 to 0.51.
  • the invention according to claim 11 is the invention according to any one of claims 6 to 10.
  • the main belt layer has a belt ply including an organic fiber cord spirally wound at an angle of about 0 ° with respect to the tire equatorial plane.
  • the strength of the organic fiber cord used to secure the circumferential rigidity of the main belt layer can be maximized, The weight of the pneumatic radial tire can be reduced.
  • the term “approximately 0 °” includes 2.0 ° or less.
  • the invention according to claim 12 is the pneumatic radial tire according to any one of claims 1 to 11, wherein the main belt layer is 2 to 25 ° with respect to the tire equatorial plane. And a belt ply including an organic fiber cord bent in the same plane so as to be inclined in the opposite direction at each ply end and extending in a tire circumferential direction in a zigzag manner. .
  • Belt containing organic fiber cord that is inclined at an angle of 2 to 25 ° with respect to the equatorial plane of the tire, bent in the same plane so as to incline in the opposite direction at each ply end, and extends zigzag in the tire circumferential direction
  • the rigidity in the tire width direction can be secured without greatly reducing the circumferential rigidity of the main belt layer, and as a result, excellent wear resistance can be realized.
  • the magnitude of the deviation of the circumferential position depends on the diameter difference between the center part and the shoulder part, and the circumferential shear rigidity in the tread surface, and the degree of drag wear is small as the diameter difference is large and the shear rigidity is small. Becomes larger.
  • the spiral belt has a low shear rigidity because the cord is oriented substantially in the circumferential direction, and is not effective with respect to drag wear.
  • the invention according to claim 13 is the pneumatic radial tire according to any one of claims 6 to 12, wherein a sub-belt layer is provided outside the main belt layer in a tire radial direction.
  • the sub-belt layer includes a belt ply including an organic fiber cord having an elongation percentage under a load of 2.1 cN / dtex that is substantially equal to or greater than the organic fiber cord included in the belt ply of the main belt layer. It is characterized by having.
  • the sub-belt layer is a belt that contains an organic fiber cord with a relatively low elastic modulus that has an elongation under load of 2.1 cN / dtex that is approximately equal to or greater than the organic fiber cord included in the belt ply of the main belt layer. Due to the ply, even if damage due to foreign matter etc. reaches the secondary belt layer, the tension share of the cord of the secondary belt layer is originally smaller than that of the organic fiber cord of the main belt layer, and the strength of the entire crown reinforcing layer Has a small effect. In addition, since the concentration of stress around the bottom of the cut is reduced, there is an effect that even if the vehicle continues to run, the possibility of damage progressing is reduced.
  • the invention according to claim 14 provides the pneumatic radial tire according to claim 13.
  • the sub-belt layer has a belt ply including an organic fiber cord whose angle with respect to the tire equatorial plane is set to be substantially equal to or more than an organic fiber cord included in the belt ply of the main belt layer. It is characterized by:
  • the auxiliary belt layer contains an organic fiber cord whose angle to the tire equatorial plane is set to be substantially equal to or more than that of the organic fiber cord included in the belt ply of the main belt layer.
  • the crack growth does not extend all the way around the tire in the circumferential direction, making it possible to suppress crack growth at the belt edge, greatly improving tire safety.
  • the invention according to claim 15 is the pneumatic radial tire according to claim 13 or claim 14, wherein the auxiliary belt layer is formed of an organic fiber inclined at 2 to 45 ° with respect to a tire equatorial plane. It has a belt ply including a cord.
  • the invention according to claim 16 is the pneumatic radial tire according to any one of claims 13 to 15, wherein the sub-belt layers are inclined in opposite directions at respective ply ends.
  • a belt ply including an organic fiber cord that is bent in the same plane and extends in a zigzag manner in the tire circumferential direction is provided.
  • the belt ply which is configured so that the organic fiber cord is bent in the same plane so as to be inclined in the opposite direction at each ply end and extends in a zigzag manner in the tire circumferential direction, the organic fiber cord is cut at the ply end in the width direction. Since there is no end, ply end separation due to rigid steps at the cut end of the cord is effectively prevented. Can be stopped.
  • the invention according to claim 17 is the pneumatic radial tire according to any one of claims 1 to 16, wherein the carcass layer has a tensile breaking strength of 6.3 cN / dteX.
  • the elongation at 0.2 cN dte X load in the elongation direction is 0.2 to 1.8%
  • the elongation ratio at 1.9 c NZdte X load in the elongation direction is 1.4 to 6.4. %
  • the carcass layer has a tensile breaking strength of 6.3 cN / dteX.
  • the pneumatic radial tire of the present invention when a high elasticity cord is used for the belt layer and a low elasticity cord such as nylon is used for the carcass layer, when the internal pressure in a standard state is filled, the growth in the radial direction occurs. Is suppressed by the high elastic cord, but the tire swells relatively freely in the width direction of the tire.
  • At least two or more sheets including a high elasticity organic fiber cord having a tensile breaking strength of not less than 6.3 cN / dtex are provided.
  • the organic fiber cord has an elongation of 0.2 to 1.8% under a 0.2 c NZd tex load in the elongation direction, and an elongation of 1 under a 1.9 cN / dte X load in the elongation direction. It is preferable that the elongation ratio under load of 2.9 c NZd te X in the extension direction is 2.1 to 8.6%.
  • the reason is that when the elongation percentage of the organic fiber cord exceeds the above range, the effect of effectively suppressing the swelling of the carcass layer in the width direction is small, and the elongation percentage of the organic fiber cord is below the above range.
  • the high cord rigidity when the number of plies is large, a circumferential difference may occur between the outer layer ply and the inner layer ply. This is not preferable because the plies are disturbed significantly during tire molding.
  • the organic fiber cord has an elongation of 0.2 to 1.4% under 0.2 cN / dtex load in the elongation direction, and an elongation of 1.9 cN / dte X in the elongation direction. It is more preferable that the elongation ratio under a load of 2.5 to 5.9% and 2.9 c NZd te X in the stretching direction be 4.0 to 8.0%.
  • the invention according to claim 18 is the pneumatic radial tire according to claim 17, wherein the carcass layer is made of an aromatic polyamide-based fiber, and has a lower twist coefficient of 0.12 to It is characterized by having a carcass ply containing organic fibers having an upper combustion coefficient of 0.85, more preferably 0.17 to 0.51, and an upper combustion coefficient of 0.4 to 0.85.
  • the organic fiber cord constituting the carcass layer is composed of aromatic polyamide-based fiber, and has a lower twist coefficient of 0.12 to 0.85, preferably 0.17 to 0.51, and an upper twist coefficient of By setting the ratio to 0.40 to 0.85, the organic fiber cord can be set to the physical properties specified in claim 17.
  • the invention according to claim 19 is the pneumatic radial tire according to claim 17, wherein the carcass layer includes an aromatic polyamide-based fiber and an aliphatic polyamide-based fiber, Carcass containing an organic fiber cord having a weight ratio S between aromatic polyamide fibers and aliphatic polyamide fibers of 100: 12 to 51, preferably 100: 27 to 255. It has a ply.
  • the organic fiber cord constituting the carcass layer is composed of aromatic polyamide fibers and aliphatic polyamide fibers, and the weight of aromatic polyamide fibers and aliphatic polyamide fibers By setting the ratio at 100: 12 to 510, preferably at 100: 27 to 255, the organic fiber cord has the physical properties as defined in claim 17, that is, the tensile breaking strength is 6.3 c.
  • the weight of the aliphatic polyamide-based fiber is less than 12 with respect to the weight of the aromatic polyamide-based fiber of 100, the cord elongation becomes small when the above-mentioned load is applied, so the billing is reduced. It will be difficult to achieve the physical properties specified in Item 6.
  • the aliphatic polyamide fiber is, for example, 6-nylon, 6,6-nylon, 4,6-nylon fiber, or the like.
  • the organic fiber cord may be composed of an aromatic polyamide fiber and an aliphatic polyamide fiber, and may be composed of an aromatic polyamide organic fiber cord and an aliphatic polyamide organic fiber cord.
  • the aromatic polyamide fiber and the aliphatic polyamide fiber may be combined and then twisted.
  • the aromatic polyamide-based organic fiber cord is A and the aliphatic polyamide-based organic fiber cord is B, A or B is twisted (Z-twisted), aligned, and aligned in the opposite direction to the twisting.
  • twist S twist
  • the organic fiber cord constituting the main belt layer can be obtained.
  • a or B may be twisted independently, or A and B may be combined and then twisted.
  • the number of A, B or AB (combined yarn) in the first or second twist may be one or more.
  • the thickness of the A or B yarns may be the same or different.
  • the form of the twisted yarn may be such that a loop is formed around the core yarn.
  • the invention according to claim 20 is the pneumatic radial tire according to claim 19, wherein the carcass layer comprises an aromatic polyamide-based organic fiber cord and an aliphatic polyamide-based organic fiber cord. And the lower twist coefficient of the polyamide-based organic fiber cord is 0.12 to 0.85, more preferably 0.17 to 0.51. And a carcass ply containing: Next, the operation of the pneumatic radial tire according to claim 20 will be described.
  • the lower twist coefficient of aromatic polyamide cord is 0.12 to 0.85, more preferable. With a value of 0.17 to 0.51, it is easy to achieve the physical properties defined in claim 19.
  • the invention according to claim 21 is the pneumatic radial tire according to any one of claims 13 to 20, wherein the auxiliary belt layer is disposed radially outward of the auxiliary belt layer in a tire circumferential direction.
  • a protective belt layer including a non-metallic wavy cord having a tensile strength of 100 OMPa or more extending in a wavy shape is disposed via a rubber layer of 1.5 to 4.5 mm. I have.
  • a protection belt layer including a non-metallic wavy cord having a tensile strength of 100 MPa or more and extending in a tire circumferential direction in a tire radial direction on the outer side of the auxiliary belt layer in the tire radial direction is provided in a range of 1.5 to 4.5.
  • the thickness of the rubber layer is less than 1.5 mm, it is difficult to remove the protective belt layer without damaging the main and sub belt layers existing on the radially inner side during tire rehabilitation.
  • the invention according to claim 22 is the pneumatic radial tire according to claim 21, wherein the wavy cord has an amplitude of 5 to 25 mm and a wavelength of 200 to 700% of the amplitude. It is characterized by the following.
  • the amplitude of the corrugated cord is less than 5 mm, or if the wavelength of the corrugated cord exceeds 700% of the amplitude, the internal pressure filling of the pneumatic radial tire and the load on it By the action, the corrugated cord is almost stretched in the circumferential direction, so that the wrapping effect when foreign matter enters is reduced.
  • the amplitude of the corrugated cord exceeds 25 mm, and if the wavelength of the corrugated cord is less than 200% of the amplitude, it is difficult to secure a sufficient space between adjacent cords. As a result, it becomes impossible to secure a sufficient rubber layer between the cords, and the possibility that separation occurs between the cords and the rubber due to contact between adjacent cords increases.
  • the amplitude of the wavy cord is set to 5 to 25 mm and the wavelength to 200 to 700% of the amplitude.
  • the invention according to claim 23 is the pneumatic radial tire according to any one of claims 1 to 22, wherein the standard internal pressure filling state specified in TRA is compared with that before the internal pressure filling.
  • the growth rate of the outer diameter of the tire is 0.3 to 5.5%.
  • the growth rate of the tire outer diameter is less than 0.3%, it becomes difficult to select the tire material under the high internal pressure of the aircraft tire.
  • the belt layer is composed of a plurality of belt plies, and the total thickness of the belt layer is made thicker at the central portion in the width direction than at the side portions, and the belt layer is disposed radially outward.
  • the sub-belt layer includes a sub-belt layer positioned therein and a main belt layer positioned radially inward, and the sub-belt layer is formed of a plurality of belt plies whose width gradually decreases outward in the radial direction.
  • the maximum width of the layer is set in the range of 60 to 90% of the maximum width of the tire, and the main belt layer is formed of a plurality of belt plies whose width gradually decreases inward in the radial direction.
  • the maximum width in the range of 1 5-6 0% of the maximum width tire, an their respective belt plies of the main belt layer, intersects at an angle of 2 ° ⁇ 2 5 ° to the tire equatorial plane, respectively
  • the cord is bent in the same plane so as to be inclined in the opposite direction at the end of the ply and extends in a zigzag manner in the tire circumferential direction, or a cord that extends spirally at an angle of almost 0 ° to the tire equatorial plane , It is characterized.
  • the tread bulges due to internal pressure filling, etc., and the tread central area, where the amount of bulge was the largest in the past, is reinforced especially by a multilayer belt ply, and the bulge deformation is advantageous.
  • the selected width of each belt ply causes the tread to bulge almost evenly over its entire width, so that the ground pressure at the tread tread is also sufficiently uniform.
  • the belt ply of the main belt layer is formed of a cord extending in a zigzag shape in the circumferential direction or a cord extending in a spiral shape in the circumferential direction, and the cut end of the cord is removed from the side edge of the belt ply.
  • the maximum width of the main belt layer is set in the range of 15 to 60% of the maximum width of the tire, effectively suppressing the increase in weight and effectively restraining the bulging deformation in the center area of the tread. Also, by forming the main belt layer with each belt ply having a width gradually decreasing inward in the radial direction, a rapid change in belt stiffness can be avoided.
  • the number of belt plies of the main belt layer is about 2 to 6 layers in order to achieve both high weight and restraint of bulging deformation at a high level.
  • the elastic modulus of the cords forming the belt ply of the main belt layer and the sub-belt layer is determined by the organic fiber cord of the carcass ply. It is characterized by being in the range of 100-700% of that.
  • the elastic modulus refers to the tensile elastic modulus per unit block of the rubber-fiber composite, and the vulcanized rubber-fiber composite (in the case of a carcass ply, the carcass ply near the tire maximum width is Cut out a 10 Omm long sample with a unit block, that is, a rubber composite block of one fiber, along the ply cord, centering around the maximum width.)
  • a tensile tester such as an Instron or an autograph at a test temperature of 25 ° C and SO gZmrn (for example, when the unit block width is 2 mm, the load 1
  • the initial load corresponding to was applied, and a constant-speed tensile test was performed at a tensile speed of 5 Omm for a load-elongation curve. It was determined by conducting a test in the same manner as in 0 17-1 983 and calculating according to the following formula.
  • the belt ply can exhibit its effect as required, and can sufficiently remove an extreme rigidity step between the tread and the tire side portion.
  • the elastic modulus of the cord constituting the belt ply of the main belt layer and the sub-belt layer is less than 100% of the elastic modulus of the organic fiber cord of the carcass ply, the elasticity of the tire is reduced.
  • the function of suppressing the diameter growth during the filling of the inner pressure cannot be fully exhibited, and the number of belt ply layers must be increased in order to suppress the diameter growth, thus increasing the tire weight. Will be.
  • the elastic modulus of the organic fiber cord of the carcass exceeds 700%, the effect of the belt layer becomes too large, so that the vicinity of the maximum width of the belt layer in the cross-section in the tire width direction and the tire side If the difference in rigidity between the tire and the tire becomes large, the tire side part will abnormally bulge outward in the width direction due to, for example, the filling internal pressure, and the balance of the tire as a whole will be impaired.
  • the invention according to claim 26 is the pneumatic radial tire according to claim 24 or claim 25, wherein the cord constituting the belt ply of the main belt layer is an aromatic polyamide organic fiber cord. It is characterized by becoming.
  • the cord constituting the belt ply of the main belt layer is an aromatic polyamide-based organic fiber cord, it is approximately 2 to 2 times as compared with the aliphatic polyamide-based cord usually used for the belt layer.
  • a 5-fold elastic modulus bulging of the center of the tread due to internal pressure can be more effectively suppressed, and the same effect can be obtained with a smaller number of belt plies, which is advantageous for reducing tire weight. is there.
  • the invention according to claim 27 is the pneumatic radiant tire according to any one of claims 24 to 26, wherein a distance of 5 to 25 mm is provided between the auxiliary belt layer and the tread.
  • a protective belt layer made of a non-metallic cord having a tensile strength of 100 OMPa or more and extending in a zigzag shape in the circumferential direction with an amplitude and a wavelength of 200 to 700% of the amplitude is provided. It is characterized by that.
  • the tensile strength here is measured with a Shimadzu Seisakusho's autograph at a test temperature of 25 ° C and a tensile elongation (%) and strength (in accordance with JISL 1017_1982). It was determined by determining MP a).
  • This protective belt layer relaxes the tension due to the deformation of the non-metallic cord in the direction in which the zigzag waveform disappears in response to the penetration of foreign matter, etc. into the tread, and the foreign matter, etc. It functions to prevent foreign substances from entering the belt layer by enclosing the belt.
  • the amplitude of the non-metallic cord is 5 to 25 mm and the wavelength is 200 to 700% of the amplitude when the amplitude is less than 5 mm and the wavelength exceeds 700%.
  • the non-metallic cord is almost stretched in the circumferential direction due to the filling of the tire with the internal pressure and the action of the load on the tire, so that the wrapping effect upon entry of foreign matter is reduced, and the amplitude is 2 If it exceeds 5 mm or if the wavelength is less than 200%, it will be difficult to secure a sufficient space between adjacent cords, and it will be necessary to secure a sufficient rubber layer between the cords. Since it becomes impossible, the bonding portion between the rubber layer and the tread rubber is reduced, and the adhesive strength between the protective belt layer and the tread rubber is reduced, so that separation easily occurs.
  • the reason why the tensile strength is set to 100 OMPa or more is that the cut resistance of the cord is generally higher as the tensile strength is larger, and the tensile strength is relatively large among the organic fibers with known aromatic polyamide cords. It is more efficient to use this (l OOOMPa or more).
  • the invention according to claim 28 is the pneumatic radial tire according to any one of claims 24 to 27, wherein one of the circumferential grooves provided on the tread extends to the center of the tread. It is characterized by being let.
  • the circumferential grooves provided on the tread should not be placed near the side edge of the main belt layer, which causes a rigid step in the tread width direction. It is possible to prevent the occurrence of cracks at the bottom of the groove without impairing the drainage performance of the tire.
  • the method for manufacturing a pneumatic radial tire according to claim 29 is characterized in that, when manufacturing the pneumatic radial tire according to any one of claims 24 to 28, It is characterized in that a green tire is molded on a split-type rigid core having a corresponding outer surface shape, and the green tire is charged together with the rigid core into a mold and vulcanized.
  • the product can be manufactured without deforming the tire or its components. Since a tire can be obtained, the dimensional accuracy of each part of the tire can be greatly improved.
  • the method for manufacturing a pneumatic radial tire according to claim 30 is a method for manufacturing the pneumatic radial tire according to any one of claims 24 to 28, wherein a belt. It is characterized in that the main belt layer is molded in an annular recess provided at the center in the width direction.
  • the main belt layer that protrudes inward in the tire radial direction can be molded by a normal cylindrical belt molding drum.
  • FIG. 1 is a sectional view of a pneumatic radial tire according to a first embodiment.
  • FIG. 2 (A) is an exploded perspective view of the pneumatic radial tire shown in FIG. 1, and FIG. 2 (B) is a plan view of a cord of a protective layer.
  • FIG. 3 is an enlarged sectional view of the tread of the pneumatic radial tire shown in FIG.
  • FIG. 4 is a plan view of the spiral belt.
  • FIG. 5 is a plan view of the endless zigzag wound belt.
  • FIG. 6A is an exploded perspective view of the pneumatic radial tire according to the second embodiment.
  • FIG. 6B is a cross-sectional view of the auxiliary belt layer.
  • FIG. 7 is an exploded perspective view of the pneumatic radial tire according to the third embodiment.
  • FIG. 8 is an exploded perspective view of the pneumatic radial tire according to the fourth embodiment.
  • FIG. 9 is an exploded perspective view of the pneumatic radial tire according to the fifth embodiment.
  • FIG. 10 is an exploded perspective view of the pneumatic radial tire according to the sixth embodiment.
  • FIG. 11 is an exploded perspective view of a pneumatic radial tire according to a conventional example.
  • FIG. 12 is a graph showing the tension applied to the belt layer.
  • Figure 13 shows the relationship between the elongation and strength of the organic fiber cord in the main belt layer:
  • Figure 14 shows the relationship between organic fiber cord elongation and strength in the carcass layer:
  • FIG. 15 is a cross-sectional view of the pneumatic radial tire according to the seventh embodiment.
  • FIG. 16 is a sectional perspective view of a main part of a pneumatic radial tire according to a seventh embodiment.
  • FIG. 17 is a view similar to FIG. 16 showing another example of the configuration of the belt ply.
  • FIG. 18 is a sectional view of the pneumatic radial tire according to the eighth embodiment.
  • FIG. 19 is a perspective view illustrating a belt forming drum.
  • FIG. 20 is a diagram showing a belt structure of a comparative example tire.
  • FIG. 21A is a cross-sectional view of a pneumatic radial tire according to a conventional example.
  • FIG. 21 (B) is a cross-sectional perspective view of a main part of a pneumatic radial tire according to a conventional example.
  • FIG. 22 is a sectional view of a pneumatic radial tire according to another conventional example.
  • FIG. 23 is a view similar to FIG. 16 showing another example of the configuration of the belt ply.
  • the pneumatic radial tire 10 for an aircraft of the present embodiment has a bead portion.
  • 1 2 is provided with a bead core 1 4 having a round cross section, rubber-coated organic fiber
  • a carcass layer 16 composed of six carcass plies (not shown) in which cords are arranged in a radial direction is moored to the bead core 14.
  • a belt layer 20 is provided on the outer peripheral surface of the crown region of the carcass layer 16 in the tire radial direction, and a tread rubber layer 24 constituting a tread portion 23 is provided on the tire radial outside of the belt layer 20.
  • a side rubber layer 27 constituting the sidewall portion 25 is provided outside the carcass layer in the tire width direction.
  • the belt layer 20 includes a main belt layer 26 on the tire radial inner side, a sub-belt layer 28 provided on the tire radial outer side of the main belt layer 26, and a tire radial outer side of the sub-belt layer 28.
  • Protection belt layer 22 provided
  • the organic fiber cord used for the carcass ply forming the carcass layer 16 has a tensile breaking strength of 6.3 cN / dteX or more and an elongation of 0.2 c in the elongation direction under a NZd tex load of 0.2 to 1.8%, elongation at 1.9 cN / dte X load in the elongation direction 1.4 to 6.4%, elongation at 2.9 c NZdte X elongation in the elongation direction 2.1 ⁇ 8.6% is preferred (see Figure 14).
  • an organic fiber cord composed of aromatic polyamide-based fibers can be used.
  • an organic fiber cord having a lower twist coefficient of 0.12 to 0.85, more preferably 0.17 to 0.51, and a upper twist coefficient of 0.4 to 0.85 is used. preferable.
  • an organic fiber cord (a so-called hybrid cord) containing an aromatic polyamide fiber and an aliphatic polyamide fiber can also be used.
  • an organic fiber cord in which the weight ratio between the aromatic polyamide fiber and the aliphatic polyamide fiber is 100: 27 to 255 is preferable.
  • the carcass layer 16 is formed by twisting an aromatic polyamide-based organic fiber cord with an aliphatic polyamide-based organic fiber cord, and further comprising a polyamide-based organic fiber cord. It is also possible to use an organic fiber cord (so-called hybrid cord) in which the lower twist coefficient N1 of the cord is 0.12 to 0.85, more preferably 0.17 to 0.51.
  • a nylon cord is used for the carcass layer 16 of the present embodiment.
  • the main belt layer 26 includes a plurality of belt plies, and in the present embodiment, the first belt ply 26A, the second belt ply 26B, and the third belt ply 26C from the tire radial direction inside. , A fourth belt ply 26D, a fifth belt ply 26E, a sixth belt ply 26F, a seventh belt ply 26G, and an eighth belt ply 26H.
  • the first belt ply 26A and the second belt ply 26B are set to the same width
  • the third belt ply 26C and the fourth belt ply 26D are set to the same width
  • the fifth belt ply 26D is set to the same width
  • E and the sixth belt ply 26F are set to the same width
  • the seventh belt ply 26G and the eighth belt ply 26H are set to the same width.
  • the belt widths of the third belt ply 26C and the fourth belt ply 26D are wider than the first belt ply 26A and the second belt ply 26B, and the third belt ply 26C and the fourth belt ply 26D have a wider belt width.
  • the belt width of the fifth belt ply 26E and the sixth belt ply 26F is wider, and the belts of the seventh belt ply 26G and the eighth belt ply 26H are wider than the fifth belt ply 26E and the sixth belt ply 26F.
  • the width is set wide.
  • the first belt ply 26A to the eighth belt ply 26H constituting the main belt layer 26 are formed by rubber-coating a plurality of organic fiber cords.
  • the organic fiber cords of the first belt ply 26A to the eighth belt ply 26H preferably have a tensile breaking strength of 6.3 cN / dtex or more, and a load of 0.3 cN / dte X in the extension direction.
  • the organic fiber cord of the present embodiment is composed of aromatic polyamide fibers.
  • it is set to 0.80.
  • the first belt ply 26A to the eighth belt ply 26G are made of aromatic polyamide-based fibers, specifically, polyamide fibers manufactured by DuPont (product type name: KEVLAR (R) 29, nominal A fineness of 3000 denier, hereinafter referred to as Kepler as appropriate.)
  • the twisted cord was dipped and processed by a cord processing machine manufactured by Ichikin Industry Co., Ltd.
  • the tensile breaking strength of the dip cord was measured at room temperature of 25 ⁇ 2 ° C. using an autograph manufactured by Shimadzu Corporation, and a value of 14 c NZd tex was obtained. At this time, measure the elongation of the dip code when the stress in the tensile direction of the dip cord shows 0.3 cN / dtex, 2 • 1 cN / dtex, and 3.2 cN / dtex. As a result, 0.3% and 2.2% respectively. , And 3.2% were obtained.
  • the strength of the organic fiber cord (Kepler) used for the first belt ply 26A to the eighth belt ply 26G is 1400N.
  • the first belt ply 26A to the eighth belt ply 26H constituting the main belt layer 26 are strip-shaped elongated bodies formed by coating a plurality of organic fiber cords with rubber as shown in FIG. This is a so-called spiral belt formed by preparing 32 and winding this elongated body 32 in a spiral shape so as not to form a gap.
  • the inclination angle of the organic fiber cord is approximately 0 ° with respect to the tire equatorial plane CL.
  • the number of organic fiber cords to be driven is preferably in the range of 4 to 10 yarns / 10 mm.
  • the number of organic fiber cords to be driven is 6.3 / 10 mm.
  • the range is preferably provided within the range from the tire equatorial plane CL to 140% of the width BW of the main belt layer 26.
  • the width SBW of the sub belt layer 28 is 103% of the width BW of the main belt layer 26.
  • the sub-belt layer 28 is composed of one belt ply 28 A in the present embodiment.
  • the belt ply 28 A of the present embodiment prepares a strip-shaped elongated body 34 formed by coating one or a plurality of organic fiber cords with rubber. While making a one-way reciprocation between the ends of both plies approximately every one revolution, the tire is wound in the circumferential direction at an angle of 2 to 25 ° with respect to the equatorial plane of the tire. It is formed by winding a large number of times while shifting the width of the slender body 34 in the circumferential direction so that no gap is formed between the belts 34 (hereinafter referred to as an endless zigzag winding belt as appropriate).
  • the cross section of the belt ply 28 A formed in this manner is such that the organic fiber cord portion on the upper right and the cord portion on the left are overlapped with each other when viewed in cross section.
  • a belt ply consisting only of cords and a belt ply consisting only of upwardly sloping cords are superposed, which is equivalent to a so-called cross belt. In practice, this is a single ply. Will be counted as two.
  • This belt ply 28 A has an organic fiber cord included in the main belt layer 26.
  • Use organic fiber cords with the same or lower elastic modulus organic fiber cords whose elongation under load of 2.1 cN / dtex are almost equal to or higher than the organic fiber cord of the main belt layer 26) Is preferred.
  • a cord made of aliphatic polyamide-based fiber such as nylon, an aromatic polyamide-based fiber such as aramid and an aliphatic polyamide such as nylon A cord or the like containing a polyamide-based fiber is preferable.
  • a nylon cord (twisting number: 1260 D // 2/3; driving number: 7.3 Zl Omm) is used.
  • the inclination angle of the organic fiber cord is preferably within a range of 2 to 45 ° with respect to the tire equatorial plane CL. ° is set.
  • a protective belt layer 22 is provided on the outer side in the tire radial direction of the auxiliary belt layer 28 via a rubber layer 30.
  • the thickness of the rubber layer 30 is preferably in the range of 1.5 to 4.5 mm, and is set to 2.5 mm in the present embodiment.
  • the protective belt layer 22 is composed of a plurality of organic fiber cords 36 extending in a wavy shape in the tire circumferential direction and arranged in parallel with each other to form a single wavy cord having a rubber coating (rubber is not shown). Consists of ply 38.
  • the organic fiber cord 36 of the protective belt layer 22 preferably has an amplitude A of 5 to 25 mm and a wavelength B of 200 to 700% of the amplitude A.
  • the organic fiber cord 36 of the protective belt layer 22 is made of Kepler (300D / 3, the number of implants: 3.6 / 10 mm).
  • the total strength in the tire circumferential direction of the belt layer 20 (main belt layer 26 + sub-belt layer 28 + protective belt layer 22) per unit width at the tire equatorial plane CL position P 0 is expressed by K 0, the maximum width of the belt layer 20 around the tire equatorial plane CL (SBW: the sub-belt layer 28 is the widest in this embodiment.) Per unit width at the width position P2 of 2Z3 Assuming that the total strength of the belt layer 20 in the tire circumferential direction is K2, it is necessary to satisfy K2 and K0, and it is preferable to satisfy 0.3 ⁇ K2 / K0 ⁇ 0.8. .
  • a method of calculating the total strength according to the present embodiment will be described.
  • the method of calculating the elongation that gives strength is as follows: In this case, the elongation at break of one Kepler cord is 10%. Is the elongation given to the cord. (If it is composed of multiple types of cords, the elongation at break of the cord with the smallest elongation at break is calculated based on them.)
  • the strength of each chord when extended by 10% is 140 0 for the Kevlar code and 205 5 for the knee code.
  • the number of cords per unit width of 10 mm is 6.3, and for the ij ij belt layer 28, the number of cords per unit width 10 mm is 7.3, for protection belt.
  • the number of cords per unit width of 1 Omm is 3.6.
  • nine Kepler cords are laminated (eight main belt layers + one protective belt layer), and two nylon cords are laminated (two sub-belt layers). ing.
  • the cord strength when the corrugated organic fiber cord of the protective belt layer 22 is extended by 10% is 8 ON, the number of cords per unit width 1 Omm is 3.6, and the tire equator plane CL position P 0
  • the width P 2 of the maximum width SBW of the belt layer 20 with the center of the tire equatorial plane CL at the center is set to one layer.
  • the strength is not calculated by straightening the organic fiber cord, but the shape embedded in the tire, that is, the corrugated shape is used. Calculate the strength when the weight is extended by 10%.
  • the organic fiber cord is inclined at an angle of 0 with respect to the tire circumferential direction, Multiply the code strength by cos ⁇ to calculate the circumferential strength of the code.
  • K 2 / K 0 0.52.
  • the lamination thickness of the organic fiber cord is made the thickest at the tire equatorial plane position P0, the lamination thickness of the organic fiber cord at the tire equatorial plane position P0 is G0, and the maximum width of the belt layer 20 is increased.
  • the layer thickness of the organic fiber cord at the width position P 2 of 2Z3 of S BW is G 2
  • the tread portion 23 has a plurality of circumferential grooves 29 formed therein.
  • the strength at the tire equatorial plane position P0 is set to be greater than the strength at the maximum width S BW of the belt layer 20 at the width position P2 of 2Z3.
  • the amount of extension of the tread rubber layer 24 can be suppressed, and the degree of tension of the tread rubber layer 24 can be reduced.
  • the resistance to foreign object penetration has increased, and the safety of the tire has been improved.
  • the strength ratio K 2 / K 0 of the belt layer 20 is less than 0.2, the pressure resistance deteriorates due to the excessive tension being applied to the organic fiber cord located near the shoulder of the belt layer 20. May be caused.
  • the strength ratio K2 / K0 of the belt layer 20 exceeds 0.8, the organic fiber cords arranged at the width position P2 which is 2/3 of the maximum width S BW of the belt layer 20 are effectively used. And increase the weight of the pneumatic radial tire 10.
  • the lamination thickness G2 of the organic fiber cord at the width position P2 which is 2/3 of the maximum width SBW is determined by the lamination thickness GO of the organic fiber cord at the tire equatorial plane position P0. Since it was set larger than K2, K2 and K0 could be easily achieved.
  • the ratio G 2 ZG 0 of the thickness of the organic fiber cords in the belt layer 20 is less than 0.35, the pressure resistance of the organic fiber cords located near the shoulder portion is reduced due to excessive tension. There is a risk of causing a decrease.
  • the organic fiber cords arranged at the width position P2 which is 2/3 of the maximum width of the belt layer 20 become effective. It is not used, which leads to an increase in the weight of the pneumatic radial tire 10.
  • the tensile breaking strength of the organic fiber cord constituting the first belt ply 26A to the eighth belt ply 26H of the main belt layer 26 is set to 6.3 cN / dteX or more, the required pressure resistance Performance was satisfied, and weight reduction was achieved.
  • the elongation under a load of 0.3 cN / dtex is 0.2 to 2.0%, and the elongation is The elongation at 1.5 cN / dte X load in the direction is 1.5 to 7.0%, and the elongation at 3.2 cN / dte X load in the elongation direction is 2.2 to 9.3%
  • the target reduction in diameter growth could be easily achieved.
  • the first belt ply 26A to the eighth belt ply 26H of the main belt layer 26 are If the elongation percentage of the constituent organic fiber cord exceeds the above range, the expansion in the tire radial direction cannot be effectively suppressed at the time of filling the tire with the internal pressure, so that the performance against foreign matter sticking cannot be expected.
  • the elongation rate of the organic fiber cords constituting the first belt ply 26 A to the eighth belt ply 26 H of the main belt layer 26 is lower than the above range, the hoop effect of each belt ply is large. As a result, the carcass layer 16 swells more than necessary in the tire width direction, which is not preferable.
  • the organic fiber cords constituting the first belt ply 26 A to the eighth belt ply 26 H of the main belt layer 26 have an elongation of 0.3 c NZ dtex when loaded. Since it is 2 to 2.0%, the pneumatic radial tire 10 can be evenly stretched by the pressure applied from inside the raw tire during vulcanization, thereby aligning the directions of the organic fiber cords and driving the cords. Can be corrected.
  • the elongation of the organic fiber cords constituting the first belt ply 26 A to the eighth belt ply 26 H of the main belt layer 26 under a load of 0.3 cN / dte X is greater than 2.0%.
  • the effect of correcting the code properties during vulcanization is undesirably reduced.
  • the elongation percentage of the organic fiber cords constituting the first belt ply 26 A to the eighth belt ply 26 H of the main belt layer 26 is smaller than 0.2%, the tire at the time of vulcanization is used. During the expansion, the cord tension becomes large, and the organic fiber cord is not preferable because it invites inconvenience such as biting into rubber inside the tire radial direction.
  • the seventh belt ply 26 G and the eighth belt ply 26 H are laminated, so
  • the organic fiber cords of the first belt ply 26A to the eighth belt ply 26H constituting the main belt layer 26 are made of aromatic polyamide-based fibers, and have a lower twist coefficient of 0.12 to 0.2.
  • the first belt ply 26A to the eighth belt ply 26H constituting the main belt layer 26 are so-called spiral belts, and the angle of the organic fiber cord with respect to the tire equatorial plane CL is set to approximately 0 °.
  • the organic fiber cords included in the first belt ply 26A to the eighth belt ply 26H also include organic fiber cords whose angles with respect to the tire equatorial plane CL are set to be large.
  • a sub-belt layer 28 made of a ply 28 A was provided, and the width S BW of the sub-belt layer 28 was 103% of the width BW of the main belt layer 26.
  • the organic fiber cords of the sub-belt layer 28 are also made to have a low elasticity so that the organic fiber cords of the main belt layer 26 are also low in elasticity. Even if the organic fiber cord of the auxiliary belt layer 28 is damaged by stepping on a foreign object on the runway, the influence on the strength of the entire crown reinforcing layer is small, and the stress concentration around the bottom of the cut is small. The smaller the damage, the less likely it is that damage will continue if you continue to drive.
  • the sub-belt layer 28 since the organic fiber cord of the sub-belt layer 28 is inclined at 2 to 45 ° with respect to the tire equatorial plane CL, the sub-belt layer 28 is cut on the belt ply 28A, If the crack does propagate, it will reach the end of the belt along the cord, preventing further circumferential growth.
  • the tire may be damaged by cutting, and in the event that the crack may develop, the The effect of preventing progress is reduced. In addition, since the rigidity in the width direction of the tire is not secured, drag wear is likely to occur.
  • the inclination angle of the organic fiber cord of the auxiliary belt layer 28 with respect to the tire equatorial plane CL exceeds 45 °, the circumferential stiffness of the belt ply decreases, and the number of layers of the belt ply increases in order to suppress radial growth. Increase the weight of the tire.
  • the belt ply 28 A of the sub-belt layer 28 in which the organic fiber cord is bent in the same plane so as to be inclined in the opposite direction at each ply end and extends in a zigzag manner in the tire circumferential direction is formed in the width direction. Since there is no cut end of the organic fiber cord at the end of the ply, even when a large strain is generated at the end of the ply, for example, when a load is applied to the tire in the width direction, the sub-belt layer 28 can be used. Less likely to cause separation (between cut cord end and cover rubber).
  • a protective belt layer 22 including an organic fiber cord 36 extending wavy in the tire circumferential direction is provided on the outer side in the tire radial direction of the auxiliary belt layer 28 via a rubber layer 30 of 2.5 mm.
  • the thickness of the rubber layer 30 is less than 1.5 mm, it is difficult to remove the rubber layer 30 without damaging the main belt layer 26 existing on the radially inner side during tire rehabilitation. Obviously, it is difficult to remove the rubber layer 30 without damaging the main belt layer 26 existing on the radially inner side during tire rehabilitation. Becomes
  • the amplitude A of the organic fiber cord 36 of the protective belt layer 22 is less than 5 mm, and when the wavelength B exceeds 700% of the amplitude A, the internal pressure is filled into the pneumatic radial tire 10, and The organic fiber cord 36 is almost stretched in the circumferential direction by the action of the load thereon, so that the wrapping effect when foreign matter enters is reduced.
  • the protective belt layer 22 including the organic fiber cord 36 is provided on the outermost layer, even if the tread rubber layer 24 is worn and the protective belt layer 22 appears on the tread, However, unlike the case of metal cord, it does not scatter sparks.
  • the sub-belt layer 28 is a so-called intersecting belt layer, and other configurations are the same as those of the first embodiment. It is the same as the pneumatic radial tire 10.
  • the sub-belt layer 28 of the present embodiment is composed of two belt plies, a belt ply 28B and a belt ply 28C.
  • B includes a plurality of organic fiber cords inclined to the left with respect to the tire equatorial plane CL
  • the belt ply 28 C includes a plurality of organic fiber cords inclined to the right with respect to the tire equatorial plane CL.
  • the organic fiber cord used for the belt plies 28B and 28C is a so-called hybrid cord containing an aromatic polyamide fiber and an aliphatic polyamide fiber.
  • the auxiliary belt layer 28 is a so-called cross belt layer.
  • the same operation and effect as those of the pneumatic radial tire 10 of the first embodiment can be obtained.
  • the angle of the cord is generally relatively small with respect to the tire equatorial plane CL due to the manufacturing method, and the angle of the cord is Each time the tire makes one revolution, the code often jumps depending on the number of reciprocations (pitch) in the tire width direction (for example, 8 °, 16 °, etc.).
  • the angle of the cord can be freely set for the intersecting belt layer. Also, usually When a tilt is applied, the angle of the cord is slightly larger (about 10 to 30 °). When the angle of the cord is large in the interlaced belt layer, rigidity in the tire width direction can be secured, which is effective for dragging the shoulder portion.
  • the main belt layer 26 of the present embodiment is an endless zigzag winding belt having the same structure as the belt ply 28A of the sub-belt layer 28 used in the first embodiment. It is composed of four belt plies of the belt ply 26 D (the number of plies of the main belt layer 26 is counted as eight).
  • the angle of the organic fiber cord with respect to the tire equatorial plane CL is set to 2 to 8 degrees.
  • the organic fiber cord used for the first belt ply 26A to the fourth belt ply 26D of the present embodiment is a so-called rubber cord including an aromatic polyamide fiber and an aliphatic polyamide fiber. It is.
  • the weight ratio of the aromatic polyamide fibers to the aliphatic polyamide fibers is preferably 100: 10 to 170, more preferably 100: 17 to 86.
  • the tensile breaking strength is 6.3 c NZ d te X or more
  • the elongation in the elongation direction is 0.3 to NZ d te X
  • the elongation is 0.2 to 2.0%
  • the elongation rate can be set to 1.5% or more and 7.0% or less
  • the elongation rate under 3.2c NZd te X load can be set to 2.2% or more and 9.3% or less.
  • the aromatic polyamide organic fiber cord and the aliphatic polyamide organic fiber cord When twisting with a fiber cord the lower twist coefficient of the aromatic polyamide organic fiber cord is preferably 0.12 to 0.85.
  • the twisted cord was dipped and processed by a cord processing machine manufactured by Ichikin Industry Co., Ltd.
  • the breaking strength of this organic fiber cord is 110 ON.
  • the ply structure of the main belt layer 26 and the material of the organic fiber cord are changed from those of the pneumatic radial tire 10 of the first embodiment.
  • the same operation and effects as those of the pneumatic radial tire 10 of the embodiment can be obtained, and the rigidity in the tire width direction can be obtained, which is effective in dragging the shoulder portion.
  • the pneumatic radial tire 44 of the present embodiment This is a configuration in which the auxiliary belt layer 28 is omitted from the pneumatic radial tire 10 in the form.
  • the pneumatic radial tire 44 of the present embodiment is slightly inferior in crack propagation property or abrasion resistance at the time of belt damage, but has a sufficiently high cut resistance and a large weight reduction effect as compared with conventional products. It is characteristic.
  • the pneumatic radial tire 46 of the present embodiment has basically the same structure as the first pneumatic radial tire 10, but tires near both ends of the main belt layer 26 are provided.
  • Two narrow belt plies 48 are stacked radially outward.
  • the belt ply 48 has the same configuration (spiral belt) as the first belt ply 26 A to the eighth belt ply 26 H, and is merely narrow in width.
  • the two belt plies 48 have the same width, and are provided slightly outside the width position P2 of 2/3 of the maximum width of the belt layer 20 and across the end of the belt layer 20. You.
  • FIG. 1 is a modification of the third embodiment, and the same components as those of the third embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the pneumatic radial tire 50 of the present embodiment is different from the pneumatic radial tire 46 of the third embodiment in the vicinity of both ends of the main belt layer 26.
  • two narrow belt plies 48 similar to the fifth embodiment are overlapped.
  • one kind of the conventional pneumatic radial tire four kinds of the pneumatic radial tires of the comparative example, and 13 kinds of the pneumatic radial tires of the examples to which the present invention was applied were used.
  • the prepared tire weight, tire diameter growth rate, cut resistance, and pressure resistance were examined. In each case, the tire size is 127 0 X 45 5 R 22 23 PR.
  • Tire weight The index is expressed as an index with the conventional tire weight being 100. The smaller the value, the lighter the weight.
  • the air pressure used is based on the MEASURING RIM and INFLATION PRESSURE specified in the YEAR BOOK of the TIRE and RIM ASSOCIATION (TRA)
  • Metacutability The depth of the cut when a force cutter with a width of 40 mm and a cutting edge angle of 30 ° was pressed vertically with 5% of the specified load toward the width direction of the tread center of the tread was examined.
  • Examples 1 to 3 The same structure as the pneumatic radial tire described in the first embodiment, but the thickness of the belt layer is changed. Other details are as shown in the table below.
  • Example 4 The same structure as the pneumatic radial tire described in the first embodiment, but the organic fiber cord used for the belt ply of the sub-belt layer is changed to a hybrid type. Other details are as shown in the table below.
  • Example 5 It has the same structure as the pneumatic radial tire described in the first embodiment, except that the organic fiber cord used for the belt ply of the main belt layer is changed to a hybrid type. Other details are as shown in the table below.
  • Example 6 has the same structure as the pneumatic radial tire described in the first embodiment, but the organic fiber cord used for the belt ply of the main belt layer is a hybrid type, and the belt ply of the sub belt layer is an interlaced belt. Has been changed to Other details are as described in the table below.
  • Example 7 The other structure is the same as that of the pneumatic radial tire described in the first embodiment, except that the organic fiber cord used for the belt ply of the main belt layer is a hybrid type, and the belt of the sub belt layer is used.
  • the plies have been changed to endless zigzag belts. Other details are as shown in the table below.
  • Example 8 has the same structure as the pneumatic radial tire according to the fourth embodiment (there is no auxiliary belt layer). Other details are as shown in the table below.
  • Example 9 has the same structure as the pneumatic radial tire according to the fifth embodiment (the tire radially outside near both ends of the main belt layer (width position of 2/3 of the maximum width of the belt layer) Outer belt), two narrow belt plies are overlapped, and other details are as shown in the table below.
  • Example 10 has the same structure as the pneumatic radial tire according to the sixth embodiment (the tire radially outside near both ends of the main belt layer (width position of 2Z3 which is the maximum width of the belt layer) (Outer side), two narrow belt plies are overlapped.Other details are as shown in the table below.
  • Example 11 The structure is similar to that of the pneumatic radial tire described in the first embodiment, but the organic fiber cord used for the belt ply of the main belt layer is Kepler, and the belt ply of the sub belt layer is an interlaced belt. Has been changed to Other details are as shown in the table below.
  • Example 12 It has the same structure as the pneumatic radial tire described in the first embodiment. Details are as described in the following table.
  • Example 13 It has the same structure as the pneumatic radial tire described in the first embodiment. Details are as described in the following table.
  • Comparative Examples 1 and 2 The same structure as the pneumatic radial tire described in the first embodiment, but the thickness of the belt layer is different from the limited range of the present invention. Other details are as described in the table below.
  • Comparative Example 3 The same structure as the pneumatic radial tire described in the first embodiment, but a nylon cord was used for the organic fiber cord of the main belt layer. Other details are as shown in the table below.
  • Comparative Example 4 The same structure as the pneumatic radial tire described in the first embodiment, but the number of belt plies in the main belt layer was increased, and a nylon cord was used as the organic fiber cord. Other details are as shown in the table below.
  • the carcass layer 16 is composed of seven carcass plies.
  • the main belt layer 26 of the conventional example includes first belt plies 26 A to 3rd belts, which are endless zigzag wound belts similar to the main belt layer 26 of the pneumatic radial tire 42 according to the third embodiment.
  • the belt ply consists of three belt plies, 26C, and 4th belt ply 26D and 5th belt ply 26E, which form a crossover belt.
  • the force decreases from the first belt ply 26A to the fifth belt ply 26E, and the organic fiber
  • the code uses aliphatic polyamide code. Other details are as shown in the table below.
  • the twisted cord was dipped and processed by a cord processing machine manufactured by Ichikin Industry Co., Ltd.
  • Polyamide fiber product type name: 66 nylon, nominal fineness: 126 denier
  • Toray Industries, Inc. was used as nylon 66.
  • Example 4 Example 5
  • Example 6 Example 7 Perspective view Fig. 2 Fig. 6 Fig. 7
  • the bead provided in the bead portion 12 is provided.
  • a carcass layer 16 extending toroidally is provided between the cores 14, and a crown area of the carcass layer 16 formed of at least one carcass ply consisting of an organic fiber cord extending substantially in a radial direction and a trad rubber.
  • a belt layer 20 is disposed between the belt layer 20 and the belt layer 20.
  • the total thickness t of the belt layer 20 is made thicker at the central portion in the width direction than at the side portions, and the belt layer 20 is It comprises a sub-belt layer 28 located radially outward and a main belt layer 26 located radially inward.
  • the sub-belt layer 28 has a plurality of layers, the width of which gradually decreases outward in the radial direction, as shown in the cross-sectional perspective view of the main part in FIG. A, 28B, 28C, and its maximum width w. Is set in the range of 60% to 90% of the maximum tire width W of the pneumatic radial tire 52 which is mounted on the rim and filled with the specified internal pressure (TRA).
  • TRA specified internal pressure
  • the maximum width w of the sub-benolet layer 28 is set to 60 to 90% of the maximum tire width W. It is structurally difficult for a tire having a tread portion slightly narrower than the tire maximum width to have a diameter exceeding 90% of the maximum tire width W, and if it exceeds this, failure may occur. While the maximum width w of the secondary belt layer 28. If it is less than 60% of the maximum width W of the tire, the belt stiffness in the tread side area decreases, and the high-speed durability is significantly impaired.
  • the main belt layer 26 also consists of three layers of belt plies 26 A, 26 B, 26 C, as shown in FIG.
  • the maximum width shall be in the range of 15 to 60% of the maximum tire width W.
  • the maximum width Wl of the main belt layer 26 is set to fall within the range of 15 to 60% of the tire maximum width W, as described above, while suppressing the increase in weight while maintaining the central area of the tread. It is intended to effectively restrain the swelling deformation of the steel.
  • the belt plies 26A, 26B, 26C are both endless zigzag wound belts (see Fig. 5), and the belt plies 26A, 26 Remove the cut end of the cord from B, 26 C.
  • the belt plies 28A, 28B and 28C are both endless zigzag winding belts (see FIG. 5), and the belt plies 28A and 28B , Remove the cut end of the cord from 28 C. Such removal of the cut end of the cord can also be achieved by using a spiral belt (see Fig. 4).
  • FIG. 17 is a cross-sectional perspective view of a main part showing a case where each of the belts / reto plies 26 A, 26 B, and 26 C of the main belt layer 26 is configured in this manner.
  • the reason that the belt ply cord has an angle of 25 ° or less with respect to the tire equatorial plane CL is that the main role of the belt in radial tires is to secure rigidity in the tire circumferential direction. (The carcass layer mainly bears rigidity in the radial direction.) If the angle of the belt ply cord with respect to the tire equatorial plane CL increases and exceeds 25 °, the circumferential rigidity decreases. In order to secure the required rigidity, it is necessary to increase the number of belt plies, and an increase in tire weight is inevitable.
  • the cords constituting the respective vinyl ply 26 A, 26 B, 26 C, 28 A, 28 B, 28 C of the belt layer 20 are made of aliphatic polyamide-based or other organic fibers.
  • the organic fiber cord forming the carcass ply has an elastic modulus in the range of 100% to 700%, and among them,
  • the cords constituting the belt plies 26 A, 26 B, 26 C of the belt layer 26 are preferably composed of aromatic polyamide organic fiber cords.
  • a protective belt layer 22 is disposed between the belt layer 20 and the tread rubber layer 24, and the protective belt layer 22 is formed to have a thickness of 5 to 25 mm.
  • the rubber thickness in the tread side portion of the outer peripheral side of the sub-belt layer 28 is reduced by the rubber in the center of the tread. almost equal to the thickness H 2, Note and effectively suppress an increase in tire weight, internal pressure filling and the main belt layer bulging deformation of the tread de central region during rolling under load pneumatic radial tire 5 2 2 6 can be advantageously prevented, so that the amount of swelling deformation of the tread rubber layer 24 is sufficiently uniform in the width direction, and Effectively prevents premature wear in the central area, shoulder drop wear in the tread side area, etc.
  • the durability of the tread rubber layer 24 in the central region of the tread can be improved while the amount of extension of the tread rubber layer 24 is reduced.
  • ⁇ H Measured at 90% of the ground contact width in the standard condition of the tire, the distance from the tread to the outer peripheral surface of the sub-belt layer 28-the protective belt layer Code diameter ”.
  • the rubber thickness H 2 in the center of the tread is defined as “the dimension measured in the tire radial direction from the outer peripheral surface of the sub-belt layer 28 to the tread surface measured on the tire equatorial plane CL—the cord diameter of the protective belt layer 22. It is.
  • the belt plies 26 A, 26 B, and 26 C of the main belt layer 26 do not have cord cut ends on their side edges, the belt plies 26 A, 26 B, 26 C are not subjected to a load in the tread width direction. Separation of the plies 26 A, 26 B, 26 C can be effectively prevented, and the belt durability can be greatly improved.
  • Tya's contact width under standard conditions: MEASURING RIM and INFLATION specified in the YEAR BOOK version of TIRE and RIMASSOCIATION (TRA)
  • the pneumatic radial tire 54 of this embodiment is a modification of the above-described seventh embodiment, and the same components as those of the seventh embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • one of a plurality of circumferential grooves 29 formed in the tread portion 23 is extended to the center of the tread.
  • the raw tire is molded on a rigid core of, for example, eight to twelve-split type, which has an outer surface shape corresponding to the inner surface shape of the finished tire, and the raw tire is loaded into the mold together with the rigid core and vulcanized. It is preferable to improve the dimensional accuracy of each component of the tire.
  • the rigid core can be taken out from the vulcanized product tire by disassembling it into segments.
  • the belt layer 20 is formed on its own or together with the tread rubber layer 24 on a separate and independent belt forming drum, as shown in FIG. It is preferable to mold the main belt layer 26 in the annular recess 58 provided at the center in the width direction of the sub-belt layer 28 in order to reduce the amount of deformation of the sub-belt layer 28 up to the product tire.
  • Comparative tire A pneumatic radial tire having the structure shown in FIG.
  • the belt structure is different from that of the example tire.
  • the belt structure is different from that of the example tire.
  • the pneumatic radial tire according to the present invention is particularly used for an aircraft. Suitable for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Tires In General (AREA)

