US8236672B2 - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
US8236672B2
US8236672B2 US12/636,961 US63696109A US8236672B2 US 8236672 B2 US8236672 B2 US 8236672B2 US 63696109 A US63696109 A US 63696109A US 8236672 B2 US8236672 B2 US 8236672B2
Authority
US
United States
Prior art keywords
group iii
layer
cavity
iii nitride
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/636,961
Other languages
English (en)
Other versions
US20100155740A1 (en
Inventor
Takako Chinone
Ji-Hao Liang
Yasuyuki Shibata
Jiro Higashino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Assigned to STANLEY ELECTRIC CO., LTD. reassignment STANLEY ELECTRIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHINONE, TAKAKO, HIGASHINO, JIRO, LIANG, JI-HAO, SHIBATA, YASUYUKI
Publication of US20100155740A1 publication Critical patent/US20100155740A1/en
Application granted granted Critical
Publication of US8236672B2 publication Critical patent/US8236672B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing a semiconductor device.
  • Light-emitting diodes and other semiconductor light-emitting devices are manufactured by forming semiconductor layers or layered structure including an n-layer, an active layer, a p-layer on a growth substrate such as a sapphire substrate, and forming electrodes on the growth substrate and the surface of the semiconductor layer. Part of the semiconductor layer is etched away using reactive ion etching or another technique to expose the n-layer and form electrodes on the n-layer and p-layer, respectively.
  • Semiconductor light-emitting devices are increasingly efficient and have higher output through recent technological advances.
  • the amount of heat produced in the semiconductor light-emitting devices has also increased together with the higher output, which causes problems such as decreased light-emission efficiency and decreased reliability of the semiconductor light-emitting device through, for example, degradation of the semiconductor layer.
  • a configuration is used in which the growth substrate having relatively low thermal conductivity is removed, and the semiconductor film or layered structure is supported by a metal having relatively high thermal conductivity instead. Heat dissipation of the semiconductor light-emitting device is improved by adopting such a structure, and improvement in light-emission efficiency, more particularly, light extraction efficiency can be expected by removing the growth substrate.
  • Patent Reference 1 discloses a manufacturing process of a light-emitting device wherein a semiconductor epitaxial layer is formed on a growth substrate via an amorphous nitrogen compound semiconductor layer.
  • Patent Reference 1 discloses a process in which the growth temperature is set to 600° C. or less and the supply ratio of a group III element with respect to a V group element is set to 1000 or less when an amorphous nitrogen compound semiconductor layer is grown by vapor phase deposition to thereby form voids within the amorphous nitrogen compound semiconductor layer, and that the growth substrate, in some cases, is naturally separated from the semiconductor epitaxial layer.
  • the nitride semiconductor decomposes and produces N 2 gas by absorbing laser light, and there are cases in which the gas pressure produces cracks in the semiconductor epitaxial layer.
  • the implementation of the LLO method leads to higher costs because expensive special equipment therefore must be used. It is furthermore difficult to process a plurality of wafers in a single process using the LLO method, and the process entails scanning a laser light across the entire wafer surface. Therefore, a relatively long processing time is required. The processing time is further extended as the diameter of wafers is increased. Therefore, it is thought that there are many advantages in terms of quality, cost, and productivity improvement when the growth substrate can be separated using a simpler method rather than the LLO method.
  • the film of the semiconductor epitaxial layers must be of good quality after the growth substrate has been separated. In other words, cracks or other defects in the semiconductor epitaxial layer must not be generated when the growth substrate is separated, and there must be few threading dislocations or other crystal defects in the semiconductor epitaxial layer.
  • the growth substrate must not be naturally separated. Specifically, post-processing becomes difficult when the growth substrate is naturally separated during handling of the wafer or in an intermediate process step because the thickness of the semiconductor epitaxial layer is small. For example, electrode formation and bonding with the support substrate becomes very difficult when the growth substrate is separated due to thermal shock or the like in the epitaxial growth step of the semiconductor layer. Therefore, bonding strength sufficient to prevent separation of the growth substrate from the semiconductor epitaxial layer must be ensured, and separation must be facilitated in the growth substrate separation or removal step; i.e., the ability to control the separated of the growth substrate must be ensured.
  • the present invention was contrived in view of the foregoing, it being an object thereof to provide method for manufacturing a semiconductor device in which the growth substrate can be separated using a simpler method and without reliance on the LLO method.
  • a method for manufacturing a semiconductor device which comprises the step of: forming on a growth substrate a cavity-containing layer composed of a group III nitride compound semiconductor, and including cavities and columnar structures interspersed therein; forming a group III nitride compound semiconductor epitaxial layer on said cavity-containing layer; bonding a support substrate on said group III nitride compound semiconductor epitaxial layer; and separating the growth substrate from said group III nitride compound semiconductor epitaxial layer from said cavity-containing layer, the interface therebetween serving as a separation boundary.
  • the step of forming the cavity-containing layer comprises a step of forming on the growth substrate a base layer or underlying layer comprising a group III nitride and whose surface has columnar structures; and a step of repeating in alternating fashion a plurality of cycles of a first growth step and a second growth step of growing a group III nitride at growth rates different from each other on the base layer.
  • the first growth step includes a process for supplying a group V material and a group III material at their respective predetermined flow rates at a higher growth temperature than the growth temperature of the base layer to grow the group III nitride mainly in the longitudinal direction; and the second growth step includes a process for supplying a group V material and a group III material at flow rates that are greater than the flow rates in the first step at a higher growth temperature than the growth temperature of the base layer to growing the group III nitride mainly in the lateral direction.
  • the value of S 1 /S 2 is preferably 0.5 or higher, where S 1 is the supply ratio of a group V material and a group III material (V/III ratio) in the step of forming the base layer, and S 2 is the supply ratio of a group V material and a group III material (V/III ratio) in the step of forming the group III nitride compound semiconductor epitaxial layer.
  • the step of forming the base layer is preferably carried out under conditions in which the group V material and the group III material are supplied so that the V/III ratio is 3,000 or higher at a lower temperature than the growth temperature of the group III nitride compound semiconductor epitaxial layer.
  • the method for manufacturing a layered structure of the present invention comprises a step of forming on a growth substrate a cavity-containing layer composed of a group III nitride compound semiconductor layer and including cavities and columnar structures interspersed in the cavity-containing layer.
  • the step of forming the cavity-containing layer comprises the steps of: supplying a group V material and a group III material so that the V/III ratio is 3,000 or higher, and forming on the growth substrate a base layer composed of a group III nitride; and repeating in alternating fashion a plurality of cycles of a first growth step and a second growth step of growing a group III nitride at growth rates different from each other on the base layer.
  • the first growth step includes a process for supplying a group V material and a group III material at their respective predetermined flow rates at a higher growth temperature than the growth temperature of the base layer, and growing the group III nitride mainly in the longitudinal direction; and the second growth step includes a process for supplying a group V material and a group III material at a flow rate that is greater than the flow rate in the first growth step at a higher growth temperature than the growth temperature of the base layer, and growing the group III nitride mainly in the lateral direction.
  • the semiconductor wafer of the present invention comprises a growth substrate; a cavity-containing layer composed of a group III nitride compound semiconductor formed on the growth substrate, and including cavities and columnar structures interspersed in the cavity-containing layer; and a group III nitride compound semiconductor epitaxial layer formed on the cavity-containing layer.
  • the width of the columnar structures is preferably 1 ⁇ m or more and 18 ⁇ m or less. Also, the value of T 1 ⁇ T 2 is preferably 0.6 to 2.5, where T 1 is the thickness in microns of the cavity-containing layer, and T 2 is the thickness in microns of the group III nitride compound semiconductor epitaxial layer.
  • the layered structure of the present invention has a growth substrate; and a cavity-containing layer composed of a group III nitride compound semiconductor and including cavities and columnar structures interspersed in the layer, the cavity-containing layer being disposed on the growth substrate.
  • the width of the columnar structures is preferably 1 ⁇ m or more and 18 ⁇ m or less.
  • the layered structure of the present invention comprises a growth substrate and a group III nitride layer that is layered on the growth substrate, wherein the group III nitride layer comprises a layer having a plurality of internal cavities formed by supplying a group V material and a group III material so that the V/III ratio is 3,000 or higher, forming on the growth substrate a base layer having a group III nitride, and subsequently carrying out in alternating fashion a plurality of cycles of a first step and a second step of growing a group III nitride at growth rates different from each other on the base layer.
  • the group III nitride layer comprises a layer having a plurality of internal cavities formed by supplying a group V material and a group III material so that the V/III ratio is 3,000 or higher, forming on the growth substrate a base layer having a group III nitride, and subsequently carrying out in alternating fashion a plurality of cycles of a first step and a second step of growing a
  • a bonding strength that is high enough for natural removal or separation of the growth substrate not to occur between the growth substrate and the semiconductor epitaxial layer.
  • a growth substrate can be removed without using LLO in the growth substrate removal step.
  • FIG. 1 is a flowchart of the steps for manufacturing a semiconductor light-emitting device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the structure of the semiconductor light-emitting diode in the stage prior to separation of the growth substrate according to the embodiment of the present invention
  • FIG. 3 is a graph showing the relationship between the size (width) of a single columnar structure and the in-plane occupancy ratio of the columnar structures according to the embodiment of the present invention
  • FIG. 4 is a graph showing the range in which adequate separation of the growth substrate can be carried out in relation to the thickness of the cavity-containing layer and the thickness of the semiconductor epitaxial layer;
  • FIGS. 5A to 5I are cross-sectional views of each process step in the steps for manufacturing the semiconductor light-emitting device according to the embodiment of the present invention.
  • FIG. 6 is a fluorescence photomicrograph of the surface of the semiconductor epitaxial layer exposed by separating the growth substrate
  • FIG. 7A is an SEM image of the separation surface of the sapphire substrate separated in the growth substrate separation step.
  • FIG. 7B is an SEM image of the separation surface of the semiconductor epitaxial layer.
  • FIG. 1 is a flowchart of the steps of manufacturing a semiconductor light-emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the semiconductor light-emitting diode in the step prior to removal of the growth substrate.
  • the method for manufacturing a semiconductor light-emitting device of the present embodiment includes a cavity-containing layer formation step (step S 1 ) of forming a cavity-containing layer 20 composed of a group III nitride having numerous internal cavities on the growth substrate 10 ; a semiconductor epitaxial layer formation step (step S 2 ) of forming a semiconductor epitaxial layer (i.e., device function layer or layered structure) 30 including a light-emitting layer or the like composed of a group III nitride on the cavity-containing layer; a support substrate bonding step (step S 3 ) of bonding a support substrate 60 on the semiconductor epitaxial layer 30 ; a growth substrate separation step or removal step (step S 4 ) of separating the growth substrate 10 from the semiconductor epitaxial layer 30 in which the interface between the cavity-containing layer 20 and the growth substrate 10 serves as a separation boundary; a surface treatment step (step S 5 ) of flattening the surface of the semiconductor epitaxial layer 30 exposed by separating the growth substrate 10 ; an
  • the cavity-containing layer 20 is composed of a group III nitride which is of the same crystalline system as the semiconductor epitaxial layer 30 , and is disposed between the growth substrate 10 and the semiconductor epitaxial layer 30 .
  • the cavity-containing layer 20 has a porous structure in which numerous cavities (or voids) 21 are mostly uniformly distributed in a plane extending in the cavity-containing layer. Numerous cavities 21 are formed in the cavity-containing layer 20 , whereby a plurality of columnar structures 22 are formed between adjacent cavities.
  • the columnar structures 22 constitute connection portions between the growth substrate 10 and the semiconductor epitaxial layer 30 .
  • the size (width) of individual columnar structures 22 is about several microns and the columnar structures are mostly uniformly distributed in a plane the cavity-containing layer 20 is extending.
  • a bonding strength sufficient to prevent the growth substrate 10 from being naturally separated or removed is ensured by disposing the cavity-containing layer 20 having such a structure between the growth substrate 10 and the semiconductor epitaxial layer 30 , and the growth substrate 10 can be separated from the cavity-containing layer 20 in which the interface between the cavity-containing layer 20 and the growth substrate 10 serves as a separation boundary surface, by merely applying a small external force without using the LLO technique in the growth substrate removal step (step S 4 ).
  • the cavities 21 formed within the cavity-containing layer 20 and the accompanying columnar structures 22 are unevenly distributed, or when the sizes of the cavities 21 and the columnar structures 22 are unsuitable, the growth substrate 10 is naturally separated at an unexpected time, or separation between the growth substrate 10 and the cavity-containing layer 20 cannot be achieved, and processing yield is liable to be dramatically reduced. Therefore, the cavities 21 and the columnar structures 22 are substantially uniformly distributed in the plane in the cavity-containing layer formation step (step S 1 ), and it is important to ensure that the size of each of the columnar structures 22 and the cavities 21 is suitable for separating the growth substrate.
  • FIG. 3 is a graph showing the size (width) of individual columnar structures 22 formed in the cavity-containing layer 20 , and the in-plane occupancy ratio of all columnar structures 22 .
  • the broken line in FIG. 3 shows the range in which the growth substrate 10 can be adequately separated or removed from the cavity-containing layer 20 , in which the interface between the cavity-containing layer 20 and the growth substrate 10 serves as a separation or removal boundary.
  • the columnar structures 22 are substantially uniformly distributed in the plane in which the cavity-containing layer 20 extends, and the occupancy ratio in the plane increases as the size (width) of the columnar structures increases.
  • the surface area of the connection portions between the growth substrate 10 and the cavity-containing layer 20 is increased when the size of the columnar structures 22 is increased, and the bonding strength is therefore increased. Accordingly, it is difficult to separate the growth substrate 10 from the cavity-containing layer 20 when the sizes of the columnar structures 22 are too large.
  • the thickness of the cavity-containing layer 20 must be determined in accordance with the thickness of the semiconductor epitaxial layer 30 in order to achieve favorable separation between the growth substrate 10 and the cavity-containing layer 20 .
  • the thickness of the semiconductor epitaxial layer 30 is large, the stress produced in the film is increased and the growth substrate 10 is naturally separated when the cavity-containing layer 20 does not possess sufficient mechanical strength to withstand the stress.
  • the growth substrate 10 cannot be separated when the mechanical strength of the cavity-containing layer 20 is excessively large in relation to the stress.
  • the mechanical strength of the cavity-containing layer 20 is reduced as the thickness of the cavity-containing layer 20 is increased and the growth substrate 10 is readily separated or removed. Therefore, the thickness of the cavity-containing layer 20 must be set in accordance with the thickness of the semiconductor epitaxial layer 30 to be layered.
  • FIG. 4 is a plot of the measured values of fabricated samples, wherein the horizontal axis represents the thickness of the cavity-containing layer 20 and the vertical axis represents the thickness of the semiconductor epitaxial layer 30 .
  • the triangular plots in the graph show the case in which the growth substrate 10 could not be separated.
  • the square plots in the graph show the case in which the growth substrate 10 could be adequately separated or removed from the cavity-containing layer 20 , in which the interface therebetween serves as a separation or removal boundary surface.
  • Circular plots in the graph show the case in which natural or unintentional separation occurs prior to the growth substrate separation step.
  • the region between the two broken lines in the graph is set by the data and is a region in which the growth substrate 10 can be adequately separated from the cavity-containing layer 20 . In other words, the portion to the right of this region is a region in which the growth substrate 10 is naturally separated, and the portion to the left of this region is a region in which separation or removal is impossible.
  • the region in which the growth substrate can be adequately separated from the cavity-containing layer is the range enclosed by the broken lines in FIG. 3 .
  • the size (width) of a single columnar structure is in the range of 1 ⁇ m to 18 ⁇ m
  • the value of T 1 ⁇ T 2 is about in the range of 0.6 to 2.5 where T 1 ⁇ m is the thickness of the cavity-containing layer 20
  • T 2 ⁇ m is the thickness of the semiconductor epitaxial layer 30 .
  • FIGS. 5A to 5I are cross-sectional views of each process step in the steps of manufacturing the semiconductor light-emitting device of the present invention.
  • Step 1 Cavity-Containing Layer Formation Step
  • the cavity-containing layer formation step includes a step of forming a GaN base layer 20 a on the growth substrate 10 by growing a low-temperature buffer layer having a high V/III by vapor phase growth, and a step of completing the cavity-containing layer 20 by repeating in alternating fashion a plurality of cycles of a process (i.e., first step) of growing GaN in longitudinal-growth promoting conditions or modes, and a process (i.e., second step) of growing GaN in lateral-growth promoting conditions or modes.
  • the V/III ratio is a value obtained by dividing the mole number of the group V element by the mole number of the group III, the group V element being included in the material gas that is supplied when the group III nitride semiconductor layer is grown by the vapor phase growth, and represents the supply ratio of the group V element and the group III element.
  • a growth substrate 10 is prepared.
  • a c-plane sapphire substrate on which a GaN-based semiconductor epitaxial layer can be formed by metalorganic chemical vapor deposition (MOCVD) is used as the growth substrate 10 .
  • MOCVD metalorganic chemical vapor deposition
  • the low-crystallinity base layer 20 a composed of a nitride semiconductor is formed on the growth substrate 10 .
  • the growth substrate 10 is transported into a MOCVD apparatus, the substrate temperature (growth temperature) is set to 525° C., trimethylgallium (TMG) (flow rate: 11 ⁇ mol/min) and ammonia (NH 3 ) (flow rate: 3.3 Litter/min) are supplied (in this case, the ratio is about 14,000) in a mixed atmosphere of nitrogen (flow rate: 13.5 Litter/min) and hydrogen (flow rate: 7 Litter/min), and a GaN base layer 20 a having low crystallinity is formed to a thickness of about 200 nm ( FIG. 5A ).
  • TMG trimethylgallium
  • NH 3 ammonia
  • a GaN base layer 20 a having low crystallinity is formed to a thickness of about 200 nm ( FIG. 5A ).
  • the supply of TMG is stopped after the base layer 20 a has been
  • the base layer 20 a has a protrusions/depressions surface, which serves as the base form of the columnar structures 22 and the cavities 21 in the cavity-containing layer 20 .
  • the base layer 20 a functions as a buffer layer for relaxing lattice mismatch between the growth substrate 10 and the GaN-based semiconductor epitaxial layer 30 , and also forms a base for forming the columnar structures 22 and the cavities 21 . Accordingly, the base layer 20 a is formed on the growth substrate 10 with the base layer 20 a having a protrusions/depressions surface in which the height and pitch of the protrusions and depressions are substantially aligned in plane by growing the GaN film at a relatively low temperature and high V/III ratio ( 3 , 000 or greater).
  • the cavities 21 and the columnar structures 22 can thereby be uniformly formed in the cavity-containing layer 20 , and it is possible to form micron-sized columnar structures 22 that constitute the connection portions between the growth substrate 10 and the semiconductor epitaxial layer 30 .
  • the base layer 20 a forms a discrete island-shaped structure when growth is carried out when the V/III ratio is relatively low (i.e., less than 3,000). This is due to the fact that when the V/III ratio is low, migration is not promoted, the GaN film is affected by the flow of material gas, thereby producing a dramatic difference in areas in which growth is promoted and areas in which growth is inhibited. In this case, the in-plane distribution of the cavities 21 and the columnar structures 22 becomes non-uniform, the growth substrate 10 is naturally separated, or it becomes difficult to achieve adequate separation of the growth substrate 10 from the cavity-containing layer 20 .
  • the growth temperature can be modified within a range of 425 to 625° C.
  • the TMG flow rate can be modified in a range of 8 to 23 ⁇ mol/min, or more preferably 9 to 15 ⁇ mol/min, and the NH 3 flow rate can be modified in a range of 0.5 to 5.5 Litter/min.
  • the V/III ratio must be kept in a range of 3,000 to 25,000, or more preferably 9,000 to 25,000.
  • the layers are preferably grown under conditions in which the value of S 1 /S 2 is 0.5 to 10, or more preferably 1 to 5, where S 1 is the V/III ratio in the base layer formation step and S 2 is the V/III ratio in a later-described semiconductor epitaxial layer formation step.
  • the growth rate of the base layer can be modified in a range of 3 to 45 nm/min, or more preferably 10 to 23 nm/min.
  • a cavity-containing layer 20 having a thickness of about 400 nm is completed by carrying out in alternating fashion four cycles of a process (referred to as the first step) of growing film under conditions that mainly promote longitudinal growth and a process (referred to as the second step) of growing film under conditions that mainly promote lateral growth, in a mixed atmosphere of nitrogen (6 Litter/min) and hydrogen (13 Litter/min) while keeping the substrate temperature at 1,000° C.
  • the TMG is supplied at a flow rate of 23 ⁇ mol/min and NH 3 is supplied at a flow rate of 2.2 Litter/min to form a first GaN layer 20 b1 having a thickness of about 20 nm on the base layer 20 a .
  • the GaN film is mainly grown longitudinally on the areas in which dissociation and desorption of the constituent elements of the GaN film is less likely to occur. As a result, the protrusions and depressions formed on the surface of the base layer 20 a become more pronounced ( FIG. 5B ).
  • TMG is supplied at a flow rate of 45 ⁇ mol/min
  • NH 3 is supplied at a flow rate of 4.4 Litter/min
  • a second GaN layer 20 b2 having a thickness of about 80 nm is formed.
  • the GaN film grows laterally in the second step from the top part of the first GaN layer 20 b1 that was mainly grown in the longitudinal direction in the first step ( FIG. 5C ).
  • the first and second steps are repeated four times each in alternating fashion, whereby mutually adjacent nuclei unite together across the depression portions of the GaN film serving as the base form of the cavities 21 , and a cavity-containing layer 20 that includes the cavities 21 and the columnar structures 22 is formed.
  • the defect density of the semiconductor epitaxial layer 30 is reduced because lateral growth is carried out a plurality of cycles, whereby the surface of the cavity-containing layer 20 is flattened and crystal defects generated in the boundary between the growth substrate and the GaN film are deflected and do not propagate to the upper portions. It is considered that the difference in the growth direction is due to the difference of the balance between adsorption and dissociation/desorption of the Ga atoms and the N atoms constituting the GaN film, since the flow rates of the TMG and the NH 3 are different in the first step and the second step and the growth rates of the GaN are different from each other. Specifically, the growth rate of the GaN film in the first step is 23 nm/min, and the growth rate of the GaN film in the second step is 45 nm/min.
  • the GaN film constituting the cavity-containing layer 20 is grown while repeatedly adsorbing and dissociating/desorbing the supplied Ga atoms and N atoms on the surface.
  • the base form of the cavities 21 is formed as lateral growth proceeds in the second step.
  • the width of the openings of the upper part of the cavities 21 is gradually reduced and it becomes difficult for NH 3 and TMG to enter into the cavities 21 . It then becomes difficult for the GaN film to grow in the cavities 21 .
  • dissociation/desorption progress in areas with weak crystallinity in the cavities 21 and gaseous nitrogen escapes from the interior of the cavities 21 .
  • FIG. 6 is a fluorescence photomicrograph of the surface of the semiconductor epitaxial layer 30 exposed after removal of the growth substrate. It can be seen in the photograph that the metal Ga (the dark portion of the photograph) generated by nitrogen desorption is deposited on the GaN film.
  • the base layer 20 a having low crystallinity is formed with a high V/III ratio on the growth substrate 10 , after which the process of repeating longitudinal growth and lateral growth in alternating fashion is carried out, thereby forming a layered structure composed of a growth substrate 10 and a cavity-containing layer 20 in which a plurality of cavities 21 and the columnar structures 22 having a width of 10 ⁇ m or less are uniformly distributed.
  • the layered structure can be used as a growth substrate with a separation function or capability in which the growth substrate 10 is endowed with a separation function.
  • the growth temperature of the GaN film in the first and second steps can be modified in a range of 800 to 1,200° C.
  • the TMG flow rate can be modified in a range of 10 to 30 ⁇ mol/min
  • the NH 3 flow rate can be modified in a range of 1 to 3 Litter/min.
  • the TMG flow rate can be modified in a range of 30 to 70 ⁇ mol/min
  • the NH 3 flow rate can be modified in a range of 3 to 7 Litter/min.
  • Si may be added as a dopant to a maximum of 5 ⁇ 10 17 (hereinbelow notated as 5E17) atoms/cm 3 when the cavity-containing layer 20 b is formed.
  • the thickness of the cavity-containing layer 20 may be modified in a range of 200 to 1,000 nm.
  • the first GaN layer 20 b1 may be modified in a range of 10 to 60 nm and the second GaN layer 20 b2 may be modified in a range of 30 to 140 nm, in accordance with the size or the like of the cavities to be formed.
  • Step S 2 Semiconductor Epitaxial Layer Formation Step
  • a semiconductor epitaxial layer 30 including an n-layer 31 , a light-emission layer 32 , and a p-layer 33 each composed of a GaN-based semiconductor are formed on the cavity-containing layer 20 using MOCVD ( FIG. 5D ).
  • the substrate temperature is set to 1,000° C.
  • TMG flow rate: 45 ⁇ mol/min
  • NH 3 flow rate: 4.4 Litter/min
  • SiH 4 as dopant gas are supplied, and an n-layer 31 having a thickness of 3 to 10 ⁇ m doped with 5E18 atoms/cm 3 of Si is formed.
  • the flow rate of TMG can be modified in a range of 10 to 70 ⁇ mol/min.
  • the flow rate of NH 3 can be modified in a range of 3.3 to 5.5 Litter/min.
  • the ratio can be set in a range of 2,000 to 22,500, or more preferably 3,000 to 8,000.
  • the growth rate can be set in a range of 0.5 to 5 ⁇ m/h.
  • the substrate temperature is set to 760° C.
  • TMG flow rate: 3.6 ⁇ mol/min
  • TMI trimethylindium
  • NH 3 flow rate: 4.4 Litter/min
  • the flow rate of TMG and TMI can be modified in a range of 1 to 10 ⁇ mol/min. In this case, the flow rates of the TMI and TMG must be simultaneously modified so that the In structure is about 20%.
  • the flow rate of NH 3 can be modified in a range of 3.3 to 5.5 Litter/min.
  • In x GaN may be formed in place of GaN. In this case, the flow rate must be adjusted so as to satisfy x ⁇ y.
  • the thickness of the strain-relaxing layer can be modified in a range of 50 to 300 nm by modifying the number of pairs and the thickness of each layer of GaN/In y GaN.
  • the strain-relaxing layer may be doped with Si to a maximum of 5E17 atoms/cm 3 .
  • the substrate temperature is set to 730° C.
  • TMG flow rate: 3.6 ⁇ mol/min
  • TMI flow rate: 10 ⁇ mol/min
  • NH 3 flow rate: 4.4 Litter/min
  • the flow rate of TMG and TMI can be modified in a range of 1 to 10 ⁇ mol/min. In this case, the flow rates of the TMI and TMG must be simultaneously modified so that the value of y indicating the In composition ratio is 35%.
  • the flow rate of NH 3 can be modified in a range of 3.3 to 5.5 Litter/min.
  • the light-emission layer 32 may be doped with Si to a maximum of 5E17 atoms/cm 3 .
  • the substrate temperature is set to 870° C.
  • TMG flow rate: 8.1 ⁇ mol/min
  • trimethylaluminum TMA; flow rate: 7.6 ⁇ mol/min
  • NH 3 flow rate: 4.4 Litter/min
  • CP2Mg bis-cyclopentadienyl Mg as a dopant gas
  • the flow rate of TMG can be modified in a range of 4 to 20 ⁇ mol/min. In this case, the flow rates of the TMG and TMA must be simultaneously modified so that the Al structure is about 20%.
  • the flow rate of NH 3 can be modified in a range of 3.3 to 5.5 Litter/min.
  • the thickness of the p-AlGaN layer can be modified in a range of 20 to 60 nm.
  • the substrate temperature is set to 870° C.
  • TMG flow rate: 18 ⁇ mol/min
  • NH 3 flow rate: 4.4 Litter/min
  • CP2Mg bis-cyclopentadienyl Mg as a dopant gas are supplied, whereby a p-layer 33 having thickness of about 200 nm and doped with Mg to 1E20 atoms/cm 3 is formed.
  • the flow rate of TMG can be modified in a range of 8 to 36 ⁇ mol/min.
  • the flow rate of NH 3 can be modified in a range of 3.3 to 5.5 Litter/min.
  • the thickness of the p-layer 33 can be modified in a range of 100 to 300 nm.
  • the p-layer 33 is subsequently activated by heat treatment for about 1 minute in a nitrogen atmosphere of about 900° C.
  • Step S 3 Support Substrate Bonding Step
  • Pt (10 angstroms) and Ag (300 angstroms) are sequentially deposited on the p-layer 33 to form an electrode layer 40 .
  • the Pt layer ensures ohmic contact between the p-layer 33 and the electrode layer 40 , and the Ag layer assures high reflectivity.
  • Ti (1,000 ⁇ ), Pt (2,000 ⁇ ), and Au (2,000 ⁇ ) are sequentially deposited to form a bonding layer 41 .
  • the bonding layer 41 constitutes a bonding portion to a later-described support substrate 60 ( FIG. 5E ).
  • a support substrate 60 for supporting, instead of the growth substrate 10 , the semiconductor epitaxial layer 30 is prepared.
  • a Si single-crystal substrate can be used as the support substrate 60 .
  • a bonding layer 61 is formed by sequentially depositing Pt, Ti, Ni, Au, and AuSn or the like on the support substrate 60 .
  • the bonding layer 61 and the bonding layer 41 formed on the semiconductor epitaxial layer 30 are brought into close contact, and the support substrate 60 is affixed ( FIG. 5F ) to the p-layer 33 side of the semiconductor epitaxial layer 30 by thermocompression bonding in a vacuum or an N 2 atmosphere.
  • the support substrate 60 may be formed by plating and growing Cu or another metal film on the semiconductor epitaxial layer 41 .
  • Step S 4 Growth Substrate Removal Step
  • the growth substrate 10 is separated or removed from the semiconductor epitaxial layer 30 .
  • the growth substrate 10 is bonded to the semiconductor epitaxial layer 30 via the columnar structures 22 that are uniformly distributed in the cavity-containing layer 20 and have a width of about several microns. Therefore, the growth substrate 10 can be readily separated from the cavity-containing layer 20 by applying a slight force to the connection part from the exterior. Therefore, the growth substrate 10 can be separated without the use of LLO.
  • the growth substrate 10 can be separated by imparting a light impact to the growth substrate 10 .
  • the growth substrate 10 can also be separated by imparting vibrations to the wafer using ultrasonic waves or the like.
  • the growth substrate 10 can be separated by allowing a fluid to penetrate the cavities 21 in the cavity-containing layer 20 and heating the fluid to thereby generate water vapor pressure.
  • the growth substrate 10 can also be separated by immersing the wafer in acid or an alkaline solution, and allowing etchant to penetrate the interior of the cavities 21 to thereby etch away the columnar structures 22 . It is also possible to separate the growth substrate 10 using LLO in a supplementary fashion. In this case, it is possible to apply a laser irradiation with lower energy density that conventionally used, and to reduce damage to the device ( FIG. 5G ).
  • step S 3 When the support substrate bonding step (step S 3 ) has concluded, it is essentially not a problem if the growth substrate 10 is naturally separated due to stress or the like from the support substrate 60 . Therefore, the present step can be omitted after the support substrate-bonding step has been carried out by adjusting the mechanical strength of the cavity-containing layer 20 so that separation or removal naturally occurs due to stress from the support substrate 60 .
  • the cavity-containing layer 20 and the metal Ga 23 deposited on the cavity-containing layer 20 are removed to expose the surface of the n-layer 31 by using hydrochloric acid to treat the surface exposed after separation of the growth substrate 10 ( FIG. 5H ).
  • the metal Ga 23 can be removed at that time, but when metal Ga is not entirely removed, the metal Ga can be again removed at this stage.
  • the etchant is not limited to hydrochloric acid and may be any etchant that can etch away the GaN film. Examples of the etchant that can be used include phosphoric acid, sulfuric acid, KOH, and NaOH.
  • the surface treatment is not limited to wet etching and may be carried out by dry etching using Ar plasma or a chloride-based plasma.
  • Ti and Al are sequentially deposited by vacuum deposition method or the like on the surface of the surface-treated n-layer 31 , and an n-electrode 70 is formed ( FIG. 5I ) by further depositing Ti/Au on the topmost surface in order to improve bonding characteristics.
  • Ti/Al it is also possible to use Al/Rh, Al/Ir, Al/Pt, Al/Pd, or the like as the electrode material.
  • the semiconductor epitaxial layer 30 having a support substrate and on which the n-electrode 70 has been formed is separated into individual chips or dies.
  • This step is carried out by first using a resist to form a pattern that is designed to provide grooves between each chip on the surface of the semiconductor epitaxial layer 30 .
  • a groove is subsequently formed from the surface of the semiconductor epitaxial layer 30 to a depth that reaches the electrode layer 40 using reactive ion etching.
  • the support substrate 60 is thereafter separated into chips by dicing. A laser scribing or another technique may also be used.
  • the semiconductor light-emitting device is completed via the steps described above.
  • FIG. 7A is an SEM image of the separation or removal surface of the sapphire substrate removed in the growth substrate separation step
  • FIG. 7B is an SEM image of the separation surface of the semiconductor epitaxial layer 30 .
  • the vestiges of the columnar structures 22 can be confirmed in the separation surface of the sapphire substrate. It can also be confirmed from the SEM image that numerous cavities and columnar structures having micro-order widths are uniformly distributed in the plane.
  • a cavity-containing layer 20 having such a structure is disposed between the growth substrate 10 and the semiconductor epitaxial layer 30 , whereby sufficient bonding strength can be obtained such that natural separation or removal of the growth substrate 10 does not occur between the growth substrate 10 and the semiconductor epitaxial layer.
  • the growth substrate 10 can be readily separated by applying an external force or the like without the use of LLO in the growth substrate separation step. Therefore, introduction of an expensive LLO apparatus is not required, and the time required for separating the growth substrate can be considerably reduced. Since lateral growth of GaN is performed in the process for forming the cavity-containing layer, it is possible to prevent propagation of crystal defects to the semiconductor epitaxial layer including the light-emitting layer, and a high-quality semiconductor epitaxial layer can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)
US12/636,961 2008-12-24 2009-12-14 Semiconductor device and method for manufacturing semiconductor device Active 2030-10-15 US8236672B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008327478A JP5199057B2 (ja) 2008-12-24 2008-12-24 半導体素子の製造方法、積層構造体の製造方法、半導体ウエハおよび積層構造体。
JP2008-327478 2008-12-24

Publications (2)

Publication Number Publication Date
US20100155740A1 US20100155740A1 (en) 2010-06-24
US8236672B2 true US8236672B2 (en) 2012-08-07

Family

ID=42264716

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/636,961 Active 2030-10-15 US8236672B2 (en) 2008-12-24 2009-12-14 Semiconductor device and method for manufacturing semiconductor device

Country Status (3)

Country Link
US (1) US8236672B2 (ja)
JP (1) JP5199057B2 (ja)
CN (1) CN101764185B (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120231608A1 (en) * 2011-03-11 2012-09-13 Stanley Electric Co., Ltd. Production process for semiconductor device
US20120231568A1 (en) * 2011-03-11 2012-09-13 Stanley Electric Co., Ltd. Semiconductor device production process
US9337169B2 (en) * 2012-06-21 2016-05-10 The Board Of Trustees Of The Leland Stanford Junior University Environmentally-assisted technique for transferring devices onto non-conventional substrates
US20170047479A1 (en) * 2014-05-08 2017-02-16 Osram Opto Semiconductors Gmbh Method for Producing a Semiconductor Layer Sequence
US9831382B2 (en) 2011-12-03 2017-11-28 Sensor Electronic Technology, Inc. Epitaxy technique for growing semiconductor compounds
US10158044B2 (en) 2011-12-03 2018-12-18 Sensor Electronic Technology, Inc. Epitaxy technique for growing semiconductor compounds
US10211048B2 (en) 2012-02-01 2019-02-19 Sensor Electronic Technology, Inc. Epitaxy technique for reducing threading dislocations in stressed semiconductor compounds
US10490697B2 (en) 2011-12-03 2019-11-26 Sensor Electronic Technology, Inc. Epitaxy technique for growing semiconductor compounds

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481411B2 (en) * 2009-06-10 2013-07-09 Seoul Opto Device Co., Ltd. Method of manufacturing a semiconductor substrate having a cavity
US8860183B2 (en) * 2009-06-10 2014-10-14 Seoul Viosys Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
JP5458874B2 (ja) * 2009-12-25 2014-04-02 日亜化学工業株式会社 窒化物半導体の成長方法
JP2011238786A (ja) * 2010-05-11 2011-11-24 Stanley Electric Co Ltd 半導体素子の製造方法
CN102376830B (zh) * 2010-08-19 2015-07-08 展晶科技(深圳)有限公司 发光二极管及其制造方法
KR20130122636A (ko) 2010-11-02 2013-11-07 코닌클리케 필립스 엔.브이. 복합 기판을 형성하는 방법
KR20120079392A (ko) * 2011-01-04 2012-07-12 (주)세미머티리얼즈 반도체 발광소자의 제조방법
WO2012102539A2 (en) 2011-01-25 2012-08-02 Lg Innotek Co., Ltd. Semiconductor device and method for growing semiconductor crystal
JP5148729B2 (ja) 2011-05-16 2013-02-20 株式会社東芝 窒化物半導体素子の製造方法
KR20130059026A (ko) * 2011-11-28 2013-06-05 서울옵토디바이스주식회사 에피층을 성장 기판으로부터 분리하는 방법
JP5450682B2 (ja) * 2012-02-06 2014-03-26 株式会社東芝 窒化物半導体素子の製造方法
CN103000774B (zh) * 2012-11-12 2015-05-27 安徽三安光电有限公司 一种分离发光二极管衬底的方法
CN104750046B (zh) * 2013-12-30 2017-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 半导体制造的工艺任务处理方法及系统
DE102014105208A1 (de) * 2014-04-11 2015-10-29 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Nitridverbindungshalbleiter-Bauelements
US10615222B2 (en) * 2014-08-21 2020-04-07 The University Of Hong Kong Flexible GAN light-emitting diodes
JP2017011088A (ja) * 2015-06-22 2017-01-12 住友電工デバイス・イノベーション株式会社 半導体装置
JP6686876B2 (ja) * 2016-12-28 2020-04-22 豊田合成株式会社 半導体構造体および半導体素子
JP6431631B1 (ja) * 2018-02-28 2018-11-28 株式会社フィルネックス 半導体素子の製造方法
CN109037322B (zh) * 2018-07-16 2021-06-11 东南大学 一种GaN基绝缘栅双极型晶体管及其加工方法
JP6845483B2 (ja) * 2018-11-26 2021-03-17 日亜化学工業株式会社 発光素子の製造方法
CN112038461B (zh) * 2020-07-17 2021-11-05 华灿光电(苏州)有限公司 发光二极管外延片、芯片及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228539A (ja) 1999-02-08 2000-08-15 Sharp Corp 窒素化合物半導体の製造方法
US6620238B2 (en) * 1998-07-31 2003-09-16 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158869B2 (ja) * 1993-06-30 2001-04-23 日立電線株式会社 発光ダイオード及びその製造方法
JP3306578B2 (ja) * 1996-10-24 2002-07-24 昭和電工株式会社 化合物半導体エピタキシャルウエハ
JP3036495B2 (ja) * 1997-11-07 2000-04-24 豊田合成株式会社 窒化ガリウム系化合物半導体の製造方法
JP2001007443A (ja) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd 半導体発光装置の製造方法
JP4204163B2 (ja) * 2000-02-03 2009-01-07 株式会社リコー 半導体基板の製造方法
US20050082526A1 (en) * 2003-10-15 2005-04-21 International Business Machines Corporation Techniques for layer transfer processing
TWI500072B (zh) * 2004-08-31 2015-09-11 Sophia School Corp 發光元件之製造方法
CN100547734C (zh) * 2005-05-19 2009-10-07 住友化学株式会社 半导体多层衬底、半导体自立衬底及其制备方法以及半导体器件
JP2006339534A (ja) * 2005-06-03 2006-12-14 Sony Corp 発光ダイオード、発光ダイオードの製造方法、発光ダイオードバックライト、発光ダイオード照明装置、発光ダイオードディスプレイおよび電子機器
JP2007214500A (ja) * 2006-02-13 2007-08-23 Mitsubishi Chemicals Corp 半導体部材及びその製造方法
JP5187610B2 (ja) * 2006-03-29 2013-04-24 スタンレー電気株式会社 窒化物半導体ウエハないし窒化物半導体装置及びその製造方法
JP2007317752A (ja) * 2006-05-23 2007-12-06 Mitsubishi Cable Ind Ltd テンプレート基板
GB0702560D0 (en) * 2007-02-09 2007-03-21 Univ Bath Production of Semiconductor devices
JP2008277409A (ja) * 2007-04-26 2008-11-13 Matsushita Electric Ind Co Ltd 半導体発光装置の製造方法
JP2008135768A (ja) * 2007-12-28 2008-06-12 Sony Corp 窒化物系iii−v族化合物半導体層の成長方法および半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620238B2 (en) * 1998-07-31 2003-09-16 Sharp Kabushiki Kaisha Nitride semiconductor structure, method for producing a nitride semiconductor structure, and light emitting device
JP2000228539A (ja) 1999-02-08 2000-08-15 Sharp Corp 窒素化合物半導体の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120231608A1 (en) * 2011-03-11 2012-09-13 Stanley Electric Co., Ltd. Production process for semiconductor device
US20120231568A1 (en) * 2011-03-11 2012-09-13 Stanley Electric Co., Ltd. Semiconductor device production process
US8530256B2 (en) * 2011-03-11 2013-09-10 Stanley Electric Co., Ltd. Production process for semiconductor device
US8664028B2 (en) * 2011-03-11 2014-03-04 Stanley Electric Co., Ltd. Semiconductor device production process
US9831382B2 (en) 2011-12-03 2017-11-28 Sensor Electronic Technology, Inc. Epitaxy technique for growing semiconductor compounds
US10158044B2 (en) 2011-12-03 2018-12-18 Sensor Electronic Technology, Inc. Epitaxy technique for growing semiconductor compounds
US10490697B2 (en) 2011-12-03 2019-11-26 Sensor Electronic Technology, Inc. Epitaxy technique for growing semiconductor compounds
US10211048B2 (en) 2012-02-01 2019-02-19 Sensor Electronic Technology, Inc. Epitaxy technique for reducing threading dislocations in stressed semiconductor compounds
US9337169B2 (en) * 2012-06-21 2016-05-10 The Board Of Trustees Of The Leland Stanford Junior University Environmentally-assisted technique for transferring devices onto non-conventional substrates
US20170047479A1 (en) * 2014-05-08 2017-02-16 Osram Opto Semiconductors Gmbh Method for Producing a Semiconductor Layer Sequence
US9842964B2 (en) * 2014-05-08 2017-12-12 Osram Opto Semiconductors Gmbh Method for producing a semiconductor layer sequence

Also Published As

Publication number Publication date
CN101764185A (zh) 2010-06-30
CN101764185B (zh) 2013-12-11
JP5199057B2 (ja) 2013-05-15
US20100155740A1 (en) 2010-06-24
JP2010153450A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
US8236672B2 (en) Semiconductor device and method for manufacturing semiconductor device
US8008170B2 (en) Method for manufacturing semiconductor device
KR101646064B1 (ko) 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
US8492186B2 (en) Method for producing group III nitride semiconductor layer, group III nitride semiconductor light-emitting device, and lamp
KR101268139B1 (ko) Ⅲ족 질화물 반도체 발광 소자의 제조 방법, ⅲ족 질화물 반도체 발광 소자 및 램프
EP2316139B1 (en) Light emitting device and method of manufacturing the same
US8530256B2 (en) Production process for semiconductor device
JP5313651B2 (ja) 半導体素子の製造方法
US20130260541A1 (en) METHOD FOR PRODUCING Ga-CONTAINING GROUP III NITRIDE SEMICONDUCTOR
WO2014038106A1 (ja) エピタキシャルウェハ及びその製造方法、紫外発光デバイス
JP2012186335A (ja) 光半導体素子および光半導体素子の製造方法
WO2017134708A1 (ja) エピタキシャル基板
JP5519347B2 (ja) 半導体素子の製造方法
JP5237780B2 (ja) 半導体発光素子の製造方法
JP5620724B2 (ja) 半導体素子の製造方法、積層構造体の製造方法、半導体ウエハおよび積層構造体。
KR101630915B1 (ko) Iii족 질화물 반도체 발광 소자 및 그 제조 방법
US8664028B2 (en) Semiconductor device production process
CN103855264A (zh) 单晶氮化镓基板及其制造方法
CN116111018A (zh) 一种GaN基外延结构及其制作方法、GaN基发光器件
JP2023100027A (ja) 窒化物半導体発光素子の製造方法
JP2013197352A (ja) 半導体素子ウエハの製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: STANLEY ELECTRIC CO., LTD.,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHINONE, TAKAKO;LIANG, JI-HAO;SHIBATA, YASUYUKI;AND OTHERS;REEL/FRAME:023647/0251

Effective date: 20091127

Owner name: STANLEY ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHINONE, TAKAKO;LIANG, JI-HAO;SHIBATA, YASUYUKI;AND OTHERS;REEL/FRAME:023647/0251

Effective date: 20091127

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY