WO2003040599A1 - Soupape hydraulique - Google Patents

Soupape hydraulique Download PDF

Info

Publication number
WO2003040599A1
WO2003040599A1 PCT/JP2002/011681 JP0211681W WO03040599A1 WO 2003040599 A1 WO2003040599 A1 WO 2003040599A1 JP 0211681 W JP0211681 W JP 0211681W WO 03040599 A1 WO03040599 A1 WO 03040599A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
oil
groove
oil groove
outer peripheral
Prior art date
Application number
PCT/JP2002/011681
Other languages
English (en)
French (fr)
Inventor
Hideo Nirasawa
Keisuke Ito
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to DE60222861T priority Critical patent/DE60222861T2/de
Priority to EP02778078A priority patent/EP1367304B1/en
Priority to US10/451,639 priority patent/US7146998B2/en
Publication of WO2003040599A1 publication Critical patent/WO2003040599A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/10Control of fluid pressure without auxiliary power the sensing element being a piston or plunger
    • G05D16/101Control of fluid pressure without auxiliary power the sensing element being a piston or plunger the controller being arranged as a multiple-way valve
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/14Control of fluid pressure with auxiliary non-electric power
    • G05D16/18Control of fluid pressure with auxiliary non-electric power derived from an external source
    • G05D16/187Control of fluid pressure with auxiliary non-electric power derived from an external source using pistons within the main valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B2013/008Throttling member profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2574Bypass or relief controlled by main line fluid condition
    • Y10T137/2605Pressure responsive
    • Y10T137/2622Bypass or relief valve responsive to pressure downstream of outlet valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/265Plural outflows
    • Y10T137/2663Pressure responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/8671With annular passage [e.g., spool]

