TWI640647B - 具有所欲成分及膜特性之矽碳化物類薄膜的取得方法 - Google Patents
具有所欲成分及膜特性之矽碳化物類薄膜的取得方法 Download PDFInfo
- Publication number
- TWI640647B TWI640647B TW103119100A TW103119100A TWI640647B TW I640647 B TWI640647 B TW I640647B TW 103119100 A TW103119100 A TW 103119100A TW 103119100 A TW103119100 A TW 103119100A TW I640647 B TWI640647 B TW I640647B
- Authority
- TW
- Taiwan
- Prior art keywords
- silicon
- silicon carbide
- carbide film
- precursor
- depositing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/452—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45531—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02167—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
- H01L21/02216—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
- H01L21/02222—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本發明係用於形成矽碳化物類膜的方法及系統。矽碳化物膜的組成可受到前驅物的結合選擇及前驅物間的流率比控制。可藉由在反應腔室中將二個不同的有機矽前驅物流動混合在一起而在基板上沉積矽碳化物膜。有機矽前驅物與極低能態的一個以上自由基起反應,而形成矽碳化物膜。一個以上的自由基可在遠端電漿源中形成。
Description
本案揭露內容大體上係與矽碳化物類膜的形成相關。
矽碳化物類薄膜(SiC)具有獨特的物理、化學、電性、及機械特性,且係用在各種應用中,尤其是積體電路的應用。SiC類薄膜的範例包含摻雜氧及/或氮的SiC,例如:碳氧化矽(SiOC)、碳氮化矽(SiCN)、及矽氧碳氮化物(SiOCN)。SiC類薄膜的組成會影響薄膜所期望的物理、化學、電性、及機械特性。
本發明係與沉積矽碳化物膜的方法相關。矽碳化物膜可為摻雜或未摻雜的。沉積矽碳化物膜的方法包括:設置一基板,及將第一有機矽前驅物和第二有機矽前驅物一同流至基板上。第一和第二有機矽前驅物彼此不同。該方法更包含:自來源氣體導入極低能態的一個以上之自由基,其中自由基與第一和第二有機矽前驅物反應,而在基板上沉積矽碳化物膜。經摻雜或未經摻雜的矽碳化物膜之組成可根據前驅物組合之選擇和前驅物的流速比加以調節。(1)在一些實施例中,摻雜氮的矽碳化物膜可以藉由混合具有不同之矽-碳鍵對矽-氮鍵比的至少兩種有機矽前驅物而形成。(2)在一些實施例中,摻雜氧的矽碳化物膜可以藉由混合具有不同矽-碳鍵對矽-氧鍵比的至少兩種有機矽前驅物形成。(3)在一些實施例中,摻雜氮和氧的矽碳化物薄膜可藉由將具有矽-氧鍵之有機矽前驅物與和另一具有矽-氮鍵的有機矽前驅物混合而形成。(4)在一些實施例中,未經摻雜的矽碳化物膜可以藉由混合具有不同矽-碳鍵比的至少兩個有機矽前驅物而形成。(5)在一些實施例中,矽碳化物膜可在膜的下部表面與上部表面之間具有變化的氧和氮濃度。(6)在一些實施例中,藉由將來源氣體暴露至遠端電漿而引入自由基。自由基可由一來源氣體產生,該來源氣體係選自於由氫、氮、氨、和胺所組成之群組。
本發明亦與一設備相關,其包含:一反應腔室;一電漿源,用於在該反應腔室外產生電漿;一個以上的第一進氣口,連接至該反應腔室;一第二進氣口,連接到該反應腔室;及一控制器。該控制器可設有指令以執行:(a)將第一有機矽前驅物經由該一個以上的第一進氣口流入該反應腔室中;(b)將第二有機矽前驅物經由該一個以上的第一進氣口流入該反應腔室中,而與第一有機矽前驅物混合,其中第二有機矽前驅物係不同於第一有機矽前驅物; (c)自電漿源中的電漿形成極低能態的一個以上之自由基物種;以及(d)將該一個以上的自由基物種經由第二進氣口流至反應腔室中,以與第一和第二有機矽前驅物反應,而在基板上形成矽碳化物膜。在一些實施例中,矽碳化物膜係摻雜氮及/或氧。在一些實施例中,該控制器係設置成使第一和第二有機矽前驅物中的每一者以約1:1至約2:1間之比例的流率流動。在一些實施例中,第一和第二有機矽前驅物各具有一個以上的矽-氫鍵、及/或矽-矽鍵。自由基可由選自於由氫、氮、氨、和胺組成之群組的一來源氣體產生。
這些與其他實施例將參考圖示更進一步闡述於後。
以下敘述中,為提供對本發明深入的了解,大量具體的細節會加以闡述。所呈現的概念可在沒有部份或是全部這些具體細節的情況下加以實施。其它情況下,對於眾所皆知的製程操作不加以詳細描述,以免不必要地模糊了所述的概念。雖然一些概念係與具體細節一同描述,但吾人理解這些揭露實施例並非用來限定本發明。
半導體元件的製造一般係關於在整合製造製程中於基板上沉積一個以上的薄膜。在整合製造製程的一些實施態樣中,可使用原子層沉積(ALD)、化學氣相沉積(CVD)、電漿輔助化學氣相沉積(PECVD)、或任一合適的沉積方法沉積例如SiC、SiCN、及 SiOC的薄膜類。
PECVD製程可使用原位電漿處理於矽碳化物類的薄膜沉積,其中電漿處理係緊鄰基板發生。然而,吾人發現沉積高品質的矽碳化物類薄膜具有諸多挑戰。例如,此類挑戰可包含形成具有以下特性的矽碳化物類薄膜:絕佳階梯覆蓋性、低介電常數、高破壞電壓、低洩漏電流、低孔隙率、高氣密性、高密度、高硬度、及覆蓋於暴露金屬表面上而不使金屬表面氧化等等。
雖然此揭露內容不侷限於任何特定理論,但吾人相信典型PECVD製程中的電漿條件會產生非期望的影響。例如,PECVD製程可能會形成破壞前驅物分子中Si-O、Si-N、 及/或 Si-C鍵的直接電漿狀態。直接電漿狀態可包含:帶電粒子轟擊及高能紫外線照射,這些可能在薄膜中造成破壞性影響。
由直接電漿狀態所造成的此種膜損害效應可能包含不佳的階梯覆蓋性。直接電漿狀態中的帶電粒子可能造成高反應性的自由基及升高的黏附係數。沉積的矽碳化物膜可能具有「懸空(dangling)」的矽、碳、氧、及/或氮鍵,亦即矽、碳、氧、及/或氮會具有反應性的未成對價電子。前驅物分子的升高之黏附係數會導致不佳階梯覆蓋性的矽碳化物膜沉積,這是因為反應性前驅物片段可能易於附著在先前沉積的膜或層的側壁。
可能由直接電漿狀態造成的另一膜損害效應可包含沉積中的方向性。此一情形部分是由於打斷前驅物分子所需的能量可能係低頻率,如此會在表面處造成大量的離子轟擊。方向性的沉積更造成不佳階梯覆蓋性的沉積。
PECVD中的直接電漿狀態亦可能造成矽碳化物膜中矽-氫鍵結(Si-H)的產生增加。具體來說,可以Si-H取代斷裂的Si-C鍵。在一些例子中,如此情形不僅可能造成碳含量的降低,亦可能造成不佳電性的膜。例如,Si-H鍵的存在可能降低破壞電壓及增加洩漏電流,這是因為Si-H鍵提供了電子的洩漏路徑。
此外,PECVD條件一般包含:用於控制矽碳化物材料摻雜的摻雜劑或共反應劑。如此的摻雜劑可包含:二氧化碳(CO2
)、一氧化碳(CO)、水(H2
O)、甲醇(CH3
OH)、氧(O2
)、臭氧(O3
)、氮(N2
)、氨(NH3
)、甲烷(CH4
)、乙烷(C2
H6
)、丙炔(C2
H2
)、及乙烯(C2
H4
)。摻雜氧及/或氮的矽碳化物膜之製造通常需要使用此等摻雜劑。例如,可將含矽前驅物與NH3
混合,以製造摻雜氮的矽碳化物(SiCN)薄膜,或可將含矽前驅物與CO2
或O2
混合,以製造摻雜氧的矽碳化物(SiOC)薄膜。因典型的PECVD條件係利用如此的摻雜劑來摻雜矽氮化物類的薄膜,故如此造成碳含量的降低。
在PECVD製程中,一種控制矽碳化物膜組成的方法係藉由改變前驅物本身的結構或選擇。例如,矽碳化物膜中的碳、氧、及/或氮的濃度係可與前驅物分子的化學計量有很大程度的相關。或者,控制矽碳化物膜組成的另一種方法係改變前驅物的流率,及/或改變反應氣體物種,以控制矽碳化物膜的組成。例如,可流入四甲基矽烷(4MS)來和NH3
或CO2
反應,而分別形成SiCN或SiOC。4MS的流率可相當低,而CO2
的流率可相當高,以形成SiOC,其中碳含量係為低。4MS的流率可相當低,而NH3
的流率可相當高,以形成SiCN,其中碳含量亦係低。事實上,就能量上而言,形成Si-O 鍵或 Si-N鍵較形成Si-C 鍵更為有利,如此在這些膜中造成低碳含量。因此,矽碳化物膜中的組成控制(例如:碳含量)會被限制於狹窄的範圍。以及如本文較早的描述,即便矽碳化物膜並未受到摻雜,PECVD的使用可能不期望地造成非常高數量的Si-H鍵。
此外,在典型PECVD製程會導入氧化物種(如:O2
、O3
、 及CO2
)的情況下,帶有此氧化物種之矽碳化物膜的沉積會使金屬表面氧化。例如,在暴露的銅表面上沉積帶有氧化物種之矽碳化物膜會使銅氧化。 方法
本發明未採用例如NH3
、CO2
、 O2
、 O3
等的摻雜劑形成經摻雜的矽碳化物膜,本文所描述揭露的實施方式包含使用自由基與有機矽前驅物反應,而形成經摻雜或未經摻雜的矽碳化物薄膜。此外,經摻雜或未經摻雜的矽碳化物膜之組成可藉由流入多數有機矽前驅物作為共反應劑而加以控制。
圖1顯示說明沉積矽碳化物膜之方法的一示例性流程圖。此製程100由步驟110開始,步驟110:設置一基板。基板可能包含任何晶圓、 半導體晶圓、部分製造之積體電路、印刷電路板、或其他合適的工件。
製程100繼續進行至步驟120,於步驟120:將一第一有機矽前驅物流至基板上。在一些實施中,第一有機矽前驅物具有一個以上的矽-氧(Si-O)鍵、及/或一個以上的矽-氮(Si-N)鍵。有機矽前驅物亦具有一個以上的矽-碳(Si-C)鍵,及在一些實施中具有一個以上的矽-矽(Si-Si)鍵、及/或矽-氫(Si-H)鍵。對經摻雜的矽碳化物膜而言,當將第一有機矽前驅物與氫自由基反應時所產生的經摻雜矽碳化物膜的碳對氮(C:N)比,或碳對氧(C:O)比,可能實質上取決於第一有機矽前驅物的選擇。
製程100繼續進行至步驟130,於步驟130:將第二有機矽前驅物與第一有機矽前驅物一同流入至基板上。在一些實施中,第二有機矽前驅物具有一個以上的Si-O鍵、及/或一個以上的Si-N鍵。然而,第二有機矽前驅物係不同於第一有機矽前驅物。相較於使一單一有機矽前驅物與一個以上的摻雜劑反應,使至少二個不同的矽前驅物一同流入可對產生的矽碳化物膜達成較佳的組成控制。使單一前驅物反應會產生有限範圍的C:N或C:O比值,該比值係受限於所選擇之前驅物的化學計量、前驅物與摻雜劑的流率、及摻雜劑的選擇。
將第一有機矽前驅物與第二有機矽前驅物一同流入可同時或依序達成。同時流入可使第一和第二有機矽前驅物在同一時間混合。依序流入可使第一和第二有機矽前驅物在輸送第二矽前驅物後才混合。
在一些實施中,第一和第二有機矽前驅物可為有機矽氧化物及有機矽氮化物前驅物的不同組合。具體來說,有機矽氧化物前驅物可與有機矽氮化物前驅物結合,形成摻雜氮及氧的矽碳化物(SiOCN)。有機矽氧化物前驅物可與另一有機矽氧化物前驅物結合,形成摻雜氧的矽碳化物(SiOC)。有機矽氮化物前驅物可與另一有機矽氮化物前驅物結合,形成摻雜氮的矽碳化物(SiCN)。
為形成SiOCN,第一有機矽前驅物可具有一個以上的Si-O鍵,而第二有機矽前驅物可具有一個以上的Si-N鍵。為形成SiOC,第一有機矽前驅物及第二有機矽前驅物可各自具有不同的Si-C鍵對Si-O鍵比。為形成SiCN,第一有機矽前驅物及第二有機矽前驅物可各自具有不同的Si-C鍵對Si-N鍵比。
製程100繼續進行至步驟140,於步驟140:自來源氣體導入極低能態的一個以上自由基,以和第一和第二有機矽前驅物反應。此反應造成矽碳化物膜沉積於基板上。自一來源氣體產生自由基,且該來源氣體可包含:氫、氮、氨、及/或胺。在一些例子中,自由基實質上為氫自由基。第一和第二有機矽前驅物與自由基反應,使得產生的矽碳化物膜組成與第一和第二有機矽前驅物的流率及選擇有很大程度的相關。在一些實施中,自由基實質上係基態的氫自由基。在一些實施中,藉由來源氣體暴露於遠端電漿而引入自由基。 沉 積期間之基板表面的環境
圖2A顯示基板上所沉積之矽碳化物膜之一例的橫剖面圖,此矽碳化物膜可為摻雜或未摻雜的。如本文先前的討論,基板200可包含任何晶圓、半導體晶圓、部分製造之積體電路、印刷電路板、或其他合適的工件。矽碳化物膜201可在鄰近基板200的適當製程條件及環境下形成。矽碳化物膜可包含SiC、SiCN、SiOC、或 SiOCN,亦即任何經摻雜的矽碳化物膜係摻雜氧及/或氮。可藉由將至少二個不同的有機矽前驅物一同流入,且其中每一者與鄰近基板200的自由基反應而形成矽碳化物膜201。以下將進一步詳細討論示例性的有機矽前驅物的化學結構。
有機矽前驅物可包含一個以上的Si-O鍵及/或一個以上的Si-N鍵。在一些實施中,有機矽前驅物可包含一個以上的Si-H鍵及/或一個以上的Si-Si鍵。在不侷限於任何理論的情況下,與有機矽前驅物反應之自由基的製程條件可包含:具有足夠能量打斷Si-H鍵或Si-Si鍵,但可實質保留Si-O、Si-N、及/或 Si-C鍵的的自由基。當Si-H鍵及/或Si-Si鍵斷裂時,它們可用作在矽碳化物膜201中的有機矽前驅物之間形成鍵結的反應位。斷裂的鍵亦可用作於沉積期間或之後所進行的熱處理期間的交聯縮合。在反應位的鍵結及交聯作用會在產生的矽碳化物膜201中集中地形成主要的骨架或基材。
通常,前述反應條件係存在於基板200的暴露面處(亦即矽碳化物膜201之沉積面)。他們更可存在基板200上方若干距離處,例如:在基板200上方約0.5微米至約150毫米。實際上,有機矽前驅物的活化可在離基板200上方相當距離發生於氣相中。雖然若干應用可允許一些變化,但一般來說,適當的反應條件係在基板200的整個暴露面上為均勻的或實質上均勻的。
鄰近基板200的環境可包含一個以上的自由基物種,而較佳是極低能態者。雖然此等自由基物種可以包含氫原子自由基,但亦可包含其他的自由基物種,或亦可以其他的自由基物種(例如:元素氮自由基、氨自由基、及胺自由基)取代氫原子自由基。胺自由基的範例包含,但非僅限於:甲胺、二甲胺、和苯胺的自由基。在一些實施例中,全部或實質上全部的自由基係在基態,例如:鄰近基板200的自由基中之至少約90%或95%係在基態。在一些實施例中,如以下將進一步詳細討論者,自由基物種可藉由遠端電漿源產生。
在一些實施例中,製程條件具有極低能態的自由基物種,以打斷Si-H鍵及/或Si-Si鍵,並同時實質地保留Si-O、Si-N、及Si-C鍵。製程條件不具有大量的高能態(例如:高於基態、或紫外線(UV)輻射的能態)離子、電子、自由基物種。在一些實施例中,鄰近膜之區域中的離子濃度係約107
/cm3
以下。大量離子、UV、或高能自由基的存在往往會打斷Si-O、Si-N、或Si-C鍵,如此會產生具有不期望電性(高介電常數、及/或低破壞電壓)、不佳保形性、及不受控制之組成的膜。吾人亦相信過度反應性的環境產生可能具有高值之黏附係數(表示以化學或物理方式黏附於工件側壁的傾向)的反應性前驅物碎片,因而造成不佳的保形性。
然而,吾人理解鄰近基板200的製程條件不一定會打斷Si-H及/或Si-Si鍵,以形成矽碳化物膜201。Si-H及/或Si-Si鍵可能不存在於選定的前驅物分子。事實上,製程條件亦可包含:高能態的離子、電子、自由基物種,或UV輻射,以打斷包含Si-O、Si-N、或 Si-C鍵之其他鍵結,並形成矽碳化物膜201。
在不侷限於任何的理論的情況下,形成矽碳化物膜201的反應機制可經由一系列的活化、生長、及交聯步驟發生。例如,二甲基氨基二甲基矽烷(DMADMS)可進行一些下列的反應機制: (活化:1a)氫自由基自DMADMS前驅物分子抽出氫(活化:1b)第二氣相反應發生 (活化:1c)活化亦發生於加熱表面上,而形成一高反應性的過渡中間產物(矽亞胺,silanimine)(生長步驟:2a)自由基的再結合發生於生長面處(生長步驟:2b)寡聚物與自由基進行表面反應,導致氫自鍵結於矽或氮的甲基基團抽出(生長步驟:2c)如此形成的自由基位與表面上的其他自由基位或到達生長表面處的自由基之再結合發生(生長步驟:2d)發生矽亞胺中間產物逐步插入Si-N極性單位中(生長步驟:2e)二甲基氨基矽烷基團的縮合發生(吸熱反應:發生在較高的基板溫度下)(生長步驟:2f)二矽烷單位重排而形成碳-矽鍵(交聯步驟:3a)胺基轉移反應,造成Si-N網形成(交聯步驟:3b)甲矽基(Methylsilyl)基團亦進行熱增強的交聯反應
有機矽前驅物可與其他物種以相對的比例出現在鄰近基板200的環境中。特別是,有機矽前驅物可與自由基物種及其他物種(包含:其他的反應性物種及/或載體氣體)一同存在。在一些實施例中,有機矽前驅物可被導入混合物中。有機矽前驅物可於沉積反應表面的上游與惰性載體氣體混合。示例性的惰性載體氣體包含但非僅限於:氮(N2
)、氬(Ar)、及氦(He)。
根據含有矽碳化物膜201之元件的應用,鄰近基板200的環境溫度可為任何合適的溫度。鄰近基板200的環境溫度很大程度地受到例如在矽碳化物膜201沉積期間支持基板200的底座溫度所控制。在一些實施例中,操作溫度可在約50℃至約500℃之間。例如,於許多積體電路等之應用中,操作溫度可在約250℃至約400℃之間。在一些實施例中,將溫度上升可於基板200之表面上造成交聯增加。
鄰近基板200的環境中之壓力可為能在處理腔室中產生反應性自由基的任一適合壓力。在一些實施例中,壓力可為約35Torr以下,例如,壓力可約在10Torr至20Torr之間,如同實施微波產生電漿的實施例。在其他實施例中,壓力可為小於約5Torr以下,或在約0.2Torr及約5Torr之間,如同實施射頻產生電漿的實施例。在一些範例中,壓力可在約0.5Torr及約10Torr之間,或在約1.5Torr及約7Torr之間。
本文先前描述的製程條件可以形成高保形性的膜結構。相對溫和的製程條件會將基板表面的離子轟擊程度最小化,使得沉積失去方向性。此外,相對溫和的製程條件會降低帶有高黏滯係數的自由基數量,如此的自由基具有附著於先前所沉積之層或膜之側壁的傾向。在若干實施例中,對約6:1的深寬比而言,可沉積具有約25%到約100%間、及一般為約50%及約80%間保形性的矽碳化物膜201。
在一些實施例中,矽碳化物膜202可具有漸變(graded)或層狀結構。在一些例子中,吾人可能期望形成漸變或層狀矽碳化物膜202,其中矽碳化物膜202的組成係隨著厚度改變而變化。可在時間t0
同時流入二個不同的有機矽前驅物,並接著在時間t1
流入一個以上的不同有機矽前驅物。或者,可在時間t0
流入一個以上的有機矽前驅物,並接著在時間t1
流入二個不同的有機矽前驅物。在這些製程流之每一者中的有機矽前驅物可與例如氫自由基起反應,而形成不同層的矽碳化物膜。
在一範例中,沉積的起始部分可使用有機矽氮化物前驅物,而形成實質上包含SiCN的矽碳化物膜202。之後使用有機矽氧化物前驅物及有機矽氮化物前驅物之混合物的沉積,而在矽碳化物膜202中的SiCN上實質形成SiOCN。除了在SiCN上沉積SiOCN外或取代於SiCN上沉積SiOCN之方式,此製程接著可使用有機矽氧化物前驅物沉積,而在矽碳化物膜202中的SiOCN及/或SiCN上形成SiOC。因此,前驅物的結合可於特定的時間點改變,而形成層狀或漸變的矽碳化物膜202。
在另一範例中,前驅物流率亦可逐漸改變,而形成漸變或層狀的矽碳化物膜202。可同時流入具有特定流率比的二種不同有機矽前驅物,並接著逐漸或瞬間改變此流率比,使得前驅物具有另一流率比。例如,可同時流入有機矽氧化物前驅物及有機矽氮化物前驅物的混合物,使得此二前驅物間的流率比係位在約1:1與約2:1之間。若將有機矽氧化物前驅物及有機矽氮化物前驅物間的流率比改變成大於約2:1,則所產生的SiOCN膜隨著厚度增大而增高氧相對於氮的濃度。
層狀或漸變的矽碳化物膜202可具有數種應用。例如,SiOC膜可作為銅上的期望之蝕刻終止層或擴散阻礙層。然而,SiOC膜可能會在暴露的銅表面上呈現不佳的附著性。因此,吾人期望首先沉積一層以上的SiCN層,該SiCN層會在暴露的銅表面上具有較佳的附著性,接著沉積一層以上的SiOC層。
圖2C-2E顯示不同應用中之矽碳化物膜的橫剖面圖。然而,吾人理解矽碳化物膜非僅限於這些應用。圖2C顯示電晶體閘極結構側壁上的矽碳化物直立結構。圖2D顯示氣隙型金屬化層中銅線條的暴露之側壁上的矽碳化物直立結構。圖2E顯示用於多孔性介電材料的矽碳化物孔隙密封劑。其他的應用包含在供MRAM及RRAM元件等記憶體元件之應用的圖案化期間形成封裝部。該等應用中之每一者將於以下進一步地詳述。 前驅物的化學結構
如本文先前之討論,用於形成摻雜或未摻雜之矽碳化物膜的前驅物可包含有機矽前驅物。在一些實施例中,有機矽前驅物可包含至少一個Si-O鍵及/或至少一個Si-N鍵。在一些實施例中,有機矽前驅物亦包含至少一個Si-H鍵及/或至少一個Si-Si鍵。
在一些實施例中,有機矽前驅物可屬於數個化學種類中之一者。吾人理解可應用任一合適化學種類的有機矽前驅物,且有機矽前驅物並不僅限於以下所討論的化學種類。
第一,有機矽前驅物可為矽氧烷。在一些實施例中,矽氧烷可為環狀的。環狀的矽氧烷可包含環四矽氧烷,例如:2,4,6,8 - 四甲基環四矽氧烷(TMCTS)、八甲基環四矽氧烷(OMCTS)、和七甲基環四矽氧烷(HMCTS)。其他環狀的矽氧烷亦可包含但非僅限於:環三矽氧烷和環五矽氧烷。使用環狀矽氧烷之實施例係可將孔隙導入矽碳化物膜中的環結構,而孔隙的尺寸係對應於該環的半徑。例如,環四矽氧烷環可具有約6.7 Å的半徑。
在一些實施例中,矽氧烷可具有三維或籠狀(caged)結構。圖3顯示代表性的籠狀的矽氧烷前驅物之範例。籠狀的矽氧烷具有經由氧原子彼此相互架橋的矽原子,藉以形成一多面體或任一3D的結構。籠狀的矽氧烷前驅物分子的範例為半矽氧烷。在由Cleemput等人共同擁有之美國專利第6,576,345號中,進一步詳述籠狀的矽氧烷結構,該專利整體納入本說明書中以供所有目的之參照。如同環狀的矽氧烷,籠狀的矽氧烷可將孔隙導入矽碳化物膜中。在一些實施例中,該孔隙之大小為中孔隙。
在一些實施例中,矽氧烷可為線狀。線狀的矽氧烷可包含但非僅限於二矽氧烷,如:五甲基二矽氧烷(PMDSO)、及四甲基二矽氧烷(TMDSO)。PMDSO及TMDSO可用於形成SiOC膜。