Description

明細書 空気入りラジアルタイヤ、 及びその製造方法 技術分里: 本発明は、 本発明は、 空気入りラジアルタイヤ、 及び空気入りラジアルタイヤ の製造方法にかかり、 特に、 異物等のカットに対する耐久性を向上させ、 同時に 軽量化も達成することのできる航空機に好適な空気入りラジアルタイヤ、 及びそ の製造方法に関する。 背景技術 従来の空気入りラジアルタイヤ、 特に航空機用ラジアルタイヤは、 高い使用内 圧や、 高速回転中の遠心力の作用によって、 トレッド面の径方向のせり出しが大 きい。
トレツド面が径方向のせり出すと、 これに伴ってトレツドゴムがタイヤ周方向 に引き伸ばされた状態となる。
一般に、 航空機用ラジアルタイヤは、 高内圧、 高荷重の条件下で使用されるた め、 異物の上を通過する際にタイヤ全体が異物に乗り上げることによってトレツ ドを損傷しない性質、 いわゆる 「包み込み性」 に乏しく、 タイヤのトレッドゴム がタイヤ周方向に引き伸ばされた状態では、 特に異物に対する抵抗力が弱くなり 、 踏みつけた異物がトレッド内部に容易に侵入し、 タイヤを損傷し易いという問 題がある。
また、 タイヤ幅方向中央部のせり出し量がタイヤ幅方向両端部付近よりも大き くなることによって生じる径差が回転中のタイヤの引きずり現象を起こし、 ショ ルダ一部付近がタイヤ中央部よりも早く摩耗してタイヤの寿命を短縮させる、 い わゆる偏摩耗現象が起こる問題もある。
従来の比較的低弾性のコードをベルト層に用いたラジアルタイヤでは、 クラウ ン補強プライ層の主用部分は、 その幅がいずれもタイヤ接地幅と同等であり、 タ ィャ径方向内外に隣接するベルト層はごく小さいステップをもって積層されてい ることが殆どである (特開平 5— 1 9 3 3 0 6号公報参照)。
トレッ ドの膨出変形を抑制してトレッ ドの摩耗特性を改善し、 併せて、 ェンべ ロープ性を向上させるベく、 図 2 2の横断面図で例示するように、 カーカス層 1 6のクラウン域と トレツドゴム層 2 4との間に配設されるベルト層 2 0を、 広幅 ベルトプライからなる従来一般の主ベルト層 2 6と、 この主ベルト層 2 6の外周 側に付加した、 狭幅ベルトプライからなる副ベルト層 2 8とで構成し、 これによ り、 主ベルト層 2 6の中央部に配設したその副ベルト層 2 8をもってベルト剛性 を高め、 特に、 トレッ ド中央域の膨出変形を拘束する技術から生まれた空気入り ラジアルタイヤ 1 0 2が考えられる。
また、 タイヤの幅方向中央部の内圧によるせり出しを抑制するために、 従来よ り用いられる単純な手法としては、 プライコードを比較的弾性率の高い芳香族ポ リアミ ド等のコードに置き換えることがある (特開昭 6 1 - 1 7 8 2 0 4号公報 参照)。
芳香族ポリアミ ドコードは、 これまで航空機用タイヤに一般に用いられてきた 脂肪族ポリアミ ドと比較して低伸び率領域においても高い張力を発揮して内圧を 保持するため、 タイヤのせり出しを効果的に抑制することができる。
なお、 耐カツトセパレーシヨン性能を向上させるための従来例として、 例えば 、 ベルトに狭幅強化層 (コードはスチール) を追加して配置した空気入りラジア ルタイヤが提案されている (特開平 8— 5 8 3 1 0号公報参照)。
)。
また、 その他の従来例として、 有機繊維からなるベルトの最外層にガラス、 金 属、 ァラミ ドのような高強度コードで補強したコードによって構成された補強層 を設けた空気入りラジアルタイヤが提案されている (U S 4 2 1 6 8 1 3号公報 参照)。
これらの従来の発明は、 張力の大きいベルトをさらに追加するものであった。 しかしながら、 図 2 2に示す従来技術によれば、 ベルト層の総厚みが最も厚く なるトレッド中央域に所要のゴム厚み H (ゴムのみの厚みであり、 コードは除く ) を確保することにより、 トレッ ド側部域のゴム厚み H。が厚くなりすぎるため タイヤ重量の増加が余儀なくされる他、 トレツド側部域の発熱量が増大するため 、 高速耐久性が低下するという問題があった。 ·
また、 従来のベルト構造において、 ベルトプライに比較的高弾性なコードを使 用するだけでは、 存分にそのコード特性を活かした性能を発揮できず、 また、 使 用する部材量を極小化しなければならないという軽量化の課題との両立が困難で めった。
そもそも航空機用タイヤは、 ベルト枚数が多いために枚数を増やす構成は避け たく、 また転動する際に大きな遠心力がかかることからトレツド部の重量は軽く したい要求がある。
したがって、 これらを克服するためには、 コードの特性を活かせる無駄のない 新たなベルト配置、 及び構造を採用することが必須となる。
本発明は上記事実を考慮し、 トレッ ド面の径方向成長を抑制し、 異物等のカツ トに対する耐久性を向上させ、 同時に軽量化も達成することのできる航空機に好 適な空気入りラジアルタイヤを提供することが目的である。 発明の開示 発明者が、 ベルト層の張力負担を詳細に調べた結果、 図 1 2のグラフに示すよ うに、 1 0 0 %内圧 (T R A規定内圧) の無負荷状態では 1点鎖線のような分布 になっていた。 なお、 図 1 2において、 縦軸は張力、 横軸はベルト幅方向の位置 、 S B Wはベルト層の最大幅を示す。
ところで、 航空機用タイヤの場合、 無負荷状態において、 規定内圧の 4 0 0 % の耐圧性が必須である。 該 4 0 0 %内圧充填時の張力分布を調べた結果、 実線の ようになることが分かった。
一方、 荷重負荷状態では、 ベルト層の張力分布は 2点鎖線のようになることが 分かった。
このことから、 該ベルト層は、 両方の条件を満たす強度を有することが必要と なることが分かる。 発明者は種々の実験、 調査から、 無負荷時の張力に対し、 赤道面の強力をベル ト層の最大幅の 2 / 3の位置の強力よりも大きく規定することで、 径成長の抑制 と重量減の両立を達成できることを見出した。
請求項 1に記載の発明は上記事実に鑑みてなされたものであって、 一対のビー ドコアと、 一方ビードコアから他方のビードコアに向けてトロイド状に延びる少 なくとも 1枚以上のカーカスプライからなるカーカス層と、 前記カーカス層のタ ィャ半径方向外側のクラウン域外周面に、 有機繊維コードを含む少なくとも 1枚 以上のベルトプライからなるベルト層と、 を備えた空気入りラジアルタイヤであ つて、 タイヤ赤道面位置 P 0での単位幅当りにおける前記ベルト層のタイヤ周方 向の総強力を K 0、 タイヤ赤道面を中心として前記ベルト層の最大幅の 2 Ζ 3の 幅位置 Ρ 2での単位幅当りにおける前記ベルト層のタイヤ周方向の総強力を Κ 2 としたときに、 1:2 < 1^ 0を満足する、 ことを特徴としている。
次に、 請求項 1に記載の空気入りラジアルタイヤの作用を説明する。
請求項 1に記載の空気入りラジアルタイヤでは、 タイヤ赤道面位置 Ρ 0での単 位幅当りにおけるベルト層のタイヤ周方向の総強力 Κ 0を、 タイヤ赤道面を中心 としてベルト層の最大幅の 2 / 3の幅位置 Ρ 2での単位幅当りにおけるベルト層 のタイヤ周方向の総強力より大きく設定したので、 ベルト層の材料使用量を抑え つつ、 標準内圧充填時、 及び高速回転時に、 トレッド中央域でのトレッドゴムの 周方向伸張量を抑制し、 タイヤの径成長を抑制することができる。
トレツドゴムの周方向伸張量が抑制されることでゴムの緊張度合いが低下する ので、 異物の進入に対する抵抗力が増大し、 また、 万一異物が刺さり込んだ場合 であっても、 亀裂の成長を抑えることが出来る。
(総強力の定義)
. ここでいう総強力とは、 ベルト層の周方向の強力を指しており、 1本のコード の強力に単位幅当り (ここでは 1 0 mm) の本数を掛けて算出したものである。 なお、 コードが周方向に対して角度 6で傾斜している場合の総強力は、 上記単 位幅当りの総強力に c o s 0を掛けて算出してものとする。
また、 タイヤ内のコードがタイヤ周方向に波型 (ジグザグ状) に伸ぴている場 合は、 真っ直ぐに伸ばして強力を算出するのでは無く、 タイヤに埋設されている 形状、 即ち、 波状に型付けされたものを周方向に伸ばした時の強力を算出する。 請求項 2に記載の発明は、 請求項 1に記載の空気入りラジアルタイヤにおいて 、 0. 2≤K2/K0≤ 0. 8を満足する、 ことを特徴としている。
次に、 請求項 2に記載の空気入りラジアルタイヤの作用を説明する。
強力の比 Κ2ΖΚ0が 0. 2を下回ると、 ショルダー部付近に位置する有機繊 維コードに過大な張力が負担されることによる耐圧性能の低下を引き起こす虞が ある。
一方、 強力の比 Κ2/Κ0が 0. 8を上回ると、 2/ 3点に配置したベルトプ ライの有機繊維コードが有効に活用されず、 空気入りラジアルタイヤの重量増に つながる。
したがって、 強力の比 Κ2/Κ0は、 0. 2≤Κ 2/Κ 0≤ 0. 8を満足する ことが好ましい。
請求項 3に記載の発明は、 請求項 1または請求項 2に記載の空気入りラジアル タイヤにおいて、 前記ベルト層において、 前記有機繊維コードの積層厚みを前記 タイヤ赤道面位置 Ρ 0で最も厚くし、 前記タイヤ赤道面位置 Ρ 0での前記有機繊 維コードの積層厚みを G 0、 前記ベルト層の最大幅の 2Ζ 3の幅位置 Ρ 2での前 記有機繊維コードの積層厚みを G 2としたときに、 G 2く GOを満足する、 こと を特徴としている。
次に、 請求項 3に記載の空気入りラジアルタイヤの作用を説明する。
ベルト層の最大幅の 2Z 3の幅位置 P 2での有機繊維コードの積層厚み G 2を 、 タイヤ赤道面位置 P 0での有機繊維コードの積層厚み G 0よりも大きく設定す ることで、 K 2く K0を容易に達成することができる。
なお、 有機繊維コードの積層厚みとは、 ベルト層をタイヤ径方向断面で見たと きのタイヤ径方向に積層されている有機繊維コードの総径寸法である。 例えば、 直径が Aの有機繊維コードが 1 2本積層されている場合には、 積層厚みは AX 1 2となる。
請求項 4に記載の発明は、 請求項 3に記載の空気入りラジアルタイヤにおいて 、 0. 3 5≤G 2/G0≤ 0. 8 5を満足することを特徴としている。
次に、 請求項 4に記載の空気入りラジアルタイヤの作用を説明する。 有機繊維コードの積層厚みの比 G 2/G 0が、 0. 35を下回ると、 ショルダ 一部付近に位置する有機繊維コードに過大な張力が負担されることによる耐圧性 能の低下を引き起こす虞がある。
一方、 有機繊維コードの積層厚みの比 G 2ZG 0が 0. 85を上回ると、 2 / 3点に配置したベルトプライの有機繊維コードが有効に活用されず、 空気入りラ ジアルタイヤの重量増につながる。
したがって、 有機繊維コードの積層厚みの比 G 2/G 0は、 0. 35 G2Z G 0≤ 0. 85を満足することが好ましい。
請求項 5に記載の発明は、 請求項 1乃至請求項 4の何れか 1項に記載の空気入 りラジアルタイヤにおいて、 前記ベルト層において、 前記ベルト層の最大幅の 2 /3の幅位置 P 2での前記有機繊維コードの積層厚みを G 2としたときに、 前記 ベルト層には、 前記ベルト層の最大幅の 2Z3の幅位置 P 2よりもタイヤ幅方向 外側の領域において、 前記積層厚み G 2よりも積層厚みの厚い部分が設けられて いる、 ことを特徴としている。
次に、 請求項 5に記載の空気入りラジアルタイヤの作用を説明する。
ベルト層の最大幅の 2/3の幅位置 P 2よりもタイヤ幅方向外側の領域におい て、 積層厚み G 2よりも積層厚みの厚い部分を設けると、 高速走行時、 特にタイ ャ幅方向の外力にさらされるような場合に、 タイヤ両側部の大きな張力変動を柔 軟に吸収せしめることが可能となり、 空気入りラジアルタイヤの寿命を著しく低 下させ得るスタンディングウェーブの発生を効果的に抑制することができる。 請求項 6に記載の発明は、 請求項 1乃至請求項 5の何れか 1項に記載の空気入 りラジアルタイヤにおいて、 前記ベルト層は、 引張破断強度が 6. 3 c N/d t e x以上、 伸張方向に 0. 3 c NZd t e X荷重時の伸び率が 0. 2〜2. 0 % 、 伸張方向に 2. 1 c NZd t e X荷重時の伸び率が 1. 5〜7. 0%、 伸張方 向に 3. 2 c NZ d t e X荷重時の伸び率が 2. 2〜 9. 3 %とされた有機繊維 コ一ドを含むベルトプライの少なくとも 2枚以上で構成された主ベルト層を有す る、 ことを特徴としている。
次に、 請求項 6に記載の空気入りラジアルタイヤの作用を説明する。
本発明のように、 ベルト層の強度分布を規定することで、 径成長抑制と重量減 の両立を達成できるが、 ナイロンのような低弾性のコードを用いると、 径成長を 抑えるために多層にする必要があり、 タイヤの重量増につながる。
請求項 6に記載の空気入りラジアルタイヤでは、 主ベルト層を、 引張破断強度 が 6. 3 c N/d t e x以上とされた高弾性の有機繊維コードを含む少なくとも 2枚以上のベルトプライで構成することにより、 必要な耐圧性能を満足すること ができる。
ここで、 有機繊維コードの伸張方向に 2. 1 c N/d t e x荷重時の伸び率を 1. 5〜7. 0%、 伸張方向に 3. 2 c NZd t e X荷重時の伸び率を 2. 2〜 9. 3%とすることにより、 目標の径成長の抑制を容易に達成することができた その理由は、 航空機用の空気入りラジアルタイヤでは、 標準状態の内圧負荷時 におよそ 2. 1 c N/d t e Xのコード張力が加わり、 高速走行時におよそ 3. 2 c N/d t e xのコード張力が加わるが、 有機繊維コードの伸び率が上記範囲 を上回る場合、 タイヤ内圧充填時においてタイヤ径方向の膨出を効果的に抑えら れず、 異物の刺さり込みに対する性能を期待できなくなるからである。
一方、 有機繊維コードの伸び率が上記範囲を下回る場合、 ペルトプライのタガ 効果が大き過ぎるため、 カーカスプライが必要以上にタイヤ幅方向に膨出する結 果となり好ましくない。
さらに、 有機繊維コードの伸張方向に 0. 3 c NZ d t e X荷重時の伸び率を 0. 2〜2. 0 %とした理由は、 以下に述べる通りである。
先ず、 空気入りラジアルタイヤを加硫するに当り、 航空機用空気入りラジアル タイヤの場合、 通常タイヤモールド内にて生タイヤが 0. 2〜2. 0%ほど伸張 する様にタイヤ外径が設定される。
これは、 加硫時に生タイヤ内部より負荷される圧力によってタイヤを均等に伸 張せしめることによってコードの方向を揃え、 コード打込みのばらつきを是正す るためのものである。
然る該工程においては、 0. 3 c N/d t e X程度の比較的小さい張力が有機 繊維コードに作用するが、 このときの有機繊維コードの伸び率が 2. 0%より大 きいと、 コード性状是正の効果が薄く、 また、 伸び率が 0. 2%より小さい場合 には、 加硫時の膨張時にコード張力が大となり、 有機繊維コードがタイヤ径方向 内側のゴムに食い込むなどの不都合が生じるからである。
(標準状態の内圧負荷時の定義)
なお、 ここでの内圧、 及ぴ荷重は、 TRA YEAR BOOKの 2002年 度版に規定されている内圧、 及び荷重を採用している。
例えば、 航空機用ラジアルタイヤ 1 270 X4 55R 22 32 P Rの場合、 規定内圧は 1 620 k P a、 規定荷重は 2486 0 k gである。
なお、 有機繊維コードは、 伸張方向に 0. 3 c N/d t e x荷重時の伸び率が 0. 2〜: 1. 5 %、 伸張方向に 2. 1 c N/ d t e X荷重時の伸び率が 1. 5〜 6. 5 %、 伸張方向に 3. 2 c N// d t e X荷重時の伸び率が 2. 2〜8. 3 % のものがより好ましい。
請求項 7に記載の発明は、 請求項 6に記載の空気入りラジアルタイヤにおいて 、 前記主ベルト層のタイヤ幅方向端部では、 少なくとも前記ベルトプライが 2層 以上積層されている、 ことを特徴としている。
次に、 請求項 7に記載の空気入りラジアルタイヤの作用を説明する。
主ベルト層のタイヤ幅方向端部において、 ベルトプライを 2層以上積層するこ とで、 タイヤ走行時、 特に、 タイヤ幅方向に外力が作用する場合のように、 タイ ャ接地面幅方向両端付近の有機繊維コードに激しい張力変動を伴うような条件下 においても、 その弾力性を持って衝撃を効果的に分散することが可能となり、 苛 酷な使用条件下におけるタイヤの信頼性向上に効果的である。
請求項 8に記載の発明は、 請求項 6または請求項 7に記載の空気入りラジアル タイヤにおいて、 前記主ベルト層は、 芳香族ポリアミ ド系の繊維から構成され、 下撚り係数が 0. 1 2〜0. 85、 上撚り係数が 0. 40〜0. 80とされた有 機繊維コードを含むベルトプライを有する、 ことを特徴としている。
次に、 請求項 8に記載の空気入りラジアルタイヤの作用を説明する。
主ベルト層を構成する有機繊維コ一ドを芳香族ポリアミ ド系の繊維から構成し 、 下撚り係数を 0. 1 2〜0. 8 5、 好ましくは 0. 1 7〜0. 5 1、 上撚り係 数を 0. 40〜0. 80とすることで、 有機繊維コードを請求項 6に規定の物性 、 即ち、 引張破断強度を 6. 3 c NZd t e X以上、 伸張方向に 0. 3 c N/d t e x荷重時の伸び率を 0. 2〜2. 0 %、 伸張方向に 2. l c N/d t e x荷 重時の伸び率を 1. 5〜7. 0 %、 伸張方向に 3. 2 c N/ d t e X荷重時の伸 び率を 2. 2〜9. 3 %に設定することができる。
(撚り係数の定義)
ここでいうより係数とは、 以下の式から算出されるものである。
N T = N X ( 0. 1 3 9 X Ό/ p ) 1 2 X 1 0— 3
N:有機繊維コード 1 0 0 mm当りの撚り数
下撚りの "D":下撚りをかける糸束のデニール数
上撚りの "D": コード全体のデニール数 ÷ 2
β :有機繊維コードの比重 (gZcm3)
請求項 9に記載の発明は、 請求項 6乃至請求項 8の何れか 1項に記載の空気入 りラジアルタイヤにおいて、 前記主ベルト層は、 芳香族ポリアミ ド系の繊維と脂 肪族ポリアミ ド系の繊維とを含み、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維との重量比が 1 0 0 : 1 0〜 1 7 0とされた有機繊維コードを含むベ ルトプライを有する、 ことを特徴としている。
次に、 請求項 9に記載の空気入りラジアルタイヤの作用を説明する。
主ベルト層を構成する有機繊維コードを芳香族ポリアミ ド系の繊維と脂肪族ポ リアミ ド系の繊維とから構成し、 かつ芳香族ポリアミ ド系の繊維と脂肪族ポリア ミ ド系の繊維との重量比を 1 0 0 : 1 0〜 1 7 0とすることで、 有機繊維コード を請求項 6に規定の物性、 即ち、 引張破断強度が 6. 3 c N/ d t e x以上、 伸 張方向に 0. 3 c NZ d t e X荷重時の伸び率が 0. 2〜2. 0 °/。、 伸張方向に 2. 1 c N/ d t e X荷重時の伸び率が 1. 5〜7. 0 %、 伸張方向に 3. 2 c Nノ d t e X荷重時の伸び率が 2. 2〜9. 3 %に設定することができる。
ここで、 芳香族ポリアミ ド系の繊維の重量 1 0 0に対して脂肪族ポリアミ ド 系の繊維の重量が 1 0を下回ると、 上記荷重を負荷したときに、 コード伸張が小 さくなるため請求項 6に規定の物性を達成することが困難となる。
一方、 芳香族ポリアミ ド系の繊維の重量 1 0 0に対して脂肪族ポリアミ ド系の 繊維の重量が 1 7 0を上回ると、 上記荷重を負荷したときに、 コード伸張が大き くなるため請求項 6に規定の物性を達成することが困難となる。 なお、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維との重量比は、 より好ましくは 1 00 : 1 7〜86である。
ここで、 脂肪族ポリアミ ド系の繊維とは、 例えば、 6 _ナイロン、 6, 6—ナ ィロン、 4, 6—ナイロン繊維等である。
ここで、 有機繊維コードは、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系 の繊維とから構成されていれば良く、 芳香族ポリアミ ド系有機繊維コードと脂肪 族ポリアミ ド系有機繊維コードとを撚り合わせても良く、 芳香族ポリアミ ド系の 繊維と脂肪族ポリアミ ド系の繊維とを合わせてから撚りをかけても良い。
また、 芳香族ポリアミ ド系有機繊維コードを A、 脂肪族ポリアミ ド系有機繊維 コードを Bとした場合、 Aまたは Bを下撚り (Z撚り) 後、 引き揃えて、 下撚り と逆方向に上撚り (S撚り) をかけることで主ベルト層を構成する有機繊維コー ドを得ることができる。
なお、 下撚り時は、 Aまたは Bをそれぞれ単独で撚つても良いし、 Aと Bを併 せた後撚つても良い。
下撚りまたは上撚り時の A、 Bまたは AB (合糸) の本数は 1本ずつでも複数 本ずつでも良い。
Aまたは B原糸の太さは同じでも良いし異なっていても良い。
混撚糸の形態は、 芯となる糸の回りにループを作ったものなどでも良い。 請求項 1 0に記載の発明は、 請求項 9に記載の空気入りラジアルタイヤにおい て、 前記主ベルト層は、 芳香族ポリアミ ド系のコードと脂肪族ポリアミ ド系のコ ードとが撚り合わされ、 かつ前記芳香族ポリアミ ド系のコードの下撚り係数が 0 . 1 2〜0. 8 5とされた有機繊維コードを含むベルトプライを有する、 ことを 特徴としている。
次に、 請求項 1 0に記載の空気入りラジアルタイヤの作用を説明する。
芳香族ポリアミ ド系のコードの下撚り係数を 0. 1 2〜0. 85とすることに より、 請求項 6に規定の物性を達成することが容易になる。
なお、 芳香族ポリアミ ド系のコードの下撚り係数を 0. 1 7〜0. 5 1とする ことが更に好ましい。
請求項 1 1に記載の発明は、 請求項 6乃至請求項 1 0の何れか 1項に記載の空 気入りラジアルタイヤにおいて、 前記主ベルト層は、 タイヤ赤道面に対して略 0 ° の角度で螺旋状に卷回された有機繊維コードを含むベルトプライを有する、 こ とを特徴としている。
次に、 請求項 1 1に記載の空気入りラジアルタイヤの作用を説明する。
有機繊維コードのタイヤ赤道面に対する角度が略 0 ° に設定することで、 主べ ルト層の周方向剛性を確保するために使用する有機繊維コードの強力を最大限に 活用することが可能となり、 空気入りラジアルタイヤの軽量化を図ることが出来 る。
なお、 ここでいう略 0 ° とは、 2 . 0 ° 以下を含むものとする。
請求項 1 2に記載の発明は、 請求項 1乃至請求項 1 1の何れか 1項に記載の空 気入りラジアルタイヤにおいて、 前記主ベルト層は、 タイヤ赤道面に対して 2〜 2 5 ° の角度で傾斜し、 それぞれのプライ端で反対方向に傾斜するように同一面 内で屈曲されてタイヤ周方向にジグザグ状に延びる有機繊維コ一ドを含むベルト プライを有する、 ことを特徴としている。
次に、 請求項 1 2に記載の空気入りラジアルタイヤの作用を説明する。
タイヤ赤道面に対して 2〜2 5 ° の角度で傾斜し、 それぞれのプライ端で反対 方向に傾斜するように同一面内で屈曲されてタイヤ周方向にジグザグ状に延びる 有機繊維コードを含むベルトプライを用いることで、 主ベルト層の周方向剛性を 大きく低下させることなくしてタイヤ幅方向の剛性を確保することができ、 その 結果、 優れた耐摩耗性を実現することが可能となる。
タイヤ幅方向の剛性を確保することで、 優れた耐摩耗性が実現される理由は以 下の通りである。
一般に、 内圧充填時のタイヤ形状において、 クラウンセンター部とショルダー 部との径差が大きいと、 いわゆる 「引きずり摩耗」 を起こす可能性が高くなる。 タィャ回転中に接地したセンター部とショルダ一部は、 接地長の分だけ回転す るが、 一定の周長に対応するタイヤ回転角度は径の小さいショルダー部の方が大 きくなる。
このため、 路面を離れるまでにショルダー部は回転方向後方に拘束された状態 となり、 トレツド接地面内にてセンター部とショルダー部とが剪断変形する。 この変形を是正するためにショルダー部が路面に対して相対的に滑る現象が 「 引きずり摩耗」 である。
上記周方向位置のずれの大きさは、 上記センター部とショルダー部との径差、 及ぴトレツド面内の周方向剪断剛性に依存し、 径差が大きく剪断剛性が小さいほ ど引きずり摩耗の程度が大きくなる。
スパイラルベルトは、 コードがほぼ周方向を向いているため、 上記剪断剛性が 小さく、 引きずり摩耗に関しては有効ではない。
これを補うため、 タイヤ周方向に対する角度が大きいコードを有するベルトを 追加することで、 タイヤ幅方向剛性を確保でき、 摩耗特性の改善が図られる。 ここで、 有機繊維コードのタイヤ赤道面に対する角度が 2 ° を下回ると、 幾何 学的にジグザグ状にベルトを巻回することが困難となる (即ち、 スパイラル状に なってしまう。)。
一方、 有機繊維コードのタイヤ赤道面に対する角度が 2 5 ° を上回ると、 有機 繊維コードがタイヤ周方向に発揮し得る張力が相対的に減少し、 空気入りラジア ルタイヤの内圧を負担する効率が悪化する。
請求項 1 3に記載の発明は、 請求項 6乃至請求項 1 2の何れか 1項に記載の空 気入りラジアルタイヤにおいて、 前記主ベルト層のタイヤ半径方向外側に副ベル ト層が設けられており、 副ベルト層は、 前記主ベルト層のベルトプライに含まれ る有機繊維コードに対して 2 . 1 c N/ d t e x荷重時の伸び率が略同等以上で ある有機繊維コードを含むベルトプライを有する、 ことを特徴としている。
次に、 請求項 1 3に記載の空気入りラジアルタイヤの作用を説明する。
副ベルト層は、 主ベルト層のベルトプライに含まれる有機繊維コードよりも 2 . 1 c N/ d t e x荷重時の伸び率が略同等以上である比較的弾性率の小さい有 機繊維コードを含むベルトプライを有するため、 万が一異物等による損傷が副べ ルト層に達した場合においても、 副ベルト層のコードの張力負担率は、 主ベルト 層の有機繊維コード対比元々小さく、 クラウン補強層全体の強度に与える影響は 小さい。 また、 カット底部周辺の応力集中が小さくなるため、 そのまま走行を続 けた場合も、 損傷が進展する可能性が小さくなるという効果がある。
請求項 1 4に記載の発明は、 請求項 1 3に記載の空気入りラジアルタイヤにお いて、 前記副ベルト層は、 前記主ベルト層のベルトプライに含まれる有機繊維コ 一ドに対してタイヤ赤道面に対する角度が略同等以上に設定された有機繊維コー ドを含むベルトプライを有する、 ことを特徴としている。
次に、 請求項 1 4に記載の空気入りラジアルタイヤの作用を説明する。
副ベルト層が、 主ベルト層のベルトプライに含まれる有機繊維コードに対して タイヤ赤道面に対する角度が略同等以上に設定された有機繊維コードを含むので 、 異物等により万一ベルト層まで達するカット損傷を受けた場合に、 亀裂の進展 が周方向へタイヤ全周に走ることなく、 ベルト端で亀裂の進展を抑えることが可 能となり、 タイヤの安全性が大幅に向上する。
請求項 1 5に記載の発明は、 請求項 1 3または請求項 1 4に記載の空気入りラ ジアルタイヤにおいて、 前記副ベルト層は、 タイヤ赤道面に対して 2 〜 4 5 ° で 傾斜した有機繊維コードを含むベルトプライを有する、 ことを特徴としている。 次に、 請求項 1 5に記載の空気入りラジアルタイヤの作用を説明する。
副ベルト層の有機繊維コードのタイヤ赤道面に対する傾斜角度が 2 ° を下回る と、 副ベルト層の幅方向の剛性が小さくなるため、 ショルダー部引きずり摩耗が 発生し易くなる。
また、 副ベルト層の有機繊維コードのタイヤ赤道面に対する傾斜角度が 4 5 ° を上回ると、 ベルトプライの周方向剛性が低下し、 径成長の抑制のためにはベル トプライの層数の増加が必要になるため、 タイヤ重量の増加が余儀なくされるこ とになる。
請求項 1 6に記載の発明は、 請求項 1 3乃至請求項 1 5の何れか 1項に記載の 空気入りラジアルタイヤにおいて、 前記副ベルト層は、 それぞれのプライ端で反 対方向に傾斜するように同一面内で屈曲されてタイヤ周方向にジグザグ状に延び ている有機繊維コードを含むベルトプライを有する、 ことを特徴とする。
次に、 請求項 1 6に記載の空気入りラジアルタイヤの作用を説明する。
有機繊維コードをそれぞれのプライ端で反対方向に傾斜するように同一面内で 屈曲されてタイヤ周方向にジグザグ状に延ばす構成としたベルトプライは、 幅方 向のプライ端において有機繊維コードの切断端を有しない構成となるため、 コー ド切断端における剛性段差に起因するプライ端セパレーションの発生を有効に防 止することが出来る。
請求項 1 7に記載の発明は、 請求項 1乃至請求項 1 6の何れか 1項に記載の空 気入りラジアルタイヤにおいて、 前記カーカス層は、 引張破断強度が 6. 3 c N / d t e X以上、 伸張方向に 0. 2 c N d t e X荷重時の伸び率が 0. 2〜1 . 8%、 伸張方向に 1. 9 c NZd t e X荷重時の伸び率が 1 · 4〜6. 4%、 伸張方向に 2. 9 c NZd t e X荷重時の伸び率が 2. 1〜8. 6%とされた有 機繊維コードから形成された少なくとも 2枚のカーカスプライを含む、 ことを特 徴としている。
次に、 請求項 1 7に記載の空気入りラジアルタイヤの作用を説明する。
本発明の空気入りラジアルタイヤの例として、 ベルト層に高弾性率のコードを 、 カーカス層にナイロンのような低弾性のコードを用いると、 標準状態の内圧を 充填した場合に、 径方向の成長は高弾性コードにて抑制される一方、 タイヤ幅方 向にはタイヤは比較的自由に膨出するため、 ビード部の倒れ込みが従来品と比較 して大きくなる。
このことは、 タイヤの通常の使用状態においてはさほど問題とされないが、 過 負荷の状態で高速回転するような非常に苛酷な条件の下でビード部内のセパレー シヨン等の不具合を生じる場合がある。
このような問題を解決するため、 請求項 1 7に記載の空気入りラジアルタイヤ では、 引張破断強度が 6. 3 c N/d t e x以上とされた高弾性の有機繊維コー ドを含む少なくとも 2枚以上のカーカスプライで構成することにより、 カーカス プライ枚数を減少させ、 タイヤ重量を軽減する効果がある。
ここで、 有機繊維コードは、 伸張方向に 0. 2 c NZd t e x荷重時の伸び率 が 0. 2〜1. 8%、 伸張方向に 1. 9 c N/d t e X荷重時の伸び率が 1. 4 〜6. 4 %、 伸張方向に 2. 9 c NZd t e X荷重時の伸び率が 2. 1〜8. 6 %のものが好ましい。
その理由は、 有機繊維コードの伸び率が上記範囲を上回る場合、 カーカス層の 幅方向膨出を効果的に抑制する効果が小さいためであり、 また、 有機繊維コード の伸び率が上記範囲を下回る場合には、 コード剛性が高いことにより、 プライ枚 数を多数枚としたときに、 外層プライと内層プライとの間に周差が生じることが 原因で、 タイヤ成形時、 プライに大きな乱れが生じるため好ましくない。
なお、 有機繊維コードは、 伸張方向に 0. 2 c N/d t e x荷重時の伸び率が 0. 2〜: 1. 4%、 伸張方向に 1. 9 c N/ d t e X荷重時の伸び率が 2. 5〜 5. 9 %、 伸張方向に 2. 9 c NZd t e X荷重時の伸び率が 4. 0〜8. 0 % のものがより好ましい。
請求項 1 8に記載の発明は、 請求項 1 7に記載の空気入りラジアルタイヤにお いて、 前記カーカス層は、 芳香族ポリアミ ド系の繊維から構成され、 下撚り係数 が 0. 1 2〜0. 85、 より好ましくは 0. 1 7〜0. 5 1、 上燃り係数が 0. 4〜0. 85とされた有機繊維を含むカーカスプライを有する、 ことを特徴とし ている。
次に、 請求項 1 8に記載の空気入りラジアルタイヤの作用を説明する。
カーカス層を構成する有機繊維コードを芳香族ポリアミ ド系の繊維から構成し 、 下撚り係数を 0. 1 2〜0. 8 5、 好ましくは 0. 1 7〜0. 51、 上撚り係 数を 0. 40〜0. 85とすることで、 有機繊維コードを請求項 1 7に規定の物 性に設定することができる。
請求項 1 9に記載の発明は、 請求項 1 7に記載の空気入りラジアルタイヤにお いて、 前記カーカス層は、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊 維とを含み、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維との重量比 力 S、 1 00 : 1 2〜 5 1 0、 好ましくは 1 00 : 27〜 25 5とされた有機繊維 コードを含むカーカスプライを有する、 ことを特徴としている。
次に、 請求項 1 9に記載の空気入りラジアルタイヤの作用を説明する。
カーカス層を構成する有機繊維コードを芳香族ポリアミ ド系の繊維と脂肪族ポ リアミ ド系の繊維とから構成し、 かつ芳香族ポリアミ ド系の繊維と脂肪族ポリア ミ ド系の繊維との重量比を 1 00 : 1 2〜 5 1 0、 好ましくは 1 00 : 27〜 2 5 5とすることで、 有機繊維コードを請求項 1 7に規定の物性、 即ち、 引張破断 強度を 6. 3 c N/d t e X以上、 伸張方向に 0. 2 c N/ d t e x荷重時の伸 ぴ率を 0 · 2〜 1 · 8%、 伸張方向に 1. 9 c N/d t e X荷重時の伸び率を 1 . 4〜6. 4 %、 伸張方向に 2. 9 c N/d t e X荷重時の伸び率を 2. 1〜8 . 6%に設定することができる。 ここで、 芳香族ポリアミ ド系の繊維の重量 1 0 0に対して脂肪族ポリアミ ド 系の繊維の重量が 1 2を下回ると、 上記荷重を負荷したときに、 コード伸張が小 さくなるため請求項 6に規定の物性を達成することが困難となる。
一方、 芳香族ポリアミ ド系の繊維の重量 1 0 0に対して脂肪族ポリアミ ド系の 繊維の重量が 5 1 0を上回ると、 上記荷重を負荷したときに、 コード伸張が大き くなるため請求項 6に規定の物性を達成することが困難となる。
ここで、 脂肪族ポリアミ ド系の繊維とは、 例えば、 6—ナイロン、 6 , 6—ナ ィロン、 4 , 6—ナイロン繊維等である。
ここで、 有機繊維コードは、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系 の繊維とから構成されていれば良く、 芳香族ポリアミ ド系有機繊維コードと脂肪 族ポリアミ ド系有機繊維コードとを撚り合わせても良く、 芳香族ポリアミ ド系の 繊維と脂肪族ポリアミ ド系の繊維とを合わせてから撚りをかけても良い。
また、 芳香族ポリアミ ド系有機繊維コードを A、 脂肪族ポリアミ ド系有機繊維 コードを Bとした場合、 Aまたは Bを下撚り (Z撚り) 後、 引き揃えて、 下撚り と逆方向に上撚り (S撚り) をかけることで主ベルト層を構成する有機繊維コー ドを得ることができる。
なお、 下撚り時は、 Aまたは Bをそれぞれ単独で撚つても良いし、 Aと Bを併 せた後撚つても良い。
下撚りまたは上撚り時の A、 Bまたは A B (合糸) の本数は 1本ずつでも複数 本ずつでも良い。
Aまたは B原糸の太さは同じでも良いし異なっていても良い。
混撚糸の形態は、 芯となる糸の回りにループを作ったものなどでも良い。 請求項 2 0に記載の発明は、 請求項 1 9に記載の空気入りラジアルタイヤにお いて、 前記カーカス層は、 芳香族ポリアミ ド系の有機繊維コードと脂肪族ポリア ミ ド系の有機繊維コードとが燃り合わされ、 かつ前記ポリアミ ド系の有機繊維コ ードの下撚り係数が 0 . 1 2〜0 . 8 5、 より好ましくは 0 . 1 7〜0 . 5 1と された有機繊維コードを含むカーカスプライを有する、 ことを特徴としている。 次に、 請求項 2 0に記載の空気入りラジアルタイヤの作用を説明する。
芳香族ポリアミド系のコードの下撚り係数を 0 . 1 2〜0 . 8 5、 より好まし くは 0 . 1 7〜 0 . 5 1とすることにより、 請求項 1 9に規定の物性を達成する ことが容易になる。
請求項 2 1に記載の発明は、 請求項 1 3乃至請求項 2 0の何れか 1項に記載の 空気入りラジアルタイヤにおいて、 前記副ベルト層のタイヤ半径方向外側に、 タ ィャ周方向に波状に延びる 1 0 0 O M P a以上の引張り強度を有した非金属性の 波状コードを含む保護ベルト層を、 1 . 5 〜 4 . 5 mmのゴム層を介して配置し た、 ことを特徴としている。
次に、 請求項 2 1に記載の空気入りラジアルタイヤの作用を説明する。
副ベルト層のタイヤ半径方向外側に、 タイヤ周方向に波状に延びる 1 0 0 0 M P a以上の引張り強度を有した非金属性の波状コードを含む保護ベルト層を、 1 . 5 〜 4 . 5 mmのゴム層を介して配置することにより、 異物等のトレッ ドへ刺 し込みに対し、 非金属コードの波形を消失する方向へ変形をもって緊張を緩和し 、 その異物等を包み込むことで、 異物等の主ベルト層への進入を阻止すべく機能 する。
ところで、 航空機用の空気入りラジアルタイヤの場合、 トレッドが摩耗寿命を 迎えると、 摩耗したトレッ ドを除去して新たなトレッ ドを貼り付ける、 所謂タイ ャの更生を行う。 このとき、 最外の保護ベルト層は摩耗したトレッ ドと共に除去 される。
このため、 ゴム層の厚さが 1 . 5 mmを下回ると、 タイヤ更生時に、 径方向内 側に存在する主、 副ベルト層を損傷することなく、 該保護ベルト層を除去するこ とが困難となる。
一方、 ゴム層の厚さが 4 . 5 mmを上回ると、 タイヤ重量が増加するばかりか トレツド発熱が増大し、 耐久性に不利となる。
請求項 2 2に記載の発明は、 請求項 2 1に記載の空気入りラジアルタイヤにお いて、 前記波状コードは、 振幅が 5 〜 2 5 mm, 波長が振幅の 2 0 0〜 7 0 0 % である、 ことを特徴としている。
次に、 請求項 2 2に記載の空気入りラジアルタイヤの作用を説明する。
波状コードの振幅が 5 mm未満の場合、 及び波状コードの波長が振幅の 7 0 0 %を越える場合は、 空気入りラジアルタイヤへの内圧充填、 及ぴそこへの荷重の 作用によって、 波状コードが周方向に殆ど伸張した状態となるため、 異物の進入 時の包み込み効果が小さくなる。
—方、 波状コードの振幅が 2 5 m mを越える場合、 及び波状コードの波長が振 幅の 2 0 0 %未満の場合は、 隣接するコードとの間に十分な間隔を確保すること が困難になって、 コード間に十分なゴム層を確保することができなくなるめ、 隣 接するコード同士が接触することによりコード〜ゴム間においてセパレーション を生じる可能性が高くなる。
したがって、 波状コードは、 振幅を 5〜 2 5 m m、 波長を振幅の 2 0 0〜 7 0 0 %に設定することが好ましい。
請求項 2 3に記載の発明は、 請求項 1乃至請求項 2 2の何れか 1項に記載の空 気入りラジアルタイヤにおいて、. T R Aに定める標準内圧充填状態で、 内圧充填 前と比較してタイヤ外径の成長率が 0 . 3 〜 5 . 5 %である、 ことを特徴として レヽる。
次に、 請求項 2 3に記載の空気入りラジアルタイヤの作用を説明する。
タイヤ外径の成長率を 0 . 3 %未満とすることは、 航空機用タイヤの高内圧下 ではタイャ材料の選択が困難となる。
一方、 タイヤ外径の成長率が 5 . 5 %を越えると、 使用時にトレッ ドの周方向 伸びが大きくなり、 異物の侵入に対する抵抗力小となる。
請求項 2 4に記載の空気入りラジアルタイヤは、 ほぼラジアル方向に延びる有 機繊維コードよりなるカーカスプライの一枚以上にて形成したカーカス層と、 こ のカーカス層のクラウン域と トレッドとの間に配設した、 複数のベルトプライか らなるベルト層とを具え、 ベルト層の総厚みを、 幅方向の中央部分で側部部分の それより厚くするとともに、 そのベルト層が、 半径方向外側に位置する副ベルト 層と、 半径方向内側に位置する主ベルト層とを含み、 副ベルト層を、 半径方向外 側に向けて幅が漸減する複数のベルトプライにて形成するとともに、 この副ベル ト層の最大幅をタイヤ最大幅の 6 0 〜 9 0 %の範囲とし、 主ベルト層を、 半径方 向内側に向けて幅が漸減する複数のベルトプライにて形成するとともに、 この主 ベルト層の最大幅をタイヤ最大幅の 1 5 〜 6 0 %の範囲とし、 主ベルト層のそれ ぞれのベルトプライを、 タイヤ赤道面に 2 ° 〜 2 5 ° の角度で交差し、 それぞれ のプライ端で反対方向に傾斜するように同一面内で屈曲されてタイヤ周方向にジ グザグ状に延びるコードまたは、 タイヤ赤道面に対してほぼ 0 ° の角度で螺旋状 に延びるコードにより構成した、 ことを特徴としている。
次に、 請求項 2 4に記載の空気入りラジアルタイヤの作用を説明する。
この空気入りラジアルタイヤでは、 内圧充填等によるトレツドの膨出変形に当 り、 従来は膨出量が最も多かったトレッ ド中央域が、 とくに多層のベルトプライ によって補強されてその膨出変形を有利に拘束され、 この一方で、 それぞれのべ ルトプライの選択された幅により、 トレツドはその全幅にわたってほぼ均等に膨 出されることになるので、 トレツド接地面の接地圧をもまた十分均等なものとす ることができる。
従って、 トレッ ド中央域の、 接地圧の増加に起因する早期の摩耗おょぴ、 トレ ッド側部域の、 引きずりに起因する肩落ち摩耗等の発生を有効に防止してトレツ ド耐久性の向上を実現することができ、 併せて、 とくにはトレッド中央域での、 トレツドゴムの周方向伸長量を抑制して、 それの緊張度合を低下させることがで きるので、 トレッ ドのエンベロープ性を高めて、 異物の刺さり込み等を有効に防 止することができる。
またここでは、 主ベルト層のベルトプライを、 周方向にジグザグ状に延びるコ ードまたは、 周方向に螺旋状に延びるコードによって形成して、 ベルトプライの 側縁からコード切断端を取り除いたことにより、 トレツドにその幅方向の力が作 用しても、 ベルトプライ側縁における応力を効果的に分散させることができるの で、 ベルトプライのセパレーションを有効に防止してベルト耐久性を向上させる ことができる。
さらにここでは、 主ベルト層の最大幅を、 タイヤ最大幅の 1 5〜6 0 %の範囲 とすることで、 重量増加を有利に抑制しつつ、 トレッ ド中央域の膨出変形を有効 に拘束することができ、 また、 主ベルト層を半径方向内方に向けて幅が漸減する それぞれのベルトプライによつて形成することにより、 ベルト剛性の急激な変化 を回避することができる。
なお、 主ベルト層のベルトプライの層数は二〜六層程度とすることが、 重量の 抑制と、 膨出変形の拘束とを高次元で両立させる上で好ましい。 請求項 25に記載の発明は、 請求項 24に記載の空気入りラジアルタイヤにお いて、 主ベルト層と、 副ベルト層のベルトプライを構成するコードの弾性率を、 カーカスプライの有機繊維コードのそれの 100〜 700 %の範囲とした、 こと を特徴としている。
次に、 請求項 25に記載の空気入りラジアルタイヤの作用を説明する。
なおここでの弾性率とは、 ゴム一繊維複合体の単位プロック当りの引張り弾性 率をいい、 加硫したゴム一繊維複合体 (カーカスプライの場合は、 タイヤ最大幅 付近のカーカスプライを、 その最大幅付近を中心にしてプライコードに沿って、 単位ブロックすなわち繊維一本のゴム複合体ブロックで長さ 10 Ommのサンプ ルを切り出し) コードを傷つけないように上下の余分なゴムをスライサーによて 削ぎ落してサンプルを作成した後、 そのサンプルを例えばインス トロン、 オート グラフ等の引張り試験機により、 試験温度: 25° Cで、 S O gZmrn (例えば 、 単位ブロック幅が 2 mmの場合は荷重 1 00 gとなる。) に対応した初荷重を 加え、 そこから引張り速度 5 Ommノ分の定速引張り試験を行って、 荷重—伸ぴ 曲線を描かせ、 しかる後、 J I S L 10 1 7- 1 983と同様に試験し、 下記 式にしたがって算出することにより求めたものである。
E= (Px 1 ) / ( 1, xS)
ここで、
P : 2. 1 c NZ d t e X時の荷重 (N)
S :単位ブロック当りのサンプル断面積 (mm2)
1 :試験片の初期長さ (mm)
1 ' :荷重一伸ぴ曲線上で 2. 1 c N/d t e x荷重時における点を Aとし た場合、 横軸に対して、 点 Aから垂線を引いた足を H、 点 Aにおける接線と横軸 との交点を Tとすると THの長さ (mm) を示す。
これによれば、 ベルトプライに所要に応じたたが効果を発揮させるとともに、 トレツドと、 タイヤサイド部との間の極端な剛性段差を十分に取り除くことがで きる。
すなわち、 主ベルト層と、 副ベルト層のベルトプライを構成するコードの弾性 率が、 カーカスプライの有機繊維コードの弾性率の 1 00%未満では、 タイヤへ の内圧の充填に際する径成長抑制機能を十分に発揮させることができず、 径成長 の抑制のためにはベルトプライの層数の増加が必要になるため、 タイャ重量の増 加が余儀なくされることになる。
一方、 主ベルト層と、 副ベルト層のベルトプライを構成するコードの弾性率が
、 カーカスプライの有機繊維コードの弾性率の 7 0 0 %を越えると、 ベルト層の たが効果が大きくなりすぎるため、 タイヤの幅方向断面内で、 ベルト層の最大幅 位置近傍と、 タイヤサイド部との間の剛性差が大きくなつて、 たとえば充填内圧 により、 タイヤサイド部が幅方向外側へ異常に膨出することになり、 タイヤ全体 としてのパランスが損なわれることになる。
請求項 2 6に記載の発明は、 請求項 2 4または請求項 2 5に記載の空気入りラ ジアルタイヤにおいて、 主ベルト層のベルトプライを構成するコードを、 芳香族 ポリアミ ド系の有機繊維コードとしてなることを特徴としている。
次に、 請求項 2 6に記載の空気入りラジアルタイヤの作用を説明する。
ここで、 主ベルト層のベルトプライを構成するコードを、 芳香族ポリアミ ド系 の有機繊維コードとした場合には、 通常ベルト層に使用される脂肪族ポリアミ ド 系コードに比しておよそ 2〜 5倍の弾性率を有するため、 内圧によるトレツド中 央域の膨出をより効果的に抑制でき、 より少ないベルトプライ数にて同様の効果 を得ることができるため、 タイヤ重量の低減に有利である。
請求項 2 7に記載の発明は、 請求項 2 4乃至請求項 2 6の何れか 1項に記載の 空気入りラジアノレタイヤにおいて、 副ベルト層と トレッドとの間に、 5〜 2 5 mm の振幅と、 振幅の 2 0 0〜 7 0 0 %の波長とをもって周方向にジグザグ状に延ぴ る、 1 0 0 O M P a以上の引張り強度を有する非金属コードにより構成した保護 ベルト層を配設した、 ことを特徴としている。
次に、 請求項 2 7に記載の空気入りラジアルタイヤの作用を説明する。
なお、 ここでの引張り強度は、 J I S L 1 0 1 7 _ 1 9 8 2に従い、 島津製 作所社製ォートグラフにて、 試験温度: 2 5 ° Cにて、 引張り伸度 (%) および 強度 (M P a ) を求めることにより測定した。
この保護ベルト層は、 トレッドへの異物等の刺さり込みに対し、 非金属コード の、 ジグザグ波形を消失する方向への変形をもって緊張を緩和して、 その異物等 を包み込むことで、 異物等のベルト層への侵入を阻止すべく機能する。
ここで、 非金属コードの、 振幅を 5 〜 2 5 mm, 波長を振幅の 2 0 0〜 7 0 0 %とするのは、 振幅が 5 mm未満の場合および、 波長が 7 0 0 %を越える場合は 、 タイヤへの内圧充填およびそこへの荷重の作用によって、 非金属コードが周方 向にほとんど伸長した状態となるため、 異物の進入時の包み込み効果が小さくな り、 また、 振幅が 2 5 mmを越える場合および、 波長が 2 0 0 %未満の場合は、 隣接するコードとの間に十分な間隔を確保することが困難になって、 コード間に 十分なゴム層を確保することができなくなるため、 ゴム層と トレッドゴムとの接 着部分が少なくなつて、 保護ベルト層とトレツ ドゴムとの間の接着強度が低下し てセパレーションを生じ易くなる。
また、 引張り強度を 1 0 0 O M P a以上とするのは、 一般にコードの耐切創性 は引張り強度が大きいほど高く、 芳香族ポリアミ ド系コードが既知の有機繊維の 中では比較的大きい引張り強度を有するため (l O O O M P a以上)、 これを採 用することが効率的である。
請求項 2 8に記載の発明は、 請求項 2 4乃至請求項 2 7の何れか 1項に記載の 空気入りラジアルタイヤにおいて、 トレツドに設けた周方向溝の一本をトレッド 中央部に延在させてなることを特徴としている。
次に、 請求項 2 8に記載の空気入りラジアルタイヤの作用を説明する。
トレツドに設けた周方向溝の一本をトレツ ド中央部に延在させた場合には、 ト レツド幅方向での剛性段差をもたらす主ベルト層の側縁近傍への周方向溝の配置 を回避することが容易になり、 タイヤの排水性能を損なうことなく、 溝底クラッ クの発生を防止することができる。
請求項 2 9に記載の空気入りラジアルタイヤの製造方法は、 請求項 2 4乃至請 求項 2 8の何れか 1項に記載の空気入りラジアルタイヤを製造するに当り、 製品 タイヤの内面形状と対応する外面形状を有する分割タイプの剛性コア上で生タイ ャを成型し、 その生タイヤを剛性コアとともにモールド内へ装入して加硫するこ とを特徴としている。
この空気入りラジアルタイヤの製造方法によれば、 生タイヤの成型開始から加 硫の終了に至るまで、 タイヤもしくはその構成部材に変形を加えることなく製品 タイヤを得ることができるので、 タイヤ各部の寸法精度を大きく向上させること ができる。
請求項 3 0に記載の空気入りラジアルタイヤの製造方法は、 請求項 2 4乃至請 求項 2 8の何れか 1項に記載の空気入りラジアルタイヤを製造するに当り、 ベル ト.成型ドラムの幅方向中央部分に設けた環状窪み内で主ベルト層を成型すること を特徴としている。
とくに、 タイヤ半径方向内側に凸となる主ベルト層は、 通常の円筒状のベルト 成型ドラムによっても成型は可能である。
しかるに、 生タイヤの成型時と製品タイヤとのベルト径が大きく相違すると、 たとえば芳香族ポリアミ ド系繊維のような高弾性のベルトプライコードは、 加硫 時の加圧力によって幅方向に変位するおそれが高く、 タイヤ性能が損なわれるこ とがあるので、 生タイヤの成型時から、 製品タイヤに至るまでの径変化を極力排 除するべく、 主ベルト層は環状窪み内で成型することが好ましい。 図面の簡単な説明 図 1は、 第 1の実施形態に係る空気入りラジアルタイヤの断面図である。
図 2 (A) は図 1に示す空気入りラジアルタイヤの分解斜視図であり、 図 2 ( B ) は保護層のコードの平面図である。
図 3は、 図 1に示す空気入りラジアルタイヤのトレツドの拡大断面図である。 図 4は、 スパイラルベルトの平面図である。
図 5は、 無端ジグザグ卷きベルトの平面図である。
図 6 (A) は第 2の実施形態に係る空気入りラジアルタイヤの分解斜視図であ る。
図 6 ( B ) は副ベルト層の断面図である。
図 7は、 第 3の実施形態に係る空気入りラジアルタイヤの分解斜視図である。 図 8は、 第 4の実施形態に係る空気入りラジアルタイヤの分解斜視図である。 図 9は、 第 5の実施形態に係る空気入りラジアルタイヤの分解斜視図である。 図 1 0は、 第 6の実施形態に係る空気入りラジアルタイヤの分解斜視図である 図 1 1は、 従来例に係る空気入りラジアルタイヤの分解斜視図である。
図 1 2は、 ベルト層にかかる張力を示すグラフである。
図 1 3は、 主ベルト層の有機繊維コードの伸びと強度との関係を:
める。
図 1 4は、 カーカス層の有機繊維コードの伸びと強度との関係を:
ある。
図 1 5は、 第 7の実施形態に係る空気入りラジアルタイヤの断面図である。 図 1 6は、 第 7の実施形態に係る空気入りラジアルタイヤの要部断面斜視図で める。
図 1 7は、 ベルトプライの構成態様の他の例を示す図 1 6と同様の図である。 図 1 8は、 第 8の実施形態に係る空気入りラジアルタイヤの断面図である。 図 1 9は、 ベルト成型ドラムを例示する斜視図である。
図 2 0は、 比較例タイヤのベルト構造を示す図である。
図 2 1 (A) は、 従来例に係る空気入りラジアルタイヤの断面図である。 図 2 1 ( B ) は、 従来例に係る空気入りラジアルタイヤの要部断面斜視図であ る。
図 2 2は、 他の従来例に係る空気入りラジアルタイヤの断面図である。
図 2 3は、 ベルトプライの構成態様の他の例を示す図 1 6と同様の図である。 発明を実施するための最良の形態
[第 1の実施形態]
以下、 図面を参照して本発明の実施の形態の一例を詳細に説明する。
本発明の空気入りラジアルタイヤの第 1の実施形態を図 1乃至図 5にしたがつ て説明する。
図 1、 及び図 2 (A) に示すように、 本実施形態の航空機用の空気入りラジア ルタイヤ 1 0 (タイヤサイズ: 1 2 7 0 X 4 5 5 R 2 2 3 2 P R ) は、 ビード 部 1 2に丸型断面を有するビードコア 1 4備えていて、 ゴム被覆された有機繊維 コードがラジアル方向に配列された 6枚のカーカスプライ (図示せず) よりなる カーカス層 1 6がこのビードコア 14に係留されている。
なお、 フリッパーやチヱ一ファーなどの他の構造部材は従来通りであり、 図示 を省略してある。
カーカス層 1 6のタイヤ半径方向外側のクラウン域外周面には、 ベルト層 20 、 ベルト層 20のタイヤ径方向外側にはトレツド部 23を構成するトレツドゴム 層 24が設けられている。
また、 カーカス層のタイヤ幅方向外側には、 サイドウォール部 25を構成する サイ ドゴム層 2 7が設けられている。
なお、 本実施形態では、 ベルト層 20は、 タイヤ径方向内側の主ベルト層 26 と、 主ベルト層 26のタイヤ径方向外側に設けられる副ベルト層 28、 副ベルト 層 28のタイヤ径方向外側に設けられる保護ベルト層 22とから構成されている
(カーカス層)
カーカス層 1 6を構成するカーカスプライに用いる有機繊維コードは、 引張破 断強度が 6. 3 c N/d t e X以上、 伸張方向に 0. 2 c NZd t e x荷重時の 伸び率が 0. 2〜1. 8%、 伸張方向に 1. 9 c N/d t e X荷重時の伸び率が 1. 4〜6. 4 %、 伸張方向に 2. 9 c NZd t e X荷重時の伸び率が 2. 1〜 8. 6%であることが好ましい (図 14参照)。
カーカス層 1 6には、 芳香族ポリアミ ド系の繊維から構成された有機繊維コー ドを用いることができる。 この場合、 下撚り係数が 0. 1 2〜0. 8 5、 より好 ましくは 0. 1 7〜0. 5 1、 上撚り係数が 0. 4〜0. 85とされた有機繊維 コードが好ましい。
また、 カーカス層 1 6には、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系 の繊維とを含む有機繊維コード (所謂ハイブリッドコード) を用いることもでき る。 この場合、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維との重量 比が、 1 00 : 27〜 25 5とされた有機繊維コードが好ましい。
さらに、 カーカス層 1 6には、 芳香族ポリアミ ド系の有機繊維コードと脂肪族 ポリアミ ド系の有機繊維コードとを撚り合わせ、 かつポリアミ ド系の有機繊維コ ードの下撚り係数 N 1が 0. 1 2〜0. 85、 より好ましくは 0. 1 7〜0. 5 1とされた有機繊維コード (所謂ハイブリッドコード) を用いることもできる。 本実施形態のカーカス層 1 6には、 ナイロンコードが用いられている。 図 3に示すように、 主ベルト層 26は、 複数枚のベルトプライ、 本実施形態で は、 タイヤ径方向内側から第 1ベルトプライ 26 A、 第 2ベルトプライ 26 B、 第 3ベルトプライ 26 C、 第 4ベルトプライ 26 D、 第 5ベルトプライ 26 E、 第 6ベルトプライ 26 F、 第 7ベルトプライ 26 G、 及び第 8ベルトプライ 26 Hの 8枚のベルトプライから構成されている。