Definitions

  • the present invention relates to a hydraulic valve having a spool provided in a spool accommodating portion provided in a valve body.
  • the hydraulic valve is configured by installing a spool in a spool housing (also called a bore) having a cylindrical inner surface formed in a valve body.
  • the valve body is provided with a plurality of oil grooves provided so as to be orthogonal to the center axis of the spool accommodating portion, as well as an oil passage extending from these oil grooves and serving as a passage for hydraulic oil.
  • the spool has a land that serves as a seal for hydraulic oil and a passage that serves as a passage for hydraulic oil. This spool changes the position of the land and passage with respect to each oil groove by moving in the spool accommodating portion in the axial direction, thereby adjusting the pressure in the hydraulic oil in the oil passage or adjusting the flow rate and direction of the hydraulic oil. Or change.
  • Some spools are mechanically moved by being connected to a manually operated lever, and others are moved by hydraulic pressure or electromagnetic force. The optimal form is adopted according to the situation in which the hydraulic valve is used.
  • FIG. 9 shows a regular overnight valve 100 as an example of such a hydraulic valve.
  • the valve body 110 is provided with a spool accommodating portion 111 whose inner surface is formed in a cylindrical shape.
  • a hydraulic pump (not shown) and a regi There is provided a first oil groove 1 2 1 which is connected to a main oil passage (not shown) from which the pressure oil after pressure adjustment by the evening valve 100 is sent out.
  • a left oil groove 122 is provided on the left side of the oil passage, which communicates with a lubricating oil passage (not shown).
  • the spool 130 is constantly urged to the left by a spring 132 provided on the right side of the spool 130, but the spool 130 is located in the third oil groove 123 provided on the left side of the spool housing 111.
  • the spool 130 moves rightward against the urging force of the spring 132.
  • To the right of spool housing 1 1 1 Is provided with a fourth oil groove 124.
  • a force for urging the spool 130 leftward can be added.
  • the fifth oil groove 125 on the left side of the third oil groove 123 is connected to a drain oil passage (not shown)).
  • the land 131 which is located at the center of the spool 130, is located in the first oil groove 121, and the spool 13 is biased to the left by the spring 13 Balanced by the rightward biasing force of the pressure oil supplied into the groove 1 2 3 and the leftward biasing force by the set pressure of the regulator valve pressure supplied to the fourth oil groove 1 2 4 At the point, the first oil groove 1 2 1 and the second oil groove 1 2 2 communicate. As a result, part of the hydraulic oil discharged from the hydraulic pump is discharged to the lubricating oil passage, and the pressure in the main oil passage is maintained at a constant pressure (line pressure).
  • the valve body 110 constituting such a hydraulic valve 100 is a product made by die casting, and the above oil grooves 1 2 1, 1 2 2, 1 2 3, 1 2 4 have a small size.
  • a draft is formed to facilitate mold release.
  • the axial length of the spool 130 in each oil groove becomes narrower as the oil groove is formed in the deeper part of the triangle (the lower part in FIG. 9), and becomes narrower in the shallower part.
  • the force acting on the outer peripheral surface of the 130 (for example, the outer peripheral surface of the land 131) (the force that presses the outer peripheral surface in the direction perpendicular to the axis of the spool 130) is located in the deep part of the ⁇ type.
  • the outer peripheral surface of the spool 130 Since the oil received from the hydraulic oil located in the shallow portion of the ⁇ type is larger than that received from the hydraulic oil that changes, the outer peripheral surface of the spool 130 has a greater depth than the shallow portion of the ⁇ type.
  • An outgoing eccentric load acts. Such an eccentric load not only hinders the smooth movement of the spool 13.0 (ie, fluid sticking), but also causes wear on the valve body 110 on which the spool 130 is pressed.
  • the center axis of the spool accommodating portion 111 and the center axis of the spool 130 are displaced, the amount of hydraulic oil leak increases.
  • the present invention has been made in view of such a problem, and it is possible to remove an unbalanced load acting on a spool at low cost without polishing an inner surface of an oil groove provided with a lapillin groove, It is an object of the present invention to provide a hydraulic valve having a configuration capable of smoothly moving a spool and reducing wear on a valve body side. Disclosure of the invention
  • a hydraulic valve according to the first embodiment of the present invention includes a cylindrical spool housing portion and an oil groove provided so as to be orthogonal to a center axis of the spool housing portion. (E.g., a third oil groove 33 in the embodiment), and a spool inserted into the spool accommodating portion.
  • the spool is axially moved in accordance with the operating oil pressure supplied into the oil groove.
  • a step groove is formed around the outer peripheral surface of the spool located in the oil groove (for example, the outer peripheral surface of the rod portion 43 of the spool 40 in the embodiment). In this case, both ends in the axial direction of the step groove are located axially outward from both ends in the free direction of the oil groove at least in a pressure-adjusted state.
  • the hydraulic valve of the present invention has a spool housing portion formed in a cylindrical shape and an oil groove provided so as to be orthogonal to the central axis of the spool housing portion (for example, in the embodiment).
  • a valve body having a first oil groove 31 1) and a spool provided in a spool housing portion, and a land located in the oil groove by moving the spool in the axial direction (for example, in the embodiment)
  • Axial direction of land 4 2 In the hydraulic valve having a configuration in which the opening amount of the oil groove is changed by changing the length, a step groove is formed on the outer peripheral surface of the land so as to orbit the outer peripheral surface. In this state, the spool is located across the end on the side on which the spool moves when increasing the opening amount among the axial ends of the oil groove.
  • a step groove is formed around the outer peripheral surface of the land of the spool located in the oil groove, so that the hydraulic oil in the oil groove flows into the step groove and flows therethrough.
  • the outer peripheral surface is pressed in a direction perpendicular to the axis of the spool.
  • both ends in the axial direction of the step groove are located straddling the end on the side where the spool moves when increasing the opening amount among the both ends in the axial direction of the oil groove at least in the pressure adjusting state.
  • the pressing force acting on the outer peripheral surface is equal over the entire outer peripheral surface. For this reason, no offset load acts on the outer peripheral surface, and the spool moves smoothly as compared with the conventional case. Further, unbalanced load which has pressed the outer peripheral surface of the conventional spool the valve body is eliminated (or reduced) since the wear of the valve body side is greatly reduced 0 - '
  • a hydraulic valve according to a third embodiment of the present invention is a valve body having a spool housing portion formed in a cylindrical shape and an oil groove provided so as to be orthogonal to a central axis of the spool housing portion. And a spool inserted into the spool accommodating portion, wherein the hydraulic valve is configured to cut off the communication of the oil passage according to each switching position when the spool is moved in the axial direction to switch the position.
  • a step groove is formed around the outer peripheral surface of the land of the spool located in the oil groove, and an end of the step groove in the axial direction is provided on the spool. It is located outside the oil groove in the axial direction regardless of the switching position.
  • a step groove is formed on the outer peripheral surface of the land of the spool located in the oil groove.
  • the hydraulic oil flows into the step groove and presses its outer peripheral surface in a direction perpendicular to the axis of the spool.
  • the above-described pressing force acting on the outer peripheral surface of the step groove is applied to the entire area of the outer peripheral surface. Become equal. For this reason, no offset load acts on the outer peripheral surface, and the movement of the spool is smoother than before. Also, there is no eccentric load that used to press the outer peripheral surface of the spool against the valve body. Therefore, wear on the valve body side is greatly reduced.
  • FIG. 1 is a diagram showing an embodiment in which the hydraulic valve of the present invention according to the first and second embodiments is applied to a reguille overnight valve used in a vehicle transmission, together with an oil passage around the valve. .
  • Fig. 2 is an enlarged view of the reguille overnight valve in Fig. 1.
  • A shows a state where the spool has moved slightly to the right from the position where the spool has moved most left
  • (B) shows a state where the spool has further moved right from (A). Is shown.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 (A).
  • FIG. 4 is an enlarged view of region IV in FIG. 2 (B).
  • FIG. 5 is an enlarged view of a region V in FIG. 2 (B).
  • FIG. 6 is a view showing an embodiment in which the hydraulic valve according to the third embodiment of the present invention is applied to a directional control valve, and shows a state where a spool is located at a neutral position. .
  • FIG. 7 is a diagram showing an embodiment in which the hydraulic valve according to the third embodiment is applied to a direction control valve, and shows a state where the spool is located at a right switching position.
  • FIG. 8 is a diagram showing an embodiment in which the hydraulic knob according to the third embodiment is applied to a direction control knob, and shows a state in which the spool is located at the left switching position. .
  • FIG. 9 is a diagram illustrating an example of a conventional hydraulic valve. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a view showing an embodiment in which the hydraulic valve of the present invention according to the first and second embodiments is applied to a reguille overnight valve used in a vehicle transmission, and an oil passage around the valve is also shown.
  • Fig. 2 is an enlarged view of the regulator valve in Fig. 1.
  • ( ⁇ ) shows the state where the spool has moved slightly to the right from the leftmost position described later, and ( ⁇ ) shows the state where the spool has moved further right from ( ⁇ ).
  • the state is shown.
  • Figure 3 is a diagram 2 (A) is a cross-sectional view taken along line III-III
  • FIG. 4 is an enlarged view of region IV in FIG. 2 (B)
  • FIG. 5 is an enlarged view of region V in FIG. 2 (B).
  • the present regulator valve 10 includes a valve body 20 having a spool housing portion 21 having an inner surface formed in a cylindrical shape, and a spool 40 provided in the spool housing portion 21. ing.
  • the spool housing portion 21 has a first housing portion 21a having a large inner diameter and a second housing portion having an inner diameter smaller than the first housing portion 21a provided to the left of the first housing portion 21a. Consists of 2 lb.
  • the first oil groove 31 is located at the center of the first storage portion 21a, and a pump oil passage L1 through which pressurized oil from a hydraulic pump (not shown) is supplied, and a regulation valve 1 It is connected to the main oil passage L2 to which the pressure oil after pressure adjustment by 0 is sent out.
  • the second oil groove 32 is located to the left of the first oil groove 31 and is connected to a lubricating oil passage L3 that is connected to a lubricating oil supply circuit (not shown).
  • the third oil groove 33 is provided at the right end of the second storage section 21b, and a feedback oil path L4 branched from the main oil path L2 is connected to the third oil groove 33.
  • the fourth oil groove 34 is provided on the right side of the first storage portion 21a, and here is connected to a regulating oil pressure setting circuit (not shown) which is connected to a regulating oil pressure setting circuit L5. I have.
  • the fifth oil groove 35 is provided at the left end of the spool housing 21. In the present embodiment, the fifth oil groove 35 is connected to the drain oil passage L6 and is open to an oil tank (not shown), but may be connected to another hydraulic circuit as necessary. You can do it.
  • Left and right large lands 41, 42 are provided at the center of the spool 40, and a passage 44 serving as a hydraulic oil communication passage is formed between the lands 41, 2. ing.
  • the lands 4 1, 4 2 and the passage 4 4 are located in the first storage section 21 a, the land 42 on the right is in the first oil groove 31, and the passage 44 is in the second It is located in the oil groove 32.
  • On the left side of the left land 41 there is provided a small-diameter rod portion 43 having an outer diameter smaller than that of both lands 41, 42. It is located in b (also in the third oil groove 33).
  • a spring mounting space 47 is formed inside the right side of the spool 40, and the spool 40 is constantly urged to the left by the spring S contracted in the spring mounting space 47. It is in the state of having been lost.
  • the outer peripheral surface of the rod portion 43 located in the third oil groove 33 has substantially the same width in the axial direction around the outer peripheral surface.
  • a step groove 53 is provided, and both ends 53 a and 53 b in the axial direction of the step groove 53 are set at least in the pressure-adjusted state (the spool 40 is set in the spool accommodating section 21). (From the state at the leftmost position to the state where it is slightly returned from the full stroke), it is located axially outward from both axial ends 3 3 a and 33 b of the third oil groove 33. I have. Further, as shown in FIGS. 2 (A): (B) and FIG.
  • the outer peripheral surface of the land 42 located in the first oil groove 31 has a substantially equal width in the axial direction surrounding the outer peripheral surface.
  • a step groove 52 is provided. Both ends 52 a, 52 b in the axial direction of the step groove 52 are provided at least at both ends in the axial direction of the first oil groove 31 1 in the pressure-regulated state. 1b, the spool 40 straddles the end 31b on the side (here, the right side) to which the spool 40 moves when increasing the opening amount.
  • These step grooves 53 and 52 are provided for removing an uneven load acting on the spool 40 due to the draft of the oil grooves 33 and 31 formed by removing the valve body 20. (Details will be described later).
  • the third oil groove 33 is connected to the feedback oil passage L4 branched from the main oil passage L2 as described above, and the pressure oil in the main oil passage L2 is supplied into the third oil groove 33.
  • You. A rightward force corresponding to the pressure oil in the main oil passage L2 supplied into the third oil groove 33 is applied to the spool 40, and the leftward urging force of the spring S and the It moves to the right against the leftward biasing force due to the regulation pressure set in the fourth oil groove 34 via the set pressure supply oil passage L5.