第二,有機矽前驅物可為烷氧基矽烷。烷氧基矽烷包含:一中心矽原子,及一個以上與該中心矽原子鍵合的烷氧基團及氫原子。範例包含但非僅限於:三甲氧基矽烷(TMOS)、二甲氧基矽烷(DMOS)、甲氧基矽烷(MOS)、甲基二甲氧基矽烷(MDMOS)、二乙氧基甲基矽烷(DEMS)、二甲基乙氧基矽烷(DMES)、二甲基氨基甲氧基矽烷(DMAMES)、和二甲基甲氧基矽烷(DMMOS)。許多這些前驅物可用於形成SiOC膜。
第三,有機矽前驅物可為烷基矽烷。烷基矽烷包含: 一中心矽原子,及一個以上與該中心矽原子鍵合的烷基團及氫原子。在若干實施例中,烷基團的任何一者以上包含1-5個碳原子。烷基團可為飽和或未飽和。範例包含但非僅限於:四甲基矽烷(4MS)、三甲基矽烷(3MS)、二甲基矽烷(2MS)、及三乙基矽烷(TES)。在一些實施例中,這些烷基團可用於形成SiC膜。
烷基矽烷的其他種類可包含:烷基碳矽烷、烷基胺基矽烷、及烷基二矽氮烷。烷基碳矽烷可具有碳鍵合於一矽原子與烷基團鍵合於一矽原子的分枝聚合性結構。範例包含:二甲基三甲基矽烷基甲烷(DTMSM)、及雙 - 二甲基矽烷基乙烷(BDMSE)。烷基胺基矽烷包含:帶有甲基團及鍵合於矽原子的胺。範例包含:二甲基胺基二甲基矽烷(DMADMS)、雙-二甲基胺基甲基矽烷(BDMAMS)、和三-二甲基胺基矽烷(TDMAS)。在一些實施例中,這些烷基矽烷可形成SiCN膜。烷基二矽氮烷包含:矽氮烷及鍵合於二個矽原子的烷基團。一範例包含1,1,3,3 -四甲基二矽氮烷(TMDSN)。在一些實施例中,TMDSN可以形成SiCN膜。
此外,二矽烷、三矽烷、或其他更高階的矽烷可用於取代單矽烷。來自烷基矽烷類之一個如此二矽烷的範例為六甲基二矽烷(HMDS)。來自烷基矽烷類的二矽烷之另一範例可包含五甲基二矽烷(PMDS),其可用於形成SiC膜。在一些實施例中,矽原子之一者可僅有一含碳或含烷氧基的基團與其連接,而矽原子之一者可僅有一氫原子與其連接。
在一些實施例中,前驅物可包含結合到單一前驅物中的多個化學基團。例如,像是DMADMS的單一前驅物可包含烷氧基、胺基、及烷基團。
在沉積矽碳化物膜時,多個有機矽前驅物可存於製程氣體中。例如,可將矽氧烷和烷基矽烷一齊使用,或可將矽氧烷和烷氧基矽烷一齊使用。可根據所選之前驅物的化學結構及產生的矽碳化物膜之應用來選擇個別前驅物的相對比例。例如,以莫耳百分比計,矽氧烷量可大於矽烷量,以產生孔狀膜。 所沉積膜的組成
所沉積的矽碳化物膜可包含相對比例之矽、碳、氧、及氮。摻雜或未摻雜的矽碳化物膜的期望組成可藉由以下方式達成:(1)選擇適當的有機矽前驅物組合,及(2)調整有機矽前驅物的流量或流率比。藉由調整這些參數,改變矽碳化物膜的主體組成係可行。此外,隨著厚度變化改變矽碳化物膜的組成亦係可行。
矽碳化物膜的相對原子濃度可隨著有機矽前驅物組合的選擇而變化。有機矽前驅物的選擇可直接影響經摻雜之矽碳化物膜的C:N比或C:O比。此外,有機矽前驅物的選擇可以直接影響摻雜或未摻雜之矽碳化物膜的碳濃度。因為有機矽前驅物的化學計量係表示前驅物分子中之碳與氮原子的相對數量或碳與氧原子的相對數量,故有機矽前驅物的選擇直接影響產生的經摻雜之矽碳化物膜的C:N比或C:O比。然而,吾人知道由於例如交聯作用的效應,前驅物分子的化學計量比可能不會完全相同於經摻雜之矽碳化物膜的C:N比或C:O比。換句話說,由於前驅物分子具有5個碳原子對2個氮原子,故前驅物分子的化學計量比不一定會相等於摻雜氮的矽碳化物膜中的2.5:1的C:N比。
例如,DMADMS前驅物分子之C:N比高於BDMAMS前驅物分子之C:N比,而BDMAMS前驅物分子C:N比高於TDMAS前驅物分子之C:N比。因此,使用DMADMS會較使用BDMAMS在SiCN膜中給予較高的C:N比,而使用BDMAMS會較使用TDMAS在SiCN膜中給予較高的C:N比。
對於特定之前驅物分子而言,C:N比或C:O比可為非連續的。因此,SiCN膜的C:N比或SiOC膜的C:O比可受到此非連續比的限制。換句話說,倘若DMADMS產生具有約2.0 C:N比的SiCN膜,而倘若BDMAMS產生具有約1.5 C:N比的SiCN膜,則產生具有在1.5及2.0之間之C:N比的SiCN膜即可能具挑戰性。在一些實施例中,可藉由選擇具有較多矽原子的前驅物(其包含:二矽烷、三矽烷、及更高階的矽烷)達成較高的C:N比或C:O比。然而,對於特定前驅物分子而言,不受限於非連續的C:N比或C:O比而精確地調整SiC類膜之組成可為具挑戰性的。
藉由同時流入至少二個不同的有機矽前驅物,可達成不同組成的矽碳化物膜。倘若獨立流入的第一有機矽前驅物分子具有非連續的C:N比或C:O比,而獨立流入的第二有機矽前驅物分子具有另一非連續的的C:N比或C:O比,則同時流入的二個有機矽前驅物分子產生的C:N比或C:O比可在獨立流入的前驅物分子的非連續C:N比或C:O比之間。自本文之前使用的範例得知,一同將DMADMS及BDMAMS流入可確切地產生具有在約1.5及約2.0之間的C:N比的SiCN膜。
流入至少二個不同有機矽前驅物可不僅僅產生不同組成的矽碳化物膜,亦可產生SiOCN膜。將一同用於SiCN 及SiOC膜的有機矽前驅物混合,如此會促成SiOCN膜的沉積。因此,共同流入例如DMADMS的有機矽氮化物前驅物及例如DEMS的有機矽氧化物前驅物可以產生SiOCN膜。
SiCN、SiOC、及SiOCN膜中之個別不同的矽、碳、氮、及氧的濃度可能不僅由前驅物的組合選擇所決定,亦可能由前驅物流量比所決定。例如,倘若DMADMS及BDMAMS間的流率比係約1:1,而在SiCN膜中產生了特定的C:N比,接著將該流率比增加至大於1:1則可以在SiCN膜中產生較大的C:N比。在一些實施例中,第一有機矽前驅物及第二有機矽前驅物間的流率比係在約1:1及約2:1之間。在一些實施例中,第一有機矽前驅物及第二有機矽前驅物間的流率比係大於約2:1。因此,可根據二個不同有機矽前驅物的流率比加以調整矽碳化物膜的組成。
在一些實施例中,矽碳化物膜的組成可為分層的或漸變的。換句話說,矽碳化物膜可在此膜的下部表面及上部表面之間具有不同的氮及氧濃度。在一些情形中,可於特定時間點改變前驅物組合之選擇。例如,可藉由單獨流入DMADMS而初步地發生SiCN的沉積,接著同時流入DMADMS及DEMS以沉積SiOCN。在其他情形中,可逐步地或於特定的時間下改變前驅物間的流率比。例如,可藉由同時初步地流入TDMAS及DEMS,並具有約2:1之TDMAS及DEMS間的流率比,接著逐步地或瞬間地將流率比改變成約1:2以發生不同濃度SiOCN的沉積。如此產生的SiOCN膜可在此膜的下部表面具有高濃度的氮及低濃度的氧、且在此膜的上部表面具有低濃度的氮及高濃度的氧。
藉由以適當的流率比混合適當的前驅物組合,可達成期望的矽碳化物膜組成。期望的矽碳化物膜組成可與膜的期望應用相關。調整個別的矽、碳、氮、及氧濃度可產生具有以下特性的膜結構:期望的崩潰電壓、洩漏電流、介電常數、氣密性、密度、對例如銅之金屬表面的附著性、應力、模數、及硬度等等。此外,調整個別的矽、碳、氮、及氧濃度可產生帶有期望蝕刻速率、於隨後處理期間能抵抗下方膜氧化、能抵抗高溫退火操作或快速熱處理、及在極低-k介電質硬化期間之期望UV輻射撞擊的膜結構。
例如,藉由降低碳含量或增加氧或氮含量,矽碳化物膜可具有降低的洩漏電流。藉由將氧或氮導入矽碳化物類材料中,可鎖住由Si-H鍵及/或Si-CH2
-Si鍵所形成的洩漏途徑。或者,藉由降低碳含量,可獲得較少由Si-CH2
-Si鍵形成的洩漏途徑。如此可造成電性提升,同時維持相對低的介電常數。
此外,矽碳化物膜可具有較低的介電常數及降低的碳含量。包含較Si-C鍵數量更多的Si-N鍵或Si-O鍵的沉積膜可降低該膜的有效介電常數。然而,吾人理解在一些情形中,較高濃度的碳會造成較低的有效介電常數(例如:對矽氧化物或矽氮化物添加碳),尤其係在PECVD方法中。與Si-O及Si-N交聯的量下降、極性下降、及密度下降係因終端的甲基團造成。儘管如此,至少部分由於增加的交聯及密度,純矽碳化物膜一般係具有高有效介電常數。通常,使用本文所述方法產生的矽碳化物膜係屬於此範疇,其中由於增加的交聯及密度,高碳濃度會造成較高的有效介電常數。因此,較高的C:N比或較高的C:O比造成較高的介電常數。例如,使用DMADMS會較使用BDMAMS產生具有較高C:N比的矽碳化物膜,如此造成較高的介電常數。
在一些實施例中,有機矽前驅物的內部結構係維持在經沉積的膜中。此結構可保留在前驅物中之全部或大部分的Si-C、Si-O、及Si-N鍵,同時經由前驅物分子中存在Si-H鍵及/或Si-Si鍵之位置的鍵結,及/或倘若提供足夠的熱能則經由在成長表面上之額外的縮合反應來聯結或交聯個別的前驅物基團。在不同的實施例中,矽碳化物膜具有約4.0以下的有效介電常數,及於一些情形下具有約3.5以下的有效介電常數,及於一些情形下具有約3.0以下的有效介電常數,並在其他實施例中具有約2.5以下的有效介電常數。有效介電常數可取決於鍵結及密度。
在一些實施例中,吾人期望調整矽碳化物膜的介電常數。藉由選擇適當的前驅物以產生特定的C:N或C:O比,可調整有效介電常數。在一些實施例中,矽碳化物膜的介電常數可在約8.5及約2.5之間。
在一些實施例中,矽碳化物膜可作為氣密或擴散阻礙。當矽碳化物膜的密度增加時,矽碳化物膜的氣密性及擴散阻礙特性將會提升。密度的增加可藉由增加交聯量而達成。藉由將些微的氧及/或氮導入矽碳化物膜中,交聯的增加提升了氣密性及擴散阻礙特性。因此,具有相對高C:N或C:O比的前驅物可提升氣密性及擴散阻礙特性。
在一些實施例中,所沉積之膜可為多孔的。如本文先前所討論,有機矽前驅物可包含環狀矽氧烷及籠狀矽氧烷。因此,環狀矽氧烷及籠狀矽氧烷可將多孔性導入經沉積膜的結構中。經沉積膜中的多孔性可進一步地降低介電常數。在一些實施例中,矽碳化物膜的多孔性係在約20%到50%之間。多孔性膜的孔洞尺寸可依循所選之環狀或籠狀前驅物的孔洞尺寸。在一些實施例中,膜的平均孔洞尺寸係在約5 Å及 20 Å之間,例如約16 Å。 設備
揭露內容的一實施態樣係一用於達成本文所述方法的設備。根據本揭露內容,合適的設備包含:用於實現製程操作之硬體、及具有用於控制製程操作之指令的系統控制器。在一些實施例中,用於進行上述製程操作的設備可包含一遠端電漿源。遠端電漿源可將反之由直接電漿所引起的苛刻反應條件最小化。
圖4顯示根據若干實施例之遠端電漿設備的示意圖。設備400包含:一反應腔室410、一遠端電漿源460、一前驅物氣體輸送源450、及一噴淋頭組件420。在反應腔室410內,基板430係位於一階臺或底座435上。在一些實施例中,底座435可配有加熱/冷卻元件。控制器440可連接至設備400的元件,以控制設備400的操作,例如,控制器400可包含用於控制設備400操作之製程條件的指令,像是溫度製程條件及/或壓力製程條件。
在操作期間,可經由與反應腔室410連接之一個以上的進氣口將氣體或氣體混合物導入反應腔室410中。在一些實施例中,複數個進氣口係連接至反應腔室410。前驅物氣體輸送源450可包含複數個與反應腔室410連接的第一進氣口455,以輸送前驅物氣體。複數個第一進氣口455之每一者可使多個前驅物氣體一同共流至反應腔室410中,此可同時或依序發生。第二進氣口465可經由噴淋頭組件420連接至反應腔室410,並連接至遠端電漿源460。第二進氣口465可連接至噴淋頭組件420,以輸送自由基物種。第二進氣口465可連接至會提供用於自由基物種之來源氣體的容器470。在包含遠端電漿設置的實施例中,前驅物及在遠端電漿源460所產生之自由基物種的輸送線路係分開的。因此,前驅物及自由基物種在到達基板430之前實質上並不會交互作用。
一個以上的自由基物種可在遠端電漿源460中產生,且係設置成經由第二進氣口465進入反應腔室410。任何類型的電漿源可用於遠端電漿源460中,以產生自由基物種。電漿源包含但非僅限於:電容耦合電漿、微波電漿、DC電漿、感應耦合電漿、及雷射產生電漿。電容耦合電漿之範例可為射頻(RF)電漿。一較高頻率的電漿可配置為在13.56MHz以上的頻率下操作。如此的遠端電漿源460之範例可為由California,Fremont之Lam Research Corporation所製造的GAMMA®。如此的RF遠端電漿源460之另一範例可為由Massachusetts ,Wilmington之MKS Instruments所製造的Astron®,其可在440kHz下操作,並可作為一次單元,該次單元會螺接至平行處理一個以上基板之較大的設備上。在一些實施例,微波電漿可用作遠端電漿源460,例如:亦由MKS Instruments所製造的Astex®。微波電漿可配置為在2.45GHz下操作。
該遠端電漿源460可包含電漿圓頂或其他形狀以形成用於輸送來自容器470之來源氣體的容積。可在美國專利第8,084,339號(代理人案號:NOVLP414)、美國專利第8,217,513號(代理人案號:NOVLP414D1)、美國專利申請案第12/533,960號(代理人案號:NOVLP414X1)、美國專利申請案第11/616,324(代理人案號:NOVLP445)、美國專利申請案第13/493,655號(代理人案號:NOVLP445C1)、美國專利申請案第12/062,052號(代理人案號:NOVLP447)、和美國專利申請案第12/209,526號(代理人案號:NOVLP448)中描述遠端電漿源的範例,且為用於所有目的,將以上案件之每一者之整體納入本案揭示內容。在一些實施例中,遠端電漿源460可以包含入口475,入口475係連接到容器470,其具有複數個孔洞以將來源氣體散佈到遠端電漿源460的內部容積中。
當來源氣體進入遠端電漿源460時,可使用射頻(RF)線圈(圖未顯示)產生電漿,射頻線圈可經由匹配網路連接至RF源480。電漿可由流向噴淋頭組件420的氫來源氣體產生自由基物種,例如氫自由基。自由基物種可自第二進氣口465流過噴淋頭組件420中之複數個孔洞,以將自由基物種散佈至反應腔室410中。同時,前驅物氣體可由第一進氣口455散佈至反應腔室410中,而與自由基物種混合。可以受控的流率將前驅物氣體流至反應腔室410中。與前驅物氣體及自由基物種的反應可發生於反應腔室410中並且在基板430上方及鄰近基板430。
遠端電漿源460中所形成的自由基物種係以氣相朝著基板430運送到反應腔室410中。遠端電漿源460可大致垂直於基板430,以便將自由基物種自噴淋頭組件420以實質橫向方向導至基板430的表面。然而,吾人理解遠端電漿源460可以任一多個方向相對於基板430表面定向。遠端電漿源460及基板430間的距離可設置成提供溫和的反應條件,使得於遠端電漿源460中產生的離子化物種係實質中性化的,惟極低能態的至少一些自由基物種係維持在鄰近基板430的環境中。如此低能態的自由基物種不會再結合成穩定的化合物。遠端電漿源460及基板430間的距離可為以下因素的函數:電漿攻擊性(aggressiveness)(例如:調整RF功率位準)、電漿中氣體密度(例如:倘若具有高的氫原子濃度,則氫原子的絕大部分在到達反應腔室10之前可能會再結合成H2
)、及其他因素。在一些實施例中,遠端電漿源460及反應腔室410間的距離可大於約10cm,例如在約10cm及50cm之間。同樣地,基於一些相同或相似的原因,噴淋頭組件420及第一進氣口455間的距離可大於約5cm,例如在約5cm及約20cm之間。
控制器440可包含控制用於設備400之根據本發明的製程條件及操作的指令。控制器440典型係包含一個以上的記憶元件,及一個以上的處理器。處理器可包含CPU或電腦、類比及/或數位輸入/輸出連結、步進馬達控制器板等。用以執行合適控制操作的指令係由處理器執行。這些指令可儲存於和控制器440有關之記憶體元件或其可由網路提供。可將包含用於控制依據本發明製程操作之指令的機器可讀媒體可以通訊連接至控制器440。
在若干實施例中,控制器440控制本文描述的半導體處理設備400之全部或大部分的作業。控制器440可用於例如控制前驅物氣體進入反應腔室410中的氣體流量。控制器440亦可控制RF源480以供電給RF線圈。控制器440亦可控制冷卻劑的流率或底座435之冷卻/加熱元件溫度。控制器440可控制與沉積保護層及移除犧牲材料相關的半導體處理設備400之全部或大部分的作業。控制器440可執行系統控制軟體,該系統控制軟體包含用於控制時序、氣體組成、氣體密度、流率、腔室壓力、腔室溫度、RF功率位準、基板位置、及/或其他參數的指令集合。其他儲存在與控制器440相關之記憶元件的電腦程式、腳本、程序可應用在一些實施例中。為了在鄰近基板430的環境處設置相對溫和的反應條件,可藉由控制器440調整參數,例如RF功率位準、氣體密度、電漿時序。此外,調整基板位置更可在鄰近基板430的環境處減少高能自由基物種之存在。
製程條件及製程流量本身可受到控制器440控制,該控制器包含用於監控、維持、及/或調整若干製程變數的程式指令。例如,可包含指定流率或流率比的指令。指令亦可包含用於預清洗、鈍化、保護層形成、非保護層、針紮操作、其他沉積後處理、蝕刻、部分填充等之參數。對不同的設備站而言,控制器440可包含不同或相同的指令,因此允許該等設備站可獨立地或同時地操作。
在一些實施例中,控制器440可包含用於進行以下操作之指令:將二個以上的有機矽前驅物一同流過第一進氣口455而進入反應腔室410中混合;在遠端電漿源460中形成極低能態的自由基物種;及將自由基物種流過第二進氣口465進入反應腔室410中,以與該二個以上的有機矽前驅物反應,而在基板430上形成矽碳化物膜。
在一些實施例中,可具有與控制器440相關的使用者介面。該使用者介面可包含顯示螢幕、設備及/或製程條件的圖形化軟體顯示、和使用者輸入裝置(例如:指向裝置、鍵盤、觸控螢幕、麥克風等)。
控制上述操作的電腦程式碼可以任何習知電腦可讀取程式語言寫成,例如:組合語言、C、C++、Pascal、Fortran、或其他者。藉由處理器執行經編譯的目標碼或腳本,以進行程式中識別之任務。
用於監控製程的訊號可由系統控制器的類比及/或數位輸入連結所提供。用以控制製程之訊號係輸出至設備400之類比及數位輸出連接端上。
可以許多不同的方式設計或配置此系統軟體。例如,可編寫各種腔室構件副程式(subroutines)或控制物件,以控制執行沉積製程所需的腔室構件之操作。為此目的之程式或程式區段的範例包含:基板定位碼、製程氣體控制碼、壓力控制碼、加熱器控制碼、及電漿控制碼。
基板定位程式可包含用於控制腔室構件的程式碼,該腔室構件係用於將基板載至底座或夾盤上,及用於控制基板與腔室其他部分(例如:進氣口及/或靶材)間之間距。製程氣體控制程式可包含用於控制氣體組成與流率的程式碼,以及選用性地用以在沉積之前將氣體流入腔室中以穩定腔室中壓力的程式碼。壓力控制程式可包含藉由調節例如腔室排放系統中的節流閥來控制腔室中壓力的程式碼。加熱器控制程式可包含用於控制通往用於加熱基板之加熱單元之電流的程式碼。或者,此加熱器控制程式可控制通往晶圓夾盤之熱傳氣體(例如:氦)的輸送。
描述於上文中的設備/製程可結合如用於半導體裝置、顯示器、LEDs、太陽能板等製造或生產的微影圖案化工具或製程來使用。通常,雖然非必須,這樣的工具或製程將一起使用或實施在普遍的製造設施中。薄膜的微影圖案化通常包含部份或全部的以下步驟(使用一些可能的工具來執行每個步驟):(1)使用旋塗或噴塗工具來將光阻塗佈在工件(即:基板)上;(2)使用加熱板、爐、或UV硬化工具來硬化光阻;(3)使用像是晶圓步進機的工具來將光阻曝露於可見光、或UV光或X射線光;(4)使用像是濕台(wet bench)的工具來顯影光阻,以便選擇性地移除光阻且藉此圖案化光阻;(5)藉由使用乾式或電漿輔助蝕刻工具來轉移光阻圖案至下層的薄膜或工件中;及(6)使用像是RF或微波電漿光阻去除器這類的工具來移除光阻。 應用
藉由參照以下用於高品質摻雜或未摻雜之矽碳化物膜的應用,可進一步地理解本揭露內容,其中該等應用之目的純屬示例。本揭露內容非限制於特定的應用,其只是揭露內容實施態樣的說明。除了本文所述者外,本案揭露內容的各種修正對熟悉此技術領域者會由以上的描述而變得顯而易見。此外,如此的修正係落入隨附請求項之範疇內。
在一些實施中,矽碳化物膜(例如:摻雜氧的矽碳化物膜)可沉積於暴露的金屬(例如:銅)上。在一些情形中,可將暴露的銅表面預先清洗,以在沉積摻雜氧的矽碳化物膜之前減少銅氧化物。在沉積摻雜氧的矽碳化物膜時,鄰近基板的反應條件可為不具有氧化劑(例如:O2
、O3
、及CO2
及包含以上的自由基)。因此,摻雜氧的矽碳化物膜可在不會使銅氧化的情況(如:製造出氧化銅)下直接沉積在暴露的銅上。如此的膜可用作蝕刻終止層,其亦可用作銅的擴散阻礙。摻雜氧矽碳化物膜的存在可提供足夠低的介電常數及優越的洩漏特性以用作擴散阻礙。摻雜氧的矽碳化物膜可因其自身或因作為經暴露銅上沉積的雙層堆疊(例如:SiOC/SiNC雙層)而係蝕刻終止點及/或擴散阻礙。如本文先前討論,SiNC可沉積為經暴露銅上的附著層,並接著可藉由調整前驅物及/或流率隨後沉積SiOC。在一些實施例中,摻雜氧的矽碳化物膜可置於相鄰的金屬化層(其一般係由鑲嵌製程所產生)之間。摻雜氧的矽碳化物膜可以抗蝕刻,且此矽碳化物膜係緻密到足以最小化銅離子擴散至鄰近介電材料區域中。在一些實施例中,應用於摻雜氧之矽碳化物膜的前驅物可為非環狀的。非環狀的前驅物可包含:PMDSO、 TMDSO、 DEMS、或DMES。非環狀的前驅物可形成足以用作氣密或擴散阻礙的高密度。在一些實施例中,可藉由流入含氮前驅物將氮結合到膜中。
在一些實施例中,矽碳化物膜可沉積成鄰近金屬或半導體結構的直立結構。矽碳化物膜的沉積會沿著金屬或半導體結構的側壁形成極佳的階梯覆蓋,以產生直立的結構。在若干實施例中,直立結構可稱為間隙部或襯部。圖2C顯示在電晶體閘極結構的側壁上所沉積的矽碳化物的橫剖面圖。如圖2C所示,電晶體可為具有源極212與汲極213之矽基板210的CMOS電晶體。閘極介電質214可沉積在矽基板210上,而閘極215可沉積在閘極介電質214上,而形成電晶體。矽碳化物襯部211可沉積在閘極215及閘極介電質214的側壁上。
在另一範例中,圖2D顯示在氣隙型金屬化層中經暴露之銅襯部的側壁上所沉積的矽碳化物之橫剖面圖。可將氣隙220導入銅線部222間的積體電路層中,如此可降低該層的有效介電值。矽碳化物襯部221可沉積在銅線部222的側壁上,及非保形性的介電層223可沉積在氣隙220、襯部221、及銅線部222上。在Fei Wang等人的美國專利公開案第2004/0232552號中描述如此氣隙型金屬化層之範例,該案整體係為所有目的而併入本案揭示內容以供參考。
在一些實施例中,矽碳化物膜可沉積在圖案化的多孔性介電材料的側壁上。極低-k介電材料可由多孔結構製成。在後續層的沉積(包含含有像是鉭(Ta)之金屬的擴散阻礙的沉積)期間,在此類材料中的孔洞可形成金屬進入的區域。倘若過多的金屬遷移到此介電材料中,則此介電材料可能會在相鄰的銅金屬化線部之間形成短路。圖2E顯示作為多孔性介電材料之孔隙密封劑的矽碳化物膜之橫剖面圖。多孔性介電層232可具有複數個切入多孔性介電層232中而形成孔230的溝槽或穿孔。矽碳化物膜231可沿著孔230沉積以有效地密封孔230。以矽碳化物膜231來密封孔230可避免損害多孔性介電層232,不然以其他使用電漿的密封技術可能會造成多孔性介電層的損害。矽碳化物膜231可為足夠緻密的作為孔隙密封劑,且可包含非環狀的有機矽前驅物,例如:PMDSO及TMDSO。在一些實施例中,可先藉由「介電常數回復(k-recovery)」製程處理經蝕刻的介電材料(例如:多孔性介電層232),此製程會將多孔性介電層232暴露於UV輻射及還原劑。在Varadarajan等人共同擁有的美國專利公開案第2011/0111533號中進一步地描述此回復製程,該案整體係為所有目的而併入本案揭示內容以供參考。在另一「介電常數回復」製程中,可將多孔性介電層232暴露於UV輻射及一化學矽烷化試劑。在Varadarajan等人共同擁有的美國專利公開案第2011/0117678號中進一步地描述此回復製程,該案整體係為所有目的而併入本案揭示內容以供參考。在使孔230受到回復處理後(如此會使表面更加親水性,並形成材料的單層),矽碳化物層231可保形性地沉積,因而有效地密封多孔性介電層232的孔。
在一些實施例中,矽碳化物膜可沉積成超低-k介電材料本身。超低-k的介電質一般係定義成具有低於2.5之介電常數的材料。在這樣的結構中,超低-k的矽碳化物介電材料可為多孔性介電層。可藉由使用環狀或籠狀的前驅物分子(包含:環狀矽氧烷及半矽氧烷)導入介電層的孔。在一範例中,超低-k矽碳化物介電層的多孔性可在約20%及50%間。又,超低-k介電層可具有小於約100 Å的平均孔洞尺寸,例如:約在5 Å及20 Å間。例如,環矽氧烷環可具有約6.7Å的半徑。雖然增加孔的數量及尺寸可降低介電常數,但倘若介電層過於多孔性,則介電層的機械完整性會受到影響。
在一些實施例中,對於不同的記憶裝置應用而言,經摻雜或未摻雜的矽碳化物膜可形成封裝部。在磁電阻式隨機存取記憶體(MRAM)應用中,矽碳化物膜可用作硬遮罩及/或偕同硬遮罩以保護MRAM裝置的不同層,其包含:針紮層、導線、軟質層等。矽碳化物膜可具有低的蝕刻速率,並可於蝕刻期間保護下伏層(例如金屬層)的側壁及頂面。此外,在磁性隧道接合(magnetic tunnel junction,MJT)堆疊的圖案化期間及之後,矽碳化物膜可用於保護性的包覆。
在電阻式隨機存取記憶體(RRAM)應用中,矽碳化物膜可包覆及保護RRAM元件之一個以上的下伏層。當RRAM元件中之二電極間的空隙正在以氧化物加以填充時,矽碳化物膜可提供抵抗下方膜氧化的保護作用。此外,具有低能帶隙的SiCN膜或SiC膜可用於取代NAND中的穿隧氧化物(tunnel oxide)或RRAM元件中的轉換層。
雖然矽碳化物膜可用於保護下伏層或用於取代記憶元件應用中的轉換層,但矽碳化物膜之功能性實施態樣非僅限於記憶元件應用。更普遍地,矽碳化物膜在諸多的其他元件應用中亦可用作蝕刻終止襯部及硬遮罩,這是因為矽碳化物膜的高品質、高保形性、低濕蝕刻速率、及低乾蝕刻速率等等。
為了清楚及瞭解的目的,雖已就一些細節加以描述前文,但吾人應理解到在隨附的請求項範圍內仍可實施若干變化及修正。吾人應注意有許多執行所述之製程、系統、及設備的替代方式。因此,所述之實施例應被視為示例性而非限制性。
100‧‧‧步驟
110‧‧‧步驟
120‧‧‧步驟
130‧‧‧步驟
140‧‧‧步驟
200‧‧‧基板
201‧‧‧矽碳化物膜
202‧‧‧矽碳化物膜
210‧‧‧基板
211‧‧‧襯部
212‧‧‧源極
213‧‧‧汲極
214‧‧‧閘極介電質
215‧‧‧閘極
220‧‧‧氣隙
221‧‧‧襯部
222‧‧‧銅線部
223‧‧‧介電層
230‧‧‧孔
231‧‧‧矽碳化物膜
232‧‧‧多孔性介電層
400‧‧‧設備
410‧‧‧反應腔室
420‧‧‧噴淋頭組件
430‧‧‧基板
435‧‧‧底座
440‧‧‧控制器
450‧‧‧前驅物氣體輸送源
455‧‧‧第一進氣口
460‧‧‧遠端電漿源
465‧‧‧第二進氣口
470‧‧‧容器
475‧‧‧入口
480‧‧‧RF源
110‧‧‧步驟
120‧‧‧步驟
130‧‧‧步驟
140‧‧‧步驟
200‧‧‧基板
201‧‧‧矽碳化物膜
202‧‧‧矽碳化物膜
210‧‧‧基板
211‧‧‧襯部
212‧‧‧源極
213‧‧‧汲極
214‧‧‧閘極介電質
215‧‧‧閘極
220‧‧‧氣隙
221‧‧‧襯部
222‧‧‧銅線部
223‧‧‧介電層
230‧‧‧孔
231‧‧‧矽碳化物膜
232‧‧‧多孔性介電層
400‧‧‧設備
410‧‧‧反應腔室
420‧‧‧噴淋頭組件
430‧‧‧基板
435‧‧‧底座
440‧‧‧控制器
450‧‧‧前驅物氣體輸送源
455‧‧‧第一進氣口
460‧‧‧遠端電漿源
465‧‧‧第二進氣口
470‧‧‧容器
475‧‧‧入口
480‧‧‧RF源
圖1顯示說明沉積矽碳化物膜方法的一示例性流程圖。
圖2A顯示沉積於一基板上之矽碳化物膜之一例的橫剖面。
圖2B顯示沉積於一基板上之經漸層摻雜的矽碳化物膜之一例的橫剖面。
圖2C顯示電晶體閘極結構側壁上之矽碳化物直立結構。
圖2D顯示氣隙型金屬化層中之銅線條之暴露側壁上的矽碳化物直立結構。
圖2E顯示用於多孔性介電材料之矽碳化物孔隙密封劑。
圖3顯示代表性的籠狀矽氧烷前驅物之範例。
圖4顯示具有遠端電漿源之處理設備的示意圖。
Claims (15)
- 一種沉積矽碳化物膜的方法,該方法包含:設置一基板;將一第一有機矽前驅物流至該基板上;將一第二有機矽前驅物流至該基板上,其中該第一有機矽前驅物係不同於該第二有機矽前驅物,及其中該第一有機矽前驅物及該第二有機矽前驅物係一同流至該基板上;及自一電漿源所產生的一來源氣體引入複數的自由基,其中在該等自由基具有足夠能量可打斷矽-氫鍵及矽-矽鍵其中一或兩者,但保留矽-氧、矽-氮、及/或矽-碳鍵的條件下,該等自由基與該第一及該第二有機矽前驅物反應,而在該基板上沉積該矽碳化物膜,該斷裂的矽-氫鍵及該斷裂的矽-矽鍵能夠進行交聯,該反應發生於鄰近該基板且遠離該電漿源的一反應空間中,該來源氣體係選自由以下組成之群組:氫、氨、和胺。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該矽碳化物膜係摻雜氮及/或氧。
- 如申請專利範圍第2項之沉積矽碳化物膜的方法,其中該矽碳化物膜係一摻雜氮的矽碳化物膜,該第一有機矽前驅物及該第二有機矽前驅物之每一者具有不同的矽-碳鍵對矽-氮鍵比。
- 如申請專利範圍第2項之沉積矽碳化物膜的方法,其中該矽碳化物膜係一摻雜氧的矽碳化物膜,該第一有機矽前驅物及該第二有機矽前驅物之每一者具有不同的矽-碳鍵對矽-氧鍵比。
- 如申請專利範圍第2項之沉積矽碳化物膜的方法,其中該矽碳化物膜係一摻雜氧及氮的矽碳化物膜,該第一有機矽前驅物具有一個以上的矽-氧鍵,及該第二有機矽前驅物具有一個以上的矽-氮鍵。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中引入該等自由基的步驟包含:利用一遠端電漿與該第一及該第二有機矽前驅物反應,該遠端電漿包含該反應空間中該等自由基的至少90%,該等自由基的該至少90%係在基態。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該第一有機矽前驅物及該第二有機矽前驅物之間的流率比係在1:1及2:1之間。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該第一有機矽前驅物及該第二有機矽前驅物之間的流率比係大於2:1。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該第一有機矽前驅物及該第二有機矽前驅物之每一者具有一個以上的矽-氫鍵及/或矽-矽鍵。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該等自由基係由一氫的來源氣體產生。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該矽碳化物膜在該膜的上部表面及下部表面之間具有不同的氧及氮的濃度。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該基板包含一暴露的銅,該方法更包含:在該暴露的銅上直接地形成一摻雜氮的矽碳化物膜。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該第一或該第二有機矽前驅物之一者係環狀的矽氧烷。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該第一或該第二有機矽前驅物之一者係烷氧基矽烷。
- 如申請專利範圍第1項之沉積矽碳化物膜的方法,其中該第一或該第二有機矽前驅物之一者係烷基矽烷。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/907,699 | 2013-05-31 | ||
US13/907,699 US9234276B2 (en) | 2013-05-31 | 2013-05-31 | Method to obtain SiC class of films of desired composition and film properties |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201510268A TW201510268A (zh) | 2015-03-16 |
TWI640647B true TWI640647B (zh) | 2018-11-11 |
Family
ID=51985402
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103119100A TWI640647B (zh) | 2013-05-31 | 2014-05-30 | 具有所欲成分及膜特性之矽碳化物類薄膜的取得方法 |
TW107126975A TWI659122B (zh) | 2013-05-31 | 2014-05-30 | 具有所欲成分及膜特性之矽碳化物類薄膜的取得方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107126975A TWI659122B (zh) | 2013-05-31 | 2014-05-30 | 具有所欲成分及膜特性之矽碳化物類薄膜的取得方法 |
Country Status (4)
Country | Link |
---|---|
US (8) | US9234276B2 (zh) |
KR (8) | KR102175046B1 (zh) |
SG (2) | SG10201800762VA (zh) |
TW (2) | TWI640647B (zh) |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9234276B2 (en) | 2013-05-31 | 2016-01-12 | Novellus Systems, Inc. | Method to obtain SiC class of films of desired composition and film properties |
US10211310B2 (en) | 2012-06-12 | 2019-02-19 | Novellus Systems, Inc. | Remote plasma based deposition of SiOC class of films |
US10325773B2 (en) | 2012-06-12 | 2019-06-18 | Novellus Systems, Inc. | Conformal deposition of silicon carbide films |
US10832904B2 (en) | 2012-06-12 | 2020-11-10 | Lam Research Corporation | Remote plasma based deposition of oxygen doped silicon carbide films |
US9337068B2 (en) | 2012-12-18 | 2016-05-10 | Lam Research Corporation | Oxygen-containing ceramic hard masks and associated wet-cleans |
US10297442B2 (en) | 2013-05-31 | 2019-05-21 | Lam Research Corporation | Remote plasma based deposition of graded or multi-layered silicon carbide film |
KR102053350B1 (ko) * | 2013-06-13 | 2019-12-06 | 삼성전자주식회사 | 저유전율 절연층을 가진 반도체 소자를 형성하는 방법 |
US9343317B2 (en) * | 2013-07-01 | 2016-05-17 | Micron Technology, Inc. | Methods of forming silicon-containing dielectric materials and semiconductor device structures |
US9371579B2 (en) | 2013-10-24 | 2016-06-21 | Lam Research Corporation | Ground state hydrogen radical sources for chemical vapor deposition of silicon-carbon-containing films |
JP6246558B2 (ja) * | 2013-10-29 | 2017-12-13 | 東京エレクトロン株式会社 | シリコン酸炭窒化物膜、シリコン酸炭化物膜、シリコン酸窒化物膜の成膜方法および成膜装置 |
US11549181B2 (en) | 2013-11-22 | 2023-01-10 | Applied Materials, Inc. | Methods for atomic layer deposition of SiCO(N) using halogenated silylamides |
US10804094B2 (en) | 2016-05-06 | 2020-10-13 | Applied Materials, Inc. | Methods of depositing SiCON with C, O and N compositional control |
US9685325B2 (en) * | 2014-07-19 | 2017-06-20 | Applied Materials, Inc. | Carbon and/or nitrogen incorporation in silicon based films using silicon precursors with organic co-reactants by PE-ALD |
US9997405B2 (en) | 2014-09-30 | 2018-06-12 | Lam Research Corporation | Feature fill with nucleation inhibition |
US9802828B2 (en) * | 2014-10-03 | 2017-10-31 | Applied Materials, Inc. | Precursors suitable for high temperature atomic layer deposition of silicon-containing films |
US10100407B2 (en) | 2014-12-19 | 2018-10-16 | Lam Research Corporation | Hardware and process for film uniformity improvement |
US10566187B2 (en) * | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US20160314964A1 (en) | 2015-04-21 | 2016-10-27 | Lam Research Corporation | Gap fill using carbon-based films |
JP6968701B2 (ja) | 2015-05-02 | 2021-11-17 | アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated | 低誘電率かつ低湿式エッチング速度の誘電体薄膜を堆積させるための方法 |
US9953841B2 (en) * | 2015-05-08 | 2018-04-24 | Macronix International Co., Ltd. | Semiconductor device and method of fabricating the same |
US9601693B1 (en) | 2015-09-24 | 2017-03-21 | Lam Research Corporation | Method for encapsulating a chalcogenide material |
KR102412614B1 (ko) | 2015-10-22 | 2022-06-23 | 삼성전자주식회사 | 물질막, 이를 포함하는 반도체 소자, 및 이들의 제조 방법 |
CN105551794B (zh) * | 2015-12-29 | 2017-10-10 | 中国科学院上海硅酸盐研究所 | 一种SiC基稀磁半导体薄膜及其制备方法 |
US10797238B2 (en) | 2016-01-26 | 2020-10-06 | Arm Ltd. | Fabricating correlated electron material (CEM) devices |
US20170213960A1 (en) * | 2016-01-26 | 2017-07-27 | Arm Ltd. | Fabrication and operation of correlated electron material devices |
JP6523186B2 (ja) * | 2016-02-01 | 2019-05-29 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置およびプログラム |
US9754822B1 (en) | 2016-03-02 | 2017-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interconnect structure and method |
US10312432B2 (en) * | 2016-04-06 | 2019-06-04 | Varian Semiconductor Equipment Associates, Inc. | Magnetic memory device and techniques for forming |
US20170323785A1 (en) * | 2016-05-06 | 2017-11-09 | Lam Research Corporation | Method to deposit conformal and low wet etch rate encapsulation layer using pecvd |
US10199500B2 (en) | 2016-08-02 | 2019-02-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer film device and method |
US10454029B2 (en) | 2016-11-11 | 2019-10-22 | Lam Research Corporation | Method for reducing the wet etch rate of a sin film without damaging the underlying substrate |
US10002787B2 (en) * | 2016-11-23 | 2018-06-19 | Lam Research Corporation | Staircase encapsulation in 3D NAND fabrication |
US9837270B1 (en) | 2016-12-16 | 2017-12-05 | Lam Research Corporation | Densification of silicon carbide film using remote plasma treatment |
CN110168698B (zh) | 2016-12-22 | 2024-03-22 | 应用材料公司 | 用于保形密封电介质封闭而无对底层结构材料的直接RF暴露的SiBN膜 |
US10508351B2 (en) | 2017-03-16 | 2019-12-17 | Lam Research Corporation | Layer-by-layer deposition using hydrogen |
JP7118512B2 (ja) | 2017-04-07 | 2022-08-16 | アプライド マテリアルズ インコーポレイテッド | 反応性アニールを使用する間隙充填 |
JP6820793B2 (ja) * | 2017-04-27 | 2021-01-27 | 東京エレクトロン株式会社 | 基板処理装置、排気管のコーティング方法及び基板処理方法 |
US10319582B2 (en) | 2017-04-27 | 2019-06-11 | Lam Research Corporation | Methods and apparatus for depositing silicon oxide on metal layers |
US10361282B2 (en) * | 2017-05-08 | 2019-07-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming a low-K spacer |
CN110998790B (zh) | 2017-08-04 | 2024-07-09 | 朗姆研究公司 | 在水平表面上的选择性沉积SiN |
US10535512B2 (en) * | 2017-11-21 | 2020-01-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Formation method of semiconductor device with gate spacer |
US11761079B2 (en) * | 2017-12-07 | 2023-09-19 | Lam Research Corporation | Oxidation resistant protective layer in chamber conditioning |
KR102540963B1 (ko) | 2017-12-27 | 2023-06-07 | 삼성전자주식회사 | 미세 패턴 형성 방법 및 기판 처리 장치 |
DE102018110240A1 (de) * | 2018-04-27 | 2019-10-31 | Infineon Technologies Ag | Halbleitervorrichtung und Herstellung |
US10840087B2 (en) | 2018-07-20 | 2020-11-17 | Lam Research Corporation | Remote plasma based deposition of boron nitride, boron carbide, and boron carbonitride films |
KR20230088843A (ko) * | 2018-07-24 | 2023-06-20 | 램 리써치 코포레이션 | 이종 전구체 상호 작용을 사용한 탄화 실리콘 막의 컨포멀한 증착 |
US11239420B2 (en) | 2018-08-24 | 2022-02-01 | Lam Research Corporation | Conformal damage-free encapsulation of chalcogenide materials |
US20200071819A1 (en) | 2018-08-29 | 2020-03-05 | Versum Materials Us, Llc | Methods For Making Silicon Containing Films That Have High Carbon Content |
JP7487189B2 (ja) * | 2018-10-19 | 2024-05-20 | ラム リサーチ コーポレーション | 間隙充填のためのドープまたは非ドープシリコン炭化物および遠隔水素プラズマ曝露 |
US11158788B2 (en) * | 2018-10-30 | 2021-10-26 | International Business Machines Corporation | Atomic layer deposition and physical vapor deposition bilayer for additive patterning |
TW202104645A (zh) * | 2019-07-09 | 2021-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 包括光阻底層之結構及其形成方法 |
US11186909B2 (en) * | 2019-08-26 | 2021-11-30 | Applied Materials, Inc. | Methods of depositing low-K films |
US11424118B2 (en) | 2020-01-23 | 2022-08-23 | Micron Technology, Inc. | Electronic devices comprising silicon carbide materials |
CN112323041B (zh) * | 2020-10-14 | 2022-11-01 | 江苏鑫汉电子材料有限公司 | 一种应用于htcvd法生长碳化硅的气体提纯装置 |
US11447865B2 (en) | 2020-11-17 | 2022-09-20 | Applied Materials, Inc. | Deposition of low-κ films |
US20220216048A1 (en) * | 2021-01-06 | 2022-07-07 | Applied Materials, Inc. | Doped silicon nitride for 3d nand |
US20230008496A1 (en) * | 2021-07-09 | 2023-01-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Contact structure for semiconductor device |
CN113684467A (zh) * | 2021-07-26 | 2021-11-23 | 中国科学院金属研究所 | 一种采用化学气相沉积工艺制备非晶SiOC涂层的方法 |
US12087563B2 (en) | 2022-09-15 | 2024-09-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor processing tool and methods of operation |
CN115522180A (zh) * | 2022-09-20 | 2022-12-27 | 苏州源展材料科技有限公司 | 一种低介电常数的硅基薄膜的制备方法及其应用 |
WO2024102586A1 (en) * | 2022-11-07 | 2024-05-16 | Lam Research Corporation | Chemical vapor deposition of silicon nitride using a remote plasma |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040067308A1 (en) * | 2002-10-07 | 2004-04-08 | Applied Materials, Inc. | Two-layer film for next generation damascene barrier application with good oxidation resistance |
US20100081293A1 (en) * | 2008-10-01 | 2010-04-01 | Applied Materials, Inc. | Methods for forming silicon nitride based film or silicon carbon based film |
Family Cites Families (326)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA868641A (en) | 1971-04-13 | L. Cuomo Jerome | Method for etching silicon nitride films with sharp edge definition | |
US4177474A (en) | 1977-05-18 | 1979-12-04 | Energy Conversion Devices, Inc. | High temperature amorphous semiconductor member and method of making the same |
JPS59128281A (ja) | 1982-12-29 | 1984-07-24 | 信越化学工業株式会社 | 炭化けい素被覆物の製造方法 |
AU549925B2 (en) | 1983-11-28 | 1986-02-20 | Nitsuko Ltd. | Automatic telephone hold releasing circuit |
JP2736380B2 (ja) | 1987-08-11 | 1998-04-02 | 株式会社豊田中央研究所 | 炭化珪素質材料の製造方法及び原料組成物 |
US5034355A (en) | 1987-10-28 | 1991-07-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Tough silicon carbide composite material containing fibrous boride |
US4895789A (en) | 1988-03-29 | 1990-01-23 | Seiko Instruments Inc. | Method of manufacturing non-linear resistive element array |
DE3811567A1 (de) | 1988-04-07 | 1989-10-19 | Wacker Chemie Gmbh | Verfahren zur herstellung von organopolysilanen |
US5464699A (en) | 1988-04-18 | 1995-11-07 | Alloy Surfaces Co. Inc. | Pyrophoric materials and methods for making the same |
KR940003787B1 (ko) | 1988-09-14 | 1994-05-03 | 후지쓰 가부시끼가이샤 | 박막 형성장치 및 방법 |
JPH05326452A (ja) | 1991-06-10 | 1993-12-10 | Kawasaki Steel Corp | プラズマ処理装置及び方法 |
US5739579A (en) | 1992-06-29 | 1998-04-14 | Intel Corporation | Method for forming interconnections for semiconductor fabrication and semiconductor device having such interconnections |
US5324690A (en) | 1993-02-01 | 1994-06-28 | Motorola Inc. | Semiconductor device having a ternary boron nitride film and a method for forming the same |
FR2713666B1 (fr) | 1993-12-15 | 1996-01-12 | Air Liquide | Procédé et dispositif de dépôt à basse température d'un film contenant du silicium sur un substrat métallique. |
US5665640A (en) | 1994-06-03 | 1997-09-09 | Sony Corporation | Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor |
SE9501312D0 (sv) | 1995-04-10 | 1995-04-10 | Abb Research Ltd | Method for procucing a semiconductor device |
US6013155A (en) | 1996-06-28 | 2000-01-11 | Lam Research Corporation | Gas injection system for plasma processing |
KR100219550B1 (ko) | 1996-08-21 | 1999-09-01 | 윤종용 | 반사방지막 및 이를 이용한 패턴형성방법 |
JP3164019B2 (ja) | 1997-05-21 | 2001-05-08 | 日本電気株式会社 | 酸化シリコン膜およびその形成方法と成膜装置 |
US6150719A (en) | 1997-07-28 | 2000-11-21 | General Electric Company | Amorphous hydrogenated carbon hermetic structure and fabrication method |
WO1999004911A1 (en) | 1997-07-28 | 1999-02-04 | Massachusetts Institute Of Technology | Pyrolytic chemical vapor deposition of silicone films |
US6624064B1 (en) | 1997-10-10 | 2003-09-23 | Applied Materials, Inc. | Chamber seasoning method to improve adhesion of F-containing dielectric film to metal for VLSI application |
US6432846B1 (en) | 1999-02-02 | 2002-08-13 | Asm Japan K.K. | Silicone polymer insulation film on semiconductor substrate and method for forming the film |
US6383955B1 (en) | 1998-02-05 | 2002-05-07 | Asm Japan K.K. | Silicone polymer insulation film on semiconductor substrate and method for forming the film |
US7354873B2 (en) * | 1998-02-05 | 2008-04-08 | Asm Japan K.K. | Method for forming insulation film |
TW437017B (en) | 1998-02-05 | 2001-05-28 | Asm Japan Kk | Silicone polymer insulation film on semiconductor substrate and method for formation thereof |
US7064088B2 (en) | 1998-02-05 | 2006-06-20 | Asm Japan K.K. | Method for forming low-k hard film |
US7582575B2 (en) | 1998-02-05 | 2009-09-01 | Asm Japan K.K. | Method for forming insulation film |
US6881683B2 (en) | 1998-02-05 | 2005-04-19 | Asm Japan K.K. | Insulation film on semiconductor substrate and method for forming same |
US5958324A (en) | 1998-02-06 | 1999-09-28 | Dow Corning Corporation | Method for formation of crystalline boron-doped silicon carbide and amorphous boron silicon oxycarbide fibers from polymer blends containing siloxane and boron |
US6197688B1 (en) | 1998-02-12 | 2001-03-06 | Motorola Inc. | Interconnect structure in a semiconductor device and method of formation |
JP4151862B2 (ja) | 1998-02-26 | 2008-09-17 | キヤノンアネルバ株式会社 | Cvd装置 |
US6262445B1 (en) | 1998-03-30 | 2001-07-17 | Texas Instruments Incorporated | SiC sidewall process |
US6846391B1 (en) | 1998-04-01 | 2005-01-25 | Novellus Systems | Process for depositing F-doped silica glass in high aspect ratio structures |
US6395150B1 (en) | 1998-04-01 | 2002-05-28 | Novellus Systems, Inc. | Very high aspect ratio gapfill using HDP |
US6159871A (en) | 1998-05-29 | 2000-12-12 | Dow Corning Corporation | Method for producing hydrogenated silicon oxycarbide films having low dielectric constant |
JPH11354820A (ja) | 1998-06-12 | 1999-12-24 | Sharp Corp | 光電変換素子及びその製造方法 |
US6316167B1 (en) | 2000-01-10 | 2001-11-13 | International Business Machines Corporation | Tunabale vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and application thereof |
US20030089992A1 (en) | 1998-10-01 | 2003-05-15 | Sudha Rathi | Silicon carbide deposition for use as a barrier layer and an etch stop |
US6399484B1 (en) | 1998-10-26 | 2002-06-04 | Tokyo Electron Limited | Semiconductor device fabricating method and system for carrying out the same |
US6383898B1 (en) | 1999-05-28 | 2002-05-07 | Sharp Kabushiki Kaisha | Method for manufacturing photoelectric conversion device |
CN1160186C (zh) | 1999-06-03 | 2004-08-04 | 宾夕法尼亚州研究基金会 | 纳米尺度的组合物、复合结构、其制造和应用 |
EP1077479A1 (en) | 1999-08-17 | 2001-02-21 | Applied Materials, Inc. | Post-deposition treatment to enchance properties of Si-O-C low K film |
ATE418158T1 (de) | 1999-08-17 | 2009-01-15 | Applied Materials Inc | Oberflächenbehandlung von kohlenstoffdotierten sio2-filmen zur erhöhung der stabilität während der o2-veraschung |
US6100587A (en) | 1999-08-26 | 2000-08-08 | Lucent Technologies Inc. | Silicon carbide barrier layers for porous low dielectric constant materials |
DE60024191T2 (de) | 1999-09-29 | 2006-07-20 | Seiko Epson Corp. | Druckgerät, Verfahren zu seiner Kontrolle und ein Datenspeichermedium zum Speichern eines das Verfahren ausführenden Computerprogrammes |
US6287643B1 (en) | 1999-09-30 | 2001-09-11 | Novellus Systems, Inc. | Apparatus and method for injecting and modifying gas concentration of a meta-stable or atomic species in a downstream plasma reactor |
US6875687B1 (en) | 1999-10-18 | 2005-04-05 | Applied Materials, Inc. | Capping layer for extreme low dielectric constant films |
US6399489B1 (en) | 1999-11-01 | 2002-06-04 | Applied Materials, Inc. | Barrier layer deposition using HDP-CVD |
US6537741B2 (en) | 1999-11-24 | 2003-03-25 | Nexpress Solutions Llc | Fusing belt for applying a protective overcoat to a photographic element |
JP3430091B2 (ja) | 1999-12-01 | 2003-07-28 | Necエレクトロニクス株式会社 | エッチングマスク及びエッチングマスクを用いたコンタクトホールの形成方法並びにその方法で形成した半導体装置 |
US6818990B2 (en) | 2000-04-03 | 2004-11-16 | Rensselaer Polytechnic Institute | Fluorine diffusion barriers for fluorinated dielectrics in integrated circuits |
US6417092B1 (en) | 2000-04-05 | 2002-07-09 | Novellus Systems, Inc. | Low dielectric constant etch stop films |
US6303476B1 (en) | 2000-06-12 | 2001-10-16 | Ultratech Stepper, Inc. | Thermally induced reflectivity switch for laser thermal processing |
US6863019B2 (en) | 2000-06-13 | 2005-03-08 | Applied Materials, Inc. | Semiconductor device fabrication chamber cleaning method and apparatus with recirculation of cleaning gas |
JP4371543B2 (ja) | 2000-06-29 | 2009-11-25 | 日本電気株式会社 | リモートプラズマcvd装置及び膜形成方法 |
US6794311B2 (en) | 2000-07-14 | 2004-09-21 | Applied Materials Inc. | Method and apparatus for treating low k dielectric layers to reduce diffusion |
US6352921B1 (en) | 2000-07-19 | 2002-03-05 | Chartered Semiconductor Manufacturing Ltd. | Use of boron carbide as an etch-stop and barrier layer for copper dual damascene metallization |
US6764958B1 (en) | 2000-07-28 | 2004-07-20 | Applied Materials Inc. | Method of depositing dielectric films |
US6774489B2 (en) | 2000-08-29 | 2004-08-10 | Texas Instruments Incorporated | Dielectric layer liner for an integrated circuit structure |
TW535253B (en) | 2000-09-08 | 2003-06-01 | Applied Materials Inc | Plasma treatment of silicon carbide films |
US6465366B1 (en) | 2000-09-12 | 2002-10-15 | Applied Materials, Inc. | Dual frequency plasma enhanced chemical vapor deposition of silicon carbide layers |
US6448186B1 (en) | 2000-10-06 | 2002-09-10 | Novellus Systems, Inc. | Method and apparatus for use of hydrogen and silanes in plasma |
US6365527B1 (en) | 2000-10-06 | 2002-04-02 | United Microelectronics Corp. | Method for depositing silicon carbide in semiconductor devices |
US6576345B1 (en) | 2000-11-30 | 2003-06-10 | Novellus Systems Inc | Dielectric films with low dielectric constants |
US6949450B2 (en) | 2000-12-06 | 2005-09-27 | Novellus Systems, Inc. | Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber |
US6936533B2 (en) * | 2000-12-08 | 2005-08-30 | Samsung Electronics, Co., Ltd. | Method of fabricating semiconductor devices having low dielectric interlayer insulation layer |
KR100705189B1 (ko) | 2000-12-30 | 2007-04-06 | 주식회사 하이닉스반도체 | 반도체 소자의 박막 형성 방법 |
US7019399B2 (en) | 2001-01-22 | 2006-03-28 | N.V. Bekaert S.A. | Copper diffusion barriers made of diamond-like nanocomposits doped with metals |
US6537733B2 (en) | 2001-02-23 | 2003-03-25 | Applied Materials, Inc. | Method of depositing low dielectric constant silicon carbide layers |
US6455409B1 (en) | 2001-02-28 | 2002-09-24 | Advanced Micro Devices, Inc. | Damascene processing using a silicon carbide hard mask |
US6716770B2 (en) | 2001-05-23 | 2004-04-06 | Air Products And Chemicals, Inc. | Low dielectric constant material and method of processing by CVD |
KR100414156B1 (ko) | 2001-05-29 | 2004-01-07 | 삼성전자주식회사 | 집적회로소자의 캐패시터 제조방법 |
US6506692B2 (en) | 2001-05-30 | 2003-01-14 | Intel Corporation | Method of making a semiconductor device using a silicon carbide hard mask |
US6573606B2 (en) | 2001-06-14 | 2003-06-03 | International Business Machines Corporation | Chip to wiring interface with single metal alloy layer applied to surface of copper interconnect |
US6391803B1 (en) * | 2001-06-20 | 2002-05-21 | Samsung Electronics Co., Ltd. | Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane |
US7057251B2 (en) | 2001-07-20 | 2006-06-06 | Reflectivity, Inc | MEMS device made of transition metal-dielectric oxide materials |
US6846745B1 (en) | 2001-08-03 | 2005-01-25 | Novellus Systems, Inc. | High-density plasma process for filling high aspect ratio structures |
US20030064154A1 (en) | 2001-08-06 | 2003-04-03 | Laxman Ravi K. | Low-K dielectric thin films and chemical vapor deposition method of making same |
KR100778947B1 (ko) | 2001-08-30 | 2007-11-22 | 동경 엘렉트론 주식회사 | 성막 방법 및 성막 장치 |
KR101013231B1 (ko) | 2001-09-14 | 2011-02-10 | 에이에스엠 인터내셔널 엔.브이. | 환원펄스를 이용한 원자층증착에 의한 질화금속증착 |
US20030154141A1 (en) | 2001-09-18 | 2003-08-14 | Pro Corp Holdings International Ltd. | Image recognition inventory management system |
US6759327B2 (en) | 2001-10-09 | 2004-07-06 | Applied Materials Inc. | Method of depositing low k barrier layers |
KR100420598B1 (ko) | 2001-11-28 | 2004-03-02 | 동부전자 주식회사 | 알루미늄을 이용한 구리 확산 방지 막 형성방법 |
US6670715B2 (en) | 2001-12-05 | 2003-12-30 | United Microelectronics Corp. | Bilayer silicon carbide based barrier |
US7091137B2 (en) | 2001-12-14 | 2006-08-15 | Applied Materials | Bi-layer approach for a hermetic low dielectric constant layer for barrier applications |
US6838393B2 (en) | 2001-12-14 | 2005-01-04 | Applied Materials, Inc. | Method for producing semiconductor including forming a layer containing at least silicon carbide and forming a second layer containing at least silicon oxygen carbide |
US6699784B2 (en) | 2001-12-14 | 2004-03-02 | Applied Materials Inc. | Method for depositing a low k dielectric film (K>3.5) for hard mask application |
US6890850B2 (en) * | 2001-12-14 | 2005-05-10 | Applied Materials, Inc. | Method of depositing dielectric materials in damascene applications |
US6679978B2 (en) | 2002-02-22 | 2004-01-20 | Afg Industries, Inc. | Method of making self-cleaning substrates |
US6818570B2 (en) | 2002-03-04 | 2004-11-16 | Asm Japan K.K. | Method of forming silicon-containing insulation film having low dielectric constant and high mechanical strength |
KR100449028B1 (ko) | 2002-03-05 | 2004-09-16 | 삼성전자주식회사 | 원자층 증착법을 이용한 박막 형성방법 |
US20030194496A1 (en) | 2002-04-11 | 2003-10-16 | Applied Materials, Inc. | Methods for depositing dielectric material |
TWI289491B (en) | 2002-04-16 | 2007-11-11 | Tadatomo Suga | Reflow soldering method |
JP4683825B2 (ja) | 2002-04-24 | 2011-05-18 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
US6936551B2 (en) | 2002-05-08 | 2005-08-30 | Applied Materials Inc. | Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices |
DE50302862D1 (de) | 2002-05-24 | 2006-05-18 | Schott Ag | Vorrichtung für CVD-Beschichtungen |
US20060014384A1 (en) | 2002-06-05 | 2006-01-19 | Jong-Cheol Lee | Method of forming a layer and forming a capacitor of a semiconductor device having the same layer |
US7547635B2 (en) | 2002-06-14 | 2009-06-16 | Lam Research Corporation | Process for etching dielectric films with improved resist and/or etch profile characteristics |
TW200422424A (en) * | 2002-08-18 | 2004-11-01 | Asml Us Inc | Low temperature deposition of silicon oxides and oxynitrides |
US6767836B2 (en) | 2002-09-04 | 2004-07-27 | Asm Japan K.K. | Method of cleaning a CVD reaction chamber using an active oxygen species |
JP3991315B2 (ja) | 2002-09-17 | 2007-10-17 | キヤノンアネルバ株式会社 | 薄膜形成装置及び方法 |
US6803313B2 (en) | 2002-09-27 | 2004-10-12 | Advanced Micro Devices, Inc. | Method for forming a hardmask employing multiple independently formed layers of a pecvd material to reduce pinholes |
JP4066332B2 (ja) | 2002-10-10 | 2008-03-26 | 日本エー・エス・エム株式会社 | シリコンカーバイド膜の製造方法 |
US6991959B2 (en) | 2002-10-10 | 2006-01-31 | Asm Japan K.K. | Method of manufacturing silicon carbide film |
JP4109531B2 (ja) * | 2002-10-25 | 2008-07-02 | 松下電器産業株式会社 | 半導体装置及びその製造方法 |
US7485570B2 (en) | 2002-10-30 | 2009-02-03 | Fujitsu Limited | Silicon oxycarbide, growth method of silicon oxycarbide layer, semiconductor device and manufacture method for semiconductor device |
DE10250889B4 (de) * | 2002-10-31 | 2006-12-07 | Advanced Micro Devices, Inc., Sunnyvale | Verbesserte SiC-Barrierenschicht für eine Kupfermetallisierungsschicht mit einem Dielektrikum mit kleinem ε und Verfahren zur Herstellung derselben |
US20040084774A1 (en) | 2002-11-02 | 2004-05-06 | Bo Li | Gas layer formation materials |
US20040232552A1 (en) | 2002-12-09 | 2004-11-25 | Advanced Micro Devices, Inc. | Air gap dual damascene process and structure |
US6825130B2 (en) | 2002-12-12 | 2004-11-30 | Asm Japan K.K. | CVD of porous dielectric materials |
US6975032B2 (en) | 2002-12-16 | 2005-12-13 | International Business Machines Corporation | Copper recess process with application to selective capping and electroless plating |
US7365029B2 (en) | 2002-12-20 | 2008-04-29 | Applied Materials, Inc. | Method for silicon nitride chemical vapor deposition |
US7972663B2 (en) | 2002-12-20 | 2011-07-05 | Applied Materials, Inc. | Method and apparatus for forming a high quality low temperature silicon nitride layer |
US7172792B2 (en) | 2002-12-20 | 2007-02-06 | Applied Materials, Inc. | Method for forming a high quality low temperature silicon nitride film |
US6855645B2 (en) | 2002-12-30 | 2005-02-15 | Novellus Systems, Inc. | Silicon carbide having low dielectric constant |
US6790788B2 (en) | 2003-01-13 | 2004-09-14 | Applied Materials Inc. | Method of improving stability in low k barrier layers |
US7238393B2 (en) | 2003-02-13 | 2007-07-03 | Asm Japan K.K. | Method of forming silicon carbide films |
US7084076B2 (en) | 2003-02-27 | 2006-08-01 | Samsung Electronics, Co., Ltd. | Method for forming silicon dioxide film using siloxane |
US7098149B2 (en) | 2003-03-04 | 2006-08-29 | Air Products And Chemicals, Inc. | Mechanical enhancement of dense and porous organosilicate materials by UV exposure |
