WO1999017931A1 - Film de polyester a orientation biaxiale - Google Patents

Film de polyester a orientation biaxiale Download PDF

Info

Publication number
WO1999017931A1
WO1999017931A1 PCT/JP1998/002590 JP9802590W WO9917931A1 WO 1999017931 A1 WO1999017931 A1 WO 1999017931A1 JP 9802590 W JP9802590 W JP 9802590W WO 9917931 A1 WO9917931 A1 WO 9917931A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
layer
polyester film
oriented polyester
Prior art date
Application number
PCT/JP1998/002590
Other languages
English (en)
French (fr)
Inventor
Iwao Okazaki
Yukari Nakamori
Shozi Nakajima
Akira Kubota
Yuri Shirakawa
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to CA 2273499 priority Critical patent/CA2273499A1/en
Priority to EP98924590A priority patent/EP0943428B1/en
Priority to US09/319,198 priority patent/US6331344B1/en
Priority to DE1998610438 priority patent/DE69810438T2/de
Publication of WO1999017931A1 publication Critical patent/WO1999017931A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73931Two or more layers, at least one layer being polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2429/00Carriers for sound or information
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2804Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a biaxially oriented polyester film.
  • biaxially oriented polyester film As the biaxially oriented polyester film, a biaxially oriented laminated polyester film is known (for example, US Pat. Nos. 5,069,962 and 5,626,942). Also, a biaxially oriented polypropylene terephthalate film is known (for example, JP-A-9-175055).
  • the conventional biaxially oriented polyester film described above has improved electromagnetic conversion characteristics when used as a magnetic recording medium.However, due to insufficient abrasion resistance of the polymer surface, particles fall off and powder is generated. When magnetic tape was used, there was a problem that the signal was lost due to the powder. In addition, in the case of a high-density magnetic recording medium, a property that particles are less likely to fall off is required, and the present invention solves such a problem.
  • An object is to provide an oriented polyester film. Disclosure of the invention
  • the biaxially oriented polyester film of the present invention is a polyester film having at least one film layer mainly composed of polypropylene terephthalate, and the first embodiment has a heat shrinkage of 80% and 30 minutes of 0.8% or less.
  • at least one surface has a surface roughness Ra of 5 to 120 nm, a 10-point average roughness RzZRa force of 12 or less, and a projection interval Sm of 15; m or less. is there.
  • the polypropylene terephthalate used in the present invention (hereinafter referred to as PPT) Is preferably obtained by polymerization of 1,3-propanediol with terephthalic acid or its methyl ester derivative, etc., from the viewpoint of abrasion resistance and suppression of oligomer precipitation.
  • PPT polypropylene terephthalate used in the present invention
  • two or more kinds of polymers may be mixed, or a copolymer may be used.
  • the film layer mainly composed of PPT in the present invention is a film layer in which the PPT component in the layer is 50% by weight or more.
  • inorganic particles such as aluminum gayate, calcium carbonate, alumina, silica, calcium phosphate, titanium oxide, etc.
  • Particles such as particles may be contained.
  • the average particle size of such particles is from 0.01 to 2.0 m, preferably from 0.02 to 1.5 zm, more preferably from 0.02 to 1.
  • the relative standard deviation of the particle diameter is preferably 0.5 or less, more preferably 0.3 or less, and most preferably 0.2 or less.
  • the particle content is 0.01 to 3% by weight, preferably 0.02 to 2% by weight, more preferably 0.05 to 1% by weight.
  • Additives such as antioxidants, heat stabilizers, and ultraviolet absorbers may be added to the layer A to the extent that the objects of the present invention are not impaired.
  • the biaxially oriented polyester film of the present invention can be a single-layer film having only the above-mentioned film layer mainly composed of PPT.
  • the biaxially oriented polyester film of the present invention is a laminated film composed of two or more layers, at least one layer thereof is a film layer mainly composed of the above-mentioned PTPT.
  • the polyester film constituting the other layer is not particularly limited, but polyethylene terephthalate (hereinafter referred to as PET), poly (ethylene-1,2-naphthalenedicarboxylate) (PEN) and the like are preferably used. Two or more polymers may be mixed or a copolymer may be used as long as the object of the present invention is not hindered.
  • This film layer can contain the same inorganic particles and organic particles as in the case of the layer A.
  • additives such as antioxidants, heat stabilizers, and ultraviolet absorbers may be added to the extent that the objects of the present invention are not impaired.
  • the biaxially oriented polyester film of the first embodiment of the present invention was used as a magnetic recording medium.
  • the heat shrinkage rate for 80 ⁇ 30 minutes is 0.8% or less. It is preferably at most 0.6%, more preferably at most 0.4%.
  • the thickness of the A layer is not particularly limited, but is preferably from 0.01 to 3.0 zm, preferably from 0.02 to 2.0 ⁇ m, more preferably from 0.03 to 1.0 [m.
  • the relationship between the A layer thickness t and the average particle size d of the particles contained in the A layer is not particularly limited, but is 0.2 dt ⁇ 10 d, preferably 0.3 d ⁇ t ⁇ 5 d, and more preferably When 0.5 d ⁇ t ⁇ 3 d, wear resistance is particularly good.
  • wear resistance is particularly good.
  • there are two or more A layers for example, in the case of the outermost layer on both sides, it is desirable that both of them satisfy this condition.
  • the biaxially oriented polyester film according to the second aspect of the present invention has a surface roughness Ra of at least one side of 5 to 120 nm, a 10-point average roughness Rz-Ra of 12 or less, and a projection spacing Sm of at least one surface. It is less than 15 / xm.
  • the surface roughness Ra is preferably in the range of 5 to 5 O nm, particularly preferably in the range of 10 to 30 nm
  • the 10-point average roughness R zZR a is 10 or less
  • the lower limit of RzZRa is not particularly limited, but 4 or more is practical for production.
  • the lower limit of Sm is not particularly limited, but about 3 is practical for production.
  • the relationship between the thickness of the A layer and the thickness t of the A layer and the average particle diameter d of the particles contained in the A layer is in the same range as described in the first embodiment. It is desirable.
  • the present invention also includes an embodiment that satisfies both the requirements of the first and second embodiments. Further, it is more preferable that both of the first and second aspects satisfy the following requirements.
  • the biaxially oriented polyester film of the present invention preferably has at least two layers in order to effectively form the surface morphology of the present invention from the viewpoints of abrasion resistance and oligomer deterrence.
  • the crystallization parameter of the polymer constituting the outermost layer is preferably less than 60, more preferably less than 50, especially less than 4 Ot: from the viewpoint of abrasion resistance and dimensional stability.
  • the crystallization parameter ⁇ ⁇ cg is defined as the difference between the cold crystallization temperature and the glass transition temperature when the temperature rises. The crystallization rate is increased, and the heat shrinkage at 80 t: 30 minutes is effective within the range of the present invention, and is also effective for obtaining the characteristic surface of the present invention.
  • the ratio X / Y between the number of protrusions (X) present on the surface of the A layer and the number of particles (Y) contained in the A layer of the biaxially oriented polyester film of the present invention is usually 5 from the viewpoint of wear resistance and running properties. Above. It is preferably at least 10 and more preferably at least 50.
  • the projections may be formed on the film surface by the added particles, or the polymer on the layer A may be crystallized irrespective of the particles and a large number of microcrystals may be generated in the layer A.
  • a projection may be formed on the projection.
  • the ratio of the number of protrusions and the number of particles is, in principle, an extremely large value due to the small number of particles.
  • the Young's modulus in both the longitudinal direction and the width direction is preferably 4.5 GPa or more, particularly preferably 5 GPa or more.
  • the Young's modulus in the longitudinal direction and the width direction may be the same value or different values.
  • the elastic modulus of the base film if used for magnetic recording media, if the elastic modulus of the base film is insufficient, the magnetic tape stretches due to the tension received from the magnetic head and guide pins during running, and the electromagnetic conversion characteristics (output characteristics) Adversely affect
  • the ratio of the Young's modulus in the longitudinal direction and the width direction is preferably in the range of 0.7 to 1.5, more preferably 0.75 to 1.3, and particularly preferably 0.8 to 1.2. is there. Outside of this range, the magnetic tape using a recording head of the helical scan method has a non-uniform head contact, and the electromagnetic conversion characteristics deteriorate.
  • the relational expression [0.0.08 E—S] between the longitudinal elastic modulus E (GPa) and the longitudinal thermal shrinkage S (%) when held at a temperature of 80 for 30 minutes is 0. 0.8 or more, more preferably 0.09 or more, especially 0.1 or more is desirable because the thermal dimensional stability can be improved without significantly lowering the elastic modulus.
  • the polyester composition contains 60 to 99.9% by weight of PPT and 40 to 0.1% by weight of PET as a main component. 20% to 0.5% by weight, especially 90% to 99.0% by weight? It is desirable to use one consisting of £ 10-1.0% by weight.
  • the intrinsic viscosity (hereinafter referred to as IV) of PET at this time is 0.6 or more, preferably 0.
  • a value of 65 or more is effective for obtaining the abrasion resistance, dimensional stability and surface morphology of the biaxially oriented film of the present invention.
  • the total thickness of the biaxially oriented polyester film of the present invention is not particularly limited, but when used as a substrate for a magnetic disk, the total thickness of the film is 50 to 100 m, more preferably 50 to 80 m, particularly 60 to 80 m. If it is, the wear resistance becomes good.
  • the surface roughness Ra and the surface protrusion spacing Sm of one surface layer of the biaxially oriented laminated film of the present invention are as described in the second embodiment, but the surface roughness of the other surface layer is as follows. It is desirable that Ra be 9 nm or less, preferably 6 nm or less, and the surface protrusion interval Sm is 15 m or less, preferably 10 m or less.
  • the biaxially oriented laminated polyester film of the present invention has a polymer layer (A layer) mainly composed of PPT on at least one surface of a polymer layer (C layer) containing thermoplastic resin C as a main component. It is preferable that it has a laminated structure (CZA XB) of at least three or more layers having a polymer layer (B layer) containing thermoplastic resin B as a main component on the surface of layer A.
  • the AZCZA / B four-layer laminate structure is more preferable, but the B / AZCZA / B five-layer laminate structure is most preferable from the viewpoint of the abrasion resistance and the output characteristics.
  • the thermoplastic resin C in the present invention is not particularly limited, but polyester is preferred.
  • the polyester at least one structural unit selected from ethylene terephthalate, ethylene tere, ⁇ -bis (2-chlorophenoxy) ene-1,4,4'-dicarboxylate, and ethylene 2,61-naphthalate units is used.
  • the main component is exemplified, but polyester having ethylene terephthalate-ethylene 2,61-naphthyl as a main component is preferable in terms of excellent mechanical strength and dimensional stability.
  • particularly preferred is a polyester containing ethylene terephthalate as a main component from the viewpoint of the film-forming property of a laminated film mainly composed of a polymer layer (() composed of ⁇ .
  • terminal carboxylic acid 5 5 solution haze eq / 1 polymer at 0 6 g or more polyester refers to one of the 2 0% or less, may or may not be contained particles .
  • the thickness of the C layer varies depending on various uses and is not particularly limited, but is preferably 50% or more of the total film thickness in terms of mechanical strength. More preferably, it is 60% or more, and still more preferably, 70% or more.
  • the PPT in the present invention is as described above, and a PPT polymerized by a known method can be used.
  • the polymer layer (A) is formed of a polymer layer (C) containing a thermoplastic resin C as a main component. Preferably, it is provided on at least one side. Preferably, when both surfaces are the polymer layer (A), the amount of oligomer precipitation is extremely small, and a biaxially oriented laminated polyester film having fine projections formed on the surface is preferably obtained.
  • the polymer layer (A) in the present invention is preferably composed of a PPT having a polymer IV of 0.8 or more, more preferably 0.9 or more. Although there is no particular upper limit for IV, it is usually set to about 2.0 or less from the viewpoint of uniform thin film lamination. By setting the IV of the PPT within the above range, it is possible to uniformly laminate the thin film on the polymer layer (C) containing thermoplastic resin C as a main component, and to eliminate problems such as oligomer suppression effect and surface shaving. It is effective for
  • the thermoplastic resin B in the present invention is not particularly limited, but polyester is preferred.
  • the polyester at least one structural unit selected from ethylene terephthalate, ethylene, ⁇ -bis (2-chlorophenoxy) ethane_4,4'-dicarboxylate, and ethylene 2,6-naphthalate unit is mainly used.
  • polyesters containing ethylene terephthalate or ethylene 2,6-naphtholate as a main constituent component are preferable from the viewpoint of excellent mechanical strength and dimensional stability.
  • Polyester containing ethylene terephthalate as a main component is particularly preferred from the viewpoint of the film-forming properties of a laminated film with a polymer layer composed of ⁇ .
  • the polymer layer ( ⁇ ) preferably contains substantially no particles from the viewpoint of abrasion resistance, but if the average particle size is less than 0.6 m, preferably 0.5 m or less if the particle size is 0.1 m or less. It may be contained within the range of less than the amount%.
  • Such particles are not particularly limited, but are selected from aluminum gayate, alumina, silica, etc. from the viewpoint of abrasion resistance. Particles are preferably exemplified. A plurality of these particles may be used in combination.
  • the thickness (T a) of the polymer layer (A) is preferably less than 1, more preferably less than 0.8 zm, particularly preferably less than 0. If the thickness of the polymer layer (A) exceeds the above range, the stretchability of the biaxially oriented laminated polyester film is deteriorated, and it is not preferable because stretch tearing may occur. Further, the ratio of the thickness (T a) of the polymer layer (A) to the thickness (Tb) of the polymer layer (B) preferably satisfies the following relationship.
  • the thickness ratio of the polymer layer By setting the thickness ratio of the polymer layer within this range, surface protrusions caused by PPT crystals on the surface of the polymer layer (A) are formed on the surface of the polymer layer (B), which is an extremely thin film (trace). can do. If the ratio of the thickness of the polymer layer is larger than the above range, the protrusions caused by the spherulites of the PPT of the polymer layer (A) cannot be formed to the surface of the polymer layer (B) which is an extremely thin film. As a result, the coefficient of friction increases, leading to poor running performance and abrasion resistance.
  • the thickness ratio of the polymer layer is smaller than the above range, the polymer layer (B) is not laminated uniformly, resulting in lamination, blurring (partially not laminated) or lamination unevenness, and abrasion resistance deteriorates. Also, projections due to PPT crystals appear on the surface, and in the film forming process, sticking occurs when running on a caro-heat roll, deteriorating the surface properties.
  • the layer thickness of the polymer layer (B) is not particularly limited as long as it is within the above range, but is preferably 0.5 m or less from the viewpoint of running properties, abrasion resistance, and oligomer deterrence. Further, when both outermost layers of the laminated film are the polymer layers (B), both outermost layers may have the same thickness or may have different thicknesses. The surface roughness can be controlled to the desired roughness.
  • a large number of fine projections are formed on the surface of the polymer layer (B).
  • surface protrusions on the surface of layer B are caused by PPT crystals of polymer layer (A).
