JP2013197352A - 半導体素子ウエハの製造方法 - Google Patents

半導体素子ウエハの製造方法 Download PDF

Info

Publication number
JP2013197352A
JP2013197352A JP2012063582A JP2012063582A JP2013197352A JP 2013197352 A JP2013197352 A JP 2013197352A JP 2012063582 A JP2012063582 A JP 2012063582A JP 2012063582 A JP2012063582 A JP 2012063582A JP 2013197352 A JP2013197352 A JP 2013197352A
Authority
JP
Japan
Prior art keywords
gas
growth
substrate
flow rate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012063582A
Other languages
English (en)
Inventor
Mitsuyasu Kumagai
光恭 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012063582A priority Critical patent/JP2013197352A/ja
Publication of JP2013197352A publication Critical patent/JP2013197352A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

【課題】成長用基板と半導体膜との間の面内接合強度が均一で、接合強度の制御性に優れた化合物半導体素子ウエハの製造方法を提供する。
【解決手段】水平方式の結晶成長装置を用い、成長基板31上に下地層32を形成する工程と、下地層上に、相対的に小なる成長速度で化合物半導体の結晶成長を行う第1ステップと、相対的に大なる成長速度で化合物半導体の結晶成長を行う第2ステップと、を交互に複数回実施することで空洞含有層32を形成する工程と、空洞含有層上に化合物半導体のエピタキシャル層35を形成する工程と、エピタキシャル層上に支持基板45を接着する工程と、空洞含有層を境界としてエピタキシャル層から成長基板を除去する工程と、を含み、第2ステップにおける押圧ガスの流量は、第1ステップにおける押圧ガスの流量よりも小さい。
【選択図】図4

Description

本発明は、半導体素子ウエハの製造方法、特に化合物半導体素子ウエハの製造方法に関する。
半導体発光素子は、近年の技術の進歩により高効率、高出力化されている。しかし、高出力化に伴って半導体発光素子から発せられる熱量も増加し、これによる半導体発光素子の効率低下および半導体層の劣化等、信頼性の低下が問題となっている。これを解決するために比較的熱伝導性の低い成長用基板を半導体膜から除去し、これに替えて比較的熱伝導性の高い金属等の支持基板で半導体膜を支持する構成がとられている。かかる構造とすることにより、半導体発光素子の放熱性が改善される他、成長用基板を除去することにより発光効率、特に光取り出し効率の向上も期待できる。
成長用基板の剥離は、レーザリフトオフ(LLO)法が用いられるのが一般的である。しかし、剥離の際に半導体の分解によるガスが発生し、このガス圧により半導体膜にクラックが生じる場合がある。また、多数のウエハを一括処理することが困難であり、比較的長い処理時間を要する。従って、より簡便な方法で、成長用基板を剥離することができれば、生産効率が向上し、品質面およびコスト面においても有利となる。例えば、特許文献1には、成長基板と半導体層との界面に空洞を含む層(基板剥離層)を形成し、支持基板を貼り合わせた後に成長基板を剥離することが記載されている。
特開2010−153450号
特許文献1に記載のような基板剥離層を形成し、成長基板を剥離する場合であっても、ウエハ面内における基板剥離層と成長基板との間の接合強度のばらつきによってウエハ全面に亘って均一に剥離することが困難となる場合が多い。従って、成長基板から半導体膜をうまく剥離できない、剥離の際に半導体膜にクラック等が発生する又は半導体膜を破壊するという問題が生じる。
また、成長基板の自然剥離が生じないことが必要である。つまり、半導体膜単体の膜厚は非常に薄いため、ウエハのハンドリング時や途中工程で成長基板の自然剥離が生じると、その後の処理が困難となる。従って、成長基板と半導体膜との間で自然剥離が生じない程度の接合強度が確保され、且つ成長基板の除去工程において容易に剥離できること、すなわち、成長基板の剥離制御性が確保されていることが必要である。
しかしながら、基板剥離層(空洞含有層)を形成し、成長基板の剥離を行った場合、基板外周部は成長層が基板から剥がれず、また中心部は結晶成長工程において層が壊れてしまうという問題が生じた。この現象は、基板剥離層形成において、材料ガス供給量の異なる縦方向成長と横方向成長の組み合わせではボイド密度分布つまりは基板剥離層を形成する柱状構造体の面内占有率に分布が生じることが原因であることがわかった。
本発明は、上記した点に鑑みてなされたものであり、簡便な方法で、かつ成長用基板と半導体膜との間の面内接合強度が均一で、接合強度の制御性に優れた化合物半導体素子ウエハの製造方法を提供することを目的とする。
本発明の製造方法は、成長基板に対して材料ガスを水平方向に供給する材料ガス供給管と、成長基板の上方に配置され、材料ガスを基板に対して押し付ける方向に押圧ガスを吹き付ける押圧ガス噴出器と、を備えた結晶成長装置を用い、
成長基板上に下地層を形成する工程と、
下地層上に、相対的に小なる成長速度で化合物半導体の結晶成長を行う第1ステップと、相対的に大なる成長速度で化合物半導体の結晶成長を行う第2ステップと、を交互に複数回実施することで空洞含有層を形成する工程と、
空洞含有層上に、化合物半導体のエピタキシャル層を形成する工程と、
エピタキシャル層上に支持基板を接着する工程と、
空洞含有層を境界としてエピタキシャル層から成長基板を除去する工程と、を含み、
第2ステップにおける押圧ガスの流量は、第1ステップにおける押圧ガスの流量よりも小なることを特徴としている。
また、本発明の製造方法は、成長基板に対して材料ガスを水平方向に供給する材料ガス供給管と、成長基板の上方に配置され、材料ガスを基板に対して押し付ける方向に押圧ガスを吹き付ける押圧ガス噴出器と、を備えた結晶成長装置を用い、
成長基板上に下地層を形成する工程と、
下地層上に、相対的に小なる成長速度で化合物半導体の結晶成長を行う第1ステップと、相対的に大なる成長速度で化合物半導体の結晶成長を行う第2ステップと、を交互に複数回実施することで空洞含有層を形成する工程と、
空洞含有層上に、化合物半導体のエピタキシャル層を形成する工程と、
エピタキシャル層上に支持基板を接着する工程と、
空洞含有層を境界としてエピタキシャル層から成長基板を除去する工程と、を含み、
第1ステップにおいて、押圧ガスは成長基板上であって材料ガスの供給上流側の半分上に供給され、第2ステップにおいて、押圧ガスは成長基板上であって材料ガスの供給下流側の半分上に供給されることを特徴としている。
本発明の半導体素子ウエハの製造方法によれば、成長用基板の自然剥離が生じない程度の、かつ成長用基板と半導体膜との間の面内接合強度が均一な半導体素子ウエハの製造が可能となる。また、面内接合強度の制御性にも優れた半導体素子ウエハの製造が可能となる。
水平方式の結晶成長装置の構成を模式的に示す図である。 図2(a)〜(e)は、成長基板と半導体層との界面に空洞含有層(基板剥離層)が形成された半導体素子ウエハの製造工程について説明する図である。 LEDウエハと、LEDウエハに貼り付けられる支持体とを模式的に示す図である。 押圧ガス噴射器からの押圧ガスの流量の制御方法を模式的に示す図である。 第1ステップにおける柱状構造体の面内占有率(%)及び第2ステップにおける膜厚分布について、成長基板を回転しない場合及び回転した場合におけるシミュレーション結果を示す図である。 実施例1に対する比較例として、第1ステップ及び第2ステップにおける押圧ガスの流量を不変として成長する場合についての、図5と同様な図である。 実施例2に係るMOCVD装置の構成を模式的に示図である。 独立に供給制御が可能な第1の噴射部及び第2の噴射部を有する押圧ガス噴射器からの押圧ガスの流量の制御方法を模式的に示す図である。 図5に同様の図であり、実施例2の場合の、第1ステップにおける柱状構造体の面内占有率(%)及び第2ステップにおける膜厚分布(それぞれ、基板回転無し、有りの場合)を示す図である。
以下、本発明の実施例について図面を参照しつつ説明する。尚、以下に示す図において、実質的に同一又は等価な構成要素、部分には同一の参照符を付している。尚、本発明は化合物半導体素子ウエハの製造方法に関するが、半導体発光素子であるLED(発光ダイオード)ウエハの製造方法を例として以下に説明する。
[装置構成]
図1は、本発明の2フロータイプ(水平方式)の結晶成長装置10の構成を模式的に示している。結晶成長装置10の構成について以下に詳細に説明する。
図1に示すように、結晶成長装置(MOCVD装置)10は、反応容器11、材料ガス供給管12、成長基板31を水平に載置・保持するサセプタ14、ヒータ16、ヒータ16の熱を遮断するための遮熱板17、排気管18、及びサセプタ14(すなわち、成長基板31)を回転させる基板回転機構19を有している。また、MOCVD装置10には副噴射器(押圧ガス噴射器)20が設けられており、押圧ガス噴射器20には、押圧ガス噴射器20に押圧ガス(押えガス)を供給する押圧ガス供給管21、及び整流板23が設けられている。押圧ガス噴射器20から噴出された押圧ガスは整流板23によって整流される。
材料ガス供給管12を経た材料ガス(図中、矢印で示す)が成長基板31に対して横方向(水平方向)から供給される。押圧ガスは、押圧ガス噴射器20によって基板に対して略法線方向(基板に直交方向)ないしは材料ガスのフロー方向(下流方向)に角度を付けて供給される。また、材料ガス供給管12及び押圧ガス噴射器20へのガス供給を行うガス供給部25、及びガス供給部25を制御して材料ガス及び押圧ガスの供給を制御するガス制御部26が設けられている。
図2(a)〜(e)は、成長用の基板(以下、成長基板という。)と半導体層との界面に空洞含有層(基板剥離層)が形成された半導体素子ウエハ(以下、LEDウエハという。)30の製造工程について説明する図である。また、図3は、LEDウエハ30と、LEDウエハ30に貼り付けられる支持体45とを模式的に示している。以下に、GaN(窒化ガリウム)系のLEDウエハ30の場合を例に、製造方法について説明する。
まず、図2(a)に示すように、例えばサファイアからなる成長基板31上に窒化物半導体からなる低結晶性の下地層32aを形成する。具体的には、成長基板31をMOCVD装置に搬入し、雰囲気温度を525℃とし、窒素流量13.5LM、水素流量4.5LMの雰囲気下でトリメチルガリウム(TMG)(流量11μmol/min)およびアンモニア(NH3、流量3.3LM)を供給して(この場合V/III比は14000程度となる)、膜厚300nm程度のGaNからなる低結晶性の下地層(バッファ層)32aを形成する。下地層32aの成膜後TMGの供給を停止して雰囲気温度を1000℃まで昇温する。
下地層32aは、空洞含有層32内部の空洞33および柱状構造体34の原型となる凹凸面を有している。下地層32aは、成長基板31とGaN系半導体エピタキシャル膜35との格子不整合を緩和する緩衝層として機能するとともに、空洞33および柱状構造体34を形成するための下地を形成する。このように、低温且つ比較的高いV/III比(6000以上)でGaN膜の成長を行うことにより、凹凸の高さおよびピッチが面内に亘ってほぼ揃った凹凸面を有する下地層32aが成長基板31上に形成される。
次に、雰囲気温度を1000℃に保ったまま、窒素流量6LM、水素流量7.5LMの雰囲気下で、主に縦方向成長が助長される条件で成膜を行う処理(第1ステップと称する)と、主に横方向成長が助長される条件で成膜を行う処理(第2ステップと称する)を交互に各4回ずつ行うことにより、膜厚400nm程度の空洞含有層32を完成させる。
第1ステップにおいては、TMGを流量23μmol/minで供給するとともに、NH3を流量2.2LMで供給し、膜厚20nm程度の第1のGaN層32b1を下地層32a上に形成する。この第1ステップでは、GaN膜の構成元素の分解・脱離が生じにくい部分を中心に主にGaN膜の縦方向成長が起る。その結果、下地層32aの表面に形成された凹凸が更に激しくなる(図2(b))。
第2ステップにおいては、TMGを流量45μmol/minで供給するとともに、NH3を流量4.4LMで供給し、膜厚80nm程度の第2のGaN層32b2を形成する。すなわち、第2ステップにおける材料ガスTMGおよびNH3の各流量は第1ステップの場合の2倍である。この第2ステップでは、主に第1ステップを経て縦方向に成長した第1のGaN層32b1の頂部を起点としてGaN膜の横方向成長が起る(図2(c))。
第1ステップおよび第2ステップを交互に複数回(例えば、4セット)繰り返すことにより、空洞33の原型となるGaN膜の凹部を挟んで隣接する核同士が融合し、空洞33および柱状構造体34を内包する空洞含有層32が形成される。横方向成長が複数回行われることにより、空洞含有層32の表面は平坦化され、また、成長基板とGaN膜との界面に生じた結晶欠陥が屈曲し、これが上層部にまで伝搬しなくなるため、半導体エピタキシャル膜35の欠陥密度が低減される。第1ステップと第2ステップとでは、材料ガスであるTMGおよびNH3の流量が異なるため、GaN膜の成長速度が異なり、GaN膜を構成するGa原子およびN原子の吸着と分解・脱離のバランスが互いに異なることから成長方向に違いが生じるものと考えられる。尚、第1ステップにおけるGaN膜の成長速度は23nm/minであり、第2ステップにおけるGaN膜の成長速度は45nm/minである。
第1ステップおよび第2ステップを繰り返し実施する過程において、以下のような反応が起る。空洞含有層32を構成するGaN膜は、供給されるGa原子およびN原子が基板上に吸着および分解・脱離を繰り返しながら成長していく。第2ステップにおいて横方向成長が進行するに従って、空洞33の原型が形成されていく。すると、空洞33上部の開口幅が次第に小さくなり、空洞33内部にNH3が侵入しにくい状態となる。すると、空洞33内部ではGaN膜が成長しにくい状態となる。一方、空洞33内部の結晶性の弱い部分では分解・脱離が進みガス状の窒素は、空洞33内部から抜けていく。これにより、空洞33のサイズは次第に大きくなり、これに伴い柱状構造体34のサイズ(幅)は小さくなる。
このように、成長基板31上に低結晶性の下地層32aを形成した後、縦方向成長と横方向成長を交互に複数回繰り返す処理を行うことにより、内部に複数の空洞33および幅10μm以下の柱状構造体34が分布した空洞含有層32が形成される。空洞含有層32は、最終的な膜表面が平滑かつ結晶性の高い膜となる。
図2(d)に示すように、半導体エピタキシャル膜35が成長される。より詳細には、半導体エピタキシャル膜35は、n型半導体(n−GaN)層36、活性層37、p型半導体(p−GaN)層38からなる。
n−GaN層36は、Si(シリコン)が5×1018atoms/cm3ドープされ、例えば3〜10μmの層厚を有する。活性層37は、GaN障壁層/InyGaN井戸層(各5nm/4nm)が各9層形成されたMQW(多重量子井戸構造)構造を有する。p−GaN層38は、Mg(マグネシウム)が1×1020atoms/cm3ドープされ、例えば10nmの層厚を有する。
図2(e)に示すように、次に、真空蒸着法等により、p−GaN層38上にPt/Ag(層厚:1nm/300nm)をこの順で堆積し、電極層41を形成する。Pt層によりp−GaN層38との間でオーミック接触が確保され、Ag層により高反射率が確保される。続いて、Ti/Pt/Au(層厚:100nm/200nm/200nm)をこの順に堆積し、接着層42を形成する。接着層42は後述する支持体45との接着部(共晶用金属層)を構成する。
次に、成長基板31に代えて半導体エピタキシャル膜35を支持するための支持基板46を用意する。支持基板46としては、例えばSi単結晶基板を用いることができる。支持基板46上には、Pt、Ti、Ni、Au、AuSnがこの順番で積層された接着層47が真空蒸着法等により形成され、支持体45が形成される。続いて、この接着層47と半導体エピタキシャル膜35上に形成された接着層42とを密着させ真空又はN2雰囲気中で熱圧着することにより、半導体エピタキシャル膜35のp−GaN層38側に支持基板46を貼り付ける(図3)。尚、支持基板46は、接着層42上にCu等の金属膜をめっき成長させることにより形成されるものであってもよい。
半導体エピタキシャル膜35と支持基板46とを接着した後、空洞含有層32を境界として成長基板31が除去され、その後、n−GaN層36上にn電極が形成される。その後、ダイシングにより、チップ分離が行われる。
図4は、押圧ガス噴射器20からの押圧ガスの流量の制御方法を模式的に示す図である。上記したように、空洞含有層32は、第1ステップ及び第2ステップにおける材料ガスの流量を異ならせて成長方向に違い(すなわち縦方向成長及び横方向成長)が生じることを利用するものである。
具体的には、第1ステップにおいては、縦方向成長を促進させるために材料ガスの流量は少なく、第2ステップにおいては、横方向成長を促進させるために第1ステップよりも相対的に材料ガスの流量は増加される。第1ステップにおいては、材料ガスの流量が少ないため、その多くが成長基板31の外周部で消費される。また、成長基板31の中心に近づくに従って材料ガスが拡散する。従って、外周部では柱状構造体の占有率が高く、中心部では低くなる。一方、第2ステップにおいては、第1ステップに対し、材料ガスの流量が多いため、基板外周部で消費される量も少なく、また流量の多さから拡散が起き難く基板中心部まで十分に到達するので外周部と中心部との膜厚差は大きくない。
本発明においては、図4に示すように、第1ステップ(STEP1)における材料ガスの総流量(FG1)よりも材料ガスの総流量(FG2)が大きい第2ステップ(STEP2)における押圧ガス(不活性ガス)の流量FP2を、第1ステップ(STEP1)における押圧ガスの流量FP1よりも小さくしている(すなわち、FG1<FG2、FP1>FP2)。これにより、第1ステップ(STEP1)においては、外周部で消費され、かつ中心部では拡散してしまう材料ガスを基板に押し付けながら中心まで押し流し、基板中心部においても効率よく反応させるようにしている。これにより、基板外周部と中心部とで、柱状構造体の面内占有率を均一化している。また、第2ステップに(STEP2)においては、相対的に少量の押圧ガスを成長基板31に吹きつけ、均一な膜厚を得るようにしている。
実施例1においては、上記したように、第2ステップにおける材料ガスTMGの流量F(TMG)およびNH3の流量F(NH3)はともに第1ステップの場合の2倍であり、III族及びV族の材料ガスの総流量FT(III+V)も第1ステップの場合の2倍である。ここでは、第2ステップに(STEP2)において押圧ガス噴射器20から噴出される押圧ガスの流量FP2を第1ステップ(STEP1)における押圧ガスの流量FP1の1/2とした。なお、押圧ガスの流量FP2を材料ガスの総流量FT(III+V)に反比例する流量としてもよい。
柱状構造体の面内占有率が20〜35%の範囲にあるとき基板剥離層のボイド密度は最適な値となるが、占有率が20%より少ないとボイド密度が大きくなり、その後のエピタキシャル成長において応力を抑えきれず、意図しないタイミングでの自然剥離や成長層の破壊が生じる。また、占有率が35%を超えるとボイド密度が小さいため、基板剥離層とエピタキシャル成長層の接合強度が大きくなり、基板を剥離することができない。
図5は、成長基板を回転しない場合及び回転した場合におけるシミュレーション結果を示し、第1ステップにおける柱状構造体の面内占有率(%)及び第2ステップにおける膜厚分布を示している。なお、柱状構造体の面内占有率(%)及び膜厚分布は、成長速度及び柱状構造体の形成条件に基づいてシミュレーションを行ったが、実験により得られた結果とよく一致していた。また、成長基板31は直径が2インチの基板であり、横軸は、成長基板31のガスフロー上流側の端部を基準としたときの距離(mm)である。材料ガスの総流量は、FG2=2×FG1であり、押圧ガスの流量FP1=0.5×FP2(FP1=30SLM、FP2=15SLM)とした。また、成長基板31は10rpmで回転し、押圧ガスは、成長基板31の全面に亘り、上方から垂直に成長基板31に吹き付けた。なお、押圧ガスの噴射方向は、成長基板31に垂直方向ないしガスフローの下流方向に45°傾斜した範囲内であることが好ましい。
また、図6に、実施例1に対する比較例として、第1ステップ及び第2ステップにおける押圧ガスの流量を不変(同一)として成長する場合についての、図5と同様な図である。具体的には、押圧ガスの流量FP1=FP2(=30SLM)とした。
図6に示すように、押圧ガスの流量を不変とした比較例の場合では、材料ガスの総流量が少ない第1ステップ(STEP1、回転無し)では、その多くが外周部で消費され、また中心に近づくに従って材料ガスが拡散し、柱状構造体の占有率は外周部で高く、中心部で大きく低下する。従って、基板回転を行った場合(STEP1、回転有り)でも、柱状構造体の面内占有率(%)は基板の中央部で20%未満となり、自然剥離や成長層の破壊が生じる。また、基板外周部では35%を超え、基板の剥離が困難となることが分かる。
これに対し、実施例1の場合では、図5に示すように、第1ステップ(STEP1、回転無し)では、材料ガスを基板に押し付けながら基板中心部まで押し流し、材料ガスの拡散を抑制して、基板中心部においても効率よく反応が行われることが分かる。従って、基板回転を行った場合(STEP1、回転有り)、柱状構造体の面内占有率(%)の好ましい範囲(基板剥離可能範囲)CRである20〜35%内に収まっており、成長基板31と半導体膜との間の面内接合強度が均一であることがわかる。
また、図2を参照して説明したように、空洞33および柱状構造体34を内包する空洞含有層32の形成は、材料ガス(TMGおよびNH3)の供給量及び第1ステップ及び第2ステップにおける材料ガスの供給量バランスによって異なる。一方、上記した本発明の方法によって柱状構造体の面内占有率の均一化を図ることができる。従って、材料ガスの供給量及び第1ステップ及び第2ステップにおける供給比に応じて、柱状構造体の占有率が面内で均一で、かつ基板剥離可能範囲CR内に収まるように制御(増減)することが可能である。
また、上記したように、空洞含有層32の形成は、第1ステップ及び第2ステップにおける材料ガスの供給量の相対的な違い(モル流量比)による成長方向モード(すなわち縦方向成長及び横方向成長)の違いを利用するものである。本発明は、材料ガスの供給量が相対的に少ない第1ステップにおいて第2ステップよりも押圧ガスによる材料ガスの押し付け効果を相対的に増大させ、材料ガスの供給量が相対的に大なる第2ステップにおいて第1ステップよりも材料ガスの押し付け効果を相対的に減少させるものである。従って、第1ステップにおいて押圧ガス流量を増大する、及び第2ステップにおいて押圧ガス流量を減少する、の一方又は両者を行うことにすればよい。また、上記したように、第1ステップ及び第2ステップにおける材料ガスの総流量(FG1、FG2)に反比例して押圧ガス流量を変化(第2ステップにおいて押圧ガス流量を相対的に減少)することが好ましい。
具体的には、第2ステップにおける押圧ガスの流量(FP2)の第1ステップにおける押圧ガスの流量(FP1)に対する比率(RP=FP2/FP1)は、第1ステップにおける材料ガスの総流量(FG1)に対する第2ステップにおける材料ガスの総流量(FG2)の比率(RG=FG2/FG1)の逆数(RP=1/RG)以下又は逆数とすることが好ましい。あるいは、第2ステップにおける押圧ガス流量(FP2)の第1ステップにおける押圧ガス流量(FP1)に対する比率(RP=FP2/FP1)が第1ステップにおける材料ガスの総流量(FG1)に対する第2ステップにおける材料ガスの総流量(FG2)の比率(RG=FG2/FG1)に反比例した値(RP=1/RG)とすることが好ましい。あるいは、単に、第2ステップにおける押圧ガスの流量(FP2)を第1ステップにおける押圧ガスの流量(FP1)の1/2以下、又は1/2としてもよい。
また、第1ステップ及び第2ステップにおける材料ガスの総流量(FG1、FG2)に応じて押圧ガス流量を変化させる場合について説明したが、成長速度を律速する有機金属化合物(MO)材料(III族)のモル流量比の逆数以下、又は当該モル流量比に反比例して押圧ガス流量を定めても良い。
図7は、実施例2に係る、ホリゾンタル(2フロー)方式のMOCVD装置10の構成を模式的に示している。押圧ガス噴射器20が、成長基板31へのガスフロー上流側の半分及び下流側の半分に分けて、独立に供給することが可能な第1の噴射部20A及び第2の噴射部20Bから構成されている点を除いて、その他の構成は実施例1のMOCVD装置10と同一である。また、材料ガス供給管12、第1及び第2の噴射部部20A,20Bへのガス供給を行うガス供給部25、及びガス供給部25を制御して材料ガス及び押圧ガスの供給を制御するガス制御部26が設けられている点も同様である。
図8は、第1の噴射部20A及び第2の噴射部20Bを有する押圧ガス噴射器20からの押圧ガスの流量の制御方法を模式的に示す図である。実施例2において、第2ステップにおける材料ガスの流量が第1ステップよりも相対的に大なる点は実施例1と同じである。
より詳細には、第2ステップ(STEP2)の材料ガスの総流量(FG2)より材料ガスの総流量(FG1)が小なる第1ステップ(STEP1)において、押圧ガス(供給量FP)は、成長基板31のガスフロー上流側の半分上に供給される(図中、PU)。そして、第2ステップ(STEP2)においては、第1ステップと同一の供給量FPで、成長基板31のガスフロー下流側の半分に上に供給される(図中、PD)。
図9は、図5に同様の図であり、実施例2の場合の、第1ステップにおける柱状構造体の面内占有率(%)及び第2ステップにおける膜厚分布(それぞれ、基板回転無し、有りの場合)を示している。図6の比較例の場合と比較してみると分かるように、第1ステップ(STEP1、回転無し)では、材料ガスの基板への押し付けによって基板中心部における材料ガスの拡散が抑制されて、基板中心部においても効率よく反応が行われる。従って、基板回転を行った場合(STEP1、回転有り)、柱状構造体による基板剥離可能範囲CR(20〜35%)内に収まっており、成長基板31と半導体膜との間の面内接合強度が均一であることがわかる。
以上、詳細に説明したように、本発明によれば、成長用基板と半導体膜との間の面内接合強度が均一で、接合強度の制御性に優れた半導体素子ウエハの製造方法を提供することができる。
なお、上記した実施例は適宜改変して、又は組み合わせて適用することができる。また、上記した数値、材料、結晶系などは例示に過ぎない。適宜改変して適用することができる。
12 材料ガス供給管
14 サセプタ
20 押圧ガス噴射器
21 押圧ガス供給管
23 整流板
25 ガス供給部
26 ガス制御部

Claims (5)

  1. 成長基板に対して材料ガスを水平方向に供給する材料ガス供給管と、前記成長基板の上方に配置され、前記材料ガスを基板に対して押し付ける方向に押圧ガスを吹き付ける押圧ガス噴出器と、を備えた結晶成長装置を用い、
    前記成長基板上に下地層を形成する工程と、
    前記下地層上に、相対的に小なる成長速度で化合物半導体の結晶成長を行う第1ステップと、相対的に大なる成長速度で前記化合物半導体の結晶成長を行う第2ステップと、を交互に複数回実施することで空洞含有層を形成する工程と、
    前記空洞含有層上に、前記化合物半導体のエピタキシャル層を形成する工程と、
    前記エピタキシャル層上に支持基板を接着する工程と、
    前記空洞含有層を境界として前記エピタキシャル層から前記成長基板を除去する工程と、を含み、
    前記第2ステップにおける前記押圧ガスの流量は、前記第1ステップにおける前記押圧ガスの流量よりも小なることを特徴とする半導体素子ウエハの製造方法。
  2. 前記第2ステップにおける前記押圧ガスの流量(FP2)の前記第1ステップにおける前記押圧ガスの流量(FP1)に対する比率(RP=FP2/FP1)は、前記第1ステップにおける材料ガスの総流量(FG1)に対する前記第2ステップにおける材料ガスの総流量(FG2)の比率(RG=FG2/FG1)の逆数(RP=1/RG)以下であることを特徴とする請求項1に記載の製造方法。
  3. 前記第2ステップにおける押圧ガス流量(FP2)の第1ステップにおける押圧ガス流量(FP1)に対する比率(RP=FP2/FP1)が、第1ステップにおける材料ガスの総流量(FG1)に対する第2ステップにおける材料ガスの総流量(FG2)の比率(RG=FG2/FG1)に反比例した値(RP=1/RG)であることを特徴とする請求項1に記載の製造方法。
  4. 前記第2ステップにおける押圧ガスの流量は前記第1ステップにおける押圧ガスの流量の1/2以下であることを特徴とする請求項1に記載の製造方法。
  5. 成長基板に対して材料ガスを水平方向に供給する材料ガス供給管と、前記成長基板の上方に配置され、前記材料ガスを基板に対して押し付ける方向に押圧ガスを吹き付ける押圧ガス噴出器と、を備えた結晶成長装置を用い、
    前記成長基板上に下地層を形成する工程と、
    前記下地層上に、相対的に小なる成長速度で化合物半導体の結晶成長を行う第1ステップと、相対的に大なる成長速度で前記化合物半導体の結晶成長を行う第2ステップと、を交互に複数回実施することで空洞含有層を形成する工程と、
    前記空洞含有層上に、前記化合物半導体のエピタキシャル層を形成する工程と、
    前記エピタキシャル層上に支持基板を接着する工程と、
    前記空洞含有層を境界として前記エピタキシャル層から前記成長基板を除去する工程と、を含み、
    前記第1ステップにおいて、前記押圧ガスは前記成長基板上であって前記材料ガスの供給上流側の半分上に供給され、前記第2ステップにおいて、前記押圧ガスは前記成長基板上であって前記材料ガスの供給下流側の半分上に供給されることを特徴とする半導体素子ウエハの製造方法。
JP2012063582A 2012-03-21 2012-03-21 半導体素子ウエハの製造方法 Pending JP2013197352A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063582A JP2013197352A (ja) 2012-03-21 2012-03-21 半導体素子ウエハの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063582A JP2013197352A (ja) 2012-03-21 2012-03-21 半導体素子ウエハの製造方法

Publications (1)

Publication Number Publication Date
JP2013197352A true JP2013197352A (ja) 2013-09-30

Family

ID=49395930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063582A Pending JP2013197352A (ja) 2012-03-21 2012-03-21 半導体素子ウエハの製造方法

Country Status (1)

Country Link
JP (1) JP2013197352A (ja)

Similar Documents

Publication Publication Date Title
JP5199057B2 (ja) 半導体素子の製造方法、積層構造体の製造方法、半導体ウエハおよび積層構造体。
JP5180050B2 (ja) 半導体素子の製造方法
EP2731151B1 (en) Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
JP5679869B2 (ja) 光半導体素子の製造方法
JP5117596B2 (ja) 半導体発光素子、ウェーハ、および窒化物半導体結晶層の製造方法
JP5612516B2 (ja) 半導体素子の製造方法
JP5313651B2 (ja) 半導体素子の製造方法
JP6207616B2 (ja) オプトエレクトロニクス素子の製造方法
JP5519347B2 (ja) 半導体素子の製造方法
JP5237780B2 (ja) 半導体発光素子の製造方法
TWI431667B (zh) 外延結構體及其製備方法
JP2010093186A (ja) 窒化ガリウム系化合物半導体発光素子の製造方法、窒化ガリウム系化合物半導体素子の積層構造及び窒化ガリウム系化合物半導体発光素子、並びにランプ
TW201246599A (en) Semiconductor substrate and fabricating method thereof
JP5620724B2 (ja) 半導体素子の製造方法、積層構造体の製造方法、半導体ウエハおよび積層構造体。
TW202231946A (zh) 紫外線發光元件用磊晶晶圓、紫外線發光元件用金屬貼合基板的製造方法、紫外線發光元件的製造方法、及紫外線發光元件陣列的製造方法
US8664028B2 (en) Semiconductor device production process
KR101142082B1 (ko) 질화물 반도체 기판 및 그 제조 방법과 이를 이용한 질화물반도체 소자
TW201536666A (zh) 發光二極體
JP2011192752A (ja) 半導体素子の製造方法
JP2016072287A (ja) 窒化アルミニウム層形成方法、窒化物半導体装置製造方法、窒化アルミニウム層形成最適条件決定方法、及び窒化アルミニウムの半導体構造
JP2020001944A (ja) 窒化アルミニウム膜の形成方法
WO2022077254A1 (zh) 微型led结构的制作方法
JP2013197352A (ja) 半導体素子ウエハの製造方法
WO2019039240A1 (ja) 半導体成長用基板、半導体素子、半導体発光素子、および半導体素子の製造方法
JP2011051864A (ja) GaN単結晶基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法