US6869542B2 (en) | 2003-03-12 | 2005-03-22 | International Business Machines Corporation | Hard mask integrated etch process for patterning of silicon oxide and other dielectric materials |
US7208389B1 (en) | 2003-03-31 | 2007-04-24 | Novellus Systems, Inc. | Method of porogen removal from porous low-k films using UV radiation |
US7081673B2 (en) | 2003-04-17 | 2006-07-25 | International Business Machines Corporation | Multilayered cap barrier in microelectronic interconnect structures |
US7115534B2 (en) | 2003-05-19 | 2006-10-03 | Applied Materials, Inc. | Dielectric materials to prevent photoresist poisoning |
JP2004363241A (ja) | 2003-06-03 | 2004-12-24 | Advanced Lcd Technologies Development Center Co Ltd | 結晶化半導体層の形成方法及び形成装置ならびに半導体装置の製造方法 |
KR20050002525A (ko) | 2003-06-30 | 2005-01-07 | 주식회사 하이닉스반도체 | 반도체 소자의 확산방지막 제조방법 |
JP3966249B2 (ja) | 2003-07-30 | 2007-08-29 | 日産自動車株式会社 | 半導体装置及び半導体装置の製造方法 |
US7018560B2 (en) | 2003-08-05 | 2006-03-28 | Rohm And Haas Electronic Materials Cmp Holdings, Inc. | Composition for polishing semiconductor layers |
US6849561B1 (en) | 2003-08-18 | 2005-02-01 | Asm Japan K.K. | Method of forming low-k films |
US7420275B1 (en) | 2003-09-24 | 2008-09-02 | Novellus Systems, Inc. | Boron-doped SIC copper diffusion barrier films |
US6967405B1 (en) | 2003-09-24 | 2005-11-22 | Yongsik Yu | Film for copper diffusion barrier |
US20050100682A1 (en) | 2003-11-06 | 2005-05-12 | Tokyo Electron Limited | Method for depositing materials on a substrate |
US7163896B1 (en) | 2003-12-10 | 2007-01-16 | Novellus Systems, Inc. | Biased H2 etch process in deposition-etch-deposition gap fill |
US7727902B2 (en) | 2003-12-26 | 2010-06-01 | Nissan Chemical Industries, Ltd. | Composition for forming nitride coating film for hard mask |
US7803705B2 (en) | 2004-01-13 | 2010-09-28 | Tokyo Electron Limited | Manufacturing method of semiconductor device and film deposition system |
US7405147B2 (en) | 2004-01-30 | 2008-07-29 | International Business Machines Corporation | Device and methodology for reducing effective dielectric constant in semiconductor devices |
US20050230350A1 (en) | 2004-02-26 | 2005-10-20 | Applied Materials, Inc. | In-situ dry clean chamber for front end of line fabrication |
US7381662B1 (en) | 2004-03-11 | 2008-06-03 | Novellus Systems, Inc. | Methods for improving the cracking resistance of low-k dielectric materials |
US7030041B2 (en) | 2004-03-15 | 2006-04-18 | Applied Materials Inc. | Adhesion improvement for low k dielectrics |
US7524735B1 (en) | 2004-03-25 | 2009-04-28 | Novellus Systems, Inc | Flowable film dielectric gap fill process |
US7582555B1 (en) | 2005-12-29 | 2009-09-01 | Novellus Systems, Inc. | CVD flowable gap fill |
US7695590B2 (en) | 2004-03-26 | 2010-04-13 | Applied Materials, Inc. | Chemical vapor deposition plasma reactor having plural ion shower grids |
US7253125B1 (en) | 2004-04-16 | 2007-08-07 | Novellus Systems, Inc. | Method to improve mechanical strength of low-k dielectric film using modulated UV exposure |
US7102232B2 (en) | 2004-04-19 | 2006-09-05 | International Business Machines Corporation | Structure to improve adhesion between top CVD low-k dielectric and dielectric capping layer |
US20050233555A1 (en) | 2004-04-19 | 2005-10-20 | Nagarajan Rajagopalan | Adhesion improvement for low k dielectrics to conductive materials |
JP5113982B2 (ja) | 2004-04-23 | 2013-01-09 | トヨタ自動車株式会社 | 金属炭化物粒子が分散した炭素複合材料の製造方法 |
US7285842B2 (en) | 2004-04-27 | 2007-10-23 | Polyset Company, Inc. | Siloxane epoxy polymers as metal diffusion barriers to reduce electromigration |
US7259090B2 (en) | 2004-04-28 | 2007-08-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Copper damascene integration scheme for improved barrier layers |
US7067409B2 (en) | 2004-05-10 | 2006-06-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Plasma treatment at film layer to reduce sheet resistance and to improve via contact resistance |
US7622400B1 (en) | 2004-05-18 | 2009-11-24 | Novellus Systems, Inc. | Method for improving mechanical properties of low dielectric constant materials |
US20050277302A1 (en) | 2004-05-28 | 2005-12-15 | Nguyen Son V | Advanced low dielectric constant barrier layers |
US7282438B1 (en) | 2004-06-15 | 2007-10-16 | Novellus Systems, Inc. | Low-k SiC copper diffusion barrier films |
JP2006013190A (ja) | 2004-06-28 | 2006-01-12 | Rohm Co Ltd | 半導体装置の製造方法 |
US7129187B2 (en) | 2004-07-14 | 2006-10-31 | Tokyo Electron Limited | Low-temperature plasma-enhanced chemical vapor deposition of silicon-nitrogen-containing films |
US7132374B2 (en) | 2004-08-17 | 2006-11-07 | Cecilia Y. Mak | Method for depositing porous films |
EP2546388A1 (en) | 2004-08-18 | 2013-01-16 | Dow Corning Corporation | Coated substrates and methods for their preparation |
US7422776B2 (en) | 2004-08-24 | 2008-09-09 | Applied Materials, Inc. | Low temperature process to produce low-K dielectrics with low stress by plasma-enhanced chemical vapor deposition (PECVD) |
US7166544B2 (en) | 2004-09-01 | 2007-01-23 | Applied Materials, Inc. | Method to deposit functionally graded dielectric films via chemical vapor deposition using viscous precursors |
GB0423685D0 (en) | 2004-10-26 | 2004-11-24 | Dow Corning Ireland Ltd | Improved method for coating a substrate |
US7335980B2 (en) | 2004-11-04 | 2008-02-26 | International Business Machines Corporation | Hardmask for reliability of silicon based dielectrics |
US7695765B1 (en) | 2004-11-12 | 2010-04-13 | Novellus Systems, Inc. | Methods for producing low-stress carbon-doped oxide films with improved integration properties |
JP5232991B2 (ja) | 2004-11-29 | 2013-07-10 | 国立大学法人東京農工大学 | シリコンナノ線状体の製造方法およびシリコンナノ線状体 |
US7259111B2 (en) | 2005-01-19 | 2007-08-21 | Applied Materials, Inc. | Interface engineering to improve adhesion between low k stacks |
TW200631095A (en) | 2005-01-27 | 2006-09-01 | Koninkl Philips Electronics Nv | A method of manufacturing a semiconductor device |
US7189658B2 (en) | 2005-05-04 | 2007-03-13 | Applied Materials, Inc. | Strengthening the interface between dielectric layers and barrier layers with an oxide layer of varying composition profile |
KR101272097B1 (ko) | 2005-06-03 | 2013-06-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 집적회로 장치 및 그의 제조방법 |
JP2007053133A (ja) | 2005-08-15 | 2007-03-01 | Toshiba Corp | 半導体装置及びその製造方法 |
US8021992B2 (en) | 2005-09-01 | 2011-09-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | High aspect ratio gap fill application using high density plasma chemical vapor deposition |
JP4837370B2 (ja) | 2005-12-05 | 2011-12-14 | 東京エレクトロン株式会社 | 成膜方法 |
WO2007075369A1 (en) | 2005-12-16 | 2007-07-05 | Asm International N.V. | Low temperature doped silicon layer formation |
JPWO2007080944A1 (ja) * | 2006-01-13 | 2009-06-11 | 東京エレクトロン株式会社 | 多孔質膜の成膜方法およびコンピュータ可読記録媒体 |
US20070173071A1 (en) | 2006-01-20 | 2007-07-26 | International Business Machines Corporation | SiCOH dielectric |
US7695567B2 (en) | 2006-02-10 | 2010-04-13 | Applied Materials, Inc. | Water vapor passivation of a wall facing a plasma |
US8138082B2 (en) | 2006-02-28 | 2012-03-20 | Stmicroelectronics (Crolles 2) Sas | Method for forming metal interconnects in a dielectric material |
US7780865B2 (en) | 2006-03-31 | 2010-08-24 | Applied Materials, Inc. | Method to improve the step coverage and pattern loading for dielectric films |
WO2007116492A1 (ja) | 2006-03-31 | 2007-10-18 | Fujitsu Microelectronics Limited | 半導体装置の製造方法 |
US7744746B2 (en) | 2006-03-31 | 2010-06-29 | Exxonmobil Research And Engineering Company | FCC catalyst stripper configuration |
US7528078B2 (en) | 2006-05-12 | 2009-05-05 | Freescale Semiconductor, Inc. | Process of forming electronic device including a densified nitride layer adjacent to an opening within a semiconductor layer |
EP2036120A4 (en) * | 2006-05-30 | 2012-02-08 | Applied Materials Inc | NOVEL PLASMA CURING AND PLASMA CURING PROCESS TO ENHANCE THE QUALITY OF SILICON DIOXIDE FILM |
US7825038B2 (en) | 2006-05-30 | 2010-11-02 | Applied Materials, Inc. | Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen |
US7851384B2 (en) | 2006-06-01 | 2010-12-14 | Applied Materials, Inc. | Method to mitigate impact of UV and E-beam exposure on semiconductor device film properties by use of a bilayer film |
US7514375B1 (en) | 2006-08-08 | 2009-04-07 | Novellus Systems, Inc. | Pulsed bias having high pulse frequency for filling gaps with dielectric material |
JP5380797B2 (ja) | 2006-08-21 | 2014-01-08 | 富士通株式会社 | 半導体デバイスの製造方法 |
US20080064173A1 (en) | 2006-09-08 | 2008-03-13 | United Microelectronics Corp. | Semiconductor device, cmos device and fabricating methods of the same |
US8956457B2 (en) | 2006-09-08 | 2015-02-17 | Tokyo Electron Limited | Thermal processing system for curing dielectric films |
US8053372B1 (en) | 2006-09-12 | 2011-11-08 | Novellus Systems, Inc. | Method of reducing plasma stabilization time in a cyclic deposition process |
US7759241B2 (en) | 2006-09-15 | 2010-07-20 | Intel Corporation | Group II element alloys for protecting metal interconnects |
US8465991B2 (en) | 2006-10-30 | 2013-06-18 | Novellus Systems, Inc. | Carbon containing low-k dielectric constant recovery using UV treatment |
US10037905B2 (en) | 2009-11-12 | 2018-07-31 | Novellus Systems, Inc. | UV and reducing treatment for K recovery and surface clean in semiconductor processing |
US7550758B2 (en) | 2006-10-31 | 2009-06-23 | Atmel Corporation | Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator |
US7749892B2 (en) | 2006-11-29 | 2010-07-06 | International Business Machines Corporation | Embedded nano UV blocking and diffusion barrier for improved reliability of copper/ultra low K interlevel dielectric electronic devices |
US20080128907A1 (en) | 2006-12-01 | 2008-06-05 | International Business Machines Corporation | Semiconductor structure with liner |
US20080193673A1 (en) | 2006-12-05 | 2008-08-14 | Applied Materials, Inc. | Method of processing a workpiece using a mid-chamber gas distribution plate, tuned plasma flow control grid and electrode |
DE102006058771B4 (de) | 2006-12-12 | 2018-03-01 | Schott Ag | Behälter mit verbesserter Restentleerbarkeit und Verfahren zu dessen Herstellung |
US20080156264A1 (en) | 2006-12-27 | 2008-07-03 | Novellus Systems, Inc. | Plasma Generator Apparatus |
US8017522B2 (en) | 2007-01-24 | 2011-09-13 | International Business Machines Corporation | Mechanically robust metal/low-κ interconnects |
US7915166B1 (en) | 2007-02-22 | 2011-03-29 | Novellus Systems, Inc. | Diffusion barrier and etch stop films |
US20100129994A1 (en) | 2007-02-27 | 2010-05-27 | Yousef Awad | Method for forming a film on a substrate |
CN101017834A (zh) | 2007-03-02 | 2007-08-15 | 上海集成电路研发中心有限公司 | 一种soi集成电路结构及其制作方法 |
JP5140290B2 (ja) | 2007-03-02 | 2013-02-06 | 富士フイルム株式会社 | 絶縁膜 |
TWI333676B (en) | 2007-03-22 | 2010-11-21 | United Microelectronics Corp | Method for manufacturing mos transistor utilizing hybrid a hard mask |
US7615482B2 (en) | 2007-03-23 | 2009-11-10 | International Business Machines Corporation | Structure and method for porous SiCOH dielectric layers and adhesion promoting or etch stop layers having increased interfacial and mechanical strength |
US8173537B1 (en) | 2007-03-29 | 2012-05-08 | Novellus Systems, Inc. | Methods for reducing UV and dielectric diffusion barrier interaction |
US7651961B2 (en) * | 2007-03-30 | 2010-01-26 | Tokyo Electron Limited | Method for forming strained silicon nitride films and a device containing such films |
US20090264277A1 (en) | 2007-04-17 | 2009-10-22 | Dr. Rishi Raj | Picoscale catalysts for hydrogen catalysis |
TWI455203B (zh) | 2007-05-03 | 2014-10-01 | Lam Res Corp | 開孔之硬遮罩及藉由開孔之硬遮罩施行之蝕刻輪廓控制 |
US7955955B2 (en) | 2007-05-10 | 2011-06-07 | International Business Machines Corporation | Using crack arrestor for inhibiting damage from dicing and chip packaging interaction failures in back end of line structures |
JP5022116B2 (ja) | 2007-06-18 | 2012-09-12 | 三菱重工業株式会社 | 半導体装置の製造方法及び製造装置 |
US8021514B2 (en) | 2007-07-11 | 2011-09-20 | Applied Materials, Inc. | Remote plasma source for pre-treatment of substrates prior to deposition |
CN101743631B (zh) | 2007-07-13 | 2012-12-26 | 应用材料公司 | 硼衍生的材料的沉积方法 |
US20090061649A1 (en) | 2007-08-28 | 2009-03-05 | International Business Machines Corporation | LOW k POROUS SiCOH DIELECTRIC AND INTEGRATION WITH POST FILM FORMATION TREATMENT |
JP2009075285A (ja) | 2007-09-20 | 2009-04-09 | Fujifilm Corp | 半導体デバイスの剥離液、及び、剥離方法 |
US7964442B2 (en) | 2007-10-09 | 2011-06-21 | Applied Materials, Inc. | Methods to obtain low k dielectric barrier with superior etch resistivity |
WO2009057223A1 (ja) | 2007-11-02 | 2009-05-07 | Canon Anelva Corporation | 表面処理装置およびその基板処理方法 |
US9217200B2 (en) * | 2007-12-21 | 2015-12-22 | Asm International N.V. | Modification of nanoimprint lithography templates by atomic layer deposition |
US8338315B2 (en) | 2008-02-26 | 2012-12-25 | Axcelis Technologies, Inc. | Processes for curing silicon based low-k dielectric materials |
US7648899B1 (en) | 2008-02-28 | 2010-01-19 | Novellus Systems, Inc. | Interfacial layers for electromigration resistance improvement in damascene interconnects |
US9591738B2 (en) | 2008-04-03 | 2017-03-07 | Novellus Systems, Inc. | Plasma generator systems and methods of forming plasma |
KR20090106112A (ko) | 2008-04-04 | 2009-10-08 | 울산대학교 산학협력단 | 다결정 탄화규소 버퍼층위에 마이크로 또는 나노전자기계시스템용 질화알루미늄막 증착방법 |
US8124522B1 (en) | 2008-04-11 | 2012-02-28 | Novellus Systems, Inc. | Reducing UV and dielectric diffusion barrier interaction through the modulation of optical properties |
US20090258487A1 (en) | 2008-04-14 | 2009-10-15 | Keng-Chu Lin | Method for Improving the Reliability of Low-k Dielectric Materials |
KR101833658B1 (ko) | 2008-05-07 | 2018-02-28 | 더 트러스티즈 오브 프린스턴 유니버시티 | 전자 장치들 또는 다른 물품들 위의 코팅들에 사용하기 위한 혼성 층들 |
KR101629193B1 (ko) | 2008-06-26 | 2016-06-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Soi 기판의 제작 방법 |
US20100025370A1 (en) | 2008-08-04 | 2010-02-04 | Applied Materials, Inc. | Reactive gas distributor, reactive gas treatment system, and reactive gas treatment method |
US8168268B2 (en) | 2008-12-12 | 2012-05-01 | Ovishinsky Innovation, LLC | Thin film deposition via a spatially-coordinated and time-synchronized process |
US8916022B1 (en) | 2008-09-12 | 2014-12-23 | Novellus Systems, Inc. | Plasma generator systems and methods of forming plasma |
US7910491B2 (en) | 2008-10-16 | 2011-03-22 | Applied Materials, Inc. | Gapfill improvement with low etch rate dielectric liners |
US8809195B2 (en) | 2008-10-20 | 2014-08-19 | Asm America, Inc. | Etching high-k materials |
US8637396B2 (en) | 2008-12-01 | 2014-01-28 | Air Products And Chemicals, Inc. | Dielectric barrier deposition using oxygen containing precursor |
US20100224322A1 (en) | 2009-03-03 | 2010-09-09 | Applied Materials, Inc. | Endpoint detection for a reactor chamber using a remote plasma chamber |
WO2010132591A2 (en) | 2009-05-13 | 2010-11-18 | Cv Holdings, Llc | Pecvd coating using an organosilicon precursor |
US8268722B2 (en) * | 2009-06-03 | 2012-09-18 | Novellus Systems, Inc. | Interfacial capping layers for interconnects |
US8084339B2 (en) | 2009-06-12 | 2011-12-27 | Novellus Systems, Inc. | Remote plasma processing of interface surfaces |
US20100317198A1 (en) | 2009-06-12 | 2010-12-16 | Novellus Systems, Inc. | Remote plasma processing of interface surfaces |
US8980382B2 (en) | 2009-12-02 | 2015-03-17 | Applied Materials, Inc. | Oxygen-doping for non-carbon radical-component CVD films |
WO2011011532A2 (en) | 2009-07-22 | 2011-01-27 | Applied Materials, Inc. | Hollow cathode showerhead |
US8071451B2 (en) | 2009-07-29 | 2011-12-06 | Axcelis Technologies, Inc. | Method of doping semiconductors |
US7989365B2 (en) | 2009-08-18 | 2011-08-02 | Applied Materials, Inc. | Remote plasma source seasoning |
US8202783B2 (en) | 2009-09-29 | 2012-06-19 | International Business Machines Corporation | Patternable low-k dielectric interconnect structure with a graded cap layer and method of fabrication |
US8178443B2 (en) | 2009-12-04 | 2012-05-15 | Novellus Systems, Inc. | Hardmask materials |
US8247332B2 (en) | 2009-12-04 | 2012-08-21 | Novellus Systems, Inc. | Hardmask materials |
JP5656010B2 (ja) | 2009-12-04 | 2015-01-21 | ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated | ハードマスク膜を形成する方法およびハードマスク膜を成膜する装置 |
CN102652353B (zh) | 2009-12-09 | 2016-12-07 | 诺发系统有限公司 | 新颖间隙填充整合 |
JP5394270B2 (ja) | 2010-01-25 | 2014-01-22 | 株式会社東芝 | 不揮発性半導体記憶装置及びその製造方法 |
US8703625B2 (en) * | 2010-02-04 | 2014-04-22 | Air Products And Chemicals, Inc. | Methods to prepare silicon-containing films |
US8399350B2 (en) | 2010-02-05 | 2013-03-19 | International Business Machines Corporation | Formation of air gap with protection of metal lines |
KR101123829B1 (ko) | 2010-02-12 | 2012-03-20 | 국제엘렉트릭코리아 주식회사 | 기판 처리 장치 및 방법 |
US8349746B2 (en) | 2010-02-23 | 2013-01-08 | Applied Materials, Inc. | Microelectronic structure including a low k dielectric and a method of controlling carbon distribution in the structure |
JP5476161B2 (ja) | 2010-03-02 | 2014-04-23 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
KR101853802B1 (ko) | 2010-03-05 | 2018-05-02 | 어플라이드 머티어리얼스, 인코포레이티드 | 라디칼성분 cvd에 의한 컨포멀 층들 |
US20130012030A1 (en) | 2010-03-17 | 2013-01-10 | Applied Materials, Inc. | Method and apparatus for remote plasma source assisted silicon-containing film deposition |
US8741394B2 (en) | 2010-03-25 | 2014-06-03 | Novellus Systems, Inc. | In-situ deposition of film stacks |
US20130157466A1 (en) | 2010-03-25 | 2013-06-20 | Keith Fox | Silicon nitride films for semiconductor device applications |
US20120142172A1 (en) | 2010-03-25 | 2012-06-07 | Keith Fox | Pecvd deposition of smooth polysilicon films |
US8288292B2 (en) | 2010-03-30 | 2012-10-16 | Novellus Systems, Inc. | Depositing conformal boron nitride film by CVD without plasma |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US8728956B2 (en) | 2010-04-15 | 2014-05-20 | Novellus Systems, Inc. | Plasma activated conformal film deposition |
JP5123349B2 (ja) | 2010-04-19 | 2013-01-23 | Hoya株式会社 | 多階調マスクの製造方法 |
US8524612B2 (en) | 2010-09-23 | 2013-09-03 | Novellus Systems, Inc. | Plasma-activated deposition of conformal films |
TW201216331A (en) | 2010-10-05 | 2012-04-16 | Applied Materials Inc | Ultra high selectivity doped amorphous carbon strippable hardmask development and integration |
KR20130135261A (ko) | 2010-11-03 | 2013-12-10 | 어플라이드 머티어리얼스, 인코포레이티드 | 실리콘 카바이드 및 실리콘 카보나이트라이드 막들을 증착하기 위한 장치 및 방법들 |
KR101787041B1 (ko) | 2010-11-17 | 2017-10-18 | 삼성전자주식회사 | 식각방지막이 구비된 반도체 소자 및 그 제조방법 |
CN102468434A (zh) | 2010-11-17 | 2012-05-23 | 中芯国际集成电路制造(北京)有限公司 | 相变存储器的制作方法 |
US20120149213A1 (en) * | 2010-12-09 | 2012-06-14 | Lakshminarayana Nittala | Bottom up fill in high aspect ratio trenches |
US8329599B2 (en) | 2011-02-18 | 2012-12-11 | Asm Japan K.K. | Method of depositing dielectric film by ALD using precursor containing silicon, hydrocarbon, and halogen |
CN102693931A (zh) | 2011-03-23 | 2012-09-26 | 中国科学院微电子研究所 | 一种薄膜填充方法 |
WO2012134605A1 (en) | 2011-03-25 | 2012-10-04 | Applied Materials, Inc. | Method and apparatus for thermocouple installation or replacement in a substrate support |
US8771807B2 (en) | 2011-05-24 | 2014-07-08 | Air Products And Chemicals, Inc. | Organoaminosilane precursors and methods for making and using same |
US8637412B2 (en) | 2011-08-19 | 2014-01-28 | International Business Machines Corporation | Process to form an adhesion layer and multiphase ultra-low k dielectric material using PECVD |
KR101334640B1 (ko) | 2011-08-22 | 2013-11-29 | 서울시립대학교 산학협력단 | 고강도 실리콘옥시카바이드 결합 탄화규소 소재 제조용 조성물, 탄화규소 소재 및 그 제조방법 |
JP2013055136A (ja) | 2011-09-01 | 2013-03-21 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
US20130217239A1 (en) | 2011-09-09 | 2013-08-22 | Applied Materials, Inc. | Flowable silicon-and-carbon-containing layers for semiconductor processing |
JP2013074093A (ja) | 2011-09-28 | 2013-04-22 | Renesas Electronics Corp | リフロー前処理装置およびリフロー前処理方法 |
US8551891B2 (en) | 2011-10-04 | 2013-10-08 | Applied Materials, Inc. | Remote plasma burn-in |
JPWO2013073216A1 (ja) | 2011-11-14 | 2015-04-02 | 住友電気工業株式会社 | 炭化珪素基板、半導体装置およびこれらの製造方法 |
WO2013103037A1 (ja) | 2012-01-07 | 2013-07-11 | 日本電気株式会社 | 光学装置、光学素子および画像表示装置 |
US8586487B2 (en) | 2012-01-18 | 2013-11-19 | Applied Materials, Inc. | Low temperature plasma enhanced chemical vapor deposition of conformal silicon carbon nitride and silicon nitride films |
US20130242493A1 (en) | 2012-03-13 | 2013-09-19 | Qualcomm Mems Technologies, Inc. | Low cost interposer fabricated with additive processes |
US20130298942A1 (en) | 2012-05-14 | 2013-11-14 | Applied Materials, Inc. | Etch remnant removal |
US9978585B2 (en) | 2012-06-01 | 2018-05-22 | Versum Materials Us, Llc | Organoaminodisilane precursors and methods for depositing films comprising same |
US10211310B2 (en) | 2012-06-12 | 2019-02-19 | Novellus Systems, Inc. | Remote plasma based deposition of SiOC class of films |
US10325773B2 (en) | 2012-06-12 | 2019-06-18 | Novellus Systems, Inc. | Conformal deposition of silicon carbide films |
US20180347035A1 (en) | 2012-06-12 | 2018-12-06 | Lam Research Corporation | Conformal deposition of silicon carbide films using heterogeneous precursor interaction |
US20180330945A1 (en) | 2012-06-12 | 2018-11-15 | Lam Research Corporation | Remote plasma based deposition of silicon carbide films using silicon-containing and carbon-containing precursors |
US10832904B2 (en) | 2012-06-12 | 2020-11-10 | Lam Research Corporation | Remote plasma based deposition of oxygen doped silicon carbide films |
US9234276B2 (en) | 2013-05-31 | 2016-01-12 | Novellus Systems, Inc. | Method to obtain SiC class of films of desired composition and film properties |
JP6172660B2 (ja) | 2012-08-23 | 2017-08-02 | 東京エレクトロン株式会社 | 成膜装置、及び、低誘電率膜を形成する方法 |
SG2013083241A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Conformal film deposition for gapfill |
JP6047795B2 (ja) | 2012-11-12 | 2016-12-21 | 日東電工株式会社 | アンテナモジュール |
US9337068B2 (en) | 2012-12-18 | 2016-05-10 | Lam Research Corporation | Oxygen-containing ceramic hard masks and associated wet-cleans |
US20150329965A1 (en) | 2012-12-21 | 2015-11-19 | Prasad Narhar Gadgil | Methods of low temperature deposition of ceramic thin films |
US8766404B1 (en) | 2013-01-10 | 2014-07-01 | Intermolecular, Inc. | Device design for partially oriented rutile dielectrics |
US8928149B2 (en) | 2013-03-12 | 2015-01-06 | Macronix International Co., Ltd. | Interlayer conductor and method for forming |
WO2014143337A1 (en) | 2013-03-14 | 2014-09-18 | Applied Materials, Inc. | Adhesion layer to minimize dilelectric constant increase with good adhesion strength in a pecvd process |
US20140302690A1 (en) | 2013-04-04 | 2014-10-09 | Applied Materials, Inc. | Chemical linkers to impart improved mechanical strength to flowable films |
US10297442B2 (en) | 2013-05-31 | 2019-05-21 | Lam Research Corporation | Remote plasma based deposition of graded or multi-layered silicon carbide film |
US9382268B1 (en) | 2013-07-19 | 2016-07-05 | American Air Liquide, Inc. | Sulfur containing organosilane precursors for ALD/CVD silicon-containing film applications |
US8927442B1 (en) | 2013-07-25 | 2015-01-06 | International Business Machines Corporation | SiCOH hardmask with graded transition layers |
US9362109B2 (en) | 2013-10-16 | 2016-06-07 | Asm Ip Holding B.V. | Deposition of boron and carbon containing materials |
US9145607B2 (en) | 2013-10-22 | 2015-09-29 | Lam Research Corporation | Tandem source activation for cyclical deposition of films |
US9371579B2 (en) | 2013-10-24 | 2016-06-21 | Lam Research Corporation | Ground state hydrogen radical sources for chemical vapor deposition of silicon-carbon-containing films |
JP6267953B2 (ja) | 2013-12-19 | 2018-01-24 | 東京エレクトロン株式会社 | 半導体装置の製造方法 |
US9362186B2 (en) | 2014-07-18 | 2016-06-07 | Applied Materials, Inc. | Polishing with eddy current feed meaurement prior to deposition of conductive layer |
US9412581B2 (en) | 2014-07-16 | 2016-08-09 | Applied Materials, Inc. | Low-K dielectric gapfill by flowable deposition |
US9520295B2 (en) | 2015-02-03 | 2016-12-13 | Lam Research Corporation | Metal doping of amorphous carbon and silicon films used as hardmasks in substrate processing systems |
TWI693295B (zh) | 2015-02-06 | 2020-05-11 | 美商諾發系統有限公司 | 碳化矽膜之保形沉積 |
US9391086B1 (en) | 2015-02-23 | 2016-07-12 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device and method of manufacturing nonvolatile semiconductor memory device |
US20160268286A1 (en) | 2015-03-11 | 2016-09-15 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device and semiconductor device |
US9828672B2 (en) | 2015-03-26 | 2017-11-28 | Lam Research Corporation | Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma |
US9777025B2 (en) | 2015-03-30 | 2017-10-03 | L'Air Liquide, Société pour l'Etude et l'Exploitation des Procédés Georges Claude | Si-containing film forming precursors and methods of using the same |
US20160314964A1 (en) | 2015-04-21 | 2016-10-27 | Lam Research Corporation | Gap fill using carbon-based films |
CN107636197B (zh) | 2015-06-05 | 2020-01-07 | 应用材料公司 | 赋予掺杂硼的碳膜静电夹持及极佳颗粒性能的渐变原位电荷捕捉层 |
JP6803368B2 (ja) | 2015-07-09 | 2020-12-23 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | アルキルアミノ置換ハロカルボシラン前駆体 |
WO2017049253A1 (en) | 2015-09-18 | 2017-03-23 | Applied Materials, Inc. | Methods for depositing conformal bcn films |
US10418243B2 (en) | 2015-10-09 | 2019-09-17 | Applied Materials, Inc. | Ultra-high modulus and etch selectivity boron-carbon hardmask films |
US9786491B2 (en) | 2015-11-12 | 2017-10-10 | Asm Ip Holding B.V. | Formation of SiOCN thin films |
TWI617693B (zh) | 2015-12-21 | 2018-03-11 | 慧盛材料美國責任有限公司 | 用於沉積含矽膜的組合物及其方法 |
CN109417048A (zh) | 2016-06-25 | 2019-03-01 | 应用材料公司 | 用于间隙填充应用的可流动非晶硅膜 |
US20180033614A1 (en) | 2016-07-27 | 2018-02-01 | Versum Materials Us, Llc | Compositions and Methods Using Same for Carbon Doped Silicon Containing Films |
US10468244B2 (en) | 2016-08-30 | 2019-11-05 | Versum Materials Us, Llc | Precursors and flowable CVD methods for making low-K films to fill surface features |
TW201822259A (zh) | 2016-09-09 | 2018-06-16 | 美商諾發系統有限公司 | 氧摻雜矽碳化物膜之基於遠程電漿的沉積 |
US10002787B2 (en) | 2016-11-23 | 2018-06-19 | Lam Research Corporation | Staircase encapsulation in 3D NAND fabrication |
US9837270B1 (en) | 2016-12-16 | 2017-12-05 | Lam Research Corporation | Densification of silicon carbide film using remote plasma treatment |
JP6807775B2 (ja) | 2017-02-28 | 2021-01-06 | 東京エレクトロン株式会社 | 成膜方法及びプラズマ処理装置 |
US10840087B2 (en) | 2018-07-20 | 2020-11-17 | Lam Research Corporation | Remote plasma based deposition of boron nitride, boron carbide, and boron carbonitride films |
JP7487189B2 (ja) | 2018-10-19 | 2024-05-20 | ラム リサーチ コーポレーション | 間隙充填のためのドープまたは非ドープシリコン炭化物および遠隔水素プラズマ曝露 |
-
2013
- 2013-05-31 US US13/907,699 patent/US9234276B2/en active Active
-
2014
- 2014-05-16 SG SG10201800762VA patent/SG10201800762VA/en unknown
- 2014-05-16 SG SG10201402381UA patent/SG10201402381UA/en unknown
- 2014-05-30 TW TW103119100A patent/TWI640647B/zh active
- 2014-05-30 TW TW107126975A patent/TWI659122B/zh active
- 2014-06-02 KR KR1020140066922A patent/KR102175046B1/ko active IP Right Grant
-
2015
- 2015-12-07 US US14/961,637 patent/US10472714B2/en active Active
-
2019
- 2019-08-29 US US16/556,145 patent/US20190382885A1/en not_active Abandoned
-
2020
- 2020-10-30 KR KR1020200143459A patent/KR102317858B1/ko active IP Right Grant
-
2021
- 2021-10-20 KR KR1020210140454A patent/KR102542262B1/ko active IP Right Grant
- 2021-12-13 US US17/644,051 patent/US20220098727A1/en active Pending
-
2022
- 2022-03-25 US US17/704,574 patent/US11732350B2/en active Active
- 2022-03-25 US US17/704,582 patent/US11708634B2/en active Active
- 2022-03-25 US US17/704,585 patent/US11680315B2/en active Active
- 2022-03-25 US US17/704,572 patent/US11680314B2/en active Active
- 2022-04-06 KR KR1020220042654A patent/KR102545881B1/ko active IP Right Grant
- 2022-04-06 KR KR1020220042655A patent/KR102494203B1/ko active IP Right Grant
- 2022-04-06 KR KR1020220042652A patent/KR102500935B1/ko active IP Right Grant
- 2022-04-06 KR KR1020220042657A patent/KR102494204B1/ko active IP Right Grant
-
2023
- 2023-06-07 KR KR1020230072675A patent/KR20230087429A/ko not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040067308A1 (en) * | 2002-10-07 | 2004-04-08 | Applied Materials, Inc. | Two-layer film for next generation damascene barrier application with good oxidation resistance |
CN1714168A (zh) * | 2002-10-07 | 2005-12-28 | 应用材料公司 | 用于下一代镶嵌阻挡应用的具有良好抗氧化性的双层膜 |
US20100081293A1 (en) * | 2008-10-01 | 2010-04-01 | Applied Materials, Inc. | Methods for forming silicon nitride based film or silicon carbon based film |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI640647B (zh) | 具有所欲成分及膜特性之矽碳化物類薄膜的取得方法 | |
CN109791871B (zh) | 基于远程等离子体的渐变或多层的碳化硅膜的沉积 | |
US10211310B2 (en) | Remote plasma based deposition of SiOC class of films | |
TWI693295B (zh) | 碳化矽膜之保形沉積 | |
TW201835374A (zh) | 使用遠程電漿處理之碳化矽膜的緻密化 | |
TW201822259A (zh) | 氧摻雜矽碳化物膜之基於遠程電漿的沉積 | |
KR102542281B1 (ko) | 이종 전구체 상호 작용을 사용한 탄화 실리콘 막의 컨포멀한 증착 | |
CN112514030A (zh) | 使用含硅和含碳前体的基于远程等离子体的碳化硅膜沉积 |