  • the projection is a projection in view of the abrasion resistance.
  • the film of the present invention is a protrusion caused by the crystal of the polymer of the layer A itself, the generation of voids is significantly reduced, so that the surface protrusion which is hard to be broken is provided. Can be formed, so that the abrasion resistance is improved, and as a result, shavings, drop particles and the like are also improved.
  • the biaxially oriented polyester film of the present invention can be applied to many uses, for example, for magnetic recording media, packaging, and cards such as prepaid cards.
  • it can be preferably used as a biaxially oriented polyester film for digital video tapes requiring high output. It can also be used preferably for data storage such as for computers.
  • An easy-adhesion layer can be provided on at least one surface of the biaxially oriented laminated polyester film of the present invention.
  • the resin constituting the easy-adhesion layer is not particularly limited, but polyester resin, acrylic resin, polyurethane resin, or the like can be preferably used from the viewpoint of adhesion to a layer containing PPT as a main component.
  • the polyester resin has an ester bond in a main chain or a side chain, and such a polyester resin can be obtained by polycondensation from an acid component and a glycol component.
  • a compound containing a sulfonate group or a carboxylate group is used to improve the adhesion of the polyester resin to various paints or to make the polyester resin easily water-soluble. It is preferred to co-polymerize the containing compound.
  • polyester resin a modified polyester copolymer, for example, a block copolymer or a graft copolymer modified with acryl, urethane, epoxy or the like can be used.
  • acrylic resin a modified acrylic copolymer, for example, a block copolymer or a graft copolymer modified with polyester, urethane, epoxy or the like can also be used.
  • the polyurethane resin is not particularly limited as long as it has a urethane bond in the molecular structure, and is obtained from a polyol compound and an isocyanate compound.
  • the reaction product obtained is used as its basic skeleton, and a chain extender or the like can be used if necessary.
  • chain extender ethylene glycol, diethylene glycol, propylene glycol, trimethylolpropane, hydrazine, ethylenediamine, and ethylenetriamine can be used.
  • the easy-adhesion layer may contain other resins, for example, an epoxy resin, a silicone resin, a urea resin, a phenol resin, and the like, as long as the effects of the present invention are not impaired.
  • various additives such as antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, lubricants, pigments, dyes, organic or inorganic fine particles, fillers, antistatic agents, nucleating agents, etc. It may be blended.
  • particles or a cross-linking agent it is optional to add particles or a cross-linking agent to the easy-adhesion layer, but it is preferable because addition of these particles improves slipperiness, anti-blocking property, and adhesion to various paints. .
  • the particles arbitrarily added to the easy-adhesion layer are not particularly limited, but silica, colloidal silica, alumina, alumina sol, kaolin, talc, myrium, carbonic acid, and the like can be used.
  • the average particle size is not particularly limited, but may be 0.
  • the mixing ratio with respect to the total resin in the easy-adhesion layer is not particularly limited, but is preferably 0.05 to 8 parts by weight, more preferably 0.08 parts by weight in terms of solids weight ratio.
  • the crosslinking agent arbitrarily added to the easy-adhesion layer is not particularly limited, but may be a methylolated or alkylated urea-based, melamine-based, acrylamide-based, polyamide-based resin, epoxy compound, isocyanate compound, oxazoline.
  • Compounds, aziridine compounds, various silane coupling agents, various titanate coupling agents, and the like can be used.
  • the amount of addition is not particularly limited, but is preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight, and most preferably 2 to 10 parts by weight with respect to the total resin forming the easily adhesive layer. Department.
  • the resin for forming the above-mentioned easy-adhesion layer those dissolved and dispersed in an organic solvent or water can be used.
  • an organic solvent or water it is preferable to use in-line coating applied during the polyester film production process, and in that regard, it is preferable to use a resin dissolved or dispersed in water.
  • the thickness of the easily adhesive layer is not particularly limited, but is preferably 0.02 to 5 m, more preferably 0.03 to 2 m, and most preferably 0.05 to 0.5 m. If the thickness of the layer is too small, the adhesion to various paints and inks may be poor.
  • a preferred method for producing the biaxially oriented polyester film of the present invention is shown and described, but is not limited thereto.
  • the method of incorporating particles into the PPT constituting the film is not particularly limited, but a method of polymerizing a 1,3-propanediol slurry of particles with an acid component such as terephthalic acid, and a method of venting a water slurry of particles.
  • a method of mixing and kneading with a predetermined PPT pellet using a twin-screw kneading extruder examples thereof include a method of mixing and kneading with a predetermined PPT pellet using a twin-screw kneading extruder.
  • a method of preparing a high-concentration master by the above method and diluting it with a polymer substantially containing no particles at the time of forming a film is effective.
  • the polymer pellets are supplied to a melt extruder, extruded in a sheet form from a slit-shaped die, and cooled and solidified on a casting roll to form an unstretched film.
  • the polyester in a molten state is laminated using a plurality of extruders, a plurality of manifolds or a merging block.
  • this unstretched film is biaxially stretched and biaxially oriented.
  • a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used, but it is particularly effective to sequentially perform biaxial stretching in the longitudinal direction and the width direction.
  • heat treatment on a silicon roll at a processing temperature of 60 t: up to 150 and a processing time of 1 second to 20 seconds is necessary to obtain the heat shrinkage ratio and characteristic surface of the present invention. It is effective.
  • a method in which the stretching in the longitudinal direction is performed in three or more steps is effective for obtaining the heat shrinkage of the present invention.
  • the longitudinal stretching temperature is preferably 50 to 18 O: the total longitudinal stretching ratio is 2.5 to 6.0 times, and the longitudinal stretching speed is in the range of 5,000 to 50,000% Z. In order to obtain the characteristic surface of the present invention, it is particularly preferable to perform the stretching at a stretching speed of 20000% / min or less. As a method of stretching in the width direction, a method using tensile strength is preferable. Stretching temperature The stretching ratio in the width direction is 50 to 180, and the stretching ratio in the width direction may be larger than the longitudinal ratio in some cases, preferably 3.0 to 6.5 times, and the stretching speed in the width direction is preferably in the range of 1,000 to 20,000% Z. . Further, if necessary, longitudinal stretching and transverse stretching are performed again.
  • the stretching in the longitudinal direction is preferably 50 to 180 ° C
  • the stretching ratio is 1.1 to 2.0 times
  • the stretching in the width direction is preferably a method using a tenter.
  • the stretching is performed at a stretching ratio of 1.1 to 2.0.
  • the biaxially oriented film is heat-treated by toning.
  • the heat treatment temperature is from 120 to 250 t, preferably from 150 to 230, and the time is preferably from 0.5 to 60 seconds.
  • the heat treatment it is effective to lead to the intermediate cooling zone and gradually cool at an intermediate cooling temperature of 60 ° (: to 150 for 1 second to 60 seconds) to obtain the heat shrinkage of the present invention.
  • the reheating rate is less than 3%
  • the temperature is 60: to 130
  • the reheating treatment is performed in 0.5 to 60 seconds. It is effective for achieving both the heat shrinkage and the Young's modulus of the invention.
  • the method for measuring the characteristic values and the method for evaluating the effects of the present invention are as follows.
  • the polyester is removed from the film by plasma ashing to expose the particles.
  • the processing conditions are selected so that the polymer is ashed but the particles are not damaged as much as possible.
  • the particles are observed with a scanning electron microscope (SEM), and the particle images are processed with an image analyzer.
  • SEM scanning electron microscope
  • the magnification of the SEM is approximately 2000 to 10000 times, and the field of view for one measurement is appropriately selected from approximately 10 to 50 m on one side. Change the observation point and obtain the volume average diameter d by the following formula from the volume fraction with the particle diameter when the number of particles is 5000 or more.
  • the particles are organic particles or the like and are significantly damaged by the plasma low-temperature incineration method
  • the following method may be used.
  • the thickness of the TEM section was about 100 nm, and measurement was performed at 500 or more fields at different locations. The total number of protrusions and the number of protrusions due to particles were obtained, and the ratio of protrusions due to crystal was determined.
  • the bottom of the target projection is etched in the thickness direction of the film with a suitable solvent. If the substance that forms the projection remains as an insoluble substance, externally added particles or internal precipitation (I). When there is substantially no insoluble matter remaining, it can be assumed that the origin of the projections is fine crystals (11).
  • a suitable solvent for example, a mixed solvent of phenol and carbon tetrachloride (weight ratio: 64) is preferably used. With this method, the frequency of I and the frequency of II when the field of view is lmm 2 can be obtained, and the value of II / (I + II) can be used as the ratio of the crystal-induced projections. Note that I + II was defined as the number X of protrusions.
  • the composition was analyzed by the microscopic FT-IR method (Fourier transform microscopic infrared spectroscopy), and the ratio was determined from the ratio of the peak caused by the carboel group of the polyester to the peak caused by the substance other than the polyester.
  • FT-IR method Full transform microscopic infrared spectroscopy
  • a calibration curve was prepared with a sample whose weight ratio was known in advance, and the polyester ratio to the total amount of the polyester and other substances was determined.
  • An X-ray microanalyzer was also used as needed. When a solvent capable of dissolving the polyester but not dissolving the particles was available, the polyester was dissolved, the particles were centrifuged from the polyester, and the weight percentage of the particles was determined.
  • the particle content of the surface layer of the film was determined as follows. Using a film obtained by slitting the film into a tape with a width of 1/2 inch, press one edge vertically against the surface on the side where polyester A is laminated, and then push it 0.5 mm further and run it for 20 cm. Tension: 500 g, running speed: 6.7 cs). At this time, the particle content of the shavings on the film surface adhering to the tip of the single blade was determined according to the above-described method for measuring the particle content.
  • the larger value in either the longitudinal direction or the width direction was defined as the heat shrinkage of the film.
  • the surface roughness Ra, the 10-point average roughness Rz, and the protrusion spacing Sm were measured using a high-precision thin film step measuring device ET-10 manufactured by Kosaka Laboratory.
  • the conditions were as follows, and the value was taken as the average value of 20 measurements performed by scanning in the film width direction.
  • Ra, Rz, Sm, etc. are, for example, those shown in Jiro Nara, "Measurement and Evaluation of Surface Roughness” (General Technology Center, 1983).
  • the film cross-section was observed by ultramicrotomy (Ru_ ⁇ 4 stain), captures the interface, the laminate thickness Ask for.
  • the magnification is usually selected according to the thickness of the laminate to be determined, and is not particularly limited, but is suitably 10,000 to 100,000.
  • the depth distribution of particle concentration using a secondary ion mass spectrometer, X-ray photoelectron spectroscopy, infrared spectroscopy, or a confocal microscope. After obtaining the maximum value in the depth direction based on the surface, the depth at which the maximum value is 1 Z2 is defined as the lamination thickness.
  • the temperature of this sample is raised at 10 / min, and the glass transition point Tg is detected.
  • the temperature is further increased, and the crystallization exothermic peak temperature from the glass state is the cold crystallization temperature Tc c, the endothermic peak temperature based on crystal melting is the melting temperature Tm, and the crystallization exothermic peak temperature when the temperature is lowered is similarly decreased.
  • the crystallization temperature was Tmc.
  • the difference between Tec and Tg (Tec-Tg) is defined as the crystallization index ATcg.
  • Its number is 8 less than 0 mm 2, and the size of the low molecular weight body, Yu the smaller than 1 mm on the surface image, less than 80 / mm 2 or more on a 00 amino ZMM 2, In addition, those with a size smaller than 1.5 marauders were considered good, and those with 100 or more Zmm 2 or more and larger than 1.5 mm were judged bad.
  • the film is slit to 1/2 inch width and run on guide pins (surface roughness Ra 100 nm) using a tape running tester (running speed: 500 mZ, running frequency: once, winding) Angle 60 °, running tension 30g).
  • a tape running tester running speed: 500 mZ, running frequency: once, winding
  • Angle 60 °, running tension 30g the scratches in the film were observed with a microscope, and the scratches with a width of 2.5 m or more per tape width were judged to be excellent, less than 3 scratches per tape width, good for 3 to less than 10 scratches, and bad for 10 or more scratches.
  • FLASH DRY FD-OL black ink manufactured by Toyo Ink Mfg. Co., Ltd. was used as an ultraviolet-curable ink, and applied to a thickness of 2 / im by a roll coating method. After that, an ultraviolet lamp (80 WZcm, 5 seconds) was irradiated to cure the ultraviolet curable ink.
  • Adhesion evaluation was performed by inserting 100 lmm 2 cross cuts into the ink cured film, attaching cellophane tape on it, pressing with a rubber roller (3 reciprocations with a load of 19.6 N), and then 90 ° The ink was peeled in the direction, and the ink cured film was evaluated on a four-point scale ( ⁇ : 100, ⁇ : 80 to 99, ⁇ : 50 to 79, X: 0 to 49).
  • the haze value was measured using a fully automatic direct-reading haze computer HGM-2DP (for C light source) (manufactured by Suga Test Instruments Co., Ltd.), and the average value of the 10-point measurements was displayed.
  • HGM-2DP for C light source
  • T1 incident light
  • T2 total transmitted light
  • T3 diffused light of the device
  • T4 diffused transmitted light
  • the film to be evaluated was fixed to a metal frame with a binder clip, and left at 801: for 3 days using a hot air oven.
  • the haze value of this film was measured by the method (1) described above.
  • the film of the present invention was provided with a 200 nm thick deposited layer of cobalt-nickel alloy (Ni 20% by weight) in the presence of a small amount of oxygen using a continuous vacuum deposition apparatus. Further, a carbon protective film was formed on the surface of the vapor-deposited layer by a known means, and slit to a width of 8 mm to prepare a pancake. Next, a 200-m length of this pancake was incorporated into a cassette to form a cassette tape.
  • cobalt-nickel alloy Ni 20% by weight
  • CZN of 7 MHz ⁇ 1 MHz was measured using a commercially available VTR for Hi 8 (EV-BS3000 manufactured by SONY).
  • T is the output tension.
  • PPT was produced by transesterification and polycondensation from dimethyl terephthalate and 1,3-propanediol.
  • the PPT pellets were dried under reduced pressure (3 Torr) at 120 ° C for 8 hours, and the PET pellets were dried under reduced pressure (3 Torr) at 180 ° C for 8 hours.
  • PET polymers containing 0.1% by weight of m-diameter calcium carbonate particles were supplied to extruder 1 and extruder 2, respectively, and melted at 265 and 280, respectively. After filtering these polymers with high precision, three layers were laminated at the rectangular junction (A / B / A).
  • the ratio of die slit gap / unstretched film thickness was set to 10. Also, adjust the discharge rate of each extruder. The total thickness of the knots and the thickness of the A layer were adjusted.
  • This unstretched film was stretched 3.5 times in the longitudinal direction at a temperature of 96 ° C. This stretching was performed in four stages with a difference in peripheral speed between two sets of rolls. This uniaxially stretched film was stretched 3.6 times in the width direction at 10 Ot: using a tenter. This film was heat-treated under constant length at 220 for 3 seconds to obtain a biaxially oriented film having a total thickness of 6.3 am and an A layer thickness of 0.3. The properties of this biaxially oriented polyester film are shown in Table 1, and the abrasion resistance was good.
