US20110232160A1 - Biomass conversion process - Google Patents

Biomass conversion process Download PDF

Info

Publication number
US20110232160A1
US20110232160A1 US13/037,938 US201113037938A US2011232160A1 US 20110232160 A1 US20110232160 A1 US 20110232160A1 US 201113037938 A US201113037938 A US 201113037938A US 2011232160 A1 US2011232160 A1 US 2011232160A1
Authority
US
United States
Prior art keywords
water
biomass
process according
liquid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/037,938
Inventor
Michael Siskin
Glen E. Phillips
Simon R. Kelemen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Priority to US13/037,938 priority Critical patent/US20110232160A1/en
Publication of US20110232160A1 publication Critical patent/US20110232160A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/40Thermal non-catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a process for the production of transportation fuels by the conversion of biomass.
  • Liquid hydrocarbons are far and away the most convenient energy sources for transportation in view of their high volumetric energy.
  • the liquid hydrocarbon fuel distribution infrastructure is efficient and already in place.
  • Gasification may be one of the best ways to produce clean liquid fuels and chemical intermediates from coal as well as clean-burning hydrogen which also can be used to fuel power-generating turbines or used in the manufacture of a wide range of commercial products. Gasification is capable of operating on a wide variety of input materials, can be used to produce a wider variety of output fuels, and is an extremely efficient method of extracting energy from biomass. Biomass gasification is therefore technically and economically attractive as an energy source for a carbon constrained economy.
  • the conversion of biomass to hydrocarbon transportation fuels by the gasification-liquefaction sequence has, however, certain limitations both technically and economically.
  • Second, the gas-to-liquid conversion uses catalysts which may, for optimum results, use noble metal components and accordingly be very expensive.
  • biomass is converted into precursors for hydrocarbon transportation fuels by the use of superheated and/or supercritical water to depolymerize and deoxygenate the biomass into the transportation fuel precursors.
  • Biomass is conventionally defined as the living and recently dead biological material that can be converted for use as fuel or for industrial production.
  • the criterion as biomass is that the material should be recently participating in the carbon cycle so that the release of carbon in the combustion process results in no net increase averaged over a reasonably short period of time (for this reason, fossil fuels such as peat, lignite and coal are not considered biomass by this definition as they contain carbon that has not participated in the carbon cycle for a long time so that their combustion results in a net increase in atmospheric carbon dioxide).
  • biomass refers to plant matter grown for use as biofuel, but it also includes plant or animal matter used for production of fibers, chemicals or heat.
  • Biomass may also include biodegradable wastes that can be burnt as fuel including municipal wastes, green waste (the biodegradable waste comprised of garden or park waste such as grass or flower cuttings and hedge trimmings), byproducts of farming including animal manures, food processing wastes, sewage sludge, black liquor from wood pulp or algae. It excludes organic material which has been transformed by geological processes into substances such as coal, oil shale or petroleum. Biomass is widely and typically grown from plants, including miscanthus, spurge, sunflower, switchgrass, hemp, corn (maize), poplar, willow, sugarcane, and oil palm (palm oil) with the roots, stems, leaves, seed husks and fruits all being potentially useful.
  • biodegradable wastes that can be burnt as fuel including municipal wastes, green waste (the biodegradable waste comprised of garden or park waste such as grass or flower cuttings and hedge trimmings), byproducts of farming including animal manures, food processing wastes, sewage sludge, black liquor
  • the particular plant or other biomass source used is not important to the product liquid transportation fuel although the processing of the raw material for introduction to the processing unit will vary according to the needs of the unit and the form of the biomass.
  • the biomass materials which are preferred are those which contain a higher proportion of lignins relative to celluloses and hemicelluloses since it is the lignins which, in the water treatment, produce greater quantities of the fuel precursors.
  • a lignin content of at least 35 percent would produce greater amounts of fuels while at least 50 percent lignin would be preferred. Since lignin plays a significant role in the carbon cycle, sequestering atmospheric carbon into the living vegetable, the use of the lignin derivatives as fuels will be carbon-neutral.
  • the biomass after any necessary comminution and necessary pre-drying to improve handling and amenability to the treatment with the water, is brought into contact with superheated or supercritical water.
  • Organic compounds including the lignocellulosic material typically found in solid biomass will readily dissolve in superheated and supercritical water. Once the biomass is dissolved under these conditions, water will efficiently break cellulose and other bonds as described below; at supercritical temperatures cellulosic material will form coke extremely rapidly.
  • supercritical fluids When superheated but below the critical point, the water is still in the liquid state rather than the supercritical characteristic state in which the properties are intermediate those of the vapor state and the liquid. Above the critical point, supercritical fluids generally possess unique solvating and transport properties compared to liquids or gases. Supercritical fluids can have liquid-like densities, gas-like diffusivities, and compressibilities that deviate greatly from ideal gas behavior. Solid solubility often is enhanced greatly with respect to solubility in the gas or liquid solvent. Supercritical water in particular has the ability to dissolve materials not normally soluble in liquid water or steam and also promotes certain chemical reactions. The critical point of water is at 374° C. and about 22 MPa (3190 psi), at which it has a relative density of 0.322. When heated at the requisite pressure above this point, the superheated water becomes supercritical and, as such, has been found to provide faster reaction rates for the conversion of the biomass although at the expense of maintaining higher pressure.
  • Superheat to a temperature of at least 300° C. and preferably at least 374° C. at appropriate pressures, typically autogeneous pressures, to maintain liquidity is preferred in order to secure satisfactory reaction rates in the biomass reaction.
  • Pressures at temperatures of this order will typically be at least 15 MPa (2175 psi) and may be at least as high as 20 MPa (2900 psi).
  • High temperature water superheated under autogenic or higher pressure provides a significantly more favorable reaction medium for insoluble organic compounds than does water up to its boiling temperature.
  • the solvent properties of liquid water (density, dielectric constant) at high temperature are similar to those of polar organic solvents at room temperature, thus facilitating the solubility of organic compounds and their reactions.
  • the solubility parameter decreases from 23.4 to 14.5 cal/cm 3 .
  • the dielectric constant drops rapidly with temperature, and at 300° C. has fallen from 80 (at 20° C.) to 2. Therefore, as the water temperature is increased, the solubility of non-polar organic compounds increases much more than expected for the natural effect of temperature and the reactions with the biological materials are facilitated to this extent.
  • the water employed in the process is preferably neutral, i.e. about pH 7 and substantially free of dissolved oxygen to minimize the occurrence of undesirable free radical reactions.
  • the contacting is normally for a period of time ranging from about 0.1 second to several hours with shorter contact times being possible at higher temperatures; typically, contact times will be from 5 seconds to about 4 hours, and preferably 1 minute to 2 hours.
  • Certain weight ratios of water to organic resource material drive the reaction at faster rates. Therefore, a weight ratio of water to biomass material in the range from about 0.5 to about 10 is preferred, and more preferably from about 0.5 to 5.0, most preferably 0.5 to 2.
  • water/biomass conversion may be carried out in the absence of any additional catalyst although trace amounts of acid can be added to facilitate these reactions while acidic species generated during the conversion process can autocatalyse the cleavage and deoxygenation reactions as described above.
  • water soluble conversion products i.e., hydrolysis products
  • the fuel precursors which result from the reaction are characterized by a lower molecular weight and lower oxygen content than most biomass products. This is a result of the unique conversion properties of the superheated/supercritical water when applied to biological materials. Depolymerization will result in the formation of liquid or semi-liquid products of varying viscosities which will combine with solids present in the mass to dissolve or disperse them and produce a rather viscous, reaction product which can be worked up in the same or similar manner to a petroleum crude following a filtration which is optional depending on how the product is eventually processed, of any remaining solids. For example, it may be used as coker feed or visbreaker feed. Feed to an FCC unit is preferably hydrotreated to remove sulfur and nitrogen compounds which may remain and which, if not removed, will adversely affect catalyst performance and longevity in the cracking process. Hydrocracking is also an option.
  • the reaction with the water can be carried out in a reactor with walls suitably thick to withstand the pressures generated and fitted with a gas/liquid circulation system to permit the continuous circulation of the superheated/supercritical water as well as removal of gases such as oxygen, carbon monoxide and carbon dioxide which are evolved in the various reactions.
  • the reactor will allow for contact times between the water and the biomass mentioned above, following which the reaction mass is withdrawn from the reactor, the water separated for recirculation and the water and residue de-gassed. Any sludge-like residue which remains can be sent to a coker or burned as fuel for the process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Biomass material is converted into precursors for hydrocarbon transportation fuels by contacting the biomass with liquid superheated water or supercritical water to depolymerize and deoxygenate the biomass into the transportation fuel precursors. Temperatures above 200° C. and preferably above 300° C. are preferred with supercritical water at temperatures above 374° C. and pressures above 22 MPa providing a capability for higher conversion rates.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application relates to and claims priority to U.S. Provisional Application No. 61/317,545, filed on Mar. 25, 2010. This application is also related to co-pending U.S. patent application Ser. No. ______, (Attorney Docket No. 2010EM098-US2), entitled “Biomass Oil Conversion Process” filed on Mar. 1, 2011, which claims priority to U.S. Provisional Application No. 61/317,557, filed on Mar. 25, 2010.
  • FIELD OF THE INVENTION
  • The present invention relates to a process for the production of transportation fuels by the conversion of biomass.
  • BACKGROUND OF THE INVENTION
  • Petroleum is currently estimated to account for over 35% of the world's total commercial primary energy consumption. Coal ranks second with 23% and natural gas third with 21%. The use of liquid hydrocarbon fuels on an enormous scale for transportation has led to the depletion of readily accessible petroleum reserves in politically stable regions and this, in turn, has focused attention, economically, technically and politically on the development of alternative sources of liquid transportation fuels. Liquid hydrocarbons are far and away the most convenient energy sources for transportation in view of their high volumetric energy. The energy density of gasoline, for example at about 9 kWh/litre and of road diesel at about 11 kWh/litre, far exceeds that of hydrogen (1.32 kWh/litre at 680 atm, or batteries, 175 Wh/kg. Furthermore, the liquid hydrocarbon fuel distribution infrastructure is efficient and already in place.
  • Production of liquid fuels from biomass can help solve the problem of CO2 emission from the transportation sector because CO2 released from vehicle exhaust is captured during biomass growth. While direct, carbon-neutral use of biomass as fuel is established, for example, biodiesel, this route is limited because the limited choice of source materials, e.g. vegetable oils. Conversion of a wider variety of biomass sources into more traditional types of fuel, principally hydrocarbons, is the more attractive option.
  • Currently, there are two major routes for conversion of biomass to liquid fuels: biological and thermo-chemical. In the biological process, fermentation of easily fermentable plant products, such as, for example, sugars to alcohols is achieved. These easily fermentable plant products can be extracted from corn kernels, sugar cane and etc. The major disadvantage of this pathway is that only a fraction of the total carbon in biomass is converted to the final desired liquid fuel. It has been calculated that conversion of all corn produced in USA to ethanol can meet 12% of entire US demand for gasoline which reduces to 2.4% after accounting for fossil fuel input required to produce the ethanol.
  • One well-established route to the production of hydrocarbon liquids is the gasification of carbonaceous materials followed by the conversion of the produced synthesis gas to form liquids by processes such as Fischer-Tropsch and its variants. In this way, solid fuels such as coal and coke may be converted to liquids. Coal gasification is well-established, being used in many electric power plants and the basic process can proceed from just about any organic material, including biomass as well as waste materials such as paper, plastic and used rubber tires. Most importantly, in a time of unpredictable variations in the prices of electricity and fuels, gasification systems can provide a capability to operate on low-cost, widely-available coal reserves. Gasification may be one of the best ways to produce clean liquid fuels and chemical intermediates from coal as well as clean-burning hydrogen which also can be used to fuel power-generating turbines or used in the manufacture of a wide range of commercial products. Gasification is capable of operating on a wide variety of input materials, can be used to produce a wider variety of output fuels, and is an extremely efficient method of extracting energy from biomass. Biomass gasification is therefore technically and economically attractive as an energy source for a carbon constrained economy.
  • The conversion of biomass to hydrocarbon transportation fuels by the gasification-liquefaction sequence has, however, certain limitations both technically and economically. First, the conversion of the biomass to synthesis gas requires large process units, high in capital cost to deal with the enormous volumes of gas generated in the process. Second, the gas-to-liquid conversion uses catalysts which may, for optimum results, use noble metal components and accordingly be very expensive. Third, and by no means least is the fact that enormous biological resources are needed to supply current consumption levels. An approximate estimate for the land area required to support the current oil consumption of about 2 million cubic metres per day by the US transportation sector is of the order of 2.67 million square km which represents 29% of the total US land area, using reasonable assumptions for the efficiency of the conversion process, thus suggesting that large scale production of liquid fuels from such a biomass conversion process is impractical.
  • SUMMARY OF THE INVENTION
  • We have now devised a process for the conversion of biomass into transportation fuel precursors which does not rely upon gasification and which uses cheap, readily available materials in the conversion. While not addressing any large proportion of total transport energy needs, it does provide a route for using available resources economically.
  • According to the present invention, biomass is converted into precursors for hydrocarbon transportation fuels by the use of superheated and/or supercritical water to depolymerize and deoxygenate the biomass into the transportation fuel precursors.
  • DETAILED DESCRIPTION
  • Biomass is conventionally defined as the living and recently dead biological material that can be converted for use as fuel or for industrial production. The criterion as biomass is that the material should be recently participating in the carbon cycle so that the release of carbon in the combustion process results in no net increase averaged over a reasonably short period of time (for this reason, fossil fuels such as peat, lignite and coal are not considered biomass by this definition as they contain carbon that has not participated in the carbon cycle for a long time so that their combustion results in a net increase in atmospheric carbon dioxide). Most commonly, biomass refers to plant matter grown for use as biofuel, but it also includes plant or animal matter used for production of fibers, chemicals or heat. Biomass may also include biodegradable wastes that can be burnt as fuel including municipal wastes, green waste (the biodegradable waste comprised of garden or park waste such as grass or flower cuttings and hedge trimmings), byproducts of farming including animal manures, food processing wastes, sewage sludge, black liquor from wood pulp or algae. It excludes organic material which has been transformed by geological processes into substances such as coal, oil shale or petroleum. Biomass is widely and typically grown from plants, including miscanthus, spurge, sunflower, switchgrass, hemp, corn (maize), poplar, willow, sugarcane, and oil palm (palm oil) with the roots, stems, leaves, seed husks and fruits all being potentially useful. The particular plant or other biomass source used is not important to the product liquid transportation fuel although the processing of the raw material for introduction to the processing unit will vary according to the needs of the unit and the form of the biomass. The biomass materials which are preferred are those which contain a higher proportion of lignins relative to celluloses and hemicelluloses since it is the lignins which, in the water treatment, produce greater quantities of the fuel precursors. A lignin content of at least 35 percent would produce greater amounts of fuels while at least 50 percent lignin would be preferred. Since lignin plays a significant role in the carbon cycle, sequestering atmospheric carbon into the living vegetable, the use of the lignin derivatives as fuels will be carbon-neutral.
  • In the present process, the biomass, after any necessary comminution and necessary pre-drying to improve handling and amenability to the treatment with the water, is brought into contact with superheated or supercritical water. Organic compounds, including the lignocellulosic material typically found in solid biomass will readily dissolve in superheated and supercritical water. Once the biomass is dissolved under these conditions, water will efficiently break cellulose and other bonds as described below; at supercritical temperatures cellulosic material will form coke extremely rapidly.
  • When superheated but below the critical point, the water is still in the liquid state rather than the supercritical characteristic state in which the properties are intermediate those of the vapor state and the liquid. Above the critical point, supercritical fluids generally possess unique solvating and transport properties compared to liquids or gases. Supercritical fluids can have liquid-like densities, gas-like diffusivities, and compressibilities that deviate greatly from ideal gas behavior. Solid solubility often is enhanced greatly with respect to solubility in the gas or liquid solvent. Supercritical water in particular has the ability to dissolve materials not normally soluble in liquid water or steam and also promotes certain chemical reactions. The critical point of water is at 374° C. and about 22 MPa (3190 psi), at which it has a relative density of 0.322. When heated at the requisite pressure above this point, the superheated water becomes supercritical and, as such, has been found to provide faster reaction rates for the conversion of the biomass although at the expense of maintaining higher pressure.
  • Superheat to a temperature of at least 300° C. and preferably at least 374° C. at appropriate pressures, typically autogeneous pressures, to maintain liquidity is preferred in order to secure satisfactory reaction rates in the biomass reaction. Pressures at temperatures of this order will typically be at least 15 MPa (2175 psi) and may be at least as high as 20 MPa (2900 psi).
  • High temperature water superheated under autogenic or higher pressure provides a significantly more favorable reaction medium for insoluble organic compounds than does water up to its boiling temperature. The solvent properties of liquid water (density, dielectric constant) at high temperature are similar to those of polar organic solvents at room temperature, thus facilitating the solubility of organic compounds and their reactions. At 300° C., for example, water exhibits a density and polarity similar to those of acetone at room temperature: the solubility parameter decreases from 23.4 to 14.5 cal/cm3. The dielectric constant drops rapidly with temperature, and at 300° C. has fallen from 80 (at 20° C.) to 2. Therefore, as the water temperature is increased, the solubility of non-polar organic compounds increases much more than expected for the natural effect of temperature and the reactions with the biological materials are facilitated to this extent.
  • When superheated liquid water is used in the range from above about 200° C. to below the critical temperature of water, 374° C., more preferably from about 250° C. to about 350 or 370° C., the pressures will be autogenous or higher. The corresponding vapor pressure needed to maintain water in the liquid state at these temperatures ranges from 1550 kPa (225 psi) at 200° C. to about 10.6 MPa (1532 psi) at 350° C. to about 22 MPa (3200 psi) at 374° C. Vapor pressure values are readily determinable by reference to standard texts such as the CRC Handbook of Chemistry and Physics and Steam Tables by J. H. Keenan, F. G. Keyes, P. G. Hill and J. G. Moore, Wiley-Interscience, New York, 1969.
  • The water employed in the process is preferably neutral, i.e. about pH 7 and substantially free of dissolved oxygen to minimize the occurrence of undesirable free radical reactions. The contacting is normally for a period of time ranging from about 0.1 second to several hours with shorter contact times being possible at higher temperatures; typically, contact times will be from 5 seconds to about 4 hours, and preferably 1 minute to 2 hours. Certain weight ratios of water to organic resource material drive the reaction at faster rates. Therefore, a weight ratio of water to biomass material in the range from about 0.5 to about 10 is preferred, and more preferably from about 0.5 to 5.0, most preferably 0.5 to 2.
  • Organic molecules containing oxygen functionalities such as are commonly found in biomass undergo a wide range of chemical reactions in neutral superheated or supercritical water. In superheated water, below the critical temperature of water, these reactions proceed mainly via ionic vs. thermal free radical pathways. Above the critical temperature, a competition between ionic and thermal free radical pathways would be expected, with radical pathways catching up and finally predominating as temperature increases. Condensation type polymers, polymers containing, e.g., ester, ether, and amide linkages are likely to be cleaved to their starting materials at 300° C. and above and esters, ethers, sulfides, amines and even diaryl ethers cleave rapidly, carboxylic acids are decarboxylated (—CO2) and aldehydes are decarbonylated (—CO). Such reactions effect cleavage of cross-links containing oxygen, nitrogen and sulfur moieties with the concurrent loss of much of these heteroatoms. These as well as many others, are facilitated by changes in the chemical and physical properties of water as temperature increases.
  • Superheated water at 350° C. and ˜2400 psi (Hydrothermal Liquefaction (HTL) conditions) is in the liquid state and will react with e.g., lignin, to hydrolytically cleave linkages such as those typically found in biomass materials, including ethers and esters (including carbonate esters) and amides. Under these conditions, ester linkages in the biomass are cleaved into an acid and an alcohol; the acid formed is then decarboxylated with the water acting as an acid, base or acid-base bi-catalyst (—log Kw=11.3 vs. 13.99 at 25° C.). The alcohol dehydrates under the same conditions to form an olefin. Amide bonds cleave to form amines and diols; the diols can subsequently dehydrate to olefins while the amines lose ammonia to form alkanes or olefins. These reactions are strongly catalyzed by the acidity of the water at high temperature and autocatalyzed by acidic reaction products. Depolymerization and deoxygenation of biomass are therefore efficient under these conditions to form a product, typically in the form of a viscous, oily mass which can subsequently be worked up by conventional refining procedures as a precursor of liquid transportation fuels,
  • An increase in the dissociation constant by three orders of magnitude allows water at temperatures of 200° C. or higher to act as an acid, base, or acid-base bi-catalyst without the need for costly and cumbersome neutralization and catalyst regeneration steps. The negative logarithmic ionic product of water [pKw] at 250° C. is 11, as compared to 14 at 20° C., which means that water becomes both a stronger acid and a stronger base as the temperature increases. Therefore, in addition to the natural increase in kinetic rates with temperature, both acid and base catalysis by water are enhanced at higher temperatures. Accordingly the water/biomass conversion may be carried out in the absence of any additional catalyst although trace amounts of acid can be added to facilitate these reactions while acidic species generated during the conversion process can autocatalyse the cleavage and deoxygenation reactions as described above. Also, since water soluble conversion products (i.e., hydrolysis products) may include acidic products, basic products, reducing agents and oxidizing agents, that effect further conversion and upgrading of the biomass resource material, recycle enrichment of these materials presents another viable processing option.
  • The fuel precursors which result from the reaction are characterized by a lower molecular weight and lower oxygen content than most biomass products. This is a result of the unique conversion properties of the superheated/supercritical water when applied to biological materials. Depolymerization will result in the formation of liquid or semi-liquid products of varying viscosities which will combine with solids present in the mass to dissolve or disperse them and produce a rather viscous, reaction product which can be worked up in the same or similar manner to a petroleum crude following a filtration which is optional depending on how the product is eventually processed, of any remaining solids. For example, it may be used as coker feed or visbreaker feed. Feed to an FCC unit is preferably hydrotreated to remove sulfur and nitrogen compounds which may remain and which, if not removed, will adversely affect catalyst performance and longevity in the cracking process. Hydrocracking is also an option.
  • The reaction with the water can be carried out in a reactor with walls suitably thick to withstand the pressures generated and fitted with a gas/liquid circulation system to permit the continuous circulation of the superheated/supercritical water as well as removal of gases such as oxygen, carbon monoxide and carbon dioxide which are evolved in the various reactions. Typically, the reactor will allow for contact times between the water and the biomass mentioned above, following which the reaction mass is withdrawn from the reactor, the water separated for recirculation and the water and residue de-gassed. Any sludge-like residue which remains can be sent to a coker or burned as fuel for the process.

Claims (6)

1. A process for the conversion of biomass material into precursors for hydrocarbon transportation fuels comprises contacting liquid superheated water or supercritical water with the biomass material to depolymerize and deoxygenate the biomass into the transportation fuel precursors.
2. A process according to claim 1 in which the water is liquid superheated water at a temperature of at least 200° C.
3. A process according to claim 2 in which the water is liquid superheated water at a temperature of at least 300° C.
4. A process according to claim 1 in which the water is in the supercritical state at a temperature of at least 374° C. and a pressure of at least 22 MPa.
5. A process according to claim 1 in which the biomass material comprises plant matter, biodegradable wastes, byproducts of farming including animal manures, food processing wastes, sewage sludge, black liquor from wood pulp or algae.
6. A process according to claim 5 in which the plant matter comprises the roots, stems, leaves, seed husks and fruits of miscanthus, spurge, sunflower, switchgrass, hemp, corn (maize), poplar, willow, sugarcane, and oil palm (palm oil).
US13/037,938 2010-03-25 2011-03-01 Biomass conversion process Abandoned US20110232160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/037,938 US20110232160A1 (en) 2010-03-25 2011-03-01 Biomass conversion process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31754510P 2010-03-25 2010-03-25
US13/037,938 US20110232160A1 (en) 2010-03-25 2011-03-01 Biomass conversion process

Publications (1)

Publication Number Publication Date
US20110232160A1 true US20110232160A1 (en) 2011-09-29

Family

ID=44654727

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/037,938 Abandoned US20110232160A1 (en) 2010-03-25 2011-03-01 Biomass conversion process

Country Status (1)

Country Link
US (1) US20110232160A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US20130172540A1 (en) * 2011-12-30 2013-07-04 Renmatix, Inc. Compositions Comprising Lignin
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US20140275299A1 (en) * 2013-03-14 2014-09-18 Algae Systems, LLC Systems and Methods for Hydrothermal Conversion of Biomass
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10059730B2 (en) 2013-03-15 2018-08-28 Renmatix, Inc. High purity lignin, lignin compositions, and higher structured lignin
WO2019200029A1 (en) * 2018-04-11 2019-10-17 Saudi Arabian Oil Company Supercritical water process integrated with visbreaker
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
US10870805B2 (en) 2018-02-12 2020-12-22 Saudi Arabian Oil Company Removal of olefins from hydrothermally upgraded heavy oil
SE543595C2 (en) * 2015-12-01 2021-04-06 Ren Fuel K2B Ab Depolymerized lignin in hydrocarbon oil
JP2023506616A (en) * 2020-12-23 2023-02-17 浙江大学 Spongy porous activated carbon based on bio-oil light fraction, method of making and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180845B1 (en) * 1999-10-07 2001-01-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Transforming biomass to hydrocarbon mixtures in near-critical or supercritical water
US20030221361A1 (en) * 2000-03-23 2003-12-04 Russell Richard W Method of converting agricultural waste to liquid fuel cell and associated apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180845B1 (en) * 1999-10-07 2001-01-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Transforming biomass to hydrocarbon mixtures in near-critical or supercritical water
US20030221361A1 (en) * 2000-03-23 2003-12-04 Russell Richard W Method of converting agricultural waste to liquid fuel cell and associated apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546560B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Solvo-thermal hydrolysis of cellulose
US8546561B2 (en) 2008-07-16 2013-10-01 Renmatix, Inc. Nano-catalytic-solvo-thermal technology platform bio-refineries
US10053745B2 (en) 2010-01-19 2018-08-21 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US10858712B2 (en) 2010-01-19 2020-12-08 Renmatix, Inc. Production of fermentable sugars and lignin from biomass using supercritical fluids
US8840995B2 (en) 2011-05-04 2014-09-23 Renmatix, Inc. Lignin production from lignocellulosic biomass
US8409357B2 (en) 2011-05-04 2013-04-02 Renmatix, Inc. Self-cleaning apparatus and method for thick slurry pressure control
US20130172540A1 (en) * 2011-12-30 2013-07-04 Renmatix, Inc. Compositions Comprising Lignin
US8759498B2 (en) * 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
US9255188B2 (en) 2011-12-30 2016-02-09 Renmatix, Inc. Compositions comprising lignin
US9963555B2 (en) 2011-12-30 2018-05-08 Renmatix, Inc. Compositions comprising lignin
US20140275299A1 (en) * 2013-03-14 2014-09-18 Algae Systems, LLC Systems and Methods for Hydrothermal Conversion of Biomass
US10059730B2 (en) 2013-03-15 2018-08-28 Renmatix, Inc. High purity lignin, lignin compositions, and higher structured lignin
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects
US10793646B2 (en) 2014-09-26 2020-10-06 Renmatix, Inc. Adhesive compositions comprising type-II cellulose
SE543595C2 (en) * 2015-12-01 2021-04-06 Ren Fuel K2B Ab Depolymerized lignin in hydrocarbon oil
US10870805B2 (en) 2018-02-12 2020-12-22 Saudi Arabian Oil Company Removal of olefins from hydrothermally upgraded heavy oil
WO2019200029A1 (en) * 2018-04-11 2019-10-17 Saudi Arabian Oil Company Supercritical water process integrated with visbreaker
CN111954708A (en) * 2018-04-11 2020-11-17 沙特阿拉伯石油公司 Supercritical water method integrated with visbreaking furnace
US10927313B2 (en) 2018-04-11 2021-02-23 Saudi Arabian Oil Company Supercritical water process integrated with visbreaker
JP2021521286A (en) * 2018-04-11 2021-08-26 サウジ アラビアン オイル カンパニー Visbreaker integrated supercritical water process
US11248180B2 (en) 2018-04-11 2022-02-15 Saudi Arabian Oil Company Supercritical water process integrated with visbreaker
JP2023506616A (en) * 2020-12-23 2023-02-17 浙江大学 Spongy porous activated carbon based on bio-oil light fraction, method of making and use thereof
JP7244890B2 (en) 2020-12-23 2023-03-23 浙江大学 Spongy porous activated carbon based on bio-oil light fraction, method of making and use thereof

Similar Documents

Publication Publication Date Title
US20110232160A1 (en) Biomass conversion process
US8480765B2 (en) Biomass oil conversion process
Isa et al. Hydrogen donor solvents in liquefaction of biomass: a review
Gupta et al. Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review
Mathimani et al. A review on the hydrothermal processing of microalgal biomass to bio-oil-Knowledge gaps and recent advances
Marzbali et al. Wet organic waste treatment via hydrothermal processing: A critical review
Biller et al. Production of biofuels via hydrothermal conversion
Gollakota et al. A review on hydrothermal liquefaction of biomass
Hrnčič et al. Hydrothermal treatment of biomass for energy and chemicals
Djandja et al. Progress in hydrothermal liquefaction of algal biomass and hydrothermal upgrading of the subsequent crude bio-oil: a mini review
Garcia-Nunez et al. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents
US8500829B2 (en) Biomass oil conversion using carbon monoxide and water
Demirbas et al. Algae energy: algae as a new source of biodiesel
Cherubini The biorefinery concept: Using biomass instead of oil for producing energy and chemicals
Matayeva et al. Development of upgraded bio-oil via liquefaction and pyrolysis
Demirbas Biorefineries: Current activities and future developments
US8502003B2 (en) Biomass conversion using carbon monoxide and water
Qamar et al. Feasibility-to-applications of value-added products from biomass: Current trends, challenges, and prospects
WO2018076093A1 (en) Hydrothermal liquefaction co-processing of wastewater sludge and lignocellulosic biomass for co-production of bio-gas and bio-oils
Demirbas et al. A realistic fuel alternative for diesel engines
US20140275299A1 (en) Systems and Methods for Hydrothermal Conversion of Biomass
Muh et al. Biomass conversion to fuels and value-added chemicals: a comprehensive review of the thermochemical processes
Adeoye et al. Sustainable energy via thermochemical and biochemical conversion of biomass wastes for biofuel production
de Wild Biomass pyrolysis for hybrid biorefineries
Guo The global scenario of biofuel production and development

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION