RU2701335C2 - Способ получения популяции панкреатических эндокринных клеток, соэкспрессирующих nkx6.1 и инсулин, и способ лечения диабета - Google Patents

Способ получения популяции панкреатических эндокринных клеток, соэкспрессирующих nkx6.1 и инсулин, и способ лечения диабета Download PDF

Info

Publication number
RU2701335C2
RU2701335C2 RU2017102194A RU2017102194A RU2701335C2 RU 2701335 C2 RU2701335 C2 RU 2701335C2 RU 2017102194 A RU2017102194 A RU 2017102194A RU 2017102194 A RU2017102194 A RU 2017102194A RU 2701335 C2 RU2701335 C2 RU 2701335C2
Authority
RU
Russia
Prior art keywords
cells
insulin
stem cells
cell
expressing
Prior art date
Application number
RU2017102194A
Other languages
English (en)
Other versions
RU2017102194A (ru
RU2017102194A3 (ru
Inventor
Джин СЮЙ
Original Assignee
Янссен Байотек, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Янссен Байотек, Инк. filed Critical Янссен Байотек, Инк.
Publication of RU2017102194A publication Critical patent/RU2017102194A/ru
Publication of RU2017102194A3 publication Critical patent/RU2017102194A3/ru
Application granted granted Critical
Publication of RU2701335C2 publication Critical patent/RU2701335C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • C12N5/0629Keratinocytes; Whole skin
    • C12N5/063Kereatinocyte stem cells; Keratinocyte progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Abstract

Изобретение относится к области биотехнологии, а именно к получению популяции панкреатических эндокринных клеток, соэкспрессирующих NKX6.1 и инсулин. Способ включает обработку клеток панкреатической эндодермы, полученных при дифференцировке плюрипотентных стволовых клеток человека, за исключением способа, где плюрипотентные стволовые клетки человека получены путем использования эмбриона человека, фактором, способным ингибировать BMP, ингибитором сигнализации рецептора TGFβ и активатором протеинкиназы С. Изобретение позволяет расширить арсенал технических средств. 2 н. и 19 з.п. ф-лы, 9 ил., 4 табл., 6 пр.

Description

Данная заявка претендует на привилегии, предоставляемые в связи с подачей предварительной заявки на патент США № 61/289671, поданной 23 декабря 2009 г., которая в полном объеме включается в настоящий документ посредством ссылки.
ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
В данном изобретении описываются способы содействия дифференцировке плюрипотентных стволовых клеток в клетки, вырабатывающие инсулин. В частности, настоящее изобретение обеспечивает способ получения клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующих NKX6.1, инсулин и минимальное количество глюкагона.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Последние достижения в области заместительной клеточной терапии для лечения сахарного диабета 1 типа и нехватка островков Лангерганса для трансплантации заставили обратить внимание на разработку источников инсулин-продуцирующих клеток, или β-клеток, подходящих для трансплантации. Одним из подходов является формирование функциональных β-клеток из плюрипотентных стволовых клеток, таких как, например, эмбриональные стволовые клетки.
При эмбриональном развитии позвоночных плюрипотентные клетки дают начало группе клеток, формирующих три зародышевых листка (эктодерму, мезодерму и эндодерму) в ходе процесса, именуемого гаструляцией. Такие ткани, как, например, щитовидная железа, тимус, поджелудочная железа, кишечник и печень, будут развиваться из эндодермы через промежуточную стадию. Промежуточной стадией данного процесса является образование дефинитивной эндодермы. Клетки дефинитивной эндодермы экспрессируют ряд маркеров, таких как HNF3 beta, GATA4, MIXL1, CXCR4 и SOX17.
Формирование поджелудочной железы происходит при дифференцировке дефинитивной эндодермы в панкреатическую эндодерму. Клетки панкреатической эндодермы экспрессируют ген панкреатическо-дуоденального гомеобокса, PDX1. При отсутствии PDX1 развитие поджелудочной железы не идет дальше формирования вентрального и дорзального зачатков. Таким образом, экспрессия PDX1 характеризует критическую стадию органогенеза поджелудочной железы. Зрелая поджелудочная железа содержит, помимо других типов клеток, экзокринную ткань и эндокринную ткань. Экзокринная и эндокринная ткани образуются при дифференцировке панкреатической эндодермы.
По имеющимся данным, клетки, обладающие свойствами островковых клеток, были получены из эмбриональных клеток мыши. Например, в публикации Lumelsky et al. (Science 292: 1389, 2001) сообщается о дифференцировке мышиных эмбриональных стволовых клеток в инсулин-секретирующие структуры, аналогичные островкам поджелудочной железы. Soria и соавторы (Diabetes 49: 157, 2000) сообщают, что инсулин-секретирующие клетки, полученные из мышиных эмбриональных стволовых клеток, нормализовали гликемию у мышей с диабетом, вызванным стрептозотоцином.
В одном примере, в публикации Hori et al. (PNAS 99: 16105, 2002), описывается, что обработка мышиных эмбриональных стволовых клеток ингибиторами фосфоинозитид-3-киназы (LY294002) приводила к получению клеток, подобных β-клеткам.
В другом примере, в публикации Blyszczuk et al. (PNAS 100: 998, 2003), сообщается о получении инсулин-продуцирующих клеток из мышиных эмбриональных стволовых клеток с конститутивной экспрессией Pax4.
В публикации Micallef et al. сообщается, что ретиноевая кислота может регулировать способность эмбриональных стволовых клеток формировать PDX1-положительную панкреатическую эндодерму. Ретиноевая кислота с наибольшей эффективностью индуцирует экспрессию Pdx1 при добавлении в культуру на 4 день дифференцировки эмбриональных стволовых клеток в течение периода, соответствующего концу гаструляции эмбриона (Diabetes 54: 301, 2005).
В публикации Miyazaki et al. сообщается о линии мышиных эмбриональных стволовых клеток со сверхэкспрессией Pdx1. Результаты показывают, что экспрессия экзогенного Pdx1 очевидно повышает экспрессию генов инсулина, соматостатина, глюкокиназы, нейрогенина 3, p48, Pax6 и HNF6 в образующихся дифференцированных клетках (Diabetes 53: 1030, 2004).
В публикации Skoudy et al. сообщается, что активин A (входящий в суперсемейство TGF-β) повышает экспрессию экзокринных панкреатических генов (p48 и амилаза) и эндокринных генов (Pdx1, инсулин и глюкагон) в эмбриональных стволовых клетках мыши. Максимальный эффект наблюдался при использовании активина A в концентрации 1 нМ. Они также отметили, что ретиноевая кислота не влияла на уровень экспрессии инсулина и Pdx1 мРНК; однако, лечение с использованием 3 нM FGF7 привело к повышению уровня транскрипта для Pdx1 (Biochem. J. 379: 749, 2004).
В работе Shiraki et al. изучались эффекты факторов роста, специфически ускоряющих дифференцировку эмбриональных стволовых клеток в PDX1-положительные клетки. Эти авторы наблюдали, что TGF-β2 приводил к воспроизводимому увеличению доли Pdx1-положительных клеток (Genes Cells. 2005 Jun; 10(6): 503-16.).
Gordon и соавторы продемонстрировали индукцию брахиурия-[положительных]/HNF3-бета-[положительных] клеток эндодермы из мышиных эмбриональных стволовых клеток в отсутствие сыворотки и в присутствии активина с ингибитором сигнализации Wnt (US 2006/0003446A1).
В публикации Gordon et al. (PNAS, Vol 103, page 16806, 2006) говорится: «Для образования передней первичной полоски требовались одновременно сигнальные пути Wnt и TGF-бета/Nodal/активин».
Однако модель развития эмбриональных стволовых клеток на мышах может не имитировать в точности программу развития у высших млекопитающих, например у человека.
Thomson и соавторы выделяли эмбриональные стволовые клетки из человеческих бластоцист (Science 282: 114, 1998). Параллельно Gearhart и соавторы получили клеточные линии человеческих эмбриональных зародышевых клеток (чЭЗ, hEG) из ткани половых желез эмбриона (Shamblott et al., Proc. Natl. Acad. Sci. USA 95:13726, 1998). В отличие от эмбриональных стволовых клеток мыши, воспрепятствовать дифференцировке которых можно путем простого культивирования с фактором торможения лейкемии (LIF), эмбриональные стволовые клетки человека должны культивироваться в очень специфических условиях (US № 6200806, WO 99/20741, WO 01/51616).
D'Amour и соавторы описывают производство обогащенных культур дефинитивной эндодермы, производной от человеческих эмбриональных стволовых клеток, в присутствии высокой концентрации активина и низкой концентрации сыворотки (Nature Biotechnology, 2005). Трансплантация этих клеток под почечную капсулу мышей привела к их дифференцировке в более зрелые клетки, обладающие характерными особенностями некоторых эндодермальных органов. Клетки дефинитивной эндодермы, производные от эмбриональных стволовых клеток человека, могут подвергаться дальнейшей дифференцировке в PDX1-положительные клетки после добавления FGF-10 (US 2005/0266554A1).
В публикации D'Amour et al. (Nature Biotechnology - 24, 1392-1401 (2006)) говорится: «Мы разработали процесс дифференцировки, преобразующий эмбриональные клетки человека (hES) в эндокринные клетки, способные синтезировать гормоны поджелудочной железы: инсулин, глюкагон, соматостатин, панкреатический полипептид и грелин. Данный процесс имитирует органогенез поджелудочной железы in vivo, проводя клетки через стадии, напоминающие образование дефинитивной эндодермы, эндодермы кишечной трубки, панкреатической эндодермы и превращение предшественников эндокринных клеток в клетки, экспрессирующие эндокринные гормоны».
В другом примере Fisk et al. сообщают о системе для производства островковых клеток поджелудочной железы из человеческих эмбриональных стволовых клеток (US2006/0040387A1). В данном случае процесс дифференцировки был разделен на три стадии. Сначала человеческие эмбриональные стволовые клетки были дифференцированы до эндодермы с помощью сочетания бутирата натрия и активина А. Далее клетки культивировались с антагонистами TGF-β, такими как ноггин, в сочетании с EGF или бетацеллюлином с получением PDX1-положительных клеток. Окончательная дифференцировка запускалась никотинамидом.
В одном из примеров Benvenistry et al. сообщают: «Мы делаем вывод, что сверхэкспрессия PDX1 увеличивала экспрессию панкреатических обогащенных генов, а для индукции экспрессии инсулина могут требоваться дополнительные сигналы, присутствующие только in vivo» (Benvenistry et al., Stem Cells 2006; 24: 1923-1930).
В другом примере Grapin-Botton et al. сообщают: «Ранняя активация Ngn3 почти во всех случаях индуцировала клетки глюкагон+, разрушая при этом прогениторные клетки поджелудочной железы. Как и в случае E11.5, прогениторные клетки PDX-1 могут дифференцироваться в инсулин-[положительные] и PP-[положительные] клетки» (Johansson KA et al., Developmental Cell, 12, 457-465, March 2007).
Например, Diez et al. сообщают: «После 9 и 10 недель большинство глюкагон-положительных клеток соэкспрессировали инсулин, хотя на этих стадиях явно обнаруживались и отдельные клетки, экспрессирующие только инсулин. Клетки, соэкспрессирующие инсулин и глюкагон, наблюдались в течение всего периода исследования (от 9 до 21 недели), но представляли лишь небольшую часть от общего количества экспрессирующих инсулин и глюкагон клеток» (J. Histochem. Cytochem. 2009 Sep; 57(9): 811-24. 2009 Apr 13.)
В одном из примеров Chen и соавторы сообщают: «(-)-индолактам V [(ILV)] активирует сигнализацию протеинкиназы С и направляет поджелудочную спецификацию hESC, которые уже были зафиксированы в линии эндодермы… ILV и ретиноевая кислота воздействуют через соответствующий механизм… ILV демонстрирует более сильную индукцию экспрессирующих PDX-1 клеток (процент клеток, экспрессирующих PDX-1), чем ретиноевая кислота». (Nature Chemical Biology 5, 195-196 (April 2009) doi:10.1038/nchembio0409-195).
Lyttle и соавторы сообщают: «NKX6-1 солокализованы только с клетками инсулина, что указывает на то, что NKX6-1 участвует только в развитии бета-клеток человека». (Diabetologia 2008 Jul: 51(7): 1169-80, 2008).
Таким образом, сохраняется значительная потребность в разработке in vitro способов создания функциональных инсулиноэкспрессирующих клеток, более схожих с β-клетками. Данное изобретение представляет альтернативный подход к повышению эффективности дифференцировки эмбриональных стволовых клеток человека в экспрессирующие инсулин клетки путем генерирования популяции клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующих NKX6.1, инсулин и минимальное количество глюкагона.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В одном варианте настоящее изобретение обеспечивает популяцию клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующих NKX6.1, инсулин и минимальное количество глюкагона.
В одном варианте настоящее изобретение обеспечивает способ дифференцировки популяции плюрипотентных стволовых клеток в популяцию клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующих NKX6.1, инсулин и минимальное количество глюкагона, включающий следующие стадии:
a. Культивирование плюрипотентных стволовых клеток,
b. Дифференцировка плюрипотентных стволовых клеток в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы,
c. Дифференцировка клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, в клетки, экспрессирующие маркеры, характерные для линии дифференцировки в клетки панкреатической эндодермы, и
d. Дифференцировка клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы, в клетки, экспрессирующие маркеры, характерные для линии эндокринной поджелудочной железы, соэкспрессирующие NKX6.1, инсулин и минимальное количество глюкагона, путем обработки клеток, экспрессирующих маркеры, характерные для линии панкреатической эндодермы, средой, обогащенной активатором протеинкиназы С.
КРАТКОЕ ОПИСАНИЕ ФИГУР
На фиг.1 показан эффект от обработки TPB на экспрессию инсулина и глюкагона в клетках согласно данному изобретению. На панелях a и b показана экспрессия инсулина и глюкагона, соответственно, в клетках, обработанных TPB. Контрольные популяции клеток показаны на панелях c и d.
На фиг.2 показано влияние различных концентраций TPB на экспрессию инсулина и глюкагона в клетках, обработанных способом, описываемым в данном изобретении. На панелях с a по d показана экспрессия инсулина и глюкагона в популяциях клеток, обработанных TPB в указанных дозах.
На фиг.3 показано влияние различных концентраций ингибитора протеинкиназы C на экспрессию инсулина и глюкагона в клетках, обработанных способом, описываемым в данном изобретении. На панели a изображена экспрессия инсулина и глюкагона в клетках, обработанных TPB, а на панели c изображено соответствующее маркирование посредством DAPI). На панели b изображена экспрессия инсулина и глюкагона в клетках, обработанных TPB и GÖ 6976, а на панели d изображено соответствующее маркирование посредством DAPI).
На фиг.4 показано влияние различных концентраций активаторов протеинкиназы C на экспрессию инсулина и глюкагона в клетках, обработанных способом, описываемым в данном изобретении. На панели a показана экспрессия инсулина в клетках, обработанных TPB. На панели b показана экспрессия инсулина в клетках, обработанных ILV. На панели c показана экспрессия инсулина в клетках, обработанных PMA.
На фиг.5 показана экспрессия маркеров, характерных для эндокринной линии поджелудочной железы в клетках, обработанных способом, описываемым в данном изобретении. На панелях изображена экспрессия инсулина и NKX6.1 (панель a), инсулина и PDX1 (панель b), инсулина и NEUROD1 (панель c), инсулина и соматостатина (панель d), а также инсулина и грелина (панель e).
На фиг.6 показана экспрессия инсулина и глюкагона в клетках, обработанных способом, описываемым в данном изобретении. На панелях с a по c показана экспрессия инсулина (панель a), экспрессия глюкагона (панель b) и окрашивание DAPI (панель c) в клетках, обрабатывавшихся DMEM с высоким содержанием глюкозы + 1% B27 + 50 нг/мл FGF7 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина + 20 нг/мл активина A + ингибитор киназы p38 (раскрывается в US6214830 при 2,5 мкМ) в течение четырех дней (стадия 3, обработка 8, пример 2). На панелях с d по f показана экспрессия инсулина (панель d), экспрессия глюкагона (панель e) и окрашивание DAPI (панель f) в клетках, обрабатывавшихся глюкозой с высоким уровнем DMEM + 1% B27 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина в течение четырех дней (стадия 3, обработка 9, пример 2).
На фиг.7 показано обнаружение человеческого С-пептида в (SCID) - бежевые (Bg) мыши, через четыре, восемь и двенадцать недель после получения клеток согласно настоящему изобретению, после сахарной нагрузки.
На фиг.8 показан процент клеток, соэкспрессирующих PDX1 и NKX6.1, полученных после обработки различными ингибиторами протеинкиназы C в указанных концентрациях.
На фиг.9 показана экспрессия NGN3, PDX1, NKX6.1 и PTF1-альфа в клетках, обработанных способами, описанными в примере 6.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Для ясности описания, а не для ограничения изобретения, подробное описание изобретения разделено на следующие подразделы, описывающие или иллюстрирующие определенные особенности, варианты осуществления или области применения настоящего изобретения.
ОПРЕДЕЛЕНИЯ
Стволовые клетки представляют собой недифференцированные клетки, определяемые по их способности на уровне единичной клетки как самообновляться, так и дифференцироваться с образованием клеток-потомков, таких как самообновляющиеся клетки-предшественники, необновляющиеся клетки-предшественники и окончательно дифференцированные клетки. Стволовые клетки также характеризуются способностью дифференцироваться in vitro в функциональные клетки различных клеточных линий дифференцировки из нескольких зародышевых листков (эндодермы, мезодермы и эктодермы), а также после трансплантации давать начало тканям, происходящим от нескольких зародышевых листков, и вносить существенный вклад в формирование большинства, если не всех, тканей после инъекции в бластоцисты.
Стволовые клетки классифицируют по потенциалу развития: (1) тотипотентные, то есть, способные преобразоваться в любой из эмбриональных и внеэмбриональных типов клеток; (2) плюрипотентные, то есть, способные преобразоваться во все типы эмбриональных клеток; (3) мультипотентные, то есть, способные преобразоваться во множество клеточных линий, но в рамках одной ткани, органа или физиологической системы (например, гемопоэтические стволовые клетки (ГСК, HSC) могут порождать ГСК (самообновление), олигопотентные ограниченные клетки-предшественники крови и все типы клеток и элементов (например, тромбоциты), являющиеся стандартными составляющими крови); (4) олигопотентные, то есть, способные преобразоваться в более ограниченное подмножество клеточных линий, чем мультипотентные стволовые клетки; и (5) унипотентные, то есть, способные преобразоваться в единственную клеточную линию (например, сперматогенные стволовые клетки).
Дифференцировка представляет собой процесс, при помощи которого неспециализированная («некоммитированная») или менее специализированная клетка приобретает свойства специализированной клетки, такой как, например, нервная или мышечная клетки. Дифференцированная клетка или клетка с индуцированной дифференцировкой представляет собой клетку, занявшую более специализированное («коммитированное») положение в линии дифференцировки клетки. Термин «коммитированная» применительно к процессу дифференцировки обозначает клетку, дошедшую в ходе процесса дифференцировки до стадии, от которой в нормальных условиях она продолжит дифференцироваться до определенного типа клетки или набора типов клеток и не сможет в нормальных условиях дифференцироваться в иной тип клеток или вернуться обратно к менее дифференцированному типу. Дедифференцировкой называется процесс, в ходе которого клетка возвращается к менее специализированному (или коммитированному) положению в линии дифференцировки. Используемый в настоящей заявке термин «линия дифференцировки клетки» определяет наследственность клетки, то есть определяет, из какой клетки произошла данная клетка и каким клеткам она может дать начало. В линии дифференцировки клетка помещается в наследственную схему развития и дифференцировки. Маркером, специфичным для линии дифференцировки, называется характерная особенность, специфически ассоциированная с фенотипом клеток конкретной линии дифференцировки, которая может использоваться для оценки дифференцировки некоммитированных клеток в клетки данной линии дифференцировки.
Используемые в настоящей заявке термины «клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы», «клетки 1-й стадии» или «стадия 1» относятся к клеткам, экспрессирующим по меньшей мере один из следующих маркеров: SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-подобный гомеобоксовый белок, FGF4 CD48, эомезодермин (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99 или OTX2. К клеткам, экспрессирующим маркеры, характерные для линии дефинитивной эндодермы, относятся клетки-предшественники первичной полоски, клетки первичной полоски, клетки мезэндодермы и клетки дефинитивной эндодермы.
Используемый в настоящей заявке термин «клетки с экспрессией маркеров, характерных для линии панкреатической эндодермы» относится к клеткам с экспрессией по меньшей мере одного из следующих маркеров: PDX1, NKX6.1, HNF1 beta, PTF1 alpha, HNF6, HNF4 alpha, SOX9, HB9 или PROX1. К клеткам, экспрессирующим маркеры, характерные для линии панкреатической эндодермы, относятся клетки панкреатической эндодермы, клетки первичной кишечной трубки и клетки поздней передней кишки.
Используемый в настоящей заявке термин «дефинитивная эндодерма» относится к клеткам, обладающим характерными особенностями клеток, происходящих в ходе гаструляции от эпибласта, и формирующим желудочно-кишечный тракт и его производные. Клетки дефинитивной эндодермы экспрессируют следующие маркеры: HNF3 beta, GATA4, SOX17, Cerberus, OTX2, goosecoid, C-Kit, CD99 и MIXL1.
Используемый в настоящей заявке термин «маркеры» означает молекулы нуклеиновых кислот или полипептидов с дифференциальной экспрессией в интересующих клетках. В данном контексте под дифференциальной экспрессией подразумевается повышение уровня экспрессии для положительного маркера и понижение уровня экспрессии для отрицательного маркера. Поддающийся обнаружению уровень маркерной нуклеиновой кислоты или полипептида в интересующих клетках оказывается значительно выше или ниже по сравнению с другими клетками, что позволяет идентифицировать интересующую клетку и отличить ее от других клеток с помощью любого из множества известных в данной области способов.
«Панкреатической эндокринной клеткой», или «клеткой, экспрессирующей гормон поджелудочной железы», или «клеткой, экспрессирующей характеристики эндокринной линии поджелудочной железы» в настоящем документе называется клетка, способная экспрессировать по меньшей мере один из следующих гормонов: инсулин, глюкагон, соматостатин и панкреатический полипептид.
Выделение, размножение и культивирование плюрипотентных стволовых клеток
Характеристика плюрипотентных стволовых клеток
Плюрипотентные стволовые клетки могут экспрессировать один или несколько стадийно-специфичных эмбриональных антигенов (SSEA) 3 и 4, а также маркеры, определяемые антителами, обозначенными Tra-1-60 и Tra-1-81 (Thomson et al., Science 282:1145, 1998). Дифференцировка плюрипотентных стволовых клеток in vitro приводит к утрате экспрессирования SSEA-4, Tra 1-60 и Tra 1-81 (при наличии) и к увеличению экспрессии SSEA-1. В недифференцированных плюрипотентных стволовых клетках, как правило, активна щелочная фосфатаза, которая может быть обнаружена путем фиксации клеток с помощью 4% параформальдегида, с последующим обнаружением с помощью Vector Red, применяемого в качестве субстрата, в соответствии с инструкциями производителя (Vector Laboratories, Burlingame Calif.). Недифференцированные плюрипотентные стволовые клетки также, как правило, экспрессируют OCT4 и TERT, определяемые с помощью ПЦР в реальном времени.
Другим желательным фенотипическим свойством выращенных плюрипотентных стволовых клеток является потенциал дифференцировки в клетки всех трех зародышевых листков: в эндодермальные, мезодермальные и эктодермальные ткани. Плюрипотентность плюрипотентных стволовых клеток может быть подтверждена, например, путем инъекции клеток мышам с тяжелым комбинированным иммунодефицитом (SCID), фиксирования образующихся тератом с помощью 4% параформальдегида и их гистологического исследования для получения доказательств наличия клеточных типов, происходящих от трех зародышевых листков. В качестве альтернативы плюрипотентность можно определить по созданию эмбриоидных телец и анализу их на предмет присутствия маркеров, ассоциирующихся с тремя зародышевыми листками.
Выращенные линии плюрипотентных стволовых клеток могут быть кариотипированы с применением стандартного способа окрашивания с использованием красителя Гимза (G-banding) и сравнения с опубликованными кариотипами соответствующих видов приматов. Желательно получить клетки, имеющие «нормальный кариотип», т.е. эуплоидные клетки, в которых все человеческие хромосомы присутствуют и не имеют видимых изменений.
Источники плюрипотентных стволовых клеток
К типам плюрипотентных стволовых клеток, которые можно использовать, относятся устойчивые линии плюрипотентных клеток, получаемые из формируемой после вынашивания плода ткани, в том числе из преэмбриональной ткани (такой как бластоциста), эмбриональной ткани или ткани плода, взятой в любой момент в ходе вынашивания, как правило, но необязательно, до срока приблизительно 10-12 недель беременности. Примерами, не ограничивающими настоящее изобретение, являются стабильные линии человеческих эмбриональных стволовых клеток или человеческих эмбриональных зародышевых клеток, например, клеточные линии человеческих эмбриональных стволовых клеток H1, H7 и H9 (WiCell). Также возможно использование описываемых в настоящей заявке составов в ходе первоначального установления или стабилизации таких клеток, в этом случае исходными клетками являются первичные плюрипотентные клетки, взятые напрямую из тканей-источников. Также соответствуют целям настоящего изобретения клетки, взятые из популяции плюрипотентных стволовых клеток, уже культивированных в отсутствие питающих клеток. Также соответствуют целям настоящего изобретения клетки мутантных линий эмбриональных стволовых клеток человека, таких как, например, BG01v (BresaGen, Атенс, Джорджия, США).
В одном из вариантов осуществления эмбриональные стволовые клетки человека готовят, как описано в следующих публикациях Thomson et al. (US № 5843780; Science 282: 1145, 1998; Curr. Top. Dev. Biol. 38: 133 ff., 1998; Proc. Natl. Acad. Sci. U.S.A. 92: 7844, 1995).
Культивирование плюрипотентных стволовых клеток
В одном из вариантов осуществления плюрипотентные стволовые клетки, как правило, культивируют на слое питающих клеток, которые поддерживают плюрипотентные стволовые клетки в различных отношениях. Альтернативно, плюрипотентные стволовые клетки культивируются в культуральной системе, по существу не содержащей питающих клеток, но, тем не менее, поддерживающей пролиферацию плюрипотентных стволовых клеток и не допускающей существенной дифференцировки. Рост плюрипотентных стволовых клеток в свободной от питающих клеток культуральной системе без дифференцировки поддерживается путем использования среды, кондиционированной посредством предварительного культивирования клеток иного типа. В качестве альтернативы рост плюрипотентных стволовых клеток в свободной от питающих клеток культуральной системе без дифференцировки поддерживается путем использования среды с химически определенным составом.
Например, в работах Reubinoff et al. (Nature Biotechnology 18: 399-404 (2000)) и Thompson et al. (Science 6 November 1998: Vol. 282. № 5391, рр. 1145-1147) описано культивирование линий плюрипотентных стволовых клеток из человеческих бластоцист с применением слоя питающих клеток из мышиных эмбриональных фибробластов.
Richards и соавторы (Stem Cells 21: 546-556, 2003) анализировали набор из одиннадцати слоев питающих клеток, полученных от взрослых, новорожденных и эмбрионов людей, по их способности осуществлять поддержку культуры человеческих плюрипотентных стволовых клеток. Richards и соавторы сообщают: «линии человеческих эмбриональных стволовых клеток, культивируемые на питающих слоях из фибробластов кожи взрослых людей, сохраняют морфологию, характерную для эмбриональных стволовых клеток, и остаются плюрипотентными».
В US20020072117 описываются линии клеток, продуцирующие среду, осуществляющую поддержку плюрипотентных стволовых клеток приматов в культуре, не содержащей питающих клеток. Использованные клеточные линии представляют собой мезенхимо- и фибробластоподобные линии, полученные из эмбриональной ткани или дифференцированные из эмбриональных стволовых клеток. В US20020072117 также описывается использование этих клеточных линий в качестве первичного слоя питающих клеток.
В другом примере Wang et al. (Stem Cells 23: 1221-1227, 2005) описывают способы длительного выращивания человеческих плюрипотентных стволовых клеток на слоях питающих клеток, полученных из человеческих эмбриональных стволовых клеток.
В другом примере Stojkovic et al. (Stem Cells 2005 23: 306-314, 2005) описывают систему питающих клеток, получаемую в результате спонтанной дифференцировки человеческих эмбриональных стволовых клеток.
В еще одном примере Miyamoto et al. (Stem Cells 22: 433-440, 2004) описывают получение питающих клеток из человеческой плаценты.
Amit et al. (Biol. Reprod 68: 2150-2156, 2003) описывают слой питающих клеток, полученных из человеческой крайней плоти.
В другом примере Inzunza et al. (Stem Cells 23: 544-549, 2005) описывают слой питающих клеток, полученных из человеческих фибробластов постнатальной крайней плоти.
В US6642048 описывают среду, поддерживающую рост плюрипотентных стволовых клеток приматов (пПС, pPS) в среде, не содержащей питающих клеток, и клеточные линии, которые могут использоваться для производства такой среды. В US6642048 говорится: «Данное изобретение включает мезенхимо- и фибробластоподобные клеточные линии, полученные из эмбриональной ткани или дифференцированные из эмбриональных стволовых клеток. В документе описываются и иллюстрируются способы получения таких клеточных линий, обработки среды и выращивания стволовых клеток с применением кондиционированной среды”.
В другом примере, WO2005014799, описывают кондиционированную среду для поддержания, пролиферации и дифференцировки клеток млекопитающих. В WO2005014799 говорится: «Питательная среда, подготовленная в соответствии с настоящим изобретением, обусловлена секрецией мышиных клеток; в частности, дифференцированных и иммортализованных трансгенных гепатоцитов под названием MMH (гепатоциты мышей Met)».
В другом примере Xu et al. (Stem Cells 22: 972-980, 2004) описывают кондиционированную среду, полученную из производных человеческих эмбриональных стволовых клеток, генетически модифицированных для увеличения экспрессии обратной транскриптазы человеческой теломеразы.
В другом примере, US20070010011, описывают культуральную среду определенного химического состава для поддержания плюрипотентных стволовых клеток.
В альтернативной культуральной системе используется не содержащая сыворотки среда, обогащенная факторами роста, способными стимулировать пролиферацию эмбриональных стволовых клеток. Например, Cheon et al. (BioReprod DOI:10.1095/biolreprod.105.046870, October 19, 2005) описывают не содержащую питающих клеток и сыворотки культуральную систему, в которой эмбриональные стволовые клетки поддерживаются в некондиционированной заменяющей сыворотку среде (SR), обогащенной различными факторами роста, способными запустить самообновление эмбриональных стволовых клеток.
В другом примере Levenstein et al. (Stem Cells 24: 568-574, 2006) описывают способы длительного культивирования человеческих эмбриональных стволовых клеток в отсутствие фибробластов или кондиционированной среды, с применением среды, обогащенной основным фактором роста фибробластов (bFGF).
В другом примере, US20050148070, описан способ культивирования эмбриональных стволовых клеток человека в среде с определенным составом, не содержащей сыворотки и не содержащей питающих клеток - фибробластов. Данный способ заключается в культивировании стволовых клеток в культуральной среде, содержащей альбумин, аминокислоты, витамины, минеральные вещества, по меньшей мере один трансферрин или заместитель трансферрина, по меньшей мере один инсулин или заместитель инсулина, причем упомянутая культуральная среда существенно свободна от эмбриональной сыворотки млекопитающих и содержит по меньшей мере приблизительно 100 нг/мл фактора роста фибробластов, способного активировать сигнальный рецептор фактора роста фибробластов, где упомянутый фактор роста поступает из источника, отличного от просто питающего слоя фибробластов; данная среда поддерживает пролиферацию стволовых клеток в недифференцированном состоянии в отсутствие питающих клеток или кондиционированной среды.
В другом примере, US20050233446, описывают среду с определенным составом, которая может использоваться при культивировании стволовых клеток, включая недифференцированные зародышевые стволовые клетки приматов. В растворе среда по существу является изотонической относительно культивируемых стволовых клеток. В данной культуре указанная среда содержит основную среду и количество каждого из bFGF, инсулина и аскорбиновой кислоты, достаточное для поддержки роста зародышевых стволовых клеток без существенной дифференцировки.
В другом примере, US6800480, говорится: “В одном варианте осуществления предлагается культуральная среда для выращивания клеток зародышевых стволовых клеток приматов, в значительной степени в недифференцированном состоянии, включающая основную среду с низким содержанием эндотоксина и низким осмотическим давлением, которая эффективно поддерживает рост зародышевых стволовых клеток приматов. Основная среда объединяется с питательной сывороткой, способной поддерживать рост зародышевых стволовых клеток приматов, и субстратом, выбираемым из группы, включающей питающие клетки и экстраклеточный матрикс, полученный из питающих клеток. Среда также содержит аминокислоты, не относящиеся к незаменимым, антиоксидант и первый фактор роста, выбираемый из группы, содержащей нуклеозиды и соль пируват”.
В другом примере, US20050244962, говорится: «В одном примере в изобретении предлагается способ культивирования эмбриональных стволовых клеток приматов. Стволовые клетки культивируются в культуре, в основном не содержащей эмбриональной сыворотки млекопитающих (предпочтительно также в основном не содержащей эмбриональной сыворотки любых животных) и в присутствии фактора роста фибробластов, полученного из источника, иного, чем просто питающие клетки-фибробласты. В предпочтительной форме слой питающих фибробластов, ранее необходимый для поддержания культуры стволовых клеток, становится необязательным вследствие добавления достаточного количества фактора роста фибробластов».
В другом примере, WO2005065354, описана существенно свободная от питающих клеток и сыворотки изотоническая питательная среда с определенным составом, которая включает a. основную среду; b. инсулин в количестве bFGF, достаточном для поддержания роста существенно недифференцированных стволовых клеток млекопитающих; c. инсулин в количестве, достаточном для поддержания роста существенно недифференцированных стволовых клеток млекопитающих; и d. аскорбиновую кислоту в количестве, достаточном для поддержания роста существенно недифференцированных стволовых клеток млекопитающих.
В другом примере, WO2005086845, описывается способ поддержания недифференцированных стволовых клеток, где упомянутый способ включает воздействие на стволовые клетки одним членом семейства белков трансформирующего ростового фактора-бета (TGF-β), одним членом семейства белков фактора роста фибробластов (FGF) или никотинамидом (NIC) в количестве, достаточном для поддержания клеток в недифференцированном состоянии в течение периода времени, достаточного для получения желаемого результата.
Плюрипотентные стволовые клетки могут быть высеяны на соответствующий культуральный субстрат. В одном из вариантов осуществления соответствующим культуральным субстратом является компонент внеклеточного матрикса, такой как, например, полученный из базальной мембраны или тот, который может участвовать в лиганд-рецепторном взаимодействии с участием молекулы адгезивного слоя. В одном из вариантов осуществления подходящим культуральным субстратом является MATRIGEL® (Becton Dickenson). MATRIGEL® представляет собой растворимый препарат из клеток опухоли Энгельбрета-Холма-Суорма, который при комнатной температуре превращается в гель и образует восстановленную базальную мембрану.
В качестве альтернативы можно использовать другие компоненты внеклеточного матрикса и смеси компонентов. В зависимости от типа пролиферирующих клеток это может быть ламинин, фибронектин, протеогликан, энтактин, гепарансульфат и т.п., по отдельности или в различных сочетаниях.
Плюрипотентные стволовые клетки могут высеиваться на субстрат с соответствующим распределением по поверхности и в присутствии среды, поддерживающей выживание, размножение и сохранение требуемых характеристик клеток. Все эти характеристики улучшаются при тщательном подходе к распределению клеток при посеве и могут быть определены специалистом в данной области.
Подходящая культуральная среда может быть изготовлена, например, из следующих компонентов: модифицированная по способу Дульбекко среда Игла (DMEM), Gibco № 11965-092, нокаутная модифицированная по способу Дульбекко среда Игла (KO DMEM), Gibco №10829-018, основная среда Хэма F12/50% DMEM, 200 мМ L-глутамина, Gibco № 15039-027; раствор неосновных аминокислот, Gibco 11140-050; β-меркаптоэтанол, Sigma № M7522; человеческий рекомбинантный основной фактор роста фибробластов (bFGF), Gibco № 13256-029.
Формирование клеток, экспрессирующих маркеры, характерные для линии панкреатических эндокринных клеток из плюрипотентных стволовых клеток
В одном варианте настоящее изобретение обеспечивает способ получения клеток, экспрессирующих маркеры, характерные линии поджелудочной эндодермы из плюрипотентных стволовых клеток, включающий следующие стадии:
a. Культивирование плюрипотентных стволовых клеток,
b. Дифференцировка плюрипотентных стволовых клеток в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы,
c. Дифференцировка клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, в клетки, экспрессирующие маркеры, характерные для линии дифференцировки в клетки панкреатической эндодермы, и
d. Дифференцировка клеток, экспрессирующих маркеры, характерные для линии дифференцировки в клетки панкреатической эндодермы, в клетки, экспрессирующие маркеры, характерные для линии дифференцировки в панкреатические эндокринные клетки.
В одном варианте настоящего изобретения клетки, экспрессирующие маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессируют NKX6.1, инсулин и минимальное количество глюкагона.
Дифференцировка плюрипотентных стволовых клеток в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы
Образование клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, может быть выявлено путем проверки на наличие маркеров до и после выполнения конкретного протокола. Количество плюрипотентных стволовых клеток обычно минимально для таких маркеров. Таким образом, дифференцировка плюрипотентных клеток определяется по началу экспрессии таких маркеров.
Плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, с использованием любого известного специалистам способа или с использованием любого способа, предложенного в настоящем изобретении.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, в соответствии со способами, описанными в публикации D'Amour et al., Nature Biotechnology 23, 1534-1541 (2005).
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, способами, описанными в публикации Shinozaki et al., Development 131, 1651-1662 (2004).
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, в соответствии со способами, описанными в публикации McLean et al., Stem Cells 25, 29-38 (2007).
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, в соответствии со способами, описанными в публикации D'Amour et al., Nature Biotechnology 24, 1392-1401 (2006).
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем культивирования плюрипотентных стволовых клеток в среде, содержащей активин A в отсутствие сыворотки, затем культивирования клеток с активином A и сывороткой, а затем культивирования клеток с активином A и сывороткой в другой концентрации. Пример данного способа описан в публикации Nature Biotechnology 23, 1534-1541 (2005).
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем культивирования плюрипотентных стволовых клеток в среде, содержащей активин А в отсутствие сыворотки, затем культивирования клеток с активином A и сывороткой в другой концентрации. Пример использования данного способа приведен в публикации D'Amour et al., Nature Biotechnology, 2005.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем культивирования плюрипотентных стволовых клеток в среде, содержащей активин А и лиганд Wnt в отсутствие сыворотки, затем удаления лиганда Wnt и культивирования клеток с активином A и сывороткой. Пример использования данного способа приведен в публикации Nature Biotechnology 24, 1392-1401 (2006).
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США сер. № 11/736908, принадлежащей LifeScan, Inc.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США сер. № 11/779311, принадлежащей LifeScan, Inc.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США сер. № 60/990529.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США сер. № 61/076889.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США сер. № 61/076900.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США сер. № 61/076908.
Например, плюрипотентные стволовые клетки могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, путем обработки плюрипотентных стволовых клеток в соответствии со способами, изложенными в заявке на патент США сер. № 61/076915.
Дифференцировка клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы в клетках, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы
Клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, с использованием любого способа, известного специалистам в данной области, или с использованием способа, предложенного в настоящем изобретении.
Например, клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, могут быть дифференцированы в клетки, экспрессирующие маркеры, характерные для линии эндодермы поджелудочной железы с использованием способов, описанных в публикации D’Amour et al., Nature Biotechnol. 24:1392-1401, 2006.
В одном варианте клетки, экспрессирующие маркеры, характерные для линии эндодермы поджелудочной железы, соэкспрессируют PDX1, NKX6.1 при минимальном количестве CDX2 и NGN3.
В одном варианте клетки, экспрессирующие маркеры, характерные для линии дефинитивной эндодермы, дифференцируются в клетки, экспрессирующие маркеры, характерные для линии эндодермы поджелудочной железы, соэкспрессирующие PDX1, NKX6.1 при минимальном количестве CDX2 и NGN3, путем культивирования клеток, экспрессирующих маркеры, характерные для линии дефинитивной эндодермы, в первой среде, обогащенной FGF7, с последующим культивированием клеток во второй среде, обогащенной FGF7, фактором, способным ингибировать BMP, агонистом рецептора TGFβ, ретиноевой кислоты и ингибитором сигнального пути белка хеджехог.
В одном варианте FGF7 может использоваться в концентрации от около 50 пг/мл до около 50 мкг/мл. В одном варианте FGF7 используется в концентрации 50 нг/мл.
В одном варианте фактором, способным ингибировать BMP, является ноггин. Ноггин может использоваться в концентрациях от около 500 нг/мл до около 500 мкг/мл. В одном из вариантов осуществления ноггин используется в концентрации 100 нг/мл.
В одном из вариантов агонист рецептора TGFβ выбирается из группы, содержащей активин А, активин B, TGFβ-I, TGFβ-II, GDF-8 и GDF-11.
Активин А может использоваться в концентрации от около 2 нг/мл до 100 нг/мл. В одном варианте активин А используется в концентрации 20 нг/мл. В альтернативном варианте активин А используется в концентрации 50 нг/мл.
Активин B может использоваться в концентрации от около 2 нг/мл до 100 нг/мл. В одном варианте активин B используется в концентрации 20 нг/мл. В альтернативном варианте активин B используется в концентрации 50 нг/мл.
TGFβ-I может использоваться в концентрации от около 2 нг/мл до 100 нг/мл. В одном варианте TGFβ-I используется в концентрации 20 нг/мл. В альтернативном варианте TGFβ-I используется в концентрации 50 нг/мл.
TGFβ-II может использоваться в концентрации от около 2 нг/мл до 100 нг/мл. В одном варианте TGFβ-II используется в концентрации 20 нг/мл. В альтернативном варианте TGFβ-II используется в концентрации 50 нг/мл.
GDF-8 может использоваться в концентрации от около 2 нг/мл до 100 нг/мл. В одном варианте GDF-8 используется в концентрации 20 нг/мл. В альтернативном варианте GDF−8 используется в концентрации 50 нг/мл.
GDF-11 может использоваться в концентрации от около 2 нг/мл до 100 нг/мл. В одном варианте GDF-11 используется в концентрации 20 нг/мл. В альтернативном варианте GDF-11 используется в концентрации 50 нг/мл.
Ретиноевая кислота может использоваться в концентрациях от около 1 нM до около 1 мM. В одном из вариантов осуществления ретиноевая кислота используется в концентрации 1 мкM.
В одном из вариантов в качестве ингибитора сигнального пути белка хеджехог используется циклопамин-KAAD. Циклопамин-KAAD может использоваться в концентрации от около 0,025 мкM до около 2,5 мкМ. В одном из вариантов циклопамин-KAAD используется в концентрации 0,25 мкM.
Эффективность дифференцировки может быть определена путем обработки популяции клеток агентом (например, антителом), специфически распознающим белковый маркер, экспрессированный клетками, экспрессирующими маркеры, характерные для линии дефинитивной эндодермы.
Способы оценки экспрессии маркеров белков и нуклеиновых кислот в культивированных или выделенных клетках являются стандартными для данной области. Сюда относятся количественная ревертазная полимеразная цепная реакция (ОТ-ПЦР), Нозерн-блоттинг, гибридизация in situ (см., например, Current Protocols in Molecular Biology (Ausubel et al., eds. 2001 supplement)), а также способы иммунологического анализа, такие как иммуногистохимический анализ среза материала, Вестерн-блоттинг, а для маркеров, доступных в интактных клетках, - метод проточной цитометрии (FACS) (см., например, Harlow and Lane, Using Antibodies: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press (1998)).
Характеристики плюрипотентных стволовых клеток хорошо известны специалистам в данной области, и продолжается выявление дополнительных характеристик плюрипотентных стволовых клеток. К маркерам плюрипотентных стволовых клеток относится, например, экспрессия одного или нескольких следующих маркеров: ABCG2, cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60, Tra 1-81.
После обработки плюрипотентных стволовых клеток с применением способов, составляющих предмет настоящего изобретения, дифференцированные клетки могут быть выделены путем воздействия на популяцию клеток агентом (например, антителом), специфически распознающим белковый маркер, например CXCR4, экспрессируемый клетками, экспрессирующими маркеры, характерные для линии дефинитивной эндодермы.
К плюрипотентным стволовым клеткам, которые могут использоваться в настоящем изобретении, относятся, например, человеческие эмбриональные стволовые клетки линии H9 (код NIH: WA09), человеческие эмбриональные стволовые клетки линии H1 (код NIH: WA01), человеческие эмбриональные стволовые клетки линии H7 (код NIH: WA07) и человеческие эмбриональные стволовые клетки линии SA002 (Cellartis, Швеция). Также для использования в рамках настоящего изобретения подходят клетки, экспрессирующие по меньшей мере один из следующих маркеров, характерных для плюрипотентных клеток: ABCG2, cripto, CD9, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, Tra 1-60 и Tra 1-81.
Маркеры, характерные для дефинитивной линии эндодермы, выбираются из группы, содержащей SOX17, GATA4, HNF3 beta, GSC, CER1, Nodal, FGF8, Brachyury, Mix-подобный гомеобоксовый белок, FGF4, CD48, эомезодермин (EOMES), DKK4, FGF17, GATA6, CXCR4, C-Kit, CD99 и OTX2. Подходит для использования в настоящем изобретении клетка, экспрессирующая как минимум один из маркеров, характерных для линии дефинитивной эндодермы. В одном из вариантов настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии дефинитивной эндодермы, представляет собой клетку-предшественник первичной полоски. В альтернативном варианте настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии дефинитивной эндодермы, представляет собой мезэндодермальную клетку. В альтернативном варианте настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии дефинитивной эндодермы, представляет собой клетку дефинитивной эндодермы.
Маркеры, характерные для линии эндодермы поджелудочной железы, выбираются из группы, содержащей PDX1, NKX6.1, HNF1 beta, PTF1 alpha, HNF6, HNF4 alpha, SOX9, HB9 и PROX1. Подходит для использования в настоящем изобретении клетка, экспрессирующая как минимум один из маркеров, характерных для линии панкреатической эндодермы. В одном из вариантов настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии панкреатической эндодермы, представляет собой клетку панкреатической эндодермы.
Дифференцировка клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы в клетки, экспрессирующие маркеры эндокринной линии поджелудочной железы
В одном варианте клетки, экспрессирующие маркеры, характерные для линии панкреатической эндодермы, далее дифференцируются в клетки, экспрессирующие маркеры, характерные для линии эндокринных клеток поджелудочной железы.
В одном варианте клетки, экспрессирующие маркеры, характерные для линии эндодермы поджелудочной железы, соэкспрессируют PDX1, NKX6.1 при минимальном количестве CDX2 и NGN3.
В одном варианте клетки, экспрессирующие маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессируют NKX6.1, инсулин и минимальное количество глюкагона.
В одном варианте клетки, экспрессирующие маркеры, характерные для линии эндодермы поджелудочной железы, дифференцируются в клетки, экспрессирующие маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующие NKX6.1, инсулин и минимальное количество глюкагона, путем культивирования клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы, в среде, обогащенной фактором, способным ингибировать BMP, ингибитором сигнализации рецептора TGFβ и активатором протеинкиназы С.
В одном варианте осуществления фактором, способным ингибировать BMP, является ноггин. Ноггин может использоваться в концентрациях от около 500 нг/мл до около 500 мкг/мл. В одном из вариантов осуществления ноггин используется в концентрации 100 нг/мл.
В одном из вариантов ингибитором сигнализации рецептора TGFβ является ингибитор ALK5. В одном из вариантов ингибитором ALK5 является ингибитор ALK5 II. Ингибитор ALK5 II может использоваться в концентрации от 0,1 мкМ до приблизительно 10 мкМ. В одном варианте ингибитор ALK5 II используется в концентрации 1 мкМ.
В одном варианте активатор протеинкиназы С выбирают из группы, содержащей (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактам, индолактам V и форбол-12-миристат-13-ацетат. В одном из вариантов активатором протеинкиназы С является (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактам. (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактам может использоваться в концентрации от приблизительно 20 нМ до приблизительно 500 нМ. (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактам, индолактам V и форбол-12-миристат-13-ацетат в настоящем документе называются «TPB».
Маркеры, характерные для линии панкреатических эндокринных клеток, выбирают из группы, состоящей из NEUROD, ISL1, PDX1, NKX6.1, NKX2.2, PAX4 и PAX6. В одном варианте клетки, экспрессирующие маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессируют NKX6.1, инсулин и минимальное количество глюкагона.
Методы лечения
В одном из вариантов настоящего изобретения предлагается способ лечения пациентов, страдающих от диабета 1 типа или подвергающихся риску развития этого заболевания. В одном варианте способ предполагает выращивание плюрипотентных стволовых клеток, дифференцировку плюрипотентных стволовых клеток in vitro в клетки, экспрессирующие маркеры, характерные для эндокринной линии поджелудочной железы, и имплантацию клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, пациенту.
В другом варианте настоящего изобретения предлагается способ лечения пациентов, страдающих от диабета 2 типа или подвергающихся риску развития этого заболевания. В одном варианте способ предполагает выращивание плюрипотентных стволовых клеток, дифференцировку плюрипотентных стволовых клеток in vitro в клетки, экспрессирующие маркеры, характерные для эндокринной линии поджелудочной железы, и имплантацию клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы пациенту.
При необходимости пациент далее может получать лечение фармацевтическими средствами или биологически активными веществами, улучшающими выживаемость и функционирование трансплантированных клеток. К этим агентам могут относиться, например, помимо прочего, инсулин, члены семейства TGF-β, включая TGF-β, 2 и 3, костные морфогенетические белки (BMP-2, -3, -4, -5, -6, -7, -11, -12 и -13), факторы роста фибробластов-1 и -2, тромбоцитарный фактор роста -AA и -BB, плазма, богатая тромбоцитами, инсулин-подобный фактор роста (IGF-I, II), фактор роста и дифференцировки (GDF-5, -6, -7, -8, -10, -15), фактор роста из клеток эндотелия сосудов (VEGF), плейотропин, эндотелин. К другим фармакологическим веществам могут относиться, например, никотинамид, глюкагон-подобный пептид-I (GLP-1) и II, миметические антитела GLP-1 и 2, экзендин-4, ретиноевая кислота, паратиреоидный гормон, ингибиторы MAPK, такие, например, как описаны в опубликованной патентной заявке США 2004/0209901 и опубликованной патентной заявке США 2004/0132729.
Плюрипотентные стволовые клетки могут быть дифференцированы в инсулин-продуцирующие клетки перед трансплантацией реципиенту. В специфической реализации плюрипотентные стволовые клетки являются полностью дифференцированными в β-клетки до трансплантации реципиенту. В качестве альтернативы плюрипотентные стволовые клетки могут быть трансплантированы реципиенту в недифференцированном или частично дифференцированном состоянии. Дальнейшая дифференцировка может происходить в организме реципиента.
Клетки дефинитивной эндодермы или, альтернативно, клетки панкреатической эндодермы или, альтернативно, β-клетки, могут имплантироваться в форме дисперсных клеток или клеток, образовавших кластеры, которые методом инфузии могут вводиться в воротную вену печени. В качестве альтернативы клетки могут вводиться в биологически совместимых разрушающихся полимерных вспомогательных материалах, в пористых неразрушающихся приспособлениях или в инкапсулированном виде для защиты от иммунного ответа организма-хозяина. Клетки могут имплантироваться в подходящее место организма реципиента. К таким местам для имплантации относятся, например, печень, естественная поджелудочная железа, пространство под почечной капсулой, сальник, брюшная полость, субсерозное пространство, кишечник, желудок или подкожный карман.
Для стимуляции дальнейшей дифференцировки, выживания или активности имплантированных клеток предварительно, одновременно или после имплантации клеток могут вводиться дополнительные факторы, такие как факторы роста, антиоксиданты или противовоспалительные агенты. В некоторых вариантах осуществления факторы роста применяются для дифференцировки введенных клеток in vivo. Такие факторы могут секретироваться эндогенными клетками и воздействовать на введенные клетки in situ. Дифференцировку имплантированных клеток можно индуцировать любым сочетанием эндогенных и введенных экзогенно факторов роста, известных специалистам в данной области.
Число клеток, используемое при имплантации, зависит от ряда различных факторов, в том числе от состояния пациента и его реакции на лечение, и может быть определено специалистом в данной области.
В одном из аспектов настоящего изобретения предлагается способ лечения пациентов, страдающих от диабета или подвергающихся риску развития этого заболевания. Данный способ включает культивирование плюрипотентных стволовых клеток, дифференцировку культивированных стволовых клеток in vitro в линию β-клеток и заключение клеток в опорный материал с трехмерной структурой. Клетки могут поддерживаться in vitro на этом опорном материале до имплантации пациенту. В альтернативном варианте опорный материал, содержащий клетки, может напрямую имплантироваться в организм пациента без дополнительного культивирования in vitro. В опорный материал может быть заключен по меньшей мере один фармакологический агент, повышающий выживание и функционирование трансплантированных клеток.
К опорным материалам, соответствующим целям настоящего изобретения, относятся тканевые шаблоны, каналы, перегородки и резервуары, применяемые для восстановления тканей. В частности, для практического применения способов настоящего изобретения подходят синтетические и природные материалы в форме пеноматериалов, губок, гелей, гидрогелей, тканых и нетканых структур, применяемых in vitro и in vivo для реконструкции и регенерации биологической ткани, а также для доставки хемотаксических агентов, индуцирующих рост ткани. См., например, материалы, содержащиеся в U.S. Patent 5,770,417, U.S. Patent 6,022,743, U.S. Patent 5,567,612, U.S. Patent 5,759,830, U.S. Patent 6,626,950, U.S. Patent 6,534,084, U.S. Patent 6,306,424, U.S. Patent 6,365,149, U.S. Patent 6,599,323, U.S. Patent 6,656,488, U.S. Published Application 2004/0062753 A1, U.S. Patent 4,557,264 и U.S. Patent 6,333,029.
Для того чтобы создать опорный материал с включенным фармацевтическим средством, такое средство можно смешать с раствором полимера до изготовления опорной структуры. В качестве альтернативы фармацевтическое средство можно нанести на изготовленную опорную структуру, предпочтительно в присутствии фармацевтического носителя. Фармацевтическое средство может быть в виде жидкости, мелкодисперсного твердого вещества или иметь любую другую подходящую физическую форму. В качестве альтернативы в опорный материал могут быть добавлены инертные наполнители для изменения скорости высвобождения фармацевтического средства. В альтернативном варианте осуществления в опорный материал включается как минимум одно фармацевтическое соединение, являющееся противовоспалительным средством, как например, описанные в патенте США 6509369.
В опорный материал может включаться по меньшей мере одно фармацевтическое средство, являющееся антиапоптозным средством, такое как, например, средства, описанные в патенте США 6793945.
В опорный материал также может включаться по меньшей мере одно фармацевтическое средство, являющееся ингибитором фиброза, таким как, например, средства, описанные в патенте США 6331298.
В опорный материал также может включаться по меньшей мере одно фармацевтическое средство, являющееся стимулятором ангиогенеза, такое как, например, средства, описанные в U.S. Published Application 2004/0220393 и U.S. Published Application 2004/0209901.
В опорный материал также может включаться по меньшей мере одно фармацевтическое средство, являющееся иммуносупрессором, такое как, например, средства, описанные в U.S. Published Application 2004/0171623.
В опорный материал также может включаться как минимум одно фармацевтическое средство, представляющее собой фактор роста, такое как, например, члены семейства TGF-β, включая TGF-β1, 2 и 3, костные морфогенетические белки (BMP-2, -3, -4, -5, -6, -7, -11, -12 и -13), факторы роста фибробластов-1 и -2, тромбоцитарный фактор роста -AA и -BB, плазма, богатая тромбоцитами, инсулин-подобный фактор роста (IGF-I, II), фактор роста и дифференцировки (GDF-5, -6, -8, -10, -15), фактор роста из клеток эндотелия сосудов (VEGF), плейотропин, эндотелин и другие. Другие фармацевтические средства могут включать, например, никотинамид, индуцированный гипоксией фактор 1-alpha, глюкагон-подобный пептид-I (GLP-1), миметические антитела GLP-1 и GLP-2, и II, экзендин-4, Nodal, Noggin, NGF, ретиноевую кислоту, паратиреоидный гормон, тенасцин-C, тропоэластин, пептиды тромбинового происхождения, кателицидины, дефензины, ламинин, биологические пептиды, содержащие связывающие клетки и гепарин домены протеинов адгезивного внеклеточного матрикса, такие как фибронектин и витронектин, ингибиторы MAPK, такие как средства, описанные в U.S. Published Application 2004/0209901 и U.S. Published Application 2004/0132729.
Включение клеток, составляющих предмет настоящего изобретения, в опорный каркас может осуществляться путем простого нанесения клеток на опорный каркас. Клетки могут входить внутрь каркаса путем простой диффузии (J. Pediatr. Surg. 23 (1 Pt 2): 3-9 (1988)). Было разработано несколько других подходов для повышения эффективности посева клеток. Например, для посева хондроцитов на каркасы из полигликолевой кислоты используются центрифужные пробирки (Biotechnol. Prog. 14(2): 193-202 (1998)). Другой подход к посеву клеток представляет собой использование центрифугирования, создающего минимальный стресс для высеиваемых клеток и повышающий эффективность посева. Например, в публикации Yang et al. разработан способ посева клеток (J. Biomed. Mater. Res. 55(3): 379-86 (2001)), названный центрифужной иммобилизацией клеток (CCI).
Настоящее изобретение далее иллюстрируется, но без ограничения, следующими примерами.
Примеры
Пример 1
Формирование клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующих инсулин, NKX6.1 и минимальное количество глюкагона
Клетки линии человеческих эмбриональных стволовых клеток H1 культивировали в блюдцах, покрытых MATRIGEL® (раствор 1:30) (BD Biosciences; № по каталогу 356231) со средой RPMI (Invitrogen, № по каталогу 22400) + 0,2% FBS + 100 нг/мл активина A (PeproTech; № по каталогу 120-14) + 20 нг/мл WNT-3а (R&D Systems; № по каталогу 1324-WN/CF) в течение одного дня с последующей обработкой средой RPMI + 0,5% FBS + 100 нг/мл активина A еще на два дня (стадия 1), затем
a. DMEM/F12 (Invitrogen; № по каталогу 11330-032) + 2% FBS + 50 нг/мл FGF7 (PeproTech; № по каталогу 100-19) в течение трех дней (стадия 2), затем
b. DMEM с высоким содержанием глюкозы (Invitrogen; № по каталогу 10569) + 1% B27 + 50 нг/мл FGF7 + 0,25 мкМ циклопамин-KAAD (Calbiochem; № по каталогу 239804) +100 нг/мл ноггина (R&D Systems; № по каталогу 3344-NG) в течение четырех дней (стадия 3), затем
c. DMEM с высоким содержанием глюкозы + 1% B27 (Invitrogen; № по каталогу 0791) + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II (Axxora; № по каталогу ALX-270-445) + 500 нм TBP ((2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактам) (Calbiochem; № по каталогу 565740) в течение шести дней (стадия 4).
В качестве контроля отдельные популяции клеток обрабатывали DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II в течение шести дней (стадия 4, группа контроля).
Как показано на фиг.1, обработка TBP на 4-й стадии приводила к увеличению количества экспрессирующих инсулин клеток (фиг.1, панель a). Было отмечено, что около 60% экспрессирующих инсулин клеток являются клетками, экспрессирующими один эндокринный гормон, при этом клетки экспрессировали инсулин и не экспрессировали глюкагон соматостатин и грелин (фиг.1, панели a и b; фиг.5, панели d и e). Экспрессирующие глюкагон клетки были также отмечены в обработанной TBP культуре. Большинство экспрессирующих глюкагон клеток также соэкспрессировали инсулин (фиг.1, панели а и b). В контрольной группе большинство клеток соэкспрессировали инсулин и глюкагон (фиг.1, панели c и d.).
В отдельном эксперименте клетки линии человеческих эмбриональных стволовых клеток H1 культивировали в покрытых MATRIGEL® (раствор 1:30) блюдцах со средой RPMI + 0,2% FBS + 100 нг/мл активина + 20 нг/мл WNT-3а, в течение одного дня с последующей обработкой средой RPMI + 0,5% FBS + 100 нг/мл активина A в течение еще двух дней (стадия 1), затем
a. DMEM/F12 + 2% FBS + 50 нг/мл FGF7 в течение трех дней (стадия 2), затем
b. DMEM с высоким содержанием глюкозы + 1% B27 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина в течение четырех дней (стадия 3), затем
c. Обработка 1: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нм TBP в течение шести дней (стадия 4, обработка 1), или
d. Обработка 2: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 100 нм TBP в течение шести дней (стадия 4, обработка 2), или
e. Обработка 3: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 20 нм TBP в течение шести дней (стадия 4, обработка 3), или
f. Обработка 4: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II в течение шести дней (стадия 4, обработка 4).
Для оценки влияния различных концентраций TPB на формирование клеток в рамках настоящего изобретения применялся иммуноцитохимический анализ. Значительное увеличение количества клеток, экспрессирующих только инсулин, наблюдалось в обеих группах TPB: 500 нм и 100 нм (фиг. 2, панели a и b). Анализ FACS подтвердил, что при обоих уровнях обработки in vitro формировалось 12% клеток, экспрессирующих только инсулин, а 15% этой популяции также экспрессировали NKX6.1 (Таблица 1 - NKX6.1/INS экспрессирующие клетки составили 2,4% от общей популяции). При 20 нм TPB, как и в контрольной группе, большинство клеток соэкспрессировали инсулин и глюкагон (фиг.2, панели c и d).
Таблица 1
Экспрессия маркеров, характерных для эндокринной линии поджелудочной железы, показанных как процент от общей популяции клеток
Синаптофизин INS NKX6.1 NKX6.1/INS
TPB
(500 нм)
38,3% 9,4% 45,7% 2,4%
TPB
(100 нм)
47,6% 14,4% 34,8% 3,1%
Чтобы дополнительно подтвердить, что воздействие на формирование экспрессирующих эндокринный гормон клеток было опосредовано активацией протеинкиназы С, отдельные популяции клеток линии человеческих эмбриональных стволовых клеток H1 культивировали в покрытых MATRIGEL® (раствор 1:30) блюдцах со средой RPMI + 0,2% FBS + 100 нг/мл активина A + 20 нг/мл WNT-3а, в течение одного дня с последующей обработкой средой RPMI + 0,5% FBS + 100 нг/мл активина A в течение еще двух дней (стадия 1), затем
a. DMEM/F12 + 2% FBS + 50 нг/мл FGF7 в течение трех дней (стадия 2), затем
b. DMEM с высоким содержанием глюкозы + 1% B27 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина в течение четырех дней (стадия 3), затем
c. Обработка 5: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нМ TBP в течение шести дней (стадия 4, обработка 5), или
d. Обработка 6: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нМ TPB + 5 мкM GÖ 6976 в течение шести дней (стадия 4, обработка 6), или
e. Обработка 7: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II (стадия 4, обработка 7), затем
f. DMEM с высоким содержанием глюкозы + 1% B27 в течение четырех дней (стадия 5).
Известно, что GÖ 6976 избирательно ингибирует Ca2+-зависимые изоформы протеинкиназы С. Значительное снижение количества клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, в культурах, получавших только TPB (фиг.3, панель a) и TPB и GÖ 6976 (фиг.3, панель b). Анализ FACS подтвердил, что обработка TPB (обработка 6) позволила получить 30,6% клеток, экспрессирующих синаптофизин, 12% - только инсулин и 4,6% - глюкагон. С другой стороны, обработка TPB и GÖ 6976 (обработка 7) позволила получить 10,6% клеток, экспрессирующих синаптофизин, при отсутствии заметного уровня клеток, экспрессирующих только инсулин (таблица 2). Разницы в общем количестве клеток между обработками 6 и 7 не было. (См. фиг.3, панели c и d, где показано окрашивание DAPI, отражающее общее количество клеток при обработках 6 и 7). Эти результаты показывают, что сигнализация протеинкиназы С может играть важную роль при формировании клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы.
Проверялись также и другие активаторы протеинкиназы С. К ним относились индолактам V (ILV) (Axxora; № по каталогу ALX-420-011-C300) и форбол-12-миристат-13-ацетат (PMA) (Calbiochem; № по каталогу 524400). Тем не менее, только TPB продемонстрировал формирование клеток, экспрессирующих только инсулин (фиг.4, панель a). Как ILV (фиг.4, панель b), так и PMA (фиг.4, панель c) при 500 нм после шести дней обработки приводили к образованию клеток, соэкспрессирующих инсулин и глюкагон. Анализ FACS подтвердил, что обработка TPB привела к формированию 12% клеток, экспрессирующих только инсулин, 4,6% клеток, экспрессирующих глюкагон, и 7,1% клеток, соэкспрессирующих инсулин и глюкагон. С другой стороны, обработка ILV привела к формированию 3% клеток, экспрессирующих только инсулин, 12% клеток, экспрессирующих глюкагон, и 12% клеток, соэкспрессирующих инсулин и глюкагон (таблица 2). Иммуноцитохимический анализ показал, что в культурах, обработанных TPB, 20% клеток, экспрессирующих инсулин, соэкспрессировали NKX6.1 (фиг.5, панель a) и PDX1 (фиг.5, панель b). Большинство клеток, экспрессирующих инсулин, соэкспрессировали NEUROD, производитель эндокрина (фиг.5, панель с). Очень небольшое количество экспрессирующих инсулин клеток соэкспрессировали соматостатин или грелин (GHRL) (фиг.5, панели d и e).
Таблица 2
Экспрессия маркеров, характерных для эндокринной линии поджелудочной железы, показанных как процент от общей популяции клеток
TPB ILV TPB
+Go6976
Синаптофизин 30,6% 56,8% 10,6%
INS 12% 3% -
GCG 4,6% 12,6% 3,1%
INS/GCG 7,1% 12,9% 4%
Пример 2
Альтернативный способ формирования популяции клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующих NKX6.1, инсулин и минимальное количество глюкагона
В отдельном эксперименте клетки линии человеческих эмбриональных стволовых клеток H1 культивировали в покрытых MATRIGEL® (раствор 1:30) блюдцах со средой RPMI + 0,2% FBS + 100 нг/мл активина А + 20 нг/мл WNT-3, в течение одного дня с последующей обработкой средой RPMI + 0,5% FBS + 100 нг/мл активина A в течение еще двух дней (стадия 1), затем
a. DMEM/F12 + 2% FBS + 50 нг/мл FGF7 в течение трех дней (стадия 2), затем
b. Обработка 8: DMEM с высоким содержанием глюкозы + 1% B27 + 50 нг/мл FGF7 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина + 20 нг/мл активина A + ингибитор киназы p38 (раскрывается в US6214830 при 2,5 мкМ) в течение четырех дней (стадия 3, обработка 8), или
c. Обработка 9: DMEM с высоким содержанием глюкозы + 1% B27 + 0,25 мкM, циклопамин-KAAD + 2 мкM ретиноевой кислоты (RA) + 100 нг/мл ноггина в течение четырех дней (стадия 3, обработка 9); затем
d. DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нМ TPB в течение шести дней (стадия 4).
Стадия 3, обработка 8 позволила получить популяцию клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы, соэкспрессирующих PDX1 и NKX6.1, но не экспрессирующих CDX2 и NGN3. С другой стороны, стадия 3, обработка 9 позволила получить популяцию клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы, соэкспрессирующих PDX1, NKX6.1 и NGN3. Было изучено воздействие на эти клеточные популяции обработки активатором протеинкиназы С (стадия 4 выше).
Был проведен анализ FACS, чтобы установить процент клеток, экспрессирующих только инсулин, клеток, экспрессирующих только глюкагон, клеток, соэкспрессирующих инсулин и глюкагон, клеток, экспрессирующих NKX6.1, клеток, экспрессирующих инсулин и NKX6.1, и клеток, экспрессирующих синаптофизин (панэндокринный маркер).
Как показано в таблице 3, популяция клеток, сформированная в результате обработки 8, позволила получить больший процент эндокринных клеток, отраженный в экспрессии синаптофизина: 49,7% от общей популяции клеток экспрессировали синаптофизин. 27,8% от общей популяции составляли клетки, экспрессирующие только инсулин.
С другой стороны, в популяции клеток, образовавшейся после обработки 9, содержалось 25,7% экспрессирующих синаптофизин клеток. 7,6% от общей популяции клеток экспрессировали только инсулин. Существенной разницы в количестве экспрессирующих только глюкагон клеток между группами обработки не наблюдалось, а процент экспрессирующих глюкагон клеток был значительно ниже, чем клеток, экспрессирующих инсулин.
Значительное количество клеток, экспрессирующих инсулин, также соэкспрессировали NKX6.1. В популяциях клеток, прошедших обработку 8, 11% от общей популяции экспрессировали инсулин и NKX6.1. В популяциях клеток, прошедших обработку 9, 2% от общей популяции экспрессировали инсулин и NKX6.1.
Иммунофлуоресцентный анализ подтвердили вышеприведенные данные (фиг.6). Обработка 8 привела к увеличению количества экспрессирующих инсулин клеток по сравнению с обработкой 9 (фиг.6, панели a и d). Большинство экспрессирующих глюкагон клеток были полигормональными (фиг.6, панели a, b, d и e). Эти результаты показывают, что популяцию клеток, полученных в результате обработки 8 (клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы, соэкспрессирующих PDX1 и NKX6.1, но не экспрессирующих CDX2 и NGN3), с большей эффективностью можно довести до дифференцировки в функциональные экспрессирующие инсулин клетки посредством способов, описанных в данном изобретении.
Таблица 3
Экспрессия маркеров, характерных для эндокринной линии поджелудочной железы, показанных как процент от общей популяции клеток
Синаптофизин Инсулин Глюкагон Инсулин/
глюкагон
NKX6.1 NKX6.1/
инсулин
T8 49,7% 27,8% 2,0% 16,4% 44,2% 11,0%
T9 25,7% 7,6% 2,5% 4,9% 61,7% 2,0%
Пример 3
Альтернативный способ формирования популяции клеток, экспрессирующих маркеры, характерные для эндокринной линии поджелудочной железы, соэкспрессирующих NKX6.1, инсулин и минимальное количество глюкагона
В другом эксперименте клетки линии человеческих эмбриональных стволовых клеток H1 культивировали в покрытых MATRIGEL® (раствор 1:30) блюдцах со средой RPMI + 0,2% FBS + 100 нг/мл активина A + 20 нг/мл WNT-3a в течение одного дня с последующей обработкой средой RPMI + 0,5% FBS + 100 нг/мл активина A в течение еще двух дней (стадия 1), затем
a. DMEM/F12 + 2% FBS + 50 нг/мл FGF7 в течение трех дней (стадия 2), затем
b. DMEM с высоким содержанием глюкозы + 1% B27 + 50 нг/мл FGF7 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина + 20 нг/мл активина A + ингибитор киназы p38 (JNJ3026582 при 2,5 мкМ) в течение четырех дней (стадия 3), затем
c. Обработка 10: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нм TPB в течение шести дней (стадия 4, обработка 10), или
d. Обработка 11: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нм TPB в течение девяти дней (стадия 4, обработка 11), или
e. Обработка 12: DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нм TPB в течение двенадцати дней (стадия 4, обработка 12).
Как показано в таблице 4, при продлении обработки активатором протеинкиназы С до девяти (обработка 11) или двенадцати дней (обработка 12) не было установлено дополнительных преимуществ. Клетки, экспрессирующие только инсулин, составили 27,8% от общей популяции после шести дней обработки 10. С другой стороны, количество клеток, экспрессирующих инсулин, снизилось до 10% после девяти дней обработки (обработка 11), а затем и до 4% после двенадцати дней обработки (обработка 12). Кроме того, общий процент клеток, соэкспрессирующих инсулин и NKX6.1 в популяции, также значительно снизился после продления обработки. Эти результаты показали, что шестидневная обработка ноггином, ингибитором Alk5 II и активатором протеинкиназы С достаточна для формирования клеток, описываемых в данном изобретении.
Таблица 4
Экспрессия маркеров, характерных для эндокринной линии поджелудочной железы, показанных как процент от общей популяции клеток
Синаптофизин Инсулин Глюкагон Инсулин/
глюкагон
NKX6.1 NKX6.1/
инсулин
6 дней 49,7% 27,8% 2,0% 16,4% 44,2% 11,0%
9 дней 43,5% 10,0% 6,6% 7,8% 33,5% 1,0%
12 дней 37,6% 4,4% 4% 6,3% 32,5% 1,0%
Пример 4
Имплантация клеток согласно данному изобретению мышам с врожденным отсутствием естественных клеток-киллеров с тяжелым комбинированным иммунодефицитом (ТКИД, SCID)
Клетки линии человеческих эмбриональных стволовых клеток H1 культивировали в покрытых MATRIGEL® (раствор 1:30) блюдцах со средой RPMI + 0,2% FBS + 100 нг/мл активина A + 20 нг/мл WNT-3a в течение одного дня с последующей обработкой средой RPMI + 0,5% FBS + 100 нг/мл активина A в течение еще двух дней (стадия 1), затем
a. DMEM/F12 + 2% FBS + 50 нг/мл FGF7 в течение трех дней (стадия 2), затем
b. DMEM с высоким содержанием глюкозы + 1% B27 + 50 нг/мл FGF7 + 0,25 мкМ циклопамин-KAAD + 100 нг/мл ноггина в течение четырех дней (стадия 3), затем
c. DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 500 нм TBP в течение шести дней (стадия 4).
В конце четвертой стадии клетки механически собирались стеклянной пипеткой на 1 мл и далее переносились на не допускающие прикрепления планшеты и культивировались в течение ночи. Получившиеся агрегаты клеток были собраны. Агрегаты, содержащие 5 миллионов клеток, были трансплантированы в почечную капсулу мышей с иммунодефицитом (ТКИД/Bg, животные № 47, 48, 49, 50 и 51). См. фиг.7.
После четырех недель функциональность производящих инсулин клеток в этих образцах ткани была проверена путем введения животным глюкозы с целью вызвать секрецию инсулина. Животным не давали есть 15-20 часов, после чего проводили ретроорбитальный отбор образца крови (до введения глюкозы). Далее каждому животному интраперитонеально вводили глюкозу в дозе около 3 г/кг в 30% растворе декстрозы и приблизительно через 60 минут после введения глюкозы отбиирали образец крови. Циркуляционный человеческий С-пептид обнаруживали с применением в сыворотке мышей сверхчувствительных пластин для твердофазного иммуноферментного анализа, предназначенных особо для выявления С-пептида человека (№ по каталогу 80-CPTHU-E01, Alpco Diagnostics, NH). Определение человеческого C-пептида показывает, что трансплантированные клетки секретируют инсулин.
Человеческий C-пептид определялся в крови животных уже через 4 недели после трансплантации, и его содержание со временем увеличивалось. Данные трансплантации представлены на фиг.7. По итогам месяца человеческий С-пептид (менее 0,2 нг/мл) в ответ на ввод глюкозы удалось обнаружить у 60% животных в группе исследования. Стимулируемый глюкозой уровень человеческого С-пептида в сыворотке крови увеличился в 5-10 раз у трех из четырех мышей после четырех недель. Через двенадцать недель после имплантации средний уровень стимулированного глюкозой уровня человеческого С-пептида в сыворотке крови у мышей с пересаженными клетками превысил 1 мг/мл (n=4).
Пример 5
Альтернативный способ формирования популяции клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы, соэкспрессирующих PDX1 и NKX6.1
Вкратце, клетки линии человеческих эмбриональных стволовых клеток H1 культивировали в покрытых MATRIGEL® (раствор 1:30) блюдцах со средой RPMI, обогащенной 0,2% FBS, 100 нг/мл активина A и 20 нг/мл WNT-3a в течение одного дня с последующей обработкой средой RPMI, обогащенной 0,5% FBS и 100 нг/мл активина A, в течение еще двух дней (стадия 1), затем
a. DMEM/F12 + 2% FBS + 50 нг/мл FGF7 в течение трех дней (стадия 2), затем
b. DMEM с высоким содержанием глюкозы + 1% B27 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина в течение четырех дней (стадия 3), затем
c. DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II + 20 нм PMA, или 100 нм TPB, или 20 нм форбол-12,13-дибутирата (PDBu) (Calbiochem, № по каталогу 524390) в течение шести дней (этап 4)
В качестве контроля отдельные популяции клеток обрабатывали DMEM с высоким содержанием глюкозы, обогащенным 1% B27, 100 нг/мл ноггина и 1 мкМ ингибитора ALK5 II в течение шести дней (стадия 4).
На стадии 4, в день 6 отбирали два экземпляра культур, изображения которых получали с помощью аппарата IN Cell Analyzer 1000 (GE Healthcare). Для компенсации возможных потерь клеток в ходе процедур анализа и последующего окрашивания для каждой лунки снимали по 100 проекций. Измерения общего количества клеток, общего количества клеток, экспрессирующих PDX1, и общего количества клеток, экспрессирующих NKX6.1, были получены для каждой лунки с использованием программного обеспечения IN Cell Developer Toolbox 1.7 (GE Healthcare). Для каждой повторной совокупности данных рассчитали средние значения и стандартные отклонения. Общее количество клеток, экспрессирующих белки PDX1 и NKX6.1, было представлено в процентах от общей популяции клеток. Как показано на фиг.8, в группах, подвергавшихся обработке активатором протеинкиназы С, резкое увеличение популяции клеток, экспрессирующих NKX6.1/PDX1, произошло при более низкой эффективной концентрации (около 20 нм) по сравнению с образцами, полученными после контрольной обработки. В 6-й день этапа 4 в популяции клеток, обрабатывавшейся активатором протеинкиназы С, или в контрольной популяции 92%±4% популяции экспрессировали PDX1. В группе, обрабатывавшейся активатором протеинкиназы С, 75%±5% клеток, экспрессирующих PDX1, экспрессировали и NKX6.1. При этом в популяциях, обработанных только ноггином и ингибитором бета-рецептора TGF (контроль), только 58%±5% клеток, экспрессирующих PDX1, экспрессировали NKX6.1. В присутствии активатора протеинкиназы С 20% клеток, экспрессирующих NKX6.1, соэкспрессировали маркер пролиферации, EdU (Click-iT® EdU Imaging Kit, Invitrogen, Cat#C10337).
Этот пример показывает, что активатор протеинкиназы С можно использовать в сочетании с ноггином и ингибитором бета-рецептора TGF при относительно низкой эффективной концентрации (~20 нМ) в целях содействия повышению экспрессии Nkx6.1, а также увеличению процента клеток, экспрессирующих PDX1 и NKX6.1.
Пример 6
Обработка клеток, экспрессирующих маркеры, характерные для линии эндодермы поджелудочной железы, активаторами протеинкиназы С
Вкратце, клетки линии человеческих эмбриональных стволовых клеток H1 культивировали в покрытых MATRIGEL® (раствор 1:30) блюдцах со средой RPMI, обогащенной 0,2% FBS, 100 нг/мл активина A и 20 нг/мл WNT-3a в течение одного дня с последующей обработкой средой RPMI, обогащенной 0,5% FBS и 100 нг/мл активина A, в течение еще двух дней (стадия 1), затем
a. DMEM/F12 + 2% FBS + 50 нг/мл FGF7 в течение трех дней (стадия 2), затем
b. T1: DMEM с высоким содержанием глюкозы + 1% B27 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл ноггина + 50 нг/мл FGF10 в течение четырех дней (стадия 3, T1), или
T2: DMEM с высоким содержанием глюкозы + 1% B27 + 0,25 мкМ циклопамин-KAAD + 2 мкМ ретиноевой кислоты (RA) + 100 нг/мл Noggin + 50 нг/мл FGF10 + 100 нМ ТРВ в течение четырех дней (стадия 3, T2), затем
c. DMEM с высоким содержанием глюкозы + 1% B27 + 100 нг/мл ноггина + 1 мкМ ингибитора ALK5 II в течение шести дней (стадия 4)
Как показано на фиг.9, в клетках, обработанных TPB (T2), наблюдалось значительное сокращение маркеров эндодермы поджелудочной железы PDX1, NKX6.1 и PTF1 alpha по сравнению с контрольной группой (T1). При помощи иммуногистохимии NKX6.1 обнаружить не удалось. Эти данные позволяют предположить, что обработка активатором протеинкиназы на стадии 3 не способствует формированию клеток, соэкспрессирующих PDX1/NKX6.1.
Публикации, цитируемые в настоящем документе, в силу ссылки на них полностью включаются в настоящий документ. Хотя различные аспекты изобретения иллюстрируются выше ссылками на примеры и предпочтительные варианты осуществления, подразумевается, что область изобретения ограничивается не упомянутым выше описанием, а следующими пунктами формулы изобретения, составленными в соответствии с принципами патентного законодательства.

Claims (21)

1. Способ получения популяции панкреатических эндокринных клеток, соэкспрессирующих NKX6.1 и инсулин, включающий обработку клеток панкреатической эндодермы, полученных при дифференцировке плюрипотентных стволовых клеток человека, фактором, способным ингибировать BMP, ингибитором сигнализации рецептора TGFβ и активатором протеинкиназы С, за исключением способа, где плюрипотентные стволовые клетки человека получены путем использования эмбриона человека.
2. Способ по п. 1, где менее чем 10% клеток в популяции экспрессируют глюкагон.
3. Способ по п. 1, где фактор, способный ингибировать BMP, представляет собой ноггин.
4. Способ по п. 3, где ноггин используют в концентрации от около 500 нг/мл до около 500 мкг/мл.
5. Способ по п. 3, где ноггин используют в концентрации 100 нг/мл.
6. Способ по п. 1, где ингибитор сигнализации рецептора TGFβ представляет собой ингибитор ALK5.
7. Способ по п. 6, где ингибитор ALK5 представляет собой ингибитор ALK II.
8. Способ по п. 7, где ингибитор ALK II используется при концентрации от около 0,1 мкМ до около 10 мкМ.
9. Способ по п. 7, где ингибитор ALK II используется при концентрации 1 мкМ.
10. Способ по п. 1, где способ включает обработку клеток панкреатической эндодермы ноггином и ингибитором ALK5.
11. Способ по п. 1, где активатор протеинкиназы С выбирают из группы, состоящей из (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактама, индолактама V, форбол-12,13-дибутирата и форбол-12-миристат-13-ацетата.
12. Способ по п. 11, где активатор протеинкиназы С представляет собой (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактам.
13. Способ по п. 12, где (2S,5S)-(E,E)-8-(5-(4-(трифторметил)фенил)-2,4-пентадиеноиламин)бензолактам используют при концентрации от около 20 нМ до около 500 нМ.
14. Способ по п. 11, где активатор протеинкиназы С представляет собой индолактам V.
15. Способ по п. 11, где активатор протеинкиназы С представляет собой форбол-12,13-дибутират.
16. Способ по п. 11, где активатор протеинкиназы С представляет собой форбол-12-миристат-13-ацетат.
17. Способ по п. 1, где клетки панкреатической эндодермы получают поэтапной дифференцировкой клеток дефинитивной эндодермы, где клетки панкреатической эндодермы экспрессируют по меньшей мере один из следующих маркеров: PDX1, NKX6.1, HNF1 бета, PTF1 альфа, HNF6, HNF4 альфа, SOX9, HB9 или PROX1.
18. Способ по п. 10, где клетки панкреатической эндодермы культивируют в течение 6 дней.
19. Способ по пп. 1, 10 или 11, где обработка дополнительно включает использование одной или несколько сред GÖ 6976, RPMI или DMEM.
20. Способ по п. 1, где эмбриональные стволовые клетки человека происходят из эмбриональной стволовой клеточной линии H1, H7, H9, SA002 или BG01v.
21. Способ лечения диабета, включающий получение панкреатических эндокринных клеток способом по пп. 1, 10, 11, 19 или 20 и имплантирование указанных клеток.
RU2017102194A 2009-12-23 2010-12-16 Способ получения популяции панкреатических эндокринных клеток, соэкспрессирующих nkx6.1 и инсулин, и способ лечения диабета RU2701335C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28967109P 2009-12-23 2009-12-23
US61/289,671 2009-12-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2012131400A Division RU2610176C2 (ru) 2009-12-23 2010-12-16 Дифференцировка человеческих эмбриональных стволовых клеток

