RU2597588C2 - Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды - Google Patents

Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды Download PDF

Info

Publication number
RU2597588C2
RU2597588C2 RU2015112569/12A RU2015112569A RU2597588C2 RU 2597588 C2 RU2597588 C2 RU 2597588C2 RU 2015112569/12 A RU2015112569/12 A RU 2015112569/12A RU 2015112569 A RU2015112569 A RU 2015112569A RU 2597588 C2 RU2597588 C2 RU 2597588C2
Authority
RU
Russia
Prior art keywords
aforementioned
approximately
temperature
critical
water
Prior art date
Application number
RU2015112569/12A
Other languages
English (en)
Other versions
RU2015112569A (ru
Inventor
Сринивас КИЛАМБИ
Киран Л. КАДАМ
Original Assignee
Ренмэтикс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ренмэтикс, Инк. filed Critical Ренмэтикс, Инк.
Publication of RU2015112569A publication Critical patent/RU2015112569A/ru
Application granted granted Critical
Publication of RU2597588C2 publication Critical patent/RU2597588C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/535Screws with thread pitch varying along the longitudinal axis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • C13K1/04Purifying
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/007Separation of sugars provided for in subclass C13K
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/22Other features of pulping processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу повышения уровня глюкозы, производимой из лигноцеллюлозной биомассы, и продукту, изготовленному таким способом. Способ повышения уровня глюкозы, производимой из лигноцеллюлозной биомассы, включает изготовление фракционированной биомассы, в которой содержатся первая твердая фракция, которую составляют целлюлоза и нерастворимый лигнин; и первая жидкая фракция; смешивание вышеупомянутой твердой фракции с водой для изготовления суспензии; необязательное предварительное нагревание вышеупомянутой суспензии до температуры, составляющей менее чем критическая температура воды; введение в контакт вышеупомянутой суспензии со второй реакционной текучей средой, при котором образуются вторая твердая фракция, содержащая нерастворимый лигнин; и вторая жидкая фракция, содержащая сахарид, выбранный из группы, которую составляют целлоолигосахариды, глюкоза и их смеси; в котором вышеупомянутая вторая реакционная текучая среда содержит воду и необязательно диоксид углерода, причем вышеупомянутая вторая реакционная текучая среда имеет температуру и давление выше критической точки воды и диоксида углерода; и уменьшение температуры вышеупомянутой реакционной смеси до температуры ниже критической температуры воды; и необязательный гидролиз вышеупомянутой второй жидкой фракции для получения глюкозы. Техническим результатом изобретения является повышение эффективности конверсии биомассы из возобновляемых ресурсов и/или отходов в более ценные продукты. 2 н. и 25 з.п. ф-лы, 7 пр., 3 табл., 15 ил.