  • the oil amount decreases and the pressure in the main oil passage L 2 increases.
  • the pressure in the main oil passage L2 increases in this way, the pressure in the third oil groove 33 increases, and the spool 40 moves rightward.
  • the axial length of the land 4 2 located in the first oil groove 3 1 becomes shorter, so that the opening amount of the first oil groove 31 increases and escapes from the lubricating oil passage L 3.
  • the oil amount increases and the pressure in the main oil passage L2 decreases.
  • the spool 40 is moved in the axial direction to change the axial length of the land 42 located in the first oil groove 31, thereby changing the length of the first oil groove 31.
  • the pressure in the main oil passage L2 is controlled, and the spool 40 repeats the above-described axial movement operation while attaching to the left by the spring S. Position where the biasing force to the right by the pressure oil supplied to the third oil groove 33 and the leftward biasing force by the pressure oil supplied to the fourth oil groove 34 are balanced. As a result, the pressure in the main oil passage L2, that is, the line pressure, is kept constant.
  • the set pressure of the regulated pressure supplied to the fourth oil groove 34 via the regulated oil pressure supply oil passage L5 is set to a value higher than normal when a large torque is required for the vehicle. Is done. Supplying a large set pressure to the fourth oil groove 34 increases the pressure required to move the spool 40 to the right, that is, the pressure in the main oil passage L2. As a result, the line pressure can be increased.
  • the valve body 20 of the present regulator 10 is made by die casting, and the oil grooves 31, 32, 33, 34, 35 and other oil grooves are not used. A draft is formed to facilitate mold release. For this reason, the axial length of the spool 40 in each oil groove is narrower as the oil groove is formed in the deeper portion of the ⁇ -shaped portion (portion located at the bottom of the figure), and wider in the shallower portion.
  • a step groove 53 circling the outer peripheral surface is provided in the outer peripheral surface of the rod portion 43 of the spool 40 located in the third oil groove 33.
  • the hydraulic oil in the third oil groove 33 flows into the step groove 53 and presses its outer peripheral surface in a direction perpendicular to the axis of the spool 40 (up and down direction in the figure).
  • both ends 53 a, 53 b in the axial direction of the step groove 53 are at least axially outside the ends 33 a, 33 in the axial direction of the third oil groove 33, at least in the pressure adjusted state.
  • the pressing force acting on the outer peripheral surface is equal over the entire area of the outer peripheral surface. For this reason, no offset load acts on the outer peripheral surface, and the movement of the spool 40 becomes smoother than before. Further, since the unbalanced load that has conventionally pressed the outer peripheral surface of the spool 40 against the valve body 20 is eliminated (or reduced), wear on the valve body 20 side is greatly reduced.
  • the outer circumferential surface of the land 42 of the spool 40 located in the first oil groove 31 is provided with a stepped groove 52 surrounding the outer circumferential surface, the operation in the first oil groove 31 is performed.
  • the oil flows into the step groove 52 and presses its outer peripheral surface in a direction perpendicular to the axis of the spool 40 (up and down direction in the figure).
  • the spool 40 of the axial ends 31a, 3 lb of the first oil groove 31 is formed.
  • the pressing force acting on the outer peripheral surface is equal over the entire area of the outer peripheral surface because the opening is located across the end 31 b on the moving side when increasing the opening amount. Therefore, no offset load acts on the outer peripheral surface, and the movement of the spool 40 becomes smoother than before. Further, since the unbalanced load that has conventionally pressed the outer peripheral surface of the spool 40 against the valve body 20 is eliminated (or reduced), the wear on the valve body 20 side is greatly reduced.
  • the step grooves 53, 52 have been described as having substantially the same width in the axial direction. However, these step grooves 53, 52 are not necessarily the same width over the entire outer peripheral surface of the spool 40.
  • the spool 40 may be symmetrical with respect to the sectional view. This is because, as long as the step grooves 53, 52 are symmetrical in cross-sectional view, the pressure receiving area received by the hydraulic oil in the oil grooves 53, 54 on the spool 40 can be made equal between the upper and lower sides. . Therefore, in order to reduce the hydraulic pulsation, the axial ends at the upper and lower portions of the step groove 53 facing the oil groove 33 or the axial ends at the upper and lower portions of the step groove 52 facing the oil groove 31 are intended. The above-described effect can be obtained even when the notch is provided symmetrically in a sectional view.
  • FIGS. 6, 7, and 8 show a hydraulic control pulp according to a third embodiment of the present invention. It is a figure showing one embodiment when applied to a lube.
  • the directional control valve 60 includes a valve body 70 and a spool 90 provided in a cylindrical spool accommodating portion 71 provided in the valve body 70.
  • the first oil groove 81 is located at the center of the spool accommodating portion 71, and is connected to a P port through which pressure oil from a hydraulic pump (not shown) is sent.
  • the second oil groove 82 is located to the right of the first oil groove 82 and is connected to a port (A port) on one side of a hydraulic actuator (for example, a hydraulic cylinder) (not shown).
  • the third oil groove 83 is located to the left of the first oil groove 81, and is connected to the other port (referred to as the B port) of the hydraulic actuator.
  • the fourth oil groove 84 is located to the left of the third oil groove 83, and is connected to a T port which is connected to an oil tank (not shown).
  • the fifth oil groove 85 is located to the right of the second oil groove 82, and communicates with the fourth oil groove 84 by an oil passage L provided inside the pulp body 70.
  • the spool 90 has 4 lands: 9 1, 9 2, 9 3.94 and these lands 9 1,
  • the spring 90 is provided on the right side of the valve body 70 because no pressure oil is supplied to the oil chamber 95 on the left side of the oil passage 86 provided on the left side of the valve body ⁇ 0.
  • the left and right urging springs 73 When the pressurized oil is not supplied to the oil chamber 96 on the right side of the oil passage 87, the left and right urging springs 73,
  • the biasing force of 74 is balanced so that it is located at the neutral position shown in Fig. 6 c
  • pressure oil is supplied into the oil chamber 95 on the left side of the oil passage 86. (At this time, the oil chamber 96 on the right is opened to the oil tank), and the right urging spring 74 moves to the right switching position shown in FIG. 7 against the urging force to the left. It is located.
  • the spool 90 moves to the left. It is positioned at the left switching position shown in FIG. 8 by being piled on the rightward biasing force of the biasing spring 73.
  • This directional control valve 60 sets the spool 90 in the neutral position shown in FIG.
  • the land 92 seals between the third oil groove 83 and the first oil groove 81, and between the third oil groove 83 and the fourth oil groove 84.
  • the land 92 seals the space between the first oil groove 81 and the third oil groove 83, and the land 93 changes the position.
  • the third oil groove 83 and the fourth oil groove 84 communicate with each other via the passage 95, and the passage 96
  • the first oil groove 81 and the second oil groove 82 communicate with each other via.
  • the P port communicates with the A port and the B port communicates with the T port, so that the hydraulic actuator operates in a direction corresponding to such a flow of hydraulic oil.
  • the land 92 seals the space between the third oil groove 83 and the fourth oil groove 84, and While the space between the first oil groove 81 and the second oil groove 82 is sealed, the first oil groove 81 and the third oil groove 83 communicate with each other via the passage 96, and the passage 97
  • the second oil groove 82 and the fifth oil groove 85 communicate with each other via.
  • the P port communicates with the B port
  • the A port communicates with the T port, so that the hydraulic actuator operates in the opposite direction to the above.
  • the outer peripheral surface of the land 93 located in the second oil groove 82 has an axial direction around the outer peripheral surface.
  • An equal width step groove 931 is provided, and the axial end portions 931a and 931b of the step groove 931 are located outside the second oil groove 82 in the axial direction. It has become.
  • a step groove 921 which is substantially equal in width in the axial direction surrounding the outer peripheral surface, is provided on the outer peripheral surface of the land 92 located in the third oil groove 83.
  • the axial ends 9 21 a and 9 21 b of 21 are located axially outward of the third oil groove 83.
  • an outer circumferential surface of the land 92 located in the first oil groove 81 has an axial direction of orbiting the outer circumferential surface.
  • the direction end 9 32 a is located axially outward of the second oil groove 82.
  • a step groove 92 having almost the same width in the axial direction surrounding the outer peripheral surface is provided.
  • the axial end portion 9 22 a of 22 is located axially outward of the third oil groove 83.
  • a step groove 911 which is substantially equal in width in the axial direction surrounding the outer peripheral surface.
  • the axial end 9 1 la of 1 is located axially outward of the fourth oil groove 84.
  • a step groove 933 having substantially the same width in the axial direction surrounding the outer peripheral surface.
  • the axial end 933a of the third oil groove 85 is located outside the fifth oil groove 85 in the axial direction.
  • the step groove 932 is provided on the outer peripheral surface of the land 93 located in the first oil groove 81.
  • the axial end portion 932 a of the step groove 932 is located outside the first oil groove 81 in the axial direction.
  • the above-mentioned step groove 933 is provided on the outer peripheral surface of the land 93 located in the second oil groove 82, and here, the axial end portion 933a of the step groove 933 is the second oil.
  • the groove 82 is located outside in the axial direction.
  • the above-mentioned step groove 923 is provided on the outer peripheral surface of the land 92 located in the third oil groove 83.
  • the axial end 923a of the step groove 923 is the third oil.
  • the groove 83 is located outside in the axial direction.
  • the above-mentioned step groove 922 is provided on the outer peripheral surface of the land 92 located in the fourth oil groove 84, and here, the axial end 922a of the step groove 922 is the fourth groove. It is located outside the oil groove 84 in the axial direction.
  • a step groove 941 which is substantially equal in width in the axial direction and circumscribes the outer peripheral surface.
  • the axial end portion 941 a of 41 is positioned axially outward of the fifth oil groove 85.
  • the valve body 70 of the directional control valve 60 is also a mirror made by die casting, and the above oil grooves 81, 82, 83, 84, 85 are used to facilitate the removal of the ⁇ type mold. Is formed. For this reason, the axial length of the spool 90 in each oil groove is narrower as the part of the mold that forms the oil groove is deeper (part located at the bottom of the figure). As described above, in the directional control valve 60, the oil groove 81, 82, 83 when the spool 90 is located at each switching position (including the neutral position).
  • the spool 90 is driven in the axial direction by a hydraulic pilot system.
  • this can also be performed mechanically by using an electromagnetic force or manually.
  • the drive method of the spool 40 described in the above-described reguilleur valve 10 may be used.
  • the first embodiment described above can be applied.
  • the step grooves 911, 921, 922, 923, 931, 932, 933, and 941 are described to be substantially equal in the axial direction.
  • the step groove provided on the outer peripheral surface of the spool has been described to be provided corresponding to the oil groove in which a ⁇ ⁇ -shaped draft is generated.
  • the uneven load acts on the spool.
  • oil grooves with such a draft angle but also oil grooves with insufficient inner surface finishing accuracy can occur.
  • a step groove should be provided in such a place.
  • the hydraulic valve according to the first embodiment since the stepped groove surrounding the outer peripheral surface is provided on the outer peripheral surface of the spool located in the oil groove, the hydraulic oil in the oil groove flows into the stepped groove. Then, the outer peripheral surface is pressed in a direction perpendicular to the axis of the spool.
  • both ends in the axial direction of the step groove are located at least in the axial direction outside both ends in the axial direction of the oil groove at least in the pressure-adjusted state, the pressing force acting on the outer peripheral surface is equal to the outer peripheral surface. Equal across the entire surface. Therefore, no eccentric load acts on the outer peripheral surface, and the spool moves more smoothly than before. Further, since the unbalanced load, which has conventionally pressed the outer peripheral surface of the spool against the valve body, is eliminated (or reduced), wear on the valve body side is greatly reduced.
  • the hydraulic oil in the oil groove is It flows into this step groove and presses its outer peripheral surface in a direction perpendicular to the axis of the spool.
  • both ends in the axial direction of the step groove are located across at least the end of the oil groove on the side to which the spool moves when increasing the opening amount among the both ends in the axial direction in the pressure adjusting state. Therefore, the pressing force acting on the outer peripheral surface becomes equal in the entire area of the outer peripheral surface. For this reason, no offset load acts on the outer peripheral surface, and the spool moves more smoothly than before.
  • the unbalanced load which has conventionally pressed the outer peripheral surface of the spool against the valve body, is eliminated (or reduced), wear on the valve body side is greatly reduced.
  • a step groove is formed on the outer peripheral surface of the land of the spool located in the oil groove in a state where the spool is located at each of the switching positions. Therefore, the hydraulic oil in the oil groove flows into the step groove and presses the outer peripheral surface in a direction orthogonal to the axis of the spool.
  • the axial end of the step groove is located outside the oil groove in the axial direction regardless of the spool switching position. Therefore, the pressing force acting on the outer peripheral surface becomes equal over the entire area of the outer peripheral surface. For this reason, no offset load acts on the outer peripheral surface, and the movement of the spool is smoother than before. Also, since the unbalanced load that has conventionally pressed the outer peripheral surface of the spool against the valve body is eliminated (or reduced), wear on the valve body side is significantly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Safety Valves (AREA)
  • Check Valves (AREA)

Description

明 細 書 油圧バルブ 発明の属する技術分野
本発明は、 バルブボディに設けられたスプール収容部内にスプールを揷設して 構成される油圧バルブに関する。 背景技術
油圧バルブはバルブボディに形成された内面が円筒状のスプール収容部 (ボア とも呼ばれる) 内にスプールを揷設して構成される。 バルブボディにはスプール 収容部の中心軸と直交するように設けられる複数の油溝のほか、 これら油溝より 延びて形成される作動油の通路である油路などが設けられている。 スプールは作 動油のシールの役目をするランドと作動油の通路となるパセージとが形成されて いる。 このスプールはスプール収容部内を軸方向に移動することにより各油溝に 対するランドとパセージの位置を変え、 これにより油路内の作動油内の圧力を調 節したり或いは作動油の流量や方向を変えたりする。 スプールは手動操作される レバーと連結されて機械的に動かされるものの他、 油圧や電磁力等により動かさ れるものがあり、 その油圧バルブが用いられる状況に応じて最適の形態が採用さ れる。
図 9はこのような.油圧バルブの一例であるレギュレ一夕バルブ 1 0 0を示した ものである。 バルブボディ 1 1 0には内面が円筒状に形成されたスプール収容部 1 1 1が設けられており、このスプール収容部 1 1 1の中央部には油圧ポンプ(図 示せず) 及びこのレギユレ一夕バルブ 1 0 0により調圧された後の圧油が送り出 されるメイン油路 (図示せず) と繋がる第 1油溝 1 2 1が設けられており、 この 第 1油溝 1 2 1の左方には潤滑油路 (図示せず) と連通した第 2油溝 1 2 2が設 けられている。 スプール 1 3 0はその右方に設けられたスプリング 1 3 2により 常時左方に付勢されているが、 スプール収容部 1 1 1の左方に設けられた第 3油 溝 1 2 3内に上記メイン油路内の油圧がフィードバックされるとスプール 1 3 0 はスプリング 1 3 2の付勢力に抗して右動する。 スプール収容部 1 1 1の右方に は第 4油溝 1 2 4が設けられており、 この第 4油溝 1 2 4内に制御圧を供給する ことによりスプール 1 3 0を左方へ付勢する力を付加することができるようにな つている (なお、 第 3油溝 1 2 3左方の第 5油溝 1 2 5は図示しないドレン油路 に繋がっている)。
スプール 1 3 0の中央部に位置するランド 1 3 1は第 1油溝 1 2 1内に位置し ており、 スプール 1 3 0が上記スプリング 1 3 2による左方への付勢力、 第 3油 溝 1 2 3内に供給された圧油による右方への付勢力、 及び第 4油溝 1 2 4内に供 給されたレギユレ一夕バルブ圧設定圧による左方への付勢力により釣り合つたと ころで第 1油溝 1 2 1と第 2油溝 1 2 2とは連通す ¾。 これにより油圧ポンプよ り吐出された作動油の一部は潤滑油路に排出され、 メイン油路内の圧力は一定の 圧力 (ライン圧) に保たれる。
ところで、 このような油圧バルブ 1 0 0を構成するバルブボディ 1 1 0はダイ カストにより作られる錶物であり、 上記油溝 1 2 1 , 1 2 2 , 1 2 3 , 1 2 4に は錶型の型ばらしを容易にするための抜き勾配が形成される。 このため各油溝に おけるスプール 1 3 0の軸方向長さはその油溝を形成した錶型の深い部分 (図 9 では図の下方に位置する部分) ほど狭く、 浅い部分ほど広くなり、 スプール 1 3 0の外周面 (例えばランド 1 3 1の外周面) に作用する力 (その外周面をスプー ル 1 3 0の軸と直交する方向に押圧する力) は、 錶型の深い部分に位置する作動 油から受けるものよりも鍩型の浅い部分に位置する作動油から受けるものの方が 大きくなるので、 その結果としてスプール 1 3 0のその外周面には錡型の浅い部 分より深い部分へ向かう偏荷重が作用することになる。 このような偏荷重はスプ —ル 1 3. 0のスムーズな移動を妨げる (すなわち流体固着) のみならず、 このス プール 1 3 0が押し付けられるバルブボディ 1 1 0側にも摩耗を生じさせる。 ま た、 スプール収容部 1 1 1の中心軸とスプール 1 3 0の中心軸がずれるため、 作 動油のリーク量も増大してしまう。
このようなスプールに作用する偏荷重による影響を軽減するにはスプールの外 周面にラビリンス溝を設ける方法が考えられる。 しかし、 このようなラビリンス 溝の形成には多くの工数がかかる一方、 偏荷重そのものがなくなるわけではない' ので得られる効果には限界がある。 偏荷重を除去するには鏡抜きにより形成され た油溝の内面を研磨して勾配をなくせばよいが、 これにも多くの工数を要して製 造コストが高くなるいう問題がある。
本発明はこのような問題に鑑みてなされたものであり、 ラピリンス溝を設けた' り油溝の内面を研磨したりすることなく低コストでスプールに作用する偏荷重を 除去することができ、 スプールのスムーズな動きとバルブボディ側の摩耗を低減 することが可能な構成の油圧バルブを提供することを目的としている。 発明の開示
このような目的を達成するため、第 1の実施形態に係る本発明の油圧バルブは、 円筒状に形成されたスプール収容部及びこのスプール収容部の中心軸と直交する ように設けられた油溝 (例えば、 実施形態における第 3油溝 3 3 ) を有したバル ブボディと、 スプール収容部内に挿設されたスプールとを備え、 油溝内に供給す る作動油圧に応じてスプールを軸方向に移動させる構成の油圧バルブにおいて、 油溝内に位置するスプールの外周面 (例えば、 実施形態におけるスプール 4 0の ロッ ド部 4 3の外周面) にこの外周面を周回する段差溝が設けられており、 段差 溝の軸方向両端部は少なくとも調圧状態において、 油溝の 由方向両端部よりも軸 方向外方に位置している。
本油圧バルブにおいては、 油溝内に位置するスプールの外周面にこの外周面を 周回する段差溝が設けられているため、 油溝内の作動油はこの段差溝内に流入し てその外周面をスプールの軸と直交する方向に押圧する。 ここで、 段差溝の軸方 向両端部は少なくとも調圧状態において、 油溝の軸方向両端部よりも軸方向外方 に位置しているため、 その外周面に作用する上記押圧力はその外周面の全域にお いて等しくなる。 このため、 その外周面に偏荷重は作用せず、 スプールの動きは 従来に比してスムーズなものとなる。 また、 従来スプールの外周面をバルブボデ ィへ押し付けていた偏荷重がなくなる (或いは小さくなる) のでバルブボディ側 の摩耗が大幅に低減される。
また、 第 2の実施形態に係る本発明の油圧バルブは、 円筒状に形成されたスプ ール収容部及びこのスプール収容部の中心軸と直交するように設けられた油溝 (例えば、 実施形態における第 1油溝 3 1 ) を有したバルブボディと、 スプール 収容部内に揷設されたスプールとを備え、 スプールを軸方向に移動させることに より油溝内に位置するランド (例えば、 実施形態におけるランド 4 2 ) の軸方向 長さを変えて油溝の開口量を変化させる構成の油圧バルブにおいて、 上記ランド の外周面にこの外周面を周回する段差溝が設けられており、 段差溝の軸方向両端 部は少なくとも調圧状態において、 油溝の軸方向両端部のうちスプールが開口量 を増大させるときに移動する側の端部を跨いで位置している。
本油圧バルブにおいては、 油溝内に位置するスプールのランドの外周面にこの 外周面を周回する段差溝が設けられているため、 油溝内の作動油はこの段差溝内 に流入してその外周面をスプールの軸と直交する方向に押圧する。 ここで、 段差 溝の軸方向両端部は少なくとも調圧状態において、 油溝の軸方向両端部のうちス プールが開口量を増大させるときに移動する側の端部を跨いで位置しているため、 その外周面に作用する上記押圧力はその外周面の全域において等しくなる。 この ため、 その外周面に偏荷重は作用せず、 スプールの動きは従来に比してスムーズ なものとなる。 また、 従来スプールの外周面をバルブボディへ押し付けていた偏 荷重がなくなる (或いは小さくなる) のでバルブボディ側の摩耗が大幅に低減さ れ 0 — '
また、 第 3の実施形態に係る本発明の油圧バルブは、 円筒状に形成されたスプ ール収容部及びこのスプール収容部の中心軸と直交するように設けられた油溝を 有したバルブボディ と、 スプール収容部内に挿設されたスプールとを備え、 スプ 一ルを軸方向に移動させて位置を切換えたときの各切換え位置に応じて油路の連 通遮断を行う構成の油圧バルブにおいて、 スプールが各切換え位置に位置してい る状態において油溝内に位置するスプールのランドの外周面にこの外周面を周回 する段差溝が設けられており、 段差溝の軸方向端部は、 スプールの切換え位置に 依らず、 油溝の軸方向外方に位置している。 ·
本油圧バルブにおいては、 スプールが各切換え位置に位置している状態におい て油溝内に位置するスプールのランドの外周面にこの外周面を周回する段差溝が 設けられているため、 油溝内の作動油はこの段差溝内に流入してその外周面をス プールの軸と直交する方向に押圧する。 ここで、 段差溝の軸方向端部はスプール の切換え位置に依らず、 油溝の軸方向外方に位置しているため、 その外周面に作 用する上記押圧力はその外周面の全域において等しくなる。 このため、 その外周 面に偏荷重は作用せず、 スプールの動きは従来に比してスムーズなものとなる。 また、 従来スプールの外周面をバルブボディへ押し付けていた偏荷重がなくなる (或いは小さくなる) のでバルブボディ側の摩耗が大幅に低減される。 図面の簡単な説明
図 1は、 第 1及び第 2の実施形態に係る本発明の油圧バルブを車両用トランス ミッションに用いられるレギユレ一夕バルブに適用した場合の一実施形態をその 周辺の油路とともに示す図である。
図 2は、図 1におけるレギユレ一夕バルブの拡大図であり、 (A )はスプールが 最も左動した位置からやや右動した状態、 (B ) は(A ) からスプールが更に右動 した状態を示している。
図 3は、 図 2 ( A ) における矢視 ΠΙ— IIIから見た断面図である。
図 4は、 図 2 ( B ) における領域 IVの拡大図である。
図 5は、 図 2 ( B ) における領域 Vの拡大図である。
図 6は、 第 3の実施形態に係る本発明の油圧バルブを方向制御バルブに適用し た場合の一実施形態を示す図であり、 スプールを中立位置に位置させた状態を示 すものである。
図 7は、 第 3の実施形態に係る油圧バルブを方向制御バルブに適用した場合の 一実施形態を示す図であり、 スプールを右の切換え位置に位置させた状態を示す ものである。 ■ 図 8は、 第 3の実施形態に係る油圧ノ レブを方向制御ノ レブに適用した場合の 一実施形態を示す図であり、 スプールを左の切換え位置に位置させた状態を示す ものである。
図 9は、 従来の油圧バルブの一例を示す図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の好ましい実施形態について説明する。 図 1は第 1及び第 2の実施形態に係る本発明の油圧バルブを車両用トランスミッションに 用いられるレギユレ一夕バルブに適用した場合の一実施形態を示す図であり、 そ の周辺の油路も併せて示している。 図 2は図 1におけるレギュレー夕バルブの拡 大図であり、 (Α )は後述するスプールが最も左動した位置からやや右動した状態、 ( Β ) は (Α ) からスプールが更に右動した状態を示している。 また、 図 3は図 2 (A ) における矢視 III— IIIから見た断面図、 図 4は図 2 ( B ) における領域 IVの拡大図、 図 5は図 2 ( B ) における領域 Vの拡大図である。
本レギユレ一夕バルブ 1 0は、 内面が円筒状に形成されたスプール収容部 2 1 を有したバルブボディ 2 0と、 このスプール収容部 2 1内に揷設されたスプール 4 0とから構成されている。 スプール収容部 2 1は内径の大きい第 1収容部 2 1 a及びこの第 1収容部 2 1 aの左方に設けられたこの第 1収容部 2 1 aよりも内 径の小さい第 2収容部 2 l bとからなっている。 バルブボディ 2 0内には更に、 このスプール収容部 2 1の軸方向と直交する 5つの油溝 3 1 , 3 2, 3 3, 3 4 ,
3 5が設けられている (油溝の形状については図 3参照)。第 1油溝 3 1は第 1収 容部 2 1 aの中央部に位置しており、 図示しない油圧ポンプからの圧油が送り込 まれるポンプ油路 L 1と、 このレギュレ一夕バルブ 1 0により調圧された後の圧 油が送り出されるメイン油路 L 2とが接続されている。
第 2油溝 3 2は第 1油溝 3 1の左方に位置しており、 図示しない潤滑油供給回 路に繋がる潤滑油路 L 3と接続している。 第 3油溝 3 3は第 2収容部 2 1 bの右 端部に設けられており、 ここにはメイン油路 L 2より分岐したフィードバック油 路 L 4が接続されている。 第 4油溝 3 4は第 1収容部 2 1 aの右方に設けられて おり、 ここには図示しないレギュレー夕圧設定回路と繋がるレギユレ一夕圧設定 圧供給油路 L 5が接続されている。 第 5油溝 3 5はスプール収容部 2 1の左端部 に設けられている。 この第 5油溝 3 5は本実施形態ではドレン油路 L 6に接続さ れて油タンク (図示せず) へ開放された状態となっているが、 必要に応じて他の 油圧回路と接続することができるようになつている。
スプール 4 0の中央部には左右の大径のランド 4 1 , 4 2が設けられており、 これら両ランド 4 1, 2の間には作動油の連通路となるパセージ 4 4が形成さ れている。 これらランド 4 1 , 4 2及びパセージ 4 4は第 1収容部 2 1 a内に位 置しており、 右方のランド 4 2は第 1油溝 3 1内に、 またパセージ 4 4は第 2油 溝 3 2内に位置している。 左方のランド 4 1の左側には両ランド 4 1 , 4 2より も小さい外径を有する小径のロッ ド部 4 3が設けられており、 このロッ ド部 4 3 は第 2収容部 2 1 b内 (第 3油溝 3 3内でもある) に位置している。 スプール 4 0の右側内部にはスプリング取付空間 4 7が形成されており、 このスプリング取 付空間 4 7内に縮設されたスプリング Sによりスプール 4 0は常時左方に付勢さ れた状態となっている。
図 2 ( A ) , ( B ) 及び図 4に示すように、 第 3油溝 3 3内に位置するロッ ド部 4 3の外周面にはこの外周面を周回する軸方向にほぼ等幅な段差溝 5 3が設けら れており、 この段差溝 5 3の軸方向両端部 5 3 a , 5 3 bは少なくとも調圧状態 において(スプール 4 0がスプール収容部 2 1内にセッ トされた(最も左にある) 状態から、 フルストロークより少し戻った状態まで)、第 3油溝 3 3の軸方向両端 部 3 3 a , 3 3 bよりも軸方向外方に位置するものとなっている。また、図 2 ( A) : ( B ) 及び図 5に示すように、 第 1油溝 3 1内に位置するランド 4 2の外周面に はこの外周面を周回する軸方向にほぼ等幅な段差溝 5 2が設けられており、 この 段差溝 5 2の軸方向両端部 5 2 a, 5 2 bは少なくとも調圧状態において、 第 1 油溝 3 1の軸方向両端部 3 1 a , 3 1 bのうちスプール 4 0が開口量を増大させ るときに移動する側 (ここでは右方) の端部 3 1 bを跨いで位置するものとなつ ている。 これら段差溝 5 3, 5 2はバルブボディ 2 0の錶抜きにより形成された 油溝 3 3 , 3 1の抜き勾配に起因してスプール 4 0に作用する偏荷重を除去する ためのものである (詳細については後述)。
第 3油溝 3 3は前述のようにメイン油路 L 2から分岐したフィードバック油路 L 4が繋がっており、第 3油溝 3 3内にはメイン油路 L 2内の圧油が供給される。 スプール 4 0にはこの第 3油溝 3 3内に供給されたメイン油路 L 2内の圧油に応 じた右方への力が作用し、 スプリング Sによる左方への付勢力及びレギユレ一夕 設定圧供給油路 L 5を介して第 4油溝 3 4内に供給されるレギユレ一夕圧設定圧 による左方への付勢力に抗して右動する。
油圧ポンプが動作していないときには第 1油溝 3 1内に圧油が供給されておら ず、 したがってメイン油路 L 2内にも圧油は供給されていない。 このようなとき には第 3油溝 3 3及び第 4油溝 3 4内にも圧油は供給されないので、 スプール 4 0はスプリング Sによる左方への付勢力のみを受けてロッ ド部 4 3の左端面を第 5油溝 3 5の左端内壁に右方より当接させた静止状態となっている (図 1参照)。 油圧ポンプの作動が開始された直後には油圧ポンプからの圧油がそのまま第 1 油溝 3 1内に供給され、 メイン油路 L 2にもこの圧油が送り出されるが、 その直 後にはフィードバック油路 L 4を介して第 3油溝 3 3内にメイン油路 L 2内の圧 油が供給されるのでスプール 4 0は右動し、 第 1油溝 3 1と第 2油溝 3 2とはノ セージ 4 4を介して連通してポンプ油路 L 1内の作動油の一部は潤滑油路 L 3に 流れるようになる。 これによりメイン油路 L 2内の圧力は減圧され、 スプール 4 ' 0を右動する力は弱まってスプール 4 0は左動する。 スプール 4 0が左動すると 第 1油溝 3 1内に位置するランド 4 2の軸方向長さが長くなるので第 1油溝 3 1 の開口量は減少し、 潤滑油路 L 3より逃げる作動油量は減少してメイン油路 L 2 内の圧力は増大する。 また、 このようにメイン油路 L 2内の圧力が増大すると第 3油溝 3 3内の圧力は高まるのでスプール 4 0は右動する。 スプール 4 0が右動 すると第 1油溝 3 1内に位置するランド 4 2の軸方向長さが短くなるので第 1油 溝 3 1の開口量は増大し、 潤滑油路 L 3より逃げる作動油量は増大してメイン油 路 L 2内の圧力は減少する。
このように本レギユレ一夕バルブ 1 0ではスプール 4 0を軸方向に移動させる ことにより第 1油溝 3 1内に位置するランド 4 2の軸方向長さを変えて第 1油溝 3 1の開口量を変化させ、 これによりメイン油路 L 2内の圧力を制御するのであ るが、 スプール 4 0は上記のような軸方向の移動動作を繰り返しつつ、 スプリン グ Sによる左方への付勢力、 第 3油溝 3 3内に供給された圧油による右方への付 勢力、 及び第 4油溝 3 4内に供給された圧油による左方への付勢力が釣り合った 位置に位置しょうとするので、 結果としてメイン油路 L 2内の圧力、 すなわちラ イン圧は一定に保たれるようになる。 なお、 レギユレ一夕圧設定圧供給油路 L 5 を介して第 4油溝 3 4内に供給されるレギユレ一夕圧設定圧は車両に大きなトル クが必要なときには通常よりも高い値が設定される。 大きな値のレギュレー夕圧 設定圧を第 4油溝 3 4に供給すると、 これに打ち勝ってスプール 4 0を右動させ るに必要な圧力、 すなわちメイン油路 L 2内の圧力は高くなるので、 結果として ライン圧を高くすることができる。
ところで、 本レギユレ一夕バルブ 1 0のバルブボディ 2 0はダイカストにより 作られる錶物であり、 上記油溝 3 1, 3 2, 3 3 , 3 4 , 3 5を始めその他の油 溝には錶型の型ばらしを容易にするための抜き勾配が形成されている。 このため 各油溝におけるスプール 4 0の軸方向長さはその油溝を形成した錶型の深い部分 (図の下方に位置する部分)ほど狭く、浅い部分ほど広くなつているのであるが、 本レギユレ一夕バルブ 1 0においては上述のように、 第 3油溝 3 3内に位置する スプール 4 0のロッ ド部 4 3の外周面にこの外周面を周回する段差溝 5 3が設け られているため、 第 3油溝 3 3内の作動油はこの段差溝 5 3内に流入してその外 周面をスプール 4 0の軸と直交する方向(図の上下方向)に押圧することとなる。 ここで、 段差溝 5 3の軸方向両端部 5 3 a , 5 3 bは少なくとも調圧状態におい て、 第 3油溝 3 3の軸方向両端部 3 3 a , 3 3わよりも軸方向外方に位置してい るため、 その外周面に作用する上記押圧力はその外周面の全域において等しくな る。 このため、 その外周面に偏荷重は作用せず、 スプール 4 0の動きは従来に比 してスムーズなものとなる。 また、 従来スプール 4 0の外周面をバルブボディ 2 0へ押し付けていた偏荷重がなくなる (或いは小さくなる) のでバルブボディ 2 0側の摩耗が大幅に低減される。
また、 第 1油溝 3 1内に位置するスプール 4 0のランド 4 2の外周面にはこの 外周面を周回する段差溝 5 2が設けられているため、 第 1油溝 3 1内の作動油は この段差溝 5 2内に流入してその外周面をスプール 4 0の軸と直交する方向 (図 の上下方向) に押圧する。 ここで、 段差溝 5 2の軸方向両端部 5 2 a , 5 2 bは 少なくとも調圧状態において、 第 1油溝 3 1の軸方向両端部 3 1 a , 3 l bのう ちスプール 4 0が開口量を増大させるときに移動する側の端部 3 1 bを跨いで位 置しているため、 その外周面に作用する上記押圧力はその外周面の全域において 等しくなる。 このため、 その外周面に偏荷重は作用せず、 スプール 4 0の動きは 従来に比してスムーズなものとなる。 また、 従来スプール 4 0の外周面をバルブ ボディ 2 0へ押し付けていた偏荷重がなくなる (或いは小さくなる) のでバルブ ボディ 2 0側の摩耗が大幅に低減される。
なお、上記説明では、段差溝 5 3 , 5 2は軸方向にほぼ等幅であると述べたが、 これら段差溝 5 3 , 5 2は必ずしもスプール 4 0の外周面全周において等幅でな くても良く、 スプール 4 0の断面視について対称形状になっていればよい。 段差 溝 5 3, 5 2が断面視について対称形状になっていさえすれば、 スプール 4 0が 油溝 5 3 , 5 4内の作動油から受ける受圧面積を上下で等しくすることができる からである。 従って、 油圧脈動の低減を目的として油溝 3 3と対向する段差溝 5 3の上下部における軸方向端部又は油溝 3 1と対向する段差溝 5 2の上下部にお ける軸方向端部に断面視対称状にノッチが設けられている場合であっても上記効 果を得ることができる。
図 6、 図 7及び図 8は第 3の実施形態に係る本発明の油圧パルプを方向制御バ ルブに適用した場合の一実施形態を示す図である。 本方向制御バルブ 6 0はバル ブボディ 7 0とこのバルブボディ 7 0に設けられた円筒状のスプール収容部 7 1 内に揷設されたスプール 9 0とから構成されており、 バルブボディ 7 0内には更 に、 スプール収容部 7 1の軸方向と直交する 5つの油溝 8 1 , 8 2 , 8 3, 8 4 ,
8 5が設けられている。
第 1油溝 8 1はスプール収容部 7 1の中央部に位置しており、 図示しない油圧 ポンプからの圧油が送り込まれる Pポートと繋がっている。 第 2油溝 8 2は第 1 油溝 8 2の右方に位置しており、 図示しない油圧ァクチユエ一夕 (例えば油圧シ リンダ) の一方側のポート (Aポートとする) と繋がっている。 第 3油溝 8 3は 第 1油溝 8 1の左方に位置しており、 上記油圧ァクチユエ一夕の他方側のポート ( Bポートとする) と繋がっている。 第 4油溝 8 4は第 3油溝 8 3の左方に位置 しており、 ,図示しない油タンクと繋がる Tポートと繋がっている。 第 5油溝 8 5 は第 2油溝 8 2の右方に位置しており、 パルプボディ 7 0の内部に設けられた油 路 Lにより第 4油溝 8 4と連通している。
スプール 9 0は 4つのランド: 9 1, 9 2 , 9 3 . 9 4及びこれらランド 9 1 ,
9 2 , 9 3 , 9 4の間に形成された 3つのパセージ 9 5, 9 6 , 9 7を有してお り、 その左端部に設けられた付勢ばね 7 3により右方に付勢される一方で、 右 ¾ 部に設けられた付勢ばね 7 4により左方に付勢されるようになっている。 スプ一 ル 9 0はバルブボディ Ί 0の左方に設けられた油路 8 6より左方の油室 9 5内に 圧油が供給されておらず、 かつバルブボディ 7 0の右方に設けられた油路 8 7よ り右方の油室 9 6内に圧油が供給されていないときには、 左右の付勢ばね 7 3 ,
7 4による付勢力が釣り合って図 6に示す中立位置に位置するようになっている c また、 スプール 9 0ば、 油路 8 6より左方の油室 9 5内に圧油が供給されている ときには(このとき右方の油室 9 6は油夕ンクに開放される)、右方の付勢ばね 7 4による左方への付勢力に抗して図 7に示す右の切換え位置に位置するようにな つている。 また、 スプール 9 0は、 油路 8 7より右方の油室 9 6内に圧油が供給 されているときには(このとき左方の油室 9 5は油タンクに開放される)、左方の 付勢ばね 7 3による右方への付勢力に杭して図 8に示す左の切換え位置に位置す るようになっている。
この方向制御バルブ 6 0は、 スプール 9 0が図 6に示す中立位置に位置したと きには、 ランド 9 2により第 3油溝 8 3と第 1油溝 8 1の間、 及び第 3油溝 8 3 と第 4油溝 8 4との間がシールされるとともに、 ランド 9 3により第 2油溝 8 2 と第 1油溝 8 1の間、 及び第 2油溝 8 2と第 5油、溝 8 5との間がシールされる。 このため Pポート、 Tポート、 Aポート及び Bポートはいずれもプロックされた 状態となる。 - スプール 9 0が図 7に示す右の切換え位置に位置したときには、 ランド 9 2に より第 1油溝 8 1と第 3油溝 8 3との間がシールされるとともに、 ランド 9 3に より第 2油溝 8 2と第 5油溝 8 5との間がシールされる一方で、 パセージ 9 5を 介して第 3油溝 8 3と第 4油溝 8 4とが連通し、 パセージ 9 6を介して第 1油溝 8 1と第 2油溝 8 2とが連通する。 これにより Pポートは Aポートと連通し、 B ポートは Tポ一トと連通するので、 油圧ァクチユエ一夕はこのような作動油の流 れに対応した方向に動作する。
—方、 スプール 9 0が図 8に示す左の切換え位置に位置したときには、 ランド 9 2により第 3油溝 8 3と第 4油溝 8 4との間がシールされるとともに、 ランド 9 3により第 1油溝 8 1と第 2油溝 8 2との間がシールされる一方で、 パセージ 9 6を介して第 1油溝 8 1と第 3油溝 8 3とが連通し、 パセージ 9 7を介して第 2油溝 8 2と第 5油溝 8 5とが連通する。 これにより Pポートは Bポートと連通 し、 Aポートは Tポートと連通するので、 油圧ァクチユエ一夕は上記方向とは逆 の方向に動作する。
図 6に示すように、 スプール 9 0が中立位置に位置している状態において第 2 油溝 8 2内に位置するランド 9 3の外周面には、 この外周面を周回する軸方向に. ほぼ等幅な段差溝 9 3 1が設けられており、 この段差溝 9 3 1の軸方向端部 9 3 1 a , 9 3 1 bは第 2油溝 8 2の軸方向外方に位置するようになっている。 また、 第 3油溝 8 3内に位置するランド 9 2の外周面には、 この外周面を周回する軸方 向にほぼ等幅な段差溝 9 2 1が設けられており、 この段差溝 9 2 1の軸方向端部 9 2 1 a , 9 2 1 bは第 3油溝 8 3の軸方向外方に位置するようになっている。 図 7に示すように、 スプール 9 0が右の切換え位置に位置している状態におい て第 1油溝 8 1内に位置するランド 9 2の外周面には、 この外周面を周回する軸 方向にほぼ等幅な段差溝 9 2 3が設けられており、 この段差溝 9 2 3の軸方向端 部 9 2 3 aは第 1油溝 8 1の軸方向外方に位置するようになっている。 また、 第 2油溝 8 2内に位置するランド 9 3の外周面には、 この外周面を周回する軸方向 にほぼ等幅な段差溝 9 3 2が設けられており、 この段差溝 9 3 2の軸方向端部 9 · 3 2 aは第 2油溝 8 2の軸方向外方に位置するようになっている。 また、 第 3油 溝 8 3内に位置するランド 9 2の外周面には、 この外周面を周回する軸方向にほ ぼ等幅な段差溝 9 2 2が設けられており、 この段差溝 9 2 2の軸方向端部 9 2 2 aは第 3油溝 8 3の軸方向外方に位置するようになっている。 また、 第 4油溝 8 4内に位置するランド 9 1の外周面には、 この外周面を周回する軸方向にほぼ等 幅な段差溝 9 1 1が設けられており、 この段差溝 9 1 1の軸方向端部 9 1 l aは 第 4油溝 8 4の軸方向外方に位置するようになっている。 更に、 第 5油溝 8 5内 に位置するランド 9 3の外周面には、 この外周面を周回する軸方向にほぼ等幅な 段差溝 9 3 3が設けられており、 この段差溝 9 3 3の軸方向端部 9 3 3 aは第 5 油溝 8 5の軸方向外方に位置するようになっている。
図 8に示すように、 スプール 9 0が左の切換え位置に位置してい.る状態におい て第 1油溝 8 1内に位置するランド 9 3の外周面には上記段差溝 9 3 2があり、 ここではこの段差溝 9 3 2の軸方向端部 9 3 2 aは第 1油溝 8 1の軸方向外方に 位置するようになっている。 また、 第 2油溝 8 2内に位置するランド 9 3の外周 面には上記段差溝 9 3 3があり、 ここではこの段差溝 9 3 3の軸方向端部 9 3 3 aは第 2油溝 8 2の軸方向外方に位置するようになっている。 また、 第 3油溝 8 3内に位置するランド 9 2の外周面には上記段差溝 9 2 3があり、 ここではこの 段差溝 9 2 3の軸方向端部 9 2 3 aは第 3油溝 8 3の軸方向外方に位置するよう になっている。 また、 第 4油溝 8 4内に位置するランド 9 2の外周面には上記段 差溝 9 2 2があり、 ここではこの段差溝 9 2 2の軸方向端部 9 2 2 aは第 4油溝 8 4の軸方向外方に位置するようになっている。 また、 第 5油溝 8 5内に位置す るランド 9 4の外周面には、 この外周面を周回する軸方向にほぼ等幅な段差溝 9 4 1が設けられており、 この段差溝 9 4 1の軸方向端部 9 4 1 aは、 第 5油溝 8 5の軸方向外方に位置するようになっている。
本方向制御バルブ 6 0のバルブボディ 7 0もダイカストにより作られる鏡物で あり、 上記油溝 8 1, 8 2 , 8 3 , 8 4, 8 5には錶型の型ばらしを容易にする ための抜き勾配が形成されている。 このため各油溝におけるスプール 9 0の軸方 向長さはその油溝を形成する型の深い部分(図の下方に位置する部分)ほど狭く、 浅い部分ほど広くなっているが、本方向制御バルブ 60においては上述のように、 スプール 9 0が各切換え位置 (中立位置を含む) に位置している状態において油' 溝 8 1, 82, 83, 84, 85内に位置するスプール 90のランド 9 1, 92 , 93, 94の外周面にこれらの外周面を周回する段差溝 9 1 1, 92 1 , 9 22 , 923, 9 31 , 932, 9 33, 941が設けられているため、 これら油溝内 の作動油はこれら段差溝内に流入してその外周面をスプール 90の軸と直交する 方向 (図の上下方向) に押圧する。 ここで、 各段差溝の軸方向端部はスプール 9 0の切換え位置に依らず、 油溝の軸方向外方に位置しているため、 その外周面に 作用する上記押圧力はその外周面の全域において等しくなる。 このため、 その外 周面に偏荷重は作用せず、 スプール 90の動きは従来に比してスムーズなものと なる。 また、 従来スプール 90の外周面をバルブボディ Ί 0へ押し付けていた偏 荷重がなくなる (或いは小さくなる) のでバルブボディ 70側の摩耗が大幅に低 減される。
なお、 上記の方向制御バルブ 60において、 スプール 90の軸方向駆動は油圧 パイロット方式を用いていたが、 その他電磁力を利用し、 或いは手動操作により 機械的にこれを行うこともできる。 また、 上述のような油圧パイロット方式では なく、 前述のレギユレ一夕バルブ 10において説明したスプール 40の駆動方式 を利用することもできる。 この場合には上述の第 1の実施形態を適用できる。 また、 上記説明では、 段差溝 9 1 1 , 92 1 , 9 22 , 9 23, 93 1, 93 2 , 933, 94 1は軸方向にほぼ等幅であると述べたが、 これら段差溝 9 1 1, 92 1, 9 22 , 923, 93 1 , 932 , 933 , 941は必ずしもスプール 90の外周面全周において等幅でなくても良く、 スプール 9 0の断面視について 対称形状になっていればよいのは前述のレギュレ一夕バルブ 10の場合と同様で ある。 従って、 これら段差溝 9 1 1, 92 1 , 922, 923, 93 1 , 9 32 , 933 , 941の上下部における軸方向端部に断面視対称状にノッチが設けられ ている場合であっても上記効果を得ることができる。
これまで本発明の好ましい実施形態について説明してきたが、 本発明の範囲は 上述のものに限定されない。 例えば、 上述の実施形態においては、 第 1及び第 2 の本発明に係る油圧バルブはレギユレ一タノヽリレブに適用される場合が示されてい. たが、 これは一例に過ぎず、 レデュ一シングバルブや方向制御バルブ、 或いは流 量制御バルブ等にも適用することが可能である。
また、 上述の実施形態では、 スプールの外周面に設ける段差溝は錶型の抜き勾' 配が生じる油溝に対応して設けるように説明したが、 スプールに偏荷重が作用す るのはこのような抜き勾配のある油溝だけでなく、 内面の仕上げ精度の不充分な 油溝等においても起き得るので、 このような所に対応して段差溝を設けるように 以上説明したように、 第 1の実施形態に係る油圧バルブにおいては、 油溝内に 位置するスプールの外周面にこの外周面を周回する段差溝が設けられているため、 油溝内の作動油はこの段差溝内に流入してその外周面をスプールの軸と直交する 方向に押圧する。ここで、段差溝の軸方向両端部は少なくとも調圧状態において、 油溝の軸方向両端部よりも軸方向外方に位置しているため、 その外周面に作用す る上記押圧力はその外周面の全域において等しくなる。 このため、 その外周面に 偏荷重は作用せず、 スプールの動きは従来に比してスムーズなものとなる。また、 従来スプールの外周面をバルブボディへ押し付けていた偏荷重がなくなる (或い は小さくなる) のでバルブボディ側の摩耗が大幅に低減される。
また、 第 2の実施形態に係る油圧バルブにおいては、 油溝内に位置するスプー ルのランドの外周面にこの外周面を周回する段差溝が設けられているため、 油溝 内の作動油はこの段差溝内に流入してその外周面をスプールの軸と直交する方向 に押圧する。 ここで、.段差溝の軸方向両端部は少なくとも調圧状態において、 油 溝の.軸方向両端部のうちスプールが開口量を増大させるときに移動する側の端部 を跨いで位置しているため、 その外周面に作用する上記押圧力はその外周面の全 域において等しくなる。 このため、 その外周面に偏荷重は作用せず、 スプールの 動きは従来に比してスムーズなものとなる。 また、 従来スプールの外周面をバル ブボディへ押し付けていた偏荷重がなくなる (或いは小さくなる) のでバルブボ ディ側の摩耗が大幅に低減される。
また、 第 3の実施形態に係る油圧バルブにおいては、 スプールが各切換え位置 に位置している状態において油溝内に位置するスプールのランドの外周面にこの 外周面を周回する段差溝が設けられているため、 油溝内の作動油はこの段差溝内 に流入してその外周面をスプールの軸と直交する方向に押圧する。 ここで、 段差 溝の軸方向端部はスプールの切換え位置に依らず、 油溝の軸方向外方に位置して いるため、 その外周面に作用する上記押圧力はその外周面の全域において等しく なる。 このため、 その外周面に偏荷重は作用せず、 スプールの動きは従来に比し' てスムーズなものとなる。 また、 従来スプールの外周面をバルブボディへ押し付 けていた偏荷重がなくなる (或いは小さくなる) のでバルブボディ側の摩耗が大 幅に低減される。

Claims

請求の範囲
1 . 内面が円筒状に形成されたスプール収容部及びこのスプール収容部の中心軸 と直交するように設けられた油溝を有したバルブボディと、 前記スプール収容部 内に揷設されたスプールとを備えて構成される油圧バルブにおいて、
前記スプールの外周面にこの外周面を周回する段差溝が設けられており、 前記 油溝に供給される油圧を前記段差溝の部分において前記スプールに作用させ、 前 記スプールに対してその中心軸と直交する方向の偏荷重が作用することを防止す るように構成されていることを特徴とする油圧バルブ。
2 . 前記段差溝が前記スプールの中心軸と同心の円筒状に形成され、 前記段差溝 の側面が前記スプールの中心軸と直交することを特徴とする請求項 1に記載の油 圧バルブ
3 . 前記油溝内に供給する作動油圧に応じて前記スプールを軸方向に移動させる ように構成され、
前記油溝内に位置する前記スプールの外周面に前記段差溝が設けられており、 前記段差溝の前記軸方向両端部は少なくとも調圧状態において、 前記油溝の前記 軸方向両端部よりも前記軸方向外方に位置していることを特徴とする請求項 1に 記載の油圧バルブ。
4 . 前記スプールを軸方向に移動させることにより前記油溝内に位置するランド の前記軸方向長さを変えて前記油溝の開口量を変化させるように構成され、 前記ランドの外周面に前記段差溝が設けられており、 前記段差溝の前記軸方向 両端部は少なくとも調圧状態において、 前記油溝の前記車 ¾方向両端部のうち前記 スプールが前記開口量を増大させるときに移動する側の端部を跨いで位置してい ることを特徴とする請求項 1に記載の油圧バルブ。
5 . 前記スプールを軸方向に移動させて位置を切換えたときの各切換え位置に応 じて前記油路の連通遮断を行うように構成され、 前記スプールが前記各切換え位置に位置している状態において前記油溝内に位 置する前記スプールのランドの外周面に前記段差溝が設けられており、 前記段差' 溝の前記軸方向端部は、 前記スプールの前記切換え位置に依らず、 前記油溝の前 記軸方向外方に位置していることを特徴とする請求項 1に記載の油圧バルブ。
PCT/JP2002/011681 2001-11-09 2002-11-08 Soupape hydraulique WO2003040599A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60222861T DE60222861T2 (de) 2001-11-09 2002-11-08 Hydraulikventil
EP02778078A EP1367304B1 (en) 2001-11-09 2002-11-08 Hydraulic valve
US10/451,639 US7146998B2 (en) 2001-11-09 2002-11-08 Hydraulic valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001345254A JP3717158B2 (ja) 2001-11-09 2001-11-09 油圧バルブ
JP2001-345254 2001-11-09

Publications (1)

Publication Number Publication Date
WO2003040599A1 true WO2003040599A1 (fr) 2003-05-15

Family

ID=19158622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011681 WO2003040599A1 (fr) 2001-11-09 2002-11-08 Soupape hydraulique

Country Status (7)

Country Link
US (1) US7146998B2 (ja)
EP (1) EP1367304B1 (ja)
JP (1) JP3717158B2 (ja)
CN (1) CN100390448C (ja)
DE (1) DE60222861T2 (ja)
TW (1) TWI267602B (ja)
WO (1) WO2003040599A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007306A1 (de) * 2004-02-28 2005-09-15 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Pumpe
JP2005329442A (ja) 2004-05-20 2005-12-02 Toyota Motor Corp 自動変速機のコントロールバルブボディ及びその製造方法
DE112006001600B4 (de) * 2005-08-17 2017-08-31 Aisin Aw Co., Ltd. Steuerkolbenventilsystem
JP2007187296A (ja) * 2006-01-16 2007-07-26 Psc Kk 気体圧制御弁
DE102007031290A1 (de) * 2007-01-31 2008-08-07 Continental Teves Ag & Co. Ohg Schieberventil
JP4297949B2 (ja) * 2007-04-26 2009-07-15 トヨタ自動車株式会社 レギュレータバルブ
CN101251007B (zh) * 2008-03-27 2012-04-18 中国海洋石油总公司 一种插装式电液集成装置
DE102008001955A1 (de) * 2008-05-26 2009-12-03 Zf Friedrichshafen Ag Ventilschieber
DK2166423T3 (en) * 2008-09-19 2018-03-12 Isomatic As Balanced fluid valve
DK2166424T3 (en) * 2008-09-19 2017-09-18 Isomatic As Fluid regulator
DE102009028092A1 (de) * 2009-07-29 2011-02-10 Robert Bosch Gmbh Druckregelventil
DE102010041124A1 (de) * 2010-09-21 2012-03-22 Robert Bosch Gmbh Schieberventil
DE102010043697A1 (de) * 2010-11-10 2012-05-10 Robert Bosch Gmbh Druckregelventil, insbesondere zur Ansteuerung einer Kupplung in einem Kraftfahrzeug-Automatikgetriebe
US8720849B2 (en) * 2011-03-31 2014-05-13 Magna Powertrain Inc. Low gain pressure relief valve for a fluid pump
JP6089720B2 (ja) * 2013-01-23 2017-03-08 株式会社不二越 油圧制御装置
JP6405079B2 (ja) * 2013-02-18 2018-10-17 本田技研工業株式会社 油圧制御回路
GB201317458D0 (en) 2013-10-02 2013-11-13 Spd Swiss Prec Diagnostics Gmbh Improved pregnancy test device and method
JP6281637B2 (ja) * 2014-06-11 2018-02-21 アイシン・エィ・ダブリュ株式会社 スプールバルブ及び潤滑切換え装置
EP3329161B1 (en) * 2015-07-31 2021-09-08 Ecowater Systems LLC Variable drain flow restrictor
JP5965047B1 (ja) * 2015-12-18 2016-08-03 豊興工業株式会社 調圧弁
JP6178925B1 (ja) 2016-05-31 2017-08-09 株式会社小松製作所 スプール弁、操作装置、及び作業車両
US10641298B2 (en) 2016-10-10 2020-05-05 Hydraforce, Inc. Hydraulic control valve for controlling pressure drop across motors
US10088850B2 (en) * 2017-01-25 2018-10-02 Goodrich Corporation Brake pressure reducer valve with input pressure change compensation
JP6904858B2 (ja) * 2017-09-04 2021-07-21 株式会社ジェイテクト 減圧弁
US11448313B2 (en) * 2017-11-02 2022-09-20 Superior Transmission Parts, Inc. Pressure regulator valve
DE102018208755A1 (de) * 2018-06-04 2019-12-05 Zf Friedrichshafen Ag Druckregelventil
EP3715644B1 (en) * 2019-03-29 2023-11-08 Hamilton Sundstrand Corporation Spool servo valve
GB201905090D0 (en) 2019-04-10 2019-05-22 Spd Swiss Prec Diagnostics Gmbh Assay device
DE102020204756A1 (de) 2020-04-15 2021-10-21 Deere & Company Hydraulische Anordnung für ein Fahrzeuggetriebe
CN116928240B (zh) * 2023-09-19 2023-12-12 陕西法士特汽车传动集团有限责任公司 两路自反馈液压控制阀、离合器液压控制系统及控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469431U (ja) * 1977-10-26 1979-05-17
JPS5861381A (ja) * 1981-10-05 1983-04-12 Komatsu Ltd 油圧制御弁
JPH01150265U (ja) * 1988-04-08 1989-10-17
JPH0338524Y2 (ja) * 1985-02-18 1991-08-14
JPH0560250A (ja) * 1991-09-02 1993-03-09 Nissan Motor Co Ltd 圧力制御弁
JPH0763275A (ja) * 1993-08-24 1995-03-07 Toyooki Kogyo Co Ltd パイロット操作切換弁
JP2522273Y2 (ja) * 1991-08-06 1997-01-08 本田技研工業株式会社 バルブボディ構造
JP2001055968A (ja) * 1999-06-10 2001-02-27 Hitachi Constr Mach Co Ltd 可変容量型液圧回転機の容量制御弁
JP2001116158A (ja) * 1999-10-15 2001-04-27 Nidec Tosok Corp 圧力制御弁
JP2001295946A (ja) * 2000-04-12 2001-10-26 Honda Motor Co Ltd 油圧制御バルブの摺動部材及び油圧制御バルブの被摺動部材

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2239148A (en) * 1938-06-10 1941-04-22 Hydraulie Dev Corp Inc Fluid pressure relief or unloading valve
US3563272A (en) * 1966-12-05 1971-02-16 Jean Mercier Servocontrol valve and system
BE754260A (fr) * 1969-08-11 1970-12-31 Carding Spec Co Perfectionnements apportes aux distributeurs a tiroir-piston
US4014360A (en) * 1972-05-31 1977-03-29 Trw Inc. Plural-service hydraulic system
GB1411505A (en) * 1973-06-22 1975-10-29 Clerk R C Spool valves
US3895703A (en) * 1973-10-26 1975-07-22 Caterpillar Tractor Co Combined steering clutch and brake control for crawler tractors
JPS5469431A (en) 1977-11-14 1979-06-04 Canon Inc Lens system built-in with variable power lens
US4325400A (en) * 1978-12-16 1982-04-20 Wynne John R Fluid flow equalizing valve arrangement
US4556078A (en) * 1984-06-15 1985-12-03 Deere & Company Priority valve
US4646786A (en) * 1985-10-17 1987-03-03 Pneumo Corporation Fluid control valves with angled metering ports
JP2522273B2 (ja) 1986-12-27 1996-08-07 ソニー株式会社 フィルタ調整装置
JPH01150265A (ja) 1987-12-07 1989-06-13 Sony Corp 記録再生方式
JPH0241874U (ja) * 1988-09-14 1990-03-22
JP2655190B2 (ja) 1989-06-21 1997-09-17 エスエス製薬 株式会社 コルチコステロイド含有軟膏剤
US5758683A (en) * 1996-01-26 1998-06-02 Raymond Keith Foster On/off circuit for a hydraulic system
US5762134A (en) * 1996-02-20 1998-06-09 Ford Global Technologies, Inc. Hydraulic temperature compensated cooler bypass control for an automatic transmission
JP3506409B2 (ja) * 1996-12-26 2004-03-15 株式会社荏原製作所 スプール型流量制御弁
JP2960390B1 (ja) * 1998-03-31 1999-10-06 川崎重工業株式会社 流体圧機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469431U (ja) * 1977-10-26 1979-05-17
JPS5861381A (ja) * 1981-10-05 1983-04-12 Komatsu Ltd 油圧制御弁
JPH0338524Y2 (ja) * 1985-02-18 1991-08-14
JPH01150265U (ja) * 1988-04-08 1989-10-17
JP2522273Y2 (ja) * 1991-08-06 1997-01-08 本田技研工業株式会社 バルブボディ構造
JPH0560250A (ja) * 1991-09-02 1993-03-09 Nissan Motor Co Ltd 圧力制御弁
JPH0763275A (ja) * 1993-08-24 1995-03-07 Toyooki Kogyo Co Ltd パイロット操作切換弁
JP2001055968A (ja) * 1999-06-10 2001-02-27 Hitachi Constr Mach Co Ltd 可変容量型液圧回転機の容量制御弁
JP2001116158A (ja) * 1999-10-15 2001-04-27 Nidec Tosok Corp 圧力制御弁
JP2001295946A (ja) * 2000-04-12 2001-10-26 Honda Motor Co Ltd 油圧制御バルブの摺動部材及び油圧制御バルブの被摺動部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1367304A4 *

Also Published As

Publication number Publication date
CN100390448C (zh) 2008-05-28
TW200300203A (en) 2003-05-16
EP1367304A4 (en) 2006-01-04
TWI267602B (en) 2006-12-01
US20040089355A1 (en) 2004-05-13
EP1367304A1 (en) 2003-12-03
EP1367304B1 (en) 2007-10-10
JP2003148636A (ja) 2003-05-21
DE60222861T2 (de) 2008-01-31
DE60222861D1 (de) 2007-11-22
US7146998B2 (en) 2006-12-12
JP3717158B2 (ja) 2005-11-16
CN1491329A (zh) 2004-04-21

Similar Documents

Publication Publication Date Title
WO2003040599A1 (fr) Soupape hydraulique
US6378557B2 (en) Pressure regulation valve
US6554014B2 (en) Proportional pilot operated directional valve
JPH0131202B2 (ja)
JP2009236304A (ja) ブリード型電磁弁
US20080087345A1 (en) Direct operated cartridge valve assembly
WO1998053235A1 (fr) Soupape de regulation de pression proportionnelle
JP3337121B2 (ja) パイロット弁
JP4285291B2 (ja) 電磁弁
WO2017195589A1 (ja) 液圧回転機械の傾転角制御装置
JP7286672B2 (ja) 容量制御弁
JP2001241559A (ja) スプール弁
JP6781646B2 (ja) 電磁式減圧弁及び電磁式減圧弁を備える流体圧制御装置
JP2008267474A (ja) ブリード式バルブ装置
JP2020193627A (ja) リニアソレノイドバルブ
CN113167263B (zh) 容量控制阀
JP2008298184A (ja) 油圧駆動装置
JP2004028198A (ja) 電磁弁
JPH081345Y2 (ja) 電磁流量制御弁
JP3108652B2 (ja) パイロット弁
CN113530904A (zh) 液压控制阀和具有液压控制阀的变排量液压泵
JPH1113913A (ja) バランスピストン型リリーフ弁
JP4181969B2 (ja) 制御弁
KR101925516B1 (ko) 차량용 보조제동장치의 유압밸브
JP3890593B2 (ja) スプール弁装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10451639

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028047176

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002778078

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002778078

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002778078

Country of ref document: EP