Publications (3)

Publication Number Publication Date
RU2017102194A RU2017102194A (ru) 2018-12-19
RU2017102194A3 RU2017102194A3 (ru) 2018-12-19
RU2701335C2 true RU2701335C2 (ru) 2019-09-25

Family

ID=44151662

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2012131400A RU2610176C2 (ru) 2009-12-23 2010-12-16 Дифференцировка человеческих эмбриональных стволовых клеток
RU2017102194A RU2701335C2 (ru) 2009-12-23 2010-12-16 Способ получения популяции панкреатических эндокринных клеток, соэкспрессирующих nkx6.1 и инсулин, и способ лечения диабета

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2012131400A RU2610176C2 (ru) 2009-12-23 2010-12-16 Дифференцировка человеческих эмбриональных стволовых клеток

Country Status (13)

Country Link
US (4) US9150833B2 (ru)
EP (1) EP2516625A4 (ru)
JP (2) JP6392496B2 (ru)
KR (2) KR101867369B1 (ru)
CN (1) CN102741395B (ru)
AU (2) AU2010333839C1 (ru)
BR (1) BR112012017761A2 (ru)
CA (1) CA2784415C (ru)
MX (1) MX343786B (ru)
RU (2) RU2610176C2 (ru)
SG (2) SG10201408552YA (ru)
WO (1) WO2011079017A2 (ru)
ZA (1) ZA201205487B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774069C2 (ru) * 2020-11-06 2022-06-15 Общество с ограниченной ответственностью "ВитаМед" Способ получения инсулин-секретирующих клеток

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
DK2185693T3 (da) 2007-07-31 2019-09-23 Lifescan Inc Differentiering af humane embryoniske stamceller
CN107574142B (zh) 2007-11-27 2021-07-06 生命扫描有限公司 人胚胎干细胞的分化
CA2715878C (en) 2008-02-21 2017-06-13 Centocor Ortho Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
KR20180018839A (ko) 2008-06-30 2018-02-21 얀센 바이오테크 인코포레이티드 만능 줄기 세포의 분화
JP2012507289A (ja) 2008-10-31 2012-03-29 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の膵内分泌系への分化
US9234178B2 (en) 2008-10-31 2016-01-12 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
EP2356227B1 (en) 2008-11-14 2018-03-28 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
MX356756B (es) 2008-11-20 2018-06-11 Centocor Ortho Biotech Inc Células madre pluripotentes en microportadores.
EP2366022B1 (en) 2008-11-20 2016-04-27 Janssen Biotech, Inc. Methods and compositions for cell attachment and cultivation on planar substrates
JP6219568B2 (ja) 2009-07-20 2017-10-25 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の分化
MX343786B (es) * 2009-12-23 2016-11-22 Janssen Biotech Inc Diferenciacion de celulas madre embrionarias humanas.
JP6013196B2 (ja) 2010-03-01 2016-10-25 ヤンセン バイオテツク,インコーポレーテツド 多能性幹細胞から誘導した細胞を精製するための方法
RU2587634C2 (ru) 2010-05-12 2016-06-20 Янссен Байотек, Инк. Дифференцирование эмбриональных стволовых клеток человека
AU2015268659B2 (en) * 2010-05-12 2017-12-21 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
ES2659393T3 (es) 2010-08-31 2018-03-15 Janssen Biotech, Inc. Diferenciación de células madre embrionarias humanas
KR101851956B1 (ko) 2010-08-31 2018-04-25 얀센 바이오테크 인코포레이티드 인간 배아 줄기 세포의 분화
US9574173B2 (en) 2010-11-15 2017-02-21 Accelerated Biosciences Corp. Generation of neural stem cells from human trophoblast stem cells
CN108220224A (zh) 2011-06-21 2018-06-29 诺沃—诺迪斯克有限公司 自多潜能干细胞有效诱导定形内胚层
WO2013016194A1 (en) * 2011-07-22 2013-01-31 Yale University Endometrial derived stem cells and their methods of use
RU2705001C2 (ru) 2011-12-22 2019-11-01 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека в одногормональные инсулинположительные клетки
CA2866590A1 (en) 2012-03-07 2013-09-12 Janssen Biotech, Inc. Defined media for expansion and maintenance of pluripotent stem cells
LT2844739T (lt) * 2012-04-30 2019-10-10 University Health Network Būdai ir kompozicijos, skirti kasos ląstelių pirmtakų ir funkcinių beta ląstelių generavimui iš hpscs
JP6469003B2 (ja) * 2012-06-08 2019-02-13 ヤンセン バイオテツク,インコーポレーテツド 膵内分泌細胞へのヒト胚性幹細胞の分化
EP2893000B1 (en) 2012-09-03 2019-04-10 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
EP3591036B1 (en) 2012-11-30 2023-03-22 Accelerated BioSciences Corp. Methods of differentiating stem cells by modulating mir-124
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
EP2938723B1 (en) * 2012-12-31 2023-02-01 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators
EP4039798A1 (en) 2012-12-31 2022-08-10 Janssen Biotech, Inc. Suspension and clustering of human pluripotent cells
JP6557146B2 (ja) * 2012-12-31 2019-08-07 ヤンセン バイオテツク,インコーポレーテツド 多能性幹細胞から膵臓内分泌細胞膵臓内分泌細胞への分化のための、空気−液体界面での、ヒト胚性幹細胞の培養
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
US20170029778A1 (en) 2013-06-11 2017-02-02 President And Fellows Of Harvard College Sc-beta cells and compositions and methods for generating the same
CA2949056A1 (en) 2014-05-16 2015-11-19 Janssen Biotech, Inc. Use of small molecules to enhance mafa expression in pancreatic endocrine cells
WO2016100898A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof
WO2016100930A1 (en) 2014-12-18 2016-06-23 President And Fellows Of Harvard College Methods for generating stem cell-derived b cells and methods of use thereof
EP3234110B1 (en) 2014-12-18 2024-02-28 President and Fellows of Harvard College METHODS FOR GENERATING STEM CELL-DERIVED ß CELLS AND USES THEREOF
CN108699515A (zh) 2016-02-24 2018-10-23 诺和诺德股份有限公司 由人多能干细胞衍生的内分泌祖细胞生成功能性β细胞
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
MA45502A (fr) 2016-06-21 2019-04-24 Janssen Biotech Inc Génération de cellules bêta fonctionnelles dérivées de cellules souches pluripotentes humaines ayant une respiration mitochondriale glucose-dépendante et une réponse en sécrétion d'insuline en deux phases
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
CN111630155A (zh) 2017-11-15 2020-09-04 森玛治疗公司 胰岛细胞制备性组合物和使用方法
EP3833365A4 (en) 2018-08-10 2022-05-11 Vertex Pharmaceuticals Incorporated ISLE DIFFERENTIATION DERIVED FROM STEM CELLS
US10724052B2 (en) 2018-09-07 2020-07-28 Crispr Therapeutics Ag Universal donor cells
EP3975926A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates, Inc. A biocompatible membrane composite
US20220233299A1 (en) 2019-05-31 2022-07-28 W. L. Gore & Associates, Inc. Cell encapsulation devices with controlled oxygen diffusion distances
JP2022534545A (ja) 2019-05-31 2022-08-01 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 生体適合性メンブレン複合体
US20220234006A1 (en) 2019-05-31 2022-07-28 W. L. Gore & Associates, Inc. A biocompatible membrane composite
CA3150233A1 (en) 2019-09-05 2021-03-11 Alireza Rezania UNIVERSAL DONOR CELLS
JP2022547505A (ja) 2019-09-05 2022-11-14 クリスパー セラピューティクス アクチェンゲゼルシャフト ユニバーサルドナー細胞
RU2743710C1 (ru) * 2019-12-11 2021-02-24 федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО НГМУ Минздрава России) Средство, снижающее относительное содержание низкодифференцированных и повышающее относительное содержание высокодифференцированных клеток в инвазивной карциноме молочной железы неспецифического типа
JP2024503291A (ja) 2020-12-31 2024-01-25 クリスパー セラピューティクス アクチェンゲゼルシャフト ユニバーサルドナー細胞

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080260700A1 (en) * 2005-08-26 2008-10-23 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
WO2009018453A1 (en) * 2007-07-31 2009-02-05 Lifescan, Inc. Differentiation of human embryonic stem cells
RU2351648C2 (ru) * 2001-11-09 2009-04-10 Артесел Сайенсиз, Инк. Дифференцировка стромальных клеток, полученных из жировой ткани, в эндокринные клетки поджелудочной железы и их использование
WO2009048675A1 (en) * 2007-07-31 2009-04-16 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells

Family Cites Families (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (de) 1968-08-26 1975-12-29 Binder Fa G Maschenware sowie verfahren zur herstellung derselben
US3935067A (en) 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
DE3610165A1 (de) * 1985-03-27 1986-10-02 Olympus Optical Co., Ltd., Tokio/Tokyo Optisches abtastmikroskop
US5215893A (en) 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5089396A (en) 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US5567612A (en) 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5759830A (en) 1986-11-20 1998-06-02 Massachusetts Institute Of Technology Three-dimensional fibrous scaffold containing attached cells for producing vascularized tissue in vivo
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
SU1767433A1 (ru) 1989-11-27 1992-10-07 Пермский государственный медицинский институт Способ определени инсулинорезистентности имунного генеза у больных сахарным диабетом I типа
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
RU2139351C1 (ru) 1991-04-25 1999-10-10 Чугаи Сейяку Кабусики Кайся Н- и l-цепи моноклонального антитела рм1 (монат) к рецептору il-6r человека и их v-области, модифицированная монат, его н- и l-цепи и их v-области, cdr- последовательности, днк-последовательности
US5449383A (en) 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (ja) 1993-02-17 2004-05-10 味の素株式会社 免疫抑制剤
JP2813467B2 (ja) 1993-04-08 1998-10-22 ヒューマン・セル・カルチャーズ・インコーポレーテッド 細胞培養法および培地
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (ru) 1993-11-19 1995-09-21 Ciba Geigy
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
DE69525971T3 (de) 1994-12-29 2013-01-10 Chugai Seiyaku K.K. Verwendung eines pm-1 antikörpers oder eines mh 166 antikörpers zur verstärkung des anti-tumor-effektes von cisplatin oder carboplatin
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
US5681561A (en) 1995-06-07 1997-10-28 Life Medical Sciences, Inc. Compositions and methods for improving autologous fat grafting
JP2001508302A (ja) 1997-01-10 2001-06-26 ライフ テクノロジーズ,インコーポレイテッド 胚性幹細胞血清置換
JP2001522357A (ja) 1997-04-24 2001-11-13 オーソ−マクニール・フアーマシユーチカル・インコーポレーテツド 炎症性疾患の治療に有用な置換イミダゾール
ES2285779T3 (es) 1997-07-03 2007-11-16 Osiris Therapeutics, Inc. Celulas madre mesenquimatosas humanas de sangre periferica.
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
AU9393398A (en) 1997-09-16 1999-04-05 Egea Biosciences, Inc. Method for the complete chemical synthesis and assembly of genes and genomes
US6800480B1 (en) 1997-10-23 2004-10-05 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells in feeder-free culture
US6372779B1 (en) 1997-12-29 2002-04-16 Ortho Pharmaceutical Corporation Anti-inflammatory compounds
JP4740452B2 (ja) 1998-03-18 2011-08-03 オシリス セラピューティクス,インコーポレイテッド 移植で免疫応答の予防と処置のための間葉幹細胞を利用する方法、組成物およびその使用法
MY132496A (en) 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
IL144359A0 (en) 1999-01-21 2002-05-23 Vitro Diagnostics Inc Immortalized cell lines and methods of making the same
US6815203B1 (en) 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
WO2001023528A1 (en) 1999-09-27 2001-04-05 University Of Florida Research Foundation Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6685936B2 (en) 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
JP2003517592A (ja) 1999-12-13 2003-05-27 ザ スクリプス リサーチ インスティチュート 膵島αおよびβ前駆体の同定ならびに単離のためのマーカー
US7005252B1 (en) 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
CN1449439A (zh) 2000-06-26 2003-10-15 株式会社雷诺再生医学研究所 细胞级分包括能分化为神经细胞的细胞
WO2002059083A2 (en) 2000-10-23 2002-08-01 Smithkline Beecham Corporation Novel compounds
ES2263681T3 (es) 2000-12-08 2006-12-16 Ortho-Mcneil Pharmaceutical, Inc. Compuestos de pirrolina indazolil-substituidos como inhibidores de la kinasa.
MXPA03005139A (es) 2000-12-08 2004-01-29 Ortho Mcneil Pharm Inc Compuestos macroheterociclicos utiles como inhibidores de cinasa.
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
EP1366148A2 (en) 2001-01-24 2003-12-03 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, represented by THE DEPARTMENT OF HEALTH & HUMAN SERVICES Differentiation of stem cells to pancreatic endocrine cells
TR201819416T4 (tr) 2001-01-25 2019-01-21 The United States Of America Represented By The Sec Dep Of Health And Human Services Boronik asit bileşiklerinin formülasyonu.
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
US20050054102A1 (en) 2001-04-19 2005-03-10 Anna Wobus Method for differentiating stem cells into insulin-producing cells
JP4296781B2 (ja) 2001-04-24 2009-07-15 味の素株式会社 幹細胞及びその分離方法
WO2002092756A2 (en) 2001-05-15 2002-11-21 Rappaport Family Institute For Research In The Medical Sciences Insulin producing cells derived from human embryonic stem cells
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (ko) 2001-07-05 2004-02-11 주식회사 우리기술 전력케이블의 다중절연진단장치 및 그 방법
GB0117583D0 (en) 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
CA2456981C (en) 2001-08-06 2012-02-28 Bresagen, Inc. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
EP1444345A4 (en) 2001-10-18 2004-12-08 Ixion Biotechnology Inc TRANSFORMATION OF STEM CELLS AND LIVER PROGENITORS INTO FUNCTIONAL CELLS OF PANCREAS
AU2002363659B2 (en) 2001-11-15 2008-09-25 Children's Medical Center Corporation Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof
EP1921133B1 (en) 2001-12-07 2015-05-20 Cytori Therapeutics, Inc. System for processing lipoaspirate cells
KR101008868B1 (ko) 2001-12-07 2011-01-17 제론 코포레이션 인간 배아 줄기세포 유래의 섬세포
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
CA2471540A1 (en) 2001-12-28 2003-07-10 Cellartis Ab A method for the establishment of a pluripotent human blastocyst-derived stem cell line
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
US20030180268A1 (en) 2002-02-05 2003-09-25 Anthony Atala Tissue engineered construct for supplementing or replacing a damaged organ
EP1498478A1 (en) 2002-04-17 2005-01-19 Otsuka Pharmaceutical Co., Ltd. Method of forming pancreatic beta cells from mesenchymal cells
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
ES2300573T3 (es) 2002-05-08 2008-06-16 Janssen Pharmaceutica Nv Inhibidores de cinasa sustituidos con pirrolina.
US20060003446A1 (en) * 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
AU2003228255A1 (en) 2002-05-28 2003-12-19 Becton, Dickinson And Company Pancreatic acinar cells into insulin-producing cells
KR20050008787A (ko) 2002-06-05 2005-01-21 얀센 파마슈티카 엔.브이. 키나제 저해제로서의 비스인돌릴-말레이미드 유도체
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (zh) 2002-07-08 2004-10-20 徐如祥 人神经干细胞的培养方法
US6877147B2 (en) 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
CA2494040A1 (en) 2002-07-29 2004-02-05 Es Cell International Pte Ltd. Multi-step method for the differentiation of insulin positive, glucose
WO2004016747A2 (en) 2002-08-14 2004-02-26 University Of Florida Bone marrow cell differentiation
EP1539928A4 (en) 2002-09-06 2006-09-06 Amcyte Inc POSIOTIVE PANCREATIC ENDOCRINE PROGENITOR CELLS CD56 IN ADULT HUMAN BEINGS
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
AU2003285172A1 (en) 2002-11-08 2004-06-03 The Johns Hopkins University Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
AU2003302702B2 (en) 2002-12-05 2008-08-07 Technion Research & Development Foundation Ltd. Cultured human pancreatic islets, and uses thereof
ES2571355T3 (es) 2002-12-16 2016-05-24 Technion Res & Dev Foundation Sistema de cultivo sin células alimentadoras ni xenocontaminantes para células madre embrionarias humanas
US20050118148A1 (en) 2002-12-20 2005-06-02 Roland Stein Compositions and methods related to mammalian Maf-A
CA2514539C (en) 2003-01-29 2012-03-06 Takeda Pharmaceutical Company Limited Process for producing coated preparation
RU2359671C2 (ru) 2003-01-29 2009-06-27 Такеда Фармасьютикал Компани Лимитед Способ получения препарата с покрытием
US20070154981A1 (en) 2003-02-14 2007-07-05 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
WO2004073633A2 (en) 2003-02-14 2004-09-02 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for modulating the development of stem cells
CA2520861A1 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
EP1641913B1 (en) 2003-06-27 2016-01-06 DePuy Synthes Products, Inc. Postpartum cells derived from umbilical cord tissue, and methods of making and using the same
IL161903A0 (en) 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (it) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero.
US20050042595A1 (en) 2003-08-14 2005-02-24 Martin Haas Banking of multipotent amniotic fetal stem cells
US7157275B2 (en) 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
WO2005021728A2 (en) 2003-08-27 2005-03-10 Stemcells California, Inc. Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations
EP1696899A1 (en) 2003-12-17 2006-09-06 Allergan, Inc. Methods for treating retinoid responsive disorders using selective inhibitors of cyp26a and cyp26b
US20060030042A1 (en) 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
US7541185B2 (en) 2003-12-23 2009-06-02 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
EP1709159B1 (en) 2003-12-23 2019-05-15 Viacyte, Inc. Definitive endoderm
CN109628371B (zh) 2003-12-23 2021-02-19 维亚希特公司 定形内胚层
TWI334443B (en) 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
US20050233446A1 (en) 2003-12-31 2005-10-20 Parsons Xuejun H Defined media for stem cell culture
WO2005071066A1 (en) 2004-01-23 2005-08-04 Board Of Regents, The University Of Texas System Methods and compositions for preparing pancreatic insulin secreting cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
WO2005080551A2 (en) 2004-02-12 2005-09-01 University Of Newcastle Upon Tyne Stem cells
US7964401B2 (en) 2004-02-19 2011-06-21 Kyoto University Screening method for somatic cell nuclear reprogramming substance affecting ECAT2 and ECAT3
JP2008500809A (ja) 2004-03-09 2008-01-17 ライフスキャン・インコーポレイテッド インスリン産生細胞を発生させるための方法
EP1730261A4 (en) 2004-03-10 2007-11-28 Univ California COMPOSITIONS AND METHODS FOR GROWING EMBRYONIC STEM CELLS
SG150567A1 (en) 2004-03-23 2009-03-30 Akaike Toshihiro Pluripotent stem cell growing method
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
WO2005097977A2 (en) 2004-04-01 2005-10-20 Wisconsin Alumni Research Foundation Differentiation of stem cells to endoderm and pancreatic lineage
KR101278421B1 (ko) 2004-04-27 2013-07-15 비아싸이트, 인크. Pdx1 발현 내배엽
JP5687816B2 (ja) 2004-07-09 2015-03-25 ヴィアサイト,インコーポレイテッド 胚体内胚葉を分化させるための因子を同定する方法
MX2007001772A (es) 2004-08-13 2007-07-11 Univ Georgia Res Found Composiciones y metodos para auto-renovacion y diferenciacion de celulas troncales embrionicas humanas.
WO2006026473A2 (en) 2004-08-25 2006-03-09 University Of Georgia Research Foundation, Inc. METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
CN101044235B (zh) 2004-09-08 2013-01-02 威斯康星校友研究基金会 胚胎干细胞的培养基和培养
NZ553235A (en) 2004-09-08 2009-11-27 Wisconsin Alumni Res Found Culturing human pluripotent stem cells
JP2008538276A (ja) 2005-01-28 2008-10-23 ノヴァセラ・リミテッド 胚幹細胞培養のための方法
EP1859026A2 (en) 2005-01-31 2007-11-28 ES Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
US20060182724A1 (en) 2005-02-15 2006-08-17 Riordan Neil H Method for expansion of stem cells
CN101188942B (zh) 2005-03-04 2011-11-30 生命扫描有限公司 成年胰衍生的基质细胞
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
WO2006113470A2 (en) 2005-04-15 2006-10-26 Geron Corporation Cancer treatment by combined inhibition of proteasome and telomerase activities
CN100425694C (zh) 2005-04-15 2008-10-15 北京大学 诱导胚胎干细胞向胰腺细胞分化的方法
US20080227656A1 (en) 2005-04-26 2008-09-18 Flemming Besenbacher Biosurface Structure Array
WO2006126574A1 (ja) 2005-05-24 2006-11-30 Kumamoto University Es細胞の分化誘導方法
AU2006202209B2 (en) 2005-05-27 2011-04-14 Lifescan, Inc. Amniotic fluid derived cells
KR20080024194A (ko) 2005-06-10 2008-03-17 아이알엠 엘엘씨 배아 줄기 세포의 다능성을 유지하는 화합물
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
US20080199959A1 (en) 2005-06-21 2008-08-21 Ge Healthcare Bio-Sciences Ab Method For Cell Culture
WO2007002086A2 (en) 2005-06-22 2007-01-04 Geron Corporation Suspension culture of human embryonic stem cells
ATE439349T1 (de) 2005-06-30 2009-08-15 Janssen Pharmaceutica Nv Cyclische anilinopyridinotriazine als gsk-3- inhibitoren
US20080194021A1 (en) 2005-07-29 2008-08-14 Mays Robert W Use of a Gsk-3 Inhibitor to Maintain Potency of Culture Cells
WO2007012144A1 (en) 2005-07-29 2007-02-01 Australian Stem Cell Centre Limited Compositions and methods for growth of pluripotent cells
EP1962719A4 (en) 2005-08-29 2011-05-04 Technion Res And Dev Of Foundation Ltd MEDIA FOR BREEDING STEM CELLS
AU2006285467A1 (en) 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving mesenchymal stem cells
US9422521B2 (en) 2005-09-12 2016-08-23 Es Cell International Pte Ltd. Differentiation of pluripotent stem cells with a kinase inhibitor or PGI2
CA2625883A1 (en) 2005-10-14 2007-04-26 Regents Of The University Of Minnesota Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
US7732202B2 (en) 2005-10-21 2010-06-08 International Stem Cell Corporation Oxygen tension for the parthenogenic activation of human oocytes for the production of human embryonic stem cells
ES2687233T3 (es) 2005-10-27 2018-10-24 Viacyte, Inc. Endodermo de intestino proximal dorsal y ventral que expresa PDX-1
CN103113463B (zh) 2005-12-13 2015-02-18 国立大学法人京都大学 核重新编程因子
WO2007082963A1 (es) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Líneas de células madre embrionarias humanas y métodos para usar las mismas
WO2007101130A2 (en) 2006-02-23 2007-09-07 Novocell, Inc. Compositions and methods useful for culturing differentiable cells
SG10201405380QA (en) * 2006-03-02 2014-10-30 Cythera Inc Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
EP2021462B1 (en) 2006-04-28 2019-01-09 Lifescan, Inc. Differentiation of human embryonic stem cells
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
US8685730B2 (en) 2006-05-02 2014-04-01 Wisconsin Alumni Research Foundation Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage
GB2452186B (en) 2006-05-02 2011-01-26 Wisconsin Alumni Res Found Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
WO2007136673A2 (en) 2006-05-19 2007-11-29 Medistem Laboratories, Inc. Treatment of disc degenerative disease and compositions for same
US7964402B2 (en) 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
US20090298169A1 (en) 2006-06-02 2009-12-03 The University Of Georgia Research Foundation Pancreatic and Liver Endoderm Cells and Tissue by Differentiation of Definitive Endoderm Cells Obtained from Human Embryonic Stems
CN101541953A (zh) 2006-06-02 2009-09-23 佐治亚大学研究基金会 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织
US8415153B2 (en) 2006-06-19 2013-04-09 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (zh) 2006-06-23 2009-06-03 中日友好医院 神经干细胞三维立体培养体外扩增的方法
EP2046946B8 (en) 2006-06-26 2017-01-25 Lifescan, Inc. Pluripotent stem cell culture
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
WO2008004990A2 (en) 2006-07-06 2008-01-10 Es Cell International Pte Ltd Method for stem cell culture and cells derived therefrom
AU2007277364B2 (en) 2006-07-26 2010-08-12 Viacyte, Inc. Methods of producing pancreatic hormones
EP3441459B1 (en) 2006-08-02 2021-03-17 Technion Research & Development Foundation Limited Methods of expanding embryonic stem cells in a suspension culture
KR101331510B1 (ko) 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
US20080091234A1 (en) 2006-09-26 2008-04-17 Kladakis Stephanie M Method for modifying a medical implant surface for promoting tissue growth
MX2009004096A (es) 2006-10-17 2009-06-16 Stiefel Laboratories Metabolitos de talarozol.
US20100323442A1 (en) 2006-10-17 2010-12-23 Emmanuel Edward Baetge Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
US8835163B2 (en) * 2006-10-18 2014-09-16 The Board Of Trustees Of The University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
WO2008056779A1 (fr) 2006-11-09 2008-05-15 Japan As Represented By The President Of International Medical Center Of Japan Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire
TW200836749A (en) 2007-01-09 2008-09-16 Vioquest Pharmaceuticals Inc Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
KR20090115142A (ko) 2007-01-30 2009-11-04 유니버시티 오브 조지아 리서치 파운데이션, 인코포레이티드 초기 중배엽 세포,내배엽 및 중배엽 계통의 생성에 유용한 중내배엽 세포의 안정한 집단 및 다능성 유주 세포(mmc)
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
WO2008148105A1 (en) 2007-05-25 2008-12-04 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
DK2173863T3 (en) 2007-06-29 2019-01-21 Fujifilm Cellular Dynamics Inc Automated method and apparatus for embryonic stem cell culture
CN101861386A (zh) 2007-07-18 2010-10-13 生命扫描有限公司 人胚胎干细胞的分化
WO2009027644A2 (en) 2007-08-24 2009-03-05 Stichting Het Nederlands Kanker Instituut Composition
WO2009061442A1 (en) 2007-11-06 2009-05-14 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells form non-embryonic human cells
CN107574142B (zh) * 2007-11-27 2021-07-06 生命扫描有限公司 人胚胎干细胞的分化
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (ja) 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
EP2250252A2 (en) 2008-02-11 2010-11-17 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
CA2715878C (en) 2008-02-21 2017-06-13 Centocor Ortho Biotech Inc. Methods, surface modified plates and compositions for cell attachment, cultivation and detachment
JPWO2009110215A1 (ja) 2008-03-03 2011-07-14 独立行政法人科学技術振興機構 繊毛細胞の分化誘導方法
WO2009116951A2 (en) 2008-03-17 2009-09-24 Agency For Science, Technology And Research Microcarriers for stem cell culture
RU2359030C1 (ru) 2008-03-19 2009-06-20 Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" Способ получения эндотелиальных клеток из эмбриональных стволовых клеток человека (варианты)
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
WO2009131568A1 (en) 2008-04-21 2009-10-29 Cythera, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
WO2009132083A2 (en) * 2008-04-22 2009-10-29 President And Fellows Of Harvard College Compositions and methods for promoting the generation of pdx1+ pancreatic cells
US8623648B2 (en) 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
DK2297319T3 (en) 2008-06-03 2015-10-19 Viacyte Inc GROWTH FACTORS FOR PREPARING DEFINITIVE ENDODERM
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
DE102008032236A1 (de) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential
KR20180018839A (ko) 2008-06-30 2018-02-21 얀센 바이오테크 인코포레이티드 만능 줄기 세포의 분화
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
WO2010022395A2 (en) 2008-08-22 2010-02-25 President And Fellows Of Harvard College Methods of reprogramming cells
US9234178B2 (en) 2008-10-31 2016-01-12 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
JP2012507289A (ja) 2008-10-31 2012-03-29 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の膵内分泌系への分化
CA2907326A1 (en) 2008-11-04 2010-05-14 Chad Green Stem cell aggregate suspension compositions and methods for differentiation thereof
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
EP2356227B1 (en) 2008-11-14 2018-03-28 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
MX356756B (es) 2008-11-20 2018-06-11 Centocor Ortho Biotech Inc Células madre pluripotentes en microportadores.
DK2356218T3 (en) 2008-12-05 2017-08-21 Inserm (Institut Nat De La Santé Et De La Rech Médicale) METHOD AND MEDIUM FOR NEURAL DIFFERENTIZATION OF PLURIPOTENT CELLS
US8785185B2 (en) 2009-07-20 2014-07-22 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
JP6219568B2 (ja) 2009-07-20 2017-10-25 ヤンセン バイオテツク,インコーポレーテツド ヒト胚性幹細胞の分化
EP2494035B1 (en) 2009-10-29 2018-02-28 Janssen Biotech, Inc. Pluripotent stem cells
FI20096288A0 (fi) 2009-12-04 2009-12-04 Kristiina Rajala Formulations and methods for culturing stem cells
MX343786B (es) 2009-12-23 2016-11-22 Janssen Biotech Inc Diferenciacion de celulas madre embrionarias humanas.
RU2664864C1 (ru) 2009-12-23 2018-08-23 Янссен Байотек, Инк. Способы увеличения экспрессии ngn3 и nkx6.1 в эндокринных клетках поджелудочной железы
JP5762979B2 (ja) 2009-12-29 2015-08-12 武田薬品工業株式会社 膵ホルモン産生細胞の製造法
US20130023045A1 (en) 2010-02-03 2013-01-24 National Cancer Center Induced hepatic stem cell and process for production thereof, and applications of the cell
WO2011108993A1 (en) 2010-03-02 2011-09-09 National University Of Singapore Culture additives to boost stem cell proliferation and differentiation response
EP3199623B1 (en) 2010-03-31 2021-07-28 The Scripps Research Institute Reprogramming cells
CN103068970A (zh) 2010-04-25 2013-04-24 西奈山医学院 来自多能细胞的前部前肠内胚层的形成
RU2587634C2 (ru) 2010-05-12 2016-06-20 Янссен Байотек, Инк. Дифференцирование эмбриональных стволовых клеток человека
WO2011160066A1 (en) 2010-06-17 2011-12-22 Regents Of The University Of Minnesota Production of insulin producing cells
BR112013002811A8 (pt) 2010-08-05 2020-01-28 Wisconsin Alumni Res Found meios básicos simplificados para cultura celular pluripotente de humano
ES2585028T3 (es) 2010-08-31 2016-10-03 Janssen Biotech, Inc. Diferenciación de células madre pluripotentes
ES2659393T3 (es) 2010-08-31 2018-03-15 Janssen Biotech, Inc. Diferenciación de células madre embrionarias humanas
WO2012117333A1 (en) 2011-02-28 2012-09-07 Stempeutics Research Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
US20130274184A1 (en) 2011-10-11 2013-10-17 The Trustees Of Columbia University In The City Of New York Er stress relievers in beta cell protection
WO2013055397A1 (en) 2011-10-14 2013-04-18 Children's Medical Center Corporation Inhibition and enhancement of reprogramming by chromatin modifying enzymes
RU2705001C2 (ru) 2011-12-22 2019-11-01 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека в одногормональные инсулинположительные клетки
US10519422B2 (en) 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
JP6469003B2 (ja) 2012-06-08 2019-02-13 ヤンセン バイオテツク,インコーポレーテツド 膵内分泌細胞へのヒト胚性幹細胞の分化
EP2893000B1 (en) 2012-09-03 2019-04-10 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
EP2938723B1 (en) 2012-12-31 2023-02-01 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
SG10201708332WA (en) 2013-03-15 2017-11-29 Jackson Lab Isolation of non-embryonic stem cells and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2351648C2 (ru) * 2001-11-09 2009-04-10 Артесел Сайенсиз, Инк. Дифференцировка стромальных клеток, полученных из жировой ткани, в эндокринные клетки поджелудочной железы и их использование
US20080260700A1 (en) * 2005-08-26 2008-10-23 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
WO2009018453A1 (en) * 2007-07-31 2009-02-05 Lifescan, Inc. Differentiation of human embryonic stem cells
WO2009048675A1 (en) * 2007-07-31 2009-04-16 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774069C2 (ru) * 2020-11-06 2022-06-15 Общество с ограниченной ответственностью "ВитаМед" Способ получения инсулин-секретирующих клеток

Also Published As

Publication number Publication date
CN102741395A (zh) 2012-10-17
US9150833B2 (en) 2015-10-06
BR112012017761A2 (pt) 2015-09-15
US20170183630A1 (en) 2017-06-29
EP2516625A2 (en) 2012-10-31
AU2016202260B2 (en) 2017-04-27
US20160032250A1 (en) 2016-02-04
MX343786B (es) 2016-11-22
AU2010333839C1 (en) 2016-07-21
RU2610176C2 (ru) 2017-02-08
US9593310B2 (en) 2017-03-14
US20110151560A1 (en) 2011-06-23
SG10201408552YA (en) 2015-02-27
JP2013515480A (ja) 2013-05-09
JP6632514B2 (ja) 2020-01-22
KR101773538B1 (ko) 2017-08-31
WO2011079017A9 (en) 2011-12-22
EP2516625A4 (en) 2013-07-31
KR101867369B1 (ko) 2018-06-14
SG181687A1 (en) 2012-07-30
RU2017102194A (ru) 2018-12-19
JP6392496B2 (ja) 2018-09-19
CA2784415C (en) 2019-06-18
CN102741395B (zh) 2016-03-16
WO2011079017A3 (en) 2011-10-20
KR20120097539A (ko) 2012-09-04
US10704025B2 (en) 2020-07-07
AU2010333839A1 (en) 2012-07-05
ZA201205487B (en) 2018-11-28
RU2017102194A3 (ru) 2018-12-19
KR20170102055A (ko) 2017-09-06
MX2012007413A (es) 2012-07-17
WO2011079017A2 (en) 2011-06-30
RU2012131400A (ru) 2014-01-27
JP2017079760A (ja) 2017-05-18
US20200291360A1 (en) 2020-09-17
AU2010333839B2 (en) 2016-01-14
CA2784415A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US20200291360A1 (en) Use of noggin, an alk5 inhibitor and a protein kinase c activator, to produce endocrine cells
RU2540016C2 (ru) Дифференцировка эмбриональных стволовых клеток человека
RU2528861C2 (ru) Дифференцирование человеческих эмбриональных стволовых клеток в линию панкреатических эндокринных клеток
RU2579278C2 (ru) Популяция панкреатических эндокринных клеток-предшественников для снижения концентрации глюкозы в крови и способ дифференцировки панкреатических эндодермальных клеток
RU2540021C2 (ru) Дифференцировка эмбриональных стволовых клеток человека
RU2663339C1 (ru) Дифференцирование эмбриональных стволовых клеток человека
RU2682719C2 (ru) Лечение диабета при помощи панкреатических эндокринных клеток-предшественников
US20230151332A1 (en) Methods for making insulin in vivo