WO1996013873A1 - Cellule secondaire non aqueuse et son procede de fabrication - Google Patents

Cellule secondaire non aqueuse et son procede de fabrication Download PDF

Info

Publication number
WO1996013873A1
WO1996013873A1 PCT/JP1995/002205 JP9502205W WO9613873A1 WO 1996013873 A1 WO1996013873 A1 WO 1996013873A1 JP 9502205 W JP9502205 W JP 9502205W WO 9613873 A1 WO9613873 A1 WO 9613873A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
mixture
secondary battery
positive electrode
sheet
Prior art date
Application number
PCT/JP1995/002205
Other languages
English (en)
French (fr)
Inventor
Hiroshi Ishizuka
Hideki Tomiyama
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to US08/839,239 priority Critical patent/US6019802A/en
Priority to JP51444796A priority patent/JP3726163B2/ja
Priority to EP95935575A priority patent/EP0789412B1/en
Priority to AU37541/95A priority patent/AU3754195A/en
Priority to DE69514678T priority patent/DE69514678T2/de
Priority to CA002203802A priority patent/CA2203802A1/en
Publication of WO1996013873A1 publication Critical patent/WO1996013873A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • Non-aqueous secondary battery and method of manufacturing the same are non-aqueous secondary battery and method of manufacturing the same
  • the present invention relates to a non-aqueous secondary battery having improved charge / discharge characteristics such as discharge potential, discharge capacity and charge / discharge cycle life, and more particularly to a non-aqueous secondary battery having an electrode using a water-dispersible mixture paste.
  • the present invention relates to a secondary battery and a manufacturing method thereof.
  • the positive electrode active material or negative electrode material which is a compound capable of inserting and releasing lithium, is dispersed in a dispersion medium using a dispersing machine such as a homogenizer or a planetary mixer together with a conductive agent and a binder to form a dispersed paste.
  • An electrode sheet is manufactured by applying the dispersion paste on a current collector and drying.
  • a non-aqueous solvent is often selected as the dispersion medium, in order to avoid direct deterioration of the active material due to water and deterioration of battery performance due to residual moisture when the battery is assembled.
  • an organic solvent there are problems such as working environment, environmental problems such as discharge, and difficulty in forming a uniform film.
  • Positive and negative electrode materials especially negative electrode materials, which are compounds that can insert and release lithium, are not stable in water, and have a negative effect on the discharge capacity of non-aqueous secondary batteries and the charge / discharge cycleability.
  • Japanese Unexamined Patent Publications Nos. 11-96567, 3-145,711, 3-64860 each disclose a method of pre-washing the active material with water. ing. However, these methods do not sufficiently improve the discharge characteristics. The reason why the charge / discharge cycle deteriorates when a water-dispersible mixture paste is used has not yet been clarified, but in addition to the reasons mentioned above, other factors that increase the internal resistance of the battery during cycling It is suggested that there is.
  • a first object of the present invention is to provide a discharge potential, a discharge capacity, a charge / discharge cycle life, and the like.
  • a second object of the present invention is to provide a non-aqueous secondary battery having improved charge / discharge characteristics and a method of manufacturing the same.
  • a third object of the present invention is to provide a method for producing a water base of a mixture having improved dispersibility and a non-aqueous secondary battery using the same.
  • a fourth object of the present invention is to provide a non-aqueous secondary battery having an optimum thickness using a mixture having improved dispersibility and a method for producing the same.
  • An object of the present invention is to provide a non-aqueous secondary battery in which a non-aqueous electrolyte containing a positive electrode, a negative electrode, and a lithium salt capable of inserting and extracting lithium is accommodated in a battery container, and at least an active material capable of inserting and extracting lithium, and In the production of at least one of the electrodes obtained by applying and drying a water-dispersed mixture base containing at least one or more conductive agents made of a carbon compound on a current collector, at least one of the conductive agents
  • the present invention has been achieved by a method for manufacturing a nonaqueous secondary battery, characterized by using an electrode prepared from the aqueous dispersion mixture paste using a dispersion liquid in which seeds are dispersed in water in advance together with a dispersing aid.
  • a non-aqueous secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium and a non-aqueous electrolyte containing a lithium salt in a battery container, comprising at least an active material capable of inserting and extracting lithium, and a carbon compound.
  • At least one of the electrodes obtained by applying and drying an aqueous dispersion mixture paste containing at least one or more conductive agents on a current collector, at least one of the conductive agents together with a dispersing agent is used in advance.
  • a method for producing a non-aqueous secondary battery comprising using an electrode prepared from the aqueous dispersion mixture base using a dispersion liquid dispersed in water.
  • a method for producing a negative electrode comprising applying and drying an aqueous dispersion mixture paste containing at least an active material capable of inserting and extracting lithium onto a current collector, wherein the pH of the aqueous dispersion mixture paste is 5 or more. 10.
  • a method for producing a negative electrode sheet for a non-aqueous secondary battery which is not more than 10.
  • a water-dispersed mixture base containing at least one kind of conductive agent on a current collector and drying are housed in a battery container.
  • at least one of the positive electrode sheet and the negative electrode sheet at least one of the conductive agent and the dispersing agent is dispersed in water in advance.
  • a non-aqueous secondary battery comprising an electrode sheet prepared from a dispersed mixture paste.
  • At least a positive electrode sheet and a negative electrode sheet obtained by applying a water-dispersed mixture paste containing at least an active material capable of inserting and extracting lithium and one or more conductive agents made of a carbon compound on a current collector, and drying. And a non-aqueous electrolyte containing a lithium salt and a non-aqueous electrolyte in a battery container, wherein the pH of the water-dispersing paste used for the negative electrode sheet is 5 or more and 10 or less. Water secondary battery.
  • the thickness of the mixture on one side of the negative electrode during battery assembly Is 5 to 80 m, and the thickness of the mixture on one side of the positive electrode is 90 to 180 jtzm.
  • the thickness of the mixture on one side of the negative electrode during battery assembly Is 5 to 80 m, and the thickness of the mixture on one side of the positive electrode is 90 to 180 // m, wherein the thickness of the mixture according to any one of the above (3) to (5) is Water secondary battery.
  • the transition metal at least one is in the L i a MO b (wherein M of the positive electrode active material contained in the positive electrode mixture, containing at least one is C o, Mn, N i, V, and F e,
  • M of the positive electrode active material contained in the positive electrode mixture containing at least one is C o, Mn, N i, V, and F e
  • At least one kind of the negative electrode active material contained in the negative electrode mixture has a periodic rule.
  • the above-mentioned (3) which is a compound selected from oxides and chalcogen compounds containing one or more elements selected from Tables IIIA, IVA and VA.
  • the non-aqueous secondary battery according to any one of the items (1) to (6).
  • the thickness of the mixture on one surface of the negative electrode is 10 to 80 // m
  • the thickness of the mixture on one surface of the positive electrode is 100 to 170 // m.
  • M 2 represents at least one selected from Ge, Pb, Bi, Sb, P, B, Al, and As, and 0, l ⁇ p + q ⁇ 4, 0.05.p ⁇ 2. , 1. 1 ⁇ r ⁇ 10 (18)
  • FIG. 1 is a cross-sectional view of a cylindrical battery used in Examples.
  • Insulation sealing body made of polypropylene
  • Negative electrode can (battery can) doubles as negative electrode terminal
  • the sheet-like positive and negative electrodes are prepared by dispersing a positive electrode mixture or a negative electrode mixture in water.
  • the paste is made by coating the paste on a sheet-like current collector.
  • the positive electrode active material or negative electrode material which is a compound capable of inserting and extracting lithium
  • the positive electrode or negative electrode mixture also contains a conductive agent, a binder, a dispersing aid, a filler, and an ion conductive material, respectively. Agents, pressure boosters and various additives.
  • Examples of the method of adjusting the water-dispersible mixture paste include a method in which these substances are added and dispersed in water at a time, a method in which a dispersing aid is dispersed in water in advance, and a conductive agent is added thereto and dispersed. Any of the following methods can be used: pre-mixing the dispersing agent or dispersing agent and then dispersing it in water.
  • the conductive agent is mixed or kneaded with a liquid dispersing agent or a highly concentrated solution of the dispersing agent and then dispersed in water. The method is preferred.
  • a mixing stirrer such as a kneader, a mixer, a homogenizer, a dissolver, a planetary mixer, a paint shaker, and a sand mill
  • a mixing stirrer such as a kneader, a mixer, a homogenizer, a dissolver, a planetary mixer, a paint shaker, and a sand mill
  • the conductive agent comprising a carbon compound that can be used in the present invention include natural graphite such as flaky graphite, flaky graphite and earthy graphite, graphites such as artificial graphite, channel black, furnace black, lamp black, and thermal black.
  • carbon blacks such as acetylene black and Ketjen black, and carbon fibers. Of these, carbon black is more preferred, and acetylene black is particularly preferred.
  • acetylene black is particularly excellent in conductivity and electrolyte permeability, and is a good conductive agent.However, on the other hand, acetylene black has poor wettability with water. It is difficult to disperse well in the mixture paste. Furnace black, graphite and the like are more excellent in dispersibility in an organic solvent, but have high cohesiveness in water and are not sufficiently dispersible.
  • Japanese Patent Application Laid-Open No. 2-158055 discloses a method in which a manganese dioxide active material and a conductive agent of carbon powder are mixed in advance to form a mixed powder, and then a mixture paste for coating is prepared. ing. However, even with this method, the dispersibility of the conductive agent in water is remarkably inferior to that of the active material. The dispersion state of the conductive agent is still insufficient, and the conductive agent partially forms aggregates in the dispersed paste.
  • a fatty acid having 6 to 22 carbon atoms (eg, caproic acid, caprylic acid, caproic acid, lauric acid, myristic acid, palmitic acid, stearic acid) Acid, behenic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, stearolic acid, etc.), the above fatty acids and alkali metals (Li, Na, K, etc.) or alkaline earth metals (Mg, Ca, Ba), metal couplings such as aliphatic amines, silane coupling agents, titanium coupling agents, higher alcohols, polyalkylene oxide phosphate esters, alkyl phosphate esters, alkyl borate esters, Compounds such as sarcosinates, polyalkylene oxide esters, lecithin, alkylenoxide, glyce Non
  • Examples include water-soluble polymers such as polyvinyl alcohol or modified products thereof, polyacrylamide, polyhydroxy (meth) acrylate, and styrene-maleic acid copolymer.
  • water-soluble polymers such as carboxymethylcellulose or less are preferable because the conductive agent composed of a carbon compound is dispersed particularly well, and carboxymethylcellulose, polyvinyl alcohol or a modified product thereof, and a styrene-maleic acid copolymer are particularly preferable.
  • These dispersing aids can be used alone or in combination of two or more.
  • a known dispersing machine and a known dispersing method such as a mixer and a homoplenderer can be used.
  • These conductive agent dispersions can be used in the preparation of both positive and negative electrode sheets, but it is preferable to use them for both electrodes to form a battery.
  • carbon compounds can be used alone or in combination of two or more.
  • conductive fibers such as metal fibers, metal powders such as copper, nickel, aluminum and silver; conductive whiskers such as zinc oxide and potassium titanate; titanium oxide;
  • An organic conductive material such as a conductive metal oxide or a polyphenylene derivative can be used alone or in combination as a mixture thereof.
  • the amount of the conductive agent made of a carbon compound is not particularly limited, but is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight in the mixture of each electrode.
  • the amount of the dispersing agent is not particularly limited, but is preferably 1 to 50% by weight, and more preferably 2 to 20% by weight, based on the amount of the conductive agent. If the amounts of these conductive agents and dispersion aids are too large, the electrode volume will increase and the capacity per unit volume or unit weight of the electrode will decrease, and if too small, the conductivity or dispersibility of the conductive agent will decrease, The capacity decreases.
  • the total amount is preferably within this range.
  • a non-aqueous secondary battery with excellent charge / discharge characteristics such as discharge capacity and cycle life can be obtained by adjusting the pH of the water-dispersed mixture paste adjusted when manufacturing the negative electrode to an appropriate range.
  • the pH of the water-dispersed mixture paste is included in the negative electrode material, conductive agent, binder, dispersant, filler, ionic conductive agent, and pressure increase It depends on the type and amount of the agent and various additives. By appropriately selecting and adjusting these, a water-dispersed mixture paste having a preferable pH can be obtained, and the nonaqueous secondary battery can have excellent charge / discharge characteristics.
  • the preferable range of pH is 5 or more and 10 or less, more preferably 5.5 or more and 9.5 or less, and further preferably 6 or more and 9 or less.
  • the pH of the aqueous dispersion mixture paste may be adjusted by adding a pH regulator.
  • the pH adjuster may be added simultaneously with the mixture component, or may be added later to the completed water-dispersed mixture paste.
  • Acids include sulfuric acid, hydrochloric acid, nitric acid, nitric acid, oxalic acid, moth acid, etc.
  • alkalis include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, sodium hydrogen carbonate, ammonia, etc. Can be used.
  • a preferred temperature range is 5 ° C or more and 80 ° C or less, more preferably 5 ° C or more and 50 ° C or less.
  • a preferred time range is within 7 days, more preferably within 4 days.
  • the preferable thickness of the mixture of the positive and negative electrodes which does not impose a burden on any one of the positive and negative electrodes and shortens the charge / discharge cycle life, is 5 to 5 when the battery is assembled. 80 i / m, and the thickness of the mixture on one surface of the positive electrode is 90 to 180 m. More preferably, the thickness of the mixture on one side of the negative electrode is 10 to 80 m, and the thickness of the mixture on one side of the positive electrode is 100 to 180 m.
  • a negative electrode material As the compound capable of inserting and releasing lithium (hereinafter, referred to as a negative electrode material) used in the negative electrode sheet of the present invention, a carbonaceous compound, an inorganic oxide, an inorganic chalcogenide, and an organic polymer compound are preferable. These may be used alone or in combination. For example, a combination of a carbonaceous compound and an inorganic oxide is exemplified. These negative electrode materials are preferable because they provide high capacity, high discharge potential, high safety, and high cycle effects.
  • the carbonaceous compound is selected from natural graphite, artificial graphite, vapor-grown carbon, organically calcined carbon, and the like, and preferably contains a graphite structure. Further, the carbonaceous compound may contain 0 to 10% by weight of a heterogeneous compound, for example, B, P, N, S, SiC, B4C, in addition to carbon.
  • a heterogeneous compound for example, B, P, N, S, SiC, B4C
  • Examples of the element forming the inorganic oxide or the inorganic chalcogenide include a transition metal, a metal belonging to Groups 13 to 15 of the periodic table, and a metalloid element.
  • transition metal compound a single or composite oxide of V, Ti, Fe, Mn, Co, Ni, Zn, W and Mo, or chalcogenide is particularly preferable.
  • organic polymer compound polyacene, polyacetylene, polypyrrole, and derivatives thereof which can be doped with lithium ions can be used.
  • the negative electrode material preferably used in the present invention is an inorganic oxide or an inorganic chalcogenide containing a Group 13 to Group 15 element of the Periodic Table, and the Group 13 to Group 15 element of the Periodic Table is B, Al, Ga, In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi.
  • These compounds include G e O, G eO 2 , S nO, S n S, S nO 2 ,
  • the above-mentioned composite chalcogen compound and composite oxide are mainly amorphous when incorporated into a battery.
  • amorphous as used herein means an X-ray diffraction method using CuK rays at a value of 20 to 40 from 20 °. It is a substance having a broad scattering band having a peak at the top, and may have a crystal diffraction line.
  • the strongest intensity of the crystalline diffraction line observed at a value of 20 to 40 ° or more and 70 ° or less is the peak of a broad scattering band observed at a ⁇ ⁇ value of 20 ° or more and 40 ° or less.
  • Diffraction line intensity It is preferably not more than 500 times, more preferably not more than 100 times, particularly preferably not more than 5 times, and most preferably not having a crystalline diffraction line.
  • the compounds of the general formula (3) are more preferred.
  • M 2 is the same as M 2 in general formula (2).
  • p and Q represent 0.1 l ⁇ p + q ⁇ 4 and 0.05 ⁇ p ⁇ 21.1 r10.
  • Examples of the complex oxides of the general formulas (1) to (3) include, but are not limited to, the following.
  • a charge / discharge cycle characteristic is improved, a high discharge voltage and a high capacity are obtained.
  • a non-aqueous secondary battery with high safety and excellent rapid charging characteristics can be obtained.
  • a particularly excellent effect can be obtained when a compound containing Sn and having two valences of Sn is used as the negative electrode material.
  • the valence of Sn can be determined by a chemical titration operation. For example, Physics and Chemistry of Glasses Vol.8 No.
  • the metal Sn zero-valent Sn
  • the metal Sn has a peak at an extremely low magnetic field around 7000 ppm with respect to Sn (CH 3 ) 4 ,
  • group 1 elements (1 ⁇ 3,, 111), ji3), group 2 elements (Be, Mg, Ca, Sr, Ba), transition metals (Sc, Ti, V, C r, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, lanthanide metals, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg) and Group 17 elements of the periodic table (F, C1, Br, I) can be included. Further, it may contain a dopant of various compounds that increase electron conductivity (for example, compounds of Sb, In, and Nb).
  • group 2 elements Be, Mg, Ca, Sr, Ba
  • transition metals Sc, Ti, V, C r, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, lanthanide metals, Hf, Ta
  • the amount of the compound to be added is preferably 0 to 20 mol%.
  • a method for synthesizing the complex chalcogen compounds and complex oxides represented by the general formulas (1) to (3) in the present invention there are a firing method and a solution method, but the firing method is preferable. The firing method will be described below.
  • the firing conditions are preferably a heating rate of not less than 4 ° C. per minute and not more than 2000 ° C., more preferably not less than 6 and not more than 2000. It is particularly preferably at least 10 ° C. and at most 200, and the firing temperature is preferably at least 250 and at most 150, more preferably at most 350.
  • 0 ° C. or more and 150 ° C. or less particularly preferably 500 ° C. or more and 150 ° C. or less
  • the firing time is 0.01 hour or more and 100 hours or less. It is preferred, more preferably not more than 5 hours or 7 0 h 0., a country preferably not more than 2 0 hours 1 hour or more, and as the cooling rate below per minute 2 ° C or more 1 0 7
  • the heating rate in the present invention is the average rate of temperature rise from “50% of the firing temperature (in ° C)” to “80% of the firing temperature (in ° C)”. Is the average rate of temperature drop from "80% of firing temperature (indicated by ° C)" to "50% of firing temperature (indicated by)”.
  • the temperature may be cooled in a baking furnace, or may be taken out of the baking furnace and put into, for example, water for cooling. Also ceramic processing (Gihodo Publishing)
  • the firing gas atmosphere is preferably an atmosphere having an oxygen content of 5% by volume or less, and more preferably an inert gas atmosphere.
  • the inert gas include nitrogen, argon, helium, krypton, and xenon.
  • the average particle diameter (D) of the negative electrode active material of the present invention is 0.7 to 25 // m, Preferably, 60% or more of the total volume is 0.5 to 30 m. More preferably, the average particle size (D) is 0.8 to 20 m, and 75% or more of the total volume is 0.5 to 30 / m. Particularly preferably, the average particle size (D) is 1.0 to 16 / im, and 90% or more of the total volume is 0.5 to 30 zm. However, it goes without saying that the particle size of the negative electrode active material used does not exceed the thickness of the mixture on one side of the negative electrode.
  • the average particle size as referred to herein is the median size of the primary particles, and is measured by a laser diffraction type particle size distribution measuring device.
  • the volume occupied by the particle group having a particle size of 1 / m or less of the negative electrode active material of the present invention is 30% or less of the total volume
  • the volume occupied by the particle group having a particle size of 20 / zm or more is the total volume. It is preferably at most 25%. More preferably, the volume occupied by the particle group having a particle size of 1 // m or less is 20% or less of the total volume, and the volume occupied by the particle group having a particle size of 20 m or more is 14% or less of the total volume. is there.
  • the volume occupied by the particle group having a particle size of 1 or less is 10% or less of the total volume
  • the volume occupied by the particle group having a particle size of 20 m or more is 10% or less of the total volume.
  • the specific surface area of the negative electrode active material of the present invention is 0. 1 ⁇ 1 0 m 2 Zg, even more preferably from 0.1 to 81 ⁇ 2 8, particularly preferably 0. ZT rr ⁇ Zg is there.
  • the measurement can be performed by the usual BET method.
  • a method in which the calcined material or the coarsely pulverized material is pulverized and Z or classified.
  • a grinding method a dry grinding method and a wet grinding method using a solvent as a medium are used.
  • Solvents used in the wet pulverization method include, for example, water, toluene, xylene, methanol, ethanol, n-propanol, isopropyl alcohol, isobutyl alcohol, acetone, methyl ethyl ketone, Butyl acetate, N, N
  • the amount of the solvent used is preferably 1/10 to 20 times, more preferably 1 to 5 to 10 times the powder material.
  • the pulverization method is preferably a dry pulverization method or a wet pulverization method using Z or water as a medium.
  • crushers include mortars, ball mills, circular vibrating ball mills, Vibration mill, surgical ball mill, planetary ball mill, swirling air jet mill, pot mill, centrifugal mill, tower mill, sand mill, attritor, centrimill, dyno mill, roller mill, pin mill, tube mill, rod mill, joyo
  • a pulverization method using a swirling airflow type jet miner, a ball mill, or a vibrating ball mill is preferable.
  • it is preferable to classify the particles to a predetermined particle size and an air classifier (for example, a cyclone) or a sieve is preferably used.
  • the temperature for pulverization or classification is preferably 5 to 150 ° C, more preferably 10 to 90 ° C, depending on the material used and the type of solvent.
  • the heat treatment atmosphere may be air, an inert gas atmosphere (eg, argon gas, nitrogen gas, helium gas, etc.), an active gas atmosphere such as an oxygen gas or a hydrogen gas, or a pressurized or reduced pressure atmosphere. Is in air, in an inert gas atmosphere, or in a reduced pressure atmosphere.
  • the term “before forming the electrode mixture” as used herein means, for example, before mixing with a binder, a conductive agent, or the like, and indicates that heat treatment is performed only with the negative electrode active material.
  • the time of the heat treatment is preferably from 90 to immediately before, and more preferably 30 to immediately before, which constitutes the electrode mixture.
  • the heat treatment temperature is more preferably from 120 to 350 ° C, and particularly preferably from 150 to 300 ° C.
  • the heat treatment time is preferably 0.5 to 120 hours, more preferably 1 to 80 hours, and particularly preferably 1 to 48 hours.
  • the positive electrode active material used in the positive electrode sheet of the present invention may be any compound capable of inserting and extracting lithium ions, and is particularly selected from transition metal oxides and transition metal chalcogenides.
  • transition metal oxides are preferable, and transition metal oxides containing lithium are particularly preferable.
  • Preferred transition metals used in the present invention include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, and W.
  • manganese dioxide, vanadium pentoxide, iron oxide, and monoxide Preference is given to molybdenum, molybdenum sulfide, cobalt oxide, iron sulfide and titanium sulfide. These compounds can be used alone or in combination of two or more. Further, it can be used as a transition metal oxide containing lithium.
  • compounds that enhance ionic conductivity such as Ca 2+ , or amorphous network formers containing P, B, and Si (for example, P 20 5, L i P0 4, H 3 B0 3, B 2 0 3, S i 0 2 , etc.) and may be fired by mixing. Further, it may be mixed with an alkali metal ion such as Na, K, Mg or the like and / or a compound containing Si, Sn, A, Ga, Ge, Ce, In, Bi or the like, followed by firing.
  • the transition metal oxide containing lithium can be synthesized, for example, by firing a mixture of a lithium compound and a transition metal compound.
  • the positive electrode active material used in the present invention can be synthesized by a method in which a lithium compound and a transition metal compound are mixed and fired, or a solution reaction, but a firing
  • the positive electrode active material obtained by firing is water, acidic aqueous solution, alkaline aqueous solution, It may be used after washing with a solvent.
  • a method of chemically introducing lithium ions into the transition metal oxide a method of synthesizing lithium metal, a lithium alloy or butyllithium by reacting with the transition metal oxide may be used.
  • the average particle size of the positive electrode active material used in the present invention is not particularly limited.
  • the volume of 0.5 to 30 ⁇ m particles is 95% or more. More specifically, the volume occupied by the particle group having a particle size of 3 or less is 18% or less of the total volume, and the volume occupied by the particle group of 15 to 25 m is 18% or less of the total volume. More preferably, the volume occupied by the particle group having a particle size of 3 m or less is 17% or less of the total volume, and the volume occupied by the particle group having a size of 15 m or more and 25 m or less is the total volume.
  • the volume occupied by the particle group having a particle size of 3 or less is 16% or less of the total volume and the volume occupied by the particle group having a particle size of 15 ⁇ m or more and 25 or less is more preferable. However, it must be less than 2% of the total volume.
  • D (25%) 3 to 7 m
  • D (50%) 3 to 7 m
  • the positive electrode active material of the present invention does not substantially have a particle size distribution of 1 xm or less or 25 m or more.
  • having substantially no particle size distribution means that the volume fraction of particles of 1 m or less or 25 m or more is 3% or less. More preferably, the volume fraction of particles of 25 m or more is 2% or less, and particularly preferably, the volume fraction of particles of 1 m or less or 25 m or more is 0%.
  • the specific surface area is not particularly limited, it is preferably 0 8 ⁇ ⁇ ⁇ ⁇ 2 // g by the 8-patch method. 0. lm more preferably 2 // g to 2 0 m 2 Zg, further preferred properly is 0.1111 2 Bruno ⁇ 5111 2 Bruno g, particularly preferably 0. 2 m 2 / g ⁇ 1 n ⁇ Z g.
  • the pH of the supernatant is preferably 7 or more and 12 or less.
  • the calcination temperature is preferably 500 to 150, more preferably 700 to 120 ° C, and particularly preferably. It is 750 to 100 ° C.
  • the firing time is preferably 4 to 30 hours, more preferably 6 to 20 hours, and particularly preferably 6 to 15 hours.
  • the surface of the positive electrode active material or the negative electrode material of the oxide used in the present invention can be coated with an oxide having a chemical formula different from that of the positive electrode active material or the negative electrode material used.
  • the surface oxide is preferably an oxide containing a compound that dissolves in both acidity and alkalinity.
  • a metal oxide having high electron conductivity is preferable.
  • dopant in P b 0 2, F e 2 0 3, S n 0 2, I n 2 0 3, etc. Z n 0 or child these oxides Bok e.g., different valency oxide Metal, a halogen element, etc.
  • Particularly preferred are S i 0 2, S n 0 2, F e 2 0 3, Z n O, P b 0 2.
  • the amount of the surface-treated metal oxide is preferably 0.1 to 10% by weight based on the positive electrode active material or the negative electrode material. Further, 0.2 to 5% by weight is particularly preferable, and 0.3 to 3% by weight is most preferable.
  • the surface of the positive electrode active material or the negative electrode material can be modified.
  • the surface of a metal oxide may be treated with an esterifying agent, treated with a chelating agent, or treated with a conductive polymer, polyethylene oxide, or the like.
  • the surface of the negative electrode material can be modified.
  • treatment may be performed by providing an ion-conductive polymer-polyacetylene layer.
  • the positive electrode active material and the negative electrode material may be subjected to a purification step such as washing with water.
  • a polysaccharide As the binder used in the water-dispersible paste of the present invention, a polysaccharide, a thermoplastic resin, a rubbery elastic polymer, or a mixture thereof can be used.
  • Preferred examples are starch, polyvinyl alcohol, strength Ruboxyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-dieneter
  • examples include polymers (EPDM), sulfonated EPDM, styrene butadiene rubber, polybutadiene, fluororubber and polyethylene oxide.
  • the amount of the binder added is not particularly limited, but is preferably 1 to 50% by weight, and particularly preferably 2 to 30% by weight.
  • the distribution of the binder in the mixture may be uniform or non-uniform.
  • the binder agent preferably used in the present invention is a polymer having a decomposition temperature of 30 (TC or more.
  • the decomposition temperature is a temperature at which the weight of the polymer decreases when heated in vacuum.
  • the decomposition temperature of polyethylene is 335 to 450.
  • SL Madorsky et al. Used a thermobalance to accurately compare the thermal stability of polymers. Isothermal pyrolysis of the polymer in a vacuum to determine the relationship between the weight loss rate after 30 minutes and the temperature, and determine the half-life temperature (Th) at which the weight loss rate reaches 50% (for example, SPEJ, 17 windings) According to this, the polyethylene has a Th of 406 ° C.
  • the decomposition temperature defined in the present invention corresponds to T. ⁇ Polymers having a decomposition temperature (Th) of at least 300 ° C. are preferred as the binder of the present invention.
  • the resin include polyethylene, polypropylene, epoxy resin, polyester, fluorine resin, etc., and fluorine resin is particularly preferable.
  • the fluorine resin is described in JIS690 “Plastic terms”. As described above, this is a general term for resins having a carbon-fluorine bond in the molecule of the polymer.
  • PVDF Polyvinylidene fluoride
  • FEP Tetrafluoroethylene-hexafluoropropylene copolymer
  • the above polymer may be further copolymerized with another ethylenically unsaturated monomer.
  • the copolymerizable ethylenically unsaturated monomers include, for example, acrylate, methacrylate, vinyl acetate, acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, butadiene, styrene, N-vinylpyrrolidone, N-
  • the present invention is not limited to these, including vinyl pyridine, glycidyl methacrylate, hydroxymethyl methacrylate, and methyl vinyl ether.
  • the filter can use any fibrous material that does not cause a chemical change in the constructed battery.
  • polypropylene polymers, polyethylene-based polymers such as polyethylene, and fibers such as glass and carbon are used.
  • the amount of the filler is not particularly limited, but is preferably 0 to 30% by weight.
  • the ionic conductive agent those known as inorganic and organic solid electrolytes can be used, and the details are described in the section of the electrolytic solution.
  • the pressure booster is a compound for increasing the internal pressure as described later, and carbonate is a typical example.
  • the electrolyte is generally composed of a solvent and a lithium salt (anion and lithium cation) dissolved in the solvent. Solvents include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, getyl carbonate, methylethyl carbonate, arbutyrolactone, methyl formate, methyl acetate, 1,2-dimethoxetane, and tetrahydrofuran.
  • 2-methyltetrahydrofuran dimethylsulfoxide, 1,3 dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl- Aprotic organic solvents such as 2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, and 1,3-propane sultone; One or a combination of two or more of these can be used.
  • Lithium salt cations dissolved in these solvents include, for example, C 10 ⁇ , BF, PF 6 ⁇ , CF 3 SO, CF 3 C0 2- , As F 6- , SbF 6- , (CF 3 S0 2 ) 2 N ⁇ , B.o C 1-, (1,2-dimethoxetane) 2 CI O.-, Lower aliphatic carboxyl Acid ion, A 1 C 14 —, C 1-, Br—, I—, anion of a borane compound, and tetraphenyl borate ion; one or more of these may be used. it can. Especially, it is preferable to include a cyclic carbonate and a non-cyclic carbonate.
  • getyl carbonate dimethyl carbonate, and methylethyl carbonate.
  • ethylene carbonate and propylene carbonate are preferable to include getyl carbonate, dimethyl carbonate, and methylethyl carbonate.
  • propylene carbonate Natick DOO, 1, 2-dimethyl Tokishe Tan, L i CF 3 S0 3 dimethyl carbonate or GETS chill carbonate appropriately mixed electrolyte, L i C 10 4, L i BF Electrolytes containing 4 and or L i PF 6 are preferred. In those supporting salt, it is particularly preferred to include L i PF 6.
  • the amount of these electrolytes to be added to the battery is not particularly limited, but the required amount can be used depending on the amounts of the positive electrode active material and the negative electrode material and the size of the battery.
  • the concentration of the supporting electrolyte is not particularly limited, but is preferably 0.2 to 3 mol per liter of the electrolytic solution.
  • the following solid electrolyte can be used in combination.
  • Solid electrolytes are classified into inorganic solid electrolytes and organic solid electrolytes.
  • Well known inorganic solid electrolytes include Li nitrides, halides, and oxyacid salts. Among them, L i 3 N, L i I, L i 5 NI 2 , L i 3 N_L il-L i OH, L and S i 0 4 , L i 4 S i O ⁇ -L i o L i OH, x L i 3 PO *-(1-x) L i S 0, L i 2 S i S 3 , phosphorus sulfide compounds, etc. are effective.
  • the organic solid electrolyte includes a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative or a polymer containing the derivative, a polymer containing an ion dissociating group, a polymer containing an ion dissociating group, and A polymer matrix material containing a mixture of electrolytes, a phosphate ester polymer, and an aprotic polar solvent is effective. Furthermore, there is a method of adding polyacrylonitrile to the electrolyte. A method using both an inorganic and an organic solid electrolyte is also known.
  • another compound may be added to the electrolyte for the purpose of improving the discharge / charge / discharge characteristics.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexanoic acid triamide, ditrobenzene derivative, sulfur, quinonimine dye, N-substituted oxazolidinone and N, N '- substituted Lee Midarijinon, ethylene glycol di al kill ether, quaternary Anmoniumu salts, polyethylene glycol, pyrrole, 2-main butoxy ethanol, a 1 C 1 3, conductive polymer electrode active monomer material one, triethylene phosphoramide Amides, trialkylphosphines, morpholines, aryl compounds with carbonyl groups, crown ethers such as 12-crown-14, hexamethylphosphoric triamide and 4-alkylmorpholines, bicyclic Tertiary amine,
  • a halogen-containing solvent such as carbon tetrachloride, Ethylene trifluoride chloride can be included in the electrolyte.
  • carbon dioxide gas can be included in the electrolytic solution to make it suitable for high-temperature storage.
  • the mixture of the positive electrode and the negative electrode can contain a lysate or an electrolyte.
  • a method is known in which the ion-conductive polymer, nitromethane, and an electrolytic solution are included.
  • an insulating microporous thin film having a high ion permeability, a predetermined mechanical strength, and an insulating property is used. Further, it is preferable to have a function of closing the holes at 80 ° C. or higher and increasing the resistance. Sheets and non-woven fabrics made of polyolefins such as polybrylene and Z or polyethylene or glass fibers due to their hydrophobicity and organic solvent resistance are used.
  • a range generally used as a battery separator is used. For example, 0.01 to 1 O jwm is used.
  • the thickness of the separator is generally used in the range of the battery separator. For example, 5 to 300 ⁇ m is used.
  • the method of forming the pores may be a dry method, a drawing method, a solution, a solvent removing method, or a combination thereof.
  • the current collector of the electrode active material any electronic conductor that does not cause a chemical change in the configured battery may be used.
  • the positive electrode in addition to materials such as stainless steel, nickel, aluminum, titanium, and carbon, those obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium, or silver are used. Particularly, aluminum or aluminum alloy is preferable.
  • the anode is made of stainless steel, nickel, copper, titanium, aluminum, carbon, etc., as well as copper, stainless steel with carbon, nickel, titanium or silver treated on the surface, A 1 — C d alloy or the like is used. Particularly, copper or copper alloy is preferable. Oxidation of the surface of these materials is also used. In addition, it is desirable to make the current collector surface uneven by surface treatment.
  • As the shape in addition to oil, a film, a sheet, a net, a punched thing, a glass body, a porous body, a foamed body, a molded body of a fiber group, and the like are used.
  • the thickness is not particularly limited, but a thickness of 1 to 500 // m is used.
  • Battery shape is coin, button, seat, cylinder, flat, corner Also applicable to
  • a method for drying or dewatering pellet pellets generally employed methods can be used.
  • hot air, vacuum, infrared rays, far infrared rays, electron beams and low-humidity air alone or in combination The temperature is preferably in the range of 80 to 350 ° C, particularly preferably in the range of 100 to 250 ° C.
  • the water content of the whole battery is preferably 200 ppm or less, and the positive electrode mixture, the negative electrode mixture and the electrolyte are each preferably 500 ppm or less from the viewpoint of cycleability.
  • a method for pressing pellets and sheets As a method for pressing pellets and sheets, a method generally used can be used, and a die press method and a calendar press method are particularly preferable.
  • the pressing pressure is not particularly limited, but is preferably 0.2 to 3 tZcm 2 .
  • the breathing speed in the calendar press method is preferably from 0.1 to 50 mZ.
  • the pressing temperature is preferably room temperature to 200 ° C.
  • the ratio of the width of the negative electrode sheet to the width of the positive electrode sheet is preferably 0.9 to 1.1. In particular, 0.95 to 0 is preferable.
  • the content ratio between the positive electrode active material and the negative electrode material varies depending on the compound type and the mixture formulation, and thus cannot be limited. However, it can be set to an optimal value from the viewpoint of capacity, cycleability, and safety.
  • a safety valve can be used as a sealing plate.
  • various conventionally known safety elements may be provided. For example, fuses, bimetals, PTC elements, and the like are used as overcurrent prevention elements.
  • a method of cutting the battery can a method of cracking a gasket, a method of cracking a sealing plate, or a method of cutting with a lead plate can be used.
  • the charger may be provided with a protection circuit incorporating measures for overcharging or overdischarging, or may be connected independently.
  • a method of interrupting the current by increasing the internal pressure of the battery can be provided.
  • a compound capable of increasing the internal pressure can be contained in the mixture or the electrolyte. Examples of the compound raising the internal pressure, L i 2 C0 3, L i HC0 3, N a 2 C0 3, N a HC0 3, and carbonates, such as C a COa, MgC0 3 and the like.
  • a metal or alloy having electrical conductivity can be used for the can or the lead plate.
  • metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum or alloys thereof are used.
  • Known methods eg, DC or AC electric welding, laser welding, ultrasonic welding
  • Conventionally known compounds and mixtures such as asphalt can be used as the sealing agent for sealing.
  • non-aqueous secondary battery of the present invention is not particularly limited.
  • a color notebook computer a black-and-white notebook computer, a sub-note computer, a pen-input computer, a pocket (palm-top) computer
  • Note-type word processor pocket word processor, e-book breaker, mobile phone, cordless phone handset, pager, handy terminal, mobile fax, mobile phone copy, mobile printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CDs, minidiscs, electric shavers, electronic translators, car phones, transceivers, power tools, electronic organizers, calculators, memory cards, tape recorders, radios, backup power supplies, memory cards, etc. That.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game machines, road conditioners, eyeglasses, watches, strobes, cameras, and medical equipment (pacemakers, captive devices, shoulder massagers, etc.) Is mentioned. Furthermore, it can be used for various types of munitions and space. It can also be combined with other secondary batteries, solar cells or primary cells.
  • the preferred combination of the present invention is preferably a combination of the above-mentioned chemical materials and preferred components of battery components.
  • the positive electrode current collector is made of stainless steel or aluminum, and has a net, sheet, foil, or lath shape.
  • Anode materials include lithium metal, lithium alloy (Li-A1), carbonaceous compounds, and oxidized Things (L i CoV0 4, Sn0 2 , SnO, S i O, Ge0 2, GeO, S n S i 0 3, S n S i o. 3 A 1 0 ⁇ , B o 2 P o. 3 0 3. 2), sulfides (T i S 2, SnS 2 , SnS, Ge S 2, Ge S) it is preferred to use at least one compound, and the like.
  • the negative electrode current collector is made of stainless steel or copper, and has a net, sheet, foil, lath, and other shapes.
  • a carbon material such as acetylene black or graphite may be mixed as an electron conductive agent.
  • a carbon material such as acetylene black or graphite may be mixed as an electron conductive agent.
  • a carbon material such as acetylene black or graphite
  • the binder fluorinated thermoplastic compounds such as polyvinylidene fluoride and polyfluoroethylene, polymers containing acrylic acid, styrene butadiene rubber, and elastomers such as ethylene propylene terpolymer can be used alone or in combination.
  • ethylene carbonate as an electrolytic solution
  • a combination of cyclic and non-cyclic carbonates such as getyl carbonate and dimethyl carbonate, or an ester compound such as ethyl diethyl carbonate, and Li PF 6 as a supporting electrolyte
  • the separator polypropylene or polyethylene alone or a combination thereof is preferable.
  • the battery can be in the form of coin, button, cylinder, flat or square. It is preferable that the battery is provided with a means (eg, an internal pressure release type safety valve, a current cutoff type safety valve, and a separator that increases resistance at high temperatures) to ensure safety against malfunction.
  • the following compounds were used as active materials for the positive and negative electrodes, respectively. In each case, particles having a diameter exceeding 10 / im were removed by sieving.
  • Acetylene black (Denka Black manufactured by Denki Kagaku Co., Ltd.) 10 parts by weight, 60 parts by weight of a 2% by weight aqueous solution of carboxymethylcellulose are premixed in a planetary mixer for 5 minutes, and 30 parts by weight of water are added.
  • the conductive agent dispersion was prepared by further stirring and mixing for 20 minutes.
  • This mixture paste is referred to as “positive electrode paste 1”.
  • the mixture-dispersed pastes prepared using the positive electrode active materials (2) and (3) are referred to as a positive electrode paste 2 and a positive electrode paste 3, respectively.
  • the mixture dispersion paste prepared in the same manner as the positive electrode paste 1 using the positive electrode active material (1) and sodium oleate as a dispersing agent is used as the positive electrode paste 4.
  • a cathode paste 5 using polyacrylic acid as a dispersing aid is used.
  • a mixture dispersion paste prepared in the same manner as the positive electrode paste 1 using graphite (Lonza Graphite KS-6) as a conductive agent is used as the positive electrode paste 6.
  • This conductive agent dispersion 1 0 0 part by weight, the negative electrode active material (1); S i S n0 3 ( a mixture of S i 0 2 and S nO, calcined for 2 hours at 1 0 0 0 ° C in an argon atmosphere Synthesized, pulverized, with a center particle size of 2 m) in an amount of 200 parts by weight, 10 parts by weight of polyvinylidene fluoride as a binder, and 10 parts by weight of water, and stirred in a planetary mixer for 20 minutes. The mixture was stirred and mixed to obtain a negative electrode mixture paste. This mixture-dispersed paste is referred to as negative electrode paste 1.
  • pastes prepared using the negative electrode active materials (2) to (17) are used as negative electrode pastes 2 to 17, respectively.
  • a negative electrode paste 51 was prepared using the negative electrode active material (1) and a styrene-maleic acid copolymer as a dispersing aid, and prepared in the same manner as the negative electrode paste 1.
  • a negative electrode paste 52 was prepared by using a modified polyvinyl alcohol (Kuraray Povar MP-103) as a dispersing aid.
  • the preparation of the mixture having the same composition as the positive electrode mixture dispersion paste 1 of the present invention was carried out by a single stirring and mixing without preparing the dispersion of the conductive agent in advance. That is, acetylene 100 parts by weight of a rack, 60 parts by weight of a 2% by weight aqueous solution of carboxymethylcellulose, 200 parts by weight of a positive electrode active material; 200 parts by weight of LiCo02 (center particle size: 5 m), an aqueous dispersion of a binder ( (Solid content: 50% by weight) and 50 parts by weight of water were added thereto, followed by stirring and mixing for 60 minutes or 180 minutes in a planetary mixer to obtain a positive electrode mixture-dispersed paste. These are referred to as positive electrode pastes 101 and 102, respectively.
  • the preparation of the mixture having the same composition as that of the negative electrode mixture dispersion paste 1 of the present invention was carried out by one stirring and mixing using the same mixer and without previously preparing the dispersion of the conductive agent. That acetylene black 1 0 part by weight, graphite (KS- 6) 2 0 parts by weight, concentration of 2 wt% carboxymethyl cellulose solution 5 0 parts by weight, an anode active material; the S i S n 0 3 2 0 0 parts by weight, 10 parts by weight of polyvinylidene fluoride and 30 parts by weight of water were added as a binder, and the mixture was stirred and mixed for 60 minutes or 180 minutes in a planetary mixer to obtain a negative electrode mixture paste. These are referred to as negative electrode pastes 101 and 102, respectively.
  • Tables 1 and 2 below show the average particle size data indicating the dispersibility of the mixture dispersion paste adjusted above. It also shows the permeability of the mixture when these mixture pastes were filtered through a 30-fim micropore filter.
  • the mixture of the present invention in which the dispersion of the conductive agent is prepared in advance has a shorter dispersion time, that is, a smaller average particle size with less power compared to the mixture prepared for comparison, and It can be seen that a better dispersion state is obtained by suppressing the aggregation of the particles. Further, the residue on the filter when each comparative mixture paste was filtered was analyzed, and it was found that the paste was a carbon compound aggregate. Such a residue is not observed in the mixture paste of the present invention, and it can be seen that conductive agents such as acetylene black and graphite made of a carbon compound are well dispersed. Table 1 Example Positive electrode paste Conductive agent Shoge 1 1 1 1 1--t ⁇ ⁇ £ No.
  • the positive electrode mixture paste prepared above was applied to both sides of a 30 m-thick aluminum foil current collector with a blade coater and dried.Then, it was compression-molded with a roller press and cut into a predetermined size. A positive electrode sheet was prepared. The thickness of the sheet after compression molding was set at 220 2m. Further, it was sufficiently dehydrated and dried with a far-infrared heater in a dry box (dry air having a dew point of 150 to 170 ° C) to prepare a positive electrode sheet.
  • the prepared negative electrode mixture paste was applied to a 20 / im copper foil current collector, and a negative electrode sheet was prepared in the same manner as in the preparation of the positive electrode sheet.
  • the mixture paste was adjusted by mixing and mixing for 60 minutes in the same manner as the comparative mixture paste 101. As a result, a negative electrode sheet was prepared.
  • the positive electrode sheet, the microporous polypropylene film separator 1, the negative electrode sheet, and the separator were laminated in this order, and spirally wound.
  • the wound body was housed in a nickel-plated iron bottomed cylindrical battery can also serving as a negative electrode terminal. Further 1 mole / liter of E Ji Ren carbonate L i PF 6 as an electrolytic solution and 1, 2 - equal volumes mixture of dimethyl Tokishetan was injected into the battery can.
  • a cylindrical battery was fabricated by caulking the battery lid with the positive terminal through a gasket.
  • Table 3 shows the combinations of cathode and anode pastes and the capacity ratios in these batteries.
  • a mixture prepared by preparing in advance a dispersion of a conductive agent consisting of carbon compounds Cylindrical batteries using either one or both of the positive and negative sheets show lower capacity than the combination without either.
  • Negative electrode materials (1) to (10) were used as the negative electrode material and the positive electrode active material, respectively.
  • Negative electrode materials (1) to (10) were used as the negative electrode material and the positive electrode active material, respectively.
  • Negative electrode material (1) (7) SnS i 0 6 A l 0 3 B 0 3 P 0 2 O 3 6 acetylene black (electro-chemical (center particle Sa I's 5 ⁇ m) 200 parts by weight, as a conductive agent Denka Black Co., Ltd.) 10 Heavy Children, Graphite (Lonza Japan K
  • the negative electrode materials 8 and 9 using the negative electrode materials 8 and 9 and adding 0.5 parts by weight of lithium hydroxide as a pH adjuster together with the negative electrode material in advance, and adjusting the mixture mixture paste as above to obtain a negative electrode paste 108 and 109, and the case where 3 parts by weight of lithium hydroxide is added using the negative electrode material 8 is referred to as the negative electrode paste 208. Further, 1 part by weight of sodium carbonate as a pH adjusting agent was added to the negative electrode paste 8, and the mixture was further stirred and mixed for 5 minutes to obtain a negative electrode paste 308.
  • the negative electrode paste was kept at a constant temperature in a thermostatic water bath, and after a predetermined time, each was coated on both sides of a 20 / m-thick foil collector using a blade coater and dried. Thereafter, it was compression-molded by a roller press and cut into a predetermined size to form a strip-shaped negative electrode sheet.
  • the thickness of the sheet after compression molding was 90 jwm. Further, it was fully dehydrated and dried with a far-infrared heater in a dry box (dry air with a dew point of 150 ⁇ 70 ° C) to prepare a negative electrode sheet.
  • Positive active material (1) 200 parts by weight of LiCo02 (center particle size 5 // m), 10 parts by weight of acetylene black as a conductive agent (Denka Black manufactured by Electrochemical Co., Ltd.) 8 parts by weight of an aqueous dispersion (solid content: 50% by weight) of a copolymer of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile as a binder, and 2% by weight carboxymethyl cellulose aqueous solution as a dispersant 6 0 parts was preliminarily mixed in a planetary mixer for 5 minutes, 50 parts by weight of water was added, and the mixture was further stirred and mixed for 20 minutes to obtain a positive electrode mixture dispersed paste.
  • This mixture paste is referred to as “positive electrode paste 1”.
  • the mixture-dispersed pastes prepared using the positive electrode active materials (2) and (3) are referred to as positive electrode paste 2 and positive electrode paste 3, respectively.
  • the prepared positive electrode mixture pastes 1, 2, and 3 were each applied to a 30-jum aluminum foil current collector, and positive electrode sheets 1, 2, and 3 were formed in the same manner as the negative electrode sheet.
  • the negative electrode sheet, the microporous polypropylene film separator, the positive electrode sheet and the separator were laminated in this order, and the resultant was spirally wound.
  • the wound body was housed in an iron bottomed cylindrical battery can provided with nickel plating also serving as a negative electrode terminal. Further ethylene Kabone Bok and 1 1 mole Z 1 of L i PF 6 as an electrolytic solution was injected equal volume mixture of 2-dimethyl Tokishetan into the battery can. A battery with a positive electrode terminal was swaged via a gasket to make a cylindrical battery.
  • Tables 4 and 5 show the results of the cycle test when charging and discharging were performed at a current of 3.5 mA / m 2 per unit area of the electrode sheet and the combination of the anode and cathode sheets in these batteries.
  • the value is the capacity storage after 300 cycles. Retention,
  • Batteries manufactured using the negative electrode sheet using the negative electrode paste having a pH within the preferred range of the present invention used pastes with an excessively low pH. It has better cycle characteristics than batteries (batteries # 7, 8, and 12) or those using excessively high paste (battery # 10).
  • a pH adjusting agent was previously added to adjust the pH of the mixture paste to a preferable range (negative electrode paste 108, 109Z battery numbers 9, 13), Immediately after adjusting the mixture paste, a pH adjuster was added to make a preferred range (negative electrode paste 3 08 Z battery No. 11) compared to those without a PH adjuster (battery Nos. 8 and 12) And excellent cycle characteristics.
  • the positive electrode active material L i C o 0 2 8 7 parts by weight, were mixed at a ratio of graph eye preparative 9 parts by weight as a conductive agent, further N ip 0 1 LX 8 2 0 B ( manufactured by Nippon Zeon as a binder 3 parts by weight and 1 part of carboxymethylcellulose were added, and the slurry obtained by kneading with water as a medium was applied to both surfaces of a 20-thick aluminum foil support (current collector). After drying the applied material, it was compression-molded with a calender press to prepare a belt-shaped positive electrode sheet. Table 6 shows the thickness of the mixture on one side of the positive electrode sheet after compression molding.
  • Nickel and aluminum lead plates were welded to the ends of the negative electrode sheet and positive electrode sheet, respectively, and then heat-treated at 150 ° C for 2 hours in dry air with a dew point of 40 ° C or less. did.
  • the heat treatment was performed using a far infrared heater.
  • the heat-treated positive electrode sheet 5 (indicated by reference numeral 5 in FIG. 1), a microporous polypropylene film separator (Celgard 240) 3, a heat-treated negative electrode sheet 4 and a separator 3 are stacked in this order. I browsed it and wound it in a spiral.
  • the wound body was housed in a nickel-plated iron bottomed cylindrical battery can 2 also serving as a negative electrode terminal. Further, 1 mo 1 Norritol ⁇ Li PF 6 (a mixture of ethylene carbonate and getyl carbonate in a ratio of 2 to 8 by weight) was injected into the battery can as an electrolyte.
  • the battery lid 8 having the positive electrode terminal was caulked via the gasket 1 to produce a cylindrical battery.
  • the positive electrode terminal 8 was connected to the positive electrode sheet 5 and the battery can 2 was connected to the negative electrode sheet 4 by a lead terminal in advance.
  • Figure 1 shows a cross section of a cylindrical battery. 7 is a safety valve.
  • the completed battery was charged to 4.2 V at a current density of 1 mA / cm 2 and then discharged repeatedly to 2.7 V to perform a charge / discharge cycle test.
  • the discharge capacity was 60% of the initial value.
  • the number of cycles before reaching is defined as the charge / discharge cycle life.
  • the internal resistance of the battery at 1 kHz was also measured. The results are shown in Table 6. Table 6
  • the non-aqueous secondary battery of the present invention and the method for producing the same, it is possible to stably obtain excellent battery performance such as charge-discharge cyclability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 睿 非水二次電池とその製造方法 技術分野
本発明は、 放電電位、 放電容量及び充放電サイクル寿命等の充放電特性が 改善された非水二次電池に関するものであり、 特に水分散性の合剤ペースト を使用した電極を有する非水二次電池とその製造方法に関する。
背景技術
高放電電位、 髙放電容量の非水二次電池として、 ft近、 リチウムを吸蔵放 出するリチウムィォン電池が実用化されてきた。 リチウムを挿入放出できる 化合物である正極活物質あるいは負極材料は、 導電剤や結着剤とともにホモ ジナイザー、 プラネタリーミキサ一などの分散機を使用して分散媒中に分散 されて分散ペーストを形成し、 この分散ペーストを集電体上に塗布して乾燥 することによって電極シートを製造する。 分散媒としては非水溶媒を選択す る場合が多いが、 これは水による活物質などの直接の劣化や電池を組み立て たときの残留水分による電池性能の劣化を避けるためである。 し力、し、 有機 溶媒を用いる場合には、 作業環境、 排出などの環境問題、 均一な膜を作りに くいなどの問題があり、 水分散系で扱うことが求められている。
リチウムを挿入放出できる化合物である正極活物質あるいは負極材料、 特 に負極材料は水中では安定とはいえず、 非水二次電池の放電容量ゃ充放電サ ィクル性に悪影響を及ぼし問題となっていた。 特開平 1一 2 9 6 5 6 7号、 特開平 3— 1 4 5 0 7 1号、 特開平 3— 6 4 8 6 0号各公報には活物質を予 め水洗処理する方法が示されている。 しかしこれらの方法によっても放電特 性の向上は十分ではない。 水分散性の合剤ペーストを用いた場合に充放電ザ ィクルが劣化する理由はまだ明らかになっていないが、 先に述べた理由の他 に、 サイクル経時中の電池の内部抵抗を増大させる要因があることが示唆さ れている。
本発明の第一の目的は、 放電電位、 放電容量及び充放電サイクル寿命等の 充放電特性が改善された非水二次電池とその製造方法を提供することであり、 本発明の第二の目的は分散性を改良した水分散性の合剤ペーストを使用した 電極を有する非水二次電池とその製造方法を提供することであり、 本発明の 第三の目的は分散性を改良した合剤の水べ一ストの製造方法とこれを利用し た非水二次電池を提供することである。 更に本発明の第四の目的は分散性を 改良した合剤を用 L、た最適厚みの非水二次電池とその製造方法とを提供する と Cのる 0
発明の開示
本発明の課題は、 リチウムを吸蔵放出できる正極と負極およびリチウム塩 を含む非水電解質を電池容器に収納してなる非水二次電池に関し、 少なくと も、 リチウムを吸蔵放出できる活物質と、 炭素化合物からなる少なくとも一 種以上の導電剤とを含有する水分散合剤べ一ストを集電体上に塗布乾燥して なる該電極の少なくとも一つの電極の製造において、 該導電剤の少なくとも —種を分散助剤とともにあらかじめ水中に分散させた分散液を使用した該水 分散合剤ペーストから調整した電極を用いることを特徵とする非水二次電池 の製造方法により達成された。
以下に本発明の実施の形態について説明する。
( 1 ) リチウムを吸蔵放出できる正極と負極およびリチウム塩を含む非水 電解質を電池容器に収納してなる非水二次電池に関し、 少なくとも、 リチウ ムを吸蔵放出できる活物質と、 炭素化合物からなる少なくとも一種以上の導 電剤とを含有する水分散合剤ペーストを集電体上に塗布乾燥してなる該電極 の少なくとも一つの電極の製造において、 該導電剤の少なくとも一種を分散 助剤とともにあらかじめ水中に分散させた分散液を使用した該水分散合剤べ 一ストから調整した電極を用いることを特徴とする非水二次電池の製造方法。
( 2 ) 少なくともリチウムを吸蔵放出可能な活物質を含有する水分散合剤 ペーストを集電体上に塗布乾燥してなる負極の製造方法において、 該水分散 合剤ペース卜の p Hが 5以上 1 0以下であることを特徴とする非水二次電池 用負極シートの製造方法。
( 3 ) 少なくとも、 リチウムを吸蔵放出できる活物質と、 炭素化合物から なる一種以上の導電剤とを含有する水分散合剤べ一ストを集電体上に塗布乾 燥してなる正極シー卜と負極シート、 およびリチウム塩を含む非水電解質を 電池容器に収納してなる非水二次電池に於いて、 該正極シートと該負極シー トの少なくとも一方は、 該導電剤の少なくとも一種を分散助剤とともにあら かじめ水中に分散させた分散液を使用した該水分散合剤ペース卜から調整し た電極シートであることを特徴とする非水二次電池。
(4) 少なくとも、 リチウムを吸蔵放出できる活物質と、 炭素化合物から なる一種以上の導電剤とを含有する水分散合剤ペーストを集電体上に塗布乾 燥してなる正極シートと負極シート、 およびリチウム塩を含む非水電解質を 電池容器に収納してなる非水二次電池に於いて、 該負極シートに用いる水分 散ペース卜の pHが 5以上 1 0以下であることを特徴とする非水二次電池。
(5) 負極シートに用いる水分散ペース トの pHが 5以上 1 0以下である ことを特徴とする前記 (3)に記載の非水二次電池。
(6) シート状導電性支持体の両面に電極合剤を塗設または圧着して成る シート状の負極および正極を有する非水二次電池において、 電池組立て時の 該負極の片面の合剤厚みが 5〜 8 0 mであり、 かつ正極の片面の合剤厚み が 9 0〜1 8 0 jtzmであることを特徴とする非水二次電池。
(7) シート状導電性支持体の両面に電極合剤を塗設または圧着して成る シート状の負極および正極を有する非水二次電池において、 電池組立て時の 該負極の片面の合剤厚みが 5〜 8 0 mであり、 かつ正極の片面の合剤厚み が 9 0〜 1 8 0 //mであることを特徴とする前記 (3) 〜 (5) のいづれか 1項に記載の非水二次電池。
(8) あらかじめ水中に分散させた該導電剤のうちの少なくとも一種がァ セチレンブラックであることを特徴とする前記 (3) に記載の非水二次電池。
(9) 正極合剤中に含有される正極活物質の少なくとも一種が L i a MO b (ここで Mは、 その少なくとも一種が C o、 Mn、 N i、 V、 F eを含む 遷移金属、 a = 0. 2〜1. 2、 b= 1. 4〜 3 ) であることを特徴とする 前記 (3) 〜 (6) のいづれか 1項に記載の非水二次電池。
(1 0) 負極合剤中に含有される負極活物質の少なくとも 1種は、 周期律 表 IIIA、 IVA、 VA族元素から選ばれる一種以上の元素を含む酸化物およ びカルコゲン化合物から選ばれる化合物であることを特徵とする前記 ( 3 )
〜 (6) のいづれか 1項に記載の非水二次電池。
(1 1) 負極シートに用いる水分散ペーストの pHが 6以上 9以下である ことを特徵とする前記 (4) に記載の非水二次電池。
(1 2) 負極シー卜に用いる水分散ペース卜の温度を 5て以上 80°C未満 に保つこと特微とする前記 (4) または (1 1) に記載の非水二次電池。
(1 3) 負極シートに用いる水分散ペーストを調整後、 7日以内に集電体 上への塗布を行うことを特徴とする前記 (4) または (1 1) 、 (1 2) の いづれか 1項に記載の非水二次電池。
(1 4) 前記 (6) における負極の片面の合剤厚みが 1 0〜80 //mであ り、 かつ正極の片面の合剤厚みが 1 00〜 1 70 //mであることを特徴とす る前記 (6) に記載の非水二次電池。
(1 5) 前記 (1 0) の負極活物質が、 下記一般式 (1) で表されること を特徴とする前記 (1 0) に記載の非水二次電池。
一般式 ( 1 ) S nM'xOy
式中、 M' は、 S i、 Ge、 Pb、 B i、 Sb、 P、 B、 A l、 Asから 選ばれる少なくとも一種を表し、 x=0〜4、 y = 1〜 1 0の数字を表す。
(1 6) 前記 (1 0) の負極活物質が、 下記一般式 (2) で表されること を特徴とする前記 (1 0) に記載の非水二次電池。
一般式 (2) SnM2zOy
式中、 M2 は、 Ge、 Pb、 B i、 Sb、 P、 B、 A l、 A sから選ばれ る少なくとも一種を表し、 z = 0〜4、 y = 1〜 1 0の数字を表す。
(1 7) 前記 (1 0) の負極活物質が、 下記一般式 (3) で表されること を特徴とする前記 (1 0) に記載の非水二次電池。
一般式 (3) S n S i p 2 q Or
式中、 M2 は、 Ge、 Pb、 B i、 Sb、 P、 B、 A l、 Asから選ばれ る少なくとも一種を表し、 0, l≤p + q^4、 0. 05≤ p≤ 2 , 1. 1 ≤ r≤ 1 0である。 ( 1 8) 負極に用いる水分散合剤ペーストの pHが 5以上 1 0以下である ことを特徵とする前記 (1 ) に記載の非水二次電池用負極シートの製造方法 c
(1 9) 負極に用いる水分散ペーストの pHが 6以上 9以下であることを 特徴とする前記 (1 8) に記載の非水二次電池用負極シートの製造方法。
(2 0) 負極に用いる水分散ペース卜の温度を 5 以上 8 0°C未満に保つ ことを特徵とする前記 (1 8) または (1 9) に記載の非水二次電池用負極 シー卜の製造方法。
(2 1 ) 負極に用いる水分散ペーストを調整後、 7日以内に集電体上への 塗布を行うことを特徴とする前記 (1 8:) 〜 (2 0) のいづれか 1項に記載 の非水二次電池用負極シー卜の製造方法。
(2 2) 負極の片面の合剤厚みが 1 0〜 8 0 mであり、 かつ正極の片面 の合剤厚みが 1 0 0〜1 7 0 mであることを特徴とする前記 (1 ) または
(1 8) 〜 (2 1 ) のいずれか 1項に記載の非水二次電池の製造方法。
図面の簡単な説明
第 1図は、 実施例に使用した円筒型電池の断面図を示したものである。
1 ポリプロピレン製絶縁封口体
2 負極端子を兼ねる負極缶 (電池缶)
3 セパレーター
4 負極シート
5 正極合剤シート
6 電解液
7 安全弁
8 正極端子
9 PTC素子
1 0 封口板
1 1 絶縁リング
発明を実施するための最良の形態
以下本発明の技術について詳述する。 本発明の非水二次電池に用いられる 正、 負極、 特にシート状の正負極は、 正極合剤あるいは負極合剤の水分散べ ーストをシ一ト状の集電体上に塗設して作る。 正極あるいは負極合剤には、 それぞれリチウムを吸蔵放出することの出来る化合物である正極活物質ある いは負極材料の他に、 それぞれに導電剤、 結着剤、 分散助剤、 フィラー、 ィ オン導電剤、 圧力増強剤や各種添加剤を含むことができる。
水分散性の合剤ペース トの調整方法としては、 水中にこれらを一括添加し て分散させる方法、 分散助剤をあらかじめ水中に分散させて、 これに導電剤 を添加して分散させる方法、 導電剤、 分散助剤をあらかじめ混合してから水 中に分散させる方法のいずれでもよく、 導電剤を液状の分散助剤あるいは分 散助剤の高濃度溶液と混合あるいは混練してから水中に分散させる方法が好 ましい。
導電剤、 分散助剤の混合、 混練、 あるいは水中への分散にはニーダー、 ミ キサ一、 ホモジナイザー、 ディゾルバー、 プラネタリ ミキサー、 ペイン トシ ヱイカー、 サンドミルなどの混合擾拌機を適宜使用することができる。 本発明で使用できる炭素化合物からなる導電剤としては、 鱗状黒鉛、 鱗片 状黒鉛、 土状黒鉛などの天然黒鉛、 人工黒鉛などのグラフアイ ト類、 チャン ネルブラック、 ファーネスブラック、 ランプブラック、 サーマルブラック、 アセチレンブラック、 ケッチェンブラックなどのカーボンブラック類、 炭素 繊維などをあげることができる。 これらの中で、 カーボンブラックがより好 ましく、 アセチレンブラックが特に好ましい。
これらの炭素化合物はいずれも疎水的であり、 水分散ペース トを作るのが 困難である。 例えばアセチレンブラックは、 特に導電性、 電解質の通液性に 優れており、 良好な導電剤であるが、 一方で水に対しての濡れが悪く、 常用 の電極製造法においては活物質とともに水系の合剤ペース卜に良好に分散さ せるのが困難である。 また、 ファーネスブラックやグラフアイト等は有機溶 媒中では分散性により優れているが、 水中では凝集性が強く十分な分散性で はない。 特開平 2— 1 5 8 0 5 5号公報には二酸化マンガン活物質と炭素粉 末の導電剤とを予め混合して混合粉とした上で塗布用の合剤ペーストを調整 する方法が示されている。 しかし、 この方法によっても活物質に比して導電 剤の水中での分散性が著しく劣るため活物質が十分に分散された状態でも導 電剤の分散状態はいまだ不十分であり、 分散ペースト中で導電剤が一部凝集 体を形成してしまう。
従って、 本発明のように、 導電剤である炭素化合物は、 予め分散助剤と共 に水中に分散させたものを用いるのが有利である。
本発明において、 炭素化合物の分散に使用できる分散助剤としては、 炭素 数 6〜2 2の脂肪酸 (例、 カブロン酸、 力プリル酸、 カブロン酸、 ラウリ ン 酸、 ミ リスチン酸、 パルミチン酸、 ステアリン酸、 ベヘン酸、 ォレイン酸、 エライジン酸、 リノール酸、 リノレン酸、 ステアロール酸等) 、 上記脂肪酸 とアルカリ金属 (L i、 N a、 K等) またはアルカリ土類金属 (M g、 C a、 B a等) からなる金属石驗、 脂肪族ァミン、 シランカップリング剤、 チタン カップリング剤等のカップリング剤、 高級アルコール、 ポリアルキレンォキ サイ ドリン酸ェズテル、 アルキルリン酸エステル、 アルキルホウ酸エステル、 サルコシネート類、 ポリアルキレンオキサイ ドエステル類、 レシチン等の化 合物、 アルキレノキサイ ド系、 グリセリン系等のノニオン性界面活性剤、 高 級アルキルアミ ン類、 第 4級アンモニゥム塩類、 ホスホニゥムまたはスルホ ニゥム等のカチオン性界面活性剤、 カルボン酸、 スルホン酸、 リン酸、 硫酸 エステル、 リン酸エステル基等のァニオン性界面活性剤、 アミノ酸、 ァミノ スルホン酸、 ァミノアルコールの硫酸またはリン酸エステル等の両性界面活 性剤、 カルボキシメチルセルロース、 ヒ ドロキシェチルセルロース、 ヒ ドリ キシプロピルセルロース、 ポリアクリル酸、 ポリビニルアルコールあるいは その変性体、 ポリアクリルァミ ド、 ポリヒ ドロキシ (メタ) ァクリレート、 スチレン一マレイン酸共重合体などの水溶性ポリマー類などがある。 中でも 力ルボキシメチルセルロース以下の水溶性ポリマー類は炭素化合物からなる 導電剤を特に良好に分散させるので好ましく、 カルボキシメチルセルロース、 ポリビニルアルコールあるいはその変性体、 スチレン—マレイン酸共重合体 が特に好ましい。 これら分散助剤も単独でも 2種以上を混合しても使用する ことができる。
導電剤の炭素化合物を水中に分散するためには、 ミキサーやホモプレンダ 一など公知の分散機と分散方法を用いることが出きる。 これらの導電剤分散液は正極、 負極いずれの電極シート作製においても使 用することができるが、 両極それぞれに使用して、 電池を構成することが好 ましい。
これらの炭素化合物からなる導電剤は単独でも 2種以上を混合しても使用 することができる。 また、 本発明の炭素化合物に加えてさらに、 金属繊維な どの導電性繊維類、 銅、 ニッケル、 アルミニウム、 銀などの金属粉類、 酸化 亜鉛、 チタン酸カリウムなどの導電性ウイスカ一類、 酸化チタンなどの導電 性金属酸化物あるいはポリフ ニレン誘導体などの有機導電性材料などを単 独またはこれらの混合物として併用することができる。
炭素化合物からなる導電剤の添加量は、 特に限定されないが、 各電極の合 剤中において 1〜5 0重量%が好ましく、 特に 2〜3 0重量%が好ましい。 また分散助剤の使用量も特に限定されないが、 導電剤の使用量に対して 1〜 5 0重量%が好ましく、 特に 2〜2 0重量%が好ましい。 これら導電剤、 分 散助剤の添加量は多すぎると電極体積が増加し電極単位体積あるいは単位重 量あたりの容量が減少し、 少なすぎると導電性あるいは導電剤の分散性が低 下し、 容量は減少する。
他の導電剤と組み合わせて使用する場合も総量がこの範囲に入ることが好 ましい。
先に述べたようにリチウムを吸蔵、 放出することのできる化合物は水中に おいて必ずしも安定ではない。 特にリチウム含有遷移金属化合物あるいは無 機酸化物を負極材料に使用した場合、 低 p Hあるいは高 p H領域において材 料の溶出や表面状態の変化が起こり、 これにより非水二次電池の放電容量や サイクル寿命などの充放電特性が損なわれる。 特に充放電特性の優れた非晶 質の負極材料の場合、 このような状況下において表面に部分的な結晶化が起 こり、 このことが優れた特性を損なっていることを本発明者は見いだした。 そこで負極を製造する際に調整する水分散合剤ペース卜の p Hを適切な範 囲とすることにより放電容量やサイクル寿命など充放電特性の優れた非水二 次電池が得られることを見いだした。 水分散合剤ペーストの p Hは、 含まれ る負極材料や導電剤、 結着剤、 分散剤、 フィラー、 イオン導電剤、 圧力増強 剤や各種添加剤の種類や量によって変わる。 これらを適切に選択、 調節する ことにより好ましい p Hの水分散合剤ペーストを得ることができ、 非水二次 電池を優れた充放電特性を持つものとすることができる。 好ましい p Hの範 囲は 5以上 1 0以下であり、 より好ましくは 5 . 5以上 9 . 5以下、 さらに 好ましくは 6以上 9以下である。
水分散合剤ペース卜の p Hは p H調節剤を添加することにより調節しても よい。 この場合 P H調節剤は合剤成分と同時に添加してもよく、 またできあ がった水分散合剤ペーストに後から添加してもよい。
p H調節剤は無機および有機の酸あるいはアル力リを使用することができ る。 酸としては硫酸、 塩酸、 硝酸、 齚酸、 蓚酸、 蛾酸等、 アルカリとしては 水酸化リチウム、 水酸化ナトリウム、 水酸化カリウム、 水酸化カルシウム、 炭酸リチウム、 炭酸ナトリウム、 炭酸水素ナトリウム、 アンモニア等を使用 することができる。
負極材料を安定に保っためには水分散合剤ペーストを調合してから塗布す るまでに高温としないことが好ましい。 また温度が低すぎると合剤の塗布性 に問題を生じるので好ましくない。 好ましい温度範囲は 5 °C以上 8 0 °C以下 であり、 より好ましくは 5 以上 5 0 °C以下である。
さらに負極材料を安定に保っためには水分散合剤ペーストを調合してから 塗布するまで長時間をおかないことが好ましい。 好ましい時間範囲は 7日以 内であり、 より好ましくは 4日以内である。
本発明に於いて、 正負極のいづれか一方に負担をかけ充放電サイクル寿命 を低下させることのない、 好ましい正負極の合剤厚みは、 電池組立て時の該 負極の片面の合剤厚みが 5〜8 0 i/ mであり、 かつ正極の片面の合剤厚みが 9 0〜 1 8 0 mである。 更に好ましくは、 負極の片面の合剤厚みが 1 0〜 8 0〃mであり、 かつ正極の片面の合剤厚みが 1 0 0〜 1 8 0 mである。 本発明の負極シートに用いられるリチウムを挿入放出できる化合物 (以下、 負極材料と言う) としては、 炭素質化合物、 無機酸化物、 無機カルコゲナイ ド、 有機高分子化合物が好ましい。 これらは単独でも、 組み合わせて用いて もよい。 例えば、 炭素質化合物と無機酸化物の組み合わせなどが挙げられる。 これらの負極材料は、 高容量、 高放電電位、 高安全性、 高サイクル性の効果 を与えるので好ましい。
炭素質化合物としては、 天然黒鉛、 人工黒鉛、 気相成長炭素、 有機物の焼 成された炭素などから選ばれ、 黒鉛構造を含んでいるものが好ましい。 また、 炭素質化合物には、 炭素以外にも、 異種化合物、 例えば B, P, N, S, S i C, B 4 Cを 0〜 1 0重量%含んでもよい。
無機酸化物又は無機カルコゲナイ ドを形成する元素としては、 遷移金属又 は周期律表 1 3から 1 5族の金属、 半金属元素をあげることが出来る。
遷移金属化合物としては、 特に V, T i , F e, Mn, C o, N i, Z n, W, Moの単独あるいは複合酸化物、 叉はカルコゲナイ ドが好ましい。 更に 好ましい化合物として、 特開平 6 - 4 4 9 7 2号記載の L i P C o, V,-, Ο τ (ここで ρ = 0. 1〜2. 5、 q = 0〜 l、 ζ = 1. 3〜4. 5 ) を挙 げる事ができる。
有機高分子化合物といては、 リチウムイオンをドープできるポリアセン、 ポリアセチレン、 ポリピロールやこれらの誘導体を用いることができる。
本発明に於いて好ましく用いられる負極材料は、 周期律表第 1 3族〜 1 5 族元素を含む無機酸化物または無機カルコゲナイ ドであり、 周期律表 1 3族 〜 1 5族元素とは、 B、 A l、 G a、 I n、 T l、 C、 S i、 G e、 S n、 P b、 N、 P、 A s、 S b、 B iである。
これらの化合物としては、 G e O、 G e 02 、 S nO、 S n S、 S n02
S n S2 、 G e S、 G e S2 、 I n S、 PbO、 Pb S、 Pb02 、 P b 2 03 、 P b 0い S b 03 、 S b 04 、 S b 2 05 、 B i 2 O3 、 B i 2 s B i Os I n 0をあげることが出来る。
上記の複合カルコゲン化合物、 複合酸化物は電池組み込み時に主として非 晶質であることが好ましい。 ここで言う主として非晶質とは C uK 線を用 いた X線回折法で 20値で 2 0 ° から 4 0。 に頂点を有するブロードな散乱 帯を有する物であり、 桔晶性の回折線を有してもよい。 好ましくは 2 0値で 4 0 ° 以上 7 0 ° 以下に見られる結晶性の回折線の内最も強い強度が、 ϊ Θ 値で 2 0 ° 以上 4 0 ° 以下に見られるブロードな散乱帯の頂点の回折線強度 の 500倍以下であることが好ましく、 さらに好ましくは 1 00倍以下であ り、 特に好ましくは 5倍以下であり、 最も好ましくは 結晶性の回折線を有 さないことである。
上記の複合酸化物、 複合カルコゲン化合物の中で、 次の一般式 (1) 及び (2) の化合物がより好ましい。
—般式 (1) SnM'xOy
式中、 M1 は、 S i、 Ge、 Pb、 B i、 Sb、 P、 B、 A l、 Asから選 ばれる少なくとも一種を表し、 x=0〜4、 y= 1〜1 0の数字を表す。
一般式 (2) SnM2zOy
式中、 M2 は、 Ge、 Pb、 B i、 S b、 P、 B、 A 1、 Asから選ばれる 少なくとも一種を表し、 z = 0〜4、 y= 1〜1 0の数字を表す。
—般式 (1) の化合物の中で、 一般式 (3) の化合物が更に好ましい。
—般式 (3) S n S i p M2 q Or
式中、 M2 は、 一般式 (2) の M2 とおなじである。 p, Qは 0. l≤p + q≤4、 0. 05≤ p≤ 2 1. 1 r 1 0を表す。
一般式 (1) 〜 (3) の複合酸化物としては例えば下記のものがあるが、 これらに限定されるものではない。
nS i o. o i O i. o2、 onGeo. o i O i. c2、 SnPbo. osO i. i 、 S n S l o. G e o. P b o. 02 、 sn j i o. 2 e。 U 2 、 SnS i o. 7 02.4 、 S n G e o. 02.4 、 SnS i o.8 02. s 、 SnS i 03 、 S n Pb〇 、 SnS i o.9 G e o ! 03 、 SnS i o.8 Ge0. 03 、 SnS i o. P b 03 、 SnS i o.8 G e P b 1 03 、 S n S i ..2 O 、 S n S i O s 、 SnB。. tn O i 、 SnA l o. o i Oし 。 、 S n Po.01 O 2. 、 S n P 0. 05 O 1 、 SnBo.05 O 1 n P 0. O ,.25 SnBo. , O ! ヽ S n Po. O .. T5. S n B 02.。 S n P a 03 、 SnP03.5 、 SnB02.5 、 SnS ".25P0.2 Bo. 03 、 S n S i P B O 3 、 S n S i a P 03. 、 S n S i 8 B 、 S n S i A 1 O 2. SnS ί A 1 2 B o. 2 O 、 S n S i o. e A 1 P O a 、 S n S i o. B o. P O ゝ S n S i o. A 1 o. B o 02.7 、 S n S i 0.6 A 1 o. . B 0 ! P o 3 0 、 1 S 1 A 1 B o. P O S Π S i A 1 B 0. 2 リ ゝ S n S 1 A 1 B o. P O a o、 S n S i o. β A 1 D 0. 2 P o. 0
本発明においては、 以上示したような一般式 (1) から (3) で示される 化合物を主として負極材料として用いることにより、 より充放電サイクル特 性の傻れた、 かつ高い放電電圧、 高容量で安全性が高く, 急速充電特性が優 れた非水二次電池を得ることができる。 本発明において、 特に優れた効果を 得ることができるのは、 S nを含有し且つ S nの価数が 2価で存在する化合 物を負極材料として用いる場合である。 S nの価数は化学滴定操作によって 求めることができる。 例えば Physics and Chemistry of Glasses Vol.8 No.
4 (1967)の 1 65頁に記載の方法で分析することができる。 また、 Snの固 体、 核磁気共鳴 (NMR) 測定によるナイ トシフトから決定することも可能 である。 例えば幅広測定において金属 S n (0価の Sn) は Sn (CH3 ) 4 に対して 7000 p pm付近と極端に低磁場にピークが出現するのに対し、
5 n 0 (= 2価) では 1 00 p pm付近、 S n02 (= 4価) では— 600 P pm付近に出現する。 このように同じ配位子を有する場合ナイトシフ卜が 中心金属である S nの価数に大きく依存するので、 119 Sn— NMR測定で 求められたピーク位置で価数の決定が可能となる。
本発明の負極材料に各種化合物を含ませることができる。 例えば、 1族元 素 (1^し 3、 、 111)、 じ 3) 、 2族元素 (Be, Mg, C a, S r, B a) 、 遷移金属 (S c、 T i、 V、 C r、 Mn、 F e、 Co、 N i、 Cu、 Zn、 Y、 Z r、 Nb、 Mo、 Tc、 Ru、 Rh、 Pd、 Ag、 Cd、 ラン タノィ ド系金属、 H f 、 Ta、 W、 Re、 Os、 I r、 P t、 Au、 H g) や周期表 1 7族元素 (F、 C 1、 B r、 I) を含ませることができる。 また 電子伝導性をあげる各種化合物 (例えば、 S b、 I n、 N bの化合物) のド 一パントを含んでもよい。 添加する化合物の量は 0〜20モル%が好ましい。 本発明における一般式 (1) 〜 (3) で示される複合カルコゲン化合物、 複合酸化物の合成法としては、 焼成法、 溶液法があるが、 焼成法が好ましい。 焼成法について以下に説明する。
焼成条件としては、 昇温速度として昇温速度毎分 4 °C以上 2 0 0 0 °C以下 であることが好ましく、 さらに好ましくは 6て以上 2 0 0 0 以下である。 とくに好ましくは 1 0°C以上 2 0 0 0 以下であり、 かつ焼成温度としては 2 5 0 以上 1 5 0 0 以下であることが好ましく、 さらに好ましくは 3 5
0 °C以上 1 5 0 0 °C以下であり、 とくに好ましくは 5 0 0て以上 1 5 0 0 °C 以下であり、 かつ焼成時間としては 0. 0 1時間以上 1 0 0時間以下である ことが好ましく、 さらに好ましくは 0. 5時間以上 7 0時間以下であり、 と くに好ましくは 1時間以上 2 0時間以下であり、 かつ降温速度としては毎分 2°C以上 1 07 で以下であることが好ましく、 さらに好ましくは 4°C以上 1
07 以下であり、 とくに好ましくは 6°C以上 1 07 以下であり、 特に好 ましくは 1 0°C以上 1 07 °c以下である。
本発明における昇温速度とは 「焼成温度 (°C表示) の 5 0 %」 から 「焼成 温度 (°C表示) の 8 0 %」 に達するまでの温度上昇の平均速度であり、 本発 明における降温速度とは 「焼成温度 (°C表示) の 8 0 %」 から 「焼成温度 ( て表示) の 5 0 %」 に達するまでの温度降下の平均速度である。
降温は焼成炉中で冷却してもよくまた焼成炉外に取り出して、 例えば水中 に投入して冷却してもよい。 またセラミックスプロセッシング (技報堂出版
1 9 8 7 ) 2 1 7頁記載の g u n法 ' H amme r— An v i 1法 ' s 1 a p法 'ガスァトマイズ法 'プラズマスプレー法 ·遠心急冷法 . me l t d r a g法などの超急冷法を用いることもできる。 またニューガラスハンド ブック (丸善 1 9 9 1 ) 1 7 2頁記載の単ローラー法、 双ローラ法を用い て冷却してもよい。 焼成中に溶融する材料の場合には、 焼成中に原料を供給 しつつ焼成物を連続的に取り出してもよい。 焼成中に溶融する材料の場合に は融液を援拌することが好ましい。
焼成ガス雰囲気は好ましくは酸素含有率が 5体積%以下の雰囲気であり、 さらに好ましくは不活性ガス雰囲気である。 不活性ガスとしては例えば窒素、 アルゴン、 ヘリウム、 ク リプトン、 キセノン等が挙げられる。
本発明の負極活物質の平均粒径 (D) としては、 0. 7~2 5 //mであり、 かつ全体積の 6 0 %以上が 0. 5〜3 0 mであることが好ましい。 さらに 好ましくは、 平均粒径 (D) が 0. 8〜2 0 mであり、 かつ全体積の 7 5 %以上が 0, 5〜3 0 /mである。 特に好ましくは、 平均粒径 (D) が 1. 0〜1 6 /imであり、 かつ全体積の 9 0 %以上が 0. 5〜3 0 zmである。 ただし、 使用する該負極活物質の粒径は、 負極の片面の合剤厚みを越えない ものであることはいうまでもない。
ここでいう平均粒径とは一次粒子のメジァン径のことであり、 レーザー回 折式の粒度分布測定装置により測定される。
また、 本発明の負極活物質の粒径 1 /m以下の粒子群の占める体積は全体 積の 3 0 %以下であり、 かつ粒径 2 0 /zm以上の粒子群の占める体積が全体 積の 2 5 %以下であることが好ましい。 さらに好ましくは、 粒径 1 //m以下 の粒子群の占める体積が全体積の 2 0 %以下であり、 かつ粒径 2 0 m以上 の粒子群の占める体積が全体積の 1 4 %以下である。 特に好ましくは、 粒径 1 以下の粒子群の占める体積が全体積の 1 0 %以下であり、 かつ粒径 2 0; m以上の粒子群の占める体積が全体積の 1 0 %以下である。
本発明の負極活物質の比表面積としては 0. 1〜 1 0 m2Zgであること が好ましく、 さらに好ましくは 0. 1〜81^2 8であり、 特に好ましくは 0. Z T rr^Zgである。 測定は通常の B ET法による方法で行なうこと ができる。
所定の粒子サイズにするには、 焼成物または粗粉砕物を粉碎及び Z又は分 級する方法を用いることが好ましい。 粉碎方法としては、 乾式粉碎法、 溶媒 を媒体とした湿式粉砕法が用いられる。 湿式粉砕法では用いられる溶媒とし ては、 取扱い性および安全性の観点から例えば、 水、 トルエン、 キシレン、 メタノール、 エタノール、 n—プロパノール、 イソプロピルアルコール、 ィ ソブチルアルコール、 アセトン、 メチルェチルケトン、 酢酸ブチル、 N, N
—ジメチルホルムアミ ドなどが好ましい。 使用する溶媒の量としては、 粉末 材料の 1 / 1 0〜 2 0倍が好ましく、 1 Z 5〜 1 0倍が特に好ましい。 粉碎 方法として好ましくは乾式粉砕法及び Z又は水を媒体とした湿式粉砕法であ る。 粉砕機としては、 例えば、 乳鉢、 ボールミル、 円振動ボールミル、 旋動 振動ミル、 術星ボールミル、 遊星ボールミル、 旋回気流型ジヱッ トミル、 ポ ッ トミル、 遠心ミル、 タワーミル、 サンドミル、 アトライター、 セントリ ミ ル、 ダイノ ミル、 ローラーミル、 ピンミル、 チューブミル、 ロッ ドミル、 ジ ヨークラッシヤーなどが用いられるが、 好ましくは旋回気流型ジヱッ 卜ミノレ、 ボールミル、 振動ボールミルによる粉砕方法である。 さらに、 所定の粒径に 合わせるために分級することが好ましく、 風力分級装置 (例えばサイクロン) や篩などが好ましく用いられる。 篩で分級する場合は乾式法または水等の溶 媒を用いた湿式法が好ましい。 また、 粉砕や分級の温度は、 用いる材料、 溶 媒の種類にもよる力、'、 5〜1 5 0 °Cが好ましく、 1 0〜9 0 °Cがより好まし い。
本発明の負極活物質を電極合剤として構成する前に、 1 0 0〜4 0 0 の 温度範囲で熱処理することが電池容量向上の観点から好ましい。 熱処理雰囲 気としては空気中、 不活性ガス雰囲気中 (たとえばアルゴンガス、 窒素ガス、 ヘリウムガス等) 、 酸素ガス、 水素ガス等の活性ガス雰囲気中あるいは加圧、 減圧雰囲気中等いずれでもよいが好ましくは、 空気中、 不活性ガス雰囲気中、 減圧雰囲気中である。 また、 ここで言う電極合剤として構成する前とは、 た とえば結着剤や導電剤等と混合する前のことであり、 負極活物質のみで熱処 理することを指すものである。 また、 熱処理する時期としては、 電極合剤と して構成する 9 0曰前から直前が好ましく、 さらに好ましくは 3 0日前から 直前である。 熱処理温度は 1 2 0〜3 5 0 °Cがさらに好ましく、 1 5 0〜3 0 0てが特に好ましい。 熱処理時間は 0 . 5〜 1 2 0時間が好ましく、 1〜 8 0時間がさらに好ましく、 1〜4 8時間が特に好ましい。
本発明の正極シートに使用する正極活物質は、 リチウムイオンを吸蔵放出 できる化合物であればよいが、 特に、 遷移金厲酸化物や遷移金属カルコゲナ ィ ドから選ばれる。 特に遷移金属酸化物が好ましく、 更にリチウムを含む遷 移金属酸化物が特に好ましい。
本発明で用いられる好ましい遷移金厲としては T i, V , C r, M n, F e, C o , N i, C u , N b , M o , Wを挙げることができ、 これら遷移金 属の化合物の中では、 二酸化マンガン、 五酸化バナジウム、 酸化鉄、 酸化モ リブデン、 硫化モリブデン、 酸化コバルト、 硫化鉄、 硫化チタンなどが好ま しい。 これらの化合物は、 単独で、 あるいは 2種以上を併用して用いること ができる。 又、 リチウムを含む遷移金属酸化物として用いることもできる。
リチウム化合物や遷移金属化合物の他に、 一般に、 Ca2+のようにイオン 伝導性を高める化合物、 あるいは、 P、 B、 S iを含むような非晶質網目形 成剤 (例えば、 P2 05 、 L i P04 、 H3 B03 、 B 2 03 、 S i 02 など) と混合して焼成しても良い。 また、 Na、 K、 Mgなどのアルカリ金 属イオンおよび または S i、 Sn、 Aし Ga、 Ge、 Ce、 I n、 B i などを含む化合物と混合して焼成しても良い。 リチゥムを含む遷移金属酸化 物は、 例えば、 リチウム化合物、 遷移金属化合物の混合物を焼成することに より合成することができる。
本発明で用いられる好ましい正極活物質の具体例は、 特開昭 6 1 -526 2号公報、 米国特許第 4、 302、 5 1 8号明細耆、 特開昭 63 - 2990 56号、 特開平 1一 294364号、 特公平 4一 30 1 46号、 米国特許第 5、 240、 794号、 同 5、 1 53、 08 1号、 特開平 4一 328258 号、 特開平 5— 54889号等に記載されている。 代表的な化合物を以下に 示すが、 本発明はこれらに限定されるものではない。
L i Co02 、 L i , N i 02 、 L i , Co, N iト a 02 、 L i , C o V 0: 、 L i x C o F e! -b 0 、 L i x Mn 2 0 、 L i « Mn 02 、 L i x Mn 2 03 、 L i x Mn b C o 2-b 0, 、 L i x Mn b N i b O, 、 L i x Mn b V Oz 、 L i x Mn b F e >-b 02 、 L i x Co B 02 (ここで x=0. 05〜1. 2、 a = 0. 1〜0. 9、 b = 0 . 8〜0. 98、 c = 0. 85〜0. 99、 z = 1. 5〜5) があげられる。 本発明で用いる正極活物質は、 リチウム化合物と遷移金属化合物を混合、 焼成する方法や溶液反応により合成することができるが、 特に焼成法が好ま しい。
焼成の為の詳細は、 特開平 6— 60867号の段落 0035、 特開平 7— 1 4579号公報等に記載されており、 これらの方法を用いることができる。 焼成によって得られた正極活物質は水、 酸性水溶液、 アルカリ性水溶液、 有 機溶剤にて洗浄した後使用してもよい。
更に、 遷移金属酸化物に化学的にリチウムイオンを揷入する方法としては、 リチウム金属、 リチウム合金やブチルリチウムと遷移金属酸化物と反応させ ることにより合成する方法であっても良い。
本発明で用いる正極活物質の平均粒子サイズは特に限定されないが、 0.
1〜5 0〃mが好ましい。 0. 5〜3 0〃mの粒子の体積が 9 5 %以上であ ることが好ましい。 より詳しくは、 粒径 3 以下の粒子群の占める体積が 全体積の 1 8 %以下であり、 かつ 1 5 以上 2 5 m以下の粒子群の占め る体積が、 全体積の 1 8 %以下であることが好ましく、 さらに好ましくは粒 径 3 m以下の粒子群の占める体穑が全体積の 1 7 %以下であり、 かつ 1 5 m以上 2 5 m以下の粒子群の占める体積が、 全体積の 7 %以下であるこ とであり、 特に好ましくは粒径 3 以下の粒子群の占める体積が全体積の 1 6 %以下であり、 かつ 1 5 ^m以上 2 5 以下の粒子群の占める体積が、 全体積の 2 %以下であることである。
体積累積分布としては、 好ましくは D (2 5 %) = 3〜7〃m、 D (5 0
%) = 4〜9 /zm、 D (7 5 %) = 5〜1 2 m、 D (9 0 %) = 6〜1 3 mであり、 さらに好ましくは D (2 5 %) = 3〜5 /m、 D (5 0 %) = 4〜7〃m、 D (7 5 %) = 5〜8 /m、 D (9 0 %) = 6〜9〃mであり、 特に好ましくは D (2 5 %) = 3〜5〃m、 D (5 0 %) = 4〜6 m、 D ( 7 5 %) = 5〜7〃m、 D (9 0 %) = 6〜9〃mである。
また、 本発明の正極活物質は 1 xm以下もしくは 2 5 m以上に実質的に 粒径分布を有さないことが望ましい。 ここでいう実質的に粒径分布を有さな いとは、 1 m以下もしくは 2 5 m以上の粒子の体積分率が 3 %以下であ ることを意味する。 さらに好ましくは 2 5 m以上の粒子の体積分率が 2 % 以下であり、 特に好ましくは 1 m以下もしくは 2 5 m以上の粒子の体積 分率が 0 %である。
比表面積としては特に限定されないが、 8£丁法で0. Ο ΐ δ Ο ιη2// gが好ましい。 0. l m2//g〜2 0m2Zgがより好ましく、 さらに好ま しくは 0. 11112ノ 〜51112ノ gであり、 特に好ましくは 0. 2 m2/g 〜 1 n^Z gである。
また正極活物質 5 gを蒸留水 1 0 0 m lに溶かした時の上澄み液の p Hと しては 7以上 1 2以下が好ましい。
本発明の正極活物質を焼成によって得る場合、 焼成温度としては 5 0 0〜 1 5 0 0てであることが好ましく、 さらに好ましくは 7 0 0〜1 2 0 0 °Cで あり、 特に好ましくは 7 5 0〜1 0 0 0 °Cである。 焼成時間としては 4〜3 0時間が好ましく、 さらに好ましくは 6〜2 0時間であり、 特に好ましくは 6〜 1 5時間である。
本発明で用いられる酸化物の正極活物質あるいは負極材料の表面を、 用い られる正極活物質や負極材料と異なる化学式を持つ酸化物で被覆することが できる。 この表面酸化物は、 酸性にもアルカリ性にも溶解する化合物を含む 酸化物が好ましい。 さらに、 電子伝導性の高い金属酸化物が好ましい。 例え ば、 P b 0 2 、 F e 2 0 3 、 S n 0 2 、 I n 2 0 3 、 Z n 0などやまたはこ れらの酸化物にドーパン卜 (例えば、 酸化物では原子価の異なる金属、 ハロ ゲン元素など) を含ませることが好ましい。 特に好ましくは、 S i 0 2 、 S n 0 2 、 F e 2 0 3 、 Z n O、 P b 0 2 である。
表面処理された金属酸化物の量は、 該正極活物質あるいは負極材料当たり、 0 . 1〜 1 0重量%が好ましい。 また、 0 . 2〜5重量%が特に好ましく、 0 . 3〜3重量%が最も好ましい。
また、 このほかに、 正極活物質や負極材料の表面を改質することができる。 例えば、 金属酸化物の表面をエステル化剤により処理、 キレー ト化剤で処理、 導電性高分子、 ポリエチレンォキサイ ドなどにより処理することが挙げられ る
また、 負極材料の表面を改質することもできる。 例えば、 イオン導電性ポ リマ一ゃポリアセチレン層を設けるなどにより処理することが挙げられる。 また、 正極活物質や負極材料は水洗などの精製工程を経てもよい。
本発明の水分散性ペーストに用いられる結着剤としては、 多糖類、 熱可塑 性樹脂及びゴム弾性を有するボリマーを一種またはこれらの混合物を用いる ことができる。 好ましい例としては、 でんぶん、 ポリビニルアルコール、 力 ルボキシメチルセルロース、 ヒ ドロキシブ口ピルセルロース、 再生セルロー ス、 ジァセチルセルロース、 ポリビニルクロリ ド、 ポリビニルピロリ ドン、 ポリテトラフルォロェチレン、 ポリ弗化ビニリデン、 ポリェチレン、 ポリプ ロピレン、 エチレン一プロピレン一ジエンターポリマー (EPDM) 、 スル ホン化 EPDM、 スチレンブタジエンゴム、 ポリブタジエン、 フッ素ゴム及 びポリエチレンォキシドを挙げることができる。 また、 多糖類のようにリチ ゥムと反応するような官能基を含む化合物を用いるときは、 例えば、 イソシ ァネート基のような化合物を添加してその官能基を失活させることが好まし い。 その結着剤の添加量は、 特に限定されないが、 1〜5 0重量%が好まし く、 特に 2〜3 0重量%が好ましい。 合剤中における結着剤の分布は、 均一 でも、 不均一でもよい。
本発明に於いて好ましく用いられる結着剤剤は、 分解温度が 3 0 (TC以上 のポリマーである。 ここで、 分解温度とは、 ポリマーを真空中で加熱した時、 その重量が減少する温度のことであり、 ある温度幅をもっている。 例えばポ リエチレンの分解温度は 3 3 5〜4 5 0 である。 S. L. Ma d o r s k y らは、 ポリマーの熱安定性を正確に比較するため、 熱天秤を用いて真空中で ポリマーを等温熱分解し、 3 0分後の減量率と温度の関係を求め、 減量率が 5 0 %に達する半寿命温度 (Th) を定めた (例えば、 S. P. E. J. , 1 7卷、 6 6 5頁 ( 1 9 6 1 ) に記載されている。 ) 。 これによると、 前記 ポリエチレンの Thは 4 0 6 °Cである。 本発明で定義する分解温度は T に 相当する。 - 上記分解温度 (Th) が 3 0 0 °C以上のポリマーで本発明の結着剤として 好ましいものとしては、 ポリエチレン、 ポリプロピレン、 エポキシ樹脂、 ポ リエステル、 ふつ素樹脂などが挙げられるが、 ふつ素樹脂が特に好ましい。 ここで、 ふつ素樹脂とは、 J I S 6 9 0 0 「プラスチック用語」 に記載され ている様に、 重合体の分子内に炭素—ふつ素結合を持つ樹脂の総称である。 上記ふつ素樹脂の好ましい例としては、 以下のものが挙げられる。
(A- 1 ) ポリテトラフルォロエチレン (PTFE)
(A— 2) ポリふつ化ビニリデン (PVDF) (A— 3) テトラフルォロエチレン一へキサフルォロプロピレン共重合体 (F E P)
(A— 4) テトラフルォロエチレン—パーフルォロアルキルビニルエーテ ル共重合体 (PFA)
( A - 5 ) ふつ化ビニリデン一へキサフルォロプロピレン共重合体
(A— 6) ふつ化ビニリデンークロ口 トリフルォロエチレン共重合体 (A- 7) エチレンーテトラフルォロエチレン共重合体 (ETFE樹脂) (A— 8) ポリクロ口 トリフルォロエチレン (PCTFE)
(A— 9 ) ふつ化ビニリデン一ペンタフルォロブ口ピレン共重合体
(A— 1 0) プロピレン一テ トラフルォロエチレン共重合体
(A— 1 1 ) エチレン一クロロ ト リフルォロエチレン共重合体 (ECTFE) (A— 1 2) ふつ化ビニリデン一へキサフルォロプロピレンーテトラフルォ
口エチレン共重合体
(A- 1 3) ふつ化ビニリデンーパーフルォロメチルビ二ルエーテル—テト ラフルォロエチレン共重合体
上記ポリマーに、 さらに他のェチレン性不飽和モノマーを共重合しても良 い。 共重合可能なエチレン性不飽和モノマーとしては、 例えばアクリル酸ェ ステル、 メタクリル酸エステル、 酢酸ビニル、 ァクリロ二トリル、 アクリル 酸、 メタクリル酸、 無水マレイン、 ブタジエン、 スチレン、 N—ビニルピロ リ ドン、 N—ビニルピリジン、 グリシジルメタクリレート、 ヒ ドロキシェチ ルメタクリ レート、 メチルビニルエーテルなどが挙げられる力、'、 本発明はこ れらに限定されるものではない。
フイラ一は、 構成された電池において、 化学変化を起こさない繊維状材料 であれば何でも用いることができる。 通常、 ポリプロピレン、 ポリエチレン などのォレフィ ン系ポリマー、 ガラス、 炭素などの繊維が用いられる。 フィ ラーの添加量は特に限定されないが、 0〜3 0重量%が好ましい。
イオン導電剤は、 無機及び有機の固体電解質として知られている物を用い ることができ、 詳細は電解液の項に記載されている。 圧力増強剤は、 後述の 内圧を上げる化合物であり、 炭酸塩が代表例である。 電解質は、 一般に、 溶媒と、 その溶媒に溶解するリチウム塩 (ァニオンと リチウムカチオン) とから構成されている。 溶媒としては、 プロピレンカー ボネート、 エチレンカーボネート、 ブチレンカーボネート、 ジメチルカーボ ネート、 ジェチルカーボネート、 メチルェチルカーボネート、 ァ―ブチロラ ク トン、 ギ酸メチル、 酢酸メチル、 1, 2—ジメ トキシェタン、 テトラヒ ド 口フラン、 2—メチルテトラヒ ドロフラン、 ジメチルスルホキシド、 1, 3 ージォキソラン、 ホルムアミ ド、 ジメチルホルムアミ ド、 ジォキソラン、 ァ セトニトリル、 ニトロメタン、 ェチルモノグライム、 リン酸トリエステル、 トリメ トキシメタン、 ジォキソラン誘導体、 スルホラン、 3—メチルー 2— ォキサゾリジノン、 プロピレンカーボネート誘導体、 テトラヒ ドロフラン誘 導体、 ェチルエーテル、 1, 3—プロパンサルトンなどの非プロトン性有機 溶媒を挙げることができ、 これらの一種または二種以上を混合して使用する これらの溶媒に溶解するリチウム塩のカチオンとしては、 例えば、 C 10< - 、 BF 、 PF6 -、 C F3 SO 、 CF3 C02 - 、 As F6 - 、 SbF6 - 、 (CF3 S02 ) 2 N~ , B. o C 1 -、 (1, 2—ジメ トキ シェタン) 2 C I O. - , 低級脂肪族カルボン酸イオン、 A 1 C 14 — 、 C 1 - 、 B r― 、 I— 、 クロ口ボラン化合物のァニオン、 四フヱニルホウ酸ィ オンを挙げることができ、 これらの一種または二種以上を使用することがで きる。 なかでも環状カーボネート及びノまたは非環状カーボネートを含ませ ることが好ましい。 例えば、 ジェチルカーボネート、 ジメチルカーボネート、 メチルェチルカーボネートを含ませることが好ましい。 また、 エチレンカー ボネート、 プロピレンカーボネートを含ませることが好ましい。 またェチレ ンカーボネートのほかに、 プロピレンカーボネー ト、 1, 2—ジメ トキシェ タン、 ジメチルカーボネートあるいはジェチルカーボネートを適宜混合した 電解液に L i CF3 S03 、 L i C 104 、 L i B F4 および あるいは L i PF6 を含む電解質が好ましい。 それらの支持塩では、 L i PF6 を含ま せることが特に好ましい。
これら電解質を電池内に添加する量は、 特に限定されないが、 正極活物質 や負極材料の量や電池のサイズによって必要量用いることができる。 支持電解質の濃度は、 特に限定されないが、 電解液 1 リッ トル当たり 0. 2〜3モルが好ましい。
また、 電解液の他に次の様な固体電解質も併用することができる。
固体電解質としては、 無機固体電解質と有機固体電解質に分けられる。 無機固体電解質には、 L iの窒化物、 ハロゲン化物、 酸素酸塩などがよく 知られている。 なかでも、 L i 3 N、 L i I、 L i 5 N I 2 、 L i 3 N_L i l一 L i OH、 Lし S i 04 、 L i 4 S i O< - L i 卜 L i OH、 x L i 3 PO* - (1-x) Lし S i 0 , 、 L i 2 S i S 3 、 硫化リン化合物な どが有効である。
有機固体電解質では、 ポリエチレンオキサイ ド誘導体か該誘導体を含むポ リマ一、 ポリプロピレンォキサイ ド誘導体あるいは該誘導体を含むポリマー, イオン解離基を含むポリマー、 イオン解離基を含むポリマーと上記非プロト ン性電解液の混合物、 リン酸エステルポリマー、 非プロトン性極性溶媒を含 有させた高分子マトリックス材料が有効である。 さらに、 ポリアクリロニト リルを電解液に添加する方法もある。 また、 無機と有機固体電解質を併用す る方法も知られている。
また、 放電ゃ充放電特性を改良する目的で、 他の化合物を電解質に添加し ても良い。 例えば、 ピリジン、 トリェチルフォスファイ ト、 トリエタノール ァミン、 環状エーテル、 エチレンジァミン、 n—グライム、 へキサリン酸ト リアミ ド、 二トロベンゼン誘導体、 硫黄、 キノンィミ ン染料、 N—置換ォキ サゾリジノンと N, N' —置換イ ミダリジノン、 エチレングリコールジアル キルエーテル、 第四級アンモニゥム塩、 ポリエチレングリコール、 ピロール、 2—メ トキシエタノール、 A 1 C 13 、 導電性ポリマー電極活物質のモノマ 一、 トリエチレンホスホルアミ ド、 トリアルキルホスフィン、 モルホリン、 カルボ二ル基を持つァリール化合物、 1 2—クラウン一 4のようなクラウン エーテル類、 へキサメチルホスホリ ック トリアミ ドと 4一アルキルモルホリ ン、 二環性の三級アミ ン、 オイル、 四級ホスホニゥム塩、 三級スルホニゥム 塩などを挙げることができる。
また、 電解液を不燃性にするために含ハロゲン溶媒、 例えば、 四塩化炭素、 三弗化塩化エチレンを電解液に含ませることができる。 また、 高温保存に適 性をもたせるために電解液に炭酸ガスを含ませることができる。
また、 正極や負極の合剤には霍解液あるいは電解質を含ませることができ る。 例えば、 前記イオン導電性ポリマーやニトロメタン、 電解液を含ませる 方法が知られている。
セパレーターとしては、 大きなイオン透過度を持ち、 所定の機械的強度を 持ち、 絶緣性の微多孔性薄膜が用いられる。 また、 8 0 °C以上で孔を閉塞し、 抵抗をあげる機能を持つことが好ましい。 耐有機溶剤性と疎水性からポリブ レビレンおよび Zまたはポリエチレンなどのォレフィン系ポリマーあるいは ガラス繊維などからつくられたシートゃ不織布が用いられる。 セパレーター の孔径は、 一般に電池用セパレーターとして用いられる範囲が用いられる。 例えば、 0 . 0 1〜 1 O jw mが用いられる。 セパレターの厚みは、 一般に電 池用セパレーターの範囲で用いられる。 例えば、 5〜3 0 0〃mが用いられ る。 セパレーターの製造は、 ポリマーの合成後、 孔の作り方としては、 乾式、 延伸法でも溶液、 溶媒除去法あるいはそれらの組み合わせでもでもよい。 電極活物質の集電体としては、 構成された電池において化学変化を起こさ ない電子伝導体であれば何でもよい。 例えば、 正極には、 材料としてステン レス鋼、 ニッケル、 アルミニウム、 チタン、 炭素などの他に、 アルミニウム やステンレス鋼の表面にカーボン、 ニッケル、 チタンあるいは銀を処理させ たものが用いられる。 特に、 アルミニウムあるいはアルミニウム合金が好ま しい。 負極には、 材料としてステンレス鋼、 ニッケル、 銅、 チタン、 アルミ 二ゥム、 炭素などの他に、 銅やステンレス鋼の表面にカーボン、 ニッケル、 チタンあるいは銀を処理させたもの、 A 1 — C d合金などが用いられる。 特 に、 銅あるいは銅合金が好ましい。 これらの材料の表面を酸化することも用 いられる。 また、 表面処理により集電体表面に凹凸を付けることが望ましい。 形状は、 フオイルの他、 フィルム、 シー ト、 ネッ ト、 パンチされたもの、 ラ ス体、 多孔質体、 発泡体、 繊維群の成形体などが用いられる。 厚みは、 特に 限定されないが、 1〜5 0 0 // mのものが用いられる。
電池の形状はコイン、 ボタン、 シート、 シリンダー、 偏平、 角などいずれ にも適用できる。
ペレツ トゃシ一卜の乾燥又は脱水方法としては、 一般に採用されている方 法を利用することができる。 特に、 熱風、 真空、 赤外線、 遠赤外線、 電子線 及び低湿風を単独あるいは組み合わせて用いることが好ましい。 温度は 8 0 〜 3 5 0 °Cの範囲が好ましく、 特に 1 0 0〜 2 5 0 °Cの範囲が好ましい。 含 水量は、 電池全体で 2 0 0 0 p p m以下が好ましく、 正極合剤、 負極合剤や 電解質ではそれぞれ 5 0 0 p pm以下にすることがサイクル性の点で好まし い。
ペレッ トゃシー卜のプレス法は、 一般に採用されている方法を用いること ができるが、 特に金型ブレス法やカレンダープレス法が好ましい。 プレス圧 は、 特に限定されないが、 0. 2〜3 tZcm2 が好ましい。 カレンダープ レス法のブレス速度は、 0. 1〜 5 0 mZ分が好ましい。 プレス温度は、 室 温〜 2 0 0 °Cが好ましい。 正極シー卜に対する負極シー卜との幅の比率は、 0. 9〜1. 1が好ましい。 特に、 0. 9 5〜し 0が好ましい。 正極活物 質と負極材料の含有量比は、 化合物種類や合剤処方により異なるため、 限定 できないが、 容量、 サイクル性、 安全性の観点で最適な値に設定できる。 該合剤シートとセパレーターを介して重ね合わせた後、 それらのシー卜は、 巻いたり、 折ったりして缶に挿入し、 缶とシートを電気的に接続し、 電解液 を注入し、 封口板を用いて電池缶を形成する。 このとき、 安全弁を封口板と して用いることができる。 安全弁の他、 従来から知られている種々の安全素 子を備えつけても良い。 例えば、 過電流防止素子として、 ヒューズ、 バイメ タル、 PTC素子などが用いられる。 また、 安全弁のほかに電池缶の内圧上 昇の対策として、 電池缶に切込を入れる方法、 ガスケッ ト亀裂方法あるいは 封口板亀裂方法あるいはリード板との切断方法を利用することができる。 ま た、 充電器に過充電や過放電対策を組み込んだ保護回路を具備させるか、 あ るいは、 独立に接続させてもよい。 また、 過充電対策として、 電池内圧の上 昇により電流を遮断する方式を具備することができる。 このとき、 内圧を上 げる化合物を合剤の中あるいは電解質の中に含ませることができる。 内圧を 上げる化合物としては、 L i 2 C03 、 L i HC03 、 N a 2 C03 、 N a HC03 、 C a COa 、 MgC03 などの炭酸塩などがあげられる。
缶やリード板は、 電気伝導性をもつ金属や合金を用いることができる。 例 えば、 鉄、 ニッケル、 チタン、 クロム、 モリブデン、 銅、 アルミニウムなど の金属あるいはそれらの合金が用いられる。 キャップ、 缶、 シート、 リード 板の溶接法は、 公知の方法 (例、 直流又は交流の電気溶接、 レーザー溶接、 超音波溶接) を用いることができる。 封口用シール剤は、 アスファルトなど の従来から知られている化合物や混合物を用いることができる。
本発明の非水二次電池の用途には、 特に限定されないが、 例えば、 電子機 器に搭載する場合、 カラーノートパソコン、 白黒ノートパソコン、 サブノー トパソコンペン入力パソコン、 ポケッ ト (パームトツプ) ノ ソコン、 ノー ト 型ワープロ、 ポケッ トワープロ、 電子ブックブレーヤー、 携帯電話、 コード レスフォン子機、 ページャ一、 ハンディーターミナル、 携帯ファックス、 携 帯コピー、 携帯ブリンター、 ヘッ ドフォンステレオ、 ビデオムービー、 液晶 テレビ、 ハンディークリーナー、 ポータブル CD、 ミニディスク、 電気シェ —バー、 電子翻訳機、 自動車電話、 トランシーバー、 電動工具、 電子手帳、 電卓、 メモリーカード、 テープレコーダー、 ラジオ、 バックアップ電源、 メ モリーカードなどが挙げられる。 その他民生用として、 自動車、 電動車両、 モーター、 照明器具、 玩具、 ゲーム機器、 ロードコンディ ショナー、 アイ口 ン、 時計、 ス トロボ、 カメラ、 医療機器 (ペースメーカー、 捕聰器、 肩もみ 機など) などが挙げられる。 更に、 各種軍需用、 宇宙用として用いることが できる。 また、 他の二次電池や太陽電池あるいは一次電池と組み合わせるこ ともできる。
本発明の好ましい組合せは、 上記の化学材料や電池構成部品の好ましいも のを組み合わすことが好ましいが、 特に正極活物質として、 L i x C o02 、 L i x N i Os s L i x MnOz s L i x Mns O* (ここで x= 0. 0 5 〜 1. 2) から選ばれる少なくとも 1種の化合物を含み、 導電剤としてァセ チレンブラックも共に含む。 正極集電体はステンレス鋼かアルミニウムから 作られている、 ネッ ト、 シート、 箔、 ラスなどの形状をしている。 負極材料 として、 リチウム金属、 リチウム合金 (L i— A 1 ) 、 炭素質化合物、 酸化 物 (L i CoV04 、 Sn02 、 SnO、 S i O、 Ge02 、 GeO、 S n S i 03 、 S n S i o. 3 A 10· , B o 2 P o. 3 03.2 ) 、 硫化物 (T i S 2 、 SnS2 、 SnS、 Ge S2 、 Ge S) などを含む少なくとも 1種の化合物 を用いることが好ましい。 負極集電体はステンレス鋼か銅から作られている 、 ネッ ト、 シート、 箔、 ラスなどの形状をしている。 正極活物質あるいは負 極材料とともに用いる合剤には、 電子伝導剤としてアセチレンブラック、 黒 鉛などの炭素材料を混合してもよい。 結着剤はポリフッ化ビニリデン、 ポリ フルォロエチレンなどの含フッ素熱可塑性化合物、 ァクリル酸を含むポリマ 一、 スチレンブタジエンゴム、 エチレンプロピレンターポリマーなどのエラ ストマーを単独あるいは混合して用いることができる。 また、 電解液として エチレンカーボネート、 さらに、 ジェチルカーボネート、 ジメチルカルボネ 一トなどの環状、 非環状カーボネートあるいは齚酸ェチルなどのエステル化 合物の組合せ、 支持電解質として、 L i PF6 を含み、 さらに、 L I BF4 、 L i CF3 S03 などのリチウム塩を混合して用いることが好ましい。 さら に、 セパレーターとして、 ポリプロピレンあるいはポリエチレンの単独また はそれらの組合せが好ましい。 電池の形態は、 コイン、 ボタン、 シリンダー、 偏平、 角型のいづれでもよい。 電池には、 誤動作にも安全を確保できる手段 (例、 内圧開放型安全弁、 電流遮断型安全弁、 高温で抵抗を上げるセパレー ター) を備えることが好ましい。
以下に具体例をあげ、 本発明をさらに詳しく説明するが、 発明の趣旨を越 えない限り、 本発明は実施例に限定されるものではない。
実施例 1
正極、 負極の活物質としてはそれぞれ以下の化合物を使用した。 いずれも ふるい分けにより 1 0 /imを越える径の粒子を除去して使用した。
正極活物質 (1) 〜 (3)
( 1 ) L i C02
( 2 ) L i Mn O 2
(3 ) L i N i 02 負極材料 ( 1 ) 〜 ( 1 8 )
( 1 ) S n S i 08
(2) SnO
(3) PbO
(4) Sb2 03
(5) B i 2 03
( 6 ) GeO
( 7 ) S n S i o.8 P o.2 03. i
(8) S n S i o.8 P o.2 A 1 o.2 03.4
(9) S n S i o. 8 P o. 2 S b o.. 03.25
(1 0) S n S i o. β P o.2 G e o.2 03..
( 1 1 ) S n S i o. β P o. a G e o. ( A 1 o. . 0 $. 05
Figure imgf000029_0001
(1 4) S n S i o.6 P o. Os. 2
( 1 5 ) S n S i o.6 P o. A 1 o.2 03.5
( 1 6 ) S n S i o.2 P o.8 A 1 o. a 03.7
( 1 7 ) S no.7 S 1 0. 2 1 0. 3 D 0. 4 A 1。. 1 〇2.6
(1 8) 石油ピッチコークス粉
本発明の正極合剤分散ペースト 1〜 6の調整
アセチレンブラック (電気化学 (株) 製デンカブラック) 1 0重量部、 濃 度 2重量%のカルボキシメチルセルロース水溶液 6 0部をブラネタリーミキ サ一中で 5分間予備混練し、 水 3 0重量部を添加してさらに 2 0分間撹拌混 合して導電剤分散液を調整した。 この導電剤分散液 1 0 0重量部に、 正極活 物質 (1) ; L i Co02 (中心粒子サイズ 5〃m) を 200重量部、 結着 剤として 2—ェチルへキシルァクリレー卜とァクリル酸とァクリロニトリル の共重合体の水分散物 (固形分濃度 50重量%) を 8重量部、 水 20重量部 を加えてブラネタリーミキサー中で 2 0分間携拌混合して正極合剤分散べ一 ストを得た。 この合剤ペーストを正極ペースト 1とする。 同じように正極活 物質 (2)、 (3) を使用して調整した合剤分散ペーストをそれぞれ正極べ 一スト 2、 正極ペースト 3とする。 また正極活物質 ( 1 ) を使用し、 分散助 剤としてォレイン酸ナトリウムを使用して、 正極ペースト 1と同様に調整し た合剤分散ペース トを正極ペース ト 4とする。 同じく分散助剤としてポリア クリル酸を使用したものを正極ペースト 5とする。 さらに導電剤としてグラ ファイ ト (ロンザ グラフアイ ト KS— 6) を使用して正極ペースト 1と同 様に調整した合剤分散ペーストを正極ペースト 6とする。
本発明の負極合剤分散ペースト 1〜 1 7、 5 1、 5 2の調整
アセチレンブラック 1 0重量部、 グラフアイ ト (KS— 6) 2 0重量部、 濃度 2重量%のカルボキシメチルセルロース水溶液 5 0部をブラネタリーミ キサ一中で 5分間予備混練し、 水 2 0重量部を添加してさらに 2 0分間撹拌 混合して導電剤分散液を調整した。 この導電剤分散液 1 0 0重量部に、 負極 活物質 ( 1 ) ; S i S n03 (S i 02 と S nOを混合し、 アルゴン雰囲気 中 1 0 0 0 °Cで 1 2時間焼成して合成、 粉砕したもの、 中心粒子サイズ 2 m) を 2 0 0重量部、 結着剤としてポリフッ化ビニリデン 1 0重量部、 水 1 0重量部を加えてプラネタリーミキサー中で 2 0分間擾拌混合して負極合剤 ペーストを得た。 この合剤分散ペース 卜を負極ペース ト 1 とする。 同じよう に負極活物質 (2) から ( 1 7) を使用して調整した合剤分散ペース トを負 極ペースト 2から 1 7とする。 また負極活物質 ( 1 ) を使用し、 分散助剤と してスチレン一マレイン酸共重合体を使用して、 負極ペースト 1と同様に調 整した合剤分散ペーストを負極ペースト 5 1とする。 同じく分散助剤として ポリビニルアルコール変性体 (クラレ ポバール MP— 1 0 3) を使用した ものを負極ペースト 5 2とする。
比較用正極合剤分散ペースト 1 0 1、 1 0 2の調整
本発明の正極合剤分散ペースト 1と同組成の合剤の調整を、 導電剤の分散 液をあらかじめ調整せずに一度の攪拌混合で行った。 すなわちアセチレンブ ラック 1 0重量部、 濃度 2重量%のカルボキシメチルセルロース水溶液 6 0 重量部、 正極活物質; L i C o 0 2 (中心粒子サイズ 5 m) を 2 0 0重量 部、 結着剤水分散物 (固形分濃度 5 0重量%) を 8重量部、 水 5 0重量部を 加えてブラネタリーミキサー中で 6 0分、 あるいは 1 8 0分攪拌混合して正 極合剤分散ペーストを得た。 これらをそれぞれ正極ペースト 1 0 1、 1 0 2 とする。
比較用負極合剤分散ペースト 1 0 1、 1 0 2の調整
本発明の負極合剤分散ペースト 1と同組成の合剤調整を、 同一の混合機を 使用して、 しかも導電剤の分散液をあらかじめ調整せずに一度の携拌混合で 行った。 すなわちアセチレンブラック 1 0重量部、 グラフアイト (K S— 6 ) 2 0重量部、 濃度 2重量%のカルボキシメチルセルロース水溶液 5 0重量部、 負極活物質; S i S n 0 3 を 2 0 0重量部、 結着剤としてポリフッ化ビニリ デン 1 0重量部、 水 3 0重量部を加えてブラネタリーミキサー中で 6 0分、 あるいは 1 8 0分攪拌混合して負極合剤ペース トを得た。 これらをそれぞれ 負極ペースト 1 0 1、 1 0 2とする。
下記の表 1、 表 2に、 上記においてそれぞれ調整した合剤分散ペース トの 分散性を示す平均粒子サイズデータを示す。 またあわせてこれら合剤ペース トをポアサイズ 3 0 fi mのミクロフィルターでろ過を行った場合の合剤の通 過性を示す。
導電剤の分散液をあらかじめ調整した本発明の合剤は、 比較用に調整した 合剤に比して短い分散時間、 すなわち少ない動力でより小さな平均粒子サイ ズとなっており、 合剤中の粒子の凝集を抑えてより良好な分散状態となって いることがわかる。 さらにそれぞれの比較用合剤ペーストのろ過を行った場 合のフィルター上残さを分析したところ、 炭素化合物の凝集物であることが わかった。 本発明の合剤ペーストにおいてはこのような残さは認められず、 炭素化合物からなるアセチレンブラック、 グラフアイ トなどの導電剤が良好 に分散されていることがわかる。 表 1 例 正極ぺース ト 導電剤 正柘 1 1 夕 1レ - -t^ ^£ 番号 散液 物晳 港■ ^睡間 サイズ
本発明 1 使用 ( l ) 4 5分 5 μ. m なし 比較例 1 0 1 不使用 ( l ) 6 0分 3 0 m あり 比較例 1 0 2 不使用 (l ) 1 8 0分 1 7 m あり 本発明 2 使用 (2) 4 5分 6 m なし 太举明 3 使用 ( V 3 U 4 5分 6 / m な Ά 1 表 2 例 負極ペースト 導電剤 負極 トータル 平均粒子 . MSi ¾f
¾:号 分散 材料 混合時間 サイズ
■^τ*· *yj 1 4 5分 4 / m Ά
•U"»¾ ^リ i n 1 つ、 C i 丄 ノ 6 0分 2 5 m のソ 例 1 n 9 体田 1 ノ 1 8 0分 1 3 fim のソ 太 2 a 4 5分 5 urn な Ά ί 术発明 3 使用 r 3 u ) 4 5分 A um お 1
2fc発明 4 使用 ( 4 ) 4 5分 4 / m † し 本発明 5 使用 ( 5 ) 4 5分 5 u m なし
6 使用 4 5分 5 ^ m 'θΓι 1 本発明 7 使用 ( 7 ) 4 5分 5 m なし 本発明 8 使用 (8) 4 5分 6 βτη なし 本発明 9 使用 (9) 4 5分 5 βΐη なし 本発明 1 0 使用 ( 1 0) 4 5分 5 ^ m なし 本発明 1 1 使用 ( 1 1 ) 4 5分 5 um なし 本発明 1 2 使用 (1 2) 4 5分 6 im なし 本発明 1 3 使用 (1 3) 4 5分 5 fi m なし 本発明 1 4 使用 ( 1 4) 4 5分 5 m なし 本発明 1 5 使用 ( 1 5) 4 5分 4 u m なし 本発明 1 6 使用 (1 6) 4 5分 5 / m なし 本発明 1 7 使用 (1 7) 4 5分 5 m なし 電池 1〜 1 5の作成
上記で調整した正極合剤ペーストをそれぞれブレードコーターで厚さ 3 0 mのアルミニウム箔集電体の両面に塗布 ·乾燥した後、 ローラーブレス機 で圧縮成型し所定の大きさに裁断し、 帯状の正極シートを作成した。 圧縮成 型後のシートの厚みは 2 2 0〃mとした。 さらにドライボックス (露点一 5 0〜一 7 0°Cの乾燥空気) 中で遠赤外線ヒーターにて充分脱水乾燥し、 正極 シートを作成した。
正極と同様に、 調整した負極合剤ペーストを 2 0 /imの銅箔集電体に塗布 し、 上記正極シート作成と同様の方法で負極シートを作成した。 加えて負極 材料として石油ピッチコークス (負極材料 ( 1 8) ) を使用して比較用の合 剤ペースト 1 0 1と同様にして 6 0分の混合擅拌を行って合剤ペーストを調 整して負極合剤ペースト 1 1 8とし、 負極シートを作成した。
上記正極シート、 微孔性ポリプロピレンフィルム製セパレータ一、 上記負 極シートおよびセパレーターの順に積層し、 これを渦巻き状に卷回した。 この卷回体を負極端子を兼ねるニッケルメッキを施した鉄製の有底円筒型 電池缶に収納した。 さらに電解液として L i P F6 の 1モル/リッ トルのェ チレンカーボネートと 1, 2 —ジメ トキシェタンの等容量混合液を電池缶内に 注入した。 正極端子を有する電池蓋をガスケッ トを介してかしめて円筒型電 池を作成した。
これらの電池における正極、 負極合剤ペース卜の組み合わせと容量比を表 3に示す。
炭素化合物からなる導電剤の分散液をあらかじめ調整して製造した合剤べ 一ス トを使用した正極シー ト、 負極シー トのいずれか、 あるいは両方を使用 した円筒型電池は、 いずれも使用しない組み合わせに比べ髙容量を示す。
表 3 電池 正極 導電剤 負極 導電剤
番号 ペースト 分j散液 ペースト 分散^ 容量比 備者
1 1 m 0 7 太 昍
2 1 使用 1 2 使用 1 0 5
3 1 使用 1 5 使用 1 0 5
4 1 体 1 7 依 1 0 β 太 fl
ς 2 m 1 依田 1 fi ς
β 3 5 9 Vf rn 1 Ω
7 1 使用 1 0 1 不使 HP 太御日
« 2 0リ 丄 1 つ、 tl 1 Π 3 太 日
9 4 使用 1 1 8 不使用 1 0 2 本発明
1 0 1 0 1 不使用 1 使用 1 0 3 本発明
1 1 1 0 1 不使用 1 7 使用 1 0 4 本発明
1 2 1 0 1 不使用 1 0 1 不使用 1 0 0 比較例
1 3 1 0 1 不使用 1 0 2 不使用 1 0 0 比較例
1 4 1 0 1 不使用 1 1 8 不使用 8 比較例
1 5 1 0 2 不使用 1 0 2 不使用 1 0 1 比較例 実施例 2
負極材料、 正極活物質としてはそれぞれ以下の化合物を使用した 負極材料 ( 1 ) 〜 ( 1 0 )
、 1 ) S S 0 6 A l t).3 B 0. 3 P 0. 2 3. 6
(2) S n S i o. 6 M g o. i A 1 o. 3 B0.2 03. o s
(3) S n S i Oa ( 4 ) S n S i o. 6 A 1 o. 2 P 0.4 03.5
(5) S n S i o. 8 Po. 2 03
( 6 ) S n A 1 o. a Bo. 5 Po. 2 02. i
( 7 ) S n Bo. 5 P o. 5 Oa
( 8 ) SnO
( 9 ) S n S i o. 6Po. 4 Oa. 2
(1 0) 石油ピッチコークス粉
正極活物質 ( 1 ) 〜 ( 3 )
( 1 ) L i C 002
(2 ) L iMn02
( 3) L i N i 02
(負極シー 卜の製造)
負極材料 (1 ) ; SnS i 0.6 A l 0.3 B0.3 P0 2 O3.6 (中心粒子サ ィズ 5 ^m) を 200重量部、 導電剤としてアセチレンブラック (電気化学 (株) 製デンカブラック) 1 0重童部、 グラフアイト (ロンザジャパン K
S - 6 ) 2 0重量部、 結着剤としてポリフッ化ビニリデン 1 0重量部、 分散 剤として濃度 2重量%のカルボキシメチルセルロース水溶液 5 0部をブラネ タリーミキサー中で 5分間予備混練し、 水 3 0重量部を添加してさらに 2 0 分間擾拌混合して負極合剤ペーストを得た。 この合剤分散ペーストを負極べ 一ス ト 1とする。 同じように負極材料 (2) から (1 0) を使用して調整し た合剤分散ペーストを負極ペース卜 2から 1 0とする。 さらに負極材料とし て 8、 9を使用し、 p H調節剤として水酸化リチウム 0. 5重量部をあらか じめ負極材料とともに加えて上と同じように調整した合剤分散ペーストを負 極ペースト 1 08、 1 09とし、 負極材料 8を使用して水酸化リチウムを 3 重量部加えた場合を負極ペース卜 2 0 8とする。 また、 負極ペースト 8に p H調節剤として炭酸ナト リウムを 1重量部加えさらに 5分間の攪拌混合を行 つたものを負極ペース ト 3 0 8とする。
これらの負極ペーストを恒温水槽中で温度を一定に保ち、 所定時間の後そ れぞれブレードコーターで厚さ 20 / mの餉箔集電体の両面に塗布乾燥した 後、 ローラープレス機で圧縮成型し所定の大きさに裁断し、 帯状の負極シー トを作成した。 圧縮成型後のシー卜の厚みは 9 0 jwmとした。 さらにドライ ボックス (露点一 5 0^ 7 0°Cの乾燥空気) 中で遠赤外線ヒーターにて充 分脱水乾燥し、 負極シートを作成した。
(正極シートの製造)
正極活物質 (1 ) ; L i C o 02 (中心粒子サイズ 5 //m) を 2 0 0重量 部、 導電剤としてアセチレンブラック (電気化学 (株) 製デンカブラック) 1 0重量部、 桔着剤として 2—ェチルへキシルァクリレートとアクリル酸と アクリロニトリルの共重合体の水分散物 (固形分濃度 5 0重量%) を 8重量 部、 分散剤として濃度 2重量%のカルボキシメチルセルロース水溶液 6 0部 をブラネタリーミキサー中で 5分間予備混棟し、 水 5 0重量部を添加してさ らに 2 0分間携拌混合して正極合剤分散ペーストを得た。 この合剤ペースト を正極ペースト 1とする。 同じように正極活物質 (2) 、 (3) を使用して 調整した合剤分散ペーストをそれぞれ正極ペースト 2、 正極ペースト 3とす る。
調整した正極合剤ペースト 1、 2、 3をそれぞれ 3 0 jumのアルミニウム 箔集電体に塗布し、 上記負極シート作成と同様の方法でそれぞれ正極シート 1、 2、 3を作成した。
(電池の製造)
上記負極シート、 微孔性ポリプロピレンフィルム製セパレーター、 上記正 極シートおよびセパレーターの順に積層し、 これを渦巻き状に卷回した。
この卷回体を負極端子を兼ねるニッケルメツキを施した鉄製の有底円筒型 電池缶に収納した。 さらに電解液として L i P F6 の 1モル Z 1のエチレン カーボネー卜と 1 , 2—ジメ トキシェタンの等容量混合液を電池缶内に注入 した。 正極端子を有する電池蓋をガスケッ トを介してかしめて円筒型電池を 作成した。
これらの電池における負極、 正極シー卜の組み合わせと電極シート単位面 積あたり電流 3. 5 mA/m2 で充電及び放電を行った場合のサイクル試験 の結果を表 4および表 5に示す。 数値は 3 0 0サイクルを経たときの容量保 持率である,
表 4 電池 負極 負極ペースト 正極 容量
番号 シー卜 番号 負極 P H 保持 経時 シート 保ド持率 備考 材料 温度
1 1 1 ( 1 ) 6.5 25°C 1曰 1 90% 本発明
2 2 2 (2) 7.8 25°C 1曰 1 91% 本発明
3 3 3 (3) 5.5 25°C 1曰 1 78% 本発明
4 4 4 (4) 9.5 25。C 1曰 1 80% 本発明
5 5 5 (5) 7.2 25°C 1曰 2 82% 本 明
6 6 6 (6) 7.1 25。C 1曰 3 78% 本発明
7 7 7 (7) 3.3 25 1曰 35% 比較例
8 8 8 ( 8 ) 4.2 25 1曰 1
45% 比較例
9 9 1 0 8 (8) 7.3 25。C 1曰 1 85% 本発明
1 0 1 0 2 0 8 (8) 11.0 25て 1曰 60% 比較例
1 1 1 1 3 0 8 (8) 7.0 25。C 1曰 87% 本発明
1 2 1 2 9 (9) 4.3 25て 1曰 38% 比較例
1 3 1 3 1 0 9 (9) 7.4 25°C 1曰 83% 本発明
1 4 1 4 1 0 ( 1 0) 7.1 25°C 1曰 88% 本発明
(表 4の説明)
pHが本発明の好ましい範囲にある負極ペーストを使用した負極シートを 用いて製造した電池 (電池番号 1から 6、 9、 1 1、 1 3、 1 4) は pHが 過度に低いペーストを使用したもの (電池番号 7、 8および 1 2) 、 あるい は過度に高いペーストを使用したもの (電池番号 1 0) に比べサイクル特性 に優れる。 またあらかじめ pH調節剤を添加して合剤ペース卜の pHを好ま しい範囲としたもの (負極ペースト 1 0 8、 1 0 9Z電池番号 9、 1 3) 、 合剤ペーストを調整後直ちに pH調節剤を添加して好ましい範囲としたもの (負極ペースト 3 0 8 Z電池番号 1 1 ) は、 PH調節剤を使用しないもの (電池番号 8、 1 2) に比較してサイクル特性に優れる。
表 5 雷池 食柘 鱼拓ペースト 量
¾-&ゥ シ—卜 番号 保 Pf!持,寸 iSfe シー ト 休 j寸千 糊老
材料 温度
1 5 1 5 1 ( 1 ) 6.5 25°C 3時間 1 90% 本発明
1 6 1 6 1 ( 1 ) 6.5 15て 3時間 1 90% 本発明
1 7 1 7 1 ( 1 ) 6.5 60 3時間 1 82% 本発明
1 8 1 8 1 (1 ) 6.5 85。C 3時間 1 70% 本発明
1 9 1 9 1 ( 1 ) 6.5 25て 5曰 1 88% 本発明
2 0 2 0 1 ( 1 ) 6.5 25°C 1 0曰 1 85% 本発明
(表 5の説明)
同一構成の負極ペーストを使用した場合、 保持温度が低い方がサイクル特 性が良好である。 (電池番号 1 5、 1 6、 1 7、 1 8) ただし、 保持温度 を 0°Cとした場合、 合剤ペーストの流動性が悪化し、 塗り付け不良となり電 池を作製することができなかった。
また負極ペース卜を調合してからの経時は短いほどサイクル特性が良好で あ 。
(電池番号 1 5、 1 9、 2 0)
負極シートを C uKa線を用いた X線回折分析を行ったところ、 シート番 号 1から 6、 9、 1 1、 1 3、 1 4にはペースト調整前の合剤構成材料に見 られた以外の新たな回折線の生成は認められなかった。 一方シ一ト番号 7、 8、 1 0、 1 2にはペースト調整前の負極材料には見られなかった回折線を 生じており、 負極材料表面に新たな結晶化部分が生成したものと考えられる 負極ペースト 1を作る際に、 実施例 1で予備分散したアセチレンブラック を同重量用いること以外は電池番号 1と全く同様に電池 2 1を作った。 また、 電池番号 2とは、 予備分散したアセチレンブラックを用いること以外は全く 同様にして電池 2 2を作った。 電池 2 1、 2 2の容量保持率はそれぞれ 9 3 %、 9 4 %であり、 導電剤の予備分散することによりサイクル特性が向上す ることがわかる。
実施例 3
負極材料として、 以下の化合物を使用した。
(I ) S ηθ
(2) G e O
(3) P bO
(4) Pb2 O a
(5) B i a 03
( 6 ) S n S i O s
Figure imgf000039_0001
( 8 ) S n S i o. 8 P o. 2 A 1
( 9 ) S n S i o. 8 Ρθ, 2 S b o. I 03. 25
(1 0) S n S i o. 6 P o 2G e 203.
( I I ) S n S i o. 6 P o. 2G e .A 1 0. I o 3. 05
Figure imgf000039_0002
(1 4) S n S i o. 6P o 4 O 3. 2
( 1 5 ) S n S i 0. 6 P o 4 A 10 2 O 3. 5
( 1 6) S n S i 0. 2 P o 8A 10 203.7
(1 7) L i 4S i O 4
(1 8) L i S i 0
上記負極活物質を 8 6重量部、 導電剤としてアセチレンブラック 3重量部 とグラフアイ ト 6重量部の割合で混合し、 さらに結着剤としてポリ弗化ビニ リデンを 4重量部及びカルボキシメチルセルロース 1重量部を加え、 水を媒 体として混棟してスラリーを得た。 該スラリーを厚さ 1 8 〃mの銅箔の両面 に、 ドクターブレードコーターを使って塗布し、 乾燥後カレンダーブレス機 により圧縮成型して帯状の負極シートを作成した。 負極シー卜の圧縮成型後 の片面の合剤厚さを第 6表に示す。
正極活物質として、 L i C o 0 2 を 8 7重量部、 導電剤としてグラフアイ ト 9重量部の割合で混合し、 さらに結着剤として N i p 0 1 L X 8 2 0 B ( 日本ゼオン製) 3重量部とカルボキシメチルセルロース 1重 i部を加え、 水 を媒体として混練して得られたスラリーを厚さ 2 0 のアルミニウム箔支 持体 (集電体) の両面に塗布した。 該塗布物を乾燥後、 カレンダープレス機 により圧縮成型して帯状の正極シートを作成した。 正極シー卜の圧縮成型後 の片面の合剤厚さを第 6表に示す。
上記負極シート及び正極シー卜のそれぞれの端部にニッケル及びアルミ二 ゥム製のリード板をそれぞれ溶接した後、 露点— 4 0 °C以下の乾燥空気中で 1 5 0 °Cで 2時間熱処理した。 熱処理は遠赤外線ヒーターを用いて行った。 さらに、 熱処理済の正極シート 5 (図 1中の符号 5を表す) 、 微多孔性ポリ プロピレンフィルム製セパレータ (セルガード 2 4 0 0 ) 3、 熱処理済の負 極シート 4及びセパレータ 3の順で積眉し、 これを渦巻き状に卷回した。
この卷回体を負極端子を兼ねる、 ニッケルめっきを施した鉄製の有底円筒 型電池缶 2に収納した。 さらに、 電解質として 1 m o 1ノリッ トル · L i P F 6 (エチレンカーボネートとジェチルカーボネートの 2対 8重量比混合液) を電池缶内に注入した。 正極端子を有する電池蓋 8をガスケッ ト 1を介して かしめて円筒型電池を作成した。 なお、 正極端子 8は正極シート 5と、 電池 缶 2は負極シート 4と予めリード端子により接続した。 図 1に円筒型電池の 断面を示した。 なお、 7は安全弁である。
完成した電池について電流密度 1 m A/ c m 2 で 4 . 2 Vまで充電し、 そ の後 2 . 7 Vまで放電する操作を繰り返し行って充放電サイクル試験を行い 放電容量が初期の 6 0 %になるまでのサイクル数を充放電サイクル寿命とし た。 また、 1 k H zにおける電池の内部抵抗も測定した。 結果を第 6表に示 す。 第 6 表
Figure imgf000041_0001
* No24は巻回時に正極力浙れ電池作¾^[ 産業上の利用可能性
以上のように、 本発明の非水二次電池とその製造方法を用いることにより 充放電サイクル性など優れた電池性能を安定して得ることができる。

Claims

請 求 の 範 囲
1 . リチウムを吸蔵放出できる正極と負極およびリチウム塩を含む非水電 解質を電池容器に収納してなる非水二次電池に関し、 少なくとも、 リチウム を吸蔵放出できる活物質と、 炭素化合物からなる少なくとも一種以上の導電 剤とを含有する水分散合剤ペーストを集電体上に塗布乾燥してなる該電極の 少なくとも一つの電極の製造において、 該導電剤の少なくとも一種を分散助 剤とともにあらかじめ水中に分散させた分散液を使用した該分散合剤ペース トから調整した電極を用いることを特徴とする非水二次電池の製造方法。
2 . 少なくともリチウムを吸蔵放出可能な活物質を含有する水分散合剤べ 一ストを集電体上に塗布乾燥してなる負極の製造方法において、 該水分散合 剤ペース トの p Hが 5以上 1 0以下であることを特徴とする非水二次電池用 負極シー トの製造方法。
3 . 少なくとも、 リチウムを吸蔵放出できる活物質と、 炭素化合物からな る一種以上の導電剤とを含有する水分散合剤ペーストを集電体上に塗布乾燥 してなる正極シ—卜と負極シー卜、 およびリチウム塩を含む非水電解質を電 池容器に収納してなる非水二次電池において、 該正極シートと該負極シート の少なくとも一方は、 該導電剤の少なくとも一種を分散助剤とともにあらか じめ水中に分散させた分散液を使用した該水分散合剤ペース卜から調整した 電極シートであることを特徴とする非水二次電池。
4 . 少なくとも、 リチウムを吸葳放出できる活物質と、 炭素化合物からな る一種以上の導電剤とを含有する水分散合剤ペーストを集電体上に塗布乾燥 してなる正極シ—卜と負極シート、 およびリチウム塩を含む非水電解質を電 池容器に収納してなる非水二次電池において、 該負極シートに用いる水分散 ペース トの p Hが 5以上 1 0以下であることを特徴とする非水二次電池。
5 . 負極シー卜に用いる水分散ペーストの p Hが 5以上 1 0以下であるこ とを特徴とする請求の範囲第 3項記載の非水二次電池。
6 . シート状導電性支持体の両面に電極合剤を塗設または圧着して成るシ 一ト状の負極および正極を有する非水二次電池において、 電池組立て時の該 負極の片面の合剤厚みが 5〜 8 O ^mであり、 かつ正極の片面の合剤厚みが 90〜1 80 /mであることを特徴とする非水二次電池。
7. シート状導電性支持体の両面に電極合剤を塗設または圧着して成るシ 一ト状の負極および正極を有する非水二次電池において、 電池組立で時の該 負極の片面の合剤厚みが 5〜80 mであり、 かつ正極の片面の合剤厚みが 90〜1 80 mであることを特徵とする請求の範囲第 3〜 5項のいづれか 1項に記載の非水二次電池。
8. あらかじめ水中に分散させた該導電剤のうち少なくとも一種がァセチ レンブラックであることを特微とする請求の範囲第 3項記載の非水二次電池 c
9. 正極合剤中に含有される正極活物質の少なくとも一種が L i ,MOb (ここで Mは、 その少なくとも一種が C o、 Mn、 N i、 V、 F eを含む δ 移金厲、 a = 0. 2〜1. 2、 b= 1. 4〜 3 ) であることを特徴とする請 求の範囲第 3〜 6項のいずれか 1項に記載の非水二次電池。
1 0. 負極合剤中に含有される負極活物質の少なくとも 1種は、 周期律表 I I I A、 I VA、 VA族元素から還ばれる一種以上の元素を含む酸化物およ びカルコゲン化合物から選ばれる化合物であることを特徵とする請求の範囲 第 3〜 6項のいずれか 1項に記載の非水二次電池。
PCT/JP1995/002205 1994-10-27 1995-10-26 Cellule secondaire non aqueuse et son procede de fabrication WO1996013873A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US08/839,239 US6019802A (en) 1994-10-27 1995-10-26 Nonaqueous secondary battery and process for producing the same using a dispersion aid
JP51444796A JP3726163B2 (ja) 1994-10-27 1995-10-26 非水二次電池とその製造方法
EP95935575A EP0789412B1 (en) 1994-10-27 1995-10-26 Nonaqueous secondary cell and its manufacturing method
AU37541/95A AU3754195A (en) 1994-10-27 1995-10-26 Nonaqueous secondary cell and its manufacturing method
DE69514678T DE69514678T2 (de) 1994-10-27 1995-10-26 Nichtwässrige sekundärzelle und deren herstellungsverfahren
CA002203802A CA2203802A1 (en) 1994-10-27 1995-10-26 Nonaqueous secondary battery and process for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP26379494 1994-10-27
JP6/263794 1994-10-27
JP29363594 1994-11-04
JP6/293635 1994-11-04
JP7/75232 1995-03-31
JP7523295 1995-03-31

Publications (1)

Publication Number Publication Date
WO1996013873A1 true WO1996013873A1 (fr) 1996-05-09

Family

ID=27301741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002205 WO1996013873A1 (fr) 1994-10-27 1995-10-26 Cellule secondaire non aqueuse et son procede de fabrication

Country Status (7)

Country Link
US (1) US6019802A (ja)
EP (1) EP0789412B1 (ja)
JP (1) JP3726163B2 (ja)
CN (1) CN1085898C (ja)
AU (1) AU3754195A (ja)
DE (1) DE69514678T2 (ja)
WO (1) WO1996013873A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512662A (ja) * 1995-03-01 1997-12-16 ウィルソン グレイトバッチ リミテッド 電気化学電池に使用する水性混合電極材料及び製造方法
JPH10144302A (ja) * 1996-11-06 1998-05-29 Japan Storage Battery Co Ltd 非水電解質電池用電極の製造方法及びその電極を用いた非水電解質電池
EP0867955A1 (en) * 1997-03-26 1998-09-30 Seiko Instruments Inc. Non-aqueous electrolyte secondary battery
EP0986118A1 (en) * 1997-05-27 2000-03-15 TDK Corporation Method of producing electrode for non-aqueous electrolytic cells
EP0986115A1 (en) * 1997-05-27 2000-03-15 TDK Corporation Electrode for non-aqueous electrolytic cells
JP2002134101A (ja) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd リチウム2次電池用正極板の製造方法
JP2002134113A (ja) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2005293942A (ja) * 2004-03-31 2005-10-20 Nec Corp 二次電池用負極の製造方法
JP2006100222A (ja) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
JP2006302617A (ja) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd 二次電池用電極の製造方法
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
US7883798B2 (en) 2001-07-19 2011-02-08 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
JP2011060612A (ja) * 2009-09-10 2011-03-24 Toyota Motor Corp 二次電池および該電池の製造方法
JP2011249339A (ja) * 2011-07-27 2011-12-08 Nec Corp リチウム二次電池及びその負極の製造方法
JP2014071947A (ja) * 2012-09-27 2014-04-21 Gs Yuasa Corp 非水電解液二次電池及びその製造方法
JP2014096390A (ja) * 2009-10-22 2014-05-22 Nippon Electric Glass Co Ltd 蓄電デバイス用負極活物質及びその製造方法
JP2020038191A (ja) * 2018-08-31 2020-03-12 Jfeスチール株式会社 有機−無機複合皮膜を有する金属材料における皮膜中の有機成分の分析方法、および、有機−無機複合皮膜を有する金属材料の製造方法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306497A (ja) * 1996-05-20 1997-11-28 Japan Storage Battery Co Ltd 鉛蓄電池用負極板
AU7451998A (en) * 1997-05-27 1998-12-30 Tdk Corporation Electrode for non-aqueous electrolytic cells
KR19990025888A (ko) * 1997-09-19 1999-04-06 손욱 리튬 계열 이차 전지용 극판의 제조 방법
JP3547953B2 (ja) * 1997-09-30 2004-07-28 三洋電機株式会社 円筒型非水電解液二次電池の製造方法
KR100263153B1 (ko) * 1998-01-22 2000-08-01 김순택 리튬이온2차전지의전극결합제와활물질슬러리제조방법
JP3573964B2 (ja) * 1998-06-17 2004-10-06 三洋電機株式会社 アルカリ電池用水素吸蔵合金電極及びアルカリ蓄電池用水素吸蔵合金電極の製造方法
FR2781932B1 (fr) * 1998-07-10 2000-09-01 Giat Ind Sa Electrolyte solide polymere et ses procedes de preparation
JP3526223B2 (ja) 1998-09-17 2004-05-10 日本碍子株式会社 リチウム二次電池
JP3541723B2 (ja) * 1999-04-28 2004-07-14 新神戸電機株式会社 円筒形リチウムイオン電池
US6589694B1 (en) * 1999-05-14 2003-07-08 Mitsubishi Cable Industries, Ltd. Positive electrode active material, positive electrode active material composition and lithium ion secondary battery
JP4453122B2 (ja) * 1999-06-23 2010-04-21 パナソニック株式会社 非水電解質二次電池
JP4938919B2 (ja) 2000-01-14 2012-05-23 ソニー株式会社 二次電池
JP3580213B2 (ja) * 2000-02-28 2004-10-20 松下電器産業株式会社 円筒形電池用封口板
JP4106644B2 (ja) * 2000-04-04 2008-06-25 ソニー株式会社 電池およびその製造方法
TW508861B (en) * 2000-08-08 2002-11-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and positive electrode for the same
US6803149B2 (en) * 2000-12-04 2004-10-12 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
WO2002054526A1 (fr) * 2000-12-27 2002-07-11 Mitsubishi Chemical Corporation Element secondaire au lithium
JP3871518B2 (ja) * 2001-03-13 2007-01-24 松下電器産業株式会社 アルカリ蓄電池用正極活物質、正極および正極の製造法
DE10125616A1 (de) 2001-05-25 2002-12-05 Microbatterie Gmbh Verfahren zur Herstellung von Elektrodenfolien für galvanische Elemente
JP3942386B2 (ja) * 2001-07-04 2007-07-11 松下電器産業株式会社 アルカリ蓄電池用正極
CN100438142C (zh) * 2001-09-26 2008-11-26 三星Sdi株式会社 电极材料、制备电极材料方法、电极和包括该电极的电池
US6998192B1 (en) 2002-08-29 2006-02-14 Quallion Llc Negative electrode for a nonaqueous battery
US6852449B2 (en) * 2002-08-29 2005-02-08 Quallion Llc Negative electrode including a carbonaceous material for a nonaqueous battery
JP4140425B2 (ja) * 2003-04-10 2008-08-27 ソニー株式会社 二次電池
CN100418250C (zh) * 2004-07-19 2008-09-10 肇庆市风华锂电池有限公司 二次电池成品极片的制备工艺及制备装置
CN100483837C (zh) * 2004-07-28 2009-04-29 比亚迪股份有限公司 大倍率锂离子二次电池
US7174207B2 (en) * 2004-09-23 2007-02-06 Quallion Llc Implantable defibrillator having reduced battery volume
KR100917733B1 (ko) * 2004-11-26 2009-09-15 파나소닉 주식회사 리튬 일차전지 및 그 제조법
JP4911909B2 (ja) * 2005-03-29 2012-04-04 三洋電機株式会社 リチウム二次電池用電極の製造方法
KR100709870B1 (ko) * 2005-04-27 2007-04-20 삼성에스디아이 주식회사 이차 전지 및 그 형성 방법
JP5603011B2 (ja) * 2005-11-17 2014-10-08 インフィニット パワー ソリューションズ, インコーポレイテッド 電気化学的装置及び該装置の製造方法
CN101207193B (zh) * 2006-12-21 2010-11-17 比亚迪股份有限公司 一种电极浆料的制备方法
TWI332284B (en) * 2006-12-29 2010-10-21 Ind Tech Res Inst A battery electrode paste composition containing modified maleimides
JP5482173B2 (ja) 2008-12-22 2014-04-23 住友化学株式会社 電極合剤、電極および非水電解質二次電池
JP5493516B2 (ja) * 2009-07-06 2014-05-14 ソニー株式会社 電極及びそれを有する電池
JP5609283B2 (ja) * 2010-06-08 2014-10-22 セントラル硝子株式会社 リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
JP2014505980A (ja) * 2011-01-13 2014-03-06 ビーエーエスエフ ソシエタス・ヨーロピア リチウム−硫黄電池用の電極を製造する方法
CN103370815B (zh) * 2011-02-16 2016-04-13 松下知识产权经营株式会社 电池及电池的制造方法
FR2980042B1 (fr) 2011-09-09 2014-10-24 Commissariat Energie Atomique Procede de fabrication d'une electrode et encre pour electrode
DE112011105726T5 (de) 2011-10-11 2014-07-10 Toyota Jidosha Kabushiki Kaisha Nichtwässrige Sekundärbatterie
US10135062B2 (en) 2011-12-21 2018-11-20 Nexeon Limited Fabrication and use of carbon-coated silicon monoxide for lithium-ion batteries
KR101429009B1 (ko) * 2012-04-26 2014-08-12 강윤규 이차전지 음극재 및 그 제조방법
GB2508218A (en) * 2012-11-26 2014-05-28 Leclanch S A Electrode for the reduction of gassing in lithium titanate cells
JP6354135B2 (ja) 2013-02-12 2018-07-11 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
JP6321404B2 (ja) 2014-02-26 2018-05-09 株式会社ジェイテクト 蓄電材料の製造装置および製造方法
JP6291903B2 (ja) 2014-02-26 2018-03-14 株式会社ジェイテクト 混練装置
JP6239476B2 (ja) * 2014-09-25 2017-11-29 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR102019711B1 (ko) * 2016-09-26 2019-11-14 주식회사 엘지화학 리튬-황 이차전지 양극용 아크릴 바인더 및 이의 용도

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272049A (ja) * 1988-04-21 1989-10-31 Sony Corp リチウム二次電池
JPH02158055A (ja) * 1988-12-09 1990-06-18 Matsushita Electric Ind Co Ltd リチウム二次電池用の正極合剤の製造法
JPH04112455A (ja) * 1990-08-31 1992-04-14 Sanyo Electric Co Ltd 二次電池
JPH05174818A (ja) * 1991-12-18 1993-07-13 Seiko Electronic Components Ltd 非水電解質二次電池及びその負極活物質の製造方法
JPH05290833A (ja) * 1992-04-10 1993-11-05 Matsushita Electric Ind Co Ltd 非水二次電池とその負極板の製造法
JPH07235295A (ja) * 1994-02-21 1995-09-05 Fuji Photo Film Co Ltd 非水二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446344A (en) * 1977-09-20 1979-04-12 Sanyo Electric Co Method of producing positive plate for nonnaqueous battery
JPS6041829B2 (ja) * 1979-01-06 1985-09-19 株式会社日立製作所 非水電解液電池用正極の製造法
JPS60160563A (ja) * 1984-01-18 1985-08-22 Toshiba Battery Co Ltd 非水電解液電池用正極の製造法
US5041199A (en) * 1990-04-04 1991-08-20 Gould Inc. Process for producing electrodeposited electrodes for use in electrochemical cells
JP2871077B2 (ja) * 1990-11-20 1999-03-17 松下電器産業株式会社 非水電解質二次電池用負極の製造法
JPH0529022A (ja) * 1991-07-19 1993-02-05 Honda Motor Co Ltd リチウム二次電池用正極の製造方法
EP0627776B1 (en) * 1993-05-14 1997-08-13 Sharp Kabushiki Kaisha Lithium secondary battery
DE4342039A1 (de) * 1993-12-09 1995-06-14 Varta Batterie Elektrochemisches Sekundärelement
US5683834A (en) * 1994-09-07 1997-11-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP3756232B2 (ja) * 1996-01-17 2006-03-15 宇部興産株式会社 非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272049A (ja) * 1988-04-21 1989-10-31 Sony Corp リチウム二次電池
JPH02158055A (ja) * 1988-12-09 1990-06-18 Matsushita Electric Ind Co Ltd リチウム二次電池用の正極合剤の製造法
JPH04112455A (ja) * 1990-08-31 1992-04-14 Sanyo Electric Co Ltd 二次電池
JPH05174818A (ja) * 1991-12-18 1993-07-13 Seiko Electronic Components Ltd 非水電解質二次電池及びその負極活物質の製造方法
JPH05290833A (ja) * 1992-04-10 1993-11-05 Matsushita Electric Ind Co Ltd 非水二次電池とその負極板の製造法
JPH07235295A (ja) * 1994-02-21 1995-09-05 Fuji Photo Film Co Ltd 非水二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0789412A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512662A (ja) * 1995-03-01 1997-12-16 ウィルソン グレイトバッチ リミテッド 電気化学電池に使用する水性混合電極材料及び製造方法
JPH10144302A (ja) * 1996-11-06 1998-05-29 Japan Storage Battery Co Ltd 非水電解質電池用電極の製造方法及びその電極を用いた非水電解質電池
EP0867955A1 (en) * 1997-03-26 1998-09-30 Seiko Instruments Inc. Non-aqueous electrolyte secondary battery
EP0986118A1 (en) * 1997-05-27 2000-03-15 TDK Corporation Method of producing electrode for non-aqueous electrolytic cells
EP0986115A1 (en) * 1997-05-27 2000-03-15 TDK Corporation Electrode for non-aqueous electrolytic cells
EP0986118A4 (en) * 1997-05-27 2001-04-11 Tdk Corp METHOD FOR PRODUCING AN ELECTRODE FOR NON-AQUEOUS ELECTROLYTIC CELLS
US6497979B1 (en) 1997-05-27 2002-12-24 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells including a narrow-gap dispersing process
EP0986115A4 (en) * 1997-05-27 2005-03-02 Tdk Corp ELECTRODE FOR NONAQUEOUS ELECTROLYTIC CELLS
JP2002134101A (ja) * 2000-10-20 2002-05-10 Matsushita Electric Ind Co Ltd リチウム2次電池用正極板の製造方法
JP2002134113A (ja) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd 非水系二次電池
US7883798B2 (en) 2001-07-19 2011-02-08 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
JP2005293942A (ja) * 2004-03-31 2005-10-20 Nec Corp 二次電池用負極の製造方法
JP2006100222A (ja) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
JP2006302617A (ja) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd 二次電池用電極の製造方法
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
JP2011060612A (ja) * 2009-09-10 2011-03-24 Toyota Motor Corp 二次電池および該電池の製造方法
JP2014096390A (ja) * 2009-10-22 2014-05-22 Nippon Electric Glass Co Ltd 蓄電デバイス用負極活物質及びその製造方法
JP2014130826A (ja) * 2009-10-22 2014-07-10 Nippon Electric Glass Co Ltd 蓄電デバイス用負極活物質及びその製造方法
JP2011249339A (ja) * 2011-07-27 2011-12-08 Nec Corp リチウム二次電池及びその負極の製造方法
JP2014071947A (ja) * 2012-09-27 2014-04-21 Gs Yuasa Corp 非水電解液二次電池及びその製造方法
JP2020038191A (ja) * 2018-08-31 2020-03-12 Jfeスチール株式会社 有機−無機複合皮膜を有する金属材料における皮膜中の有機成分の分析方法、および、有機−無機複合皮膜を有する金属材料の製造方法

Also Published As

Publication number Publication date
JP3726163B2 (ja) 2005-12-14
EP0789412B1 (en) 2000-01-19
EP0789412A4 (en) 1998-04-01
US6019802A (en) 2000-02-01
CN1085898C (zh) 2002-05-29
DE69514678D1 (de) 2000-02-24
AU3754195A (en) 1996-05-23
DE69514678T2 (de) 2000-06-15
EP0789412A1 (en) 1997-08-13
CN1168742A (zh) 1997-12-24

Similar Documents

Publication Publication Date Title
WO1996013873A1 (fr) Cellule secondaire non aqueuse et son procede de fabrication
EP3331066B1 (en) Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
EP1291941B1 (en) Active material for battery and method of preparing the same
JP4329730B2 (ja) 非水二次電池とその製造方法
JP2903469B1 (ja) リチウムイオン電池用陽極材料の製造方法
JP2008147068A (ja) 非水電解液二次電池用リチウム複合酸化物
JP3498380B2 (ja) 非水二次電池
JPH09180758A (ja) 非水二次電池
JPH11185753A (ja) 非水電解質リチウム二次電池
JP3555213B2 (ja) 非水二次電池
JPH09231963A (ja) 非水二次電池
JP4235702B2 (ja) 正極活物質とその製造方法とこれを用いた非水電解質二次電池
JP4038826B2 (ja) 非水電解液二次電池および製造法
JP3819940B2 (ja) 非水電解質二次電池
JP2006318926A (ja) 正極活物質及び非水電解質二次電池
JP7040832B1 (ja) リチウムイオン二次電池用負極活物質、その製造方法、及びリチウムイオン二次電池用負極電極
JP3503688B2 (ja) リチウム二次電池
KR20090108570A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JPH08130035A (ja) 非水二次電池
JP4285407B2 (ja) リチウム二次電池用非水電解液及び非水電解液二次電池
WO2023166869A1 (ja) リチウムイオン二次電池用負極活物質、その製造方法、及びリチウムイオン二次電池用負極電極
KR20150078068A (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
JP7163624B2 (ja) リチウムイオン二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いたリチウムイオン二次電池
WO2020080211A1 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2005317447A (ja) 電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95196625.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN FI JP KR SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08839239

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2203802

Country of ref document: CA

Ref document number: 2203802

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1995935575

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995935575

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995935575

Country of ref document: EP