  • a biaxially oriented polyester film having a laminated thickness of 1.0 Oim was obtained as PET containing 0.8% by weight of divinylpentene particles.
  • the properties of this biaxially oriented polyester film were as shown in Table 1, and the abrasion resistance was good. .
  • a biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the thickness of the layer A of the PPT polymer was changed to 0.05 m.
  • the properties of the biaxially oriented polyester film were as shown in Table 1, and the abrasion resistance was good.
  • Example 2 Using the raw materials of Example 1, a biaxially oriented polyester film was obtained by changing the film configuration, lamination thickness, stretching conditions, and the like. The properties of the biaxially oriented polyester film were as shown in Table 1, and the abrasion resistance was poor.
  • the biaxially oriented polyester film was obtained by changing the lamination thickness, stretching conditions, and the like as the polymer B used in Example 1 for the A layer and the substantially particle-free PET polymer for the B layer.
  • the properties of the biaxially oriented laminated polyester film were as shown in Table 1, and the abrasion resistance was poor.
  • Example 1 A single-layer biaxially oriented polyester film having a film thickness of 10 m was obtained using Polymer B.
  • the properties of the biaxially oriented polyester film were as shown in Table 1, and the abrasion resistance was poor. table 1
  • PPT was produced by transesterification and polycondensation from dimethyl terephthalate and 13 propanediol.
  • This water slurry was mixed and kneaded into a PPT pellet using a vent-type twin-screw extruder.
  • this particle-containing PPT pellet and substantially no particle-containing PPT polymer pellet are mixed, dried under reduced pressure (3 Torr) at 120 for 8 hours, and then polymer A: 0.17 m diameter aluminum silicate particles PPT polymer containing 0.2% by weight, polymer B: 0.8 m diameter calcium carbonate particles PET polymer containing 0.1% by weight was supplied to extruder 1 and extruder 2, respectively, and melted at 260 and 280. After high-precision filtration of these polymers, two layers were laminated at the rectangular junction (A / B).
  • This unstretched film was stretched 3.5 times in the longitudinal direction at a temperature of 93 ° C. This stretching was performed in three stages with a difference in peripheral speed between two sets of rolls. This uniaxially stretched film was stretched 4.8 times in the width direction at 95 by using a tensioner. This film is heat-treated under constant length at 220 ° C for 3 seconds, and further processed at 120 ° C for 7 seconds in the intermediate cooling zone, and biaxially oriented to ll / m in total thickness and 0.3 in A layer thickness. A polyester film was obtained. The properties of the biaxially oriented polyester film are as shown in Table 2, and the abrasion resistance and oligomer deterrence were good.
  • Example 4 In the same manner as in Example 4, a biaxially oriented polyester film was obtained in which the type, the particle size, the content and the thickness of the particles were changed.
  • the polymer C used for the C layer in Example 6 was the particle-free PPT polymer used in Example 1, and the lamination thickness was 1 wm.
  • Table 2 the film properties of Examples 5 and 6 are good in both abrasion resistance and oligomer deterrence, but it is understood that the films of Comparative Examples 4 and 5 are not good.
  • the polymer A the PPT polymer of Example 1 was used, and as the polymer B, as a PET polymer containing 0.1% by weight of crosslinked divinylbenzene particles having an average particle size of 0.1 to 0.1 m, the particle size, content, lamination thickness, By changing the stretching conditions and the like, a biaxially oriented polyester film having a total thickness of 7 m was obtained. As shown in Table 2, it can be seen that the biaxially oriented polyester film in the range of the present invention has good abrasion resistance and oligomer deterrence.
  • PET pellets 1 (IV 0.72) polymerized by a conventional method were dried under reduced pressure (3 Torr) at 185 ° C for 3 hours.
  • PPT 2 pellets (IV 0.95) produced by transesterification and polycondensation from 1,3-propanediol with dimethyl terephthalate were dried under reduced pressure (3 ⁇ 0 ⁇ ) at 14 Ot: for 3 hours.
  • inert particles were added to PET (average particle size: colloidal silica particles having an average particle size of 0.25, particle content of 0.5% by weight was added at the time of polymerization, and IV 0.65). It was dried under reduced pressure (3 Torr) at 185 for 3 hours.
  • PET pellet 1 After drying the pellets 1 and 2 above, 19.7% by weight of PET pellet 1 containing no particles, 80% by weight of PPT pellet 2 and 0.3% of PET pellet 3 containing particles were added. The mixture was mixed at a rate of 2% by weight to obtain a polyester A, and a PET pellet 1 as a polyester B was supplied to each of two extruders, and the polyester A was melted at 265 ° C. by the extruder 1, Polyester B is melted by extruder 2 at 29 Ot :, laminated and laminated by a rectangular confluence block (feed block) for three layers, and cast on a casting drum at a surface temperature of 22 using the electrostatic application casting method.
  • Example 11 was stretched 4.5 times in the longitudinal direction in four or more steps in the longitudinal direction, and stretched 4.0 times in the lateral direction.
  • Example 12 was 4.8 times in the longitudinal direction in four or more steps. Stretch 4.0 times in the transverse direction to make biaxially oriented laminated poly An ester film was obtained.
  • Polyester A was prepared by mixing PET pellet 1, PPT pellet 2, and particle-containing PET pellet 3 in the proportions shown in Table 3, and then, in the same manner as in Example 11, By changing the stretching temperature and the stretching ratio, a biaxially oriented laminated film having a total thickness of 12 m (thickness on one side of layer A, l zm, Comparative Example 8 was 3.5 urn) was obtained.
  • Table 3 shows the results of evaluating the films prepared in Examples 10 to 12 and Comparative Examples 6 to 8 described above. It can be seen that all of the samples belonging to the scope of the present invention are superior to the comparative example in oligomer deterrence and dimensional stability.
  • PPT was polymerized by transesterification and polycondensation from dimethyl terephthalate and 1,3-propanediol. .
  • polymer A PPT polymer
  • polymer B substantially particle-free polyethylene terephthalate polymer was supplied to extruder 1 and extruder 2, respectively. It was fed and melted at 280. After high-precision filtration of these polymers, three layers were stacked at the rectangular junction (AZBZA).
  • This unstretched film was treated on a silicon roll at a heat treatment temperature of 85 ° C. for 10 seconds, and stretched 3.3 times in the longitudinal direction at a stretching temperature of 93% at a stretching speed of 1000%. This stretching was performed in three stages with a difference in peripheral speed between two sets of rolls. This uniaxially stretched film was stretched 3.5 times in the width direction at 96 ° C using a tensile strength plate. Furthermore, it was stretched 1.1 times in the transverse direction at 95. This film was heat-treated at a constant length of 220 at 220 ° C for 3 seconds, then treated in an intermediate cooling zone at 120 ° C for 7 seconds, and then re-heat-treated at 100 at a relaxation rate of 2% for 3 seconds. A biaxially oriented film having a thickness of 5 m / xm and an A layer thickness of 1.0 m was obtained. The properties of this biaxially oriented polyester film were as shown in Table 4, and the abrasion resistance was good. Table 3
  • composition of layer A (% by weight) Film composition Longitudinal stretching conditions Longitudinal heat shrinkage s 0.08E-S Rigoma Dimensional stability Preheating ⁇ Stretching Janog ⁇ E (80 C30 min) Deterrence
  • Example 1 0 19.7 80 Silica A / B / A 85/95 6.3 0.4 1 0.
  • Example 1 9.75 90 Silica A / B / A 80/85 5.6 0.36 0.088 Excellent is ⁇ '0. .25 1/10/1
  • Example 1 19.75 80 A / B / A 85/90 5.8 0.37 0.094 Good
  • Example 1 4 bottles rear Pf lentephthalate 90 0.31 30 Excellent (without adding particles) 95 9.0
  • Example 2 In the same manner as in Example 1, a biaxially oriented polyester film in which the layer thickness of PPT, the temperature for longitudinal stretching, and the like were changed was obtained. As shown in Table 4, it is found that the biaxially oriented polyester film within the range of the present invention has good abrasion resistance, but the other films have poor abrasion resistance.
  • PPT was produced by transesterification and polycondensation from dimethyl terephthalate and 1,3-propanediol.
  • polymer A PPT polymer
  • polymer B PET polymer containing 0.1% by weight of 0.8 m diameter calcium carbonate particles was extruded by an extruder 1, It was supplied to extruder 2 and melted at 260 and 280.
  • three layers were laminated at the rectangular junction (A. This was wound around a casting drum with a surface temperature of 20 ° C using the electrostatic application casting method, and cooled and solidified. At this time, the ratio of die slit gap / unstretched film thickness was set to 10.
  • the discharge amount of each extruder was adjusted to obtain the total thickness and the thickness of the A layer. I adjusted the length.
  • the unstretched film was stretched 3.5 times in the longitudinal direction at a preheating temperature of 85 and a stretching temperature of 90. This stretching was performed in three stages with a difference in peripheral speed between two sets of rolls. This uniaxially stretched film was stretched 3.6 times in the width direction at 100 ° C. by using a tensile machine. This film was heat-treated under constant length at 220 for 10 seconds to obtain a biaxially oriented film having a total thickness of 60 m and an A layer thickness of 1.0 m. The properties of this biaxially oriented polyester film were as shown in Table 5, and the abrasion resistance was good.
  • Substantially particle-free PET polymers polymerized in a conventional manner as thermoplastic resins B and C, and PPT polymers (IV0.93) substantially free of particles in polymer layer A, are combined with 180 and 120 After drying for 3 hours each, melt extrusion was performed at 260 ° C (polymer layer A), 280 (polymer layer 8) and 290 X: (polymer layer C) using three known extruders. Merge with rectangular consolidation blocks (feed blocks) for layers. Laminate them by using an electrostatic casting method, wind them around a metal casting drum with a surface temperature of 20, cool, solidify, and form a 5-layer BZAZCZAZB lamination structure. An unstretched film was obtained.
  • This unstretched film is treated on a silicon roll at a heat treatment temperature of 140 at a heat treatment temperature of 5 seconds. Between the rolls, the film is divided into at least four stages in the longitudinal direction at a stretching temperature of 95 t and a stretching speed of 10,000% / min. After stretching 8 times, using a well-known stainless steel plate, stretch the film in the width direction at a stretching temperature of 100, at a rate of 5000% / min at a magnification of 5.2, and at a constant length of 220 ° C for 3 seconds.
  • Heat treatment was performed, and thereafter, treatment was performed at 120 in the intermediate cooling zone for 7 seconds to obtain a biaxially oriented laminated film having a total thickness of 7 wm, a B layer thickness of 0.05 m, and a PPT laminated thickness of 0.5 m.
  • Example 19 a biaxially oriented laminated film having a total thickness of 7 ⁇ m and a 5-layer laminated structure was prepared by changing the laminated thickness of the A layer and the B layer and the stretching conditions.
  • thermoplastic resin C 0.05 wt% of calcium carbonate particles having an average particle diameter of 0.6 / im, colloidal silica having an average particle diameter of 0.3 / xm
  • a PET pellet was prepared and diluted with the non-particle PET polymer pellet used in Example 1 so that the particle concentration in the B layer was 0.3 wt%.
  • a biaxially oriented laminated film having a layer configuration was prepared. Table 6 Lamination structure B layer thickness C3 ⁇ 4 thickness T a / T b Surface roughness Heat shrinkage (X) TD Young's modulus Abrasion resistance
  • Example 21 B / A / C / A / B 0.8.0.03 5.3 3.04 25 0.4 0.4 15.0 Good Excellent
  • Example 22 B / A / C / A / B 0.8 0.03 5.3 0.04 24 0.616.5 Good Excellent
  • Example 23 B / A / C 0.5 0.5.05 4.5 0.5.1 28 0.46 5.6 Good Good
  • a PET polymer pellet containing 2 wt% of silicon particles with an average particle size of 0.8 m was prepared and diluted with particle-free polymer pellets so that the content in the C layer was 0.3 wt%.
  • the resulting polymer pellets are thermoplastic resin C
  • the layer A is the PPT (IV0.93) substantially free of particles used in Example 1
  • the layer ⁇ is an alumina-containing (0.3 wt%) polymer.
  • Three extruders were used as pellets to obtain BZA / C.Three extruders were used to form a three-layer structure with A layer thickness of 0.5 // m, B layer thickness of 0.05 mm, and total thickness of 5 / zm.
  • a biaxially oriented laminated film was prepared.
  • Table 6 shows properties of each film in Examples 19 to 23 described above. All of these films had excellent origami deterrence and abrasion resistance.
  • PET polymer, PPT polymer, and P ⁇ ⁇ ⁇ ET blend polymer (90:10) prepared by a conventional method were used.
  • ethylene glycol containing the particles or polyethylene terephthalate or polypropylene terephthalate polymerized by a conventional method using 1.3 propylene glycol was used.
  • Each raw material pellet was dried for 3 hours at a temperature suitable for each raw material at 120 to 180, and then melt-extruded using three known extruders at 260, 28 Ot :, 265 ". Then, a three-layer rectangular merging block (feed block) is merged and laminated so that the laminated structure shown in Table 7 is obtained, and the surface temperature is 2 O: on a metal casting drum using an electrostatic application casting method. And cooled and solidified to obtain an unstretched film.
  • the unstretched film is heat-treated at 85 ° C on a known silicone rubber roll, then divided into three or more stages in the longitudinal direction between the rolls at a stretching speed of 20000% / min and a stretching temperature of 3. After stretching eight times, the film was stretched 3.8 times at 100 in the width direction using a known stainless steel. Further, if necessary, the film was stretched again in the width direction, subjected to a heat treatment at 220 under a constant length for 3 seconds, guided to an intermediate cooling zone, and treated at 120 at 7 seconds. A biaxially oriented laminated film having the thickness shown in Table 7 was obtained.
  • the metal deposition layer was applied to the surface of the third layer.
  • a film having a preferable center line average roughness Ra and a projection interval Sm was obtained, and a film having excellent output characteristics and running characteristics was obtained.
  • the polyester films obtained in Comparative Examples 13 and 14 were inferior in output characteristics and running properties.
  • Polymer A PET containing 0.015% by weight of colloidal silica having an average particle size of 0.4 / m and 0.005% by weight of colloidal silica having an average particle size of 1.5 / zm
  • polymer B After sufficiently drying the PPT under vacuum, supply polymer A to extruder 1 and polymer B to extruder 2, melt at 280: and 260 ° C, respectively, filter these polymers with high precision, and combine them into a rectangle. It was melt extruded in a two-layer laminated configuration at the part. This was wrapped around a casting drum with a surface temperature of 22 using the electrostatic application casting method, and was cooled and solidified to produce an unstretched film.
  • the unstretched film was stretched 3.5 times in the machine direction at 95.
  • the PPT side of this film was subjected to a corona discharge treatment in air, and an easily adhesive layer forming coating liquid a was applied to the treated surface.
  • the coated uniaxially stretched film is guided into the preheating zone while holding it with clips, dried at 110 ° C, then continuously stretched 3.5 times in the width direction in the heating zone, and further heat-treated at 225.
  • the mixture was led to an intermediate cooling zone and treated at 120 at 7 seconds. Then, the intended easy-adhesive polyester film was obtained.
  • the thickness of the base PET film was 49.5 m
  • the thickness of the PPT layer was 0.5 im
  • the thickness of the easily adhesive layer was 0.15 m.
  • Easy adhesion layer forming coating liquid a Water-based coating liquid composed of a polyester resin (2 types) comprising the following acid component and glycol component and a crosslinking agent.
  • the mixture was mixed so as to have the solid content ratio described above, and diluted with water so as to have a solid content concentration of 5% by weight.
  • the biaxially oriented polyester film of the present invention has excellent abrasion resistance and oligomer deterrence, and is useful for magnetic recording media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