Description

Настоящая заявка испрашивает приоритет патентной заявки США № 61/296101, поданной 19 января 2010 г., полное описание которой включено в настоящий документ в качестве ссылки.
Область техники, к которой относится изобретение
Настоящее изобретение, в общем, относится к сверхкритической или близкой к сверхкритической обработке биомассы. Более конкретно, оно относится к способам обработки биомассы для производства сбраживаемых сахаров и лигнина, использующим сверхкритические, близкие к сверхкритическим и/или докритические текучие среды.
Уровень техники, к которой относится изобретение
Биомасса, особенно лигноцеллюлозная биомасса, представляет собой важный исходный материал, и ее можно перерабатывать, получая горючие материалы или промышленные химические продукты. Технологии современного уровня требуют больших затрат времени и, следовательно, являются капиталоемкими. Сверхкритические растворители, такие как сверхкритическая вода и сверхкритический диоксид углерода, используют для экстракции разнообразных веществ и ускорения химических реакций. Полезные применения этих продуктов с добавленной стоимостью увеличивают важность технологии на основе сверхкритической текучей среды. Требуются модификации предшествующего уровня техники для повышения эффективности конверсии биомассы из возобновляемых ресурсов и/или отходов в более ценные продукты. Способы и устройства согласно настоящему изобретению предназначены для достижения этих, а также других, важных целей.
Сущность изобретения
В одном варианте осуществления настоящее изобретение относится к способам непрерывной обработки биомассы, включающим:
стадию предварительной обработки, где указанная биомасса вступает в контакт с первой сверхкритической, околокритической или докритической текучей средой, образуя твердую матрицу и первую жидкую фракцию;
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда практически не содержит спирта C1-C5; и
стадию гидролиза, где указанная твердая матрица вступает в контакт со второй сверхкритической или близкой к сверхкритической текучей средой для получения второй жидкой фракции (содержащей растворимые сахара и растворимый лигнин) и нерастворимой содержащей лигнин фракции;
где указанная вторая сверхкритическая или околокритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная вторая сверхкритическая или околокритическая текучая среда практически не содержит спиртов C1-C5.
В еще одном варианте осуществления настоящее изобретение относится к способам непрерывной обработки биомассы, включающим:
стадию предварительной обработки, где указанная биомасса вступает в контакт с первой сверхкритической, околокритической или докритической текучей средой, образуя твердую матрицу и первую жидкую фракцию;
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда практически не содержит спирта C1-C5; и
первую стадию гидролиза, где указанная твердая матрица вступает в контакт со второй сверхкритической или близкой к сверхкритической текучей средой для получения второй жидкой фракции (содержащей растворимые сахара и растворимый лигнин) и нерастворимой содержащей лигнин фракции;
где указанная вторая сверхкритическая или околокритическая текучая среда содержит воду и, необязательно, CO2;
где указанная вторая сверхкритическая или околокритическая текучая среда практически не содержит спиртов C1-C5;
вторую стадию гидролиза, где указанная вторая жидкая фракция вступает в контакт с третьей околокритической или докритической текучей средой, образуя третью жидкую фракцию, содержащую мономеры глюкозы;
где указанная третья околокритическая или докритическая текучая среда содержит воду и, необязательно, кислоту.
В еще одном варианте осуществления настоящее изобретение относится к способам непрерывной обработки биомассы, включающим:
стадию предварительной обработки, где указанная биомасса вступает в контакт с первой сверхкритической, околокритической или докритической текучей средой, образуя твердую матрицу и первую жидкую фракцию;
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда практически не содержит спирта C1-C5;
стадию гидролиза;
где указанная твердая матрица вступает в контакт со второй сверхкритической или близкой к сверхкритической текучей средой для получения второй жидкой фракции (содержащей растворимые сахара и растворимый лигнин, если он присутствует) и нерастворимой содержащей лигнин фракции;
где указанная вторая сверхкритическая или околокритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная вторая сверхкритическая или околокритическая текучая среда практически не содержит спиртов C1-C5; и
стадию гидролиза ксилоолигосахаридов, где указанная первая жидкая фракция вступает в контакт с четвертой околокритической или докритической текучей средой, образуя четвертую жидкую фракцию, содержащую мономеры ксилозы.
В еще одном варианте осуществления настоящее изобретение относится к способам непрерывной обработки биомассы, включающим:
стадию предварительной обработки, где указанная биомасса вступает в контакт с первой сверхкритической, околокритической или докритической текучей средой, образуя предварительно обработанную суспензию, содержащую твердую матрицу, и первую жидкую фракцию, содержащую ксилоолигосахариды;
первую стадию разделения, где разделяют указанную твердую матрицу и указанную первую жидкую фракцию;
первую стадию гидролиза, где указанная твердая матрица вступает в контакт со второй сверхкритической или околокритической текучей средой, образуя нерастворимую содержащую лигнин фракцию и вторую жидкую фракцию, содержащую целлоолигосахариды;
вторую стадию разделения, где разделяют указанную нерастворимую содержащую лигнин фракцию и указанную вторую жидкую фракцию; и
вторую стадию гидролиза, где указанная вторая жидкая фракция вступает в контакт с третьей околокритической или докритической текучей средой, образуя продукт, содержащий мономеры глюкозы; и
необязательно, третью стадию гидролиза, где указанная первая жидкая фракция вступает в контакт с четвертой околокритической или докритической текучей средой, образуя второй продукт, содержащий мономеры ксилозы.
В других варианты осуществления настоящее изобретение относится к способам повышения уровня ксилозы, полученной из биомассы, включающим:
фракционирование указанной биомассы для получения:
твердой фракции, содержащей:
целлюлозу; и
нерастворимый лигнин; и
первой жидкой фракции при первой температуре и при первом давлении, содержащей:
растворимый сахарид C5, выбранный из группы, которую составляют ксилоолигосахариды, ксилоза и их смеси;
отделение указанной твердой фракции от указанной первой жидкой фракции при втором давлении;
где указанное первое давление и указанное второе давление являются практически одинаковыми; добавление к указанной первой жидкой фракции водного раствора кислоты для повышения уровня указанного растворимого сахарида C5 в указанной жидкой фракции, чтобы получить вторую жидкую фракцию при второй температуре; и, необязательно, гидролиз указанной второй жидкой фракции для получения ксилозы.
В еще одном варианте осуществления настоящее изобретение относится к устройству, приспособленному для непрерывной конверсии биомассы, включающему реактор предварительной обработки и реактор гидролиза, соединенный с указанным реактором предварительной обработки.
Краткое описание чертежей
Сопровождающие чертежи, которые приведены для обеспечения лучшего понимания настоящего изобретения и включены в качестве составляющей части настоящего описания, иллюстрируют варианты осуществления настоящего изобретения и вместе с описанием служат для разъяснения принципов настоящего изобретения. На чертежах:
Фиг. 1 представляет блок-схему, показывающую один вариант осуществления способа согласно настоящему изобретению.
Фиг. 2 представляет блок-схему, показывающую один вариант осуществления части предварительной обработки биомассы настоящего изобретения.
Фиг. 3 представляет схему введения биомассы в реактор предварительной обработки путем экструзии согласно одному варианту осуществления настоящего изобретения.
Фиг. 4 представляет вид в разрезе двухшнекового экструдера, используемого для введения биомассы в реактор предварительной обработки в одном варианте осуществления настоящего изобретения.
Фиг. 5 представляет типичные выходы (в процентах от теоретического максимума для каждого компонента) определенных компонентов смеси, полученной после предварительной обработки биомассы согласно одному варианту осуществления настоящего изобретения.
Фиг. 6 представляет схему разделения жидких и твердых фаз, обеспечиваемого с помощью экструдера согласно одному варианту осуществления настоящего изобретения.
Фиг. 7 представляет схему обработки твердой матрицы, полученной путем предварительной обработки биомассы согласно одному варианту осуществления настоящего изобретения.
Фиг. 8 представляет один пример схемы введения твердой матрицы полученной путем предварительной обработки биомассы в реактор для обработки с помощью экструдера и эдуктора согласно одному варианту осуществления настоящего изобретения.
Фиг. 9 представляет конический реактор для обработки согласно одному варианту осуществления настоящего изобретения.
Фиг. 10 представляет реактор для обработки с непрерывным перемешиванием согласно одному варианту осуществления настоящего изобретения.
Фиг. 11 представляет альтернативный вариант осуществления реактора для обработки с непрерывным перемешиванием согласно одному варианту осуществления настоящего изобретения.
Фиг. 12 представляет выходы (в процентах от теоретического максимума для каждого компонента) определенных компонентов смеси, полученной путем обработки предварительно обработанной твердой матрицы при 377°C в зависимости от времени выдерживания согласно одному варианту осуществления настоящего изобретения.
Фиг. 13 представляет типичные выходы мономера глюкозы (в процентах от максимального теоретического выхода глюкозы) в зависимости от температуры гидролиза согласно одному варианту осуществления настоящего изобретения.
Фиг. 14 представляет суммарный выход мономера ксилозы (в процентах от максимального теоретического выхода ксилозы) в зависимости от температуры гидролиза при различных значениях времени выдерживания согласно одному варианту осуществления настоящего изобретения (непрерывная предварительная обработка биомассы).
Фиг. 15 представляет выход мономера ксилозы (в процентах от максимального теоретического выхода ксилозы) в зависимости от температуры гидролиза при различных значениях времени выдерживания и различных уровнях содержания серной кислоты согласно одному варианту осуществления настоящего изобретения.
Подробное описание изобретения
При использовании выше и во всем описании перечисленные ниже термины, если не определены другие условия, следует понимать как имеющие следующие значения.
Хотя настоящее изобретение можно осуществлять в разнообразных формах, приведенное ниже описание нескольких вариантов его осуществления составлено с пониманием того, что настоящий документ следует рассматривать в качестве примерного представления настоящего изобретения, и он не предназначен для ограничения настоящего изобретения конкретными проиллюстрированными вариантами его осуществления. Заголовки приведены исключительно для удобства, и их не следует истолковывать как ограничивающие настоящее изобретение каким-либо образом. Варианты осуществления, проиллюстрированные под каким-либо заголовком, можно сочетать с вариантами осуществления, проиллюстрированными под каким-либо другим заголовком.
Использование численных значений в разнообразных количественных величинах, приведенных в настоящей заявке, если определенно не предусмотрены другие условия, предназначено в качестве приближений, как если бы минимальным и максимальным значениям предшествовало бы слово «приблизительно». Таким образом, небольшие отклонения от приведенного значения можно использовать для достижения практически таких же результатов, как в случае приведенного значения. Кроме того, описание интервалов предусматривает непрерывный интервал, включающий каждое значение между приведенными значениями минимума и максимума, а также любые интервалы, которые можно образовать из указанных значений. Кроме того, в настоящем документе описаны любые и все соотношения (и интервалы любых указанных соотношений), которые можно получить делением приведенного численного значения на любое другое приведенное численное значение. Соответственно, специалист оценит, что множество таких соотношений и интервалов, а также интервалов соотношений можно однозначно вывести из численных значений, представленных в настоящем документе, и во всех случаях указанные соотношения и интервалы, а также интервалы соотношений представляют разнообразные варианты осуществления настоящего изобретения.
При использовании в настоящем документе, термин «практически не содержит» относится к содержанию в композиции, которое составляет менее чем приблизительно 1 мас.%, предпочтительно менее чем приблизительно 0,5 мас.% и предпочтительнее менее чем приблизительно 0,1 мас.% указанного материала по отношению к суммарной массе композиции.
Биомасса
Биомасса представляет собой возобновляемый источник энергии, содержащий биологический материал на основе углерода, полученный из недавно живших организмов. Эти организмы могут представлять собой растения, животных, грибы и т.д. Примеры биомассы включают без ограничения древесину, твердые бытовые отходы, производственные отходы, пищевые отходы, чёрный щелочной раствор (побочный продукт процессов получения целлюлозы из древесины) и т.д. Ископаемое топливо обычно не рассматривают в качестве биомассы, несмотря на то, что оно, в конечном счете, образуется из биологического материала на основе углерода. Термин «биомасса» при использовании в настоящем документе не включает источники ископаемого топлива.
Биомассу можно перерабатывать, получая многочисленные химические продукты. Как правило, биомассу можно перерабатывать, используя термические способы, химические способы, ферментативные способы или их сочетания.
Сверхкритические, докритические и околокритические текучие среды
Сверхкритическая текучая среда представляет собой текучую среду при температуре выше ее критической температуры и при давлении выше ее критического давления. Сверхкритическая текучая среда существует на уровне или выше своей «критической точки», т.е. точки с максимальной температурой и давлением, при которых жидкая и паровая (газовая) фазы способны существовать в равновесии друг с другом. Выше критического давления и критической температуры исчезает различие между жидкой и газовой фазами. Сверхкритическая текучая среда обладает приблизительно свойствами проникновения газа одновременно со свойствами жидкости в качестве растворителя. Соответственно, экстракция сверхкритической текучей средой обладает преимуществами высокой проникающей способности и хорошей растворяющей способности.
В литературе описаны следующие критические температуры и давления: для чистой воды критическая температура составляет приблизительно 374,2°C, и критическое давление составляет приблизительно 221 бар (22,1 МПа). Диоксид углерода имеет критическую точку при температуре, составляющей приблизительно 31°C, и при манометрическом давлении, составляющем приблизительно 72,9 атм (1072 фунтов на кв. дюйм или 7,3 МПа). Этанол имеет критическую точку при температуре, составляющей приблизительно 243°C, и при давлении, составляющем приблизительно 63 атм. (6,3 МПа). Метанол имеет критическую точку при температуре, составляющей приблизительно 239°C (512,8 K), и при абсолютном давлении, составляющем приблизительно 1174,0 фунтов на кв. дюйм (80,9 бар или 8,09 МПа). Критические точки других спиртов можно найти в литературе или определить экспериментально.
Околокритическая вода имеет температуру, составляющую или превышающую приблизительно 300°C и находящуюся ниже критической температуры воды (374,2°C), и достаточно высокое давление, обеспечивающее существование всей текучей среды в жидкой фазе. Докритическая вода имеет температуру, составляющую менее чем приблизительно 300°C, и достаточно высокое давление, обеспечивающее существование всей текучей среды в жидкой фазе. Температура докритической воды может составлять более чем приблизительно 250°C и менее чем приблизительно 300°C, и во многих случаях докритическая вода имеет температуру, составляющую от приблизительно 250°C до приблизительно 280°C. Термин «горячая вода под давлением» используется в настоящем документе взаимозаменяемо для обозначения воды, которая находится в своем критическом или сверхкритическом состоянии, или определена в настоящем документе как околокритическая или докритическая, или имеет другую температуру, составляющую более чем приблизительно 50°C, но менее чем докритическую, и такое давление, что вода находится в жидком состоянии.
При использовании в настоящем документе термин «сверхкритическая текучая среда» (например, сверхкритическая вода, сверхкритический этанол, сверхкритический CO2 и т.д.) означает текучую среду, которая была бы сверхкритической, если бы присутствовала в чистом виде при данных условиях температуры и давления. Например, «сверхкритическая вода» означает воду, существующую при температуре, составляющей, по меньшей мере, приблизительно 374,2°C, и при давлении, составляющем, по меньшей мере, приблизительно 221 бар (22,1 МПа), независимо от того, что вода представляет собой чистую воду или присутствует в виде смеси (содержащей, например, воду и этанол, воду и CO2 и т.д.). Таким образом, например, выражение «смесь докритической воды и сверхкритического диоксида углерода» означает смесь воды и диоксида углерода при температуре и давлении выше критической точки диоксида углерода, но ниже критической точки воды, независимо от того, что сверхкритическая фаза содержит воду, и независимо от того, что водная фаза содержит какое-либо количество диоксида углерода. Например, смесь докритической воды и сверхкритического CO2 может иметь температуру от приблизительно 250°C до приблизительно 280°C и давление, составляющее, по меньшей мере, приблизительно 225 бар (22,5 МПа).
При использовании в настоящем документе термин «спирт C1-C5» означает спирт, содержащий от 1 до 5 атомов углерода. Примеры спиртов C1-C5 включают, но не ограничиваются этим, метанол, этанол, н-пропанол, изопропанол, н-бутанол, втор-бутанол, трет-бутанол, изобутанол, н-пентанол, 2-пентанол, 3-пентанол, 2-метил-1-бутанол, 2-метил-2-бутанол, 3-метил-l-бутанол, 3-метил-2-бутанол и 2,2-диметил-1-пропанол. Можно использовать смеси одного или более указанных спиртов.
При использовании в настоящем документе термин «твердая матрица» означает композицию, содержащую твердый или зернистый компонент.
При использовании в настоящем документе термин «жидкая фракция» означает жидкость, содержащую, по меньшей мере, один компонент, который представляет собой продукт реакции или стадии обработки. В качестве примера и без ограничения, жидкая фракция после стадии гидролиза может содержать продукт стадии гидролиза с непрореагировавшими компонентами, и/или один или более дополнительных продуктов или побочных продуктов стадии гидролиза, и/или один или более продуктов стадии предварительной обработки.
При использовании в настоящем документе термин «непрерывный» означает процесс, который не прерывается в своем течении, или в котором происходят только перерывы, паузы или остановки, являющиеся моментальными по сравнению с продолжительностью процесса. Обработка биомассы является «непрерывной», когда биомасса поступает в устройство без перерыва или без существенного перерыва, или обработка указанной биомассы не осуществляется как периодический процесс.
При использовании в настоящем документе термин «выдерживание» означает продолжительность времени, в течение которого данная часть или частица материала находится в пределах реакционной зоны или резервуара реактора. «Время выдерживания», при использовании в настоящем документе, включая примеры и данные, приведено при условиях окружающей среды и необязательно представляет собой фактически истекшее время.
Фиг. 1 представляет схему одного варианта осуществления способа согласно настоящему изобретению для конверсии лигноцеллюлозной биомассы 102 в ксилозу (в форме раствора) 107, глюкозу (в форме раствора 115) и лигнин (в твердой форме) 116. Лигноцеллюлозную биомассу 102 предварительно обрабатывают в реакторе предварительной обработки 101, используя горячую воду под давлением (HCW) 103 (где горячая вода под давлением находится при докритических условиях) и, необязательно, сверхкритический CO2 104, чтобы гидролизовать гемицеллюлозу в гемицеллюлозные сахара, например, ксилозу и ксилоолигосахариды. Полученную суспензию 105 подвергают разделению 106 на твердую и жидкую фазы (S/L); жидкая фаза содержит гемицеллюлозные сахара, и твердая фаза содержит, главным образом, глюкан и лигнин. Необязательно, кислоту 108, которая предпочтительно представляет собой неорганическую кислоту (такую как серная кислота), можно добавлять отдельно или как часть текучей среды для гашения (не показано). Выходы гемицеллюлозных сахаров в жидкой фазе и глюкана и лигнина в твердой фазе, как правило, составляют не менее чем 80%, не менее чем 90% и не менее чем 90% (от теоретического), соответственно. Эту твердую матрицу 109 смешивают с водой и необязательно подогревают, затем подвергают гидролизу в реакторе гидролиза 110, используя сверхкритические и околокритические текучие среды. Сверхкритическая вода (SCW) 111 и сверхкритический CO2 112 (и необязательно кислота 113) воздействуют на глюкан, селективно гидролизуя его, в то время как основная масса лигнина остается нерастворимой. После разделения 114 твердой и жидкой фаз получают жидкую фазу, содержащую гексозные сахара 115, и твердую фазу, содержащую, главным образом, лигнин 116. Необязательно, кислоту 113, предпочтительно неорганическую кислоту (такую как серная кислота) можно также добавлять, что ускоряет гидролиз целлюлозы, одновременно задерживая солюбилизацию лигнина. Лигнин служит в качестве топлива 117 (такого как топливо, используемое в бойлере, который не показан), в то время как гексозные и пентозные сахара представляют собой исходные материалы для брожения и производства имеющих высокую стоимость промежуточных продуктов и химических реагентов.
Предварительная обработка биомассы
В одном варианте осуществления способа согласно настоящему изобретению биомассу подвергают непрерывной обработке, включающей стадию предварительной обработки, где указанная биомасса вступает в контакт с первой сверхкритической, околокритической или докритической текучей средой, образуя твердую матрицу и первую жидкую фракцию. В еще одном варианте осуществления сверхкритическая или околокритическая текучая среда содержит воду и, необязательно, диоксид углерода, и практически не содержит спиртов C1-C5. В еще одном варианте осуществления сверхкритическая или околокритическая текучая среда содержит воду и диоксид углерода. В вариантах осуществления настоящего изобретения, где сверхкритическая или околокритическая текучая среда содержит диоксид углерода, количество присутствующего диоксида углерода может составлять менее чем приблизительно 10%, менее чем приблизительно 9%, менее чем приблизительно 8%, менее чем приблизительно 7%, менее чем приблизительно 6%, менее чем приблизительно 5%, менее чем приблизительно 4%, менее чем приблизительно 3%, менее чем приблизительно 2% или менее чем приблизительно 1%. В еще одном варианте осуществления в сверхкритической или околокритической текучей среде не содержится диоксид углерода. В еще одном варианте осуществления в сверхкритической или околокритической текучей среде не содержится спирт.
В еще одном варианте осуществления стадия предварительной обработки происходит при температуре и давлении выше критической точки, по меньшей мере, одного компонента текучей среды. В еще одном варианте осуществления стадия предварительной обработки происходит при температуре и давлении выше критической точки всех компоненты текучей среды. В еще одном варианте осуществления стадия предварительной обработки происходит при температуре, составляющей от приблизительно 180°C до приблизительно 260°C, например, от приблизительно 185°C до приблизительно 255°C, от приблизительно 190°C до приблизительно 250°C, от приблизительно 195°C до приблизительно 245°C, от приблизительно 200°C до приблизительно 240°C, от приблизительно 205°C до приблизительно 235°C, от приблизительно 210°C до приблизительно 230°C, от приблизительно 215°C до приблизительно 225°C, приблизительно 180°C, приблизительно 185°C, приблизительно 190°C, приблизительно 195°C, приблизительно 200°C, приблизительно 205°C, приблизительно 210°C, приблизительно 215°C, приблизительно 220°C, приблизительно 225°C, приблизительно 230°C, приблизительно 235°C, приблизительно 240°C, приблизительно 245°C, приблизительно 250°C, приблизительно 255°C или приблизительно 260°C.
В еще одном варианте осуществления стадия предварительной обработки происходит при давлении, составляющем от приблизительно 50 бар (5 МПа) до приблизительно 110 бар (11 МПа), например, от приблизительно 50 бар (5 МПа) до приблизительно 110 бар (11 МПа), от приблизительно 60 бар (6 МПа) до приблизительно 105 бар (10,5 МПа), от приблизительно 70 бар (7 МПа) до приблизительно 100 бар (10 МПа), от приблизительно 80 бар (8 МПа) до приблизительно 95 бар (9,5 МПа), приблизительно 50 бар (5 МПа), приблизительно 55 бар (5,5 МПа), приблизительно 60 бар (6 МПа), приблизительно 65 бар (6,5 МПа), приблизительно 70 бар (7 МПа), приблизительно 75 бар (7,5 МПа), приблизительно 80 бар (8 МПа), приблизительно 85 бар (8,5 МПа), приблизительно 90 бар (9 МПа), приблизительно 95 бар (9,5 МПа), приблизительно 100 бар (10 МПа), приблизительно 105 бар (10,5 МПа) или приблизительно 110 бар (11 МПа).
В еще одном варианте осуществления стадия предварительной обработки происходит при температуре от приблизительно 180°C до приблизительно 260°C и при давлении от приблизительно 50 бар (5 МПа) до приблизительно 110 бар (11 МПа). В еще одном варианте осуществления стадия предварительной обработки происходит при температуре от приблизительно 230°C до приблизительно 240°C и при давлении, составляющем от приблизительно 50 бар (5 МПа).
В еще одном варианте осуществления биомассу выдерживают на стадии предварительной обработки в течение от приблизительно 1 до приблизительно 5 минут, например, приблизительно 1 минуты, приблизительно 1,1 минуты, приблизительно 1,2 минуты, приблизительно 1,3 минуты, приблизительно 1,4 минуты, приблизительно 1,5 минуты, приблизительно 1,6 минуты, приблизительно 1,7 минуты, приблизительно 1,8 минуты, приблизительно 1,9 минуты, приблизительно 2 минут, приблизительно 2,1 минуты, приблизительно 2,2 минуты, приблизительно 2,3 минуты, приблизительно 2,4 минуты, приблизительно 2,5 минуты, приблизительно 2,6 минуты, приблизительно 2,7 минуты, приблизительно 2,8 минуты, приблизительно 2,9 минуты, приблизительно 3 минут, приблизительно 3,1 минуты, приблизительно 3,2 минуты, приблизительно 3,3 минуты, приблизительно 3,4 минуты, приблизительно 3,5 минуты, приблизительно 3,6 минуты, приблизительно 3,7 минуты, приблизительно 3,8 минуты, приблизительно 3,9 минуты, приблизительно 4 минут, приблизительно 4,1 минуты, приблизительно 4,2 минуты, приблизительно 4,3 минуты, приблизительно 4,4 минуты, приблизительно 4,5 минуты, приблизительно 4,6 минуты, приблизительно 4,7 минуты, приблизительно 4,8 минуты, приблизительно 4,9 минуты или приблизительно 5 минут.
В одном варианте осуществления продукты стадии предварительной обработки охлаждают после завершения стадии предварительной обработки. Охлаждение можно осуществлять любыми способами, известными в технике, включая, без ограничения, непосредственное охлаждение, косвенное охлаждение, пассивное охлаждение и т.д. Термин «непосредственное охлаждение» при использовании в настоящем документе означает, что охлаждающая текучая среда вступает в контакт или смешивается с продуктами стадии предварительной обработки, где охлаждающая текучая среда имеет меньшую температуру, чем продукты стадии предварительной обработки. В качестве примера и без ограничения, непосредственное охлаждение можно осуществлять путем контакта продуктов стадии предварительной обработки с охлаждающей текучей средой, содержащей воду, где охлаждающая текучая среда имеет меньшую температуру, чем продукты стадии предварительной обработки. В вариантах осуществления непосредственного охлаждения охлаждающая текучая среда вступает в непосредственный контакт и может смешиваться с продуктами стадии предварительной обработки. С другой стороны, термин «косвенное охлаждение» при использовании в настоящем документе означает, что охлаждение осуществляют способом, в котором продукты стадии предварительной обработки не вступают в контакт и не смешиваются с охлаждающей текучей средой. В качестве примера и без ограничения, косвенное охлаждение можно осуществлять путем охлаждения, по меньшей мере, части резервуара, в котором находятся продукты стадии предварительной обработки. В варианты осуществления косвенного охлаждения продукты стадии предварительной обработки не вступают в непосредственный контакт и, таким образом, не смешиваются с охлаждающей текучей средой. Термин «пассивное охлаждение» при использовании в настоящем документе означает, что температура предварительно обработанной биомассы уменьшается без контакта предварительно обработанной биомассы с охлаждающей текучей средой. В качестве примера и без ограничения, предварительно обработанную биомассу можно пассивно охлаждать, выдерживая предварительно обработанную биомассу в резервуаре или контейнере для хранения в течение период времени, за который температура предварительно обработанной биомассы уменьшается в соответствии с температурными условиями окружающей среды. В качестве альтернативы, предварительно обработанную биомассу можно пассивно охлаждать, пропуская предварительно обработанную биомассу через трубу или другое передающее устройство по пути ко второму реактору для обработки, где труба или другое передающее устройство не охлаждается путем контакта с охлаждающей текучей средой. Термин «охлаждающая текучая среда» при использовании в настоящем документе включает твердые вещества, жидкости, газы и их сочетания. В вариантах осуществления как непосредственного, так и косвенного охлаждения охлаждение можно осуществлять иным способом, кроме использования охлаждающей текучей среды, например путем индукции. Термин «теплообмен» при использовании в настоящем документе включает непосредственное охлаждение, косвенное охлаждение, пассивное охлаждение и их сочетания.
Разделение предварительно обработанной биомассы на твердую и жидкую фазы
В одном варианте осуществления предварительно обработанная биомасса содержит твердую матрицу и жидкую фракцию. Твердая фракция может содержать, например, целлюлозу и лигнин, в то время как жидкая фракция может содержать, например, ксилоолигосахариды. В одном варианте осуществления твердую фракцию и жидкую фракция разделяют. Разделение можно осуществлять, например, используя фильтрование, центрифугирование, экструзию и т.д.
В одном варианте осуществления твердую фракцию и жидкую фракцию разделяют путем экструзии. Это представлено в целом на фиг. 6, где мотор 602 используют, чтобы приводить в движение шнеки 601 экструдера внутри барабана 603 экструдера и перемещать суспензию с предварительной обработки или осуществлять гидролиз целлюлозы 604 внутри экструдера. Образуется динамическая пробка 605 экструдированного материала, создавая зону низкого давления перед пробкой и зону высокого давления сзади пробки в барабане экструдера. Жидкую фракцию выдавливают из влажного экструдированного материала 606 перед динамической пробкой 605. Твердая фракция 607 (например, при содержании приблизительно 45% твердых веществ) выходит через экструдер. Шаг шнека определяют как расстояние между одним гребнем резьбы шнека и следующим гребнем резьбы шнека. Термин «шнек с переменным шагом» означает шнек, резьба которого имеет более чем один шаг вдоль оси. Таким образом, согласно одному варианту осуществления экструдер для разделения твердой матрицы и жидкой фракции содержит множество шнеков с переменным шагом. В одном варианте осуществления шнек (шнеки) экструдера приводятся в движение одним или несколькими моторами.
Гидролиз предварительно обработанной твердой матрицы
В одном варианте осуществления твердую матрицу, полученную во время предварительной обработки, подвергают дополнительной обработке. В одном варианте осуществления твердая матрица вступает в контакт со второй сверхкритической или околокритической текучей средой. В родственном варианте осуществления вторая сверхкритическая или околокритическая текучая среда является такой же, как первая сверхкритическая, околокритическая или докритическая текучая среда, используемая во время стадии предварительной обработки. В еще одном варианте осуществления вторая сверхкритическая или околокритическая текучая среда отличается от первой сверхкритической, околокритической или докритической текучей среды, используемой во время стадии предварительной обработки. В качестве примера и без ограничения, вторая сверхкритическая или околокритическая текучая среда может содержать один или более дополнительных компонентов или не содержать один или более компонентов по сравнению с первой сверхкритической, околокритической или докритической текучей средой. В качестве альтернативы, вторая сверхкритическая или околокритическая текучая среда может содержать такие же компоненты, как первая сверхкритическая, околокритическая или докритическая текучая среда, но в другом соотношении, чем первая сверхкритическая, околокритическая или докритическая текучая среда. В еще одном варианте осуществления вторая сверхкритическая или околокритическая текучая среда содержит такие же компоненты, как первая сверхкритическая, околокритическая или докритическая текучая среда, необязательно в таких же соотношениях, но их используют при других условиях температуры и/или давления по сравнению с первой сверхкритической, околокритической или докритической текучей средой. В родственном варианте осуществления температура и давление второй сверхкритической или околокритической текучей среды отличаются от соответствующих условий первой сверхкритической, околокритической или докритической текучей среды таким образом, что один или более компонентов второй сверхкритической или околокритической текучей среды находятся в другом состоянии, чем состояние, в котором они находятся в первой сверхкритической, околокритической или докритической текучей среде. В качестве примера и без ограничения, каждая из первой и второй сверхкритической или околокритической текучей среды может содержать воду и диоксид углерода, но температура и давление первой сверхкритической, околокритической или докритической текучей среды являются таким и, что оба компонента находятся в сверхкритическом состоянии, в то время как температура и давление второй сверхкритической или околокритической текучей среды являются такими, что вода находится в околокритическом или докритическом состоянии.
В одном варианте осуществления вторая сверхкритическая или околокритическая текучая среда содержит воду и, необязательно, диоксид углерода, а также в ней практически не содержатся спирты C1-C5. В еще одном варианте осуществления вторая сверхкритическая или околокритическая текучая среда содержит воду и диоксид углерода. В вариантах осуществления настоящего изобретения, где вторая сверхкритическая или околокритическая текучая среда содержит диоксид углерода, присутствующее количество диоксида углерода может составлять менее чем приблизительно 10%, менее чем приблизительно 9%, менее чем приблизительно 8%, менее чем приблизительно 7%, менее чем приблизительно 6%, менее чем приблизительно 5%, менее чем приблизительно 4%, менее чем приблизительно 3%, менее чем приблизительно 2% или менее чем приблизительно 1%. В еще одном варианте осуществления во второй сверхкритической или околокритической текучей среде не содержится диоксид углерода.
В одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза, составляющее от приблизительно 1 секунды до приблизительно 45 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза, составляющее от приблизительно 1 секунды до приблизительно 30 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза от приблизительно 1 секунды до приблизительно 20 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза от приблизительно 1 секунды до приблизительно 15 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза от приблизительно 1 секунды до приблизительно 10 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза от приблизительно 1 секунды до приблизительно 5 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза от приблизительно 1 секунды до приблизительно 4 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза от приблизительно 1 секунды до приблизительно 3 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза от приблизительно 1 секунды до приблизительно 2 секунд. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза, составляющее менее чем приблизительно 1 секунду. В еще одном варианте осуществления твердая матрица имеет время выдерживания на стадии гидролиза, составляющее приблизительно 1 секунду, приблизительно 1,1 секунды, приблизительно 1,2 секунды, приблизительно 1,3 секунды, приблизительно 1,4 секунды, приблизительно 1,5 секунды, приблизительно 1,6 секунды, приблизительно 1,7 секунды, приблизительно 1,8 секунды, приблизительно 1,9 секунды или приблизительно 2 секунды.
В одном варианте осуществления стадия гидролиза происходит при температуре выше критической температура одного или более компонентов второй сверхкритической или околокритической текучей среды. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 275°C до приблизительно 450°C. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 300°C до приблизительно 440°C. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 320°C до приблизительно 420°C. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 340°C до приблизительно 400°C. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 350°C до приблизительно 390°C. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 360°C до приблизительно 380°C. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 370°C до приблизительно 380°C. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей приблизительно 377°C.
В одном варианте осуществления стадия гидролиза происходит при давлении выше критического давления одного или более компонентов второй сверхкритической или околокритической текучей среды. В еще одном варианте осуществления стадия гидролиза происходит при давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 250 бар (25 МПа). В еще одном варианте осуществления стадия гидролиза происходит при давлении, составляющем от приблизительно 210 бар (21 МПа) до приблизительно 240 бар (24 МПа). В еще одном варианте осуществления стадия гидролиза происходит при давлении, составляющем от приблизительно 220 бар (22 МПа) до приблизительно 230 бар (23 МПа). В еще одном варианте осуществления стадия гидролиза происходит при давлении, составляющем приблизительно 200 бар (20 МПа), приблизительно 205 бар (20,5 МПа), приблизительно 210 бар (21 МПа), приблизительно 215 бар (21,5 МПа), приблизительно 220 бар (22 МПа), приблизительно 225 бар (22,5 МПа), приблизительно 230 бар (23 МПа), приблизительно 235 бар (23,5 МПа), приблизительно 240 бар (24 МПа), приблизительно 245 бар (24,5 МПа) или приблизительно 250 бар (25 МПа).
В одном варианте осуществления стадия гидролиза происходит при температуре и давлении выше критической температуры и критического давления, соответственно, одного или более компонентов второй сверхкритической или околокритической текучей среды. В еще одном варианте осуществления стадия гидролиза происходит при температуре, составляющей от приблизительно 300°C до приблизительно 440°C, и давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 250 бар (25 МПа).
В одном варианте осуществления твердая матрица поступает в реактор гидролиза или реактор для обработки посредством экструдера. В родственном варианте осуществления экструдер содержит один или множество шнеков. В родственном варианте осуществления экструдер состоит из двух шнеков («двухшнековый экструдер»). В еще одном варианте осуществления экструдер содержит множество шнеков с переменным шагом.
В одном варианте осуществления твердая матрица поступает в реактор гидролиза (не показан) посредством эдуктора, соединенного с реактором гидролиза. В одном варианте осуществления пар 803 используют для продвижения или втягивания твердой матрицы 801 через эдуктор 802 и в реактор гидролиза (не показан), как представлено, например, на фиг. 8, с помощью экструдера 805 для продвижения твердого исходного материала 804 в эдуктор 802.
В одном варианте осуществления гидролиз происходит в реакторе гидролиза. В одном варианте осуществления реактор гидролиза содержит конический реактор 901, такой как представлено на фиг. 9. В еще одном варианте осуществления реактор гидролиза представляет собой баковый реактор. В одном варианте осуществления содержимое реактора гидролиза перемешивают во время гидролиза. В родственном варианте осуществления содержимое реактора гидролиза перемешивают непрерывно. Термин «перемешивать непрерывно» или, в качестве альтернативы, «непрерывно перемешивать» при использовании в настоящем документе означает, что содержимое реактора приводят в движение, перемешивают и т.д. во время большей части стадии гидролиза, во время практически всей стадии гидролиза или во время всей стадии гидролиза. Короткие или прерывистые периоды времени, в течение которых содержимое реактора не перемешивают, соответствуют значению термина «перемешивать непрерывно» и «непрерывно перемешивать» при его использовании в настоящем документе. Приведение в движение или перемешивание можно осуществлять, используя любое устройство, известное в технике, включая, без ограничения, механическое приведение в движение или перемешивание посредством вибраций или посредством неравномерного введения сверхкритической текучей среды в реактор гидролиза. В одном варианте осуществления перемешивание осуществляют с помощью лопастной мешалки, соединенной с мотором 903. В родственном варианте осуществления лопастная мешалка соединена с валом 904, который, в свою очередь, соединен с мотором 903. В родственном варианте осуществления лопастная мешалка спирально соединена с валом. В еще одном варианте осуществления лопастная мешалка периферически соединена с валом. В родственном варианте осуществления лопастная мешалка представляет собой спиральную лопастную мешалку 1001, как представлено, например, на фиг. 10. В еще одном варианте осуществления лопастная мешалка содержит гибкие лопасти 1002. В еще одном варианте осуществления лопастная мешалка содержит множество лопастей, как представлено, например, на фиг. 11, включая лопасти 1101a, 1101b, 1101c, 1101d и 1101e лопастной мешалки. В еще одном варианте осуществления лопастная мешалка содержит множество спиральных лопастей.
В одном варианте осуществления реактор гидролиза содержит трубу (т.е. представляет собой трубчатый реактор гидролиза). В родственном варианте осуществления трубчатый реактор гидролиза представляет собой экструдер. В родственном варианте осуществления экструдер включает шнек. В еще одном варианте осуществления экструдер содержит множество шнеков. В еще одном варианте осуществления один или более шнеков экструдера представляют собой шнеки с переменным шагом. В еще одном варианте осуществления один или более шнеков экструдера соединены с один или несколькими моторами. В варианте осуществления, где экструдер содержит два или более шнеков, указанные шнеки вращаются в одном направлении. В варианте осуществления, где экструдер включает два шнека («двухшнековый экструдер»), указанные шнеки 601 вращаются в одном направлении, как представлено на фиг. 6. В варианте осуществления, в котором экструдер представляет собой двухшнековый экструдер, указанные шнеки вращаются в противоположных направлениях.
В одном варианте осуществления твердую матрицу содержат при температуре, составляющей, по меньшей мере, приблизительно 175°C, по меньшей мере, приблизительно 180°C, по меньшей мере, приблизительно 185°C, по меньшей мере, приблизительно 190°C, по меньшей мере, приблизительно 195°C или, по меньшей мере, приблизительно 200°C от начала стадии предварительной обработки, по меньшей мере, до окончания стадии гидролиза. Термин «содержать при температуре, составляющей, по меньшей мере» при использовании в настоящем документе означает, что температура твердой матрицы не уменьшается в значительной степени относительно указанной температуры.
В одном варианте осуществления при гидролизе твердой матрицы способом согласно настоящему изобретению получают, по меньшей мере, лигниновую нерастворимую фракцию и вторую жидкую фракцию (содержащую растворимые сахара и растворимый лигнин, если он присутствует). В одном варианте осуществления вторая жидкая фракция содержит глюкозу, целлоолигосахариды, и растворимый лигнин, если он присутствует. В одном варианте осуществления лигниновая нерастворимая фракция содержит нерастворимый лигнин. В еще одном варианте осуществления вторая жидкая фракция содержит глюкозу и целлоолигосахариды, и лигниновая нерастворимая фракция содержит нерастворимый лигнин.
В одном варианте осуществления, по меньшей мере, одну из лигниновой нерастворимой фракции и второй жидкой фракции охлаждают после стадии гидролиза. В одном варианте осуществления охлаждение происходит до разделения лигниновой нерастворимой фракции и второй жидкой фракции. В еще одном варианте осуществления охлаждение происходит после разделения лигниновой нерастворимой фракции и второй жидкой фракции. В еще одном варианте осуществления, по меньшей мере, часть стадии охлаждения происходит одновременно с разделением лигниновой нерастворимой фракции и второй жидкой фракции. В одном варианте осуществления одну или более из лигниновой нерастворимой фракции и второй жидкой фракции охлаждают до температуры, составляющей от приблизительно 180°C до приблизительно 240°C, от приблизительно 185°C до приблизительно 235°C, от приблизительно 190°C до приблизительно 230°C, от приблизительно 195°C до приблизительно 225°C, от приблизительно 200°C до приблизительно 220°C, от приблизительно 205°C до приблизительно 215°C, приблизительно 180°C, приблизительно 185°C, приблизительно 190°C, приблизительно 195°C, приблизительно 200°C, приблизительно 205°C, приблизительно 210°C, приблизительно 215°C, приблизительно 220°C, приблизительно 225°C, приблизительно 230°C, приблизительно 235°C или приблизительно 240°C.
В одном варианте осуществления одну или более из лигниновой нерастворимой фракции и второй жидкой фракции мгновенно охлаждают. В еще одном варианте осуществления одну или более из лигниновой нерастворимой фракции и второй жидкой фракции мгновенно охлаждают до температуры, составляющей от приблизительно 20°C до приблизительно 90°C, от приблизительно 25°C до приблизительно 85°C, от приблизительно 30°C до приблизительно 80°C, от приблизительно 35°C до приблизительно 75°C, от приблизительно 40°C до приблизительно 70°C, от приблизительно 45°C до приблизительно 65°C, от приблизительно 50°C до приблизительно 60°C, приблизительно 20°C, приблизительно 25°C, приблизительно 30°C, приблизительно 35°C, приблизительно 40°C, приблизительно 45°C, приблизительно 50°C, приблизительно 55°C, приблизительно 60°C, приблизительно 65°C, приблизительно 70°C, приблизительно 75°C, приблизительно 80°C, приблизительно 85°C или приблизительно 90°C. В одном варианте осуществления одну или более из лигниновой нерастворимой фракции и второй жидкой фракции мгновенно охлаждают после стадии гидролиза, но до любой стадии разделения. В родственном варианте осуществления одну или более из лигниновой нерастворимой фракции и второй жидкой фракции мгновенно охлаждают без какого-либо начального охлаждения после гидролиза. В еще одном варианте осуществления одну или более лигниновой нерастворимой фракции и второй жидкой фракции мгновенно охлаждают после первого разделения лигниновой нерастворимой фракции и второй жидкой фракции. В еще одном варианте осуществления, по меньшей мере, часть стадии мгновенного охлаждения происходит одновременно со стадией разделения. В еще одном варианте осуществления одну или более из лигниновой нерастворимой фракции и второй жидкой фракции мгновенно охлаждают после первого охлаждения до температуры, составляющей от приблизительно 180°C до приблизительно 240°C, от приблизительно 185°C до приблизительно 235°C, от приблизительно 190°C до приблизительно 230°C, от приблизительно 195°C до приблизительно 225°C, от приблизительно 200°C до приблизительно 220°C, от приблизительно 205°C до приблизительно 215°C, приблизительно 180°C, приблизительно 185°C, приблизительно 190°C, приблизительно 195°C, приблизительно 200°C, приблизительно 205°C, приблизительно 210°C, приблизительно 215°C, приблизительно 220°C, приблизительно 225°C, приблизительно 230°C, приблизительно 235°C или приблизительно 240°C.
Охлаждение и/или мгновенное охлаждение можно осуществлять, используя любой способ, известный в технике, включая, без ограничения, вытягивание или отделение воды из смеси, быстрое уменьшение давления, приложенного к смеси, контакт смеси с относительно холодным газом, жидкостью или другим материал и т.д.
Разделение гидролизованной смеси
В одном варианте осуществления лигниновую нерастворимую фракцию и вторую жидкую фракцию разделяют путем экструзии. В родственном варианте осуществления экструзия происходит в экструдере. В родственном варианте осуществления экструдер, используемый для разделения лигниновой нерастворимой фракции и второй жидкой фракции, включает один или множество шнеков. В родственном варианте осуществления экструдер включает два шнека. Это представлено в целом на фиг. 6, где мотор 602 используют для приведения в движение шнеков 601 экструдера внутри барабана 603 экструдера, чтобы перемещать суспензию от предварительной обработки или гидролиза целлюлозы 604 внутри экструдера. Образуется динамическая пробка 605 экструдированного материала, создавая зону низкого давления перед пробкой и зону высокого давления сзади пробки в барабане экструдера. Жидкую фракцию выдавливают из влажного экструдированного материала 606 перед динамической пробкой 605. Твердая фракция 606 (например, содержащая приблизительно 45% твердых веществ) выходит через экструдер. В одном варианте осуществления экструдер для разделения твердой матрицы и жидкой фракции может содержать один или множество шнеков с переменным шагом. В одном варианте осуществления шнек (шнеки) экструдера могут вращаться в соединении с одним или несколькими моторами или приводятся ими в движение.
В одном варианте осуществления температуру предварительно обработанной биомассы поддерживают выше чем приблизительно 185°C во время стадии гидролиза, и затем температуру уменьшают до приблизительно 220°C перед мгновенным охлаждением гидролизованной суспензии путем быстрого уменьшения давление до приблизительно атмосферного давления. В родственном варианте осуществления разделение лигниновой нерастворимой фракции и второй жидкой фракции достигают путем снятия с поверхности или фильтрования. В родственном варианте осуществления температуру гидролизованной суспензии уменьшают таким образом, что лигнин осаждается. В родственном варианте осуществления лигнин осаждается без добавления осаждающего или флоккулирующего агента. В еще одном варианте осуществления давление, производимое на продукты стадии гидролиза, уменьшают до уровня, составляющего приблизительно 105 кПа или менее, или приблизительно 101,325 кПа или менее после стадии гидролиза.
Гидролиз целлоолигосахаридов
Один вариант осуществления включает вторую стадию гидролиза, где вторая жидкая фракция вступает в контакт с третьей околокритической или докритической текучей средой, образуя третью жидкую фракцию, содержащую мономеры глюкозы.
В одном варианте осуществления вторая стадия гидролиза происходит при температуре, которая превышает критическую температуру, по меньшей мере, одного компонента текучей среды. В еще одном варианте осуществления вторая стадия гидролиза происходит при температуре, составляющей от приблизительно 220°C до приблизительно 320°C, от приблизительно 230°C до приблизительно 310°C, от приблизительно 240°C до приблизительно 300°C, от приблизительно 250°C до приблизительно 290°C, от приблизительно 260°C до приблизительно 280°C, приблизительно 220°C, приблизительно 230°C, приблизительно 240°C, приблизительно 250°C, приблизительно 260°C, приблизительно 270°C, приблизительно 280°C, приблизительно 290°C, приблизительно 300°C, приблизительно 310°C или приблизительно 320°C.
В одном варианте осуществления вторая стадия гидролиза происходит при давлении, которое превышает критическое давление, по меньшей мере, одного компонента текучей среды. В еще одном варианте осуществления вторая стадия гидролиза происходит при давлении, составляющем от приблизительно 30 бар (3 МПа) до приблизительно 90 бар (9 МПа), от приблизительно 35 бар (3,5 МПа) до приблизительно 85 бар (8,5 МПа), от приблизительно 40 бар (4 МПа) до приблизительно 80 бар (8 МПа), от приблизительно 45 бар (4,5 МПа) до приблизительно 75 бар (7,5 МПа), от приблизительно 50 бар (5 МПа) до приблизительно 70 бар (7 МПа), от приблизительно 55 бар (5,5 МПа) до приблизительно 65 бар (6,5 МПа), приблизительно 30 бар (3 МПа), приблизительно 35 бар (3,5 МПа), приблизительно 40 бар (4 МПа), приблизительно 45 бар (4,5 МПа), приблизительно 50 бар (5 МПа), приблизительно 55 бар (5,5 МПа), приблизительно 60 бар (6 МПа), приблизительно 65 бар (6,5 МПа), приблизительно 70 бар (7 МПа), приблизительно 75 бар (7,5 МПа), приблизительно 80 бар (8 МПа), приблизительно 85 бар (8,5 МПа) или приблизительно 90 бар (9 МПа).
В одном варианте осуществления вторая стадия гидролиза происходит при температуре и давлении, которые превышают критическую температуру и критическое давление, соответственно, одного или более компонентов текучей среды. В еще одном варианте осуществления вторая стадия гидролиза происходит при температуре, составляющей от приблизительно 220°C до приблизительно 320°C, от приблизительно 230°C до приблизительно 310°C, от приблизительно 240°C до приблизительно 300°C, от приблизительно 250°C до приблизительно 290°C, от приблизительно 260°C до приблизительно 280°C, приблизительно 220°C, приблизительно 230°C, приблизительно 240°C, приблизительно 250°C, приблизительно 260°C, приблизительно 270°C, приблизительно 280°C, приблизительно 290°C, приблизительно 300°C, приблизительно 310°C или приблизительно 320°C, и давлении, составляющем от приблизительно 30 бар (3 МПа) до приблизительно 90 бар (9 МПа), от приблизительно 35 бар (3,5 МПа) до приблизительно 85 бар (8,5 МПа), от приблизительно 40 бар (4 МПа) до приблизительно 80 бар (8 МПа), от приблизительно 45 бар (4,5 МПа) до приблизительно 75 бар (7,5 МПа), от приблизительно 50 бар (5 МПа) до приблизительно 70 бар (7 МПа), от приблизительно 55 бар (5,5 МПа) до приблизительно 65 бар (6,5 МПа), приблизительно 30 бар (3 МПа), приблизительно 35 бар (3,5 МПа), приблизительно 40 бар (4 МПа), приблизительно 45 бар (4,5 МПа), приблизительно 50 бар (5 МПа), приблизительно 55 бар (5,5 МПа), приблизительно 60 бар (6 МПа), приблизительно 65 бар (6,5 МПа), приблизительно 70 бар (7 МПа), приблизительно 75 бар (7,5 МПа), приблизительно 80 бар (8 МПа), приблизительно 85 бар (8,5 МПа) или приблизительно 90 бар (9 МПа).
В одном варианте осуществления третья околокритическая или докритическая текучая среда содержит воду. В еще одном варианте осуществления третья околокритическая или докритическая текучая среда дополнительно содержит кислоту (в том числе неорганическую кислоту или органическую кислоту). В еще одном варианте осуществления третья околокритическая или докритическая текучая среда дополнительно содержит диоксид углерода. В еще одном варианте осуществления третья околокритическая или докритическая текучая среда содержит воду и кислоту. В еще одном варианте осуществления третья околокритическая или докритическая текучая среда содержит спирт. В еще одном варианте осуществления в третьей околокритической или докритической текучей среде не содержится спирт. В еще одном варианте осуществления третья околокритическая или докритическая текучая среда содержит воду, диоксид углерода и кислоту.
В вариантах осуществления, где третья околокритическая или докритическая текучая среда содержит кислоту, кислота может присутствовать в количестве, которое составляет от приблизительно 0,1% до приблизительно 2%, от приблизительно 0,1% до приблизительно 1,5%, от приблизительно 0,1% до приблизительно 1%, от приблизительно 0,1% до приблизительно 0,5%, от приблизительно 0,1% до приблизительно 0,4%, от приблизительно 0,1% до приблизительно 0,3%, от приблизительно 0,1% до приблизительно 0,2%, от приблизительно 0,5% до приблизительно 2%, от приблизительно 0,5% до приблизительно 1,5%, от приблизительно 0,5% до приблизительно 1%, менее чем приблизительно 2%, менее чем приблизительно 1,5%, менее чем приблизительно 1%, менее чем приблизительно 0,5%, менее чем приблизительно 0,4%, менее чем приблизительно 0,3%, менее чем приблизительно 0,2% или менее чем приблизительно 0,1%. В еще одном варианте осуществления третья околокритическая или докритическая текучая среда содержит каталитическое количество кислоты. В вариантах осуществления третья околокритическая или докритическая текучая среда содержит кислоту (в том числе неорганическую кислоту или органическую кислоту). Подходящие неорганические кислоты включают, но не ограничиваются этим, такие как серная кислота, сульфоновая кислота, фосфорная кислота, фосфоновая кислота, азотная кислота, азотистая кислота, соляная кислота, фтористоводородная кислота, бромистоводородная кислота, йодистоводородная кислота. Подходящие органические кислоты включают, но не ограничиваются этим, алифатические карбоновые кислоты (такие как уксусная кислота и муравьиная кислота), ароматические карбоновые кислоты (такие как бензойная кислота и салициловая кислота), дикарбоновые кислоты (такие как щавелевая кислота, фталевая кислота, себациновая кислота и адипиновая кислота), алифатические жирные кислоты (такие как олеиновая кислота, пальмитиновая кислота и стеариновая кислота), ароматические жирные кислоты (такие как фенилстеариновая кислота) и аминокислоты. Кислоту можно выбирать из группы, которую составляют фтористоводородная кислота, соляная кислота, бромистоводородная кислота, йодистоводородная кислота, серная кислота, сульфоновая кислота, фосфорная кислота, фосфоновая кислота, азотная кислота, азотистая кислота и их сочетания.
В вариантах осуществления, где третья околокритическая или докритическая текучая среда содержит диоксид углерода, присутствующее количество диоксида углерода может составлять менее чем приблизительно 10%, менее чем приблизительно 9%, менее чем приблизительно 8%, менее чем приблизительно 7%, менее чем приблизительно 6%, менее чем приблизительно 5%, менее чем приблизительно 4%, менее чем приблизительно 3%, менее чем приблизительно 2%, или менее чем приблизительно 1 мас.% в расчете на массу третьей околокритической или докритической текучей среды. В еще одном варианте осуществления в третьей околокритической или докритической текучей среде не содержится диоксид углерода.
В одном варианте осуществления вторая жидкая фракция имеет время выдерживания на второй стадии гидролиза, составляющее от приблизительно 1 секунды до приблизительно 30 секунд, от приблизительно 1 секунды до приблизительно 25 секунд, от приблизительно 1 секунды до приблизительно 20 секунд, от приблизительно 1 секунды до приблизительно 15 секунд, от приблизительно 1 секунды до приблизительно 10 секунд, от приблизительно 1 секунды до приблизительно 5 секунд, от приблизительно 5 секунд до приблизительно 30 секунд, от приблизительно 5 секунд до приблизительно 25 секунд, от приблизительно 5 секунд до приблизительно 20 секунд, от приблизительно 5 секунд до приблизительно 15 секунд, от приблизительно 5 секунд до приблизительно 10 секунд, приблизительно 1 секунду, приблизительно 1,1 секунды, приблизительно 1,2 секунды, приблизительно 1,3 секунды, приблизительно 1,4 секунды, приблизительно 1,5 секунды, приблизительно 1,6 секунды, приблизительно 1,7 секунды, приблизительно 1,8 секунды, приблизительно 1,9 секунды, приблизительно 2 секунды, приблизительно 2,1 секунды, приблизительно 2,2 секунды, приблизительно 2,3 секунды, приблизительно 2,4 секунды, приблизительно 2,5 секунды, приблизительно 2,6 секунды, приблизительно 2,7 секунды, приблизительно 2,8 секунды, приблизительно 2,9 секунды, приблизительно 3 секунды, приблизительно 4 секунды, приблизительно 5 секунд, приблизительно 6 секунд, приблизительно 7 секунд, приблизительно 8 секунд, приблизительно 9 секунд, приблизительно 10 секунд, приблизительно 15 секунд, приблизительно 20 секунд, приблизительно 25 секунд или приблизительно 30 секунд.
В одном варианте осуществления продукты второй стадии гидролиза охлаждают после завершения стадии гидролиза. Охлаждение можно осуществлять любым способом, известным в технике включая, без ограничения, непосредственное охлаждение, косвенное охлаждение, пассивное охлаждение и т.д. Термин «непосредственное охлаждение» при использовании в настоящем документе означает, что охлаждающая текучая среда вступает в контакт или смешивается с продуктами второй стадии гидролиза, где охлаждающая текучая среда имеет меньшую температуру, чем продукты второй стадии гидролиза. В качестве примера и без ограничения, непосредственное охлаждение можно осуществлять путем контакта продуктов второй стадии гидролиза с охлаждающей текучей средой, содержащей воду, где охлаждающая текучая среда имеет меньшую температуру, чем продукты второй стадии гидролиза. В вариантах осуществления непосредственного охлаждения охлаждающая текучая среда вступает в непосредственный контакт и может смешиваться с продуктами второй стадии гидролиза. С другой стороны, термин «косвенное охлаждение» при использовании в настоящем документе означает, что охлаждение осуществляют таким способом, где продукты второй стадии гидролиза не вступают в контакт и не смешиваются с охлаждающей текучей средой. В качестве примера и без ограничения, косвенное охлаждение можно осуществлять путем охлаждения, по меньшей мере, части резервуара, в котором находятся продукты второй стадии гидролиза. В вариантах осуществления косвенного охлаждения продукты второй стадии гидролиза не вступают в непосредственный контакт и, таким образом, не смешиваются с охлаждающей текучей средой. Термин «пассивное охлаждение» при использовании в настоящем документе означает, что температура предварительно обработанной биомассы уменьшается без контакта предварительно обработанной биомассы с охлаждающей текучей средой. В качестве примера и без ограничения, продукты второй стадии гидролиза можно пассивно охлаждать путем содержания в резервуаре или контейнере для хранения в течение периода времени, за который температура продуктов уменьшается соответственно температурным условиям окружающей среды. В качестве альтернативы, продукты второй стадии гидролиза можно пассивно охлаждать, пропуская продукты через трубу или другое проводящее устройство, где труба или другое проводящее устройство не охлаждается путем контакта с охлаждающей текучей средой. Термин «охлаждающая текучая среда» при использовании в настоящем документе включает твердые вещества, жидкости, газы и их сочетания. В вариантах осуществления как непосредственного, так и косвенного охлаждения охлаждение можно осуществлять другим способом, помимо использования охлаждающей текучей среды, например, путем индукции. Термин «теплообмен» при использовании в настоящем документе включает непосредственное охлаждение, косвенное охлаждение и их сочетания.
В одном варианте осуществления третья жидкая фракция содержит глюкозу. В одном варианте осуществления третья жидкая фракция содержит гликолевый альдегид. В родственном варианте осуществления гликолевый альдегид присутствует в третьей жидкой фракции в количестве, составляющем, по меньшей мере, приблизительно 5%, по меньшей мере, приблизительно 10%, по меньшей мере, приблизительно 12%, по меньшей мере, приблизительно 15%, по меньшей мере, приблизительно 20%, по меньшей мере, приблизительно 25%, по меньшей мере, приблизительно 30%, по меньшей мере, приблизительно 35%, по меньшей мере, приблизительно 40%, по меньшей мере, приблизительно 45%, по меньшей мере, приблизительно 50%, по меньшей мере, приблизительно 55%, по меньшей мере, приблизительно 60%, по меньшей мере, приблизительно 65%, по меньшей мере, приблизительно 70%, по меньшей мере, приблизительно 75%, по меньшей мере, приблизительно 80%, по меньшей мере, приблизительно 85%, по меньшей мере, приблизительно 90%, по меньшей мере, приблизительно 95% или приблизительно 100% максимального теоретического выхода гликолевого альдегида. В одном варианте осуществления гликолевый альдегид присутствует в третьей жидкой фракции в количестве, составляющем менее чем количество глюкозы, которое присутствует в третьей жидкой фракции. В одном варианте осуществления гликолевый альдегид присутствует в третьей жидкой фракции в количестве, оставляющем более чем количество глюкозы, которое присутствует в третьей жидкой фракции.
Гидролиз ксилоолигосахаридов
В одном варианте осуществления первая жидкая фракция, полученная путем предварительной обработки биомассы, вступает в контакт с четвертой околокритической или докритической текучей средой, образуя четвертую жидкую фракцию, содержащую мономеры ксилозы.
В одном варианте осуществления четвертая околокритическая или докритическая текучая среда содержит воду. В еще одном варианте осуществления четвертая околокритическая или докритическая текучая среда содержит диоксид углерода. В еще одном варианте осуществления четвертая околокритическая или докритическая текучая среда содержит воду и диоксид углерода. В еще одном варианте осуществления четвертая околокритическая или докритическая текучая среда содержит спирт. В еще одном варианте осуществления в четвертой околокритической или докритической текучей среде не содержится спирт. В еще одном варианте осуществления четвертая околокритическая или докритическая текучая среда содержит кислоту. В еще одном варианте осуществления четвертая околокритическая или докритическая текучая среда содержит воду, диоксид углерода, и кислоту.
В вариантах осуществления, где четвертая околокритическая или докритическая текучая среда содержит диоксид углерода, присутствующее количество диоксида углерода может составлять менее чем приблизительно 10%, менее чем приблизительно 9%, менее чем приблизительно 8%, менее чем приблизительно 7%, менее чем приблизительно 6%, менее чем приблизительно 5%, менее чем приблизительно 4%, менее чем приблизительно 3%, менее чем приблизительно 2% или менее чем приблизительно 1%. В еще одном варианте осуществления в четвертой околокритической или докритической текучей среде не содержится диоксид углерода.
В вариантах осуществления, где четвертая околокритическая или докритическая текучая среда содержит кислоту, присутствующее количество кислоты может составлять от приблизительно 0,1% до приблизительно 2%, от приблизительно 0,1% до приблизительно 1,5%, от приблизительно 0,1% до приблизительно 1%, от приблизительно 0,1% до приблизительно 0,5%, от приблизительно 0,1% до приблизительно 0,4%, приблизительно 0,1% до приблизительно 0,3%, от приблизительно 0,1% до приблизительно 0,2%, от приблизительно 0,5% до приблизительно 2%, от приблизительно 0,5% до приблизительно 1,5%, от приблизительно 0,5% до приблизительно 1%, менее чем приблизительно 2%, менее чем приблизительно 1,5%, менее чем приблизительно 1%, менее чем приблизительно 0,5%, менее чем приблизительно 0,4%, менее чем приблизительно 0,3%, менее чем приблизительно 0,2% или менее чем приблизительно 0,1%. В еще одном варианте осуществления четвертая околокритическая или докритическая текучая среда содержит каталитическое количество кислоты. В вариантах осуществления четвертая околокритическая или докритическая текучая среда содержит кислоту (в том числе неорганическую кислоту или органическую кислоту). Подходящие неорганические кислоты включают, но не ограничиваются этим, серную кислоту, сульфоновую кислоту, фосфорную кислоту, фосфоновую кислоту, азотную кислоту, азотистую кислоту, соляную кислоту, фтористоводородную кислоту, бромистоводородную кислоту, йодистоводородную кислоту. Подходящие органические кислоты включают, но не ограничиваются этим, алифатические карбоновые кислоты (такие как уксусная кислота и муравьиная кислота), ароматические карбоновые кислоты (такие как бензойная кислота и салициловая кислота), дикарбоновые кислоты (такие как щавелевая кислота, фталевая кислота, себациновая кислота и адипиновая кислота), алифатические жирные кислоты (такие как олеиновая кислота, пальмитиновая кислота и стеариновая кислота), ароматические жирные кислоты (такие как фенилстеариновая кислота) и аминокислоты. Кислоту можно выбирать из группы, которую составляют фтористоводородная кислота, соляная кислота, бромистоводородная кислота, йодистоводородная кислота, серная кислота, сульфоновая кислота, фосфорная кислота, фосфоновая кислота, азотная кислота, азотистая кислота и их сочетания.
В одном варианте осуществления первая жидкая фракция имеет время выдерживания на стадии гидролиза ксилоолигосахаридов, составляющее от приблизительно 1 секунды до приблизительно 30 секунд, от приблизительно 1 секунды до приблизительно 25 секунд, от приблизительно 1 секунды до приблизительно 20 секунд, от приблизительно 1 секунды до приблизительно 15 секунд, от приблизительно 1 секунды до приблизительно 10 секунд, от приблизительно 1 секунды до приблизительно 5 секунд, от приблизительно 5 секунд до приблизительно 30 секунд, от приблизительно 2 секунд до приблизительно 25 секунд, от приблизительно 5 секунд до приблизительно 25 секунд, от приблизительно 5 секунд до приблизительно 20 секунд, от приблизительно 5 секунд до приблизительно 15 секунд, от приблизительно 5 секунд до приблизительно 10 секунд, от приблизительно 10 секунд до приблизительно 15 секунд, приблизительно 1 секунду, приблизительно 1,1 секунды, приблизительно 1,2 секунды, приблизительно 1,3 секунды, приблизительно 1,4 секунды, приблизительно 1,5 секунды, приблизительно 1,6 секунды, приблизительно 1,7 секунды, приблизительно 1,8 секунды, приблизительно 1,9 секунды, приблизительно 2 секунды, приблизительно 2,1 секунды, приблизительно 2,2 секунды, приблизительно 2,3 секунды, приблизительно 2,4 секунды, приблизительно 2,5 секунды, приблизительно 2,6 секунды, приблизительно 2,7 секунды, приблизительно 2,8 секунды, приблизительно 2,9 секунды, приблизительно 3 секунды, приблизительно 4 секунды, приблизительно 5 секунд, приблизительно 6 секунд, приблизительно 7 секунд, приблизительно 8 секунд, приблизительно 9 секунд, приблизительно 10 секунд, приблизительно 15 секунд, приблизительно 20 секунд, приблизительно 25 секунд или приблизительно 30 секунд.
В одном варианте осуществления стадия гидролиза ксилоолигосахаридов происходит при температуре, которая превышает критическую температуру, по меньшей мере, одного компонента четвертой текучей среды. В еще одном варианте осуществления вторая стадия гидролиза происходит при температуре, составляющей от приблизительно 220°C до приблизительно 320°C, от приблизительно 230°C до приблизительно 310°C, от приблизительно 240°C до приблизительно 300°C, приблизительно 250°C до приблизительно 290°C, от приблизительно 260°C до приблизительно 280°C, приблизительно 220°C, приблизительно 230°C, приблизительно 240°C, приблизительно 250°C, приблизительно 260°C, приблизительно 270°C, приблизительно 280°C, приблизительно 290°C, приблизительно 300°C, приблизительно 310°C или приблизительно 320°C.
В одном варианте осуществления стадия гидролиза ксилоолигосахаридов происходит при давлении, составляющем более чем критическое давление, по меньшей мере, одного компонента четвертой текучей среды. В еще одном варианте осуществления вторая стадия гидролиза происходит при давлении, составляющем от приблизительно 30 бар (3 МПа) до приблизительно 90 бар (9 МПа), от приблизительно 35 бар (3,5 МПа) до приблизительно 85 бар (8,5 МПа), от приблизительно 40 бар (4 МПа) до приблизительно 80 бар (8 МПа), от приблизительно 45 бар (4,5 МПа) до приблизительно 75 бар (7,5 МПа), от приблизительно 50 бар (5 МПа) до приблизительно 70 бар (7 МПа), от приблизительно 55 бар (5,5 МПа) до приблизительно 65 бар (6,5 МПа), приблизительно 30 бар (3 МПа), приблизительно 35 бар (3,5 МПа), приблизительно 40 бар (4 МПа), приблизительно 45 бар (4,5 МПа), приблизительно 50 бар (5 МПа), приблизительно 55 бар (5,5 МПа), приблизительно 60 бар (6 МПа), приблизительно 65 бар (6,5 МПа), приблизительно 70 бар (7 МПа), приблизительно 75 бар (7,5 МПа), приблизительно 80 бар (8 МПа), приблизительно 85 бар (8,5 МПа) или приблизительно 90 бар (9 МПа).
В одном варианте осуществления стадия гидролиза ксилоолигосахаридов происходит при температуре и давлении, которые превышают критическую температуру и критическое давление, соответственно, одного или более компонентов четвертой текучей среды. В еще одном варианте осуществления стадия гидролиза ксилоолигосахаридов происходит при температуре, составляющей от приблизительно 220°C до приблизительно 320°C, от приблизительно 230°C до приблизительно 310°C, от приблизительно 240°C до приблизительно 300°C, от приблизительно 250°C до приблизительно 290°C, от приблизительно 260°C до приблизительно 280°C, приблизительно 220°C, приблизительно 230°C, приблизительно 240°C, приблизительно 250°C, приблизительно 260°C, приблизительно 270°C, приблизительно 280°C, приблизительно 290°C, приблизительно 300°C, приблизительно 310°C, или приблизительно 320°C, и давлении, составляющем от приблизительно 30 бар (3 МПа) до приблизительно 90 бар (9 МПа), от приблизительно 35 бар (3,5 МПа) до приблизительно 85 бар (8,5 МПа), от приблизительно 40 бар (4 МПа) до приблизительно 80 бар (8 МПа), от приблизительно 45 бар (4,5 МПа) до приблизительно 75 бар (7,5 МПа), от приблизительно 50 бар (5 МПа) до приблизительно 70 бар (7 МПа), от приблизительно 55 бар (5,5 МПа) до приблизительно 65 бар (6,5 МПа), приблизительно 30 бар (3 МПа), приблизительно 35 бар (3,5 МПа), приблизительно 40 бар (4 МПа), приблизительно 45 бар (4,5 МПа), приблизительно 50 бар (5 МПа), приблизительно 55 бар (5,5 МПа), приблизительно 60 бар (6 МПа), приблизительно 65 бар (6,5 МПа), приблизительно 70 бар (7 МПа), приблизительно 75 бар (7,5 МПа), приблизительно 80 бар (8 МПа), приблизительно 85 бар (8,5 МПа) или приблизительно 90 бар (9 МПа).
В одном варианте осуществления продукты стадии гидролиза ксилоолигосахаридов охлаждают после завершения стадии гидролиза ксилоолигосахаридов. Охлаждение можно осуществлять, используя любой способ, известный в технике, включая, без ограничения, непосредственное охлаждение или косвенное охлаждение. Термин «непосредственное охлаждение» при использовании в настоящем документе означает, что охлаждающая текучая среда вступает в контакт или смешивается с продуктами стадии гидролиза ксилоолигосахаридов, где охлаждающая текучая среда имеет меньшую температуру, чем продукты стадии гидролиза ксилоолигосахаридов. В качестве примера и без ограничения, непосредственное охлаждение можно осуществлять путем контакта продуктов стадии гидролиза ксилоолигосахаридов с охлаждающей текучей средой, содержащей воду, где охлаждающая текучая среда имеет меньшую температуру, чем продукты стадии гидролиза ксилоолигосахаридов. В вариантах осуществления непосредственного охлаждения охлаждающая текучая среда вступает в непосредственный контакт и может смешиваться с продуктами стадии гидролиза ксилоолигосахаридов. С другой стороны, термин «косвенное охлаждение» при использовании в настоящем документе означает, что охлаждение осуществляют способом, в котором продукты стадии гидролиза ксилоолигосахаридов не вступают в контакт и не смешиваются с охлаждающей текучей средой. В качестве примера и без ограничения, косвенное охлаждение можно осуществлять путем охлаждения, по меньшей мере, части резервуара, в котором находятся продукты стадии гидролиза ксилоолигосахаридов. В вариантах осуществления косвенного охлаждения продукты стадии гидролиза ксилоолигосахаридов не вступают в непосредственный контакт и, таким образом, не смешиваются с охлаждающей текучей средой. Термин «охлаждающая текучая среда» при использовании в настоящем документе включает твердые вещества, жидкости, газы и их сочетания. В вариантах осуществления как непосредственного, так и косвенного охлаждения охлаждение можно осуществлять другим способом, помимо использования охлаждающей текучей среды, например, путем индукции. Термин «теплообмен» при использовании в настоящем документе включает непосредственное охлаждение, косвенное охлаждение и их сочетания.
Дополнительные варианты осуществления
В одном варианте осуществления способ обработки биомассы включает:
стадию предварительной обработки, где указанная биомасса вступает в контакт с первой сверхкритической, околокритической или докритической текучей средой, образуя предварительно обработанную суспензию, содержащую твердую матрицу, и первую жидкую фракцию, содержащую ксилоолигосахариды;
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда практически не содержит спирта C1-C5;
первую стадию разделения, где разделяют указанную твердую матрицу и указанную первую жидкую фракцию;
первую стадию гидролиза, где указанная твердая матрица вступает в контакт со второй сверхкритической или околокритической текучей средой, образуя нерастворимую содержащую лигнин фракцию и вторую жидкую фракцию, содержащую целлоолигосахариды;
где указанная вторая сверхкритическая или околокритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная вторая сверхкритическая или околокритическая текучая среда практически не содержит спирта C1-C5;
вторую стадию разделения, где разделяют указанную нерастворимую содержащую лигнин фракцию и указанную вторую жидкую фракцию; и
вторую стадию гидролиза, где указанная вторая жидкая фракция вступает в контакт с третьей околокритической или докритической текучей средой, образуя продукт, содержащий мономеры глюкозы;
где указанная третья околокритическая или докритическая текучая среда содержит воду и, необязательно, кислоту, предпочтительно неорганическую кислоту.
В еще одном варианте осуществления способ обработки биомассы включает:
стадию предварительной обработки, где указанная биомасса вступает в контакт с первой сверхкритической, околокритической или докритической текучей средой, образуя предварительно обработанную суспензию, содержащую твердую матрицу, и первую жидкую фракцию, содержащую ксилоолигосахариды;
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная первая сверхкритическая, околокритическая или докритическая текучая среда практически не содержит спирта C1-C5;
первую стадию разделения, где разделяют указанную твердую матрицу и указанную первую жидкую фракцию;
первую стадию гидролиза, где указанная твердая матрица вступает в контакт со второй сверхкритической или околокритической текучей средой, образуя нерастворимую содержащую лигнин фракцию и вторую жидкую фракцию, содержащую целлоолигосахариды;
где указанная вторая сверхкритическая или околокритическая текучая среда содержит воду и, необязательно, CO2; и
где указанная вторая сверхкритическая или околокритическая текучая среда практически не содержит спирта C1-C5;
вторую стадию разделения, где разделяют указанную нерастворимую содержащую лигнин фракцию и указанную вторую жидкую фракцию; и
вторую стадию гидролиза, где указанная вторая жидкая фракция вступает в контакт с третьей околокритической или докритической текучей средой, образуя продукт, содержащий мономеры глюкозы;
где указанная третья околокритическая или докритическая текучая среда содержит воду и, необязательно, CO2;
третью стадию гидролиза, где указанная первая жидкая фракция вступает в контакт с четвертой околокритической или докритической текучей средой, образуя второй продукт, содержащий мономеры ксилозы;
где указанная четвертая околокритическая или докритическая текучая среда содержит воду и, необязательно, кислоту, предпочтительно неорганическую кислоту.
В следующих вариантах осуществления настоящее изобретение относится к способам повышения уровня ксилозы, полученной из биомассы, включающим:
фракционирование указанной биомассы для получения:
твердой фракции, содержащей:
целлюлозу; и
нерастворимый лигнин; и
первой жидкой фракции при первой температуре и при первом давлении, содержащей:
растворимый сахарид C5, выбранный из группы, которую составляют ксилоолигосахариды, ксилоза и их смеси;
отделение указанной твердой фракции от указанной первой жидкой фракции при втором давлении;
где указанное первое давление и указанное второе давление являются практически одинаковыми (предпочтительно, указанная вторая температура составляет менее чем указанная первая температура);
добавление к указанной первой жидкой фракции водного раствора кислоты для повышения уровня указанного растворимого сахарида C5 в указанной жидкой фракции, чтобы получить вторую жидкую фракцию при второй температуре; и
необязательно, гидролиз указанной второй жидкой фракции для получения ксилозы.
В определенных вариантах осуществления указанные ксилоолигосахариды в указанной первой жидкой фракции содержат от приблизительно 2 повторяющихся звеньев до приблизительно 25 повторяющихся звеньев; и указанные ксилоолигосахариды в указанной второй жидкой фракции содержат от приблизительно 2 повторяющихся звеньев до приблизительно 15 повторяющихся звеньев. В определенных предпочтительных вариантах осуществления выход указанной ксилозы составляет, по меньшей мере, 70% теоретического выхода. В определенных вариантах осуществления указанный водный раствор кислоты выбран из группы, которую составляют органическая кислота и неорганическая кислота. Подходящие неорганические кислоты включают, но не ограничиваются этим, серную кислоту, сульфоновую кислоту, фосфорную кислоту, фосфоновую кислоту, азотную кислоту, азотистую кислоту, соляную кислоту, фтористоводородную кислоту, бромистоводородную кислоту, йодистоводородную кислоту. Подходящие органические кислоты включают, но не ограничиваются этим, алифатические карбоновые кислоты (такие как уксусная кислота и муравьиная кислота), ароматические карбоновые кислоты (такие как бензойная кислота и салициловая кислота), дикарбоновые кислоты (такие как щавелевая кислота, фталевая кислота, себациновая кислота и адипиновая кислота), алифатические жирные кислоты (такие как олеиновая кислота, пальмитиновая кислота и стеариновая кислота), ароматические жирные кислоты (такие как фенилстеариновая кислота) и аминокислоты. Кислоту можно выбирать из группы, которую составляют фтористоводородная кислота, соляная кислота, бромистоводородная кислота, йодистоводородная кислота, серная кислота, сульфоновая кислота, фосфорная кислота, фосфоновая кислота, азотная кислота, азотистая кислота и их сочетания. Предпочтительно указанная неорганическая кислота представляет собой разбавленную серную кислоту. Присутствующее количество кислоты может составлять от приблизительно 0,1% до приблизительно 2%, от приблизительно 0,1% до приблизительно 1,5%, от приблизительно 0,1% до приблизительно 1%, от приблизительно 0,1% до приблизительно 0,5%, от приблизительно 0,1% до приблизительно 0,4%, от приблизительно 0,1% до приблизительно 0,3%, от приблизительно 0,1% до приблизительно 0,2%, от приблизительно 0,5% до приблизительно 2%, от приблизительно 0,5% до приблизительно 1,5%, от приблизительно 0,5% до приблизительно 1%, менее чем приблизительно 2%, менее чем приблизительно 1,5%, менее чем приблизительно 1%, менее чем приблизительно 0,5%, менее чем приблизительно 0,4%, менее чем приблизительно 0,3%, менее чем приблизительно 0,2% или менее чем приблизительно 0,1%.
В следующих вариантах осуществления настоящее изобретение относится к способам повышения уровня глюкозы, полученной из лигноцеллюлозной биомассы, включающим:
изготовление фракционированной биомассы (предпочтительно при давлении, превышающем давление окружающей среды), содержащей:
первую твердую фракцию, содержащую:
целлюлозу; и
нерастворимый лигнин; и
первую жидкую фракцию;
смешивание указанной твердой фракции с водой для получения суспензии;
подогрев указанной суспензии до температуры ниже критической точки воды;
контакт указанной суспензии со второй реакционной текучей средой для получения:
второй твердой фракции, содержащей:
нерастворимый лигнин; и
второй жидкой фракции, содержащей:
сахарид, выбранный из группы, которую составляют целлоолигосахариды, глюкоза и их смеси;
где указанная вторая реакционная текучая среда содержит воду и, необязательно, диоксид углерода, указанная вторая реакционная текучая среда имеет температуру и давление выше критической точки воды и диоксида углерода; и
уменьшение температуры указанной реакционной смеси до температуры ниже критической точки воды; и
необязательно, гидролиз указанной второй жидкой фракции для получения глюкозы.
Предпочтительно данный способ является непрерывным. В определенных вариантах осуществления уменьшение температуры указанной реакционной смеси до температуры ниже критической точки воды включает контакт указанной реакционной смеси с композицией, содержащей воду. В других вариантах осуществления уменьшение температуры указанной реакционной смеси ниже критической точки воды включает контакт указанной реакционной смеси с композицией, содержащей воду и кислоту на уровне, составляющем менее чем приблизительно 10%, предпочтительно менее чем приблизительно 5%, предпочтительнее менее чем приблизительно 2% и еще предпочтительнее менее чем приблизительно 1 мас.% по отношению к суммарной массе указанной композиции. В определенных вариантах осуществления указанную фракционированную биомассу получают путем контакта указанной биомассы с первой реакционной текучей средой, содержащей воду и, необязательно, диоксид углерода, причем указанная первая реакционная текучая среда имеет температуру и давление выше критической точки диоксида углерода, и, по меньшей мере, один параметр из указанной температуры и указанного давления указанной первой реакционной текучей среды является ниже критической температуры и критического давления воды. В определенных вариантах осуществления указанный подогрев осуществляют при температуре, составляющей от приблизительно 245°C до приблизительно 255°C, и давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 260 бар (26 МПа). В определенных вариантах осуществления указанный контакт указанной суспензии со второй реакционной текучей средой осуществляют при температуре, составляющей от приблизительно 358°C до приблизительно 380°C, и давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 260 бар (20 МПа). В определенных вариантах осуществления указанное уменьшение температуры указанной реакционной смеси осуществляют при температуре, составляющей от приблизительно 260°C до приблизительно 280°C, и давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 260 бар (26 МПа). В определенных предпочтительных вариантах осуществления выход указанной глюкозы составляет, по меньшей мере, приблизительно 63% теоретического выхода. В определенных аспектах данным способом получают композицию, содержащую:
глюкозу, составляющую, по меньшей мере, приблизительно 63 мас.% по отношению к суммарной массе композиции;
воду;
менее чем приблизительно 13,0 мас.% гликолевого альдегида по отношению к суммарной массе композиции;
менее чем приблизительно 2,0 мас.% гликолевой кислоты по отношению к суммарной массе композиции; и
где указанную глюкозу экстрагируют из биомассы, используя экстракцию сверхкритической текучей средой.
В одном варианте осуществления экструдер используют в качестве одного или более из следующих устройств: конвейер, реактор и теплообменник для одной или более стадий предварительной обработки биомассы и гидролиза. В одном варианте осуществления экструдер используют в качестве конвейера, реактора и теплообменника. В одном варианте осуществления первый экструдер используют в качестве конвейера, реактора и/или теплообменника для предварительной обработки биомассы, и второй экструдер используют в качестве конвейера, реактора и/или теплообменника для стадии гидролиза. В родственном варианте осуществления третий экструдер используют в качестве конвейера, реактора и/или теплообменника для второй стадии гидролиза.
В одном варианте осуществления экструдер содержит один или более шнеков. В еще одном варианте осуществления экструдер содержит два шнека. В еще одном варианте осуществления экструдер содержит более чем два шнека. В еще одном варианте осуществления два или более шнеков экструдера вращаются в одном направлении. В родственном варианте осуществления два или более шнеков вращаются в противоположных направлениях.
Устройство
Фиг. 1 представляет схему одного варианта осуществления устройства согласно настоящему изобретению для конверсии лигноцеллюлозной биомассы 102 в ксилозу (в форме раствора) 107, глюкозу (в форме раствора 115) и лигнин (в твердой форме) 116. Лигноцеллюлозную биомассу 102 предварительно обрабатывают в реакторе предварительной обработки 101, используя горячую воду под давлением (HCW) 103 (где горячая вода под давлением находится при докритических условиях) и, необязательно, сверхкритический CO2 104, чтобы гидролизовать гемицеллюлозу в гемицеллюлозные сахара, например, ксилозу и ксилоолигосахариды. Полученную суспензию 105 подвергают разделению 106 на твердую и жидкую фазы (S/L); жидкая фаза содержит гемицеллюлозные сахара, и твердая фаза содержит, главным образом, глюкан и нерастворимый лигнин. Необязательно кислоту 108, которая предпочтительно представляет собой неорганическую кислоту (такую как серная кислота), можно добавлять отдельно или как часть текучей среды для гашения (не показано). Выходы гемицеллюлозных сахаров в жидкой фазе и глюкана и лигнина в твердой фазе, как правило, составляют не менее чем 80%, не менее чем 90% и не менее чем 90% (от теоретического), соответственно. Эту твердую матрицу 109 смешивают с водой и необязательно подогревают, затем подвергают гидролизу в реакторе гидролиза 110, используя сверхкритические и околокритические текучие среды. Сверхкритическая вода (SCW) 111 и сверхкритический CO2 112 (и необязательно кислота 113) воздействуют на глюкан, селективно гидролизуя его, в то время как основная масса лигнина остается нерастворимой. После разделения 114 твердой и жидкой фаз получают жидкую фазу, содержащую гексозные сахара 115, и твердую фазу, содержащую, главным образом, лигнин 116. Необязательно кислоту 113, предпочтительно неорганическую кислоту (такую как серная кислота) можно также добавлять, что ускоряет гидролиз целлюлозы, одновременно задерживая солюбилизацию лигнина. Лигнин служит в качестве топлива 117 (такого как топливо, используемое в бойлере, который не показан), в то время как гексозные и пентозные сахара представляют собой исходные материалы для брожения и производства имеющих высокую стоимость промежуточных продуктов и химических реагентов.
В одном варианте осуществления устройство для конверсии биомассы включает (a) реактор предварительной обработки и (b) реактор гидролиза. В родственном варианте осуществления реактор гидролиза соединен с реактором предварительной обработки. В родственном варианте осуществления реактор гидролиза соединен с реактором предварительной обработки и приспособлен таким образом, что предварительно обработанная биомасса поступает из реактора предварительной обработки в реактор гидролиза. В родственном варианте осуществления биомасса поступает из реактора предварительной обработки в реактор гидролиза с помощью экструдера, эдуктора или насоса. В одном варианте осуществления экструдер перемещает предварительно обработанную биомассу из реактора предварительной обработки в реактор гидролиза. В родственном варианте осуществления экструдер включает шнек во вращательном соединении с мотором. В еще одном родственном варианте осуществления экструдер включает два шнека («двухшнековый экструдер»). В одном варианте осуществления экструдер включает шнеки с переменным шагом.
В одном варианте осуществления первый реактор приспособлен для подачи одного или более продуктов первой реакции во второй реактор. В качестве примера и без ограничения, реактор предварительной обработки приспособлен для подачи твердой матрицы в реактор гидролиза. В одном варианте осуществления первый реактор приспособлен таким образом, что один или более продуктов реакции непрерывно поступают во второй реактор. В родственном варианте осуществления экструдер соединен с первым реактором, указанный экструдер приспособлен для подачи одного или более продуктов реакции во второй реактор. В родственном варианте осуществления экструдер представляет собой двухшнековый экструдер. В еще одном варианте осуществления первый реактор представляет собой экструдер. В родственном варианте осуществления, по меньшей мере, часть экструдера приспособлена для разделения двух или более продуктов реакции. В качестве примера и без ограничения, реактор предварительной обработки, включающий экструдер, приспособлен таким образом, что, по меньшей мере, часть экструдера разделяет предварительно обработанную биомассу на первую жидкую фракцию и твердую матрицу; и указанный экструдер дополнительно приспособлен для подачи указанной твердой матрицы в реактор гидролиза. В еще одном варианте осуществления эдуктор соединен с реактором предварительной обработки и приспособлен для подачи одного или более продуктов реакции из первого реактора во второй реактор. В родственном варианте осуществления пар используют для подачи указанных одного или более продуктов реакции из первого реактора во второй реактор. В родственном варианте осуществления эдуктор содержит впуск пара, через который вводят пар, имеющий относительно высокое давление, и один или более продуктов реакции из первого реактора переносятся во второй реактор в соответствии с повышенным давлением пара в эдукторе.
В одном варианте осуществления реактор включает экструдер, в котором происходит, по меньшей мере, часть реакции. В родственном варианте осуществления экструдер представляет собой двухшнековый экструдер, необязательно включающий шнеки с переменным шагом.
В одном варианте осуществления реактор приспособлен для разделения продуктов реакции, которая происходит в реакторе. В качестве примера и без ограничения, реактор гидролиза приспособлен для разделения второй жидкой фракции и нерастворимой содержащей лигнин фракции после того, как гидролиз твердой матрицы происходит в реакторе гидролиза. В родственном варианте осуществления реактор включает экструдер, в котором происходит, по меньшей мере, часть реакции, и в котором разделяют, по меньшей мере, часть продуктов реакции на их составляющие компоненты. Это представлено в целом на фиг. 3, где мотор 301 используют, чтобы приводить в движение шнек 303 экструдера внутри барабана экструдера 305 и перемещать биомассу (не показана), которая поступает через впуск 307 биомассы. Образуется динамическая пробка 311 экструдированной биомассы, создавая зону 315 низкого давления перед пробкой и зону 317 высокого давления сзади пробки в барабане экструдера. Смачивающую текучую среду 309, в данном случае воду, вводят в барабан экструдера. Жидкая фракция выдавливается из влажной экструдированной биомассы (отжатая жидкость 313) перед динамической пробкой. Твердая фракция 323 (например, содержащая от 45 до 50% твердых веществ) выходит через выпускной клапан 319 в реактор 321 для дальнейшей обработки. В родственном варианте осуществления экструзия происходит в экструдере. В родственном варианте осуществления экструдер, используемый для разделения твердой фракции и жидкой фракции, включает один или множество шнеков. В родственном варианте осуществления экструдер включает два шнека («двухшнековый экструдер»), как представлено на фиг. 4, где реактор 402 типа экструдера с двумя шнеками 404a и 404b перемещает биомассу, которая поступает через впуск 406 биомассы через экструдер, проходит обработку перед выходом из экструдера и регулируется с помощью регулирующего давление клапана 405. В еще одном варианте осуществления реактор включает выпуск, через который жидкая фракция выходит из реактора.
В одном варианте осуществления реактор содержит впуск воды, который приспособлен для впуска воды, вводимой или впрыскиваемой в реактор. Реактор можно использовать для предварительной обработки биомассы, гидролиза твердой матрицы, гидролиза жидкой фракции и т.д. В родственном варианте осуществления вода поступает в реактор через впуск воды для гашения предварительной обработки или реакции гидролиза. В родственном варианте осуществления вода поступает через впуск воды после того, как прореагировала, по меньшей мере, часть содержимого (например, в процессе предварительной обработки или гидролиза). В варианте осуществления, где реактор содержит экструдер, указанный реактор включает реакционную зону, определенную как часть длины экструдера, в которой происходит предварительная обработка или реакция гидролиза. В таком варианте осуществления биомасса, твердая матрица или жидкая фракция поступает в реакционную зону с первого конца, и происходит предварительная обработка или гидролиз по мере продвижения материала через реакционную зону по направлению ко второму концу. В еще одном варианте осуществления впуск воды расположен в реакторе типа экструдера, по меньшей мере, на половине пути между указанным первым концом и указанным вторым концом, по меньшей мере, на 5/8 пути между указанным первым концом и указанным вторым концом, по меньшей мере, на 2/3 пути между указанным первым концом и указанным вторым концом, по меньшей мере, на 3/4 пути между указанным первым концом и указанным вторым концом или, по меньшей мере, на 7/8 пути между указанным первым концом и указанным вторым концом.
В одном варианте осуществления реактор включает множество блоков 401a, 401b, 401c и 401d, приспособленных для обеспечения ввода или впрыскивания воды в реактор, например, как представлено на фиг. 4. Реактор можно использовать для предварительной обработки биомассы, гидролиза твердой матрицы, гидролиза жидкой фракции и т.д. В родственном варианте осуществления вода поступает в реактор, по меньшей мере, через один из множества водяных инжекторов, чтобы регулировать, по меньшей мере, один из параметров температуры и давления реактора. В родственном варианте осуществления указанные водяные инжекторы соединены вдоль реактора 402 типа экструдера, как представлено на фиг. 4. В еще одном родственном варианте осуществления текучая среда, содержащая воду и, по меньшей мере, еще один компонент, поступает в реактор, по меньшей мере, через один из множества водяных инжекторов. В еще одном варианте осуществления текучая среда, содержащая воду, имеет, по меньшей мере, один параметр из известной температуры и известного давления.
В одном варианте осуществления реактор включает один или более терморегуляторов 403a, 403b, 403c и 403d, приспособленных для регулирования температуры реакции, которая происходит в реакторе, например, как представлено на фиг. 4. Реактор можно использовать для предварительной обработки биомассы, гидролиза твердой матрицы, гидролиза жидкой фракции и т.д. В родственном варианте осуществления указанные терморегуляторы соединены с одним или несколькими водяными инжекторами. В родственном варианте осуществления терморегуляторы приспособлены таким образом, что когда температура реакции выходит за пределы заданного температурного интервала, указанные терморегуляторы включают один или более водяных инжекторов, которые обеспечивают введение текучей среды. В родственном варианте осуществления известны температура и/или давление текучей среды, подлежащей вводу в реактор. В еще одном родственном варианте осуществления любой из множества терморегуляторов соединен с одним водяным инжектором. В еще одном родственном варианте осуществления любой из множества водяных инжекторов соединен с одним терморегулятором. В еще одном варианте осуществления любой из множества терморегуляторов соединен с одним из множества водяных инжекторов, и наоборот.
В одном варианте осуществления реактор предварительной обработки представляет собой конический реактор 901, такой как представлено на фиг. 9. Помимо его использования в качестве реактора предварительной обработки, данный реактор можно, в качестве альтернативы, использовать для гидролиза твердой матрицы, гидролиза жидкой фракции и т.д. В родственном варианте осуществления конический реактор включает имеющий коническую форму реакционный резервуар, который определяют ось, радиус и внутренняя периферия; и перемешивающий механизм (например, лопастную мешалку 902 и мотор 903). В родственном варианте осуществления перемешивающий механизм содержит рычаг, который вращается приблизительно вокруг оси конического реактора и практически параллельно радиусу конического реактора, причем первый мотор технологически соединен с указанным рычагом, лопастная мешалка определена осью лопастной мешалки и соединена с указанным рычагом и вторым мотором, в результате чего лопастная мешалка вращается приблизительно вокруг собственной оси лопастной мешалки и практически параллельно внутренней периферии конического реактора. В родственном варианте осуществления первый и второй моторы представляют собой единый мотор. В еще одном родственном варианте осуществления лопастная мешалка дополнительно содержит вал лопастной мешалки, проходящий практически вдоль оси лопастной мешалки, и, по меньшей мере, одну лопасть мешалки, периферически соединенную с указанным валом лопастной мешалки. В родственном варианте осуществления лопастная мешалка включает одну лопасть мешалки. В родственном варианте осуществления указанная лопасть мешалки спирально соединена с валом лопастной мешалки.
В одном варианте осуществления устройство для конверсии биомассы включает:
реактор предварительной обработки, приспособленный для предварительной обработки биомассы;
первый реактор гидролиза, соединенный с указанным реактором предварительной обработки и приспособленный для гидролиза твердой матрицы, образующейся в реакторе предварительной обработки;
второй реактор гидролиза, соединенный с указанным реактором предварительной обработки и приспособленный для гидролиза первой жидкой фракции, образующейся в реакторе предварительной обработки; и
необязательно, третий реактор гидролиза, соединенный с указанным первым реактором гидролиза и приспособленный для гидролиза второй жидкой фракции, образующейся в указанном первом реакторе гидролиза.
Далее настоящее изобретение описано на следующих примерах, в которых все доли и процентные соотношения приведены по массе, если не определены другие условия. Следует понимать, что данные примеры, хотя и описывают предпочтительные варианты осуществления настоящего изобретения, представлены исключительно в качестве иллюстрации, и их не следует истолковывать как ограничения любого рода. Из приведенного выше обсуждения и данных примеров специалист в данной области техники сможет оценить основные характеристики настоящего изобретения, а также сможет, без отклонения от его идеи и выхода за пределы его объема, осуществлять разнообразные изменения и модификации настоящего изобретения, чтобы приспособить его к разнообразным применениям и условиям.
Примеры
Пример 1. Непрерывная предварительная обработка биомассы
Использовали систему непрерывного действия экспериментального масштаба с производительностью 100 кг в сутки (в расчете на сухой материал). Схема устройства для предварительной обработки представлена на фиг. 2. Суспензия 201 биомассы в воде поступает в печь 203 и нагревается. Необязательно диоксид углерода 205 вводят в реактор 207 предварительной обработки в качестве сверхкритической текучей среды, причем сверхкритический CO2 служит в качестве катализатора. После предварительной обработки фракционированную биомассу охлаждают введением охлаждающей текучей среды 209, такой как вода (в которой содержится или не содержится кислота, предпочтительно неорганическая кислота). Жидкую фракцию 215, содержащую ксилозу, отделяют, используя сепаратор 211 твердых и жидких фаз, от твердой фракции 213, содержащей целлюлозу и лигнин. Эксперименты проводили в интервале температур от 220 до 250°C при давлении 100 бар (10 МПа) и времени выдерживания от 1 до 1,6 минут. Фиг. 14 представляет выходы в расчете на поступающий исходный материал; исходный материал содержал приблизительно 35% глюкана, приблизительно 18% ксилана и приблизительно 30% лигнина (смешанная лиственная древесина).
Пример 2. Непрерывный гидролиз целлюлозы с использованием сверхкритической и околокритической воды
Использовали систему непрерывного действия экспериментального масштаба с производительностью 100 кг в сутки (в расчете на сухой материал). Схема устройства для гидролиза целлюлозы представлена на фиг. 7. Суспензию 701 предварительно обработанной биомассы сначала подогревали в печи 702 и затем непосредственно подвергали гидролизу в реакторе 707 гидролиза, используя сверхкритические и околокритические текучие среды. Сверхкритическая вода (SCW) 705 (полученная нагреванием потока воды 703 в печи 704 под давлением) и сверхкритический CO2 706 (и необязательно кислота, которая не показана) воздействовали на глюкан, селективно гидролизуя его, в то время как основная масса лигнина оставалась нерастворимой. Гидролизованную суспензию гасили, например, водой 708 для гашения (содержащей или не содержащей разбавленную кислоту, предпочтительно неорганическую кислоту, такую как серная кислота), чтобы замедлить реакцию гидролиза и предотвратить образование продуктов разложения. Использование кислоты для гашения также приводило к гидролизу целлоолигосахаридов в мономеры глюкозы. Гидролизованную суспензию дополнительно охлаждали охлаждающей текучей средой, такой как вода 709. После разделение 710 твердой и жидкой фаз получали жидкую фазу, содержащую гексозные сахара 711, и твердую фазу, содержащую, в основном, лигнин 712. Эксперименты проводили в интервале температур от 360 до 374°C при давлении 225 бар (22,5 МПа) и времени выдерживания 1 с. В суспензию вводили CO2 (4 мас.%), причем сверхкритический CO2 действовал в качестве катализатора. Температуру поддерживали в течение желательного времени выдерживания непосредственным гашением реакции путем впрыскивания холодной воды. Таблица 1 и таблица 2 представляют выходы в расчете на поступающий исходный материал; исходный материал содержал приблизительно 55% глюкана и приблизительно 40% лигнина (предварительно обработанные твердые материалы), время выдерживания составляло 1 с и 1,2 с, соответственно. Все выходы приведены в процентах от теоретического максимума и относятся к жидкой фазе, за исключением лигнина, который находился в твердой фазе. Гидролиз целлюлозы и солюбилизация лигнина находятся в обратной корреляции. Гликолевый альдегид и гликолевая кислота также образовывались в значительных количествах, и их можно выделять как ценные продукты.
Figure 00000001
Пример 3. Непрерывная конверсия ксилоолигосахаридов (XOS) в мономеры ксилозы с использованием кислоты и горячей воды под давлением
Использовали систему непрерывного действия экспериментального масштаба с производительностью 100 кг в сутки (в расчете на сухой материал). Схема устройства была аналогичной схеме, представленной на фиг. 2. Содержащую ксилозу жидкую фазу, полученную на стадии предварительной обработки аналогично примеру 1, использовали в качестве исходного материала. Эксперименты проводили в интервале температур от 180 до 240°C при давлении 100 бар (10 МПа) и времени выдерживания от 1 до 3 с. В жидкую фазу в качестве катализатора вводили H2SO4 при концентрации от 0,1% до 0,2% (pH от 1,7 до 2,0). Результаты показали, что приблизительно 90% выход мономерной ксилозы можно получить в течение 1 с, используя 0,2% кислоты (фиг. 15).
Пример 4. Непрерывная конверсия целлоолигосахаридов (COS) в мономеры глюкозы с использованием кислоты и горячей воды под давлением
Использовали систему непрерывного действия экспериментального масштаба с производительностью 100 кг в сутки (в расчете на сухой материал). Схема устройства была аналогичной схеме, представленной на фиг. 2. Суспензию, полученную на стадии гидролиза целлюлозы аналогично примеру 2, фильтровали, и полученную жидкую фазу использовали в качестве исходного материала. Эксперименты проводили в интервале температур от 200 до 260°C при давление 100 бар (10 МПа) и времени выдерживания от 1 до 3 с. В жидкую фазу в качестве катализатора вводили 0,2% H2SO4 или 0,25% щавелевую кислоту. Результаты показали, что приблизительно 90% выход мономерной глюкозы можно получить в течение 1 с, используя 0,1% серную кислоту, как представлено на фиг. 13.
Пример 5. Влияние времени выдерживания при гидролизе целлюлозы на образование глюкозы и побочных продуктов
Непрерывный гидролиз целлюлозы осуществляли при 377°C, используя твердую матрицу, полученную на стадии предварительной обработки, как описано выше, при различных значениях времени выдерживания (1,6 с, 5 с, 7с и 10 с). Выходы (в процентах от теоретического максимума для каждого компонента) измеряли для определенных компонентов (глюкоза, глюкоза после гидролиза (PH), гликолевый альдегид (GLA) и сумма глюкозы (PH) и GLA). Результаты представлены на фиг. 12, где глюкоза обозначена ромбами, глюкоза PH обозначена треугольниками, гликолевый альдегид (GLA) обозначен квадратами, и сумма глюкозы (PH) и GLA обозначена буквами X. При увеличении времени выдерживания снижается уровень суммарной глюкозы (глюкозы PH), и повышается уровень гликолевого альдегида. Таким образом, можно регулировать процесс, чтобы получать больше сахара (глюкозы) или больше побочных продуктов (таких как гликолевый альдегид).
Гликолевый альдегид можно легко гидрировать, получая моноэтиленгликоль (MEG), при использовании в качестве катализатора, например, никель Ренея (Raney). Кроме того, образуются гликолевая кислота, глицериновый альдегид, молочная кислота и уксусная кислота, которые можно выделять, например, экстракционным разделением двух жидких фаз.
Этанольное брожение проводили, используя содержащую глюкозу жидкую фазу, полученную в течение времени выдерживания, составлявшего 1,6 с. После обработки активированным углем и избытком извести эту жидкую фазу сбраживали, получая высокие выходы спирта. Результаты представлены в таблице 2.
Таблица 2
Этанольное брожение с использованием раствора глюкозы
Время (часов) Выход этанола (%)
24 67
48 85
Пример 6. Влияние CO2 на производство глюкозы и побочных продуктов
Непрерывный гидролиз целлюлозы с использованием и без использования CO2 осуществляли при 377°C и времени выдерживания 1,6 с, используя твердую матрицу, полученную на стадии предварительной обработки, как описано выше. Результаты представлены в таблице 3.
Таблица 3
Влияние CO2
Уровень CO2
5% 0%
Глюкоза в чистом виде (%) 3,1 3,8
Суммарная глюкоза (%) 64,8 66,8
Гликолевый альдегид (%) 9,2 8,8
Гликолевая кислота и гликолевый альдегид (%) 1,7 2,4
Молочная кислота (%) 2,1 1,7
Муравьиная кислота (%) 3,2 2,8
Уксусная кислота (%) 2,2 1,7
Извлечение лигнина (%) 70,2 69,7
Как можно видеть, различие в содержании продуктов и побочных продуктов, получаемых непрерывным гидролизом целлюлозы с использованием и без использования CO2, оказалось статистически незначительным. Таким образом, получается, что отсутствует полезное влияние на выход глюкозы, выход побочных продуктов и извлечение лигнина. Соответственно, было бы выгодно избежать расходов на перекачивание CO2 и сжатие CO2 для рециркуляции, а также дополнительных сложностей, связанных с использованием CO2 в сверхкритических условиях.
Пример 7. Влияние CO2 на стадии предварительной обработки
Предварительную обработку биомассы с использованием CO2 осуществляли при температуре, составлявшей приблизительно от 230°C до 240°C, при времени выдерживания около 1,5 минут. Результаты представлены на фиг. 5. Эти данные показывают хорошее извлечение ксилозы в жидкой фазе и извлечение глюкана в твердой фазе.
Хотя описаны предпочтительные формы настоящего изобретения, специалистам в данной области техники будет очевидно, что можно осуществлять разнообразные изменения и модификации, которые обеспечивают некоторые из преимуществ настоящего изобретения без отклонения от идеи и объема настоящего изобретения. Таким образом, объем настоящего изобретения должен быть определен исключительно прилагаемой формулой изобретения.
Когда интервалы используют в настоящем документе для описания физических свойств, таких как молекулярная масса, или химических свойств, таких как химические формулы, предполагается включение всех комбинаций и субкомбинаций интервалов, предусмотренных в конкретных вариантах осуществления настоящего изобретения.
Описания каждого патента, патентной заявки и публикации, которые процитированы или описаны в настоящем документе, во всей своей полноте включаются в настоящий документ посредством соответствующей ссылки.
Специалисты в данной области техники оценят, что можно осуществлять многочисленные изменения и модификации предпочтительных вариантов осуществления настоящего изобретения, и что указанные изменения и модификации можно осуществлять без отклонения от идеи настоящего изобретения. Таким образом, предусмотрено, что прилагаемая формула изобретения распространяется на все такие эквивалентные видоизменения, которые соответствуют действительной идее и объему настоящего изобретения.

Claims (27)

1. Способ повышения уровня глюкозы, производимой из лигноцеллюлозной биомассы, включающий:
изготовление фракционированной биомассы, в которой содержатся:
первая твердая фракция, которую составляют:
целлюлоза и
нерастворимый лигнин; и
первая жидкая фракция;
смешивание вышеупомянутой твердой фракции с водой для изготовления суспензии;
необязательное предварительное нагревание вышеупомянутой суспензии до температуры, составляющей менее чем критическая температура воды;
введение в контакт вышеупомянутой суспензии со второй реакционной текучей средой, при котором образуются:
вторая твердая фракция, содержащая нерастворимый лигнин; и
вторая жидкая фракция, содержащая сахарид, выбранный из группы, которую составляют целлоолигосахариды, глюкоза и их смеси;
в котором вышеупомянутая вторая реакционная текучая среда содержит воду и необязательно диоксид углерода, причем вышеупомянутая вторая реакционная текучая среда имеет температуру и давление выше критической точки воды и диоксида углерода; и
уменьшение температуры вышеупомянутой реакционной смеси до температуры ниже критической температуры воды; и
необязательный гидролиз вышеупомянутой второй жидкой фракции для получения глюкозы.
2. Способ по п. 1, в котором вышеупомянутый способ является непрерывным.
3. Способ по п. 1, в котором вышеупомянутое уменьшение температуры вышеупомянутой реакционной смеси до температуры ниже критической температуры воды включает введение в контакт вышеупомянутой реакционной смеси с композицией, содержащей воду.
4. Способ по п. 1, в котором вышеупомянутое уменьшение температуры вышеупомянутой реакционной смеси до температуры ниже критической температуры воды включает введение в контакт вышеупомянутой реакционной смеси с композицией, содержащей воду и кислоту на уровне, составляющем менее чем приблизительно 10 мас.% по отношению к суммарной массе вышеупомянутый композиция.
5. Способ по п. 1, в котором вышеупомянутое уменьшение температуры включает резкое охлаждение.
6. Способ по п. 1, в котором вышеупомянутая фракционированная биомасса образуется при введении в контакт вышеупомянутой биомассы с первой реакционной текучей средой, содержащей воду и необязательно диоксид углерода, причем вышеупомянутая первая реакционная текучая среда имеет температуру и давление выше критической точки диоксида углерода, и, по меньшей мере, один параметр, представляющий собой вышеупомянутую температуру и вышеупомянутое давление вышеупомянутой первой реакционной текучей среды, составляет менее чем критическая температура и критическое давление воды.
7. Способ по п. 1, в котором осуществляется вышеупомянутое предварительное нагревание.
8. Способ по п. 7, в котором вышеупомянутое предварительное нагревание осуществляется при температуре, составляющей от приблизительно 245°C до приблизительно 255°C, и давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 260 бар (26 МПа).
9. Способ по п. 1, в котором введение в контакт вышеупомянутой суспензии со второй реакционной текучей средой осуществляется на стадии гидролиза, и вышеупомянутая стадия гидролиза происходит при температуре, составляющей приблизительно 358°C до приблизительно 380°C, и давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 260 бар (26 МПа).
10. Способ по п. 1, в котором вышеупомянутое введение в контакт вышеупомянутой суспензии осуществляется на стадии гидролиза, и вышеупомянутая стадия гидролиза происходит при температуре, составляющей от приблизительно 275°C до приблизительно 450°C.
11. Способ по п. 10, в котором вышеупомянутая стадия гидролиза происходит при температуре, составляющей от приблизительно 340°C до приблизительно 400°C.
12. Способ по п. 10, в котором вышеупомянутый суспензия имеет продолжительность выдерживания на вышеупомянутой стадии гидролиза, составляющую от приблизительно 1 секунды до приблизительно 10 секунд.
13. Способ по п. 1, в котором вышеупомянутое уменьшение температуры вышеупомянутой реакционной смеси осуществляется при температуре, составляющей от приблизительно 260°C до приблизительно 280°C, и давлении, составляющем от приблизительно 200 бар (20 МПа) до приблизительно 260 бар (26 МПа).
14. Способ по п. 1, в котором выход вышеупомянутой глюкозы составляет, по меньшей мере, приблизительно 63% теоретического выхода.
15. Способ по п. 1, в котором вышеупомянутая вторая реакционная текучая среда дополнительно содержит диоксид углерода.
16. Способ по п. 1, в котором в вышеупомянутой второй реакционной текучей среде не содержится диоксид углерода.
17. Способ по п. 1, в котором в вышеупомянутой второй реакционной текучей среде практически не содержится спирт C1-C5.
18. Способ по п. 1,
в котором осуществляется вышеупомянутый гидролиз вышеупомянутой второй жидкой фракции,
в котором вышеупомянутый гидролиз включает воздействие на вышеупомянутую вторую жидкую фракцию температуры, составляющей от приблизительно 220°C до приблизительно 320 °C.
19. Способ по п. 1,
в котором осуществляется вышеупомянутый гидролиз вышеупомянутой второй жидкой фракции,
в котором вышеупомянутый гидролиз включает введение в контакт вышеупомянутой второй жидкой фракции с горячей сжатой водой или с третьей околокритической или докритической текучей средой для получения третьей жидкой фракции, содержащей мономер глюкозы;
в котором вышеупомянутая третья околокритическая или докритическая текучая среда содержит воду; и
в котором вышеупомянутая горячая сжатая вода или вышеупомянутая третья околокритическая или докритическая текучая среда необязательно содержит кислоту.
20. Способ по п. 19, в котором вышеупомянутая кислота присутствует в количестве, составляющем от приблизительно 0,1 до приблизительно 1,5 мас.% по отношению к массе вышеупомянутой горячей сжатой воды или вышеупомянутой третьей околокритической или докритической текучей среды, которая используется на вышеупомянутой второй стадии гидролиза.
21. Способ по п. 19, в котором в вышеупомянутом гидролизе используется вышеупомянутая горячая сжатая вода; и вышеупомянутая горячая сжатая вода имеет температуру, составляющую от приблизительно 50°C до приблизительно 250°C, и достаточное давление для сохранения вышеупомянутой горячей сжатой воды в жидком состоянии.
22. Способ по п. 21, в котором вышеупомянутая горячая сжатая вода содержит кислоту.
23. Способ по п. 1,
в котором вышеупомянутая первая жидкая фракция содержит ксилоолигосахариды,
в котором с вышеупомянутой первой жидкой фракцией вступает в контакт вторая горячая сжатая вода или четвертая околокритическая или докритическая текучая среда, и образуется четвертая жидкая фракция, содержащая мономер ксилозы;
в котором вышеупомянутая четвертая околокритическая или докритическая текучая среда содержит воду; и
в котором вышеупомянутая вторая горячая сжатая вода или вышеупомянутая четвертая околокритическая или докритическая текучая среда необязательно содержит кислоту.
24. Способ по п. 23, в котором вышеупомянутая кислота присутствует в количестве, составляющем от приблизительно 0,1 до приблизительно 1,5 мас.% по отношению к массе вышеупомянутой второй горячей сжатой воды или вышеупомянутой четвертой околокритической или докритической текучей среды, которая используется.
25. Способ по п. 23, в котором вышеупомянутая первая жидкая фракция вступает в контакт с вышеупомянутой второй горячей сжатой водой; и вышеупомянутая вторая горячая сжатая вода имеет температуру, составляющую от приблизительно 50°C до приблизительно 250°C, и достаточное давление для сохранения вышеупомянутой второй горячей сжатой воды в жидком состоянии.
26. Способ по п. 25, в котором вышеупомянутая вторая горячая сжатая вода содержит кислоту.
27. Продукт, изготовленный способом по п. 1.
RU2015112569/12A 2010-01-19 2011-01-19 Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды RU2597588C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29610110P 2010-01-19 2010-01-19
US61/296,101 2010-01-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2012135497/12A Division RU2556496C2 (ru) 2010-01-19 2011-01-19 Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды

Publications (2)

Publication Number Publication Date
RU2015112569A RU2015112569A (ru) 2015-09-20
RU2597588C2 true RU2597588C2 (ru) 2016-09-10

Family

ID=44307186

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2012135497/12A RU2556496C2 (ru) 2010-01-19 2011-01-19 Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды
RU2015112569/12A RU2597588C2 (ru) 2010-01-19 2011-01-19 Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2012135497/12A RU2556496C2 (ru) 2010-01-19 2011-01-19 Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды

Country Status (7)

Country Link
US (4) US9359651B2 (ru)
EP (2) EP2526225B1 (ru)
CN (3) CN102859066B (ru)
BR (1) BR112012017850B8 (ru)
CA (3) CA2769746C (ru)
RU (2) RU2556496C2 (ru)
WO (1) WO2011091044A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
RU2748948C2 (ru) * 2016-03-31 2021-06-02 Торэй Индастриз, Инк. Способ получения ксилоолигосахарида

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0915930A2 (pt) 2008-07-16 2015-11-03 Sriya Innovations Inc método para produção de pelo menos um de glicose e furfural, processo para produção de um produto como xilose e celulose a partir de uma biomassa, processo para hidrolisar celulose e composição compreendendo um produto de hidrólise de celulose
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8119823B2 (en) 2008-07-16 2012-02-21 Renmatix, Inc. Solvo-thermal hydrolysis of xylose
US8282738B2 (en) 2008-07-16 2012-10-09 Renmatix, Inc. Solvo-thermal fractionation of biomass
EP3401410B1 (en) 2010-06-26 2020-12-30 Virdia, Inc. Methods for production of sugar mixtures
IL206678A0 (en) 2010-06-28 2010-12-30 Hcl Cleantech Ltd A method for the production of fermentable sugars
IL207945A0 (en) 2010-09-02 2010-12-30 Robert Jansen Method for the production of carbohydrates
EP2635713A4 (en) 2010-11-01 2017-07-05 Renmatix, Inc. Process for controlled liquefaction of a biomass feedstock by treatment in hot compressed water
GB2505148B8 (en) 2011-04-07 2016-12-07 Virdia Ltd Lignocellulose conversion processes and products
US8801859B2 (en) 2011-05-04 2014-08-12 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
CN103502257B (zh) * 2011-05-04 2016-10-12 瑞恩麦特克斯股份有限公司 多级纤维素水解和采用或不采用酸的猝灭
CA2806873C (en) * 2011-05-04 2014-07-15 Renmatix, Inc. Lignin production from lignocellulosic biomass
EP2710021A4 (en) * 2011-05-04 2015-07-22 Renmatix Inc INCREASED YIELDS OF SOLUBLE C5 SACCHARIDES
EP2705045B1 (en) * 2011-05-04 2016-10-19 Renmatix Inc. Cellulose hydrolysis with ph adjustment
US8895265B2 (en) 2011-05-04 2014-11-25 Renmatix, Inc. Multistage fractionation process for recalcitrant C5 oligosaccharides
WO2013006856A1 (en) * 2011-07-07 2013-01-10 Poet Research Incorporated Systems and methods for acid recycle
US9617608B2 (en) 2011-10-10 2017-04-11 Virdia, Inc. Sugar compositions
CA2854291A1 (en) * 2011-11-08 2013-05-16 Reac Fuel Ab Liquefaction of biomass at low ph
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US20130172547A1 (en) 2011-12-30 2013-07-04 Renmatix, Inc. Compositions comprising c5 and c6 oligosaccharides
US9162951B2 (en) * 2012-02-24 2015-10-20 Biochemtex S.P.A. Continuous process for conversion of lignin to useful compounds
ITNO20120002A1 (it) 2012-03-20 2013-09-21 Novamont Spa Processo per la produzione di composti organici a partire da specie vegetali
BR112014025714A8 (pt) * 2012-04-30 2018-02-06 Renmatix Inc Processo que envolve a liquefação de uma calda de biomassa por meio de tratamento em água comprimida quente (hcw)
CA3060976C (en) 2012-05-03 2022-08-23 Virdia, Inc. Methods for treating lignocellulosic materials
JP2013248554A (ja) * 2012-05-31 2013-12-12 Hitachi Ltd 超臨界水もしくは亜臨界水を用いた反応装置および方法
CN111534554A (zh) * 2012-07-13 2020-08-14 瑞恩麦特克斯股份有限公司 生物质的超临界水解
BR102013006389A2 (pt) 2012-08-01 2015-03-17 Cnpem Ct Nac De Pesquisa Em En E Materiais Processo para conversão simultânea do bagaço de cana-de-açúcar utilizando reatores uhtst
US20140087432A1 (en) * 2012-09-24 2014-03-27 Abengoa Bioenergy Methods for conditioning pretreated biomass
US9333468B2 (en) 2012-09-24 2016-05-10 Abengoa Bioenergy New Technologies, Llc Soak vessels and methods for impregnating biomass with liquid
US9115214B2 (en) 2012-09-24 2015-08-25 Abengoa Bioenergy New Technologies, Llc Methods for controlling pretreatment of biomass
WO2014068590A1 (en) * 2012-10-30 2014-05-08 Council Of Scientific & Industrial Research A continuous process for depolymerization of lignin to industrially useful chemicals
EP2917376A4 (en) * 2012-11-08 2016-06-22 Renmatix Inc INSTANT COOLING TO INACTIVE A HYDROLYSIS REACTION OF A BIOMASS LOAD
US20140366870A1 (en) * 2012-12-31 2014-12-18 Api Intellectual Property Holdings, Llc Methods for recovering and recycling salt byproducts in biorefinery processes
US20140187759A1 (en) * 2012-12-31 2014-07-03 Api Intellectual Property Holdings, Llc Biorefining processes and apparatus for separating cellulose hemicellulose, and lignin from biomass
JP6307789B2 (ja) 2013-01-07 2018-04-11 東レ株式会社 糖液の製造装置及び糖液の製造方法
CN103966877B (zh) * 2013-01-24 2017-04-12 财团法人金属工业研究发展中心 含纤维素生质材料处理方法
NZ629052A (en) 2013-03-15 2017-04-28 Renmatix Inc High purity lignin, lignin compositions, and higher structured lignin
WO2015016930A1 (en) * 2013-08-01 2015-02-05 Renmatix, Inc. Method for biomass hydrolysis
US9611493B2 (en) 2013-08-01 2017-04-04 Renmatix, Inc. Method for biomass hydrolysis
US10344342B2 (en) 2013-12-26 2019-07-09 Kawasaki Jukogyo Kabushiki Kaisha Method of and apparatus for producing saccharified solution by using biomass as raw material, and continuous reactor
KR101644490B1 (ko) * 2014-02-26 2016-08-02 주식회사 이노웨이 초임계 가수분해추출장치 및 가수분해방법
CN106414615B (zh) 2014-05-01 2020-10-16 瑞恩麦特克斯股份有限公司 通过反应性提取从含木质素的残余物升级木质素
DE102015111960A1 (de) * 2014-07-23 2016-01-28 Günter Gäbler Separierung von Bestandteilen pflanzlicher Biomasse
FI3186286T3 (fi) 2014-09-26 2024-07-10 Renmatix Inc Selluloosaa sisältävät koostumukset ja niiden valmistusmenetelmät
AU2015320325A1 (en) 2014-09-26 2017-04-27 Renmatix, Inc. Methods for preparing and collecting polyaromatic compounds, and products comprising polyaromatic compounds
CN104357588B (zh) * 2014-11-05 2017-12-22 广西大学 一种超/亚临界水‑co2水解蔗髓制备还原糖的方法
US20170342510A1 (en) 2014-12-18 2017-11-30 Avantium Knowledge Centre B.V. Process for the preparation of a saccharide-containing solution from a torrefied cellulosic biomass
LT3234201T (lt) 2014-12-18 2020-08-25 Avantium Knowledge Centre B.V. Kietųjų sacharidų gamybos iš vandeninio sacharidų tirpalo procesas
EP3242871B1 (en) 2015-01-07 2019-11-06 Virdia, Inc. Methods for extracting and converting hemicellulose sugars
CN104674585B (zh) * 2015-02-15 2017-03-29 广西大学 跨临界co2反应系统水解制浆的方法及装置
WO2016191503A1 (en) 2015-05-27 2016-12-01 Virdia, Inc. Integrated methods for treating lignocellulosic material
CN114481656B (zh) * 2015-06-11 2024-03-22 思科有限责任公司 用于从植物基和再生材料生产纸浆、能源和生物衍生物的方法和系统
US20190092636A1 (en) 2015-08-31 2019-03-28 Avantium Knowledge Centre B.V. Process for the Recovery of Hydrochloric Acid
US9809522B2 (en) 2015-09-11 2017-11-07 South Dakota Board Of Regents Selective liquefaction of lignin and biomass in a mixture of sub- and supercritical fluids in absence or presence of heterogeneous catalysts
EP3374315B1 (en) 2015-11-09 2019-08-21 Avantium Knowledge Centre B.V. Process for the production of a saccharide product from an aqueous solution
BR102015031401B1 (pt) * 2015-12-15 2021-03-09 Universidade Estadual De Campinas - Unicamp sistema integrado para a produção de biocombustíveis a partir de resíduos e uso
ES2659296B1 (es) * 2016-09-14 2018-12-21 Universidad De Valladolid Proceso y planta piloto multilecho para fraccionamiento de biomasa
US11821047B2 (en) 2017-02-16 2023-11-21 Apalta Patent OÜ High pressure zone formation for pretreatment
CN108554375B (zh) * 2018-01-02 2021-03-02 昆明理工大学 一种改性活性炭吸附剂的方法
IT201800001725A1 (it) * 2018-01-24 2019-07-24 Versalis Spa Procedimento per la produzione di zuccheri da biomassa derivante da piante di guayule
EP3530743A1 (en) 2018-02-21 2019-08-28 Cambridge Glycoscience Ltd Method of production
US10787766B2 (en) * 2018-04-04 2020-09-29 Inventure Renewables, Inc. Methods for the production of pulp and hemicellulose
WO2019215725A1 (en) * 2018-05-08 2019-11-14 We3 Solutions Inc. Means and methods for converting waste biomass to saccharides and other downstream products
CA3109239A1 (en) 2018-08-15 2020-02-20 Cambridge Glycoscience Ltd Novel compositions, their use, and methods for their formation
CN110485187A (zh) * 2019-07-02 2019-11-22 华南理工大学 一种解除蒸汽爆破植物纤维生化抗性的方法
US11420992B2 (en) * 2019-07-18 2022-08-23 Battelle Energy Alliance, Llc Methods of recovering lignin and other products from biomass
JP2022545650A (ja) 2019-08-16 2022-10-28 ケンブリッジ グリコサイエンス エルティーディー バイオマスを処理してオリゴ糖および関連組成物を生成する方法
US11761582B2 (en) 2019-09-05 2023-09-19 Dhf America, Llc Pressure regulation system and method for a fluidic product having particles
WO2021116437A2 (en) 2019-12-12 2021-06-17 Cambridge Glycoscience Ltd Low sugar multiphase foodstuffs
CA3165573A1 (en) 2019-12-22 2021-07-01 Sweetwater Energy, Inc. Methods of making specialized lignin and lignin products from biomass
GB2592275A (en) * 2020-02-24 2021-08-25 Nova Pangaea Tech Uk Limited Processing of lignocellulosic biomass
US20240100755A1 (en) * 2020-12-21 2024-03-28 Fap S.R.L. Apparatus and method for the production of foamed polymeric material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161095A1 (en) * 2005-01-18 2007-07-12 Gurin Michael H Biomass Fuel Synthesis Methods for Increased Energy Efficiency
US20070267008A1 (en) * 2003-11-21 2007-11-22 Tama-Tlo Corporation Method of Hydrolyzing an Organic Compound
US20080115336A1 (en) * 2006-11-21 2008-05-22 Dian-Tai Chen Hose clamp
US20090056201A1 (en) * 2007-08-27 2009-03-05 Endicott Biofuels Ii, Llc Production of Ester-based Fuels Such As Biodiesel From Renewable Starting Materials

Family Cites Families (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1783163A (en) 1925-09-26 1930-11-25 Dow Chemical Co Pressure-relieving method and apparatus for autoclaves and the like
GB291991A (en) 1927-08-19 1928-06-14 Corn Prod Refining Co Manufacture of dextrose
US1959433A (en) 1931-02-11 1934-05-22 Emil C Loetscher Water-soluble resins of the phenol formaldehyde group
US1938802A (en) 1932-04-19 1933-12-12 Chemipulp Process Inc Continuous process and apparatus for pulping fibrous materials
US2198785A (en) 1937-06-07 1940-04-30 Mohr John Method for treating waste materials
US2156159A (en) 1938-05-17 1939-04-25 Northwood Chemical Company Process of making lignin
US2356500A (en) 1941-03-27 1944-08-22 Boinot Firmin Charles Method for saccharifying cellulosic materials by means of diluted mineral acids
US2516833A (en) 1947-06-09 1950-08-01 Ant-Wuorinen Olli Viljo Anton Process for hydrolyzing cellulosic materials
US2681871A (en) 1951-02-16 1954-06-22 Sam M Nickey Jr Method and apparatus for hydrolyzing cellulosic materials
GB692284A (en) 1951-03-05 1953-06-03 Union Starch And Refining Comp Stable syrup of high dextrine content and method of manufacturing same
US2759856A (en) 1952-11-05 1956-08-21 Masonite Corp Preparation of high purity wood sugars
US2781328A (en) 1953-05-06 1957-02-12 Agrashell Inc Phenolic resin glue compositions containing hydrolyzed ligno-cellulosic degradation products
US2727869A (en) 1953-06-12 1955-12-20 Monsanto Chemicals Phenolic adhesive and method of making same
US2851382A (en) 1954-05-05 1958-09-09 Walter L Schmidt Method for hydrolyzing cellulosic materials
US2801939A (en) 1955-04-04 1957-08-06 Tennessee Valley Authority Hydrolysis of hemicellulose and alphacellulose to produce sugar
US2810394A (en) 1955-04-08 1957-10-22 Ferguson Robert Eugene Valve construction
US2822784A (en) 1955-05-09 1958-02-11 Babcock & Wilcox Co Apparatus for and method of generating and superheating vapor
US2881783A (en) 1956-07-11 1959-04-14 Exxon Research Engineering Co Self-cleaning valve
US2994633A (en) 1958-08-21 1961-08-01 Crossett Company Process for separating lignin solids from used neutral sulfite pulping liquors
US2997466A (en) 1958-11-04 1961-08-22 West Virginia Pulp & Paper Co Decantation of lignin
US3294715A (en) 1962-08-01 1966-12-27 Dow Chemical Co Phenolic resin adhesive extended withcausticized lignite
US3212932A (en) 1963-04-12 1965-10-19 Georgia Pacific Corp Selective hydrolysis of lignocellulose materials
US3314797A (en) 1963-04-12 1967-04-18 Georgia Pacific Corp Converting lignocellulose materials into yeast containing stock feed
GB1245486A (en) 1969-12-04 1971-09-08 Sued Chemie Ag Process for the preparation of xylose solutions
US3792719A (en) 1971-10-20 1974-02-19 Westinghouse Electric Corp Self-cleaning flow restricting device
DE2413306B2 (de) 1973-05-04 1976-09-30 Gebrüder Sulzer AG, Winterthur (Schweiz) Verfahren zum herstellen von xyloseloesung
JPS5630000B2 (ru) 1974-05-17 1981-07-11
US4165240A (en) 1974-10-04 1979-08-21 Cpc International Inc. Starch hydrolysate having less than 5 ppm of heavy metals
DE2545111C3 (de) 1975-10-08 1980-07-17 Sued-Chemie Ag, 8000 Muenchen Verfahren zum zweistufigen Aufschließen von xylanhaltigen Naturprodukten zwecks Gewinnung von Xylose
CA1079008A (en) 1975-10-24 1980-06-10 Cp Associates Limited Solvent pulping process
ZA766073B (en) 1975-10-24 1977-09-28 D Econimidis Production of pulp
US3990904A (en) 1976-05-11 1976-11-09 Sud-Chemie Ag Method for the preparation of xylose solutions
DE2737118A1 (de) 1977-08-17 1979-03-01 Projektierung Chem Verfahrenst Verfahren zur gewinnung von zuckern, gegebenenfalls cellulose und gegebenenfalls lignin aus lignocellulosischen pflanzlichen rohstoffen
CA1100266A (en) 1977-08-31 1981-05-05 Laszlo Paszner Organosolv delignification and saccharification process for lignocellulosic plant materials
US4201596A (en) 1979-01-12 1980-05-06 American Can Company Continuous process for cellulose saccharification
US5628830A (en) 1979-03-23 1997-05-13 The Regents Of The University Of California Enzymatic hydrolysis of biomass material
US5366558A (en) 1979-03-23 1994-11-22 Brink David L Method of treating biomass material
FR2462433A1 (fr) 1979-08-03 1981-02-13 Bertin & Cie Perfectionnements apportes aux procedes et aux appareillages pour l'obtention de furfural a partir de matieres vegetales
JPS5847213B2 (ja) 1979-09-20 1983-10-21 工業技術院長 高圧下のスラリ−連続抜出し方法
CA1173380A (en) 1980-02-19 1984-08-28 Michael I. Sherman Acid hydrolysis of biomass for ethanol production
ES8201627A1 (es) 1980-02-23 1981-12-16 Reitter Franz Johann Procedimiento e instalacion para la hidrolisis continua de hemicelulosas que contienen pentosanas de celulosa.
US4316747A (en) 1980-03-18 1982-02-23 New York University Process for the chemical conversion of cellulose waste to glucose
CA1190923A (en) 1980-03-18 1985-07-23 Barry Rugg Process and apparatus for chemical conversion of materials and particularly the conversion of cellulose waste to glucose
US4316748A (en) 1980-03-18 1982-02-23 New York University Process for the acid hydrolysis of waste cellulose to glucose
US4368079A (en) 1980-03-18 1983-01-11 New York University Apparatus for chemical conversion of materials and particularly the conversion of cellulose waste to glucose
US4363671A (en) 1980-03-18 1982-12-14 New York University Apparatus for chemical conversion of materials
US4318748A (en) 1980-04-09 1982-03-09 American Can Company Continuous process for saccharification of whole starchy materials
US4338199A (en) 1980-05-08 1982-07-06 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
US4543190A (en) 1980-05-08 1985-09-24 Modar, Inc. Processing methods for the oxidation of organics in supercritical water
US4308200A (en) 1980-07-10 1981-12-29 Champion International Corporation Extraction of coniferous woods with fluid carbon dioxide and other supercritical fluids
JPS5761083A (en) 1980-09-30 1982-04-13 Kobe Steel Ltd Pressure reduction liquefaction reactor in coal
DE3048802A1 (de) 1980-12-23 1982-07-08 Werner & Pfleiderer, 7000 Stuttgart Verfahren zur hydrolyse von zellulose pflanzlicher rohstoffe zu glukose und vorrichtung zur durchfuehrung des verfahrens
US4470851A (en) 1981-03-26 1984-09-11 Laszlo Paszner High efficiency organosolv saccharification process
US4357194A (en) 1981-04-14 1982-11-02 John Stofko Steam bonding of solid lignocellulosic material
CS225851B1 (cs) 1981-05-04 1984-03-19 Jozef Doc Ing Csc Pajtik Spdsob úpravy dřeva a iných lignocelulózových surovin predhydrolýzou a rozvláknením, respektive delignifikáciou pre nadvázujúce výroby
WO1983000370A1 (en) 1981-07-27 1983-02-03 Pittsburgh Midway Coal Mining Apparatus and method for let down of a high pressure abrasive slurry
JPS5835304A (ja) 1981-08-28 1983-03-02 株式会社日立製作所 高圧給水加熱器のウオ−ミング方法及び同装置
DK522881A (da) 1981-11-25 1983-05-26 Danske Sukkerfab Fremgangsmaade til omdannelse af et pentosanholdigt cellulosemateriale til xylose og glukose ved syrehydrolyse
US4405377A (en) 1982-02-10 1983-09-20 Uop Inc. Process for the separation of monosaccharides
CS248106B1 (en) 1982-04-05 1987-01-15 Jan Hojnos Method of acid prehydrolysis of wooden spears
DE3379063D1 (en) 1982-07-05 1989-03-02 Erne Fittings Gmbh & Co Process and apparatus for the preparation of cellulose, simple sugars and soluble lignine from vegetable biomasse
DE3225074A1 (de) 1982-07-05 1984-01-12 Josef Erne & Co, Rohrbogenwerk, 6824 Schlins Verfahren und vorrichtung zur abtrennung der hemicellulose und des lignins von cellulose in lignocellulosischen pflanzenmaterialien, zur gewinnung von cellulose, gegebenenfalls zuckern und gegebenenfalls loeslichem lignin
SU1086046A1 (ru) 1982-07-12 1984-04-15 Ленинградская Ордена Ленина Лесотехническая Академия Им.С.М.Кирова Способ делигнификации древесины
US4556430A (en) 1982-09-20 1985-12-03 Trustees Of Dartmouth College Process for hydrolysis of biomass
JPS5967730A (ja) 1982-10-12 1984-04-17 Hitachi Ltd Pll回路
US4674285A (en) 1983-05-16 1987-06-23 The Babcock & Wilcox Company Start-up control system and vessel for LMFBR
DE3428661A1 (de) 1983-08-09 1985-03-07 Krupp Industrietechnik GmbH Werk Buckau Wolf, 4048 Grevenbroich Verfahren zur hydrolyse von lignocellulosehaltiger biomasse
JPS6083763A (ja) 1983-10-12 1985-05-13 Nippon Denso Co Ltd 摺動部品の製造方法
US4493797A (en) 1983-12-22 1985-01-15 Domtar Inc Apparatus and method involving supercritical fluid extraction
CA1198703A (en) 1984-08-02 1985-12-31 Edward A. De Long Method of producing level off d p microcrystalline cellulose and glucose from lignocellulosic material
US4675198A (en) 1984-12-31 1987-06-23 The Procter & Gamble Co. Removal of textured vegetable product off-flavor by supercritical fluid or liquid extraction
FR2580669B1 (fr) 1985-04-18 1987-09-18 Inst Francais Du Petrole Procede de conversion de substrats lignocellulosiques en pentoses
US4607819A (en) 1985-05-07 1986-08-26 Spils Richard W High pressure radial flow valve
US4644060A (en) 1985-05-21 1987-02-17 E. I. Du Pont De Nemours And Company Supercritical ammonia treatment of lignocellulosic materials
US4637835A (en) 1985-06-28 1987-01-20 Power Alcohol, Inc. Methods of hydrolyzing cellulose to glucose and other (poly)saccharides
US4699124A (en) 1985-06-28 1987-10-13 Power Alcohol, Inc. Process for converting cellulose to glucose and other saccharides
US4764596A (en) 1985-11-05 1988-08-16 Repap Technologies Inc. Recovery of lignin
US5788812A (en) 1985-11-05 1998-08-04 Agar; Richard C. Method of recovering furfural from organic pulping liquor
DE3618200A1 (de) 1986-05-30 1987-12-03 Amazonen Werke Dreyer H Saemaschine
JPS62283988A (ja) 1986-06-02 1987-12-09 Hitachi Ltd マルトオリゴ糖の製造方法
JPS6333341A (ja) * 1986-07-28 1988-02-13 Seitetsu Kagaku Co Ltd 配糖体の処理方法
CA1284637C (en) 1987-08-24 1991-06-04 George S. Faass Biomass fractionation process
JP2595308B2 (ja) 1987-09-04 1997-04-02 王子製紙株式会社 リグニン−フェノール樹脂組成物
US4857638A (en) 1987-12-28 1989-08-15 Domtar Inc. Lignin having nitrogen and sulfur and process therefor employing thiourea
US5041192A (en) 1988-09-16 1991-08-20 University Of South Florida Supercritical delignification of wood
US5169687A (en) 1988-09-16 1992-12-08 University Of South Florida Supercritical fluid-aided treatment of porous materials
EP0364632A1 (en) 1988-10-17 1990-04-25 Zeneca Limited Production of lignin
US4964995A (en) 1989-06-16 1990-10-23 Midwest Research Institute Supercritical separation process for complex organic mixtures
US5196460A (en) 1990-05-29 1993-03-23 Repap Technologies Inc. Rubber compositions containing high purity lignin derivatives
JP3042076B2 (ja) * 1990-09-08 2000-05-15 株式会社神戸製鋼所 天然又は合成高分子化合物の選択的加水分解方法
US5213660A (en) 1990-10-12 1993-05-25 Kimberly-Clark Corporation Secondary fiber cellulose product with reduced levels of polychlorinated dibenzodioxins and polychlorinated dibenzofurans
US5009746A (en) 1990-10-12 1991-04-23 Kimberly-Clark Corporation Method for removing stickies from secondary fibers using supercritical CO2 solvent extraction
JPH04197192A (ja) 1990-11-29 1992-07-16 Kirin Brewery Co Ltd キシロースおよびその還元物の製造方法
US5125977A (en) 1991-04-08 1992-06-30 The United States Of America As Represented By The United States Department Of Energy Two-stage dilute acid prehydrolysis of biomass
US5411594A (en) 1991-07-08 1995-05-02 Brelsford; Donald L. Bei hydrolysis process system an improved process for the continuous hydrolysis saccharification of ligno-cellulosics in a two-stage plug-flow-reactor system
US5328934A (en) 1992-10-27 1994-07-12 Hoechst Celanese Corporation Recycling cellulose esters from the waste from cigarette manufacture
US5338366A (en) 1993-01-04 1994-08-16 Kamyr, Inc. Acid pre-hydrolysis reactor system
US5384051A (en) 1993-02-05 1995-01-24 Mcginness; Thomas G. Supercritical oxidation reactor
US6569640B1 (en) 1993-03-12 2003-05-27 Aphios Corporation Method of fractionation of biologically-derived materials using critical fluids
US5516952A (en) 1993-08-11 1996-05-14 The University Of Akron Oxidative decoupling of scrap rubber
US5424417A (en) 1993-09-24 1995-06-13 Midwest Research Institute Prehydrolysis of lignocellulose
US5824187A (en) 1993-12-29 1998-10-20 Kvaerner Pulping Ab Method for the continuous cooking of pulp
US5705369A (en) 1994-12-27 1998-01-06 Midwest Research Institute Prehydrolysis of lignocellulose
US5512231A (en) 1995-01-26 1996-04-30 Hoechst Celanese Corporation Processing cellulose acetate formed articles using supercritical fluid
FI952065A0 (fi) 1995-03-01 1995-04-28 Xyrofin Oy Foerfarande foer tillvaratagande av en kristalliserbar organisk foerening
JP3024526B2 (ja) 1995-10-11 2000-03-21 日本製紙株式会社 リグニン組成物、その製造方法及びそれを用いたセメント分散剤
JPH11513726A (ja) 1995-10-18 1999-11-24 アルセル テクノロジーズ インコーポレイテッド リグニンベースの摩擦材料
US5615708A (en) 1995-10-23 1997-04-01 Fisher Controls International, Inc. Flow control valve with non-plugging multi-stage valve trim
JP4197192B2 (ja) 1996-09-20 2008-12-17 株式会社ニコン 画像再生装置
US6022419A (en) * 1996-09-30 2000-02-08 Midwest Research Institute Hydrolysis and fractionation of lignocellulosic biomass
US6228177B1 (en) 1996-09-30 2001-05-08 Midwest Research Institute Aqueous fractionation of biomass based on novel carbohydrate hydrolysis kinetics
ES2171912T3 (es) 1996-10-18 2002-09-16 Kronospan Tech Co Ltd Tratamiento de material lignocelulosico.
US5830763A (en) 1996-11-06 1998-11-03 Junk; Thomas Process for preparing deuterium tagged compounds
US6025452A (en) 1996-12-27 2000-02-15 Kurple; Kenneth R. Lignin based polyols
US6090291A (en) 1997-08-20 2000-07-18 Kabushiki Kaisha Toshiba Waste processing method and waste processing apparatus
RU2109059C1 (ru) 1997-10-30 1998-04-20 Блинков Сергей Дмитриевич Способ переработки растительного сырья для получения пентозных гидролизатов, содержащих, преимущественно, ксилозу
JP4843125B2 (ja) 1998-02-13 2011-12-21 木村化工機株式会社 スラリー液高温高圧反応処理システムの圧力制御機構
WO1999067409A1 (en) 1998-06-23 1999-12-29 The Regents Of The University Of California Method of treating biomass material
DE19905655A1 (de) 1999-02-11 2000-08-17 Karl Zeitsch Verfahren zur Herstellung von Furfural durch verzögerte Entspannung
CA2301371C (en) 1999-03-23 2009-09-01 Oji Paper Co., Ltd. Process for bleaching lignocellulose pulp
DE19916347C1 (de) 1999-04-12 2000-11-09 Rhodia Acetow Ag Verfahren zum Auftrennen lignocellulosehaltiger Biomasse
DE19917178A1 (de) 1999-04-16 2000-10-19 Karl Zeitsch Verfahren zur Herstellung von Furfural aus Sulfitablauge
BR9902607B1 (pt) 1999-06-23 2010-08-24 aparelho e processo de prÉ-hidràlise de biomassa.
US6211422B1 (en) 1999-07-13 2001-04-03 North Carolina State University Enzyme catalysis in carbon dioxide fluids
US6612317B2 (en) 2000-04-18 2003-09-02 S.C. Fluids, Inc Supercritical fluid delivery and recovery system for semiconductor wafer processing
JP2001095594A (ja) 1999-09-30 2001-04-10 Meiji Seika Kaisha Ltd グルコース及びセロオリゴ糖の製造方法
US6180845B1 (en) 1999-10-07 2001-01-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Transforming biomass to hydrocarbon mixtures in near-critical or supercritical water
AU1584201A (en) 1999-11-02 2001-05-14 Waste Energy Integrated Sytems, Llc Process for the production of organic products from lignocellulose containing biomass sources
AU2001233621A1 (en) 2000-02-17 2001-08-27 Birgitte Kiaer Ahring A method for processing lignocellulosic material
JP4533496B2 (ja) 2000-03-15 2010-09-01 三菱重工業株式会社 バイオマスからの燃料製造方法
AU2001248315A1 (en) 2000-03-16 2001-09-24 Bioconsult Gesellschaft Fur Biotechnologie Mbh Sulphur-free lignin and derivatives thereof for reducing the formation of slime and deposits in industrial plants
EP1268717A4 (en) 2000-03-23 2004-03-17 Univ West Virginia METHOD FOR CONVERTING AGRICULTURAL WASTE IN LIQUID FUEL AND RELATED DEVICE
JP4083374B2 (ja) 2000-07-11 2008-04-30 トヨタ自動車株式会社 セルロースの生成方法
US20020069987A1 (en) 2000-08-08 2002-06-13 Pye Edward Kendall Integrated processing of biomass and liquid effluents
US6419788B1 (en) 2000-08-16 2002-07-16 Purevision Technology, Inc. Method of treating lignocellulosic biomass to produce cellulose
EP1184443A1 (en) 2000-09-04 2002-03-06 Biofuel B.V. Process for the production of liquid fuels from biomass
FR2813599B1 (fr) 2000-09-07 2003-05-16 Centre Nat Rech Scient Procede de traitement des dechets par oxydation hydrothermale
JP3912023B2 (ja) 2000-09-25 2007-05-09 日本製紙株式会社 生分解性組成物およびその製造方法
JP2002192175A (ja) * 2000-12-25 2002-07-10 Hitachi Ltd 有機物の分解処理法とその分解処理装置
FI111960B (fi) 2000-12-28 2003-10-15 Danisco Sweeteners Oy Erotusmenetelmä
CA2438984C (en) 2001-02-28 2009-10-20 Iogen Energy Corporation Method of processing lignocellulosic feedstock for enhanced xylose and ethanol production
JP4683748B2 (ja) 2001-03-07 2011-05-18 ヤンマー株式会社 超臨界水又は亜臨界水による被反応物質の反応装置
DE10158120A1 (de) 2001-11-27 2003-06-18 Ties Karstens Verfahren zum Abtrennen von Xylose aus xylanreichen Lignocellulosen, insbesondere Holz
JP4330839B2 (ja) * 2002-01-18 2009-09-16 旭化成ケミカルズ株式会社 グルコース及び/又は水溶性セロオリゴ糖の製造方法
DE10207257B4 (de) 2002-02-21 2021-02-18 Kennametal Inc. Rundlaufschneidwerkzeug mit auswechselbarem Schneideinsatz
AU2003209591A1 (en) 2002-02-22 2003-09-09 Gilles Gervais Process of treating lignocellulosic material to produce bio-ethanol
WO2004013409A1 (en) 2002-07-25 2004-02-12 Coffin World Water Systems Apparatus and method for treating black liquor
US6896810B2 (en) 2002-08-02 2005-05-24 Rayonier Products And Financial Services Company Process for producing alkaline treated cellulosic fibers
GB0218012D0 (en) 2002-08-05 2002-09-11 Ciba Spec Chem Water Treat Ltd Production of a fermentation product
DE10259928B4 (de) 2002-12-20 2006-05-24 Forschungszentrum Karlsruhe Gmbh Verfahren zur Behandlung von Biomasse
US7476296B2 (en) 2003-03-28 2009-01-13 Ab-Cwt, Llc Apparatus and process for converting a mixture of organic materials into hydrocarbons and carbon solids
BR0301678A (pt) 2003-06-10 2005-03-22 Getec Guanabara Quimica Ind S Processo para a produção de xilose cristalina a partir de bagaço de cana-de-açucar, xilose cristalina de elevada pureza produzida através do referido processo, processo para a produção de xilitol cristalino a partir da xilose e xilitol cristalino de elevada pureza assim obtido
JP4277603B2 (ja) 2003-07-24 2009-06-10 日立造船株式会社 多糖類物質の加水分解方法
CN1303091C (zh) 2004-04-05 2007-03-07 山东龙力生物科技有限公司 低聚木糖的制备方法
CN1964767B (zh) 2004-04-13 2011-08-31 埃欧金能量有限公司 木质纤维素原料处理过程中无机盐的回收
JP4982036B2 (ja) 2004-04-16 2012-07-25 志朗 坂 バイオマスの分解・液化方法
US8003352B2 (en) 2004-07-16 2011-08-23 Iogen Energy Corporation Method of obtaining a product sugar stream from cellulosic biomass
EP1836181B1 (en) 2004-08-31 2009-03-11 Biomass Technology Ltd. Method and devices for the continuous processing of renewable raw materials
DK176540B1 (da) 2004-09-24 2008-07-21 Cambi Bioethanol Aps Fremgangsmåde til behandling af biomasse og organisk affald med henblik på at udvinde önskede biologisk baserede produkter
SE0402437D0 (sv) 2004-10-07 2004-10-07 Stfi Packforsk Ab Method for separating lignin from a lignin containing liquid/slurry
US7259231B2 (en) * 2004-10-12 2007-08-21 Yulex Corporation Extraction and fractionation of biopolymers and resins from plant materials
US7722823B2 (en) 2004-10-22 2010-05-25 Drs Sustainment Systems, Inc. Systems and methods for air purification using supercritical water oxidation
JP2006223152A (ja) 2005-02-16 2006-08-31 Hitachi Zosen Corp セルロース溶剤による溶解と加水分解の組合せによるバイオマス処理方法
JP2006255676A (ja) 2005-03-18 2006-09-28 Kri Inc リグニン物質分離方法
JP4651086B2 (ja) 2005-03-22 2011-03-16 トヨタ自動車株式会社 セルロースの分解方法
US7964761B2 (en) 2005-05-02 2011-06-21 University Of Utah Research Foundation Processes for catalytic conversion of lignin to liquid bio-fuels and novel bio-fuels
AU2006254627A1 (en) 2005-06-03 2006-12-07 Iogen Energy Corporation Method of continuous processing of lignocellulosic feedstocks
US7566383B2 (en) 2005-06-17 2009-07-28 Purdue Research Foundation Heat recovery from a biomass heat source
EP1910448B1 (en) 2005-07-19 2016-09-07 Inbicon A/S Method and apparatus for conversion of cellulosic material to ethanol
EP1930012B1 (en) 2005-09-27 2018-05-23 Asahi Kasei Kabushiki Kaisha Cellooligosaccharide-containing composition
AR057141A1 (es) 2005-09-28 2007-11-21 Cwt Llc Ab Procesamiento de depolimerizacion para convertir productos de desecho organicos y no-organicos en productos utiles
US20090247633A1 (en) 2005-11-04 2009-10-01 Pandora Select Partners L.P. And Whitebox Hedge High Yield Partners, L.P. Nutrient extracts derived from green plant materials
US7914668B2 (en) 2005-11-14 2011-03-29 Exxonmobil Research & Engineering Company Continuous coking process
CA2631021A1 (en) 2005-11-23 2007-10-25 Natureworks Llc Process for fractionating lignocellulosic biomass into liquid and solid products
US8784566B2 (en) 2006-03-29 2014-07-22 Virginia Tech Intellectual Properties, Inc. Cellulose-solvent-based lignocellulose fractionation with modest reaction conditions and reagent cycling
US20070254348A1 (en) 2006-04-28 2007-11-01 Theodora Retsina Method for the production of fermentable sugars and cellulose from lignocellulosic material
WO2007129921A1 (en) 2006-05-08 2007-11-15 Biojoule Ltd. Process for the production of biofuel from plant materials
JP4666378B2 (ja) * 2006-05-29 2011-04-06 パナソニック株式会社 木質系廃材の分解処理方法
US8765938B2 (en) 2006-06-26 2014-07-01 Tokyo Institute Of Technology Process for production of polysaccharide and/or monosaccharide by hydrolysis of different polysaccharide
JP4765073B2 (ja) 2006-07-05 2011-09-07 国立大学法人広島大学 リグノセルロースの水熱加水分解方法
JP5190858B2 (ja) 2006-07-12 2013-04-24 独立行政法人農業・食品産業技術総合研究機構 多糖を含む素材からの低分子糖質等の製造法
US20080029233A1 (en) 2006-08-03 2008-02-07 Purevision Technology, Inc. Moving bed biomass fractionation system and method
CA2595484A1 (en) 2006-08-07 2008-02-07 John Allan Fallavollita Process for recovery of holocellulose and near-native lignin from biomass
NO20063872A (no) 2006-08-30 2008-01-14 Cambi As Fremgangsmåte for termisk enzymatisk hydrolyse av lignocellulose
UA96953C2 (ru) 2006-09-01 2011-12-26 Ра Інерджі Корпорейшн Способ очистки биомассы
US7666637B2 (en) 2006-09-05 2010-02-23 Xuan Nghinh Nguyen Integrated process for separation of lignocellulosic components to fermentable sugars for production of ethanol and chemicals
CN1931866A (zh) 2006-09-29 2007-03-21 张海龙 一种秸秆生产木糖的工艺
US7670813B2 (en) 2006-10-25 2010-03-02 Iogen Energy Corporation Inorganic salt recovery during processing of lignocellulosic feedstocks
EP2520672B1 (en) 2006-10-26 2015-07-15 Kawasaki Jukogyo Kabushiki Kaisha Method and system for hydrolytic saccharification of a cellulosic biomass
KR101590447B1 (ko) 2006-11-17 2016-02-18 서머힐 바이오매스 시스템즈, 아이엔씨. 분말 연료, 이의 분산물, 및 이와 관련된 연소장치
CN102637886B (zh) 2006-12-16 2014-10-15 克里斯多佛·J·帕皮雷 由碳氢化合物沉积物发电同时捕获二氧化碳
WO2008090156A1 (de) 2007-01-23 2008-07-31 Basf Se Verfahren zur herstellung von glucose durch enzymatische hydrolyse von cellulose, die unter verwendung einer ionischen flüssigkeit, welche ein polyatomiges anion besitzt, aus lignocellulosehaltigem material gewonnen wurde
SE531491C2 (sv) 2007-03-29 2009-04-28 Reac Fuel Ab Bränsle framställt från biomassa
JP2008248202A (ja) 2007-03-30 2008-10-16 Toyota Motor Corp セルロース精製方法及びセルロース精製装置
CA2685177A1 (en) 2007-05-02 2008-11-13 Mascoma Corporation Two-stage method for pretreatment of lignocellulosic biomass
RU2338769C1 (ru) 2007-05-22 2008-11-20 Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук Способ переработки растительного сырья
JP4284471B2 (ja) 2007-05-22 2009-06-24 国立大学法人東北大学 超臨界水バイオマス燃焼ボイラー
US8734610B2 (en) 2007-05-23 2014-05-27 Andritz Inc. Two vessel reactor system and method for hydrolysis and digestion of wood chips with chemical enhanced wash method
US9260818B2 (en) 2007-05-23 2016-02-16 Andritz Inc. Single vessel reactor system for hydrolysis and digestion of wood chips with chemical enhanced wash method
MX2009011696A (es) 2007-05-23 2009-11-10 Tate & Lyle Ingredients Composicion comestible que comprende una composicion de oligosacarido resistente a la digestion o lentamente digestible.
US8193324B2 (en) 2007-05-31 2012-06-05 Lignol Innovations Ltd. Continuous counter-current organosolv processing of lignocellulosic feedstocks
JP4993723B2 (ja) 2007-07-12 2012-08-08 津田駒工業株式会社 割出装置
MX2010001072A (es) 2007-07-27 2010-03-30 Ignite Energy Resourses Pty Ltd Proceso y aparato para convertir materia organica en un producto.
ATE553208T1 (de) 2007-07-30 2012-04-15 Kmps Financial Group S R O Verfahren und einrichtung zur herstellung von glucose, ethanol, furfural, furan und lignin aus erneuerbaren rohstoffen
WO2009021216A2 (en) 2007-08-08 2009-02-12 Bountiful Applied Research Corp. Lignin dewatering process
BRPI0815822A2 (pt) 2007-08-31 2017-05-16 Biojoule Ltd lignina e outros produtos a partir de material de planta, e métodos e composições para estes.
KR20090030967A (ko) 2007-09-21 2009-03-25 대한민국(관리부서 : 산림청 국립산림과학원장) 초임계수를 이용한 목질계 바이오매스의 당화방법
US8585863B2 (en) 2007-09-21 2013-11-19 Api Intellectual Property Holdings, Llc Separation of lignin from hydrolyzate
KR20090039470A (ko) 2007-10-18 2009-04-22 대한민국(관리부서 : 산림청 국립산림과학원장) 산촉매와 초임계수를 이용한 목질계 바이오매스의 당화방법
US20110171709A1 (en) 2007-11-01 2011-07-14 Mascoma Corporation Product Recovery From Fermentation of Lignocellulosic Biomass
FI121885B (fi) 2007-11-09 2011-05-31 Chempolis Oy Menetelmä sokerituotteen valmistamiseksi
US20090223612A1 (en) 2007-11-16 2009-09-10 Mcknight James K Powdered fuels and powdered fuel dispersions
CN101200479B (zh) 2007-12-20 2010-08-25 武汉工程大学 一种从稀酸预处理植物纤维原料废液中回收木糖的方法
WO2009102609A1 (en) 2008-02-12 2009-08-20 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Thermochemical treatment of lignocellulosics for the production of ethanol
JP5322150B2 (ja) 2008-02-14 2013-10-23 独立行政法人農業・食品産業技術総合研究機構 セルロースを含むバイオマスの糖化方法
US7960325B2 (en) 2008-02-15 2011-06-14 Renewable Densified Fuels, Llc Densified fuel pellets
JP5059650B2 (ja) * 2008-02-22 2012-10-24 学校法人 中央大学 多糖類からの単糖またはオリゴ糖の製造方法
US8057639B2 (en) 2008-02-28 2011-11-15 Andritz Inc. System and method for preextraction of hemicellulose through using a continuous prehydrolysis and steam explosion pretreatment process
US7955508B2 (en) * 2008-03-11 2011-06-07 Xtrudx Technologies, Inc. Supercritical fluid biomass conversion systems
US8980143B2 (en) 2008-03-11 2015-03-17 Thomas E. Loop Biomass and waste plastics depolymerization machine and methods via supercritical water
US8057666B2 (en) 2008-03-11 2011-11-15 Xtrudx Technologies, Inc. Biomass and waste plastics to neodiesel and valuable chemicals via supercritical water
CA2718427C (en) 2008-03-14 2015-01-27 Virginia Tech Intellectual Properties, Inc. Method and apparatus for lignocellulose pretreatment using a super-cellulose-solvent and highly volatile solvents
RU2371002C1 (ru) 2008-04-10 2009-10-27 Сергей Моисеевич Бухдрукер Способ обработки растительного сырья на корм
US20090288788A1 (en) 2008-05-22 2009-11-26 Aphios Corporation Pretreating cellulosic biomass
US8540847B2 (en) 2008-05-22 2013-09-24 Aphios Corporation Methods and apparatus for processing cellulosic biomass
CA2726054A1 (en) 2008-06-27 2009-12-30 Microbiogen Pty Ltd. Method of producing yeast biomass
US8691722B2 (en) 2008-07-03 2014-04-08 Corning Incorporated Sorbent comprising activated carbon particles, sulfur and metal catalyst
BRPI0915930A2 (pt) 2008-07-16 2015-11-03 Sriya Innovations Inc método para produção de pelo menos um de glicose e furfural, processo para produção de um produto como xilose e celulose a partir de uma biomassa, processo para hidrolisar celulose e composição compreendendo um produto de hidrólise de celulose
US8282738B2 (en) 2008-07-16 2012-10-09 Renmatix, Inc. Solvo-thermal fractionation of biomass
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8119823B2 (en) 2008-07-16 2012-02-21 Renmatix, Inc. Solvo-thermal hydrolysis of xylose
JP5339341B2 (ja) 2008-08-13 2013-11-13 宜章 大木 亜臨界状態による木材の繊維を線維固形分としての分離方法
KR101070824B1 (ko) 2008-09-17 2011-10-10 단국대학교 산학협력단 바이오매스의 분별 당화 공정 및 그 장치
WO2010034055A1 (en) 2008-09-23 2010-04-01 Licella Pty Ltd Fractionation of lignocellulosic matter
US8030039B1 (en) 2008-10-14 2011-10-04 American Process, Inc. Method for the production of fermentable sugars and cellulose from lignocellulosic material
BRPI0919771A2 (pt) 2008-10-17 2015-08-18 Mascoma Corp Produção de lignina pura a partir de biomassa ligno celulósica
FI121237B (fi) 2008-10-21 2010-08-31 Danisco Menetelmä ksyloosin ja liukosellun tuottamiseksi
KR101657100B1 (ko) 2008-10-29 2016-09-19 삼성전자주식회사 리그노셀룰로오스계 바이오매스의 분별방법 및 분별장치
CA2742425A1 (en) 2008-11-03 2010-06-03 Caidong Qin Mixed fuel containing combustible solid powder and an engine using thereof
CN101736631B (zh) 2008-11-12 2011-12-28 熊鹏 一种高效预处理木质纤维素的工艺
US20110126448A1 (en) 2008-12-17 2011-06-02 BP Biofuels UK Limited Process, Plant, and Biofuel For Integrated Biofuel Production
US20110076724A1 (en) 2008-12-17 2011-03-31 BP Biofuels UK Limited Process, Plant, and Biofuel for Integrated Biofuel Production
US20100146842A1 (en) 2008-12-17 2010-06-17 Bp Corporation North America Inc. Process, plant and biofuel for integrated biofuel production
US8152867B2 (en) 2008-12-17 2012-04-10 Bp Biofuels Uk Ltd. Process, plant and biofuel for integrated biofuel production
IT1393929B1 (it) 2008-12-18 2012-05-17 Eni Spa Procedimento per la produzione di bio-olio da biomassa
BRPI0923020A2 (pt) 2008-12-19 2015-12-15 Xyleco Inc método de redução da recalcitrância em materiais celulósicos ou lignocelulósicos e composição.
WO2010081217A1 (en) 2009-01-14 2010-07-22 Iogen Energy Corporation Improved method for the production of glucose from lignocellulosic feedstocks
WO2010102060A2 (en) 2009-03-03 2010-09-10 Poet Research, Inc. System for pre-treatment of biomass for the production of ethanol
TW201040279A (en) 2009-03-31 2010-11-16 Chemtex Italia S R L Improved biomass pretreatment process
BRPI1006593A2 (pt) 2009-04-23 2020-06-30 Greenfield Ethanol Inc., fracionamento de biomassa para o etanol celulósico e produção química
PT2421911E (pt) 2009-04-23 2014-09-17 Greenfield Ethanol Inc Separação de celulose reactiva a partir de biomassa lenhinocelulósica com elevado teor de lenhina
US8378020B1 (en) 2009-05-28 2013-02-19 Lignol Innovations Ltd. Processes for recovery of derivatives of native lignin
CN102459424B (zh) 2009-05-28 2016-01-20 丽格诺创新有限公司 来自一年生纤维原料的天然木素衍生物
CN101613970B (zh) 2009-06-09 2012-10-03 上海士林纤维材料有限公司 预提取半纤维素的蔗渣溶解浆制浆方法及其产品
US20120146784A1 (en) 2009-06-29 2012-06-14 Robert Winfred Hines Protective Fabrics and Garments
US20100326610A1 (en) 2009-06-29 2010-12-30 Harvey J Todd System and method for continuously treating biomass
CN101586136B (zh) * 2009-07-03 2012-01-11 中国科学院广州能源研究所 一种生物质绿色高效预处理方法
MX2012000591A (es) 2009-07-13 2012-06-01 Beta Renewables Spa Procedimiento para la separacion de lignina a alta temperatura.
CN101613377B (zh) * 2009-07-21 2012-06-27 清华大学 生物质超临界亚临界组合连续式预处理与水解设备及方法
JP2011032388A (ja) 2009-08-03 2011-02-17 Nippon Steel Engineering Co Ltd 燃料製造システム及び燃料の製造方法
WO2011037967A2 (en) 2009-09-25 2011-03-31 Lake Michael A Process for recovering lignin
DK2483331T3 (en) 2009-09-29 2017-08-28 Nova Pangaea Tech Ltd PROCEDURE AND SYSTEM FOR FRACTING LIGNOCELLULOSE BIOMAS
US8597431B2 (en) 2009-10-05 2013-12-03 Andritz (Usa) Inc. Biomass pretreatment
US8383864B2 (en) 2009-12-08 2013-02-26 Iowa State University Research Foundation, Inc. Method for the conversion of cellulose and related carbohydrate materials to low-molecular-weight compounds
EP2513150A1 (en) 2009-12-18 2012-10-24 Shell Internationale Research Maatschappij B.V. A process for the extraction of sugars and lignin from lignocellulose-comprising solid biomass
CA2769746C (en) 2010-01-19 2013-10-15 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
CN101787398B (zh) 2010-01-22 2012-07-25 中国科学院过程工程研究所 一种净化、回收和浓缩木质纤维素预水解液中糖分的方法
CA2786949C (en) 2010-02-08 2018-06-05 Iogen Energy Corporation Method for scale removal during a lignocellulosic conversion process
WO2011099544A1 (ja) 2010-02-10 2011-08-18 日立化成工業株式会社 樹脂組成物、成形体及び複合成形体
JP2011219715A (ja) 2010-02-10 2011-11-04 Hitachi Chem Co Ltd 成形用樹脂コンパウンド材料
US20110232160A1 (en) 2010-03-25 2011-09-29 Exxonmobil Research And Engineering Company Biomass conversion process
US20110253326A1 (en) 2010-04-19 2011-10-20 Savannah River Nuclear Solutions, Llc Separation of Lignin From Lignocellulosic Materials
CN101886143B (zh) 2010-07-13 2012-12-26 大连理工大学 一种超/亚临界水两步水解生物质制备还原糖的方法
CN101871020B (zh) * 2010-07-14 2012-05-30 河南科技大学 离子液可控水解木质纤维原料获取木糖、葡萄糖及木质素的方法
AU2011316803B2 (en) 2010-10-22 2015-04-02 Bepex International, Llc System and method for the continuous treatment of solids at non-atmospheric pressure
PT106039A (pt) 2010-12-09 2012-10-26 Hcl Cleantech Ltd Processos e sistemas para o processamento de materiais lenhocelulósicos e composições relacionadas
KR20120092778A (ko) 2011-02-12 2012-08-22 주식회사 팬택 기기내 공존 간섭을 고려한 측정보고의 수행장치 및 방법
CN103502257B (zh) 2011-05-04 2016-10-12 瑞恩麦特克斯股份有限公司 多级纤维素水解和采用或不采用酸的猝灭
CA2806873C (en) 2011-05-04 2014-07-15 Renmatix, Inc. Lignin production from lignocellulosic biomass
JP5905570B2 (ja) 2011-05-04 2016-04-20 レンマティックス, インコーポレイテッドRenmatix, Inc. リグノセルロース系バイオマスからのリグニンの製造
US8895265B2 (en) 2011-05-04 2014-11-25 Renmatix, Inc. Multistage fractionation process for recalcitrant C5 oligosaccharides
EP2710021A4 (en) 2011-05-04 2015-07-22 Renmatix Inc INCREASED YIELDS OF SOLUBLE C5 SACCHARIDES
EP2705045B1 (en) 2011-05-04 2016-10-19 Renmatix Inc. Cellulose hydrolysis with ph adjustment
US8801859B2 (en) 2011-05-04 2014-08-12 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
JP5884250B2 (ja) 2011-07-04 2016-03-15 住友電工ファインポリマー株式会社 光学レンズの製造方法
US9518729B2 (en) 2011-12-13 2016-12-13 Renmatix, Inc. Lignin fired supercritical or near critical water generator, system and method
US8759498B2 (en) 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
FR2992626B1 (fr) 2012-06-29 2014-08-01 Diez Jose Antonio Ruiz Plateforme semi-submersible a aileron stabilisateur, et centrale houlomotrice offshore integrant une telle plateforme
US9279459B2 (en) 2012-11-27 2016-03-08 Schaeffler Technologies Gmbh & Co. Kg Friction plate with compressed overlapping sections
TWI653043B (zh) 2012-12-20 2019-03-11 瑞士商伊蘭科動物健康公司 新用途
NZ629052A (en) 2013-03-15 2017-04-28 Renmatix Inc High purity lignin, lignin compositions, and higher structured lignin
EP2930825A1 (de) 2014-04-11 2015-10-14 Siemens Aktiengesellschaft Montage von Permanentmagneten auf einem Rotor einer elektrischen Maschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267008A1 (en) * 2003-11-21 2007-11-22 Tama-Tlo Corporation Method of Hydrolyzing an Organic Compound
US20070161095A1 (en) * 2005-01-18 2007-07-12 Gurin Michael H Biomass Fuel Synthesis Methods for Increased Energy Efficiency
US20080115336A1 (en) * 2006-11-21 2008-05-22 Dian-Tai Chen Hose clamp
US20090056201A1 (en) * 2007-08-27 2009-03-05 Endicott Biofuels Ii, Llc Production of Ester-based Fuels Such As Biodiesel From Renewable Starting Materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
RU2748948C2 (ru) * 2016-03-31 2021-06-02 Торэй Индастриз, Инк. Способ получения ксилоолигосахарида

Also Published As

Publication number Publication date
CA2945277A1 (en) 2011-07-28
EP3719145A1 (en) 2020-10-07
CA2815597C (en) 2016-11-29
RU2556496C2 (ru) 2015-07-10
BR112012017850B1 (pt) 2020-11-17
CN102859066B (zh) 2016-01-13
RU2015112569A (ru) 2015-09-20
BR112012017850B8 (pt) 2020-12-01
WO2011091044A1 (en) 2011-07-28
BR112012017850A2 (pt) 2016-04-19
US20160244852A1 (en) 2016-08-25
CN112159869B (zh) 2024-04-19
US8968479B2 (en) 2015-03-03
US10053745B2 (en) 2018-08-21
CN112159869A (zh) 2021-01-01
US20130239954A1 (en) 2013-09-19
EP2526225A4 (en) 2017-07-26
CN102859066A (zh) 2013-01-02
CN105525043A (zh) 2016-04-27
CA2769746A1 (en) 2011-07-28
US10858712B2 (en) 2020-12-08
CA2815597A1 (en) 2011-07-28
CN105525043B (zh) 2021-03-19
US20120291774A1 (en) 2012-11-22
US9359651B2 (en) 2016-06-07
CA2945277C (en) 2021-01-05
RU2012135497A (ru) 2014-02-27
EP2526225B1 (en) 2019-10-02
CA2769746C (en) 2013-10-15
EP2526225A1 (en) 2012-11-28
US20180355447A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
RU2597588C2 (ru) Производство сбраживаемых сахаров и лигнина из биомассы, использующее сверхкритические текучие среды
AU2013290013B2 (en) Supercritical hydrolysis of biomass
US8133393B2 (en) Advanced biorefinery process
RU2609001C2 (ru) ГИДРОЛИЗ ЦЕЛЛЮЛОЗЫ С КОРРЕКТИРОВАНИЕМ Ph
BR112016030664B1 (pt) Método para produzir furfural a partir de material de biomassa contendo pentosano
Sasaki et al. Hydrolysis of lignocellulosic biomass in hot-compressed water with supercritical carbon dioxide
US20160060667A1 (en) Continuous countercurrent enzymatic hydrolysis of pretreated biomass at high solids concentrations
KR20130137568A (ko) 바이오매스 처리를 위한 전처리 과정과 분리 과정의 동시 진행 방법 및 이를 이용하여 정제되는 바이오 케미컬
Sasaki et al. Catalytic activity of the H2O/CO2 system in lignocellulosic-material decomposition
ZA200902179B (en) Advanced biorefinery process