本実施形態では、 第 1ベルトプライ 26 Aと第 2ベルトプライ 26 Bは同じ幅 に設定され、 第 3ベルトプライ 26 Cと第 4ベルトプライ 26 Dは同じ幅に設定 され、 第 5ベルトプライ 26 Eと第 6ベルトプライ 26 Fは同じ幅に設定され、 また、 第 7ベルトプライ 26 Gと第 8ベルトプライ 26 Hは同じ幅に設定されて いる。
さらに、 第 1ベルトプライ 26 A及び第 2ベルトプライ 26 Bよりも第 3ベル トプライ 26 C及び第 4ベルトプライ 26 Dのベルト幅が広く、 第 3ベルトプラ ィ 26 C及び第 4ベルトプライ 26 Dよりも第 5ベルトプライ 26 E及び第 6ベ ルトプライ 26 Fのベルト幅が広く、 第 5ベルトプライ 26 E及び第 6ベルトプ ライ 26 Fよりも第 7ベルトプライ 26 G及び第 8ベルトプライ 26 Hのベルト 幅が広く設定されている。
したがって、 主ベルト層 26のタイヤ幅方向端部では、 第 7ベルトプライ 26 Gと第 8ベルトプライ 26 Hとの 2枚のベルトプライが積層されている。
主ベルト層 26を構成するこれら第 1ベルトプライ 26 A〜第 8ベルトプライ 26Hは、 複数本の有機繊維コードをゴム被覆することにより形成されている。 これら第 1ベルトプライ 26 A〜第 8ベルトプライ 26 Hの有機繊維コードは 、 引張破断強度を 6. 3 c N/d t e x以上とすることが好ましく、 伸張方向に 0. 3 c N/d t e X荷重時の伸び率が 0. 2〜2. 0%、 伸張方向に 2. 1 c NZd t e X荷重時の伸び率が 1. 5〜7. 0%、 伸張方向に 3. 2 c N/d t e x荷重時の伸び率が 2. 2〜9. 3%であることが好ましい (図 1 3参照)。 本実施形態の有機繊維コードは、 芳香族ポリアミ ド系の繊維から構成されてい る。
有機繊維コードを芳香族ポリアミ ド系の繊維から構成した場合、 下撚り係数は
0. 1 2〜0. 8 5、 好ましくは 0. 1 7〜0. 5 1、 上撚り係数は 0. 40〜
0. 80に設定することが好ましい。
本実施形態では、 第 1ベルトプライ 26 A〜第 8ベルトプライ 26 Gに、 芳香 族ポリアミ ド系の繊維、 具体的にはデュポン社製ポリアミ ド繊維 (商品タイプ名 : KEVLAR (R) 29、 公称繊度 3000デニール。 以後、 適宜ケプラーと 呼ぶ。) からなる有機繊維コードを用いている。
芳香族ポリアミ ド系の有機繊維コードの製造方法を以下に説明する。
ケブラー (3000デニール = 3 340 d t e x) 3本を、 撚り機を用いて、 下撚り係数が 0. 34になるように下撚り加工を行った。
その後、 下撚り糸 3本を引き揃え、 下撚りとは反対方向に上撚り係数が 0. 4 8になるように上撚り (S撚り) し、 撚りコード加工した。
撚りコ一ドを株式会社市金工業社製コード処理機でディップ処理し製造した。
2 5±2° Cの室温中、 株式会社島津製作所製オートグラフを用いてディップ コードの引張破断強度を測定したところ、 14 c NZd t e xの値を得た。 この時、 ディップコードの引張り方向への応力が、 0. 3 c N/d t e x、 2 • 1 c N/d t e x、 及び 3· 2 c N/d t e xを示した時のディップコ一ドの 伸び率を測定したところ、 それぞれ 0. 3%、 2. 2%。、 及び 3. 2%の値を 得た。
ちなみに、 第 1ベルトプライ 26 A〜第 8ベルトプライ 26 Gに用いた有機繊 維コード (ケプラー) の強力は、 1400 Nである。
主ベルト層 26を構成する第 1ベルトプライ 26 A〜第 8ベルトプライ 26 H は、 本実施形態では、 図 4に示すように複数本の有機繊維コードをゴム被覆して 構成した帯状の細長体 32を準備し、 この細長体 3 2を隙間が生じないよう螺旋 状に卷回することで形成した、 いわゆるスパイラルベルトである。
なお、 本実施形態では、 有機繊維コードの傾斜角度はタイヤ赤道面 CLに対し て略 0° である。 なお、 第 1ベルトプライ 2 6 A〜第 8ベルトプライ 2 6 Hにおいて、 有機繊維 コードの打込み数は、 4〜 1 0本 / 1 0 mmの範囲内が好ましい。
本実施形態では、 第 1ベルトプライ 2 6 A〜第 8ベルトプライ 2 6 Hにおいて 、 有機繊維コードの打込み数が 6 . 3本/ 1 0 mmである。
(副べノレト層)
本実施形態のように副ベルト層 2 8を設ける場合、 その範囲は、 タイヤ赤道面 C Lから主ベルト層 2 6の幅 B Wの 1 4 0 %位置までの範囲内に設けることが好 ましい。
本実施形態では、 副ベルト層 2 8の幅 S B Wは主ベルト層 2 6の幅 B Wの 1 0 3 %である。 '
副ベルト層 2 8は、 本実施形態では 1枚のベルトプライ 2 8 Aから構成されて いる。
本実施形態のベルトプライ 2 8 Aは、 図 5に示すように、 1または複数本の有 機繊維コードをゴム被覆して構成した帯状の細長体 3 4を準備し、 この細長体 3 4をほぼ 1周する毎に両プライ端間を 1度だけ往復させながらタイヤ赤道面に対 して 2〜 2 5 ° の角度で傾斜させて周方向に巻き付けると共に、 このような巻付 けを細長体 3 4間に隙間が生じないよう周方向にほぼ細長体 3 4の幅だけずらし て多数回巻回することで形成している (以後、 適宜無端ジグザグ卷きベルトと呼 ぶ。)。
この結果、 ベルトプライ 2 8 A内には両プライ端において折り曲げ方向を変え ることによりジグザグしながらほぼ周方向に延びる有機繊維コードが、 該ベルト プライ 2 8 Aの全領域においてほぼ均一に埋設されることになる。
なお、 このようにして形成されたベルトプライ 2 8 Aは、 断面で見ると、 右上 がりの有機繊維コード部分と、 左上がりのコード部分とが互いに重なりあった形 態となるので、 右上がりのコードのみからなるベルトプライと左上がりのコード のみからなるベルトプライとを重ねた、 いわゆる交差ベルトに相当する構成とな り、 実際には 1枚のプライではあるが、 本実施形態では、 プライ数としては 2枚 としてカウントすることとする。
このベルトプライ 2 8 Aには、 主ベルト層 2 6に含まれる有機繊維コードに対 して弾性率が同等、 あるいは小さい有機繊維コード (主ベルト層 26の有機繊維 コードに対して 2. 1 c N/d t e x荷重時の伸び率が略同等以上である有機繊 維コード) を用いることが好ましい。
副ベルト層 28を構成するベルトプライ 28 Aに用いる有機繊維コードとして は、 ナイロン等の脂肪族ポリアミ ド系の繊維からなるコード、 ァラミ ド等の芳香 族ポリアミ ド系の繊維とナイロン等の脂肪族ポリアミ ド系の繊維とを含むコード 等が好ましく、 本実施形態では、 ナイロンコード (撚り数: 1 260 D//2/ 3。 打込み数 7. 3本 Zl Omm) を用いている。
また、 無端ジグザグ卷きベルトである本実施形態のベルトプライ 28 Aにおい て、 その有機繊維コードの傾斜角度はタイヤ赤道面 CLに対して 2〜45° の範 囲内が好ましく、 本実施形態では 8° に設定されている。 図 2 (A) に示すように、 副ベルト層 28のタイヤ半径方向外側には、 ゴム層 30を介して保護ベルト層 22が設けられている。
ゴム層 30の厚さは、 1. 5〜4. 5 mmの範囲内が好ましく、 本実施形態で は 2. 5 mmに設定している。
保護ベルト層 22は、 図 2 (A) に示すように、 タイヤ周方向に波状に延びる 複数本の有機繊維コード 36を互いに平行に並べてゴムコーティング (ゴムは図 示せず) した 1枚の波状コードプライ 38から構成されている。
図 2 (B) に示すように、 保護ベルト層 22の有機繊維コード 36は、 振幅 A を 5〜 25 mm、 波長 Bを振幅 Aの 200〜 700 %に設定することが好ましい 有機繊維コード 36は、 高強力で高い耐切創性を有し、 接着を確保した上でな るべく密に配置することが好ましい。
本実施形態では、 保護ベルト層 22の有機繊維コード 3 6にケプラー (3 00 0D/3、 打込み数: 3. 6本/ 1 0 mm) を用いている。
(総強力)
次に、 タイヤ赤道面 CL位置 P 0での単位幅当りにおけるベルト層 20 (主べ ルト層 26 +副ベルト層 28 +保護ベルト層 22) のタイャ周方向の総強力を K 0、 タイヤ赤道面 C Lを中心としてベルト層 2 0の最大幅 (S B W :本実施形態 では副ベルト層 2 8が最も広いので。) の 2 Z 3の幅位置 P 2での単位幅当りに おけるベルト層 2 0のタイヤ周方向の総強力を K 2としたときに、 K 2く K 0を 満足する必要があり、 0 . 3≤K 2 /K 0≤ 0 . 8を満足することが好ましい。 以下に本実施形態の総強力の算出方法を説明する。
本実施形態のように、 ベルト層 2 0がケプラーコードとナイロンコードとから 構成されている場合、 強力を与える伸びの算出方法は、 この場合、 ケプラーコー ド 1本の破断時の伸ぴ 1 0 %をコードに与える伸ぴとする (なお、 複数種のコー ドより構成される場合、 それらのうちで最も破断時伸びの小さいコードの破断時 伸びを基準として算出する。)。
1 0 %伸ばしたときの各コードの強力は、 ケブラーコードが 1 4 0 0 Ν、 ナイ 口ンコードが 2 0 5 Νである。
主ベルト層 2 6では、 単位幅 1 0 mm当りのコード打込み本数は 6 . 3本、 畐 ij ベルト層 2 8では、 単位幅 1 0 mm当りのコード打込み本数は 7 . 3本、 保護べ ルト層 2 2では、 単位幅 1 O mm当りのコード打込み本数は 3 . 6本である。 本実施形態では、 タイヤ赤道面 C L位置 P 0では、 ケプラーコードが 9本積層 (主ベルト層 8本 +保護ベルト層 1本) され、 ナイロンコードは 2本積層 (副べ ルト層 2本) されている。
ベルト層 2 0の最大幅 S B Wの 2ノ 3の幅位置 P 2では、 ケブラーコードが 5 本積層 (主ベルト層 4本 +保護ベルト層 1本) され、 ナイロンコードは 2本積層 (副ベルト層 2本) されている。
保護ベルト層 2 2の波状の有機繊維コードを 1 0 %伸ばしたときのコード強力 は 8 O Nであり、 単位幅 1 O mm当りの本数は 3 . 6本で、 タイヤ赤道面 C L位 置 P 0、 及ぴタイヤ赤道面 C Lを中心としてベルト層 2 0の最大幅 S B Wの 2 / 3の幅位置 P 2共に、 コード 1層で構成されている。
なお、 本実施形態のように、 有機繊維コードが波状である場合、 有機繊維コー ドを真っ直ぐに伸ばして強力を算出するのでは無く、 タイヤに埋設されている形 状、 即ち、 波状に型付けされたものを 1 0 %伸ばしたときの強力を算出する。 また、 有機繊維コードがタイヤ周方向に対して角度 0で傾斜している場合は、 コード強力に c o s Θを掛けてコード周方向の強力を算出する。
ここでは、 副ベルト層のナイロンコードのタイヤ周方向に対する角度 0が 8° なので、 ナイロンのコード強力に c o s 8° =0. 99を掛けてコード周方向の 強力を算出する。
P 0でのベルト層 20の総強力 K 0 = 1400 (N) X 6. 3 (本) X 8 (積 層数) + 205 (N) X 7. 3 (本) X 2 (積層数) X 0. 99 + 80 (N) X 3. 6 (本) X 1 (積層数) = 738 1 1 N。
P 2でのベルト層 20の総強力 K 2 = 1400 (N) X 6. 3 (本) X 4 (積 層数) + 205 (N) X 7. 3 (本) X 2 (積層数) X 0. 99 + 80 (N) X 3. 6 (本) X I (積層数) = 3 8 53 1 N。
即ち、 本実施形態では、 K 2/K 0 = 0. 5 2である。
さらに、 ベルト層 20において、 有機繊維コードの積層厚みをタイヤ赤道面位 置 P 0で最も厚くし、 タイヤ赤道面位置 P 0での有機繊維コードの積層厚みを G 0、 ベルト層 20の最大幅 S BWの 2Z3の幅位置 P 2での有機繊維コードの積 層厚みを G 2としたときに、 G 2く G 0を満足することが好ましく、 0. 3 5≤ G 2/G 0≤ 0. 85を満足することが更に好ましい。
ちなみに、 本実施形態では、 G2ZG0==0. 63に設定されている。
なお、 トレッド部 23には、 周方向溝 29が複数本の形成されている。
(作用)
本実施形態の空気入りラジアルタイヤ 1 0では、 ベルト層 20おいて、 タイヤ 赤道面位置 P 0での強力をベルト層 20の最大幅 S BWの 2Z3の幅位置 P 2で の強力よりも大きく設定したので、 標準の 4倍内圧に耐える耐圧性、 および高速 走行時の耐久性能を満たしつつ、 タイヤの軽量化との両立を達成することができ た。
また、 通常外径の伸び率の最も大きいタイヤセンター部のベルトに十分大きい 剛性を確保することにより、 トレツドゴム層 24の伸張量を抑制してトレッドゴ ム層 24の緊張度合いを低下させることができ、 異物の刺さり込みに対する抵抗 が増加し、 タイヤの安全性を高めることができた。
さらに、 内圧充填時にトレツド中央域〜ショ^/ダ一部域において均一な成長を 得ることができ、 偏摩耗も抑制できた。
なお、 ベルト層 20の強力の比 K 2/K 0が 0. 2を下回ると、 ベルト層 20 のショルダー部付近に位置する有機繊維コードに過大な張力が負担されることに よる耐圧性能の低下を引き起こす虞がある。
一方、 ベルト層 20において、 強力の比 K2/K0が 0. 8を上回ると、 ベル ト層 20の最大幅 S BWの 2/3の幅位置 P 2に配置した有機繊維コードが有効 に活用されず、 空気入りラジアルタイヤ 1 0の重量増につながる。
本実施形態では、 ベルト層 20において、 最大幅SBWの2/3の幅位置P 2 での有機繊維コードの積層厚み G 2を、 タイヤ赤道面位置 P 0での有機繊維コー ドの積層厚み GOよりも大きく設定してたので、 K 2く K0を容易に達成するこ とができた。
なお、 ベルト層 20において、 有機繊維コードの積層厚みの比 G 2 ZG 0が、 0. 35を下回ると、 ショルダー部付近に位置する有機繊維コードに過大な張力 が負担されることによる耐圧性能の低下を引き起こす虞がある。
一方、 ベルト層 20において、 有機繊維コードの積層厚みの比 G 2ZG 0が 0 . 85を上回ると、 ベルト層 20の最大幅の 2/3の幅位置 P 2に配置した有機 繊維コードが有効に活用されず、 空気入りラジアルタイヤ 10の重量増につなが る。
本実施形態では、 主ベルト層 26の第 1ベルトプライ 26 A〜第 8ベルトプラ ィ 26 Hを構成する有機繊維コードの引張破断強度を 6. 3 c N/d t e X以上 としたので、 必要な耐圧性能を満足することができ、 軽量化も達成できた。 また、 主ベルト層 26の第 1ベルトプライ 26 A〜第 8ベルトプライ 26Hを 構成する有機繊維コードにおいて、 0. 3 c N/d t e x荷重時の伸び率を 0. 2〜2. 0%、 伸張方向に 2. 1 c N/d t e X荷重時の伸び率を 1. 5〜7. 0%、 伸張方向に 3. 2 c N/d t e X荷重時の伸び率を 2. 2〜9. 3%にし たので、 目標の径成長の抑制を容易に達成することができた。 これにより、 異物 の刺さり込みに対する性能を確保し、 かつ主ベルト層 26によるタガ効果を最適 にできた。
なお、 主ベルト層 26の第 1ベルトプライ 26 A〜第 8ベルトプライ 26Hを 構成する有機繊維コードの伸び率が上記範囲を上回る場合、 タイヤ内圧充填時に おいてタイヤ径方向の膨出を効果的に抑えられず、 異物の刺さり込みに対する性 能を期待できななくる。
一方、 主ベルト層 2 6の第 1ベルトプライ 2 6 A〜第 8ベルトプライ 2 6 Hを 構成する有機繊維コ一ドの伸び率が上記範囲を下回る場合、 各ベルトプライのタ ガ効果が大き過ぎるため、 カーカス層 1 6が必要以上にタイヤ幅方向に膨出する 結果となり好ましくない。
さらに、 本実施形態では、 主ベルト層 2 6の第 1ベルトプライ 2 6 A〜第 8ベ ルトプライ 2 6 Hを構成する有機繊維コードの 0 · 3 c NZ d t e x荷重時の伸 ぴ率を 0 . 2〜2 . 0 %にしたので、 加硫時に生タイヤ内部より負荷される圧力 によって空気入りラジアルタイヤ 1 0を均等に伸張せしめることができ、 これに よって有機繊維コードの方向を揃え、 コード打込みのばらつきを是正することが できた。
なお、 主ベルト層 2 6の第 1ベルトプライ 2 6 A〜第 8ベルトプライ 2 6 Hを 構成する有機繊維コードの 0 . 3 c N/ d t e X荷重時の伸び率が 2 . 0 %より 大きいと、 加硫時のコ一ド性状是正の効果が薄くなり好ましくない。
—方、 主ベルト層 2 6の第 1ベルトプライ 2 6 A〜第 8ベルトプライ 2 6 Hを 構成する有機繊維コードの伸び率が 0 . 2 %より小さい場合には、 加硫時のタイ ャ膨張の際にコ一ド張力が大となり、 該有機繊維コードがタイャ径方向内側のゴ ムに食い込むなどの不都合が生じるため好ましくない。
本実施形態では、 主ベルト層 2 6のタイヤ幅方向端部において、 第 7ベルトプ ライ 2 6 Gと第 8ベルトプライ 2 6 Hとの 2枚のベルトプライが積層されている ので、 タイヤ走行時、 特に、 タイヤ幅方向に外力が作用する場合のように、 タイ ャ接地面幅方向両端付近の有機繊維コードに激しい張力変動を伴うような条件下 においても、 その弾力性を持って衝撃を効果的に分散することが可能となり、 苛 酷な使用条件下における空気入りラジアルタイヤ 1 0の信頼性が向上した。 主ベルト層 2 6を構成する第 1ベルトプライ 2 6 A〜第 8ベルトプライ 2 6 H の有機繊維コードを芳香族ポリアミ ド系の繊維から構成し、 下撚り係数を 0 . 1 2〜0 . 8 5の範囲内、 上撚り係数を 0 . 4 0〜0 . 8 0の範囲内としたので、 有機繊維コードの引張破断強度を 6. S c N/d t e x以上、 0. 3 cNZd t e x荷重時の伸び率を 0. 2〜2. 0%、 伸張方向に 2. l c N/d t e x荷重 時の伸び率を 1. 5〜7. 0%、 伸張方向に 3. 2 c NZ d t e X荷重時の伸び 率を 2. 2〜9. 3%に設定することができた。
本実施形態では、 主ベルト層 26を構成する第 1ベルトプライ 26 A〜第 8ベ ルトプライ 26 Hが、 いわゆるスパイラルベルトとされ、 有機繊維コードのタイ ャ赤道面 C Lに対する角度が略 0° に設定されているので、 主ベルト層 26の周 方向剛性を確保するために使用する有機繊維コードの強力を最大限に活用するこ とが可能となり、 有機繊維コードの使用量が最小限で済み、 空気入りラジアルタ ィャ 1 0の軽量化を図ることが出来た。
主ベルト層 26のタイヤ半径方向外側に、 第 1ベルトプライ 26 A〜第 8ベル トプライ 26 Hに含まれる有機繊維コードょりもタイヤ赤道面 C Lに対する角度 が大きく設定された有機繊維コードを含むベルトプライ 2 8 Aからなる副ベルト 層 28を設け、 その副ベルト層 28の幅 S BWを主ベルト層 26の幅 BWの 1 0 3 %とした。
また、 本実施形態では、 副ベルト層 28の有機繊維コードを主ベルト層 26の 有機繊維コードょりも低い弾性としたので、 元々張力負担が主ベルト層 26の有 機繊維コードょりも小さく、 万一滑走路上の異物を踏み付けて副ベルト層 28の 有機繊維コ一ドが損傷しても、 クラウン補強層全体の強度に与える影響は小さく 、 また、 カッ トの最底部周辺の応力集中が小さくなるため、 そのまま走行を続け た場合にも、 損傷が進展する可能性は小さくなる。
また、 本実施形態では、 副ベルト層 28の有機繊維コードをタイヤ赤道面 C L に対して 2〜45° で傾斜させたので、 副ベルト層 28のベルトプライ 28 Aに 対するカットを受け、 万一亀裂が進展する場合にも、 亀裂はコードに沿う形でベ ルト端部に達し、 それ以上の周方向への進展を防ぐことができる。
なお、 副ベルト層 28の有機繊維コードのタイヤ赤道面 C Lに対する傾斜角度 が 2° を下回ると、 タイヤがカットによる損傷を受け、 万一亀裂が進展するよう な場合において、 亀裂の周方向への進展を防止する効果が薄くなる。 また、 タイ ャ幅方向剛性が確保でないため、 引きずり摩耗が発生し易くなる。 一方、 副ベルト層 2 8の有機繊維コードのタイヤ赤道面 C Lに対する傾斜角度 が 4 5 ° を上回ると、 ベルトプライの周方向剛性が低下し、 径成長の抑制のため にはベルトプライの層数の増加が必要になるため、 タイャ重量増につながる。 有機繊維コードをそれぞれのプライ端で反対方向に傾斜するように同一面内で 屈曲されてタイヤ周方向にジグザグ状に延ばす構成とした副ベルト層 2 8のベル トプライ 2 8 Aは、 幅方向のプライ端において有機繊維コードの切断端を有しな い構成となるため、 タイヤに幅方向の負荷が作用した場合などプライ端部分に大 きな歪みが発生する時にも、 副ベルト層 2 8のセパレーシヨン (コード切断端と カバーゴムとの間) を起こしにくい。
本実施形態では、 副ベルト層 2 8のタイヤ半径方向外側に、 タイヤ周方向に波 状に延びる有機繊維コード 3 6を含む保護ベルト層 2 2を、 2 . 5 mmのゴム層 3 0を介して配置したので、 異物等のトレツ ドゴム層 2 4への刺し込みに対し、 有機繊維コード 3 6の波形を消失する方向へ変形をもって緊張を緩和し、 その異 物等を包み込むことで、 異物等の主ベルト層 2 6への進入を阻止することができ た。
なお、 ゴム層 3 0の厚さが 1 . 5 mmを下回ると、 タイヤ更生時に、 径方向内 側に存在する主ベルト層 2 6を損傷することなく該ゴム層 3 0を除去することが 困難となる。
一方、 ゴム層 3 0の厚さが 4 . 5 mmを上回ると、 タイヤ重量が増加するばか りかトレッド発熱が増大し、 耐久性に不利となる。
保護ベルト層 2 2の有機繊維コード 3 6の振幅 Aが 5 mm未満の場合、 及び波 長 Bが振幅 Aの 7 0 0 %を越える場合は、 空気入りラジアルタイヤ 1 0への内圧 充填、 及びそこへの荷重の作用によって、 有機繊維コード 3 6が周方向に殆ど伸 張した状態となるため、 異物の進入時の包み込み効果が小さくなる。
一方、 有機繊維コード 3 6の振幅 Aが 2 5 mmを越える場合、 及ぴ波長 Bが振 幅 Aの 2 0 0 %未満の場合は、 隣接する有機繊維コード 3 6 との間に十分な間隔 を確保することが困難になって、 コード間に十分なゴム層 (有機繊維コード 3 6 を被覆するコーティングゴム) を確保することができなくなるめ、 保護ベルト層 2 2のゴム層と トレツドゴム層 2 4との接触部分が少なくなつて、 有機繊維コー ド 3 6と トレツドゴム層 2 4との間の接着強度が低下してセパレーションを生じ 易くなる。
なお、 本実施形態では、 最外層に有機繊維コード 3 6を含む保護ベルト層 2 2 を設けているので、 万一トレッドゴム層 2 4が摩耗して保護ベルト層 2 2が踏面 に現れても、 金属コードの場合と違って火花を散らすことは無い。
[第 2の実施形態]
次に、 本発明の第 2の実施形態に係る空気入りラジアルタイヤ 4 0を図 6にし たがって説明する。 なお、 第 1の実施形態と同一構成には同一符号を付し、 その 説明は省略する。
図 6 ( A) に示すように、 本実施形態の空気入りラジアルタイヤ 4 0では、 副 ベルト層 2 8を、 いわゆる交錯ベルト層としたものであり、 それ以外の構成は第 1の実施形態の空気入りラジアルタイヤ 1 0と同一である。
図 6 ( B ) に示すように、 本実施形態の副ベルト層 2 8は、 ベルトプライ 2 8 B、 及ぴベルトプライ 2 8 Cの 2枚のベルトプライがら構成され、 例えば、 ベル トプライ 2 8 Bはタイヤ赤道面 C Lに対して左上がりに傾斜する複数の有機繊維 コードを含み、 ベルトプライ 2 8 Cはタイヤ赤道面 C Lに対して右上がりに傾斜 する複数の有機繊維コードを含む。
また、 ベルトプライ 2 8 B、 及ぴベルトプライ 2 8 Cに用いた有機繊維コード は、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維とを含む、 いわゆる ハイプリッドコードである。
なお、 このハイブリッドコードの好ましい特性、 及び製造方法は、 次の第 3の 実施形態で説明を行う。
本実施形態では、 副ベルト層 2 8をいわゆる交錯ベルト層としたが、 第 1の実 施形態の空気入りラジアルタイヤ 1 0と同様の作用効果が得られる。
なお、 前述した無端ジグザグ卷きベルトの場合は、 製法の関係上、 コードの角 度はタイヤ赤道面 C Lに対して比較的小さな角度をとることが一般的で、 またコ ードの角度は、 タイヤ 1周する毎にコードがタイヤ幅方向に往復する回数 (ピッ チ) によりとぴとびの値をとることが多い (例えば、 8 ° 、 1 6 ° 等)。
—方、 交錯ベルト層は、 コードの角度設定が自由にできる。 また、 通常交錯べ ルトを適用する場合、 コードの角度はやや大きめとなる (10〜30° 程度)。 交錯ベルト層において、 コードの角度が大の場合、 タイヤ幅方向の剛性を確保 できるので、 ショルダー部の引きずり摩耗に効果がある。
[第 3の実施形態]
次に、 本発明の第 3の実施形態に係る空気入りラジアルタイヤ 42を図 7にし たがって説明する。 なお、 第 1の実施形態と同一構成には同一符号を付し、 その 説明は省略する。
図 7に示すように、 本実施形態の空気入りラジアルタイヤ 42では、 主ベルト 層 26のプライ構造、 及びその有機繊維コードの材質を変えたのみであり、 それ 以外の構成は第 1の実施形態の空気入りラジアルタイヤ 10と同一である。
本実施形態の主ベルト層 26は、 それぞれが第 1の実施形態で用いた副ベルト 層 28のベルトプライ 28 Aと同様の構造の無端ジグザグ巻きベルトである、 第 1ベルトプライ 26 A〜第 4ベルトプライ 26 Dの 4枚のベルトプライから構成 されている (なお、 主ベルト層 26のプライ数としては 8枚としてカウントする 。)
なお、 本実施形態の第 1ベルトプライ 26 A〜第 4ベルトプライ 26 Dにおい て、 有機繊維コードは、 タイヤ赤道面 CLに対する角度が 2〜 8度に設定されて いる。
本実施形態の第 1ベルトプライ 26 A〜第 4ベルトプライ 26 Dに用いた有機 繊維コードは、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維とを含む 、 いわゆるノ、イブリツドコードである。
ここで、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維との重量比は 100 : 10〜 1 70とすることが好ましく、 100 : 1 7〜 86とすることが より好ましい。
これにより、 引張破断強度を 6. 3 c NZd t e X以上、 伸張方向に 0. 3 c NZ d t e X荷重時の伸び率が 0. 2〜2. 0%、 2. l CN/d t e x荷重時 の伸び率を 1. 5%以上 7. 0%以下、 3. 2 c NZd t e X荷重時の伸び率を 2. 2%以上 9. 3%以下に設定することができる。
なお、 芳香族ポリアミ ド系の有機繊維コードと脂肪族ポリアミ ド系の有機繊 維コードとを撚り合わせる場合、 芳香族ポリアミ ド系の有機繊維コードの下撚り 係数を 0. 1 2〜0. 8 5とすることが好ましい。
次に、 本実施形態の第 1ベルトプライ 26 A〜第 4ベルトプライ 26 Dに用 いた有機繊維コードの製造方法を説明する。
先ず、 ケプラー (3000デニール = 3 340 d t e x) 2本と、 6 6ナイ口 ン (1 26 0デニール = 1400 d t e x) 2本を併せた糸 1本を作り、 撚り機 を用いて、 ケブラーの下撚り係数が 0. 34、 ナイロン 6 6の下撚り係数が 0. 1 8になるように下撚り加工を行った。
その後、 ケプラーの下撚り糸 2本と、 6 6ナイロンの下撚り糸 1本を引き揃 え、 下撚りとは反対方向に上撚り (S撚り) し、 撚りコードを加工した。
撚りコ一ドを株式会社市金工業社製コード処理機でディップ処理し製造した。
25 ± 2° Cの室温中、 株式会社島津製作所製オートグラフを用いてディップ コードの引張破断強度を測定したところ、 1 1 c N/d t e xの値を得た。 この時、 ディップコードの引張り方向への応力が、 0. 3 c N/d t e x、 2 . 1 c N/ d t e x、 及び 3. 2 c Nノ d t e xを示した時のディップコ一ドの 伸び率を測定したところ、 それぞれ 1. 1 %、 5. 6 %。、 及び 6. 6 %の値を 得た。
ちなみに、 この有機繊維コードの破断強力は、 1 1 0 ONである。
本実施形態では、 上述したように、 主ベルト層 26のプライ構造、 及ぴその有 機繊維コードの材質を第 1の実施形態の空気入りラジアルタイヤ 1 0とは変えた が、 第 1の実施形態の空気入りラジアルタイヤ 1 0と同様の作用効果が得られる また、 タイヤ幅方向の剛性が得られるため、 ショルダー部の引きずり摩耗に効 果がある。
[第 4の実施形態]
次に、 本発明の第 4の実施形態に係る空気入りラジアルタイヤ 44を図 8にし たがって説明する。 なお、 第 1の実施形態と同一構成には同一符号を付し、 その 説明は省略する。
図 8に示すように、 本実施形態の空気入りラジアルタイヤ 44は、 第 1の実施 形態の空気入りラジアルタイヤ 1 0から副ベルト層 2 8を省いた構成としたもの である。
なお、 本実施形態の空気入りラジアルタイヤ 4 4は、 ベルト損傷時の亀裂進展 性、 または耐摩耗性に若干劣るが、 従来品と比較すれば耐カット性は充分に高く 、 軽量化効果が大きいことが特徴である。
[第 5の実施形態] '
次に、 本発明の第 5の実施形態に係る空気入りラジアルタイヤ 4 6を図 9にし たがって説明する。 なお、 第 1の実施形態と同一構成には同一符号を付し、 その 説明は省略する。
図 9に示すように、 本実施形態の空気入りラジアルタイヤ 4 6は、 第 1の空気 入りラジアルタイヤ 1 0と基本的には同一構造であるが、 主ベルト層 2 6の両端 部付近のタイヤ径方向外側に、 幅狭のベルトプライ 4 8が 2枚重ねられている。 このベルトプライ 4 8は、 第 1ベルトプライ 2 6 A〜第 8ベルトプライ 2 6 H と同様の構成 (スパイラルベルト) であり、 単に幅が狭いだけである。
なお、 2枚のベルトプライ 4 8は、 同じ幅であり、 ベルト層 2 0の最大幅の 2 / 3の幅位置 P 2よりも若干外側からベルト層 2 0の端部に渡って設けられてい る。
このようにベルトプライ 4 8を設け、 ベルト層 2 0の最大幅 S B Wの 2 / 3の 幅位置 P 2よりもタイヤ幅方向外側の領域において、 有機繊維コードの積層厚み を厚くすると、 高速走行時、 特にタイヤ幅方向の外力にさらされるような場合に 、 タイヤ両側部の大きな張力変動を柔軟に吸収せしめることが可能となり、 空気- 入りラジアルタイヤの寿命を著しく低下させ得るスタンディングウェーブの発生 を効果的に抑制することができる。
[第 6の実施形態]
次に、 本発明の第 6の実施形態に係る空気入りラジアルタイヤ 5 0を図 1 0に したがって説明する。 なお、 本実施形態は、 第 3の実施形態の変形例であり、 第 3の実施形態と同一構成には同一符号を付し、 その説明は省略する。
図 1 0に示すように、 本実施形態の空気入りラジアルタイヤ 5 0は、 第 3の実 施形態の空気入りラジアルタイヤ 4 6において、 主ベルト層 2 6の両端部付近の タイヤ径方向外側に、 第 5の実施形態と同様の幅狭のベルトプライ 4 8を 2枚重 ねたものである。
本実施形態の空気入りラジアルタイヤ 5 0においても、 第 5の実施形態の空気 入りラジアルタイヤ 4 6と同様の作用効果が得られる。
(試験例 1 )
次に、 本発明の効果を確かめるために、 従来例の空気入りラジアルタイヤ 1種 、 比較例の空気入りラジアルタイヤ 4種、 及び本発明の適用された実施例の空気 入りラジアルタイヤ 1 3種を用意し、 各々のタイヤ重量、 タイヤ径成長率、 耐カ ット性、 及び耐圧性を調べた。 何れもタイヤサイズは 1 2 7 0 X 4 5 5 R 2 2 3 2 P Rである。
以下に試験方法を説明する。
•タイヤ重量:従来例のタイヤ重量を 1 0 0とする指数表示とした。 数値が小さ いほど軽量であることを表す。
-タイヤ径成長率:使用空気圧充填前後のタイヤセンター部の外径増加率を調べ た。 増加率が小さいほどトレッドゴム層の張力が小さいことを表す。
使用空気圧とは、 TIRE and RIM ASSOCIATION(TRA)の 2 0 0 2年度版 YEAR BOOKに定める MEASURING RIMと INFLATION PRESSUREを用いた
。 ここでは、 1 6 2 0 k P aである。
•而ォカット性:幅 4 0 mm、 刃先角度 3 0 ° の力ッターをトレツドのタイヤセン ター部幅方向に向けて、 規定荷重の 5 %で垂直に押し付けた時のカツト深さ を調べた。
(規定荷重の定義)
T R A 2 0 0 2年度版 YEAR BOOKに定める荷重。
ここでは、 2 4 8 6 0 k g .
評価は、 従来例 1の空気入りラジアルタイヤの力ット深さの逆数を 1 0 0とし て指数表示した。 数値が大きいほど耐カツト性に優れていることを表している。
•耐圧性:タイヤを TIRE and EIM ASSOCIATION(TRA)の 2 0 0 2年度版 YEAR BOOKに定める MEASURING RIMに組み付け、 タィャ内部に水を注入し
、 タイヤが破壌するまで水圧を上昇させる。 評価は、 従来例のタイヤが破壊した ときの圧力を 1 0 0とした場合の指数で表す。 数値が大きいほど耐圧性に優れて いることを表す。 また、 以下に試験タイヤについて説明する。
•実施例 1 〜 3 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構 造を有するが、 それぞれベルト層の厚みが変更されている。 その他の、 詳細は以 下の表に記載した通りである。
•実施例 4 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構造を 有するが、 副ベルト層のベルトプライに用いられる有機繊維コードがハイプリッ ドタイプに変更されている。 その他の、 詳細は以下の表に記載した通りである。
•実施例 5 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構造を 有すが、 主ベルト層のベルトプライに用いられる有機繊維コードがハイプリッド タイプに変更されている。 その他の、 詳細は以下の表に記載した通りである。
•実施例 6 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構造を 有するが、 主ベルト層のベルトプライに用いられる有機繊維コードがハイブリッ ドタイプ、 副ベルト層のベルトプライが交錯ベルトに変更されている。 その他の 、 詳細は以下の表に記載した通りである。
•実施例 7 : その他は第 1の実施形態で説明した空気入りラジアルタイヤと同様 の構造を有するが、 主ベルト層のベルトプライに用いられる有機繊維コードがハ イブリツドタイプ、 副ベルト層のベルトプライが無端ジグザグベルトに変更され ている。 その他の、 詳細は以下の表に記載した通りである。
•実施例 8 :第 4の実施形態に係る空気入りラジアルタイヤと同様の構造を有す る (副ベルト層が無い)。 その他の、 詳細は以下の表に記載した通りである。
•実施例 9 :第 5の実施形態に係る空気入りラジアルタイヤと同様の構造を有す る (主ベルト層の両端部付近のタイヤ径方向外側 (ベルト層の最大幅の 2 / 3の 幅位置より外側) に、 幅狭のベルトプライが 2枚重ねられている。 その他の、 詳 細は以下の表に記載した通りである。
•実施例 1 0 : 第 6の実施形態に係る空気入りラジアルタイヤと同様の構造を有 する (主ベルト層の両端部付近のタイヤ径方向外側 (ベルト層の最大幅の 2 Z 3 の幅位置より外側) に、 幅狭のベルトプライが 2枚重ねられている。 その他の、 詳細は以下の表に記載した通りである。 •実施例 1 1 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構造 を有するが、 主ベルト層のベルトプライに用いられる有機繊維コードがケプラー 、 副ベルト層のベルトプライが交錯ベルトに変更されている。 その他の、 詳細は 以下の表に記載した通りである。
-実施例 1 2 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構造 を有する。 詳細は以下の表に記載した通りである。
-実施例 1 3 :第 1の実施形態で説明した空気入りラジアルタィャと同様の構造 を有する。 詳細は以下の表に記載した通りである。
•比較例 1 、 2 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構 造を有するが、 それぞれベルト層の厚みが本発明の限定範囲と異なる。 その他の 、 詳細は以下の表に記載した通りである。
•比較例 3 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構造を 有するが、 主ベルト層の有機繊維コードにナイロンコードを用いた。 その他の、 詳細は以下の表に記載した通りである。
•比較例 4 :第 1の実施形態で説明した空気入りラジアルタイヤと同様の構造を 有するが、 主ベルト層のベルトプライの枚数を増やし、 有機繊維コードにナイ口 ンコードを用いた。 その他の、 詳細は以下の表に記載した通りである。
•従来例:図 1 1に示すように、 従来例の空気入りラジアルタイヤ 1 0 0におい ては、 カーカス層 1 6が 7枚のカーカスプライより構成されている。 従来例の主 ベルト層 2 6は、 第 3の実施形態に係る空気入りラジアルタイヤ 4 2の主ベルト 層 2 6と同様の無端ジグザグ卷きベルトである第 1ベルトプライ 2 6 A〜第 3ベ ルトプライ 2 6 Cの 3枚のベルトプライと、 交錯ベルトを構成している第 4ベル トプライ 2 6 Dと第 5ベルトプライ 2 6 Eから構成されている (なお、 主ベルト 層 2 6のプライ数としては 8枚としてカウントする。) 力 本発明の空気入りラ ジアルタイヤとは異なり、 第 1ベルトプライ 2 6 Aから第 5ベルトプライ 2 6 E に向けて幅が狭くなつており、 また、 有機繊維コードして脂肪族ポリアミ ドコー ドを用いている。 その他の、 詳細は以下の表に記載した通りである。
脂肪族ポリアミ ド系の有機繊維コードの製造方法を以下に説明する。
6 6ナイロン ( 1 2 6 0デニール = 1 4 0 0 d t e X ) 2本を併せた糸 1本を 、 撚り機を用いて、 下撚り係数が 0 . 4になるように下撚り加工を行った。 その後、 下撚り糸 3本を引き揃え、 下撚りとは反対方向に上撚り係数が 0 . 4
7になるように上撚り (S撚り) し、 撚りコード加工した。
撚りコ一ドを株式会社市金工業社製コード処理機でディップ処理し製造した。 6 6ナイロンは、 東レ株式会社製ポリアミ ド繊維 (商品タイプ名 : 6 6ナイ口 ン、 公称繊度 1 2 6 0デニール) を用いた。
なお、 表の中の接地幅 TW (図 1参照) の定義は以下の通りである。
接地幅: TIRE and RIM ASSOCIATION(TRA)の 2 0 0 2年度版 YEAR
BOOKに定める MEASURING RIMと INFRATION PRESSUREを用いて、 該
YEAR BOOKに定める 1 0 0 %相当内圧をインフレ一トした状態にて 1 0 0 % 荷重を負荷した場合の接地幅。
【表 1】
従来例 1 比較例 1 比較例 2 比較例 3 斜視図 図 1 1 図 2 * - « - カーカス 枚数 7 6
ナイロン 、
保 ケプラー
コード振幅 (皿) 5 < - コ一ド波長 (腿) 27. 5 、 波長/振幅 (%) 5 5 0
ベノレト幅 接地幅の ト
86 %
ゴム層の厚み (mm) 2. 5 ト ト 副 交錯ベルト 無端ジグ
ベ ザグ卷き
ノレ コード種 ナイ口ン 、 卜 コード角度 (° ) 1 5 8
1^曰 プライ枚数 2 2
ベルト幅 S B W 接地幅の 接地幅の
7 1 % 1 02 %
主 種類 無端ジグ スノヽ。ィラノレ
ベ ザグ卷
ノレ ナイ口ン ケブラー ナイロン 卜 コード角度 (° ) 1 0 略 0
プライ枚数 6 8
ベノレト幅 B W 接地幅の 接地幅の
1 0 2 % 9 8 %
G 2/G 0 1 0. 26 0. 9 1 0. 64 タイヤ重量 1 00 8 9 9 9 9 3 タイヤ外径 7. 0 2. 1 1. 9 7. 5 成長率 (%)
耐カツ ト性 1 00 1 5 9 1 62 9 7 耐圧性 1 00 95 1 0 7 98
【表 2】
比較例 4 実施例 1 実施例 2 実施例 3 斜視図 図 2
カ -カス 枚数 6 一 ナイロン
保 n■ ~ ケプラー
コ一ド振幅 (腿) 5
コード波長 (mm) 2 7. 5 ト
波長/振幅 (%) 5 5 0 - ベノレト幅 接地幅の 一
8 6 %
ゴム層の厚み (mm) 2. 5 < - 副 種類 無端ジグザ ト ベ グ卷き
ノレ ナイ口ン « - ト 卜 コード角度 (° ) 8 < - プライ枚数 2
ベルト幅 S B W 接地幅の
1 0 2 %
主 種類 スノ ィラノレ
ベ ナイ口ン ケブラー
ノレ コード角度 (° ) 略 0 < - 卜 プライ枚数 1 6 8
ベノレト幅 B W 接地幅の < -
9 8 %
G 2/Q 0 0. 5 8 0. 6 3 0. 4 5 0. 8 1 タイヤ重量 1 0 5 9 3 9 1 9 5 タイヤ外径 3. 8 2. 0 2. 2 1. 9 成長率 (%)
耐カツト性 1 3 2 1 6 0 1 5 9 1 6 2 耐圧性 1 0 5 1 0 3 1 0 0 1 0 5
【表 3】
実施例 4 実施例 5 実施例 6 実施例 7 斜視図 図 2 図 6 図 7 力 -カス 枚数 6 ト ナイロン
保 n ' ~ ケブラー
コー ド振幅 腿) 5
コード波長 (画) 27. 5
波長/振幅 (%) 550
ベノレト幅 接地幅の
86 %
ゴム層の厚み (mm) 2. 5
副 種類 無端ジグザ 交錯ベルト 無端ジグザ ベ グ卷き グ卷き ノレ ハイブリッ ナイ口ン
卜 ド、
層 コード角度 (° ) 8 1 5 8 プライ枚数 2 « - 2
ベルト幅 S B W 接地幅の
1 02 %
主 種類 スノ ィラノレ 無端ジグザ ぺ グ卷き ル ケブラー ハイブリッ
コード角度 (° ) 略 0 1 0 プライ枚数 8 ト
ベルト幅 B W 接地幅の ト < -
98 %
G 2/G 0 0. 64 0. 6 3 0. 6 1 0. 6 3 タイヤ重量 93 9 3 9 3 9 3 タイヤ外径 1. 8 3. 2 3. 5 3. 4 成長率 (%)
耐カツト性 1 6 3 142 1 3 7 1 3 9 耐圧性 1 06 1 02 1 00 1 00 【表 4】
Figure imgf000049_0001
注 1) 8 + (4) 枚のうち (4) 枚の内訳は、 主ベルト層両端部に狭幅のベルト プライが各々 2枚づっ積層されていることを意味する。 【表 5】
Figure imgf000050_0001
試験の結果、 本発明の適用された実施例 1〜1 3の空気入りラジアルタイヤは 、 何れも従来例対比で軽量であり、 優れた耐カット性を有することが分かる。 さらに、 タイヤ重量は、 9 5以下でないと市場での優位性を保てない。
[第 7の実施形態]
次に、 本発明の第 7の実施形態に係る空気入りラジアルタイヤ 5 2を図 1 5乃 至図 1 7にしたがって説明する。 なお、 前述した実施形態と同一構成には同一符 号を付し、 その説明は省略する。
本実施形態の空気入りラジアルタイャ 5 2では、 ビード部 1 2に配設したビー ドコア 1 4間にトロイダルに延びるカーカス層 1 6を配設するとともに、 ほぼラ ジアル方向に延びる有機繊維コードょりなるカーカスプライの一枚以上で形成し たこのカーカス層 1 6のクラウン域と トレツドゴム層 2 4との間にベルト層 2 0 を配設し、 このベルト層 2 0の総厚み tを、 幅方向の中央部分で側部部分のそれ より厚くするとともに、 そのベルト層 2 0を、 半径方向外側に位置する副ベルト 層 2 8と、 半径方向内側に位置する主ベルト層 2 6とで構成する。
ここで、 副ベルト層 2 8は、 図 1 6の要部断面斜視図で例示するように、 半径 方向外側に向けて幅が漸減する複数層、 図に示すところでは三層のベルトプライ 2 8 A, 2 8 B , 2 8 Cにより構成して、 それの最大幅 w。を、 リムに装着して 規定内圧 (T R A) を充填した空気入りラジアルタイヤ 5 2のタイヤ最大幅 Wの 6 0〜 9 0 %の範囲とする。
なおここにおいて、 副べノレト層 2 8の最大幅 w。をタイヤ最大幅 Wの 6 0〜 9 0 %とするのは、 副ベルト層 2 8の最大幅 w。をタイヤ最大幅 Wの 9 0 %超とす ることは、 タイヤ最大幅に対し若干狭幅のトレツド部という構成をとるタイヤに おいては構造上困難であり、 それを超えると故障を招くことになり、 一方、 副べ ルト層 2 8の最大幅 w。をタイャ最大幅 Wの 6 0 %未満とすると トレツド側部域 でのベルト剛性が低下し、 高速耐久性が著しく損なわれることになる。
また主ベルト層 2 6は、 これも図 1 6に示すように、 半径方向内側に向けて が漸減する、 たとえば三層のベルトプライ 2 6 A, 2 6 B, 2 6 Cにて構成して 、 それの最大幅 をタイヤ最大幅 Wの 1 5〜6 0 %の範囲とする。
ここで、 主ベルト層 2 6の最大幅 W lを、 をタイヤ最大幅 Wの 1 5〜 6 0 %の 範囲とするのは、 前述したように、 重量増加を抑制しつつ、 トレッ ド中央域の膨 出変形を有効に拘束することを企図するものである。
併せて、 この主べノレト層 2 6では、 それぞれのベルトプライ 2 6 A , 2 6 B , 2 6 Cをともに、 無端ジグザグ卷きベルト (図 5参照) とし、 ベルトプライ 2 6 A, 2 6 B , 2 6 Cからコードの切断端を取り除く。
また、 副べ/レト層 2 8においても、 それぞれのベルトプライ 2 8 A , 2 8 B , 2 8 Cをともに、 無端ジグザグ巻きベルト (図 5参照) とし、 ベルトプライ 2 8 A , 2 8 B , 2 8 Cからコードの切断端を取り除く。 なお、 コード切断端のこのような除去は、 スパイラルベルト (図 4参照) を用 いることでも実現できる。
図 1 7は主ベルト層 2 6のそれぞれのべ^/レトプライ 2 6 A, 2 6 B , 2 6 Cを このようにして構成した場合を示す要部断面斜視図である。
ところで、 これらのいずれの場合にあっても、 ベルトプライコードの、 タイヤ 赤道面 C Lに対する角度を 2 5 ° 以下とするのは、 ラジアルタイヤにおけるベル トの主なる役割はタイヤ周方向の剛性を確保することであり (カーカス層は主に ラジアル方向の剛性を受け持つ)、 ベルトプライコードの、 タイヤ赤道面 C Lに 対する角度が大きくなつて 2 5 ° を越えると、 周方向の剛性が低下するため、 必 要な剛性を確保するには、 ベルトプライ数を増やすことが必要になって、 タイヤ 重量の増加が不可避となることによる。
このようなベルト層 2 0のそれぞれのべノレトプライ 2 6 A, 2 6 B , 2 6 C , 2 8 A , 2 8 B , 2 8 Cを構成するコードは、 脂肪族ポリアミ ド系その他の有機 繊維コードにて構成し得ることはもちろんであるが.、 より好ましくは、 カーカス プライを形成する有機繊維コードの 1 0 0〜 7 0 0 %の範囲の弾性率を有するも のとし、 なかでも、 主ベルト層 2 6のベルトプライ 2 6 A, 2 6 B , 2 6 Cを構 成するコードは、 芳香族ポリアミ ド系の有機繊維コードにて構成することが好ま しい。
かかる空気入りラジアルタイヤ 5 2においてより好ましくは、 ベルト層 2 0と トレッ ドゴム層 2 4との間に、 保護ベルト層 2 2を配設し、 この保護ベルト層 2 2を、 5〜 2 5 mmの振幅と、 振幅の 2 0◦〜 7 0 0 %の波長とをもって周方向 にジグザグ状に延びる、 1 0 0 O M P a以上の引張強度を有する非金属コード、 たとえば芳香族ポリアミ ド系のコードにて構成する。
このように構成してなる空気入りラジアルタイヤ 5 2によれば、 図 1 5に示す ように、 副ベルト層 2 8の外周側の、 トレツド側部域のゴム厚み を、 トレツ ド中央域のゴム厚み H 2とほぼ等しくして、 タイヤ重量の増加を有効に抑制して なお、 内圧充填時および、 空気入りラジアルタイヤ 5 2の負荷転動時のトレッ ド 中央域の膨出変形を主ベルト層 2 6によって有利に阻止することができるので、 トレッドゴム層 2 4の膨出変形量をその幅方向に十分均等ならしめて、 トレツド 中央域の早期の摩耗、 トレツド側部域の肩落ち摩耗等を有効に防止するとともに
、 トレッ ド中央域でのトレッ ドゴム層 2 4の伸長量の緩和下で、 異物の刺さり込 みに対する耐久性を向上させることもできる。
なお、 トレツド側部域のゴム厚み H は、 「H =タイャの標準状態での接地幅 の 9 0 %点において計測する、 踏面から副ベルト層 2 8の外周面までの距離一保 護ベルト層のコード径」 である。
また、 トレッ ド中央域のゴム厚み H 2は、 「タイヤ赤道面 C L上で測定した副 ベルト層 2 8の外周面から踏面までのタイヤ径方向に計測した寸法—保護ベルト 層 2 2のコード径」 である。
しかも、 主ベルト層 2 6のベルトプライ 2 6 A, 2 6 B , 2 6 Cはいずれも、 それらの側縁にコード切断端を有しないことから、 トレツド幅方向の負荷の作用 に際してそれらのベルトプライ 2 6 A , 2 6 B , 2 6 Cのセパレーシヨンを有効 に防止することができ、 これによりベルト耐久性を大きく向上させることができ る。
タィャの標準状態での接地幅: TIRE and RIMASSOCIATION(TRA)の 2 0 0 2年度版 YEAR BOOKに定める MEASURING RIMと INFLATION
PRESSUREを用いて、 該 YEAR BOOKに定める 1 0 0 %相当内圧をインフレ一 トした状態にて 1 0 0 %荷重を負荷した場合の接地幅。
[第 8の実施形態]
次に、 本発明の第 8の実施形態に係る空気入りラジアルタイヤ 5 4を図 1 8に したがって説明する。 なお、 本実施形態の空気入りラジアルタイヤ 5 4は前述し た第 7の実施形態の変形例であり、 第 7の実施形態と同一構成には同一符号を付 し、 その説明は省略する。
本実施形態の空気入りラジアルタイャ 5 4は、 トレツド部 2 3に形成した複数 本の周方向溝 2 9の一本をトレツ ド中央部に延在させたものである。
これによれば、 とくに、 他の周方向溝 2 9の形成位置を、 主ベルト層 2 6の側 縁近傍から容易にオフセットさせることができる利点がある。
なお、 第 7の実施形態の空気入りラジアルタイヤ 5 2、 及び第 8の実施形態の 空気入りラジアルタイヤ 5 4の製造に当っては、 いずれのタイヤにあっても、 製 品タイヤの内面形状と対応する外面形状を有する、 たとえば八〜十二分割タイプ の剛性コア上で生タイヤを成型し、 そしてその生タイヤを、 剛性コアとともにモ ールド内へ装入して加硫することが、 タイヤの構成各部の寸法精度を高める上で 好ましい。
なお、 剛性コアは、 それをセグメントに分解することで、 加硫を終えた製品タ ィャから取り出すことができる。
これに対し、 ベルト層 2 0をそれ単独で、 またはトレッドゴム層 2 4ととも、 別個独立のベルト成型ドラム上で成型する場合には、 図 1 9に示すように、 ベル ト成型ドラム 5 6の幅方向中央部分に設けた環状窪み 5 8内で主ベルト層 2 6を 成型することが、 製品タイヤに至るまでの副ベルト層 2 8の変形量を少なくする 上で好ましい。
(試験例 2 )
サイズが 5 0 x 2 0 . 0 R 2 2の航空機用ラジアルタイヤにおいて、 構成を表 6に示すように変化させた実施例タイヤ、 比較例タイヤおょぴ従来タイヤのそれ ぞれについての各種性能を測定したところ表 7に示す結果を得た。
比較例タイヤ:図 2 0に示す構造の空気入りラジアルタイヤ。 実施例タイヤと はベルト構造が異なる。
従来例タイヤ:図 2 1に示す構造の空気入りラジアルタイヤ。 実施例タイヤと はベルト構造が異なる。
【表 6】
実施例 実施例 比較例 従来例 タイヤ 14 タイヤ タイヤ タイヤ
1 5 5 2
タイヤ断面図 (概念) 図 1 5 図 1 5 図 1 5 図 21 (A) 断面斜視図 (概念) 図 1 6 図 1 7 図 20 図 21 (B) 力 コ ド材晳 ナイ口ン ^_ ~ タ プライ枚 1 数 6枚
ィ 力 コー ド、 度 88° or 9 2°
ャ ス
all コ ド材暂 ナイ口ン ナイロン 造 ベ 層数
ル 無端ジグザグ卷
卜 コード、 度 き
最大幅 タイヤ最大幅の
80 %
主 コ ド材質 ナイロン
プライ枚数 6枚
ノレ 構造 無端ジグザグ卷 スパイラ 交錯ベル 無し 卜 コード角度 さ ル 卜
1 0° 略 0° 1 5°
最大幅 タイヤ最大幅の
45 %
ベルト保護層 ケプラー
(商標)
Figure imgf000055_0001
波長 2 7. 5 mm
【表 7】
実施例 実施例
タイヤ 1 6 タイヤ 1 7 タイヤ断面図 (概念) 図 1 5 図 1 5
断面斜視図 (概念) 図 1 7 図 2 3
力 =2—ド、材質 ナイロン
タ プライ枚数 6枚
ィ 力 コード、角度 8 8° or 9 2°
ャ ス
畐リ =!一ド、材質 ナイ口ン
IS ぺ 層数 6層
ル 構造 無端ジグザグ卷き 交錯ベルト 卜 コード角度 8° 1 5°
層 最大幅 タイヤ最大幅の
8 0 %
主 コード材質 ケブラー ナイ口ン ベ プライ枚数 6枚 6枚
ル 構造 スノ ィラノレ 無端ジグザグ巻き 卜 コード角度 略 0° 1 0°
最大幅 タイヤ最大幅の
4 5 %
ベノレト保護層 ケブラー
(商標)
振幅 5 mm
波長 2 7. 5 mm
【表 8】
実施例 実施例 比較例 従来例 タイヤ タイヤ タイヤ タイヤ
14 1 5 5 2 タ タイヤ径 中央域 4. 3% 4. 0 % 4. 2% 6. 0 % ィ 增カロ率 * 1 側部域 4. 4 % 4. 4 % 4. 5 % 4. 0 % ャ 耐カット性 *2 1 24 1 30 1 27 1 1 0 . 性 摩耗ライフ *3 1 1 9 1 1 9 1 1 9 1 00 能 スリップアングル付 1 05 1 09 86 1 00 T a x i試験回数 *4
【表 9】
実施例 実施例
タイヤ タイヤ
1 6 1 7
タ タイヤ径 中 域 3. 2 % 4. 9 %
ィ 増加率 *1 側部域 2. 8 % 4. 7 %
ャ 耐カット性 *2 1 40 1 1 8
性 摩耗ライフ *3 1 22 1 2 1
能 スリップアングル付 1 1 2 1 0 5
T a x i試験回数 *4
*1 使用空気圧充填前後のタイヤ各部の外径の増加率 (増加率が小さいほどト レツドゴムの張力が小さく、 タイヤ中央域と側部域の増加率の差が小さいほど均 一なタイヤ成長を表す)。
*2 試験例 1と同様の試験方法、 及ぴ評価。
*3 実機試験においてタイヤ完全摩耗するまでの離着陸回数を、 従来例タイヤ 2を 1 00の指数として表示した (数値大きいほど性能良)。
*4 内圧規定値の 9 2%、 荷重規定値の 85%、 スリ ップ角 1. 5° 、 試験速 度 64 km/h、 走行時間 4分、 サイクル 1 20分にて室内ドラム試験を行った 場合の故障するまでの試験回数を、 従来例タイヤ 2を 1 00の指数として表示し た (数値大きいほど性能良)。
表 7によれば、 実施例タイヤはいずれも、 すぐれた摩耗耐久性と、 横荷重に対 する高い耐久性を発揮し得ることが明らかである。 産業上の利用可能性
以上のように、 本発明に係る空気入りラジアルタイヤは、 特に、 航空機に用い るのに適している。

Claims

請求の範囲
1. 一対のビードコアと、 一方ビードコアから他方のビードコアに向けてトロ ィド状に延びる少なくとも 1枚以上のカーカスプライからなるカーカス層と、 前 記カーカス層のタイヤ半径方向外側のクラウン域外周面に、 有機繊維コードを含 む少なくとも 1枚以上のベルトプライからなるベルト層と、 を備えた空気入りラ ジアルタイヤであって、
タイヤ赤道面位置 P 0での単位幅当りにおける前記ベルト層のタイヤ周方向の 総強力を K0、 タイヤ赤道面を中心として前記ベルト層の最大幅の 2ダ 3の幅位 置 Ρ 2での単位幅当りにおける前記ベルト層のタイヤ周方向の総強力を Κ 2とし たときに、 Κ2 <Κ0を満足する、 ことを特徴とする空気入りラジアルタイヤ。
2. 0. 2≤Κ 2/Κ 0≤ 0. 8を満足する、 ことを特徴とする請求項 1に記 載の空気入りラジアルタイヤ。
3. 前記ベルト層において、 前記有機繊維コードの積層厚みを前記タイヤ赤道 面位置 Ρ 0で最も厚くし、 前記タイヤ赤道面位置 Ρ 0での前記有機繊維コードの 積層厚みを GO、 前記ベルト層の最大幅の 2ノ 3の幅位置 P 2での前記有機繊維 コードの積層厚みを G 2としたときに、 G 2く G Oを満足する、 ことを特徴とす る請求項 1または請求項 2に記載の空気入りラジアルタイヤ。
4. 0. 35≤G 2/G 0≤ 0. 8 5を満足することを特徴とする請求項 3に 記載の空気入りラジアルタイャ。
5. 前記ベルト層において、 前記ベルト層の最大幅の 2Z 3の幅位置 P 2での 前記有機繊維コードの積層厚みを G 2としたときに、
前記ベルト層には、 前記ベルト層の最大幅の 2ノ 3の幅位置 P 2よりもタイヤ 幅方向外側の領域において、 前記積層厚み G 2よりも積層厚みの厚い部分が設け られている、 ことを特徴とする請求項 1乃至請求項 4の何れか 1項に記載の空気 入りラジアルタイヤ。
6. 前記ベルト層は、 引張破断強度が 6. 3 c N/d t e X以上、 伸張方向に 0. 3 c NZd t e X荷重時の伸び率が 0. 2〜2. 0%、 伸張方向に 2. 1 c NZd t e X荷重時の伸び率が 1. 5〜7. 0%、 伸張方向に 3. 2 c N/d t e x荷重時の伸び率が 2. 2〜9. 3 %とされた有機繊維コードを含むベルトプ ライの少なくとも 2枚以上で構成された主ベルト層を有する、 ことを特徴とする 請求項 1乃至請求項 5の何れか 1項に記載の空気入りラジアルタイヤ。
7. 前記主ベルト層のタイヤ幅方向端部では、 少なくとも前記ベルトプライが 2層以上積層されている、 ことを特徴とする請求項 6に記載の空気入りラジアル タイヤ。
8. 前記主ベルト層は、 芳香族ポリアミ ド系の繊維から構成され、 下撚り係数 が 0. 1 2〜0. 85、 上撚り係数が 0. 40〜0. 80とされた有機繊維コ一 ドを含むベルトプライを有する、 ことを特徴とする請求項 6または請求項 7に記 載の空気入りラジアルタイヤ。
9. 前記主ベルト層は、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊 維とを含み、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維との重量比 が 1 00 : 1 0〜 1 70とされた有機繊維コードを含むベルトプライを有する、 ことを特徴とする請求項 6乃至請求項 8の何れか 1項に記載の空気入りラジアル タイヤ。
1 0. 前記主ベルト層は、 芳香族ポリアミ ド系のコードと脂肪族ポリアミ ド系 のコードとが撚り合わされ、 かつ前記芳香族ポリアミ ド系のコードの下撚り係数 が 0. 1 2〜0. 85とされた有機繊維コードを含むベルトプライを有する、 こ とを特徴とする請求項 9に記載の空気入りラジアルタイヤ。
1 1. 前記主ベルト層は、 タイヤ赤道面に対して略 0° の角度で螺旋状に巻回 された有機繊維コ一ドを含むベルトプライを有する、 ことを特徴とする請求項 6 乃至請求項 1 0の何れか 1項に記載の空気入りラジアルタイヤ。
1 2. 前記主ベルト層は、 タイヤ赤道面に対して 2〜25° の角度で傾斜し、 それぞれのプライ端で反対方向に傾斜するように同一面内で屈曲されてタイヤ周 方向にジグザグ状に延びる有機繊維コードを含むベルトプライを有する、 ことを 特徴とする請求項 6乃至請求項 1 1の何れか 1項に記載の空気入りラジアルタイ ャ。
1 3. 前記主ベルト層のタイヤ半径方向外側に副ベルト層が設けられており、 副ベルト層は、 前記主ベルト層のベルトプライに含まれる有機繊維コードに対 して 2. 1 c N/d t e x荷重時の伸び率が略同等以上である有機繊維コードを 含むベルトプライを有する、 ことを特徴とする請求項 6乃至請求項 1 2の何れか 1項に記載の空気入りラジアルタイヤ。
14. 前記副ベルト層は、 前記主ベルト層のベルトプライに含まれる有機繊維 コードに対してタイヤ赤道面に対する角度が略同等以上に設定された有機繊維コ ードを含むベルトプライを有する、 ことを特徴とする請求項 1 3に記載の空気入 りラジアルタイヤ。
1 5. 前記副ベルト層は、 タイヤ赤道面に対して 2〜45° で傾斜した有機繊 維コードを含むベルトプライを有する、 ことを特徴とする請求項 1 3または請求 項 14に記載の空気入りラジアルタイヤ。
1 6. 前記副ベルト層は、 それぞれのプライ端で反対方向に傾斜するように同 一面内で屈曲されてタイヤ周方向にジグザグ状に延びてレ、る有機繊維コードを含 むベルトプライを有する、 ことを特徴とする請求項 1 3乃至請求項 1 5の何れか
1項に記載の空気入りラジアルタイャ。
1 7. 前記カーカス層は、 引張破断強度が 6. 3 c NZd t e X以上、 伸張方 向に 0. 2 c N/ d t e X荷重時の伸び率が 0. 2〜: 1. 8%、 伸張方向に 1.
9 c NZd t e X荷重時の伸び率が 1. 4〜6. 4 %、 伸張方向に 2. 9 c N/ d t e X荷重時の伸び率が 2. 1〜8. 6 %とされた有機繊維コードから形成さ れた少なくとも 2枚のカーカスプライを含む、 ことを特徴とする請求項 1乃至請 求項 1 6の何れか 1項に記載の空気入りラジアルタイヤ。
1 8. 前記カーカス層は、 芳香族ポリアミ ド系の繊維から構成され、 下撚り係 数が 0. 1 2〜0. 8 5、 より好ましくは 0. 1 7〜0. 5 1、 上撚り係数が 0 . 4〜0. 8 5とされた有機繊維を含むカーカスプライを有する、 ことを特徴と する請求項 1 7に記載の空気入りラジアルタイヤ。
1 9. 前記カーカス層は、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の 繊維とを含み、 芳香族ポリアミ ド系の繊維と脂肪族ポリアミ ド系の繊維との重量 比が、 1 00 : 1 2〜 5 1 0、 好ましくは 1 00 : 27〜 2 5 5とされた有機繊 維コードを含むカーカスプライを有する、 ことを特徴とする請求項 1 7に記載の 空気入りラジアルタイヤ。
20. 前記カーカス層は、 芳香族ポリアミ ド系の有機繊維コードと脂肪族ポリ アミ ド系の有機繊維コードとが撚り合わされ、 かつ前記ポリアミ ド系の有機繊維 コ一ドの下撚り係数が 0. 1 2〜0. 85、 より好ましくは 0. 1 7〜0. 5 1 とされた有機繊維コードを含むカーカスプライを有する、 ことを特徵とする請求 項 1 9に記載の空気入りラジアルタイャ。
2 1. 前記副ベルト層のタイヤ半径方向外側に、 タイヤ周方向に波状に延びる 1 00 OMP a以上の引張り強度を有した非金属性の波状コードを含む保護ベル ト層を、 1. 5〜4. 5mmのゴム層を介して配置した、 ことを特徴とする請求 項 1 3乃至請求項 20の何れか 1項に記載の空気入りラジアルタイヤ。
22. 前記波状コードは、 内圧を充填し.ない状態で、 振幅が 5〜25mm、 波 長が振幅の 200〜700%である、 ことを特徴とする請求項 2 1に記載の空気 入りラジアルタイヤ。
23. TRAに定める標準内圧充填状態で、 内圧充填前と比較してタイヤ外径 の成長率が 0. 3〜5. 5%である、 ことを特徴とする請求項 1乃至請求項 22 の何れか 1項に記載の空気入りラジアルタイヤ。
24. ほぼラジアル方向に延びる有機繊維コードょりなるカーカスプライの一 枚以上にて形成したカーカス層と、
このカーカス層のクラウン域と トレッドとの間に配設した、 複数のベルトプラ ィからなるベルト層とを具え、
ベルト層の総厚みを、 幅方向の中央部分で側部部分のそれより厚くするととも に、 そのベルト層が、 半径方向外側に位置する副ベルト層と、 半径方向内側に位 置する主ベルト層とを含み、
副ベルト層を、 半径方向外側に向けて幅が漸減する複数のベルトプライにて形 成するとともに、 この副ベルト層の最大幅をタイヤ最大幅の 60〜90%の範囲 とし、
主ベルト層を、 半径方向内側に向けて幅が漸減する複数のベルトプライにて形 成するとともに、 この主ベルト層の最大幅をタイヤ最大幅の 1 5〜6 0%の範囲 とし、
主ベルト層のそれぞれのベルトプライを、 タイヤ赤道面に 2° 〜2 5° の角度 で交差し、 それぞれのプライ端で反対方向に傾斜するように同一面内で屈曲され てタイヤ周方向にジグザグ状に延びるコードまたは、 タイヤ赤道面に対してほぼ
0 ° の角度で螺旋状に延びるコードにより構成した、 ことを特徴とする空気入り ラジアルタイヤ。
2 5 . 主ベルト層と、 副ベルト層のベルトプライを構成するコードの弾性率を 、 カーカスプライの有機繊維コードのそれの 1 0 0〜 7 0 0 %の範囲とした、 こ とを特徴とする請求項 2 4に記載の空気入りラジアルタイヤ。
2 6 . 主ベルト層のベルトプライを構成するコードを、 芳香族ポリアミ ド系の 有機繊維コードとした、 ことを特徴とする請求項 2 4または請求項 2 5に記載の 空気入りラジアルタイヤ。
2 7 . 畐 IJベノレト層とトレッドとの間に、 5 〜 2 5 mmの振幅と、 振幅の 2 0 0 〜 7 0 0 %の波長とをもって周方向にジグザグ状に延びる、 1 0 0 O M P a以上の 引張り強度を有する非金属コードにより構成した保護ベルト層を配設した、 こと を特徴とする請求項 2 4乃至請求項 2 6の何れか 1項に記載の空気入りラジアル タイヤ。
2 8 . トレッ ドに設けた周方向溝の一本をトレッ ド中央部に延在させた、 こと を特徴とする請求項 2 4乃至請求項 2 7の何れか 1項に記載の空気入りラジアル タイヤ。
2 9 . 請求項 2 4乃至請求項 2 8の何れか 1項に記載の空気入りラジアルタイ ャを製造するに当り、
製品タイヤの内面形状と対応する外面形状を有する分割タイプの剛性コア上で 生タイヤを成型し、 その生タイヤを剛性コアとともにモールド内へ装入して加硫 する、 ことを特徴とする空気入りラジアルタイヤの製造方法。
3 0 . 請求項 2 4乃至請求項 2 8の何れか 1項に記載の空気入りラジアルタイ ャを製造するに当り、
ベルト成型ドラムの幅方向中央部分に設けた環状窪み内で主ベルト層を成型す る、 ことを特徴とする空気入りラジアルタイヤの製造方法。
PCT/JP2003/000661 2002-01-24 2003-01-24 Pneu radial et procede de production WO2003061991A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003561901A JP4424989B2 (ja) 2002-01-24 2003-01-24 空気入りタイヤ、及びその製造方法
US10/502,548 US7712499B2 (en) 2002-01-24 2003-01-24 Pneumatic radial tire with specified belt layer
EP03701867.8A EP1477333B1 (en) 2002-01-24 2003-01-24 Pneumatic radial tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002015701 2002-01-24
JP2002-15701 2002-01-24

Publications (2)

Publication Number Publication Date
WO2003061991A1 true WO2003061991A1 (fr) 2003-07-31
WO2003061991B1 WO2003061991B1 (fr) 2003-10-23

Family

ID=27606117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000661 WO2003061991A1 (fr) 2002-01-24 2003-01-24 Pneu radial et procede de production

Country Status (4)

Country Link
US (1) US7712499B2 (ja)
EP (1) EP1477333B1 (ja)
JP (1) JP4424989B2 (ja)
WO (1) WO2003061991A1 (ja)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284375A (ja) * 2003-03-19 2004-10-14 Bridgestone Corp 高速重荷重用空気入りラジアルタイヤ
JP2005088590A (ja) * 2003-09-16 2005-04-07 Goodyear Tire & Rubber Co:The 複合ベルト構造とその製造方法
JP2005225398A (ja) * 2004-02-13 2005-08-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2006069399A (ja) * 2004-09-02 2006-03-16 Bridgestone Corp 航空機用ラジアルタイヤ
JP2006069390A (ja) * 2004-09-02 2006-03-16 Bridgestone Corp 高速重荷重用空気入りラジアルタイヤ
JP2006076395A (ja) * 2004-09-08 2006-03-23 Bridgestone Corp 空気入りタイヤ
JP2006076396A (ja) * 2004-09-08 2006-03-23 Bridgestone Corp 航空機用空気入り更生ラジアルタイヤ及び割モールド
WO2006035940A1 (ja) * 2004-09-30 2006-04-06 Bridgestone Corporation 空気入りラジアルタイヤ
JP2006199076A (ja) * 2005-01-18 2006-08-03 Bridgestone Corp 航空機用空気入りラジアルタイヤ
JP2006321473A (ja) * 2005-04-21 2006-11-30 Bridgestone Corp 航空機用ラジアルタイヤ、及び、航空機用ラジアルタイヤの製造方法
JP2007168578A (ja) * 2005-12-21 2007-07-05 Bridgestone Corp 航空機用空気入りラジアルタイヤ
JP2007182102A (ja) * 2006-01-04 2007-07-19 Bridgestone Corp 航空機用ラジアルタイヤ
JP2007182103A (ja) * 2006-01-04 2007-07-19 Bridgestone Corp 航空機ラジアルタイヤ
JP2007190963A (ja) * 2006-01-17 2007-08-02 Bridgestone Corp 航空機用空気入りラジアルタイヤ
JP2007283827A (ja) * 2006-04-13 2007-11-01 Bridgestone Corp 航空機用タイヤおよびそれの製造方法
WO2008041440A1 (fr) 2006-09-29 2008-04-10 Bridgestone Corporation Pneumatique radial pour avion et son procédé de fabrication
WO2008041415A1 (fr) 2006-09-29 2008-04-10 Bridgestone Corporation Procédé de fabrication d'un bandage pneumatique
JP2008114841A (ja) * 2006-11-03 2008-05-22 Goodyear Tire & Rubber Co:The 軽量化された航空機用タイヤ
WO2008139827A1 (ja) 2007-05-16 2008-11-20 Bridgestone Corporation 航空機用ラジアルタイヤ
WO2009063759A1 (ja) 2007-11-12 2009-05-22 Bridgestone Corporation 航空機用ラジアルタイヤ
EP2103453A2 (en) 2008-03-11 2009-09-23 The Yokohama Rubber Co., Ltd. Pneumatic tire for heavy load
US7789120B2 (en) * 2003-02-24 2010-09-07 The Goodyear Tire & Rubber Company Tire having a composite belt structure
WO2010100856A1 (ja) 2009-03-03 2010-09-10 株式会社ブリヂストン 航空機用ラジアルタイヤ
WO2010122803A1 (ja) 2009-04-22 2010-10-28 株式会社ブリヂストン 航空機用タイヤ
JP2010260446A (ja) * 2009-05-07 2010-11-18 Bridgestone Corp 空気入りタイヤ
JP2011098642A (ja) * 2009-11-05 2011-05-19 Bridgestone Corp 空気入りラジアルタイヤ
WO2012026123A1 (ja) * 2010-08-27 2012-03-01 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JP2013001392A (ja) * 2011-06-13 2013-01-07 Goodyear Tire & Rubber Co:The 軽量化された航空機タイヤ
JP2013001391A (ja) * 2011-06-13 2013-01-07 Goodyear Tire & Rubber Co:The 軽量化された航空機用タイヤ
WO2014148340A1 (ja) 2013-03-18 2014-09-25 株式会社ブリヂストン 航空機用空気入りタイヤ
WO2014175103A1 (ja) * 2013-04-23 2014-10-30 株式会社ブリヂストン 航空機用空気入りタイヤ
JP2014213723A (ja) * 2013-04-25 2014-11-17 株式会社ブリヂストン 空気入り安全タイヤ
US9346321B2 (en) 2010-06-11 2016-05-24 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
JP2016534928A (ja) * 2013-10-30 2016-11-10 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン 航空機用タイヤのクラウン補強材
JP2017536284A (ja) * 2014-10-28 2017-12-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 航空機用タイヤ
JP2020040583A (ja) * 2018-09-12 2020-03-19 株式会社ブリヂストン ラジアルタイヤ
JP2020097261A (ja) * 2018-12-17 2020-06-25 株式会社ブリヂストン タイヤ
CN113165427A (zh) * 2018-12-04 2021-07-23 米其林集团总公司 飞机轮胎的胎面

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832133B2 (ja) * 2006-03-23 2011-12-07 株式会社ブリヂストン 空気入り安全タイヤ
WO2009069697A1 (ja) * 2007-11-27 2009-06-04 Bridgestone Corporation 空気入りラジアルタイヤ
JP5680266B2 (ja) * 2008-05-16 2015-03-04 横浜ゴム株式会社 空気入りタイヤおよび更生タイヤの製造方法
FR2933031B1 (fr) * 2008-06-30 2011-08-19 Michelin Soc Tech Sommet pour pneumatique d'avion
US20100154965A1 (en) * 2008-12-19 2010-06-24 Roland Willibrord Krier Offset zigzag belt structure for a pneumatic tire
US20100154962A1 (en) * 2008-12-19 2010-06-24 Jean-Michel Alphonse Fernand Gillard Pneumatic tire
US9168789B2 (en) 2008-12-19 2015-10-27 The Goodyear Tire & Rubber Company Truck tire
US20100154961A1 (en) * 2008-12-19 2010-06-24 Francois Pierre Charles Gerard Georges Pneumatic tire
US8079392B2 (en) 2008-12-19 2011-12-20 The Goodyear Tire & Rubber Company Alternating straight/wavy reinforcement structure for pneumatic tire
US20100154964A1 (en) * 2008-12-19 2010-06-24 Francois Pierre Charles Gerard Georges Pneumatic tire
US20110086224A1 (en) * 2009-10-13 2011-04-14 E.I. Du Pont De Nemours And Company Sheet and Method of Making Sheet for Support Structures and Tires
US8578988B2 (en) * 2010-08-20 2013-11-12 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
US8454778B2 (en) 2010-11-15 2013-06-04 Ramendra Nath Majumdar Pneumatic tire with barrier layer and method of making the same
JP5739681B2 (ja) 2011-01-28 2015-06-24 株式会社ブリヂストン 空気入りタイヤ
JP5961349B2 (ja) * 2011-06-06 2016-08-02 株式会社ブリヂストン 空気入りラジアルタイヤ
US9272577B2 (en) * 2011-06-13 2016-03-01 The Goodyear Tire & Rubber Company Aircraft radial tire
FR2983121B1 (fr) 2011-11-29 2013-12-20 Michelin Soc Tech Sommet pour pneumatique d'avion
US9546266B2 (en) 2013-03-13 2017-01-17 Basf Se Inner liner for a pneumatic tire assembly
EP3064376B1 (en) * 2013-10-29 2018-10-24 Bridgestone Corporation Tire
FR3013259B1 (fr) * 2013-11-15 2017-03-17 Michelin & Cie Armature de sommet pour pneumatique d'avion
FR3017822B1 (fr) * 2014-02-24 2017-06-09 Michelin & Cie Armature de sommet de pneumatique pour avion
WO2015130287A1 (en) 2014-02-27 2015-09-03 Compagnie Generale Des Etablissements Michelin Improved body ply shape for a tire
FR3044009B1 (fr) 2015-11-19 2017-12-08 Michelin & Cie Bande de roulement pour pneumatique d'avion
FR3044010A1 (fr) 2015-11-19 2017-05-26 Michelin & Cie Bande de roulement pour pneumatique d'avion
FR3044007B1 (fr) 2015-11-19 2017-12-08 Michelin & Cie Bande de roulement pour pneumatique d'avion
JP6861542B2 (ja) * 2017-03-08 2021-04-21 株式会社ブリヂストン 空気入りタイヤ
TR201719814A2 (tr) * 2017-12-07 2019-06-21 Kordsa Teknik Tekstil Anonim Sirketi Yüksek performans polyester lasti̇k kordlari
TR201719810A2 (tr) * 2017-12-07 2019-06-21 Kordsa Teknik Tekstil Anonim Sirketi Yüksek performansli naylon lasti̇k kordlari
JP6720997B2 (ja) * 2018-04-10 2020-07-08 横浜ゴム株式会社 ランフラットタイヤ
JP7129900B2 (ja) * 2018-12-21 2022-09-02 株式会社ブリヂストン 航空機用空気入りタイヤ
US20200353776A1 (en) * 2019-05-09 2020-11-12 The Goodyear Tire & Rubber Company Radial tire
US20200391555A1 (en) * 2019-06-11 2020-12-17 The Goodyear Tire & Rubber Company Radial tire
US20210380229A1 (en) * 2019-11-19 2021-12-09 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
EP3825149B1 (en) * 2019-11-19 2023-06-07 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
US20210323354A1 (en) * 2020-04-17 2021-10-21 The Goodyear Tire & Rubber Company Tire with cut protector belt structure
US20230055170A1 (en) * 2021-08-17 2023-02-23 The Goodyear Tire & Rubber Company Aircraft tire
CN113459553B (zh) * 2021-09-02 2022-02-15 天津赛象科技股份有限公司 通过仿形缠绕方式制作轮胎胎面的方法、产品、设备、终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171204A (ja) * 1984-09-13 1986-04-12 Bridgestone Corp 空気入りラジアルタイヤのカ−カス用プライ
JPS6237204A (ja) * 1985-03-28 1987-02-18 Sumitomo Rubber Ind Ltd 航空機用タイヤ
JPS6349504A (ja) * 1986-08-19 1988-03-02 Bridgestone Corp 高荷重用空気入りタイヤ
JPH05294107A (ja) * 1992-04-20 1993-11-09 Bridgestone Corp 航空機用ラジアルタイヤ
JPH06211003A (ja) * 1993-01-20 1994-08-02 Bridgestone Corp 航空機用ラジアルタイヤ
JP2000255209A (ja) * 1999-01-07 2000-09-19 Bridgestone Corp 空気入りタイヤ
US20020005239A1 (en) * 1999-03-17 2002-01-17 Thierry Royer Crown reinforcement for a radial tire

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216813A (en) 1978-05-08 1980-08-12 The Goodyear Tire & Rubber Company Radial tire with a belt structure of different reinforcement cords
JPS61178204A (ja) 1985-02-04 1986-08-09 Bridgestone Corp 大荷重用空気入りタイヤ
US4887655A (en) * 1986-06-20 1989-12-19 Bridgestone Corporation Heavy duty-high pressure pneumatic radial tires
GB2201925B (en) * 1987-03-12 1991-02-27 Dunlop Ltd Radial ply tyre
FR2624063B1 (fr) * 1987-12-07 1994-04-29 Bridgestone Corp Pneumatique de force
ES2048208T3 (es) * 1987-12-10 1994-03-16 Bridgestone Corp Neumatico radial.
JPH0645192B2 (ja) * 1990-10-25 1994-06-15 住友ゴム工業株式会社 ラジアルタイヤの製造方法
JPH05193303A (ja) 1992-01-16 1993-08-03 Daifuku Co Ltd 接床輪体の取付構造
JPH06234304A (ja) * 1992-12-17 1994-08-23 Sumitomo Rubber Ind Ltd 高速重荷重用ラジアルタイヤ
JP3942649B2 (ja) 1994-08-25 2007-07-11 株式会社ブリヂストン 重荷重用ラジアルタイヤ
FR2740078B1 (fr) * 1995-10-23 1997-12-05 Michelin & Cie Armature de sommet pour pneumatique de metropolitain
DE69618024T2 (de) * 1996-10-04 2002-07-04 The Goodyear Tire & Rubber Co., Akron Abriebstreifen aus gummi/gewebe für flugzeugreifen
JP3198077B2 (ja) * 1997-06-27 2001-08-13 住友ゴム工業株式会社 空気入りタイヤ
ES2233001T3 (es) * 1998-08-19 2005-06-01 Bridgestone Corporation Cubierta neumatica radial.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171204A (ja) * 1984-09-13 1986-04-12 Bridgestone Corp 空気入りラジアルタイヤのカ−カス用プライ
JPS6237204A (ja) * 1985-03-28 1987-02-18 Sumitomo Rubber Ind Ltd 航空機用タイヤ
JPS6349504A (ja) * 1986-08-19 1988-03-02 Bridgestone Corp 高荷重用空気入りタイヤ
JPH05294107A (ja) * 1992-04-20 1993-11-09 Bridgestone Corp 航空機用ラジアルタイヤ
JPH06211003A (ja) * 1993-01-20 1994-08-02 Bridgestone Corp 航空機用ラジアルタイヤ
JP2000255209A (ja) * 1999-01-07 2000-09-19 Bridgestone Corp 空気入りタイヤ
US20020005239A1 (en) * 1999-03-17 2002-01-17 Thierry Royer Crown reinforcement for a radial tire

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789120B2 (en) * 2003-02-24 2010-09-07 The Goodyear Tire & Rubber Company Tire having a composite belt structure
JP2004284375A (ja) * 2003-03-19 2004-10-14 Bridgestone Corp 高速重荷重用空気入りラジアルタイヤ
JP2005088590A (ja) * 2003-09-16 2005-04-07 Goodyear Tire & Rubber Co:The 複合ベルト構造とその製造方法
JP2005225398A (ja) * 2004-02-13 2005-08-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2006069399A (ja) * 2004-09-02 2006-03-16 Bridgestone Corp 航空機用ラジアルタイヤ
JP2006069390A (ja) * 2004-09-02 2006-03-16 Bridgestone Corp 高速重荷重用空気入りラジアルタイヤ
JP2006076395A (ja) * 2004-09-08 2006-03-23 Bridgestone Corp 空気入りタイヤ
JP2006076396A (ja) * 2004-09-08 2006-03-23 Bridgestone Corp 航空機用空気入り更生ラジアルタイヤ及び割モールド
EP1800902A4 (en) * 2004-09-30 2008-11-05 Bridgestone Corp RADIAL TIRES
JPWO2006035940A1 (ja) * 2004-09-30 2008-05-15 株式会社ブリヂストン 空気入りラジアルタイヤ
EP1800902A1 (en) * 2004-09-30 2007-06-27 Bridgestone Corporation Pneumatic radial tire
JP4635010B2 (ja) * 2004-09-30 2011-02-16 株式会社ブリヂストン 空気入りラジアルタイヤ
WO2006035940A1 (ja) * 2004-09-30 2006-04-06 Bridgestone Corporation 空気入りラジアルタイヤ
JP2006199076A (ja) * 2005-01-18 2006-08-03 Bridgestone Corp 航空機用空気入りラジアルタイヤ
JP4618637B2 (ja) * 2005-01-18 2011-01-26 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JP2006321473A (ja) * 2005-04-21 2006-11-30 Bridgestone Corp 航空機用ラジアルタイヤ、及び、航空機用ラジアルタイヤの製造方法
US7665497B2 (en) 2005-04-21 2010-02-23 Bridgestone Corporation Radial tire for airplane with zigzag endless belt and method of manufacturing radial tire for airplane with zigzag endless belt
JP2007168578A (ja) * 2005-12-21 2007-07-05 Bridgestone Corp 航空機用空気入りラジアルタイヤ
JP2007182102A (ja) * 2006-01-04 2007-07-19 Bridgestone Corp 航空機用ラジアルタイヤ
JP2007182103A (ja) * 2006-01-04 2007-07-19 Bridgestone Corp 航空機ラジアルタイヤ
JP2007190963A (ja) * 2006-01-17 2007-08-02 Bridgestone Corp 航空機用空気入りラジアルタイヤ
JP2007283827A (ja) * 2006-04-13 2007-11-01 Bridgestone Corp 航空機用タイヤおよびそれの製造方法
US7780806B2 (en) 2006-04-13 2010-08-24 Bridgestone Corporation Tire for an aircraft and method for producing the same
JP2008087243A (ja) * 2006-09-29 2008-04-17 Bridgestone Corp 空気入りタイヤ
WO2008041415A1 (fr) 2006-09-29 2008-04-10 Bridgestone Corporation Procédé de fabrication d'un bandage pneumatique
US8371352B2 (en) 2006-09-29 2013-02-12 Bridgestone Corporation Radial tire for use in aircraft and method of producing the same
US8137495B2 (en) 2006-09-29 2012-03-20 Bridgestone Corporation Method of producing a pneumatic tire
WO2008041440A1 (fr) 2006-09-29 2008-04-10 Bridgestone Corporation Pneumatique radial pour avion et son procédé de fabrication
JP2008114841A (ja) * 2006-11-03 2008-05-22 Goodyear Tire & Rubber Co:The 軽量化された航空機用タイヤ
US8413699B2 (en) 2007-05-16 2013-04-09 Bridgestone Corporation Radial tire for aircraft
WO2008139827A1 (ja) 2007-05-16 2008-11-20 Bridgestone Corporation 航空機用ラジアルタイヤ
WO2009063759A1 (ja) 2007-11-12 2009-05-22 Bridgestone Corporation 航空機用ラジアルタイヤ
JP2009214760A (ja) * 2008-03-11 2009-09-24 Yokohama Rubber Co Ltd:The 重荷重用空気入りタイヤ
EP2103453A2 (en) 2008-03-11 2009-09-23 The Yokohama Rubber Co., Ltd. Pneumatic tire for heavy load
US8225834B2 (en) 2008-03-11 2012-07-24 The Yokohama Rubber Co., Ltd. Pneumatic tire for heavy load
WO2010100856A1 (ja) 2009-03-03 2010-09-10 株式会社ブリヂストン 航空機用ラジアルタイヤ
WO2010122803A1 (ja) 2009-04-22 2010-10-28 株式会社ブリヂストン 航空機用タイヤ
US8752602B2 (en) 2009-04-22 2014-06-17 Bridgestone Corporation Aircraft tire
JP2010260446A (ja) * 2009-05-07 2010-11-18 Bridgestone Corp 空気入りタイヤ
JP2011098642A (ja) * 2009-11-05 2011-05-19 Bridgestone Corp 空気入りラジアルタイヤ
US9346321B2 (en) 2010-06-11 2016-05-24 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
JPWO2012026123A1 (ja) * 2010-08-27 2013-10-28 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
JP5788882B2 (ja) * 2010-08-27 2015-10-07 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
WO2012026123A1 (ja) * 2010-08-27 2012-03-01 株式会社ブリヂストン 航空機用空気入りラジアルタイヤ
US9643455B2 (en) 2010-08-27 2017-05-09 Bridgestone Corporation Pneumatic radial tire for aircraft
JP2013001392A (ja) * 2011-06-13 2013-01-07 Goodyear Tire & Rubber Co:The 軽量化された航空機タイヤ
JP2013001391A (ja) * 2011-06-13 2013-01-07 Goodyear Tire & Rubber Co:The 軽量化された航空機用タイヤ
WO2014148340A1 (ja) 2013-03-18 2014-09-25 株式会社ブリヂストン 航空機用空気入りタイヤ
US9925833B2 (en) 2013-03-18 2018-03-27 Bridgestone Corporation Aircraft pneumatic tire
US9821610B2 (en) 2013-04-23 2017-11-21 Bridgestone Corporation Pneumatic tire for aircraft
WO2014175103A1 (ja) * 2013-04-23 2014-10-30 株式会社ブリヂストン 航空機用空気入りタイヤ
JP2014213651A (ja) * 2013-04-23 2014-11-17 株式会社ブリヂストン 航空機用空気入りタイヤ
JP2014213723A (ja) * 2013-04-25 2014-11-17 株式会社ブリヂストン 空気入り安全タイヤ
JP2016534928A (ja) * 2013-10-30 2016-11-10 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン 航空機用タイヤのクラウン補強材
JP2017536284A (ja) * 2014-10-28 2017-12-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 航空機用タイヤ
JP2020040583A (ja) * 2018-09-12 2020-03-19 株式会社ブリヂストン ラジアルタイヤ
WO2020054798A1 (ja) * 2018-09-12 2020-03-19 株式会社ブリヂストン ラジアルタイヤ
JP7121607B2 (ja) 2018-09-12 2022-08-18 株式会社ブリヂストン ラジアルタイヤ
CN113165427A (zh) * 2018-12-04 2021-07-23 米其林集团总公司 飞机轮胎的胎面
JP2020097261A (ja) * 2018-12-17 2020-06-25 株式会社ブリヂストン タイヤ
WO2020129970A1 (ja) * 2018-12-17 2020-06-25 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
US7712499B2 (en) 2010-05-11
JP4424989B2 (ja) 2010-03-03
EP1477333B1 (en) 2018-06-20
WO2003061991B1 (fr) 2003-10-23
EP1477333A4 (en) 2010-10-13
EP1477333A1 (en) 2004-11-17
JPWO2003061991A1 (ja) 2005-05-19
US20050194081A1 (en) 2005-09-08

Similar Documents

Publication Publication Date Title
WO2003061991A1 (fr) Pneu radial et procede de production
JP4635010B2 (ja) 空気入りラジアルタイヤ
JP4627664B2 (ja) 空気入りラジアルタイヤ
EP1902867B1 (en) Pneumatic radial tire
EP2236318B1 (en) Pneumatic tire
GB2132574A (en) Pneumatic radial tire and method of manufacturing the same
JP7475108B2 (ja) 軽量化された航空機タイヤ
JP6964398B2 (ja) 軽量化された航空機用タイヤ
EP0101400A2 (en) A pneumatic tire
JP5566932B2 (ja) 空気入りタイヤ
EP0692394A2 (en) Bias tire having an improved crown reinforcement arrangement
JPH06234304A (ja) 高速重荷重用ラジアルタイヤ
JP4451586B2 (ja) タイヤ用補強パッケージ
JP4391593B2 (ja) タイヤのクラウン補強体
EP3031630B1 (en) Aircraft tire
JP5961349B2 (ja) 空気入りラジアルタイヤ
JP3071808B2 (ja) 空気入りタイヤ
JPS63151504A (ja) 空気入りラジアルタイヤ
JPH03157204A (ja) 空気入りラジアルタイヤ
EP3736141A1 (en) Radial tire
JP2003094909A (ja) 空気入りタイヤ
JP2006069399A (ja) 航空機用ラジアルタイヤ
JPH09156315A (ja) 空気入りラジアルタイヤ
JPS6322702A (ja) 重荷重用空気入りラジアルタイヤ
JPH02270605A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Free format text: 20030718

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003561901

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003701867

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003701867

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10502548

Country of ref document: US