明細書 二軸配向ポリエステルフィルム 技術分野
本発明は二軸配向ポリエステルフィルムに関する。 背景技術
二軸配向ポリエステルフィルムとしては二軸配向積層ポリエステルフィルムが 知られている (例えば米国特許第 5069962号公報、 同第 5626942号 公報) 。 また、 二軸配向ポリプロピレンテレフ夕レートフィルムも知られている (例えば特開平 9一 1 75055号公報) 。
しかしながら、 上記従来の二軸配向ポリエステルフィルムでは磁気記録媒体と した場合の電磁変換特性が向上したが、 ポリマー表面の耐摩耗性が不十分なため に、 粒子が脱落し粉が発生する問題、 さらに磁気テープとした場合にその粉のた めに信号が欠落するといつた問題があった。 また、 さらなる高密度磁気記録媒体 とした場合に、 より粒子が脱落しにくい特性が求められるようになつてきており、 本発明はかかる課題を解決し、 特に耐摩耗性、 オリゴマ抑制に優れる二軸配向ポ リエステルフィルムを提供することを目的とする。 発明の開示
本発明の二軸配向ポリエステルフィルムは、 主としてポリプロピレンテレフ夕 レートからなるフィルム層を少なくとも 1層有するポリエステルフィルムであつ て、 その第 1の態様は 80 、 30分の熱収縮率が 0. 8%以下のものであり、 第 2の態様は少なくとも片面の表面粗さ R aが 5〜 120 nm、 1 0点平均粗さ R zZR a力 1 2以下、 突起間隔 Smが 1 5; m以下のものである。 発明を実施するための最良の形態
本発明において用いられるポリプロピレンテレフタレート (以下、 P PTとい う) は、 1, 3—プロパンジオールとテレフタル酸もしくはそのメチルエステル 誘導体等との重合によって得られたものであることが、 耐摩耗性やオリゴマの析 出を抑制する点で好ましい。 本発明の目的を阻害しない範囲内であれば、 2種以 上のポリマを混合してもよいし、 共重合ポリマを用いてもよい。
本発明の主として P PTからなるフィルム層とは、 該層中の P PT成分が 50 重量%以上のものである。
主として P PTからなるフィルム層 (以下、 A層ということがある) には耐摩 耗性を付与するために、 ゲイ酸アルミニウム、 炭酸カルシウム、 アルミナ、 シリ 力、 リン酸カルシウム、 酸化チタンなどの無機粒子や有機粒子等の粒子を含有し ていても良い。 このような粒子の平均粒径は、 0. 0 1〜2. 0 m, 好ましく は 0. 02〜 1. 5 zm、 さらに好ましくは 0. 02〜 1. である。 また その粒径の相対標準偏差は好ましくは 0. 5以下、 さ-らに好ましくは 0. 3以下、 最も好ましくは 0. 2以下である。 粒子含有量は、 0. 0 1〜3重量%、 好まし くは 0. 02〜2重量%、 さらに好ましくは 0. 05〜 1重量%である。 A層に は、 本発明の目的を阻害しない範囲内で酸化防止剤、 熱安定剤、 紫外線吸収剤な どの添加剤が通常添加される程度添加されていてもよい。
本発明の二軸配向ポリエステルフィルムは、 上記の主として P PTからなるフ ィルム層のみの単層フィルムであることができる。
本発明の二軸配向ポリエステルフィルムが 2層以上から構成される積層フィル ムである場合には、 その少なくとも 1層は上記の P PTから主として構成される フィルム層である。 他の層を構成するポリエステルフィルムは特に限定されない が、 ポリエチレンテレフ夕レート (以下、 PETという) やポリ (エチレン一 2, 6—ナフタレンジカルボキシレート) (PEN) 等が好ましく用いられる。 本発 明の目的を阻害しない範囲内で、 2種以上のポリマを混合してもよいし、 共重合 ポリマを用いてもよい。 このフィルム層にも A層の場合と同様の無機粒子や有機 粒子を含有させることができる。 また、 本発明の目的を阻害しない範囲内で酸化 防止剤、 熱安定剤、 紫外線吸収剤などの添加剤が通常添加される程度添加されて いてもよい。
本発明の第 1の態様の二軸配向ポリエステルフィルムは、 磁気記録媒体とした 場合の耐信号欠落の見地から 80^、 30分熱収縮率が 0. 8 %以下であること が必要である。 好ましくは 0. 6 %以下、 さらに好ましくは 0. 4%以下である。
A層の厚さは特に限定されないが、 耐摩耗性、 オリゴマ抑止性の点から 0. 0 1〜3. 0 zm、 好ましくは 0. 02〜 2. 0 ^m, さらに好ましくは 0. 03 ~ 1. 0 [ mである。
上記 A層厚さ tと A層に含有する粒子の平均粒径 dの関係は特に限定されない が、 0. 2 d t≤ 1 0 d、 好ましくは 0. 3 d≤ t≤ 5 d、 さらに好ましくは 0. 5 d≤ t≤3 dの場合に、 特に耐摩耗性が良好となる。 A層が 2層以上ある 場合、 例えば表裏の最表層の場合にはそれらがともにこの条件を満たすことが望 ましい。
本発明の第 2の態様の二軸配向ポリエステルフィルムは、 少なくとも片面の表 面粗さ R aが 5〜 120 nm、 1 0点平均粗さ R z -R aが 1 2以下、 突起間隔 Smが 1 5 /xm以下である。 ここで耐摩耗性の観点から、 表面粗さ R aは 5〜5 O nm特に 1 0〜30 n mの範囲とするのが好ましく、 1 0点平均粗さ R zZR aは 10以下、 突起間隔 Smは 12 m以下とするのが好ましい。 RzZR aの 下限は特に限定されないが 4以上が製造上実用的である。 Smの下限は特に限定 されないが製造上 3程度が実用的である。
第 2の態様の場合においても、 A層厚さおよび A層厚さ tと A層に含有する粒 子の平均粒径 dの関係は、 第 1の態様で述べたと同様の範囲のものとすることが 望ましい。
本発明には上記の第 1の態様と第 2の態様の要件を共に満たす態様も包含され る。 また、 第 1の態様および第 2の態様のいずれにおいても、 以下の要件を満た していることがより好ましい。
本発明の二軸配向ポリエステルフィルムは、 耐摩耗性、 オリゴマ抑止性の点か ら、 また、 本発明の表面形態を有効に形成するために、 少なくとも 2層以上の積 層構成とするのが好ましい。 最外層を構成するポリマーの結晶化パラメ一夕一△ Tc gは、 耐摩耗性、 寸法安定性の点から 60 未満、 さらには 50 未満、 特 に 4 Ot:未満とするのが好ましい。 結晶化パラメ一夕一 ΔΤ c gは昇温時の冷結 晶化温度とガラス転移温度との差で定義され、 この値が小さいほど、 ポリマーの 結晶化速度が速くなり、 80t:、 30分における熱収縮率を本発明の範囲内とす るのに効果的であり、 本発明の特徴面を得るのにも有効である。
本発明の二軸配向ポリエステルフィルムの A層表面に存在する突起数 (X) と A層に含有する粒子数 (Y) との比 X/Yは、 耐摩耗性、 走行性の点から通常 5 以上とする。 好ましくは 1 0以上であり、 より好ましくは 50以上である。 本発 明においては、 添加粒子によってフィルム表面に突起を形成してもよいし、 また、 粒子によらず、 A層ポリマーを結晶化させ、 A層中に微結晶を多数生成すること によってフィルム表面に突起が形成されてもよい。 その場合、 突起数 粒子数の 比は、 粒子数が少ないため原理的には極めて大きい値となることも考えられる力 およそ 1 00万程度が上限である。
本発明の二軸配向ポリエステルフィルムにあっては、 長手方向と幅方向のヤン グ率が共に 4. 5 G Pa以上、 特に 5 GP a以上であるのが好ましい。 長手方向と 幅方向のヤング率は、 同じ値でも、 異なった値でもいずれでも良い。 例えば、 磁 気記録媒体用に用いる場合、 ベースフィルムの弾性率が不足すると、 走行時の磁 気ヘッドやガイドピンから受ける張力のため、 磁気テープに伸びが生じ、 電磁変 換特性 (出力特性) に悪影響を与える。 長時間記録用磁気テープではベースフィ ルム薄膜化のため、 少なくとも一方向の弹性率を向上させておくことが望ましい。 さらに長手方向と幅方向のヤング率の比は、 0. 7〜 1. 5の範囲とするのが 好ましく、 より好ましくは 0. 75〜 1. 3、 特に好ましくは 0. 8〜 1. 2で ある。 この範囲を外れると、 特にへリカルスキャン方式の記録ヘッドを用いた磁 気テープでは、 ヘッド当たりが不均一となり、 電磁変換特性が低下する。
また、 長手方向の弾性率 E (GP a) と、 温度 80 の条件下に 30分間保持 したときの長手方向の熱収縮率 S (%) との関係式 [0. 08 E— S] が 0. 0 8以上、 さらには 0. 09以上、 特に 0. 1以上を満たすようにすると、 弾性率 をそれほど低下させずに熱寸法安定性を向上させることができるので望ましい。 また、 寸法安定性の点から P PT 60〜99. 9重量%と PET40〜0. 1 重量%のポリエステル組成物を主成分とするものであることが好ましく、 さらに は P PT80〜9 9. 5重量%と Ρ ΕΤ 20〜0. 5重量%、 特に Ρ Ρ Τ 90〜 99. 0重量%と?£丁 1 0〜 1. 0重量%からなるものを用いることが望まし レ^ この時の PETの固有粘度 (以下 I Vという) を 0. 6以上、 好ましくは 0.
65以上とすることは本発明の二軸配向フィルムの耐摩耗性、 寸法安定性、 表面 形態を得るのに有効である。
本発明の二軸配向ポリエステルフィルムのフィルム全厚みは特に限定されない が磁気ディスク用基材として用いる場合フィルム全厚みが 50〜1 00 m、 さ らには 50〜80 m、 特に 60〜80 mであると耐摩耗性が良好となる。 本発明の二軸配向積層フィルムの一方の表面層の表面粗さ R aおよび表面突起 間隔 Smに関しては、 上記の第 2の態様において述べたとおりであるが、 他方の 表面層に関しては、 表面粗さ R aを 9 nm以下、 好ましくは 6 nm以下、 表面突 間隔 Smを 1 5 m以下、 好ましくは 1 0 m以下とするのが望ましい。 両表 面層を上述の範囲内とすることによって、 磁気記録媒体、 特に、 デジタル記録方 式の磁気テープとしたときの走行性と出力特性が高いレベルで両立できる。
本発明の二軸配向積層ポリエステルフィルムにおいては、 熱可塑性樹脂 Cを主 成分とするポリマ層 (C層) の少なくとも片面に、 主として P PTからなるポリ マー層 (A層) を有し、 少なくとも一方の A層の表面にさらに熱可塑性樹脂 Bを 主成分とするポリマ層 (B層) を有する少なくとも 3層以上の積層構成 (CZA XB )であることが好ましい。 さらに好ましくは AZCZA/Bの 4層積層構成 であるが、 耐削れ性、 出力特性の点から、 B/AZCZA/Bの 5層積層構成が 最も好ましい。
本発明における熱可塑性樹脂 Cとしては、 特に限定されないがポリエステルが 好ましい。 ポリエステルとしては、 エチレンテレフ夕レート、 エチレンひ、 β - ビス (2—クロルフエノキシ) ェ夕ン一 4, 4 '-ジカルボキシレ一 卜、 エチレン 2, 6一ナフタレート単位から選ばれた少なくとも一種の構造単位を主要構成成分と するものが挙げられるが、 優れた機械強度、 寸法安定性の点から、 エチレンテレ フタレートゃエチレン 2, 6一ナフ夕レートを主要構成成分とするポリエステル が好ましい。 この中でも特に好ましくのは、 主として Ρ ΡΤからなるポリマ層 ( Α) との積層フィルムの製膜性の点からエチレンテレフ夕レートを主要構成成分 とするポリエステルである。 なお、 本発明の目的を阻害しない範囲内で、 2種以 上のポリエステルを混合してもよいし、 共重合ポリマを用いてもよい。 さらに、 リサイクルポリマを用いることも可能である。 この場合のリサイクルポリマとは、 ポリエステルの末端カルボン酸が 5 5当量 / 1 0 6 g以上でポリマの溶液ヘイズが 2 0 %以下のものをいい、 粒子が含有されていてもいなくても構わない。
C層の厚さは各種用途によって異なり、 特に限定されないが、 全フィルム厚み の 5 0 %以上であることが機械強度の点で好ましい。 より好ましくは、 6 0 %以 上であり、 さらに好ましくは、 7 0 %以上である。
本発明における P P Tは前述のとおりのものであって、 公知の方法で重合され たものを用いることができ、 ポリマ層 (A ) は、 熱可塑性樹脂 Cを主成分とする ポリマ層 (C ) の少なくとも片面に設けられることが好ましい。 好ましくは、 両 面がポリマ層 (A ) であるとオリゴマ析出量が極めて少なく、 表面に微細な突起 を形成した二軸配向積層ポリエステルフィルムが得られ好ましい。
本発明におけるポリマ層 (A ) は、 ポリマーの I V,が 0 . 8以上、 より好まし くは 0 . 9以上の P P Tからなるものであることが望ましい。 I Vの上限は特に ないが、 均一薄膜積層の点から、 2 . 0以下程度とするのが通常である。 P P T の I Vを上記の範囲内とすることによって、 熱可塑性樹脂 Cを主成分とするポリ マ層 (C ) への薄膜積層が均一に行えると共に、 オリゴマ抑止効果や表面の削れ などのトラブルの解消に有効である。
本発明における熱可塑性樹脂 Bとしては、 特に限定されないが、 ポリエステル が好ましい。 ポリエステルとしては、 エチレンテレフタレート、 エチレンひ、 β 一ビス (2—クロルフエノキシ) ェタン _ 4, 4 ' -ジカルボキシレート、 エチレン 2 , 6—ナフ夕レー卜単位から選ばれた少なくとも一種の構造単位を主要構成成 分とするものが挙げられるが、 優れた機械強度、 寸法安定性の点から、 エチレン テレフタレ一卜やエチレン 2, 6—ナフ夕レートを主要構成成分とするポリエス テルが好ましい。 Ρ Ρ Τからなるポリマ層との積層フィルムの製膜性の点からェ チレンテレフタレートを主要構成成分とするポリエステルが特に好ましい。
ポリマ層 (Β ) は実質的に粒子を含有しないことが耐削れ性の点で好ましいが、 平均粒径が 0 . 6 m未満、 好ましくは 0 . 1 m以下の粒子であれば 0 . 5重 量%未満の範囲内で含有していてもよい。 かかる粒子としては、 特に限定されな いが、 耐摩耗性の点から、 ゲイ酸アルミニウム、 アルミナ、 シリカ等から選ばれ る粒子が好ましく例示される。 これらの粒子を複数併用して用いてもよい。
ポリマ層 (A) の厚み (T a) は、 1 未満であることが好ましく、 さらに 好ましくは、 0. 8 zm未満、 特に好ましくは、 0. 未満である。 ポリマ 層 (A) の厚みが、 かかる範囲を越えると、 二軸配向積層ポリエステルフィルム としたときの延伸性が悪化し、 延伸破れが発生することがあるので好ましくない。 また、 ポリマ層 (A) の厚み (T a) とポリマ層 (B) の厚み (Tb) との比 は、 下記の関係を満足することが望ましい。
0. 0 1≤Tb/T a< 1
さらに好ましくは、
0. 03≤T bXT a≤ 0. 5
であり、 特に好ましいのは、
0. 1≤T b/T a<0. 3
である。 ポリマ層の厚みの比をかかる範囲内とすることによって、 ポリマ層 (A) 表面の P PTの結晶に起因する表面突起を、 極薄膜であるポリマ層 (B) の表層 部に形成 (トレース) することができる。 ポリマ層の厚みの比がかかる範囲より も大きくなると、 ポリマ層 (A) の PPTの球晶に起因する突起が、 極薄膜であ るポリマ層 (B) の表面まで突起形成することができなくなるので、 摩擦係数が 大きくなり走行性ゃ耐削れ性が悪化する。
また、 ポリマ層の厚みの比がかかる範囲よりも小さいと、 ポリマ層 (B) が均 一に積層されず、 積層やぶれ (一部積層されていない) や積層斑となり、 耐削れ 性が悪化したり、 PPTの結晶による突起が表面に現れ、 製膜工程において、 カロ 熱ロール上を走行する時に粘着が起こり表面性が悪化したりする。 ポリマ層 (B) の積層厚みは、 上記範囲内であれば、 特に限定されないが、 走行性と耐削れ性、 オリゴマ抑止性の点から 0. 5 m以下が好ましい。 さらに、 積層フィルムの両 最外層がポリマ層 (B) である場合、 両最外層の厚みは同じでも、 異なっていて も構わないが、 該 B層の積層厚みを調節することによって、 B層の表面粗さを所 望の粗さにコントロールすることもできる。
ポリマ層 (B) の表面には、 微細な突起が多数形成されていることが好ましい。 好ましくは、 B層表面の表面突起が、 ポリマ層 (A) の P PTの結晶に起因する 突起であることが耐削れ性の点で好ましい。 粒子を添加する場合はボイ ド発生の 問題が起こるが、 本発明のフィルムは、 A層のポリマ自身による結晶に起因する 突起であるので、 ボイ ド発生が著しく低減するため、 破壊されにくい表面突起を 形成することができるので、 耐摩耗性が向上し、 その結果削れ粉やドロップァゥ ト等も良化する。
本発明の二軸配向ポリエステルフィルムは、 例えば磁気記録媒体用、 包装用、 プリペイドカード等のカード用等、 多くの用途に適用できる。 特に高出力が要求 されるデジタルビデオテープ用二軸配向ポリエステルフィルムとしても好ましく 用いることができる。 また、 コンピュータ用等のデータストレージ用にも好まし く用いることができる。
本発明の二軸配向積層ポリエステルフィルムの少なくとも片面には易接着層を 設けることができる。 易接着層を構成する樹脂としては、 特に限定されないが、 P P Tを主たる構成成分とする層との密着性から、 ポリエステル樹脂、 アクリル 樹脂、 ポリウレ夕ン樹脂等を好ましく用いることができる。
ここにポリエステル樹脂は、 主鎖あるいは側鎖にエステル結合を有するもので あり、 このようなポリエステル樹脂は、 酸成分とグリコール成分から重縮合して 得ることができるものである。
ポリエステル樹脂を塗液として用いる場合、 ポリエステル樹脂の各種塗料ゃィ ンキとの接着性を向上させるため、 あるいはポリエステル樹脂の水溶性化を容易 にするため、 スルホン酸塩基を含む化合物やカルボン酸塩基を含む化合物を共重 合することが好ましい。
また、 ポリエステル樹脂として、 変性ポリエステル共重合体、 例えば、 ァクリ ル、 ウレタン、 エポキシなどで変性したブロック共重合体、 グラフト共重合体な どを用いることも可能である。
また、 アクリル榭脂として、 変性アクリル共重合体、 例えば、 ポリエステル、 ウレタン、 エポキシなどで変性したブロック共重合体、 グラフ卜共重合体などを 用いることもできる。
ポリウレ夕ン榭脂としては、 分子構造中にウレタン結合を有するものであれば 特に限定されるものではなく、 ポリオール化合物とイソシァネー卜化合物より得 られる反応生成物をその基本骨格とするものであり、 必要に応じて鎖延長剤など を用いることができる。
鎖延長剤としては、 エチレングリコール、 ジエチレングリコール、 プロピレン グリコール、 トリメチロールプロパン、 ヒドラジン、 エチレンジァミン、 ジェチ レントリアミンなどを用いることができる。
易接着層には、 本発明の効果を損なわれない範囲内で、 他の樹脂、 例えば、 ェ ポキシ樹脂、 シリコーン樹脂、 尿素樹脂、 フエノール樹脂などが配合されていて もよい。 さらに、 各種の添加剤、 例えば、 酸化防止剤、 耐熱安定剤、 耐候安定剤、 紫外線吸収剤、 易滑剤、 顔料、 染料、 有機または無機の微粒子、 充填剤、 帯電防 止剤、 核剤などが配合されていてもよい。
このように易接着層に粒子や架橋剤を添加することは任意であるが、 これらの 添加によって易滑性ゃ耐ブロッキング性、 および各種塗料ゃィンキとの接着性が 向上するので、 好適である。
易接着層に任意に添加される粒子としては、 特に限定されないが、 シリカ、 コ ロイダルシリカ、 アルミナ、 アルミナゾル、 カオリン、 タルク、 マイ力、 炭酸力 ルシゥムなどを用いることができる。 その平均粒径は、 特に限定されないが、 0 .
0 1〜 5 z mが好ましく、 より好ましくは 0 . 0 5〜 3 / m、 最も好ましくは 0 .
0 8〜 2 ; mである。 また、 易接着層中の全樹脂に対する混合比は、 特に限定さ れないが、 固形分重量比で 0 . 0 5〜 8重量部が好ましく、 より好ましくは 0 .
1〜 3重量部である。
易接着層に任意に添加される架橋剤としては、 特に限定されないが、 メチロー ル化あるいはアルキロ一ル化した尿素系、 メラミン系、 アクリルアミド系、 ポリ アミ ド系樹脂、 エポキシ化合物、 イソシァネート化合物、 ォキサゾリン系化合物、 アジリジン化合物、 各種シランカップリング剤、 各種チタネート系カップリング 剤などを用いることができる。 その添加量は、 特に限定されないが、 易接着層を 形成する全樹脂に対し、 0 . 5〜 2 0重量部が好ましく、 より好ましくは 1〜 1 5重量部、 最も好ましくは 2〜 1 0重量部である。
上記の易接着層を形成する榭脂は、 有機溶媒あるいは水に溶解、 分散させたも のを使用し得るが、 特に、 本易接着性ポリエステルフィルムを得る上で、 経済性、 均一性、 基材との接着性などを考慮すると、 ポリエステルフィルムの製造工程内 で塗布するインラインコーティングによるのが好ましく、 その点において水に溶 解あるいは分散させた樹脂を用いるのが好ましい。
また、 易接着層の厚みは、 特に限定されないが、 好ましくは 0. 02〜5 m、 より好ましくは 0. 03〜2 m、 最も好ましくは 0. 05〜0. 5 mである。 該層の厚みが薄すぎると、 各種塗料やインキとの接着性が不良となる場合がある。 次に本発明の二軸配向ポリエステルフィルムの好ましい製造方法を示し説明す るが、 これに限定されるものではない。
まず、 フィルムを構成する P PTに粒子を含有せしめる方法としては、 特に限 定されないが、 粒子の 1, 3—プロパンジォ一ルスラリーとテレフタル酸等の酸 成分を重合させる方法、 粒子の水スラリーをベント式 2軸混練押出機を用いて、 所定の P PTペレツ卜と混合し練り込む方法等が例示される。
粒子の含有量を調節する方法としては、 上記方法で高濃度マスターを作ってお き、 それを製膜時に粒子を実質的に含有しないポリマで希釈して調節する方法が 有効である。
次に、 ポリマペレットを乾燥したのち、 溶融押出機に供給し、 スリット状のダ ィからシ—ト状に押出し、 キャスティングロール上で冷却固化させて未延伸フィ ルムを作る。 この時、 複数の押出し機、 複数のマ二ホールドまたは合流ブロック を用いて溶融状態のポリエステルを積層する。
次にこの未延伸フィルムを二軸延伸し、 二軸配向させる。 延伸方法としては、 遂次ニ軸延伸法または同時二軸延伸法を用いることができるが、 長手方向、 幅方 向の順に逐次二軸延伸を行なうのが特に有効である。 また、 長手方向の延伸の直 前に、 シリコンロール上で処理温度 60t:〜 1 50でで処理時間 1秒〜 20秒熱 処理を施すことは本発明の熱収縮率や特徴面を得るのに効果的である。 長手方向 の延伸は 3段階以上に分けて行う方法は、 本発明の熱収縮率を得るのに効果的で ある。 縦延伸温度 50〜1 8 O :、 総縦延侔倍率 2. 5〜6. 0倍、 縦延伸速度 5, 000〜 50, 000 %Z分の範囲で行なうのが好ましく例示される。 本発明 の特徴面を得るためには、 特に延伸速度を 20000 % /分以下で行うことが好 ましい。 幅方向の延伸方法としてはテン夕一を用いる方法が好ましく、 延伸温度 50〜 1 80で、 幅方向延伸倍率は場合により縦倍率より大きく 3. 0〜6. 5 倍、 幅方向の延伸速度 1, 000〜 20, 000 %Z分の範囲で行なうのが好まし い。 さらに必要に応じて、 再縦延伸、 再横延伸を行なう。 その場合の延侔条件と しては長手方向の延伸は 50〜 1 80°C、 延伸倍率 1. 1〜2. 0倍、 幅方向の 延伸方法としてはテンターを用いる方法が好ましく、 延伸温度 50〜 1 80で、 幅方向延伸倍率は 1. 1〜2. 0で行なうのが好ましい。
次にこの二軸配向フィルムを定張化で熱処理する。 この場合の熱処理温度は 1 20〜 250 t:、 特に 1 50〜 230 で時間は 0. 5〜6 0秒の範囲が好適であ る。 さらに、 熱処理後、 中間冷却ゾーンに導き、 中間冷却温度 60° (:〜 1 50 で、 1秒から 60秒間徐冷することは、 本発明の熱収縮率を得るのに有効である。 長手方向、 幅方向のいずれかを再度延伸した場合においては、 中間冷却後、 リラ ックス率 3 %未満、 温度として 60 :〜 1 30 で時間は0. 5〜60秒で再熱 処理を行うことが本発明の熱収縮率とヤング率を両立するのに有効である。
[物性の測定方法ならびに効果の評価方法]
本発明の特性値の測定方法並びに効果の評価方法は次のとおりである。
(1) 粒子の平均粒径、 粒子数 (Y)
フィルムからポリエステルをプラズマ灰化処理法で除去し、 粒子を露出させる。 処理条件はポリマは灰化されるが粒子は極力ダメージを受けない条件を選択する。 その粒子を走査型電子顕微鏡 (S EM) で観察し、 粒子画像をイメージアナライ ザ一で処理する。 S EMの倍率はおよそ 2000〜 1 0000倍、 また 1回の測 定での視野は一辺がおよそ 1 0〜50 mから適宜選択する。 観察箇所を変えて 粒子数 5000個以上で、 粒径との体積分率から、 次式で体積平均径 dを得る。
d =∑ d i · N v i
ここで d iは粒径、 N v iはその体積分率である。
粒子が有機粒子等で、 プラズマ低温灰化処理法で大幅にダメージを受ける場合 には、 以下の方法を用いてもよい。
フィルム断面を透過型電子顕微鏡を用い、 3000〜 1 00000倍で観察す る。 TEMの切片厚さは約 1 00 nmとし、 場所を変えて 500視野以上測定し、 上記の式から体積平均径 dを求める。 (2) 突起数 (X) 、 結晶起因の突起の割合
フィルム断面を透過型電子顕微鏡を用い、 30 00〜 200000倍で観察す る。 TEMの切片厚さは約 100 nmとし、 場所を変えて 500視野以上測定し 全突起数と粒子起因による突起数を求めて結晶起因の突起の割合とした。
また、 対象となる突起の下をフィルム厚さ方向に適当な溶媒でエッチングして いき、 その突起を形成する起因物が不溶物として残存する場合は、 外部から添加 された粒子、 あるいは、 内部析出した粒子とする ( I ) 。 不溶物として残存する ものが実質的になかった場合は、 その突起を形成する起因物は微細結晶であると 推定できる ( 1 1) 。 上記の溶媒としては、 例えば、 フエノール 四塩化炭素 ( 重量比: 6 4) の混合溶媒などが好ましく用いられる。 この方法で視野を lm m2とした時の Iの頻度、 I Iの頻度を求め、 I I / ( I + I I ) の値を結晶起因 の突起の割合として用いることもできる。 なお、 I + Ί Iを突起数 Xとした。
(3) 粒子の含有量
顕微 FT - I R法 (フーリエ変換顕微赤外分光法) で組成分析を行い、 ポリエ ステルのカルボエル基に起因するピークと、 ポリエステル以外の物質に起因する ピークの比から求めた。 なお、 ピーク高さ比を重量比に換算するために、 あらか じめ重量比既知のサンプルで検量線を作成してポリエステルとそれ以外の物質の 合計量に対するポリエステル比率を求めた。 また、 必要に応じて X線マイクロア ナライザ一を併用した。 また、 ポリエステルは溶解し粒子は溶解させない溶媒が 選べる場合は、 ポリエステルを溶解し、 粒子をポリエステルから遠心分離し、 粒 子の重量百分率を求めた。
また、 フィルムの表層部分の粒子含有量は次のようにして求めた。 フィルムを 幅 1/2ィンチにテープ状にスリッ卜したものを用い、 ポリエステル Aが積層されて いる側の表面に片刃を垂直に押しあて、 さらに 0. 5mm押し込んだ状態で 20 cm走行させる (走行張力: 500 g、 走行速度: 6. 7 c 秒) 。 このとき 片刃の先に付着したフィルム表面の削れ物の粒子含有量を上記粒子含有量の測定 法に従って求めた。
(4) 熱収縮率
長さ 1 5 cm、 幅 1 c mのフィルムの端を固定せず、 長手方向、 幅方向それぞ れの 80 :、 30分の寸法変化を測定した。 寸法変化が少量でその定量化のため に 0. 1 %以下の精度で求める場合、 万能投影機で拡大して測定する。
なお、 長手方向、 幅方向いずれか大きい方の値をフィルムの熱収縮率とした。
(5) 表面粗さ R a、 10点平均粗さ1^ 2、 突起間隔 Sm
小坂研究所製の高精度薄膜段差測定器 ET— 1 0を用いて、 表面粗さ R a、 1 0点平均粗さ R z、 突起間隔 Smを測定した。 条件は下記のとおりであり、 フィ ルム幅方向に走査して 20回測定つを行った平均値をもって値とした。
•触針先端半径: 0. 5
•触針荷重 : 5mg
•測定長 : 1mm
•力ットオフ値: 0. 08 mm
なお、 R a、 R z、 Smなどの定義は、 たとえば、 奈良治郎著 「表面粗さの測定 •評価法」 (総合技術センター、 1 983) に示されているものである。
(6) フィルム積層厚み
透過型電子顕微鏡 (日立製 H_ 600型) を用いて、 加速電圧 1 00 k Vで、 フィルム断面を、 超薄切片法 (Ru〇4染色) で観察し、 その界面をとらえ、 その 積層厚さを求める。 倍率は、 判定したい積層厚さによって選ぶことが通常であり、 特に限定されないが、 1万〜 1 0万倍が適当である。
または、 2次イオン質量分析装置、 X線光電子分光法、 赤外分光法、 あるいは コンフォーカル顕微鏡などで粒子濃度の深さ分布を測定する。 表面を基準とし、 深さ方向で極大値を得た後、 その極大値の 1 Z2となる深さを積層厚みと定義す る。
(7) 結晶化パラメ一夕 AT c g
フィルムを幅 1/2インチにテープ状にスリッ卜したものを用い、 ポリエステ ル Aが積層されている側の表面に片刃を垂直に押しあて、 さらに 0. 5 mm押し 込んだ状態で 20 cm走行させる (走行張力: 5 00 g、 走行速度: 6. 7 cm 秒) 。 このとき片刃の先に付着したフィルム表面の削れ物を 1 Omg集めて試 料とした。 1回の走行で削れ物が 1 Omgに満たない場合は別のフィルムを用い て同じ操作を行い、 試料を 1 Omg集めた。 DS C (示差走査熱量計) を用いて測定した。 試料 1 Omgを DS C装置にセ ットし、 30 O :の温度で 5分間溶融した後、 液体窒素中で急冷する。 この試料 を 10 /分で昇温し、 ガラス転移点 Tgを検知する。 さらに昇温を続け、 ガラ ス状態からの結晶化発熱ピーク温度をもって冷結晶化温度 Tc c、 結晶融解に基 づく吸熱ピーク温度を融解温度 Tm、 同じように降温時の結晶化発熱ピーク温度 を降温結晶化温度 Tmcとした。 T e cと Tgの差 (Te c一 Tg) を結晶化指 数 ATc gと定義する。
(8) オリゴマ抑止性
1 50 で 30分、 オーブン中に放置し、 低分子量体を強制的にフィルム表面 に析出させ、 表面をアルミ蒸着して微分干渉顕微鏡の総合倍率 400倍の写真で、 25視野観察する。 各視野での低分子量体の個数を数え、 その総数を表面オリゴ マ析出個数 (個 Zmm2) とした。 その個数が 8 0個 mm2未満であり、 かつ、 低分子量体の大きさが、 表面写真上で 1 mmより小さいものを優、 80個/ mm2以 上 1 00個 Zmm2未満であり、 かつ、 大きさが 1. 5匪より小さいものを良、 個 数が 1 00個 Zmm2以上満か、 大きさが 1. 5 mmより大きいものを不良とした。
(9) 耐摩耗性
フィルムを 1/2インチ幅にスリットしたものをテープ走行性試験機を使用し てガイドピン (表面粗度 R a 1 00 nm) 上を走行させる (走行速度 500 mZ 分、 走行回数 1回、 巻き付け角 60 ° 、 走行張力 30 g) 。 この時フィルムに入 つた傷を顕微鏡で観察し幅 2. 5 m以上の傷がテープ幅あたり 3本未満は優、 3〜 1 0本未満は良、 1 0本以上は不良と判定した。
また、 フィルム全厚みが 30 m以上の場合は、 走行速度 2m/分、 巻き付け 角 90° 、 走行張力 200 gとして上記と同様、 テープ走行性試験機を使用して ガイ ドピン (表面粗度 R a 1 00 nm) 上を走行させ、 同様の判定で評価した。
(1 0) 弾性率
J I S K- 7 1 27に規定された方法にしたがって、 東洋測器製の引張試験 機を用いて、 25°C、 65 %RHにて測定した。 サンプルは測定方向に幅 1 0m m、 長さ 20 Ommの短冊状に切り出し、 初期引張チャック間距離は 1 00 mm とし、 引張速度は 30 OmmZ分とした。 ( 1 1) 接着性
紫外線硬化型インキとして FLASH DRY FD— OL墨 (東洋インキ製 造㈱製) を用い、 ロールコート法で 2 /im厚みに塗布した。 その後、 紫外線ラン プ (80WZcm、 5秒間) を照射して紫外線硬化型インキを硬化させた。
接着性評価は、 インキ硬化膜に lmm2のクロスカットを 1 00個入れ、 セロハ ンテープをその上に張り付け、 ゴムローラ一を用いて押しつけた (荷重 1 9. 6 Nで 3往復) 後、 90度方向に剥離し、 インキ硬化膜の残存した個数により、 4 段階評価 (◎ : 1 00、 〇: 80〜99、 Δ: 50〜79、 X : 0〜49) とし た。
(12) ヘイズ値
全自動直読ヘーズコンピューター HGM— 2 D P (C光源用) (スガ試験機㈱ 製) を用いて、 ヘイズ値を測定し、 10点測定の平均値で表示した。
ヘイズ値: H (%) = (T d/T t ) X I 00
Td (%) = [ {T4-T3X (T2/T1) } ZT1] X 100 (拡散透過率) T t (%) = (T3/T1) X I 00 (全光線透過率)
(T1 :入射光線、 T2 :全光線透過光、 T3 :装置の拡散光、 T4 :拡散透過光)
(13) 強制加熱後のヘイズ値
評価するフィルムを金属枠にバインダークリップで固定し、 熱風オーブンを用 いて、 801:で 3日間放置した。 このフィルムについて上記 ( 1) の方法でヘイ ズ値を測定した。
(14) 出力特性 (C/N)
本発明のフィルムに連続真空蒸着装置を用いて、 微量の酸素の存在下にコバル 卜 -ニッケル合金 (N i 20重量%) の厚み 200 mnの蒸着層を設けた。 さらに、 蒸着層表面にカーボン保護膜を公知の手段で形成させた後、 8 mm幅にスリット し、 パンケーキを作成した。 次いで、 このパンケーキから長さ 20 0m分をカセ ットに組み込み、 カセットテープとした。
このテープについて、 市販の H i 8用 VTR (SONY社製 EV- BS3000) を用 いて、 7 MH z ± 1 MH zの CZNの測定を行った
この C/Nを市販の H i 8用ビデオテープ ( 1 20分 ME) と比較して + 3 d B以上 :優
+ 1〜十 3 dB :良
+ 1 d B未満 :不良
と判定した。 出力特性が市販の H i 8用ビデオテープ (120分 ME) と比較し て、 + l dB以上あれば、 デジタル記録方式の VTRテープとして充分使用でき るレベルである。
(1 5) 耐摩耗性、 摩擦係数
フィルムを幅 1Z2インチのテープ状にスリッ卜したものをテープ走行試験機 を用いてステンレス製ガイドビン (表面粗度: R aで 1 00 nm) 上を走行させ る (走行速度 250mZ分、 巻き付け角 60° 、 入側張力 50 g、 走行回数 1回) このときの初期の kを下記の式より求めた。 - ^ k = 3 /π 1 n (TZ5 0)
ここで、 Tは出側の張力である。 この kが 0. 3以下だと滑り性良好、 0. 3 を越えると滑り性不良と判断した。 この; 値 0. 3は、 印刷工程など加工工程 で滑り性不良によるトラブルが発生するか否かの臨界点である。
【実施例】
次に実施例に基づき、 本発明の実施態様を説明する。
実施例 1
テレフタル酸ジメチルと 1 , 3—プロパンジオールからエステル交換反応、 重 縮合反応を行い P PTを製造した。
この P PTペレットを 1 20°Cで 8時間減圧乾燥 (3Torr) し、 また PETぺ レットを 180°Cで 8時間減圧乾燥 (3Torr) した後、 ポリマ A : PPTボリマ、 ポリマ B : 0. 8 m径炭酸カルシウム粒子 0. 1重量%含有 P ETポリマをそ れぞれ押出機 1、 押出機 2に供給し 265で、 280でで溶融した。 これらのポ リマを高精度瀘過した後、 矩形合流部にて 3層積層とした (Aノ B/A) 。
これを静電印加キャスト法を用いて表面温度 2 Otのキャスティング · ドラム に巻きつけて冷却固化し、 未延伸フィルムを作った。 この時、 口金スリット間隙 /未延伸フィルム厚さの比を 1 0とした。 また、 それぞれの押出機の吐出量を調 節し総厚さ、 および A層の厚さを調節した。
この未延伸フィルムを温度 9 6 °Cにて長手方向に 3 . 5倍延伸した。 この延伸 は 2組ずつのロールの周速差で、 4段階で行なった。 この一軸延伸フィルムをテ ンタ一を用いて 1 0 O t:で幅方向に 3 . 6倍延伸した。 このフィルムを定長下で 2 2 0でにて 3秒間熱処理し、 総厚さ 6 . 3 a m, A層厚さ 0 . 3 の二軸配 向フィルムを得た。 この二軸配向ポリエステルフィルムの特性は表 1に示したと おりであり、 耐摩耗性が良好であった。
実施例 2
実施例 1と同様のポリマ A、 ポリマ Bとしては、 0 . 8 のジビニルペンゼ ン粒子 0 . 1重量%含有 P E Tとして、 積層厚みを 1 . O i mに変更した二軸配 向ポリエステルフィルムを得た。 この二軸配向ポリエステルフィルムの特性は表 1に示したとおりであり、 耐摩耗性が良好であった。 . .
実施例 3
P P Tポリマの A層の積層厚みを 0 . 0 5 mに変更する以外は全て実施例 1 と同様にして二軸配向ポリエステルフィルムを得た。 この二軸配向ポリエステル フィルムの特性は表 1に示したとおりであり、 耐摩耗性が良好であった。
比較例 1
実施例 1の原料を用いて、 フィルム構成、 積層厚み、 延伸条件等を変更して二 軸配向ポリエステルフィルムを得た。 この二軸配向ポリエステルフィルムの特性 は表 1に示したとおりであり、 耐摩耗性が不良であった。
比較例 2
A層に実施例 1で用いたポリマ B、 B層に実質的に無粒子の P E Tポリマとし て、 積層厚み、 延伸条件等を変更して二軸配向ポリエステルフィルムを得た。 こ の二軸配向積層ポリエステルフィルムの特性は表 1に示したとおりであり、 耐摩 耗性が不良であった。
比較例 3
実施例 1ポリマ Bを用いて、 フィルム厚みが 1 0 mの単層の二軸配向ポリエ ステルフィルムを得た。 この二軸配向ポリエステルフィルムの特性は表 1に示し たとおりであり、 耐摩耗性が不良であった。 表 1
Figure imgf000020_0001
実施例 4
テレフタル酸ジメチルと 1 3 プロパンジオールからエステル交換反応、 重 縮合反応を行い P PTを製造した。 次いで、 水系で湿式法によりゲイ酸ナトリウ ムとアルミン酸ナトリウムの反応により合成された、 アルミニウム比率が酸化ァ ルミニゥム換算で 20重量%のゲイ酸アルミニウム粒子の水スラリーを準備した。 この水スラリーをベント式 2軸混練押出機を用いて、 PPTペレツ卜に混合し練 り込んだ。
この粒子含有 P PTペレツトと実質的に粒子を含有しない P PTポリマペレツ トを適当量混合し、 120でで 8時間減圧乾燥 (3Torr) した後、 ポリマ A : 0. 1 7 m径ケィ酸アルミニウム粒子 0. 2重量%含有 P PTポリマ、 ポリマ B : 0. 8 m径炭酸カルシウム粒子 0. 1重量%含有 P ETポリマをそれぞれ押出 機 1、 押出機 2に供給し 260で、 280 で溶融した。 これらのポリマを高精 度瀘過した後、 矩形合流部にて 2層積層とした (A/B)
これを静電印加キャスト法を用いて表面温度 2 O :のキャスティング · ドラム に巻きつけて冷却固化し、 未延伸フィルムを作った。 この時、 口金スリット間隙 未延伸フィルム厚さめ比を 1 0とした。 また、 それぞれの押出機の吐出量を調 節し総厚さ、 および A層の厚さを調節した。
この未延伸フィルムを温度 9 3 °Cにて長手方向に 3 . 5倍延伸した。 この延伸 は 2組ずつのロールの周速差で、 3段階で行なった。 この一軸延伸フィルムをテ ン夕ーを用いて 9 5 で幅方向に 4 . 8倍延伸した。 このフィルムを定長下で 2 2 0 にて 3秒間熱処理し、 さらに中間冷却ゾーンで 1 2 0 °C 7秒処理し、 総厚 さ l l / m、 A層厚さ 0 . 3 の二軸配向ポリエステルフィルムを得た。 この 二軸配向ポリエステルフィルムの特性は表 2に示したとおりであり、 耐摩耗性、 オリゴマ抑止性が良好であった。
実施例 5、 6および比較例 4、 5
実施例 4と同様にして、 粒子の種類、 粒径、 含有量、 -積層厚み等を変更した二 軸配向ポリエステルフィルムを得た。 実施例 6の C層に用いるポリマ Cは、 実施 例 1で用いた無粒子の P P Tポリマとし、 積層厚みは l w mである。 実施例 5、 6のフィルム特性は表 2に示すように、 耐摩耗性、 オリゴマ抑止性が共に良好で あるが、 比較例 4、 5のフィルムは良好でないことがわかる。
実施例 7〜 9
ポリマ Aとして実施例 1の P P Tポリマ、 ポリマ Bとしては平均粒径 0 . ら mの架橋型ジビニルベンゼン粒子を 0 . 1重量%含有した P E Tポリマとして、 粒子の粒径、 含有量、 積層厚み、 延伸条件等を変更し、 総厚さ 7 mの二軸配向 ボリエステルフィルムを得た。 表 2に示すように本発明範囲の二軸配向ポリエス テルフィルムは耐摩耗性、 オリゴマ抑止性が良好であることがわかる。
表 2
Figure imgf000022_0001
o > O
O 00
> 実施例 1 o
常法により重合した P ETのペレット 1 ( I V 0. 72) を、 1 85°Cで 3時 間減圧乾燥 (3Torr) した。 またテレフタル酸ジメチルと 1, 3プロパンジォ一 ルからエステル交換反応、 重縮合反応を行い PPTを製造したペレット 2 ( I V 0. 95) を、 14 Ot:で 3時間減圧乾燥 (3 Τ0ΓΓ) した。 また PETに不活性 粒子を添加 (平均粒径:平均粒径 0. 2 5 のコロイダルシリカ粒子、 粒子含有 量 0. 5重量%を重合時に添加、 I V0. 65) し重合したペレット 3を、 18 5でで 3時間減圧乾燥 (3Torr) した。
上記のペレット 1、 2をそれぞれ乾燥した後、 粒子を含有しない PETのペレ ット 1を 19. 7重量%と PPTのペレット 2を 80重量%、 また粒子含有 PE Tのペレット 3を 0. 3重量%の割合で混合してボリエステル Aとし、 またポリ エステル Bとして P ETのペレツト 1をそれぞれ 2台の押出機に供給し、 ポリエ ステル Aは押出機 1によって、 26 5°Cで溶融し、 ポリエステル Bは押出機 2に よって、 29 Ot:で溶融し、 3層用の矩形の合流ブロック (フィードブロック) で合流積層し、 静電印加キャスト法を用いて表面温度 22でのキャスティングド ラム上に巻き付けて、 冷却、 固化し、 AZBZAの 3層構成の積層未延伸フィル ムを作った。 この未延伸フィルムを表面温度 8 5 :のシリコーンロール 4本に通 して延伸のための予熱処理を行ない、 さらに、 温度 9 5 で縦方向に 3. 2倍延 伸し、 さらに公知のステン夕を用いて、 95°Cで、 幅方向に 4. 0倍延伸し、 再 度長手方向に 90°Cで 1. 3倍延伸し、 定長下で 220でにて 5秒間熱処理を行 い、 中間冷却ゾーンで 120°C 7秒処理後、 再熱処理を 1 00 でリラックス率 2 %で 3秒間処理し、 積層厚み l m、 総厚さ 1 2 /mの二軸配向ポリエステル フィルムを得た。
実施例 1 1および 12
実施例 10と同様にして表 3に示した割合となるよう混合した A層ポリマを用 いて二軸配向ポリエステルフィルムを得た。 粒子径、 押出溶融温度、 延伸温度条 件等を変更した二軸配向ポリエステルフィルムを得た。 実施例 1 1は、 長手方向 に 4段階以上に分けて 4. 5倍、 横方向に 4. 0倍延伸し、 実施例 1 2は長手方 向に 4段階以上に分けて 4. 8倍、 横方向に 4. 0倍延伸して二軸配向積層ポリ エステルフィルムを得た。
比較例 6〜 8
ポリエステル Aとして、 PETペレッ ト 1と P PTペレッ ト 2、 粒子含有 PE Tのペレット 3を表 3に示した割合になるように混合したものと、 以下、 実施例 1 1と同様の方法で、 延伸温度、 延伸倍率を変更して、 総厚さ 1 2 m (A層片側 厚さ l zm、 比較例 8は 3. 5 urn) の二軸配向積層フィルムとした。
上記実施例 10〜 12および比較例 6〜8において調製したフィルムを評価し た結果を表 3に示す。 本発明の範囲に属するサンプルは、 いずれも比較例に対し て、 オリゴマ抑止性、 寸法安定性において優れていることが分かる。
実施例 1 3
テレフ夕ル酸ジメチルと 1, 3—プロパンジオールからエステル交換反応、 重 縮合反応を行い P PTを重合した。 .
この P PTペレットを 1 20°Cで 8時間減圧乾燥 (3Torr) した後、 ポリマ A : PPTポリマ、 ポリマ B :実質的に無粒子のポリエチレンテレフ夕レートポリ マをそれぞれ押出機 1、 押出機 2に供給し 260 、 280 で溶融した。 これ らのポリマを高精度濾過した後、 矩形合流部にて 3層積層とした (AZBZA) 。
これを静電印加キャスト法を用いて表面温度 2 Otのキャスティング · ドラム に巻きつけて冷却固化し、 未延伸フィルムを作った。 この時、 口金スリット間隙 Z未延伸フィルム厚さの比を 1 0とした。 また、 それぞれの押出機の吐出量を調 節し総厚さ、 および A層の厚さを調節した。
この未延伸フィルムをシリコンロール上で熱処理温度 85°Cで 1 0秒間処理し、 延伸温度 93でにて長手方向に延伸速度 1000 0 %ノ分で 3. 3倍延伸した。 この延伸は 2組ずつのロールの周速差で、 3段階で行なった。 この一軸延伸フィ ルムをテン夕一を用いて 96°Cで幅方向に 3. 5倍延伸した。 さらに、 横方向に 95でで1. 1倍延伸した。 このフィルムを定長下で 220でにて 3秒間熱処理 し、 中間冷却ゾーンで 1 2 0°C 7秒処理後、 再熱処理を 1 00ででリラックス率 2%で 3秒間処理し、 総厚さ 5 /xm、 A層厚さ 1. 0 mの二軸配向フィルムを 得た。 この二軸配向ポリエステルフィルムの特性は表 4に示したとおりであり、 耐摩耗性が良好であった。 表 3
A層の組成 (重量%) フィルム構成縱延伸条件長手方向 熱収縮率 s 0.08E-S 才リゴマ 寸法安定性 予熱 ζ延伸 ヤノグ军 E (80 C30分) 抑止性
P ET P PT 粒 子 (μηη) 温度 (°c) (G P a) ( )
実施例 1 0 19.7 80 シリカ A/ B/ A 85/95 6. 3 0. 4 1 0. 094 艮 優
0.3 1 /10/1 実施例 1 1 9.75 90 シリカ A/ B/A 80/85 5. 6 0. 36 0. 088 優 is ヽ ' 0。.25 1 /10/1
実施例 1 2 19.75 80 A/B/A 85/90 5. 8 0. 37 0. 094 良 優
1 /in /1 比較例 6 99.8 なし シリカ A/B/A 85/93 5. 2 0. 35 0. 066 不良 不良
0.2 1 /10/1
比較例 7 59.8 40 同上 A/B/A 70/85 4. 1 0. 29 0. 038 不良 不良
1 /10/1
比較例 8 10 90 なし A/B/A 80/90 5. 5 0. 82 一 0. 38 優 不良
3.5/5/3.5
表 4 積層部ポリマー種 縱延伸 (°c) 熱収縮率 平均粗さ R a(nm) フィルム構成 耐庫耗性 予熱温度 (80°C30分) R z/R a Α餍厚み ( m) 延伸温度 ( ) 突起間隔 Sm( Di) 実施例 1 3 リア口ビレンテレフ外-ト 85 0. 35 25 A/B/A 優 (粒子添加せず) 90 8. 5 1. 0
9. 0 実施例 1 4 本'リア Pfレンテレフタレ-ト 90 0. 31 30 優 (粒子添加せず) 95 9. 0
9. 2 実施例 1 5 *'リフ'ロビレンテレフタレート 95 0. 33 20 A/B/A 優
(粒子添加せず) 93 8. 0 0. 2
8. 2 比較例 9 本'リア Qfレン ΐレフタレ-ト/ 70 0. 54 A/B/A 不良
* リ Iチレン レフタレ-ト 90 1. 0
(50/50) (fi子 せず) 比較例 1 0 本'リ Iチレン Ϊレフタレ-ト 85 0. 33 1 5 A/B/A 不良
(粒径 Q.8 im 90 1 6 2. 0
炭酸力 Aシゥム 0.1wt¾) 1 2 比較例 1 1 木'リ Iチレンテレフタレ-ト 90 0. 35 1 6 単層 不良
(粒径 0.8μπι 95 20 1 0
炭酸カルシウム 0. lwt¾) 3nο i 5 '
> o
ZDn 実施例 1 4、 1 5および比較例 9〜: L 1
実施例 1と同様にして、 P P Tの積層厚み、 縦延伸の温度等を変更した二軸配 向ポリエステルフィルムを得た。 表 4に示すように本発明の範囲内の二軸配向ポ リエステルフィルムは耐摩耗性が良好であるが、 そうでないものは耐摩耗性が良 好でないことがわかる。
実施例 1 6
テレフタル酸ジメチルと 1 , 3—プロパンジオールからエステル交換反応、 重 縮合反応を行い P P Tを製造した。
この P P Tペレットを 1 2 0 で 8時間減圧乾燥 (3 Torr) した後、 ポリマ A : P P Tポリマ、 ポリマ B : 0 . 8 m径炭酸カルシウム粒子 0 . 1重量%含有 P E Tポリマをそれぞれ押出機 1、 押出機 2に供給し 2 6 0 、 2 8 0 で溶融 した。 これらのポリマを高精度瀘過した後、 矩形合流部にて 3層積層とした (A これを静電印加キャスト法を用いて表面温度 2 0 °Cのキャスティング · ドラム に巻きつけて冷却固化し、 未延伸フィルムを作った。 この時、 口金スリット間隙 /未延伸フィルム厚さの比を 1 0とした。 また、 それぞれの押出機の吐出量を調 節し総厚さ、 および A層の厚さを調節した。
この未延伸フィルムを予熱温度 8 5で、 延伸温度 9 0 にて長手方向に 3 . 5 倍延伸した。 この延伸は 2組ずつのロールの周速差で、 3段階で行なった。 この 一軸延伸フィルムをテン夕一を用いて 1 0 0 °Cで幅方向に 3 . 6倍延伸した。 こ のフィルムを定長下で 2 2 0 にて 1 0秒間熱処理し、 総厚さ 6 0 ^ m、 A層厚 さ 1 . 0 mの二軸配向フィルムを得た。 この二軸配向ポリエステルフィルムの 特性は表 5に示したとおりであり、 耐摩耗性が良好であった。
実施例 1 7および 1 8、 比較例 1 2
実施例 1 6と同様にして、 積層部ポリマー種、 積層厚み、 縦延伸の温度等を変 更した二軸配向ポリエステルフィルムを得た。 表 5に示すように実施例 1 7およ び 1 8で得られた二軸配向ポリエステルフィルムは耐摩耗性が良好であるが、 比 較例 1 2のフィルムは耐摩耗性が良好でないことがわかる。 表 5 稱層部 (A層) 熱収縮率 A層 フィルム構成 耐瘳耗性 ポリマー種 ( 80 °C 30分) 結晶化パラメータ 厚み ( m)
(%) △ T e g CC) 実施例】 6 リフ' pfレンテレフタレート 0. 28 30 A/B/A 優
1 /58/1 実施例 1 7 *'リア Bピレンテレフタレ-ト 0. 32 33 優
実施例 18 u nfレンテレフタレート 0. 25 33 A/B/C 優
0.5/58.5/1 比較例 1 2 本'リフ'ロビレンテレフタレ-ト 0. 83 3 2 A/B/A 不良
10/25/10
\ヽ
実施例 1 9
熱可塑性樹脂 B、 Cとして常法により重合した実質的に粒子を含有しない PE Tポリマ、 ポリマ層 Aに実質的に粒子を含有しない P PTポリマ ( I V0. 93) を、 180 および 1 20 でそれぞれ 3時間乾燥後、 3台の公知の押出機を用 いて、 260°C (ポリマ層 A) 、 2 80で(ポリマ層8) 、 290 X: (ポリマ層 C) で溶融押出しを行い、 3層用の矩形の合流ブロック (フィードブロック) で合流 積層し、 静電印加キャスト法を用いて、 表面温度 20 の金属キャスティングド ラム上に巻き付けて、 冷却、 固化し、 BZAZCZAZBの 5層積層構成の未延 伸フィルムを得た。
この未延伸フィルムを、 シリコンロール上で熱処理温度 140でで 5秒間処理 し、 ロール間で、.延伸温度 95 t:、 延伸速度 1 0000 %/分で縦方向に 4段階 以上に分けて 3. 8倍延伸後、 公知のステン夕を用レ て、 延伸温度 100 で、 5000 %/分の速度で幅方向に 5. 2の倍率で延伸を行い、 定長下で 220°C にて 3秒間熱処理を行い、 その後中間冷却ゾーンで 1 20で 7秒間の処理し、 総 厚み 7 wm、 B層厚み 0. 05 m、 PPT積層厚さ 0. 5 mの 2軸配向積層 フィルムを得た。
実施例 20および 2 1
実施例 19と同様に、 A層と B層の積層厚み、 延伸条件を変更した総厚み 7 ^ mの 5層積層構成の二軸配向積層フィルムを作成した。
実施例 22
実施例 1 9と同様にして、 熱可塑性樹脂 Cとして PETのリサイクルポリマー (平均粒径 0. 6 /imの炭酸カルシウム粒子を 0. 0 5w t %、 平均粒径 0. 3 /xmのコロイダルシリカ 0. 3w t %含有) を用い両面に A層としてポリマー I V I . 0の P PTを 0. 8 m積層し、 さらに B層として 1次粒子径が 20 n m の δ型アルミナ粒子を 2 w t %含有した PETのポリマペレツトを作成し、 B層 中での粒子濃度が 0. 3w t %となるよう、 実施例 1で用いた無粒子の P ETの ポリマペレツ卜で希釈し、 総厚さ 7 mの 5層構成の二軸配向積層フィルムを作 成した。 表 6 積層構成 B層厚み C¾厚み T a/T b 表面粗さ 熱収縮率 (X) TDヤング率耐庫耗性 才リゴマ
(Mm) (μηη) (%) ( n m) ( 80。C 30分) (G Pa) 抑止性 実施例 1 9 B/A/C/A/B 0. 5 0. 05 5. 9 0. 1 20 0. 52 5. 5 良 良 実施例 20 B/A/C/A/B > 0. 5 0. 03 5. 9 0. 06 23 0. 53 5. 8 良 優
Wョ
実施例 21 B/A/C/A/B 0. 8· 0. 03 5. 3 0. 04 25 0. 4 1 5. 0 良 優 実施例 22 B/A/C/A/B 0. 8 0. 03 5. 3 0. 04 24 0. 61 6. 5 良 優 実施例 23 B/A/C 0. 5 0. 05 4. 5 0. 1 28 0. 46 5. 6 良 良
実施例 23
平均粒径 0. 8 mのシリコン粒子を 2w t %含有する PETのポリマペレツ トを作成し、 無粒子のポリマペレットで希釈して、 C層中の含有量が 0. 3w t %となるようにしたポリマペレットを熱可塑性樹脂 Cとし、 A層に実施例 1で用 いた、 実質的に粒子を含有しない P PT(I V0. 93) とし、 Β層は、 アルミナ 含有 (0. 3wt %) ポリマペレットとして、 BZA/Cとなるように 3台の押 出機を用いて、 A層厚みが 0. 5 //m、 B層厚み 0. 05 ΠΙ、 総厚さ 5 /zmの 3 層構成の二軸配向積層フィルムを作成した。
上記の実施例 1 9〜 23における各フィルム特性を表 6に示す。 いずれもオリ ゴマ抑止性、 耐削れ性に優れたフィルムであった。
実施例 24〜 26および比較例 1 3、 14
常法により作成した PETポリマ, P PTポリマ、 P ΡΤ·Ρ ETブレンドポリ マ (90 : 1 0) を用いた。 粒子を添加する場合は、 粒子を含むエチレングリコ ールあるいは、 1. 3プロピレングリコールを用いて、 常法により重合したポリ エチレンテレフ夕レートあるいはポリプロピレンテレフ夕レー卜を用いた。
それぞれの原料ペレツ卜を、 それぞれ 120〜 1 80でのそれぞれの原料に適 した温度で 3時間乾燥後、 3台の公知の押出機を用いて 260で、 28 Ot:, 2 65 " で溶融押出しを行い、 3層用の矩形の合流ブロック (フィードブロック) で、 表 7記載の積層構成になるように合流積層し、 静電印加キャスト法を用いて、 表面温度 2 O :の金属キャスティングドラム上に巻き付けて、 冷却、 固化し、 未 延伸フィルムを得た。
この未延伸フィルムを、 公知のシリコーンゴム製ロール上で 85°Cで加熱処理 を行った後、 ロール間で縦方向に 3段階以上に分けて延伸速度 20000 %/分、 延伸温度 93 で 3. 8倍延伸後、 公知のステン夕を用いて幅方向に 1 00でで 3. 8倍延伸を行った。 また、 必要に応じて幅方向に再度延伸し、 定長下で 22 0でにて 3秒間熱処理を行い、 中間冷却ゾーンに導いて、 1 20 で 7秒間処理 を施した。 表 7に記載の厚さの 2軸配向積層フィルムを得た。
尚、 金属蒸着層は、 第 3層表面に施した。 実施例では好ましい中心線平均粗さ R a、 突起間隔 Smを有するフィルムが得られ、 出力特性、 走行性の優れたフィ ルムであったが、 比較例 1 3および 1 4で得られたポリエステルフィルムは、 出 力特性、 走行性の劣るフィルムであった。
Figure imgf000032_0001
実施例 27
ポリマー A :平均粒径 0. 4 / mのコロイダルシリカを 0. 0 1 5重量%およ び平均粒径 1. 5 /zmのコロイダルシリカを 0. 00 5重量%含有する P E Tと、 ポリマー B : PPTを充分に真空乾燥後、 押出機 1にポリマー A、 押出機 2にポ リマー Bを供給し、 それぞれ 280 :、 260°Cで溶融し、 これらのポリマーを 高精度濾過した後、 矩形合流部にて 2層積層構成で溶融押出した。 これを静電印 加キャスト法を用いて、 表面温度 22 のキャスティングドラムに巻き付けて冷 却固化し、 未延伸フィルムをつくった。 この未延伸フィルムを 95 で、 長手方 向に 3. 5倍延伸した。 このフィルムの PPT面側に空気中でコロナ放電処理を 施し、 その処理面に易接着層形成塗液 aを塗布した。 塗布された一軸延伸フィル ムをクリップで把持しながら予熱ゾーンに導き 1 1 0°Cで乾燥後、 引き続き連続 的に加熱ゾーンで幅方向に 3. 5倍延伸し、 さらに 225 で熱処理を施し、 中 間冷却ゾーンに導いて、 120でで 7秒間処理を施した。 そして目的とする易接 着性ポリエステルフィルムを得た。
この時、 基材 P ETフィルムの厚みが 49. 5 m. PPT層の厚みが 0. 5 im、 易接着層の厚みが 0. 1 5 mであった。
結果は、 表 8に示す通り、 強制加熱後のヘイズ値の上昇が抑制され、 接着性が 良好であった。
易接着層形成塗液 a :下記酸成分とグリコール成分からなるポリエステル樹脂 (2種) と架橋剤で構成される水系塗液。
ポリエステル樹脂 A 50重量部
'酸成分 テレフタル酸 50モル%
ィソフタル酸 25モル% セバチン酸 24モル%
5—ナトリウムスルホ二ルイソフタル酸 1モル%
'グリコール成分 エチレングリコール 55モル%
ネオペンチルダリコール 45モル% ポリエステル樹脂 B 50重量部
'酸成分 テレフタル酸 87. 5モル% 5 —ナトリウムスルホ二ルイソフタル酸 1 2 . 5モル% .グリコール成分 エチレングリコール 1 0 0モル% メチロール化メラミン系架橋剤 5重量部
上記固形分比となるように混合し、 水で固形分濃度 5重量%となるように希釈 した。
表 8
Figure imgf000034_0001
産業上の利用可能性
本発明の二軸配向ポリエステルフィルムは優れた耐摩耗性とオリゴマ抑止性を 有し、 磁気記録媒体用として有用である。

Claims

請求の範囲
1. 主としてポリプロピレンテレフ夕レートからなるフィルム層を少なくとも 1 層有し、 80で、 30分の熱収縮率が 0. 8 %以下であることを特徴とする二軸 配向ポリエステルフィルム。
2. 主としてポリプロピレンテレフタレ一卜からなるフィルム層の厚さが 0. 0 1〜3. 0 mである請求項 1に記載の二軸配向ポリエステルフィルム。
3. 主としてポリプロピレンテレフ夕レートからなるフィルム層がポリプロピレ ンテレフ夕レート 60〜99. 9重量%とポリエチレンテレフタレ一卜 40〜0. 1重量%とからなるものである請求項 1または 2に記載の二軸配向ポリエステル フィルム。
4. 主としてポリプロピレンテレフタレ一卜からなるフィルム層が平均粒径 0. 0 1〜2. 0 imの粒子を 0. 01〜3重量%含有するものである請求項 1また は 2に記載の二軸配向ポリエステルフィルム。
5. 主としてポリプロピレンテレフタレートからなるフィルム層の厚さ t (nm) と該フィルム層に含まれる粒子の平均粒径 d (nm) との関係が 0. 2 d≤ t≤ 10 dである請求項 4に記載の二軸配向ポリエステルフィルム。
6. 主としてポリプロピレンテレフ夕レートからなるフィルム層を少なくとも 1 層有し、 少なくとも片面の表面粗さ R aが 5〜 1 20 nm、 1 0点平均粗さ尺 2 ノ Raが 12以下、 突起間隔 Smが 1 5 ^ m以下である二軸配向ポリエステルフ イルム。
7. 主としてポリプロピレンテレフ夕レートからなるフィルム層の厚さが 0. 0 1〜 3. 0 mである請求項 6に記載の二軸配向ポリエステルフィルム。
8. 主としてポリプロピレンテレフ夕レートからなるフィルム層がポリプロピレ ンテレフタレート 60〜 99. 9重量%とポリエチレンテレフタレ一ト 40〜0. 1重量%とからなるものである請求項 6または 7に記載の二軸配向ポリエステル フィルム。
9. 主としてポリプロピレンテレフ夕レー卜からなるフィルム層が平均粒径 0. 0 1〜2. 0 _imの粒子を 0. 0 1〜 3重量%含有するものである請求項 6また は 7に記載の二軸配向ポリエステルフィルム。
10. 主としてポリプロピレンテレフタレートからなるフィルム層の厚さ!: (n m) と該フィルム層に含まれる粒子の平均粒径 d (nm) との関係が 0. 2 d≤ t≤ 10 dである請求項 9に記載の二軸配向ポリエステルフィルム。
1 1. 主としてポリプロピレンテレフタレートからなるフィルム層の表面に存在 する突起数 Xと該フィルム層に含有する粒子数 Yとの比 XZYが 5以上である請 求項 1または 6に記載の二軸配向ポリエステルフィルム。
12. 長手方向と幅方向のヤング率がともに 4. 5 GP a以上である請求項 1ま たは 6に記載の二軸配向ポリエステルフィルム。
13. 長手方向と幅方向のヤング率の比 (長手方向のヤング率 Z幅方向のヤング 率) が 0. 7〜1. 5である請求項 1または 6に記載の二軸配向ポリエステルフ ィルム。
14. 長手方向の弾性率 E (GP a) と温度 80 の条件下に 30分間保持した ときの長手方向の熱収縮率 S (%) との関係が、 0. 08 E— S≥0. 08であ る請求項 1または 6に記載の二軸配向ポリエステルフィルム。
1 5. 全フィルム厚みが 50〜 1 00 mであることを特徵とする請求項 1または 6に記載の二軸配向積層ポリエステルフィルム。
16. 主としてポリプロピレンテレフタレートからなるフィルム層が両最外層で ある 3層以上の積層構成を有し、 一方の表面の中心線表面粗さ R aが 9 nm以下 で表面突起間隔 Smが 1 5 m以下であり、 他方の表面の中心線表面粗さが 9 n mより大きく 30 nm以下であって表面突起間隔 Smが 1 5 / m以下であり、 さ らに 80 :、 30分の熱収縮率が 0. 8 %以下であることを特徴とする二軸配向 積層ポリエステルフィルム。
17. 熱可塑性樹脂 Cを主成分とするポリマ層 (C層) の少なくとも片面に、 主 としてポリプロピレンテレフタレートからなるフィルム層 (A層) を有し、 さら に少なくとも一方の A層の表面に熱可塑性樹脂 Bを主成分とするポリマ層 (B層) を有する少なくとも 3層の積層構成をとる二軸配向積層ポリエステルフィルムで あって、 該 A層の厚みが 1 m未満であり、 A層の厚み (T a)と B層の厚み (T b) の関係が
0. 0 1≤T b/T a< 1
である二軸配向ポリエステルフィルム。
18. C層の厚さがフィルム全厚みの 50 %以上である請求項 1 7に記載の二軸 配向ポリエステルフィルム。
19. 熱可塑性樹脂 Cがポリエチレンテレフ夕レートである請求項 17または 1 8に記載の二軸配向ポリエステルフィルム。
20. 積層フィルムの少なくとも片面に易接着層が設けられてなる請求項 1、 6、 16または 1 7に記載の二軸配向ポリエステルフィルム。
PCT/JP1998/002590 1997-10-03 1998-06-12 Film de polyester a orientation biaxiale WO1999017931A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA 2273499 CA2273499A1 (en) 1997-10-03 1998-06-12 Biaxially oriented polyester film
EP98924590A EP0943428B1 (en) 1997-10-03 1998-06-12 Biaxially oriented polyester film
US09/319,198 US6331344B1 (en) 1997-10-03 1998-06-12 Biaxially oriented polyester film
DE1998610438 DE69810438T2 (de) 1997-10-03 1998-06-12 Biaxial orientierte polyesterfolie

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP27134397 1997-10-03
JP9/271343 1997-10-03
JP10/33059 1998-02-16
JP3305998 1998-02-16

Publications (1)

Publication Number Publication Date
WO1999017931A1 true WO1999017931A1 (fr) 1999-04-15

Family

ID=26371696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002590 WO1999017931A1 (fr) 1997-10-03 1998-06-12 Film de polyester a orientation biaxiale

Country Status (8)

Country Link
US (1) US6331344B1 (ja)
EP (1) EP0943428B1 (ja)
KR (1) KR20000069251A (ja)
CN (1) CN1107589C (ja)
CA (1) CA2273499A1 (ja)
DE (1) DE69810438T2 (ja)
ID (1) ID22047A (ja)
WO (1) WO1999017931A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075251A1 (en) * 1999-06-07 2000-12-14 E.I. Du Pont De Nemours And Company Poly(1,3 propanediol terephthalate) for use in making packaging materials
JP4765237B2 (ja) * 1999-09-14 2011-09-07 東レ株式会社 ポリエステル組成物、それからなるフィルムおよび磁気記録媒体
JP2013049791A (ja) * 2011-08-31 2013-03-14 Fujifilm Corp ポリエステルフィルムとその製造方法、太陽電池用バックシートおよび太陽電池モジュール

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319587B1 (en) * 1998-09-24 2001-11-20 Toray Industries, Inc. Biaxially-oriented polyester film
US6663977B2 (en) * 2000-03-07 2003-12-16 E.I. Du Pont De Numours And Company Low temperature heat-sealable polyester film and method for producing the same
US6818160B2 (en) * 2000-11-16 2004-11-16 E. I. Du Pont De Nemours And Company Method to improve properties of poly(trimethylene terephthalate) film
CN100413916C (zh) * 2000-11-16 2008-08-27 纳幕尔杜邦公司 改善聚对苯二甲酸丙二醇酯薄膜性能的方法
DE60119718T8 (de) * 2000-12-05 2007-08-30 Teijin Ltd. Biaxial orientierter, mehrlagiger polyesterfilm sowie magnetisches aufzeichnungsmedium
CN102785419B (zh) * 2001-09-11 2015-01-14 美国杜邦泰津胶片合伙人有限公司 用于柔性电子器件和光电子器件的热稳定聚萘二甲酸乙二醇酯膜
JP4052021B2 (ja) * 2002-06-04 2008-02-27 帝人デュポンフィルム株式会社 配向ポリエステルフィルムおよびそれを用いた積層フィルム
DE10303145A1 (de) * 2003-01-28 2004-07-29 Mitsubishi Polyester Film Gmbh Einseitig matte, biaxial orietierte Polyesterfolie mit charakteristischen Schrumpfeigenschaften, Verfahren zu ihrer Herstellung und ihre Verwendung
US20070128459A1 (en) * 2005-12-07 2007-06-07 Kurian Joseph V Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) films
US7544408B2 (en) * 2006-02-14 2009-06-09 Toray Plastics (America), Inc. Biaxially oriented polyester film for molding process
CN101374891B (zh) * 2006-02-17 2011-11-30 东丽株式会社 双轴取向聚丙烯薄膜
CN101518971B (zh) * 2008-02-29 2012-07-18 E.I.内穆尔杜邦公司 聚酯叠层膜和使用该叠层膜的太阳能电池板
US9200126B2 (en) * 2010-03-30 2015-12-01 Toray Industries, Inc. Laminated film
KR102151465B1 (ko) * 2013-06-18 2020-09-03 도레이 카부시키가이샤 이형용 이축 배향 적층 폴리에스테르 필름
JP2015225129A (ja) * 2014-05-26 2015-12-14 富士フイルム株式会社 ポリエステルフィルムおよびその製造方法、偏光板、画像表示装置、ハードコートフィルムならびにタッチパネル
CN106671544B (zh) * 2015-11-09 2019-08-20 宁波长阳科技股份有限公司 一种低热收缩率聚酯反射膜的制备方法
CN108834419A (zh) * 2016-01-14 2018-11-16 日东电工株式会社 表面改性热塑性树脂的制造方法、接合结构体的制造方法、接合结构体、热转印表面改性片、带有热转印表面改性片的热塑性树脂、以及表面改性热塑性树脂
DE102016205913A1 (de) * 2016-04-08 2017-10-12 Mitsubishi Polyester Film Gmbh Biaxial orientierte Polyesterfolie für die Metalllaminierung
CN110698998A (zh) * 2019-09-16 2020-01-17 升信新材(北京)科技有限公司 低收缩率的太阳能电池封装用胶膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195045A (ja) * 1988-01-29 1989-08-04 Toray Ind Inc 二軸配向ポリエステルフィルム
JPH069809A (ja) * 1992-06-24 1994-01-18 Teijin Ltd 磁気記録媒体用ポリエステルフイルム
JPH07266521A (ja) * 1994-03-30 1995-10-17 Teijin Ltd 積層二軸配向ポリエステルフイルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101021A (ja) * 1981-12-12 1983-06-16 Toyobo Co Ltd 2軸延伸ポリエステルフイルム
DE3414310A1 (de) * 1984-04-16 1985-10-24 Hoechst Ag, 6230 Frankfurt Traegerfolie fuer magnetische informationstraeger
DE3414347A1 (de) * 1984-04-16 1985-10-24 Hoechst Ag, 6230 Frankfurt Traegerfolie fuer magnetische informationstraeger
JPS62245520A (ja) * 1986-04-16 1987-10-26 Diafoil Co Ltd 磁気記録媒体
JP2971934B2 (ja) * 1990-10-17 1999-11-08 ポリプラスチックス株式会社 透明耐熱容器の製造法
DE69330327T2 (de) * 1992-09-29 2002-05-02 Mitsubishi Polyester Film Corp Biaxial ausgerichteter Polyesterfilm für magnetisches Aufzeichnungsmedium
WO1994013470A1 (en) * 1992-12-09 1994-06-23 Hoechst Aktiengesellschaft Biaxially oriented copolyester film for magnetic recording disks and magnetic recording disks made therefrom
JPH06210722A (ja) * 1993-01-14 1994-08-02 Toray Ind Inc 二軸配向積層ポリエステルフィルム
DE69424703D1 (de) * 1993-03-16 2000-07-06 Teijin Ltd Magnetband zur Verwendung in Kassetten für digitale Tonbandgeräte und biaxial orientierte Polyesterfilme dafür
CN1069260C (zh) * 1994-08-30 2001-08-08 东丽株式会社 双轴拉伸聚酯薄膜及其制造方法
JPH09175055A (ja) * 1995-12-27 1997-07-08 Toray Ind Inc 感熱孔版印刷原紙用ポリエステルフィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195045A (ja) * 1988-01-29 1989-08-04 Toray Ind Inc 二軸配向ポリエステルフィルム
JPH069809A (ja) * 1992-06-24 1994-01-18 Teijin Ltd 磁気記録媒体用ポリエステルフイルム
JPH07266521A (ja) * 1994-03-30 1995-10-17 Teijin Ltd 積層二軸配向ポリエステルフイルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0943428A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075251A1 (en) * 1999-06-07 2000-12-14 E.I. Du Pont De Nemours And Company Poly(1,3 propanediol terephthalate) for use in making packaging materials
US6482484B1 (en) 1999-06-07 2002-11-19 E. I. Du Pont De Nemours And Company Poly(1,3 propanediol terephthalate) for use in making packaging materials
JP4765237B2 (ja) * 1999-09-14 2011-09-07 東レ株式会社 ポリエステル組成物、それからなるフィルムおよび磁気記録媒体
JP2013049791A (ja) * 2011-08-31 2013-03-14 Fujifilm Corp ポリエステルフィルムとその製造方法、太陽電池用バックシートおよび太陽電池モジュール

Also Published As

Publication number Publication date
KR20000069251A (ko) 2000-11-25
CN1246825A (zh) 2000-03-08
DE69810438D1 (de) 2003-02-06
CN1107589C (zh) 2003-05-07
ID22047A (id) 1999-08-26
CA2273499A1 (en) 1999-04-15
DE69810438T2 (de) 2003-08-14
US6331344B1 (en) 2001-12-18
EP0943428B1 (en) 2003-01-02
EP0943428A1 (en) 1999-09-22
EP0943428A4 (en) 1999-12-15

Similar Documents

Publication Publication Date Title
WO1999017931A1 (fr) Film de polyester a orientation biaxiale
JP4151370B2 (ja) 離型フィルム
JPH07114723A (ja) 磁気記録媒体用ポリエステルフィルム
JPH0635153B2 (ja) 磁気情報担体のための多層の、同時押出により得られた、二軸延伸された担体フイルム及びその製造法
KR100275173B1 (ko) 이축배향필름
JP3275971B2 (ja) 積層ポリエステルフィルムおよびその製造方法
JPH11269283A (ja) 二軸配向ポリエステルフィルム
JPH11302408A (ja) 二軸配向ポリエステルフィルム
JP2998456B2 (ja) 二軸配向フィルム
JPH03207650A (ja) 二軸配向ポリエステルフイルム
JPH07117187A (ja) ポリスチレン系積層フィルム
JPH07246689A (ja) 二軸配向積層ポリエステルフィルム
JP2010052416A (ja) 積層体、磁気記録媒体用支持体および磁気記録媒体
JPH07114722A (ja) 磁気記録媒体用ポリエステルフィルム
JP3099991B2 (ja) 二軸配向積層ポリエステルフイルム
JP3251660B2 (ja) 磁気記録媒体用二軸配向ポリエステルフィルム
JP3139513B2 (ja) 二軸配向積層ポリエステルフイルム
JP2000334831A (ja) 二軸配向ポリエステルフィルム
JP2000326468A (ja) 二軸配向ポリエステルフィルム
JP2860061B2 (ja) 二軸配向熱可塑性樹脂フイルム
JPH03208639A (ja) 二軸配向熱可塑性樹脂フイルム
JP2000000946A (ja) 二軸配向積層ポリエステルフィルム
JP2000132828A (ja) 磁気記録媒体用積層ポリエステルフィルムおよびビデオテープカセット
JP2000272000A (ja) 二軸配向ポリエステルフィルム
JPH0585351B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98802279.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ID JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998924590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2273499

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019997004850

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09319198

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998924590

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997004850

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998924590

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997004850

Country of ref document: KR