RU2518700C2 - Применение саморегулирующихся ядерных реакторов при обработке подземного пласта - Google Patents
Применение саморегулирующихся ядерных реакторов при обработке подземного пласта Download PDFInfo
- Publication number
- RU2518700C2 RU2518700C2 RU2011119084/03A RU2011119084A RU2518700C2 RU 2518700 C2 RU2518700 C2 RU 2518700C2 RU 2011119084/03 A RU2011119084/03 A RU 2011119084/03A RU 2011119084 A RU2011119084 A RU 2011119084A RU 2518700 C2 RU2518700 C2 RU 2518700C2
- Authority
- RU
- Russia
- Prior art keywords
- formation
- self
- nuclear reactor
- heat
- regulating nuclear
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 292
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 163
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 161
- 239000012530 fluid Substances 0.000 claims abstract description 105
- 238000010438 heat treatment Methods 0.000 claims abstract description 96
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 82
- 238000011065 in-situ storage Methods 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 54
- 238000000197 pyrolysis Methods 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000005336 cracking Methods 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims description 69
- 239000002826 coolant Substances 0.000 claims description 59
- 150000003839 salts Chemical class 0.000 claims description 21
- 229910052987 metal hydride Inorganic materials 0.000 claims description 19
- 150000004681 metal hydrides Chemical class 0.000 claims description 19
- 230000007423 decrease Effects 0.000 claims description 14
- 239000011358 absorbing material Substances 0.000 claims description 6
- 230000002596 correlated effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 230000004941 influx Effects 0.000 abstract 1
- 238000005755 formation reaction Methods 0.000 description 267
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 37
- 239000001257 hydrogen Substances 0.000 description 37
- 229910052739 hydrogen Inorganic materials 0.000 description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 239000007789 gas Substances 0.000 description 33
- 238000006243 chemical reaction Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 25
- 230000005611 electricity Effects 0.000 description 22
- 239000001307 helium Substances 0.000 description 20
- 229910052734 helium Inorganic materials 0.000 description 20
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 20
- 238000012545 processing Methods 0.000 description 20
- 239000000446 fuel Substances 0.000 description 19
- 238000012546 transfer Methods 0.000 description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 229910001868 water Inorganic materials 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 239000003921 oil Substances 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- 239000004020 conductor Substances 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 150000004678 hydrides Chemical class 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000010426 asphalt Substances 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 239000004058 oil shale Substances 0.000 description 6
- 238000002407 reforming Methods 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000011435 rock Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000012184 mineral wax Substances 0.000 description 4
- -1 pyrobitumen Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 235000015076 Shorea robusta Nutrition 0.000 description 3
- 244000166071 Shorea robusta Species 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003758 nuclear fuel Substances 0.000 description 3
- 238000000629 steam reforming Methods 0.000 description 3
- 239000011269 tar Substances 0.000 description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 229910052778 Plutonium Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000004992 fission Effects 0.000 description 2
- 150000004673 fluoride salts Chemical class 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000159846 Centrosema pascuorum Species 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 244000071378 Viburnum opulus Species 0.000 description 1
- 235000019013 Viburnum opulus Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- SILSDTWXNBZOGF-KUZBFYBWSA-N chembl111058 Chemical compound CCSC(C)CC1CC(O)=C(\C(CC)=N\OC\C=C\Cl)C(=O)C1 SILSDTWXNBZOGF-KUZBFYBWSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000002760 rocket fuel Substances 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000002303 thermal reforming Methods 0.000 description 1
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 1
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- FHNFHKCVQCLJFQ-RNFDNDRNSA-N xenon-135 Chemical compound [135Xe] FHNFHKCVQCLJFQ-RNFDNDRNSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
- E21B44/02—Automatic control of the tool feed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C3/00—Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/48—Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2405—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/03—Heating of hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49083—Heater type
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Earth Drilling (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Road Paving Structures (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Pipe Accessories (AREA)
- Treatment Of Sludge (AREA)
Abstract
Изобретение относится к системам и способам для обработки подземного пласта. Система термической обработки in situ для добычи углеводородов из подземного пласта, содержит саморегулирующийся ядерный реактор; систему труб, по меньшей мере, частично расположенную в активной зоне саморегулирующегося ядерного реактора, с первым теплоносителем, циркулирующим через систему труб и теплообменник. Теплообменник предназначен для прохождения через него первого теплоносителя для нагрева второго теплоносителя. При этом второй теплоноситель предназначен для повышения температуры, по меньшей мере, части пласта выше температуры, обеспечивающей образование подвижного флюида, легкий крекинг и/или пиролиз углеводородсодержащего материала, приводящих к образованию в пласте подвижных флюидов, флюидов, являющихся результатом легкого крекинга, и/или флюидов, являющихся результатом пиролиза. Причем поступление тепла в, по меньшей мере, часть пласта в течение времени, по меньшей мере, приблизительно соотносится со скоростью затухания саморегулирующегося ядерного реактора. Техническим результатом является повышение эффективности прогрева пласта. 2 н. и 17 з.п. ф-лы, 8 ил.
Description
Область техники, к которой относится изобретение
Изобретение относится к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как углеводородсодержащие пласты.
Уровень техники
Получаемые из подземных пластов углеводороды часто используют в качестве энергетических ресурсов, в качестве разного рода сырья и в качестве потребительских продуктов. Озабоченность по поводу истощения существующих углеводородных ресурсов и озабоченность по поводу снижения в целом качества добываемых углеводородов привели к разработке способов для более эффективных добычи, переработки и/или применения имеющихся углеводородных ресурсов. Для извлечения углеводородных материалов из подземных пластов могут использоваться процессы in situ. С целью обеспечения более легкого извлечения углеводородного материала из подземного пласта может потребоваться изменение химических и/или физических свойств углеводородного материала в подземном пласте. Химические и физические изменения могут включать в себя реакции in situ, результатом которых становится образование извлекаемых флюидов, изменения состава, изменения растворимости, изменения плотности, фазовые изменения и/или изменения вязкости углеводородного материала в пласте. Флюидом могут быть (но без ограничения ими) газ, жидкость, эмульсия, суспензия и/или поток твердых частиц, который имеет характеристики текучести, подобные характеристикам текучести потока жидкости.
Для нагрева пласта в процессе in situ в стволы скважин могут помещаться нагреватели. Существует множество различных типов нагревателей, которые могут быть использованы для нагрева пласта. Эффективность и выгода от добываемых углеводородных материалов, прежде всего, будет определять энергия, необходимая для превращения и/или вывода углеводородных материалов из подземного пласта. Отсюда и интерес к любым системам и/или способам, которые могут приводить к снижению потребности в энергии и/или расходов на энергию, необходимых для добычи углеводородных материалов.
В документе US 3170842 описаны субкритический ядерный реактор и нейтроногенерирующее устройство, пригодные для использования в стволе скважины. В данном документе описаны исследование ствола скважины с ядерным реактором, нагрев ствола скважины с помощью ядерного реактора или пиролиз in situ горючих сланцев с помощью нагревания с использованием ядерного реактора в стволе скважины в качестве теплового источника в указанных сланцах. При этом применяется ядерный реактор, обладающий варьируемой в широких пределах заданной выходной мощностью и выходом нейтронов и имеющий устройство для варьирования или поддержания постоянства указанной выходной мощности или выхода нейтронов на заданном уровне, соответствующем выбранной цели, для которой должен использоваться ядерный реактор. Ядерный реактор включает в себя множество субкритических состояний, возбуждаемых до уровня генерирования нейтронов или выходной мощности в зависимости от положения первичного генератора нейтронов, который может перемещаться относительно корпуса ядерного реактора с помощью механических средств.
В документе US 3237689 описаны способ и установка для перегонки залежей горючих сланцев и других твердых углеродистых материалов in situ, с помощью которых достигаются более эффективная и более полная перегонка при значительной экономии объема производимых работ. Расположенный вблизи разрабатываемого участка ядерный реактор используется для обеспечения теплом теплоносителя, циркулирующего через один или несколько теплообменников, которые подают тепло на один или несколько тепловых фронтов для проведения перегонки in situ залежей горючих сланцев.
В документе US 3598182 описан способ перегонки и дегидрогенизации углеводородного содержимого и углеродистых материалов с использованием горячего водорода для высвобождения и перегонки углеводородного содержимого. Предпочтительно установка для осуществления способа содержит источник водорода, средство для изменения температуры водорода, подземную каверну в углеродистом материале и модулирующее температуру устройство на поверхности сланцев для регулирования температуры водорода. Горячий водород может поступать из любого источника, но предпочтительно его получают из ядерного реактора, в котором водород используется в качестве охладителя, или из процесса карбонизации угля.
В документе US 3766982 описан способ обработки in situ горючего сланца или какого-либо другого углеводородистого материала с использованием в качестве транспортирующего агента горячей текучей среды, такой как воздух или дымовой газ, с целью испарения керогена или какого-либо другого углеводородистого материала и, в частности, также в качестве носителя достаточного объема тепла, чтобы расколоть и расщепить материал, сделав его насквозь проницаемым для газового потока. Добыча улетученного углеводородистого материала производится через один или несколько стволов скважин, удаленных от места ввода горячего газа. Нагрев воздуха или какого-либо другого относительно недорогого теплообменивающего газа до требуемой температуры, либо над, либо под поверхностью грунта, осуществляется в ядерном реакторе, в нагревателе с галечным теплоносителем или в каком-либо другом подходящем нагревательном устройстве.
В документе US 4765406 описан способ пробной добычи сырой нефти с помощью закачки в нефтяной пласт теплоносителя. На этот способ влияет генерирование тепловой энергии в нефтяном месторождении или в том месте, где в это месторождение входит какая-либо скважина, путем проведения реакции каталитического метанирования и переноса образующегося при этом тепла к теплоносителю, которым может быть водяной пар или инертный газ. Теплоноситель вводится в нефтяной пласт и повышает мобильность нефти. Могут использоваться различные источники энергии, включая уголь, нефть, работающие на сжигании газа нагреватели, солнечно-энергетические установки и т.п., хотя нами предпочтительно используется высокотемпературный ядерный реактор.
В документе US 4930574 описан способ третичной нефтедобычи и утилизации газа путем ввода нагретого с помощью ядерного реактора водяного пара в нефтяное месторождение и вывода, отделения и приготовления отходящей водно-нефтегазовой смеси. Способ включает в себя нагрев печи парового реформинга и генерирование водяного пара в парогенераторе с помощью тепла из высокотемпературного реактора с гелиевым охлаждением при частичной подаче производимого в парогенераторе водяного пара через какую-либо трубу в нефтяное месторождение, отделение метана и других компонентов от отходящей водно-нефтегазовой смеси, предварительный нагрев метана в подогревателе и последующую частичную подачу произведенного в парогенераторе водяного пара и метана в печь парового реформинга с целью превращения метана в водород и оксид углерода.
В документе US 20070181301 описаны система и способ извлечения углеводородных продуктов из горючесланцевого пласта. Способ включает в себя использование источников ядерной энергии для того, чтобы энергия осуществляла раскол горючесланцевых пластов и обеспечивала достаточно тепла и давления для образования жидких и газообразных углеводородных продуктов. Способ включает также этапы извлечения углеводородных продуктов из горючесланцевых пластов.
Для разработки способов и систем для экономичной добычи углеводородов, водорода и/или других продуктов из углеводородсодержащих пластов были приложены значительные усилия. Однако в настоящее время все еще существует много углеводородсодержащих пластов, из которых углеводороды, водород и/или другие продукты экономично добыты быть не могут. В связи с этим существует потребность в улучшенных способах и системах, которые бы снизили энергетические затраты на обработку пласта, снизили выбросы в процессе обработки, облегчили установку нагревательной системы и/или снизили потери тепла на нагрев покрывающего слоя по сравнению со способами добычи углеводородов, в которых используется наземное оборудование.
Раскрытие изобретения
Описанные здесь варианты осуществления изобретения относятся в целом к системам и способам для нагрева подземного пласта. В некоторых вариантах осуществления изобретения предлагаются одна или несколько систем и один или несколько способов для обработки подземного пласта.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта; при этом ввод тепла в по меньшей мере часть пласта в течение времени по меньшей мере частично соотносится со скоростью затухания саморегулирующегося ядерного реактора.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта; при этом расстояние между по меньшей мере частью множества стволов скважин в пласте по меньшей мере частично соотносится со скоростью затухания саморегулирующегося ядерного реактора.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта; при этом саморегулирующийся ядерный реактор затухает со скоростью приблизительно 1/Е.
В некоторых вариантах осуществления изобретения способ добычи углеводородов из подземного пласта может осуществляться с помощью описанной здесь системы. В дополнительных вариантах осуществления изобретения признаки из отдельных вариантов осуществления изобретения могут объединяться с признаками из других вариантов осуществления изобретения. Например, признаки из одного варианта осуществления изобретения могут быть объединены с признаками из каких-либо других вариантов осуществления изобретения. В дополнительных вариантах осуществления изобретения обработка подземного пласта проводится с помощью любых из описанных в заявке систем и способов. В дополнительных вариантах осуществления изобретения к конкретным описанным в заявке вариантам осуществления изобретения могут быть добавлены дополнительные признаки.
Краткое описание чертежей
Преимущества настоящего изобретения могут стать очевидными специалистам благодаря приведенному ниже подробному описанию со ссылками на прилагаемые чертежи.
На фиг.1 схематически показан один из вариантов выполнения одной из частей системы термической обработки in situ для обработки углеводородсодержащего пласта;
на фиг.2 - один из вариантов выполнения системы термической обработки in situ, в которой использован ядерный реактор;
на фиг.3 - один из вариантов выполнения системы термической обработки in situ, в которой использованы реакторы с галечным слоем, вид в вертикальном разрезе;
на фиг.4 - один из вариантов выполнения саморегулирующегося ядерного реактора;
на фиг.5 - один из вариантов выполнения системы термической обработки in situ с u-образными стволами скважин с использованием саморегулирующихся ядерных реакторов;
на фиг.6 - зависимость мощности (Вт/м) (ось y) от времени (годы) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ;
на фиг.7 - зависимость мощности (Вт/м) (ось y) от времени (дни) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ для разных расстояний между стволами скважин;
на фиг.8 - зависимость средней температуры (°С) (ось y) коллектора от времени (дни) (ось х) при термической обработке in situ для разных расстояний между стволами скважин.
Хотя изобретение может иметь различные модификации и альтернативные формы, с помощью приведенного с использованием чертежей примера показаны конкретные варианты его осуществления, которые подробно описаны далее. Чертежи не обязательно масштабированы. Следует, однако, иметь в виду, что чертежи и их подробное описание не рассчитаны на то, чтобы ограничить ими изобретение до конкретной раскрытой формы, а, наоборот, ставилась цель охватить все модификации, эквиваленты и альтернативы, относящиеся к сути и объему настоящего изобретения, определенным в прилагаемой формуле изобретения.
Осуществление изобретения
Следующее ниже описание в целом относится к системам и способам обработки углеводородов в пластах. Такие пласты могут подвергаться обработке с целью получения углеводородных продуктов, водорода и других продуктов.
«АНИ-плотность» обозначает плотность в градусах Американского нефтяного института при 15,5°С (60°F), определяемую согласно методу ASTM Method D6822 или ASTM Method D1298.
«Давление флюида» - это давление, создаваемое каким-либо флюидом в пласте. «Литостатическим давлением» (иногда называемым «литостатическим напряжением») является давление в пласте, равное весу на единицу площади вышележащей массы породы. «Гидростатическим давлением» является давление в пласте, создаваемое столбом воды.
«Пласт» включает в себя один или несколько углеводородсодержащих слоев, один или несколько неуглеводородных слоев, покрывающий слой и/или подстилающий слой. Выражение «углеводородные слои» относится к слоям в пласте, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородный материал и углеводородный материал. «Покрывающий слой» и/или «подстилающий слой» содержат один или несколько различных непроницаемых материалов. Например, покрывающий слой и/или подстилающий слой могут содержать скальную породу, сланец, аргиллит или влажный/плотный карбонат. В некоторых вариантах осуществления операций термической обработки in situ покрывающий слой и/или подстилающий слой могут включать в себя углеводородсодержащий слой или углеводородсодержащие слои, которые относительно непроницаемы и не подвергаются действию температур во время проведения термической обработки in situ, результатом которой являются значительные изменения характеристик углеводородсодержащих слоев покрывающего слоя и/или подстилающего слоя. Например, подстилающий слой может содержать сланец или аргиллит, но подстилающий слой нельзя нагревать до температур пиролиза в процессе термической обработки in situ. В отдельных случаях покрывающий слой и/или подстилающий слой могут быть до некоторой степени проницаемыми.
Под "пластовыми флюидами" подразумеваются флюиды, которые присутствуют в пласте и могут включать в себя пиролизный флюид, синтез-газ, подвижные углеводороды и воду (водяной пар). Пластовые флюиды могут включать в себя как углеводородные флюиды, так и неуглеводородные флюиды. Выражение "подвижный флюид" относится к флюидам в углеводородсодержащем пласте, которые в результате термической обработки пласта приобрели текучесть. Под "добытыми флюидами" подразумеваются флюиды, извлеченные из пласта.
"Источником тепла" является любая система для подачи тепла в по поменьше мере какую-либо часть пласта в основном путем посредством теплопроводности и/или излучения. Источником тепла могут быть, например, электропроводящие материалы и/или электронагреватели типа изолированного проводника, удлиненного элемента и/или проводника, расположенного в кабелепроводе. Нагревателем могут также быть системы, вырабатывающие тепло за счет сжигания топлива вне пласта или в пласте. Этими системами могут быть наземные горелки, скважинные газовые горелки, беспламенные рассредоточенные камеры сгорания и природные рассредоточенные камеры сгорания. В некоторых вариантах осуществления изобретения тепло, подаваемое в один или несколько источников тепла или произведенное в них, может быть получено от других источников энергии. Другие источники энергии могут нагревать пласт непосредственно, или их энергия может передаваться теплоносителю, который непосредственно или опосредованно нагревает пласт. Следует иметь в виду, что в одном или нескольких источниках тепла, которые доставляют тепло в пласт, могут использоваться различные источники энергии. Так, например, для данного пласта некоторые источники тепла могут подавать тепло от электропроводящих материалов, от электронагревателей сопротивления, некоторые источники тепла могут подавать тепло сгорания, а некоторые источники тепла могут подавать тепло от одного или нескольких других источников энергии (например, химических реакций, солнечной энергии, энергии ветра, биомассы, или других источников возобновляемой энергии). Химической реакцией может быть экзотермическая реакция (например, реакция окисления). Источник тепла может также включать в себя электропроводящий материал или нагреватель, который подает тепло в зону, расположенную вблизи места нагрева, и/или окружающую это место нагрева, такое как нагревательную скважину.
"Нагреватель" представляет собой любую систему или источник тепла, генерирующие тепло в скважине или в области, примыкающей к стволу скважины. Нагревателями могут быть (но не ограничиваясь ими) электронагреватели, горелки, камеры сгорания, которые реагируют с материалом в пласте или материалом, полученным из пласта, и/или их комбинации.
«Тяжелые углеводороды» представляют собой вязкие углеводородные флюиды. Тяжелые углеводороды могут включать в себя высоковязкие углеводородные флюиды, как тяжелая нефть, битум и/или асфальтовый битум. Тяжелые углеводороды могут включать в себя как углерод и водород, так и в меньших концентрациях серу, кислород и азот. В малых количествах в тяжелых углеводородах могут присутствовать и другие элементы. Тяжелые углеводороды могут быть расклассифицированы по АНИ-плотности. Как правило, тяжелые углеводороды имеют АНИ-плотность ниже примерно 20°. Тяжелая нефть, например, обычно имеет АНИ-плотность, равную примерно 10-20°, в то время как битум обычно имеет АНИ-плотность ниже примерно 10°. Как правило, вязкость тяжелых углеводородов выше примерно 100 сПз при 15°С. Тяжелые углеводороды могут включать в себя ароматические и другие сложные циклические углеводороды.
Тяжелые углеводороды могут находиться в относительно проницаемых пластах. Относительно проницаемый пласт может содержать тяжелые углеводороды, увлеченные, например, в песок или в карбонат. «Относительно проницаемым» по отношению к пластам или их частям является пласт, средняя проницаемость которого равна или превышает 10 миллидарси (например, 10 или 100 миллидарси). «Относительно низкая проницаемость» по отношению к пластам или их частям определяется как средняя проницаемость, меньшая примерно 10 миллидарси. Один Дарси равен приблизительно 0,99 мкм2. Непроницаемый слой обычно имеет проницаемость меньшую примерно 0,1 миллидарси.
Некоторые типы пластов, которые содержат тяжелые углеводороды, могут также содержать (но не ограничиваясь ими) природные минеральные воски или природные асфальтиты. «Природные минеральные воски» встречаются, как правило, в по существу трубчатых жилах, которые могут иметь несколько метров в ширину, несколько километров в длину и сотни метров в глубину. «Природные асфальтиты» включают в себя твердые углеводороды ароматического состава и обычно встречаются в больших жилах. Извлечение из пластов in situ углеводородов, таких как минеральные воски и природные асфальтиты, может включать плавление с образованием жидких углеводородов и/или растворную добычу углеводородов из пластов.
«Углеводороды» определяются в общем случае как молекулы, образованные преимущественно атомами углерода и водорода. Углеводороды могут также включать в себя и другие элементы, например (но не ограничиваясь ими) галогены, металлические элементы, азот, кислород и/или серу. Углеводородами могут быть (но не ограничиваясь ими) кероген, битум, пиробитум, нефти, природные минеральные воски и асфальтиты. Углеводороды могут находится внутри минеральных матриц в земле или непосредственно вблизи них. Матрицами могут быть (но не ограничиваясь ими) осадочная порода, пески, силицилиты, карбонаты, диатомиты и другие пористые среды. "Углеводородные флюиды" представляют собой флюиды, которые содержат углеводороды. Углеводородные флюиды могут включать, захватывать или быть захваченными неуглеводородными флюидами, например водородом, азотом, оксидом углерода, диоксидом углерода, сероводородом, водой и аммиаком.
«Процесс переработки in situ» представляет собой процесс нагрева углеводородсодержащего пласта от источников тепла с целью повышения температуры по меньшей мере части пласта выше температуры пиролиза, в результате чего в пласте образуется пиролизный флюид.
«Процесс термической обработки in situ» представляет собой процесс нагрева углеводородсодержащего пласта источниками тепла с целью повышения температуры по меньшей мере части пласта выше некоторой температуры, в результате чего образуется подвижный флюид и происходит легкий крекинг и/или пиролиз углеводородсодержащего материала, приводящие к образованию в пласте подвижных флюидов, флюидов, являющихся результатом легкого крекинга, и/или флюидов, являющихся результатом пиролиза.
«Изолированным проводником» называется любой удлиненный материал, который способен проводить электричество и целиком или частично покрыт электроизоляционным материалом.
«Пиролиз» представляет собой разрыв химических связей в результате воздействия теплом. Например, пиролиз может включать в себя превращение какого-либо соединения в одно или несколько других веществ только за счет тепла. Чтобы вызвать пиролиз, тепло может подаваться в какой-либо участок пласта.
Выражение «пиролизные флюиды» или «продукты пиролиза» относится к флюиду, образующемуся главным образом в процессе пиролиза углеводородов. Образующийся в результате пиролизных реакций флюид может смешиваться с другими флюидами в пласте. Такую смесь следует рассматривать как пиролизный флюид или пиролизный продукт. Выражение «зона пиролиза» относится к объему пласта (например, относительно проницаемого пласта такого как пласт битуминозных песков), в котором проведена или проходит реакция с образованием пиролизного флюида.
"Наложение тепла" подразумевает доставку тепла от двух или более источников тепла к выбранному участку пласта таким образом, чтобы источники тепла влияли на температуру пласта в по меньшей мере одном месте между тепловыми источниками.
«Пласт битуминозных песков» - это пласт, в котором углеводороды преимущественно являются тяжелыми углеводородами и/или битумом, захваченными в минеральной зернистой структуре или другой вмещающей породе (например, песке или карбонатной горной породе). Примеры пластов битуминозных песков включают такие пласты как пласты в Атабаске, Гросмонте и на Пис-ривер (все три в штате Альберта, Канада) и пласт Фаха в поясе Ориноко, Венесуэла.
Выражение «толщина» слоя относится к толщине поперечного сечения слоя, которое перпендикулярно лицевой поверхности слоя.
Под «u-образным стволом скважины» понимают ствол скважины, который начинается от первого отверстия в пласте, проходит, по меньшей мере, часть пласта и заканчивается вторым отверстием в пласте. В этом случае форма ствола скважины, который считается «u-образным», может только примерно напоминать буквы «v» или «u», при этом ясно, что «ножки» буквы «u» не обязательно параллельны друг другу или перпендикулярны «нижней части» буквы «u».
«Облагораживание» подразумевает повышение качества углеводородов. Например, облагораживание тяжелых углеводородов может привести к повышению АНИ-плотности тяжелых углеводородов.
Выражение «легкий крекинг» относится к распутыванию молекул во флюиде в процессе термической обработки и/или к разрыву больших молекул на меньшие молекулы при термической обработке, что приводит к снижению вязкости флюида.
Выражение «ствол скважины» относится к отверстию в пласте, выполненному бурением или внедрением в пласт трубопровода. Ствол скважины может иметь в существенной степени круглое поперечное сечение или поперечное сечение какой-либо иной формы. В данном описании выражения «скважина» или «отверстие», относящиеся к отверстию в пласте, могут использоваться взаимозаменяемым образом по отношению к выражению «ствол скважины».
С целью получения множества разных продуктов пласт может обрабатываться различными способами. Для обработки пласта в процессе его термической обработки in situ могут быть использованы разные стадии или операции. В некоторых вариантах осуществления изобретения один или несколько участков пласта разрабатывают с использованием раствора, удаляя из этих участков растворимые минералы. Извлечение минералов в виде раствора может проводиться до, во время и/или после проведения операции термической обработки in situ. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков, в которых осуществляют разработку с использованием раствора, может поддерживаться ниже примерно 120°С.
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают с целью удаления из них воды и/или для удаления из этих участков метана и других летучих углеводородов. В некоторых вариантах осуществления изобретения во время удаления воды и летучих углеводородов средняя температура может быть повышена от температуры окружающей среды до температуры ниже примерно 220°С.
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, которые обеспечивают движение и/или легкий крекинг углеводородов в пласте. В некоторых вариантах осуществления изобретения среднюю температуру одного или нескольких участков пласта повышают до температур подвижности углеводородов в участках (например, до температуры в пределах от 100 до 250°С, от 120 до 240°С или от 150 до 230°С).
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, которые обеспечивают протекание в пласте пиролизных реакций. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть повышена до температур пиролиза углеводородов в этих участках (например, до температур в пределах от 230 до 900°С, от 240 до 400°С или от 250 до 350°С).
Нагрев углеводородсодержащего пласта с помощью множества источников тепла может привести к установлению вокруг источников тепла тепловых градиентов, которые повышают температуру углеводородов в пласте до заданных значений при заданных скоростях нагрева. Скорость повышения температуры в диапазоне температур подвижности и/или в диапазоне температур пиролиза для целевых продуктов может повлиять на качество и количество пластовых флюидов, добываемых из углеводородсодержащего пласта. Медленное повышение температуры пласта в диапазоне температур подвижности и/или в диапазоне температур пиролиза может обеспечить добычу из пласта высококачественных, обладающих высокой АНИ-плотностью углеводородов. Медленное повышение температуры пласта в диапазоне температур подвижности и/или в диапазоне температур пиролиза может обеспечить извлечение в качестве углеводородного продукта большого количества находящихся в пласте углеводородов.
В некоторых вариантах осуществления термической обработки in situ вместо медленного повышения температуры в каком-либо температурном диапазоне одну из частей пласта нагревают до какой-либо заданной температуры. В некоторых вариантах осуществления изобретения заданная температура равна 300, 325 или 350°С. В качестве заданной температуры могут быть выбраны и другие температуры.
Наложение тепла от источников тепла позволяет относительно быстро и эффективно устанавливать в пласте заданную температуру. Чтобы поддерживать температуру в пласте на близком к заданному уровне можно осуществлять корректировку поступления в пласт энергии от источников тепла.
Продукты подвижности и/или пиролиза могут добываться из пласта через добывающие скважины. В некоторых вариантах осуществления изобретения среднюю температуру одного или нескольких участков поднимают до температур подвижности и добывают углеводороды через добывающие скважины. После того как обусловленная подвижностью добыча снизится ниже установленного значения, средняя температура одного или нескольких участков может быть повышена до температур пиролиза. В некоторых вариантах осуществления изобретения температуру одного или нескольких участков повышают до температур пиролиза без проведения при этом добычи в значительном объеме до тех пор, пока не будут достигнуты температуры пиролиза. Пластовые флюиды, включая продукты пиролиза, могут добываться через добывающие скважины.
В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков может быть повышена до температур, достаточных для того, чтобы обеспечить добычу синтез-газа после придания подвижности и/или осуществления пиролиза. В некоторых вариантах осуществления изобретения температура углеводородов может быть повышена в достаточной степени для того, чтобы обеспечить образование синтез-газа без проведения при этом добычи в значительном объеме до тех пор, пока не будут достигнуты температуры, достаточные для обеспечения образования синтез-газа. Например, синтез-газ может образовываться в пределах температур от примерно 400 до примерно 1200°С, от примерно 500 до примерно 1100°С или от примерно 550 до примерно 1000°С. Образующий синтез-газ флюид (например, водяной пар и/или воду) можно вводить в участки пласта для генерирования там синтез-газа. Добыча синтез-газа может осуществляться через добывающие скважины.
Добыча с помощью раствора, извлечение летучих углеводородов и воды, придание подвижности углеводородам, пиролиз углеводородов, генерирование синтез-газа и/или другие операции могут проводиться во время процесса термической обработки in situ. В некоторых вариантах осуществления изобретения некоторые операции могут проводиться после процесса термической обработки in situ. В число таких операций могут входить (но не ограничиваясь ими) рекуперация тепла из обработанных участках, хранение флюидов (например, воды и/или углеводородов) в предварительно обработанных участках и/или связывание диоксида углерода в предварительно обработанных участках.
На фиг.1 приведен схематический вид одного из вариантов выполнения части системы термической обработки in situ для обработки углеводородсодержащего пласта. Система термической обработки in situ может включать в себя барьерные скважины 100. Барьерные скважины используются для создания барьера вокруг обрабатываемого участка. Барьер препятствует потоку флюидов к обрабатываемому участку и/или из него. Барьерными скважинами могут быть (но не ограничиваются ими) обезвоживающие скважины, вакуумные скважины, захватывающие скважины, нагнетательные скважины, растворные скважины, замораживающие скважины или их комбинации. В некоторых вариантах осуществления изобретения барьерными скважинами 100 являются обезвоживающие скважины. Обезвоживающие скважины могут удалять жидкую воду и/или препятствовать поступлению жидкой воды в часть предназначенного для нагрева пласта или в нагреваемый пласт. В приведенном на фиг.1 варианте осуществления изобретения барьерные скважины 100 показаны проходящими только вдоль одной стороны источников тепла 102, но, как правило, барьерные скважины опоясывают все используемые или предназначенные для использования источники 102 тепла для нагрева обрабатываемого участка пласта.
Источники 102 тепла помещают в по меньшей мере часть пласта. Источниками 102 тепла могут быть электропроводящие материалы. В некоторых вариантах осуществления изобретения нагревателями являются изолированные проводники, нагреватели типа проводников в каналах, наземные горелки, беспламенные рассредоточенные камеры сгорания и/или природные рассредоточенные камеры сгорания. Источниками 102 тепла могут быть и другие типы нагревателей. Для нагрева углеводородов в пласте источники 102 тепла подают тепло по меньшей мере к части пласта. Энергия может подводиться к источникам 102 тепла по подводящим линиям 104. Подводящие линии 104 могут быть структурно различными в зависимости от типа используемого для нагревания пласта источника тепла или источников тепла. Подводящие линии 104 для источников тепла могут пропускать электричество для электропроводящих материалов или электронагревателей, могут транспортировать топливо для камер сгорания, либо же могут переносить циркулирующий в пласте теплоноситель. В некоторых вариантах осуществления изобретения электричество для операции термической обработки in situ может подаваться от атомной электростанции или от атомных электростанций. Использование энергии атомных электростанций позволяет снизить или исключить выбросы диоксида углерода в процессе термической обработки in situ.
Нагревание пласта может приводить к некоторому увеличению проницаемости и/или пористости пласта. Увеличение проницаемости и/или пористости может быть обусловлено уменьшением массы в пласте в результате испарения и удаления воды, удаления углеводородов и/или образования трещин. Благодаря повышенной проницаемости и/или пористости пласта течение флюида в нагретой части пласта облегчается. Благодаря повышенной проницаемости и/или пористости флюид в нагретой части пласта может перемещаться через пласт на значительное расстояние. Это значительное расстояние может превышать 1000 м в зависимости от различных факторов, таких как проницаемость пласта, свойства флюида, температура пласта и перепад давления, обеспечивающий перемещение флюида. Способность флюида перемещаться на значительное расстояние в пласте позволяет располагать добывающие скважины 106 в пласте на относительно большом расстоянии одна от другой.
Добывающие скважины 106 используются для вывода из пласта пластового флюида. В некоторых вариантах осуществления изобретения добывающая скважина 106 включает в себя какой-либо источник тепла. Источник тепла в добывающей скважине может нагревать одну или несколько частей пласта в добывающей скважине или вблизи нее. В некоторых вариантах осуществления процесса обработки in situ количество тепла, подаваемого в пласт от добывающей скважины с одного метра добывающей скважины, меньше количества тепла, подаваемого в пласт источником тепла, который нагревает пласт, в расчете на один метр источника тепла. Воздействующее на пласт тепло из добывающей скважины может повысить проницаемость пласта вблизи добывающей скважины в результате испарения и удаления жидкофазного флюида вблизи добывающей скважины и/или повысить проницаемость пласта вблизи добывающей скважины в результате образования макро- и/или микротрещин.
В некоторых вариантах осуществления изобретения источник тепла в добывающей скважине 106 позволяет извлекать из пласта паровую фазу пластовых флюидов. Подвод теплоты к добывающей скважине или через добывающую скважину может: (1) препятствовать конденсации и/или обратному потоку добываемого флюида, когда такой добываемый флюид перемещается по направлению к добывающей скважине вблизи покрывающего слоя, (2) увеличить подвод теплоты в пласт, (3) увеличить темп добычи для добывающей скважины по сравнению с добывающей скважиной без источника тепла, (4) препятствовать конденсации соединений с большим количеством атомов углерода (С6 и больше) в добывающей скважине и/или (5) увеличить проницаемость пласта в добывающей скважине или рядом с ней.
Подземное давление в пласте может соответствовать создаваемому в пласте давлению флюида. При повышении температур в нагретой части пласта давление в нагретой части может возрастать в результате теплового расширения флюидов, повышенного образования флюидов и испарения воды. Регулирование скорости вывода флюидов из пласта может позволить контролировать давление в пласте. Давление в пласте может определяться в нескольких разных точках, вблизи или в самих добывающих скважинах, вблизи или в самих источниках тепла, или в мониторинговых скважинах.
В некоторых углеводородсодержащих пластах добычу углеводородов из пласта задерживают до тех пор, пока по меньшей мере некоторая часть углеводородов в пласте не окажется подвижной и/или не подвергнется пиролизу. Пластовый флюид можно добывать из пласта тогда, когда пластовый флюид обладает заданным качеством. В некоторых вариантах осуществления изобретения заданным качеством является АНИ-плотность, равная по меньшей мере примерно 20, 30 или 40°. Задержка добычи до тех пор, пока по меньшей мере некоторая часть углеводородов не окажется подвижной и/или не подвергнется пиролизу, может повысить превращение тяжелых углеводородов в легкие углеводороды. Задержка начала добычи может минимизировать добычу из пласта тяжелых углеводородов. Добыча значительных количеств тяжелых углеводородов могла бы потребовать дорогостоящего оборудования и/или уменьшить срок службы добывающего оборудования.
В некоторых вариантах осуществления изобретения допускается повышение давления, возникающего в результате расширения подвижных флюидов, пиролизных флюидов или других образовавшихся в пласте флюидов, хотя открытый путь к добывающим скважинам 106 или к какому-либо другому сбрасывающему давление участку в пласте может еще не существовать. Можно допустить повышение давления до уровня литостатического давления. Трещины в углеводородсодержащем пласте могут образоваться тогда, когда давление флюида приближается к литостатическому давлению. Трещины могут появляться, например, в направлении от источников 102 тепла в нагреваемой части пласта к добывающим скважинам. Возникновение трещин в нагретой части может частично снижать давление в этой части. Чтобы помешать нежелательной добыче, растрескиванию покрывающего слоя или подстилающего слоя и/или коксованию углеводородов в пласте, может оказаться необходимым поддерживать давление в пласте ниже заданного уровня.
После достижения температур подвижности и/или пиролиза и начала добычи из пласта давление в пласте можно менять с целью изменения и/или изменения состава добываемого пластового флюида, регулирования содержания конденсируемого флюида по отношению к неконденсируемому флюиду в пластовом флюиде и/или регулирования АНИ-плотности добываемого пластового флюида. Например, снижение давления может повлечь за собой добычу большего количества конденсируемого компонента флюида. Конденсируемый компонент флюида может иметь более высокое содержание олефинов.
В некоторых вариантах осуществления операции термической обработки in situ давление в пласте можно поддерживать достаточно высоким, чтобы стимулировать добычу пластового флюида с АНИ-плотностью выше 20°. Поддержание повышенного давления в пласте может препятствовать оседанию пласта во время термической обработки in situ. Поддержание повышенного давления может уменьшить или исключить необходимость сжатия пластовых флюидов на поверхности перед отправкой этих флюидов в сборных трубопроводах на обрабатывающие устройства.
Неожиданным образом оказалось, что поддержание повышенного давления в нагретой части пласта может позволить добывать большие количества углеводородов повышенного качества с относительно низким молекулярным весом. Можно поддерживать такое давление, при котором добываемый пластовый флюид содержал бы минимальное количество соединений с числом атомов углерода, большим заданного. Заданное число атомов углерода может быть в пределах до 25, до 20, до 12 или до 8. Некоторое количество соединений с большим числом атомов углерода может быть захвачено паром в пласте и вынесено с паром из пласта. Поддержание повышенного давления в пласте может препятствовать вынесению паром соединений с большим числом атомов углерода и/или многоядерных углеводородных соединений. Соединения с большим числом атомов углерода и/или многоядерные углеводородные соединения могут оставаться в жидкой фазе в пласте в течение значительных периодов времени. Эти значительные периоды времени могут обеспечить соединениям достаточно времени для того, чтобы они были подвергнуты пиролизу с образованием соединений с меньшим числом атомов углерода.
Пластовый флюид, добываемый из добывающих скважин 106, может транспортироваться по сборному трубопроводу 108 к обрабатывающим устройствам 110. Пластовые флюиды могут также выводиться из источников 102 тепла. Флюид может выводиться из источников 102 тепла, например, с целью регулирования давления в пласте вблизи источников тепла. Флюид, выводимый из источников 102 тепла, может транспортироваться по трубопроводу или системе труб непосредственно к обрабатывающим устройствам 110. В число обрабатывающих устройств 110 могут входить разделительные установки, реакционные установки, облагораживающие установки, топливные элементы, турбины, резервуары-хранилища и/или другие системы и установки для переработки добываемых пластовых флюидов. На обрабатывающих устройствах может производиться моторное топливо из по меньшей мере части добываемых из пласта углеводородов. В некоторых вариантах осуществления изобретения моторным топливом может быть ракетное топливо типа JP-8.
В некоторых вариантах осуществления изобретения источники тепла, источники энергии для источников тепла, добывающее оборудование, подающие линии и/или другую вспомогательную аппаратуру для источников тепла или добычи помещают в туннели, чтобы иметь возможность использовать для обработки пласта меньшие по размерам источники тепла и/или меньшее по размерам оборудование. Расположение этого оборудования и/или конструкций в туннелях может также снизить энергозатраты для обработки пласта, снизить выбросы в процессе обработки, облегчить установку нагревательной системы и/или снизить потери тепла на нагрев покрывающего слоя по сравнению со способами добычи углеводородов, в которых используется наземное оборудование.
В некоторых вариантах осуществления изобретения для нагрева теплоносителя, используемого в циркуляционной системе для нагрева пласта, используется атомная энергия. Источником атомной энергии может быть ядерный реактор, такой как реактор с галечным слоем, реактор на легкой воде или реактор на делящихся гидридах металлов. Использование атомной энергии обеспечивает уменьшение выбросов диоксида углерода или их отсутствие. В некоторых вариантах осуществления изобретения использование атомной энергии является более эффективным благодаря тому, что при непосредственном использовании тепла, производимого в ядерных реакциях без производства электричества, исключаются потери энергии, обусловленные превращением тепла в электричество и электричества в тепло.
В некоторых вариантах осуществления изобретения ядерный реактор нагревает теплоноситель, такой как гелий. Например, гелий протекает через реактор с галечным слоем, и тепло переносится к гелию. Гелий может быть использован в качестве теплоносителя для нагрева пласта. В некоторых вариантах осуществления изобретения ядерный реактор нагревает гелий, а гелий пропускается через теплообменник для передачи тепла какому-либо другому теплоносителю, используемому для нагрева пласта. Ядерный реактор может включать в себя герметичную емкость, в которой содержится инкапсулированное топливо на основе обогащенного диоксида урана. Тепло может передаваться в теплообменнике от гелия к теплоносителю, используемому в циркуляционной системе. Используемым в циркуляционной системе теплоносителем может быть диоксид углерода, расплавленная соль или другие текучие среды. Естественно, возможно, что теплоноситель, в действительности, при определенных температурах может не быть текучей средой. Теплоноситель может обладать многими свойствами твердого вещества при более низких температурах и текучей среды при более высоких температурах. Системы реактора с галечным слоем являются доступными, например от PBMR Ltd (Centurion, Южная Африка).
На фиг.2 схематически показана система, в которой для нагрева обрабатываемого участка 200 используется атомная энергия. Эта система может включать в себя средство 202 перемещения газа для гелиевой системы, ядерный реактор 204, теплообменный блок 206 и средство 208 перемещения теплоносителя. Средство 202 перемещения газа для гелиевой системы может вдувать, перекачивать или сжимать нагретый гелий, поступающий из ядерного реактора 204, для нагрева теплообменного блока 206. Гелий из теплообменного блока 206 может проходить через средство 202 перемещения газа для гелиевой системы к ядерному реактору 204. Гелий из ядерного реактора 204 может иметь температуру от примерно 900 до примерно 1000°С. Гелий из средства перемещения 202 газа может иметь температуру от примерно 500 до примерно 600°С. Средство 208 перемещения теплоносителя может засасывать теплоноситель из теплообменного блока 206 через обрабатываемый участок 200. Теплоноситель может проходить через средство 208 перемещения теплоносителя с целью нагрева теплообменного блока 206. Теплоносителем могут быть диоксид углерода, расплавленная соль и/или какие-либо другие текучие среды. Теплоноситель после выхода из теплообменного блока 206 может иметь температуру от примерно 850 до примерно 950°С.
В некоторых вариантах осуществления изобретения система включает в себя вспомогательную силовую установку 210. В некоторых вариантах осуществления изобретения вспомогательная силовая установка 210 генерирует энергию при проходе гелия из теплообменного блока 206 через генератор для выработки электричества. Гелий может быть направлен в один или несколько компрессоров и/или теплообменников для регулирования давления и температуры гелия перед тем, как гелий будет направлен в ядерный реактор 204. В некоторых вариантах осуществления изобретения вспомогательная силовая установка 210 генерирует энергию с использованием теплоносителя (например, аммиака или аммиачной воды). Гелий из теплообменного блока 206 может направляться в дополнительные теплообменные блоки для переноса тепла к теплоносителю. Теплоноситель может проходить по силовому циклу (такому как цикл Калины) для генерирования электроэнергии. В одном из вариантов осуществления изобретения ядерный реактор 204 представляет собой 400-мегаваттный реактор, а вспомогательная силовая установка 210 генерирует примерно 30 МВт электроэнергии.
На фиг.3 схематически показан вид в вертикальном разрезе компоновки для процесса термической обработки in situ. Стволы скважин (которые могут быть U-образными или иметь иные формы) могут быть образованы в пласте, определяя тем самым участки 200А, 200В, 200С, 200D для обработки. Дополнительные участки для обработки могли бы быть образованы по сторонам показанных участков для обработки. Обрабатываемые участки 200А, 200В, 200С, 200D могут иметь ширину более 300 м, 500 м, 1000 м или 1500 м. Скважинные выходы и входы для стволов скважин могут быть образованы на участке 212 отверстий скважин. По сторонам обрабатываемых участков 200 могут быть уложены рельсовые линии 214. В конце рельсовых линий 214 могут быть расположены склады, административные помещения и/или складские помещения для отработанного топлива. Вдоль ответвлений от рельсовых линий 214 через промежутки могут быть установлены производственные объекты 216. В число производственных объектов могут входить ядерный реактор, компрессоры, теплообменные блоки и/или другое оборудование, необходимое для направления теплоносителя к стволам скважин. В число производственных объектов 216 могут также входить наземные установки для обработки добытого из пласта пластового флюида. В некоторых вариантах осуществления изобретения теплоноситель, приготовляемый на установке 216', может быть повторно нагрет в реакторе на установке 216'' после его пропускания через обрабатываемый участок 200А. В некоторых вариантах осуществления изобретения каждый производственный объект 216 используется для подачи горячей обработочной текучей среды к скважинам в одной половине обрабатываемого участка 200, примыкающего к этому производственному объекту. Производственные объекты 216 могут перемещаться по рельсам к другому участку для производственных объектов после завершения добычи из обрабатываемого участка.
В некоторых вариантах осуществления изобретения атомную энергию используют для непосредственного нагрева подземного пласта. Частью подземного пласта может быть часть углеводородного обрабатываемого участка. Вместо использования ядерной установки для нагрева теплоносителя, который затем подается в подземный пласт с целью нагрева подземного пласта, под землю могут быть помещены один или несколько саморегулирующихся ядерных нагревателей для непосредственного нагрева подземного пласта. Саморегулирующийся ядерный реактор может быть помещен в один или несколько туннелей или вблизи них.
В некоторых вариантах осуществления изобретения для обработки пласта необходим нагрев пласта до заданного начального верхнего диапазона (например, от 250 до 350°С). После нагрева подземного пласта до заданного температурного диапазона температуру можно поддерживать в этом диапазоне в течение заданного времени (например, до определенной степени пиролиза углеводородов или до достижения средней температурой в пласте выбранного значения). По мере повышения температуры пласта температура нагревателя может постепенно снижаться в течение некоторого периода времени. В настоящее время некоторые описываемые здесь ядерные реакторы (например, реакторы с галечным слоем) достигают после активации присущего им предела выходных температур, равного примерно 900°С, затухая позднее по мере истощения уранового (урана-235) топлива, что ведет к понижению с течением времени температур в нагревателе. Кривая естественной выходной мощности в некоторых ядерных реакторах (например, реакторов с галечным слоем) может быть использована для некоторых подземных пластов с целью обеспечения заданного набора параметров зависимости нагрева от времени.
В некоторых вариантах осуществления изобретения атомная энергия подается с помощью саморегулирующегося ядерного реактора (например, реактора с галечным слоем или реактора на делящихся гидридах металлов). Саморегулирующийся ядерный реактор не может превышать определенной температуры, зависящей от его конструкции. Саморегулирующийся ядерный реактор может быть довольно компактным по сравнению с традиционными ядерными реакторами. Саморегулирующийся ядерный реактор может, например, иметь размер 2 м, 3 м или 5 м и даже меньше. Саморегулирующийся ядерный реактор может быть модульным.
На фиг.4 схематически показан саморегулирующийся ядерный реактор 218. В некоторых вариантах осуществления изобретения саморегулирующийся ядерный реактор содержит делящийся гидрид металла 220. Делящийся гидрид металла может выполнять как функцию топлива для ядерной реакции, так и функцию замедлителя для ядерной реакции. Активная зона ядерного реактора может содержать металлогидридный материал. Усиливаемая температурой подвижность содержащегося в гидриде изотопа водорода может выполнять роль регулятора ядерной реакции. Если температура повышается сверх точки, установленной для активной зоны 222 саморегулирующегося ядерного реактора 218, изотоп водорода диссоциирует от гидрида и выходит за пределы активной зоны, в результате чего производство энергии снижается. Если температура активной зоны снижается, изотоп водорода повторно ассоциируется с делящимся гидридом металла, оказывая обратный эффект на процесс. В некоторых вариантах осуществления изобретения делящийся гидрид металла может быть в порошкообразной форме, которая позволяет водороду легче проникать через делящийся гидрид металла.
Благодаря своей базовой конструкции ядерный реактор может содержать мало движущихся деталей, связанных с регулированием самой ядерной реакции, или вообще не содержать их. Малый размер и простая конструкция саморегулирующегося ядерного реактора может иметь отчетливые преимущества, в частности по сравнению с традиционными промышленными ядерными реакторами, широко используемыми в настоящее время во всем мире. Эти преимущества могут включать в себя относительно легкое изготовление, транспортабельность, надежность, безопасность и финансовую реализуемость. Компактная конструкция саморегулирующихся ядерных реакторов может позволить осуществлять их изготовление на одном предприятии и транспортировку их к месту применения, например к углеводородсодержащему пласту. После привоза и монтажа саморегулирующегося ядерного реактора он может быть активирован.
Саморегулирующиеся ядерные реакторы могут производить тепловую энергию порядка десятков мегаватт на одну установку. На углеводородсодержащем пласте могут быть использованы два или более саморегулирующихся ядерных реакторов. Саморегулирующиеся ядерные реакторы могут работать при температуре топлива в пределах от примерно 450 до примерно 900°С, от примерно 500 до примерно 800°С или от примерно 550 до примерно 650°С. Рабочая температура может быть в пределах от 550 до 600°С. Рабочая температура может быть в пределах от 500 до 650°С.
Саморегулирующиеся ядерные реакторы могут включать в себя энергоотводящую систему 224 в активной зоне 222. Энергоотводящая система может содержать теплоноситель, который циркулирует через систему труб 224А и 224В. По меньшей мере часть труб может размещаться в активной зоне ядерного реактора. Система циркуляции текучей среды может работать так, чтобы через систему труб непрерывно циркулировала текучая среда. Плотность размещения и объем размещенной в активной зоне системы труб может зависеть от обогащения делящегося гидрида металла.
В некоторых вариантах осуществления изобретения энергоотводящая система содержит тепловые трубы из щелочного металла (например, калия). Тепловые трубы могут дополнительно упростить саморегулирующийся ядерный реактор, устраняя необходимость в механических насосах для перемещения текучей среды через активную зону. Любое упрощение саморегулирующегося ядерного реактора может снижать риск каких-либо нарушений работы и увеличивает безопасность ядерного реактора. Энергоотводящая система может включать в себя связанный с тепловыми трубами теплообменник. Теплоносители могут переносить тепловую энергию из теплообменника.
Размеры ядерного реактора могут определяться обогащением делящегося гидрида металла. Ядерные реакторы с более высоким обогащением являются реакторами относительно меньшего размера. Подходящие размеры могут в конечном счете определяться конкретными техническими характеристиками углеводородсодержащего пласта и потребностями пласта в энергии. В некоторых вариантах осуществления изобретения делящийся гидрид металла разбавляется воспроизводящим гидридом металла. Воспроизводящий гидрид металла может быть получен из изотопа, отличного от делящейся части. Делящийся гидрид металла может включать в себя делящийся гидрид U235, а воспроизводящий гидрид может включать в себя изотоп U238. В некоторых вариантах осуществления изобретения активная зона ядерного реактора может содержать ядерное топливо, образованное из примерно 5% U235 и примерно 95% U238.
Для работы пригодны также и другие комбинации делящихся гидридов. Делящийся гидрид металла может включать в себя плутоний. Низкая температура плавления плутония (примерно 640°С) делает частицы гидрида менее привлекательными в качестве реакторного топлива для подачи энергии на парогенератор, но может быть полезной в других применениях, где требуются более низкие температуры реактора. Делящийся гидрид металла может включать в себя гидрид тория. Торий позволяет реактору работать при более высокой температуре благодаря своей высокой температуре плавления (примерно 1775°С). В некоторых вариантах осуществления изобретения для получения различных параметров выработки энергии используются различные комбинации делящихся гидридов металлов.
В некоторых вариантах осуществления изобретения ядерный реактор 218 может включать в себя один или несколько резервуаров-хранилищ 226 для водорода. Резервуар-хранилище для водорода может содержать один или несколько неделящихся поглощающих водород материалов для абсорбции водорода, выбрасываемого из активной зоны. Неделящийся поглощающий водород материал может включать неделящийся изотоп гидрида активной зоны. Неделящийся поглощающий водород материал может обладать давлением диссоциации гидрида, близким к давлению диссоциации гидрида делящегося материала.
Активная зона 222 и резервуары-хранилища 226 для водорода могут быть разделены изоляционным слоем 228. Изоляционный слой выполнять функцию отражателя нейтронов для уменьшения утечки нейтронов из активной зоны. Изоляционный слой может уменьшать выделение тепла Пельтье. Изоляционный слой может защищать резервуары-хранилища для водорода от нагрева со стороны активной зоны реактора (например, путем радиационного нагрева или конвекционного нагрева от газа внутри камеры).
Эффективная температура в стационарном режиме активной зоны может регулироваться давлением окружающего водорода. Давление окружающего водорода может регулироваться температурой, при которой выдерживается материал, поглощающий неделящийся водород. Температура делящегося гидрида металла может не зависеть от количества извлекаемой энергии. Выход энергии может зависеть от способности системы извлечения энергии извлекать мощность из ядерного реактора.
Газообразный водород в активной зоне реактора может контролироваться на чистоту и периодически подвергаться восстановлению давления для поддержания нужного количества и содержания изотопов. В некоторых вариантах осуществления изобретения газообразный водород поддерживается в состоянии доступа в активную зону ядерного реактора через одну или несколько труб (например, труб 230А и 230В). Температура саморегулирующегося ядерного реактора может регулироваться путем регулирования давления водорода, подаваемого в саморегулирующийся ядерный реактор. Давление можно регулировать по температуре теплоносителя в одной или нескольких точках (например, в точке, где теплоноситель поступает в один или несколько стволов скважин).
В некоторых вариантах осуществления изобретения протекающая в саморегулирующемся ядерном реакторе ядерная реакция может регулироваться введением нейтронопоглощающего газа. Нейтронопоглощающий газ в достаточных количествах может охладить ядерную реакцию в саморегулирующемся ядерном реакторе (снижая в конечном итоге температуру реактора до температуры окружающей среды). Нейтронопоглощающие газы могут содержать ксенон135.
В некоторых вариантах осуществления изобретения ядерная реакция активированного саморегулирующегося ядерного реактора регулируется с помощью регулирующих стержней. Регулирующие стержни могут размещаться по меньшей мере частично в по меньшей мере части активной зоны саморегулирующегося ядерного реактора. Регулирующие стержни могут быть выполнены из одного или нескольких нейтронопоглощающих материалов. Нейтронопоглощающими материалами могут быть (но не ограничиваясь ими) серебро, индий, кадмий, бор, кобальт, гафний, диспрозий, гадолиний, самарий и европий.
В настоящее время описываемые в заявке саморегулирующиеся ядерные реакторы достигают после активации естественного предела теплового выхода, равного приблизительно 900°С, затухая впоследствии по мере расхода топлива. Кривая естественной выходной мощности саморегулирующихся ядерных реакторов может быть использована для обеспечения заданного временного профиля нагрева для определенных подземных пластов.
В некоторых вариантах осуществления изобретения саморегулирующиеся ядерные реакторы могут обладать естественным выходом энергии, который затухает со скоростью 1/Е (Е иногда называют числом Эйлера, и оно равно приблизительно 2,71828). В некоторых вариантах осуществления изобретения саморегулирующиеся ядерные реакторы могут обладать естественным выходом энергии, который затухает до 1/Е от начальной мощности в течение периода времени от примерно 4 до примерно 8 лет. Как правило, когда пласт нагрет до заданной температуры, потребность в тепле уменьшается, и объем тепловой энергии, подаваемой в пласт для его нагрева, с течением времени уменьшается. В некоторых вариантах осуществления изобретения подача тепла в по меньшей мере часть пласта в течение некоторого времени приблизительно соотносится со скоростью затухания мощности из саморегулирующегося ядерного реактора. С учетом естественного затухания по меньшей мере части саморегулирующихся ядерных реакторов нагревательные системы могут конструироваться таким образом, чтобы в нагревательных системах использовалось преимущество естественной скорости затухания мощности из ядерного реактора. Нагревательные системы включают в себя, как правило, два или более нагревателей. Нагреватели, как правило, помещают в расположенные по всему пласту стволы скважин. Стволами скважин могут быть, например, U-образные и L-образные стволы скважин или стволы скважин иной формы. В некоторых вариантах осуществления изобретения расстояние между стволами скважин определяют на основании скорости затухания выходной мощности саморегулирующихся ядерных реакторов.
Саморегулирующийся ядерный реактор может вначале подавать по меньшей мере к части стволов скважин выходную мощность примерно 900 Вт/м, которая вслед за этим падает в течение предопределенного периода времени до примерно 360 Вт/м. Предопределенный период времени может быть определен типом самого саморегулирующегося ядерного реактора (например, топливом, используемым в активной зоне ядерного реактора, а также обогащением этого топлива). Естественное снижение выходной мощности может соответствовать временной зависимости ввода энергии в пласт. Любую переменную (например, выходную мощность и/или ввод энергии) можно регулировать таким образом, чтобы обе переменные по меньшей мере приблизительно соотносились или соответствовали одна другой. Саморегулирующийся ядерный реактор может быть рассчитан на затухание в течение периода 4-9 лет, 5-7 лет или примерно 7 лет. Период затухания саморегулирующегося ядерного реактора может соответствовать нагревательному циклу IUP (процессу облагораживания in situ) и/или ICP (процессу конверсии in situ).
В некоторых вариантах осуществления изобретения расстояние между стволами скважин нагревателя зависит от скорости затухания одного или нескольких ядерных реакторов, используемых для подачи энергии. В некоторых вариантах осуществления изобретения расстояние между стволами скважин нагревателя составляет от примерно 8 до примерно 11 м, от примерно 9 до примерно 10 м или от примерно 9,4 до примерно 9,8 м.
В некоторых ситуациях может оказаться целесообразным продолжать поддерживать какой-либо конкретный уровень выходной мощности саморегулирующегося ядерного реактора на более длительный период по сравнению с тем периодом, который могло бы обеспечить естественное затухание топливного материала. В некоторых вариантах осуществления изобретения, чтобы сохранять уровень выхода энергии в заданном интервале, к пласту в процессе его обработки (например, нагрева) может быть подключен второй саморегулирующийся ядерный реактор. Второй саморегулирующийся ядерный реактор может в некоторых случаях иметь затухшую выходную мощность. Выходная мощность второго реактора может быть уже пониженной в результате предшествующей эксплуатации. Выходная мощность двух саморегулирующихся ядерных реакторов может быть в существенной степени эквивалентна начальной выходной мощности первого саморегулирующегося ядерного реактора и/или заданной выходной мощности. Дополнительные саморегулирующиеся ядерные реакторы могут подключаться к пласту по мере необходимости для достижения желаемой выходной мощности. Такого рода система может благоприятным образом увеличивать эффективный полезный срок службы саморегулирующихся ядерных реакторов.
Эффективный полезный срок службы саморегулирующихся ядерных реакторов может быть растянут путем использования тепловой энергии, вырабатываемой ядерным реактором для производства водяного пара, для чего в зависимости от пласта и/или применяемых систем может требоваться намного меньше тепловой энергии, чем для других упомянутых в заявке применений. Водяной пар может использоваться для ряда целей, в том числе (не ограничиваясь ими) для производства электроэнергии, производства водорода на месте, превращения углеводородов и/или облагораживания углеводородов. Углеводороды могут превращаться и/или мобилизоваться in situ с помощью закачки в пласт производимого водяного пара.
Продуктовый поток (например, поток содержащий метан, углеводороды и/или тяжелые углеводороды) может добываться из пласта, нагретого с помощью теплоносителей, которые нагреваются ядерным реактором. Водяной пар, производимый с помощью тепла, генерируемого ядерным реактором или вторым ядерным реактором, может быть использован для реформинга по меньшей мере части продуктового потока. Продуктовый поток может быть реформирован для получения по меньшей мере некоторого количества молекулярного водорода.
Молекулярный водород может использоваться для облагораживания по меньшей мере части продуктового потока. Молекулярный водород может закачиваться в пласт. Продуктовый поток может получаться с помощью наземного процесса облагораживания. Продуктовый поток может получаться с использованием способа термической обработки in situ. Продуктовый поток может получаться с использованием способа подземного нагрева водяным паром.
По меньшей мере часть водяного пара может закачиваться в подземный паронагревательный процесс. По меньшей мере некоторое количество водяного пара может быть использовано для реформинга метана. По меньшей мере часть углеводородов в пласте может быть мобилизована с помощью водяного пара и/или тепла от водяного пара.
В некоторых вариантах осуществления изобретения саморегулирующиеся ядерные реакторы могут использоваться для производства электроэнергии (например, с помощью приводимых в действие водяным паром турбин). Электроэнергия может использоваться для любых применений, в которых обычно используется электроэнергия. Конкретно, электроэнергия может использоваться для применений, связанных с требующими энергии процессами термической обработки in situ. Электроэнергия от саморегулирующихся ядерных реакторов может использоваться для подачи энергии к скважинным электронагревателям. Электроэнергия может использоваться для охлаждения текучей среды с целью создания низкотемпературного барьера (замороженного барьера) вокруг обрабатываемых участков и/или подачи электроэнергии к обрабатывающим установкам, расположенным на участке процесса термической обработки in situ или вблизи него. В некоторых вариантах осуществления изобретения производимая ядерными реакторами электроэнергия используется для резистивного нагрева трубопроводов, используемых для циркуляции теплоносителя через обрабатываемый участок. В некоторых вариантах осуществления изобретения атомная энергия используется для генерирования электроэнергии, которая приводит в действие компрессоры и/или насосы (компрессоры/насосы производят сжатые газы (такие как окислительная текучая среда и/или топливо для ряда предназначенных для окисления агрегатов) для обрабатываемого участка), необходимые для процесса термической обработки in situ. Значительные расходы в процессе термической обработки in situ могут быть связаны с эксплуатацией компрессоров и/или насосов на всем протяжении процесса термической обработки in situ, если для приведения в действие компрессоров и/или насосов в процессе термической обработки in situ используются традиционные источники электрической энергии.
Превращение тепла от саморегулирующихся ядерных реакторов в электричество не обязательно должно быть наиболее эффективным использованием тепловой энергии, производимой ядерными реакторами. В некоторых вариантах осуществления изобретения производимая саморегулирующимися ядерными реакторами тепловая энергия используется для непосредственного нагрева частей пласта. В некоторых вариантах осуществления изобретения один или несколько саморегулирующихся ядерных реакторов помещаются под землю в пласт таким образом, чтобы производимая тепловая энергия непосредственно нагревала по меньшей мере часть пласта. Один или несколько саморегулирующихся ядерных реакторов могут быть помещены в подземный пласт под покрывающим слоем так, чтобы повысить эффективное использование производимой саморегулирующимися ядерными реакторами тепловой энергии. В целях дополнительной защиты помещенные под землю саморегулирующиеся ядерные реакторы могут быть заключены внутрь оболочечного материала. Например, помещенные под землю саморегулирующиеся ядерные реакторы могут быть заключены в бетонный контейнер.
В некоторых вариантах осуществления изобретения производимая саморегулирующимися ядерными реакторами тепловая энергия может отводиться с использованием теплоносителей. Производимая саморегулирующимися ядерными реакторами тепловая энергия может передаваться на часть пласта и распределяться по ней с помощью теплоносителей. Теплоносители могут циркулировать по системе труб энергоотводящей системы саморегулирующегося ядерного реактора. При циркуляции теплоносителей в и по активной зоне саморегулирующегося ядерного реактора производимое ядерной реакцией тепло нагревает теплоносители.
В некоторых вариантах осуществления изобретения для переноса производимой саморегулирующимися ядерными реакторами тепловой энергии могут использоваться два или более теплоносителей. Первый теплоноситель может циркулировать по системе труб энергоотводящей системы саморегулирующегося ядерного реактора. Первый теплоноситель может проходить через теплообменник и использоваться для нагрева второго теплоносителя. Второй теплоноситель может использоваться для обработки углеводородных текучих сред in situ, подвода тепла к электролизной ячейке и/или для каких-либо других целей. Первый теплоноситель и второй теплоноситель могут быть разными материалами. Использование двух теплоносителей может снизить риск нежелательного воздействия на системы и персонал радиации, которая может оказаться поглощенной первым теплоносителем. Могут использоваться теплоносители, которые устойчивы к поглощению ядерной радиации (например, азотистокислые или азотнокислые соли).
В некоторых вариантах осуществления изобретения энергоотводящая система включает в себя тепловые трубы из щелочного металла (например, калия). Тепловые трубы могут дополнительно упростить саморегулирующийся ядерный реактор, устраняя необходимость в том, чтобы механические насосы переносили теплоноситель через активную зону. Любое упрощение саморегулирующегося ядерного реактора может снижать опасность нарушений в работе и повышает безопасность ядерного реактора. Энергоотводящая система может включать в себя теплообменник, соединенный с тепловыми трубами. Теплоносители могут переносить тепловую энергию от теплообменника.
Теплоносители могут включать в себя природное или синтетическое масло, расплавленный металл, расплавленную соль или другие типы высокотемпературных теплоносителей. Теплоноситель может иметь низкую вязкость и высокую теплотворную способность в нормальных рабочих условиях. Если теплоносителем является расплавленная соль или какая-либо другая текучая среда, обладающая способностью затвердевать в пласте, трубы в системе могут быть электрически связаны с каким-либо источником электроэнергии для резистивного нагрева труб в случае необходимости, либо в систему труб или рядом с ней может быть помещен один или несколько нагревателей с целью поддержания теплоносителя в жидком состоянии. В некоторых вариантах осуществления изобретения в систему труб может быть помещен изолированный проводник-нагреватель. Изолированный проводник-нагреватель расплавляет твердые материалы в трубе.
На фиг.5 схематически показан один из вариантов выполнения системы термической обработки in situ, помещенной в пласт 232 с u-образными стволами 234 скважин, в которой используются саморегулирующиеся ядерные реакторы 218. Изображенные на фиг.5 саморегулирующиеся ядерные реакторы способны производить 70 МВт тепла. В некоторых вариантах осуществления изобретения расстояние между стволами 234 скважин определяется на основании скорости затухания выхода энергии саморегулирующихся ядерных реакторов 218.
U-образные стволы скважин могут проходить вниз через покрывающий слой 236 в углеводородсодержащий слой 238. Примыкающая к покрывающему слою 236 система труб в стволах 234 скважин может содержать изолированную часть 240. В изолированные резервуары-хранилища 242 может поступать расплавленная соль из пласта 232 через систему 244 труб. Система 244 труб может транспортировать расплавленные соли с температурами в пределах от примерно 350 до примерно 500°С. Температура в резервуарах-хранилищах может зависеть от типа используемой расплавленной соли. Температура в резервуарах-хранилищах может быть вблизи примерно 350°С. Насосы могут перемещать расплавленную соль к саморегулирующимся ядерным реакторам 218 через систему 246 труб. Каждому из насосов может быть необходимо перемещать, например, от 6 до 12 кг/с расплавленной соли. Каждый из саморегулирующихся ядерных реакторов 218 может подавать тепло к расплавленной соли. Расплавленная соль может проходить из системы 248 труб к стволам 234 скважин. В некоторых вариантах осуществления изобретения проходящая через слой 238 нагреваемая часть ствола 234 скважины может иметь длину от примерно 2400 м до примерно 3000 м. Температуры расплавленной соли на выходе из саморегулирующихся ядерных реакторов 218 могут быть порядка 550°С. Каждый из саморегулирующихся ядерных реакторов 218 может подавать расплавленную соль к примерно 20 или более входящих в пласт стволов 234 скважин. Расплавленная соль течет через пласт и обратно к резервуарам-хранилищам 242 через системы 244 труб.
В некоторых вариантах осуществления изобретения атомная энергия используется в процессе комбинированного производства тепловой и электрической энергии. В некоторых вариантах осуществления добычи углеводородов из углеводородсодержащего пласта (например, битуминозного песчаного пласта) добываемые углеводороды могут содержать одну или несколько частей с тяжелыми углеводородами. Углеводороды могут добываться из пласта с использованием более одного способа. В некоторых вариантах осуществления изобретения атомную энергию используют в качестве средства, способствующего добыче по меньшей мере некоторых из углеводородов. По меньшей мере некоторые из добываемых тяжелых углеводородов могут быть подвергнуты воздействию пиролизных температур. Пиролиз тяжелых углеводородов может использоваться для производства водяного пара. Водяной пар может использоваться для ряда целей, включая (но без ограничения этим) производство электроэнергии, конверсию углеводородов и/или облагораживание углеводородов.
В некоторых вариантах осуществления изобретения теплоноситель нагревают с помощью саморегулирующегося ядерного реактора. Теплоноситель может быть нагрет до температур, которые позволяют производить водяной пар (например, от примерно 550 до примерно 600°С). В некоторых вариантах осуществления изобретения получаемые в процессе термической обработки in situ газ и/или топливо поступают на установку реформинга. Часть получаемого в процессе термической обработки in situ газа может поступать на газоразделительную установку. На газоразделительной установке из получаемого в процессе термической обработки in situ газа может удаляться один или несколько компонентов, в результате чего образуется топливный и один или несколько других потоков (например, диоксида углерода или сероводорода). Топливо может содержать (но без ограничения ими) водород, углеводороды с числом атомов углерода до 5 или их смеси.
Установкой реформинга может быть установка парового реформинга. Установка реформинга может вводить водяной пар во взаимодействие с топливом (например, метаном), в результате чего образуется водород. Установка реформинга может, например, содержать катализаторы сдвига водяного газа. Установка реформинга может включать в себя одну или несколько разделительных систем (например, мембраны и/или адсорбционную систему с переменным давлением), способных отделять водород от других компонентов. Реформинг топлива и/или получаемого в процессе термической обработки in situ газа может осуществляться способами, известными в области каталитического или термического реформинга углеводородов, с образованием водорода. В некоторых вариантах осуществления изобретения для получения из водяного пара водорода используется электролиз. Некоторая часть от всего потока водорода может быть использована для других целей, таких как (но без ограничения ими) источник энергии и/или источник водорода для гидрогенизации углеводородов in situ или ex situ.
Саморегулирующиеся ядерные реакторы могут использоваться для производства водорода на установках, расположенных вблизи углеводородсодержащих пластов. Возможность производства водорода на месте около углеводородсодержащих пластов является очень выгодной, если учесть множество направлений, в которых водород используется для конверсии и облагораживания углеводородов на месте на углеводородсодержащих пластах.
В некоторых вариантах осуществления изобретения первый теплоноситель нагревают с использованием тепловой энергии, заключенной в пласте. Тепловая энергия может заключаться в пласте вследствие ряда различных процессов термической обработки.
Саморегулирующиеся ядерные реакторы имеют ряд преимуществ по сравнению с многими существующими ядерными реакторами с постоянным выходом. Однако существует ряд новых ядерных реакторов, конструкция которых получила законодательное одобрение на реализацию. Атомную энергию можно получать от нескольких различных типов существующих ядерных реакторов и ядерных реакторов, находящихся в настоящее время в разработке (например, реакторов четвертого поколения).
В некоторых вариантах осуществления изобретения в число ядерных реакторов входят реакторы, работающие при очень высоких температурах (VHTR). В VHTR может быть, например, использован гелий в качестве охладителя для приведения в действие газовой турбины для обработки углеводородных флюидов in situ, запитывания электролизных ячеек и/или для других целей. VHTR могут производить тепло до примерно 950°С или выше. В некоторых вариантах осуществления VHTR в число ядерных реакторов входит быстрый реактор с натриевым охлаждением (SFR). SFR могут изготовляться в менее крупном масштабе (например, 50 МВт) и, следовательно, могут быть более экономичными при изготовлении на месте для обработки углеводородных флюидов in situ, питания электролизных ячеек и/или для других целей. SFR могут иметь модульную конструкцию и быть потенциально переносными. SFR могут производить температуры в пределах от примерно 500 до примерно 600°С, от примерно 525 до примерно 575°С или от 540 до примерно 560°С.
В некоторых вариантах осуществления изобретения для создания тепловой энергии используют реакторы с галечным слоем. Реакторы с галечным слоем могут производить до 165 МВт энергии. Реакторы с галечным слоем могут обеспечивать температуры в пределах от примерно 500 до примерно 1100°С, от примерно 800 до примерно 1000°С или от примерно 900 до примерно 950°С. В некоторых вариантах осуществления изобретения в число ядерных реакторов входят надкритические водоохлаждаемые реакторы (SCWR) на основе предшествующих реакторов на легкой воде (LWR) и надкритических котлов, работающих на ископаемых топливах. SCWR могут обеспечивать температуры в пределах от примерно 400 до примерно 650°С, от примерно 450 до примерно 550°С или от примерно 500 до примерно 550°С.
В некоторых вариантах осуществления изобретения в число ядерных реакторов входят быстрые реакторы, охлаждаемые свинцом (LFR). LFR могут изготовляться в определенном диапазоне размеров, от модульных систем до нескольких сотен мегаватт или более. LFR могут обеспечивать температуры в пределах от примерно 400 до примерно 900°С, от примерно 500 до примерно 850°С или от примерно 550 до примерно 800°С.
В некоторых вариантах осуществления изобретения в число ядерных реакторов входят реакторы на расплавленной соли (MSR). MSR могут содержать в себе делящиеся, воспроизводящие и осколочные изотопы, растворенные в расплавленной фторидной соли с температурой кипения примерно 1400°С. Расплавленная фторидная соль может выполнять функцию как реакторного топлива, так и охладителя. MSR могут обеспечивать температуры в пределах от примерно 400 до примерно 900°С, от примерно 500 до примерно 850°С или от примерно 600 до примерно 800°С.
В некоторых вариантах осуществления изобретения для переноса тепловой энергии к и/или от углеводородсодержащего пласта используют два или более теплоносителей (например, расплавленные соли). Первый теплоноситель может нагреваться (например, с помощью ядерного реактора). Первый теплоноситель может циркулировать через множество стволов скважин в по меньшей мере части пласта с целью нагрева этой части пласта. Первый теплоноситель может характеризоваться первым температурным диапазоном, в котором первый теплоноситель находится в жидкой форме и является стабильным. Первый теплоноситель может циркулировать через часть пласта до тех пор, пока температура этой части пласта не достигнет заданного температурного диапазона (например, температуры около верхнего предела первого температурного диапазона).
Второй теплоноситель может нагреваться (например, с помощью ядерного реактора). Второй теплоноситель может характеризоваться вторым температурным диапазоном, в котором второй теплоноситель находится в жидкой форме и является стабильным. Верхний предел второго температурного диапазона может быть горячее и выше первого температурного диапазона. Нижний предел второго температурного диапазона может перекрываться первым температурным диапазоном. Второй теплоноситель может циркулировать через множество стволов скважин в части пласта с целью нагрева этой части пласта до более высокой температуры по сравнению с той температурой, которая была бы возможной с помощью первого теплоносителя.
Преимущества использования двух или более разных теплоносителей могут, например, включать способность нагревать часть пласта до намного более высокой температуры, чем это обычно возможно, при минимально возможном использовании других способов дополнительного нагрева (например, электрических нагревателей) для повышения эффективности в целом. Использование двух или более разных теплоносителей может оказаться необходимым в случае отсутствия теплоносителя с температурным диапазоном, способным нагреть часть пласта до заданной температуры.
В некоторых вариантах осуществления изобретения после нагрева части углеводородсодержащего пласта до заданного температурного диапазона первый теплоноситель может циркулировать через часть пласта. Первый теплоноситель может не быть нагрет до его рециркуляции через пласт (не считая необходимого нагрева теплоносителя до его температуры плавления в случае расплавленных солей). Первый теплоноситель может нагреваться с использованием тепловой энергии, уже запасенной в части пласта от предшествующей термической обработки пласта in situ. Первый теплоноситель может затем быть перенесен за пределы пласта так, чтобы тепловая энергия, рекуперированная первым теплоносителем, могла быть утилизирована для какого-либо другого процесса в данной части пласта, в какой-либо второй части пласта и/или в каком-либо дополнительном пласте.
Примеры
Ниже приведены не ограничивающие изобретения примеры.
Моделирование потребностей в энергии.
Проведено моделирование для определения потребностей в энергии для нагрева пласта с помощью расплавленной соли. Расплавленная соль циркулировала через стволы скважин в углеводородсодержащем пласте и в течение некоторого времени определяли потребности в энергии для нагрева пласта с помощью расплавленной соли. Расстояние между стволами скважин изменяли для определения его влияния на потребности в энергии.
На фиг.6 изображена кривая 250 зависимости мощности (Вт/м) (ось у) от времени (годы) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ. На фиг.7 изображена зависимость мощности (Вт/м) (ось y) от времени (годы) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ для разных расстояний между стволами скважин. Кривые 252-260 описывают результаты на фиг.7. Кривая 252 описывает зависимость потребностей в энергии от времени для стволов скважин с расстояниями между ними примерно 14,4 м. Кривая 254 описывает зависимость потребностей в энергии от времени для стволов скважин с расстояниями между ними примерно 13,2 м. Кривая 256 описывает зависимость потребностей в энергии от времени для пласта Grosmont в Альберте (Канада) с нагревательными стволами скважин, образующими гексагональный рисунок при расстояниях между ними примерно 12 м. Кривая 258 описывает зависимость потребностей в энергии от времени для нагревательных стволов скважин с расстоянием между ними примерно 9,6 м. Кривая 260 описывает зависимость потребностей в энергии от времени для нагревательных стволов скважин с расстоянием между ними примерно 7,2 м.
Как следует из графика, изображенного на фиг.7, расстояние между стволами скважин, представленное кривой 258, представляет собой расстояние, которое приблизительно соотносится с выходной мощностью в течение некоторого периода времени у некоторых ядерных реакторов (например, по меньшей мере некоторых ядерных реакторов, выходная мощность которых затухает до приблизительно 1/Е в течение, например, от примерно 4 до примерно 9 лет). Кривые 252-256, изображенные на фиг.7, описывают потребность в выходной мощности для нагревательных стволов скважин с расстояниями между ними от примерно 12 до примерно 14,4 м. Для расстояния между нагревательными стволами скважин, большего, чем примерно 12 м, может потребоваться больший ввод энергии, чем могли бы обеспечить некоторые ядерные реакторы. Расстояние же между нагревательными стволами скважин, меньшее, чем примерно 8 м (например, как это представлено кривой 260 на фиг.7), может стать причиной отсутствия эффективного использования поступления энергии, производимой некоторыми ядерными реакторами.
На фиг.8 приведена зависимость средней температуры (°С) (ось y) коллектора от времени (годы) (ось х) при термической обработке in situ для разных расстояний между стволами скважин. Кривые 252-260 описывают повышение температуры пласта в течение некоторого периода времени, отражающее потребности во вводе энергии в зависимости от расстояния между скважинами. Заданная температура для термической обработки углеводородсодержащих пластов в некоторых вариантах осуществления изобретения может, например, быть порядка 350°С. Заданная температура для какого-либо пласта может варьироваться в зависимости от, по меньшей мере, типа пласта и/или целевых углеводородных продуктов. Расстояния между стволами скважин для кривых 252-260, изображенных на фиг.8, те же, что и для кривых 252-260, изображенных на фиг.7. Кривые 252-260, показанные на фиг.8, описывают повышение температуры в пласте в течение некоторого времени для нагревательных стволов скважин с расстояниями между ними в пределах от примерно 12 до примерно 14,4 м. При расстоянии между стволами скважин, большем, чем примерно 12 м, нагрев пласта может быть слишком медленным, в результате чего может потребоваться больше энергии, чем в состоянии обеспечить некоторые ядерные реакторы (в частности, по истечении 5 лет как в настоящем примере). Расстояние же между нагревательными стволами скважин, меньшее, чем примерно 8 м (например, как это представлено кривой 260, изображенной на фиг.8), может в некоторых ситуациях термической обработки in situ стать причиной слишком быстрого нагрева пласта. Как следует из фиг.8, расстояние между стволами скважин, представленное кривой 258, может быть расстоянием, которое обеспечивает типичную целевую температуру примерно 350°С за желаемый отрезок времени (например, примерно 5 лет).
На основании настоящего описания специалисту в данной области станут очевидны дополнительные модификации и альтернативные варианты осуществления разных аспектов изобретения. Соответствующим образом это описание следует рассматривать лишь как иллюстративное, целью которого является показать специалистам общее направление осуществления изобретения. Следует иметь в виду, что показанные и описанные в заявке формы изобретения следует рассматривать как предпочтительные в настоящий момент варианты осуществления. Описанные в заявке элементы и материалы могут быть заменены другими, порядок частей и операций может быть изменен на обратный, а некоторые признаки изобретения могут быть использованы независимым образом, и при этом все из них, как это должно быть очевидным специалистам, содержат в себе выгоду от описания настоящего изобретения. Описанные в заявке элементы могут быть изменены в рамках сути и объема изобретения в том виде, в каком оно описано в приведенной ниже формуле изобретения. Наконец, следует иметь в виду, что описанные в заявке независимым образом признаки в некоторых вариантах осуществления изобретения могут быть объединены.
Claims (19)
1. Система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: саморегулирующийся ядерный реактор; систему труб, по меньшей мере, частично расположенную в активной зоне саморегулирующегося ядерного реактора, с первым теплоносителем, циркулирующим через систему труб; и теплообменник, предназначенный для прохождения через него первого теплоносителя для нагрева второго теплоносителя, при этом второй теплоноситель предназначен для повышения температуры, по меньшей мере, части пласта выше температуры, обеспечивающей образование подвижного флюида, легкий крекинг и/или пиролиз углеводородсодержащего материала, приводящих к образованию в пласте подвижных флюидов, флюидов, являющихся результатом легкого крекинга, и/или флюидов, являющихся результатом пиролиза, при этом поступление тепла в, по меньшей мере, часть пласта в течение времени, по меньшей мере, приблизительно соотносится со скоростью затухания саморегулирующегося ядерного реактора.
2. Система по п.1, в которой саморегулирующийся ядерный реактор содержит активную зону, в которой находится порошкообразный делящийся металлогидридный материал.
3. Система по п.1, в которой температура саморегулирующегося ядерного реактора имеет возможность снижения при введении нейтронопоглощающего материала.
4. Система по п.1, в которой температура саморегулирующегося ядерного реактора имеет возможность снижения при введении нейтронопоглощающего газа.
5. Система по п.1, в которой в саморегулирующемся ядерном реакторе поддерживается температура в пределах от примерно 500 до примерно 650°C.
6. Система по п.1, в которой саморегулирующийся ядерный реактор расположен в подземном пласте.
7. Система по п.1, в которой саморегулирующийся ядерный реактор расположен в подземном пласте под покрывающим слоем.
8. Система по п.1, дополнительно содержащая второй саморегулирующийся ядерный реактор, который по истечении первого периода времени имеет возможность подключения к саморегулирующемуся ядерному реактору, в результате чего выходная мощность двух соединенных вместе ядерных реакторов является, по меньшей мере, столь же большой, как начальная выходная мощность саморегулирующегося ядерного реактора.
9. Система по п.1, в которой подаваемая саморегулирующимся ядерным реактором энергия обеспечивается теплоносителем, циркулирующим посредством циркуляционной системы через, по меньшей мере, один из нагревателей.
10. Система по п.9, в которой теплоносителем является расплавленная соль.
11. Система по п.9, в которой, по меньшей мере, часть теплоносителя имеет возможность циркуляции непосредственно через саморегулирующийся ядерный реактор.
12. Система по п.1, в которой расстояние между, по меньшей мере, частью множества стволов скважин в пласте по меньшей мере частично соотносится со скоростью затухания мощности саморегулирующегося ядерного реактора.
13. Система по п.1, в которой мощность саморегулирующегося ядерного реактора затухает до примерно 1/E от начальной мощности в течение приблизительно от 4 до 9 лет.
14. Система по п.1, в которой саморегулирующийся ядерный реактор вначале имеет возможность подачи к, по меньшей мере, части стволов скважин выходной мощности, равной примерно 900 Вт/м, которая уменьшается в течение предопределенного периода времени до примерно 360 Вт/м.
15. Система по п.1, в которой саморегулирующийся ядерный реактор вначале имеет возможность подачи к, по меньшей мере, части стволов скважин выходной мощности, равной примерно 900 Вт/м, которая уменьшается в течение предопределенного периода времени до примерно 360 Вт/м, при этом предопределенный период времени составляет от примерно 4 до примерно 8 лет или от примерно 5 до примерно 7 лет.
16. Система по п.1, в которой саморегулирующийся ядерный реактор выполнен с возможностью обеспечения энергией, по меньшей мере, одного из нагревателей для повышения температуры по меньшей мере части пласта до диапазона от примерно 300 до примерно 400°С.
17. Система по п.1, в которой саморегулирующийся ядерный реактор выполнен с возможностью обеспечения энергией, по меньшей мере, одного из нагревателей для повышения температуры по меньшей мере части пласта до диапазона от примерно 300 до примерно 400°C в течение заданных периодов времени от примерно 4 до примерно 8 лет или от примерно 5 до примерно 7 лет.
18. Система по п.1, в которой расстояние между, по меньшей мере, частью множества стволов скважин составляет от примерно 8 до примерно 11 м, от примерно 9 до примерно 10 м или от примерно 9,4 до примерно 9,8 м.
19. Способ добычи углеводородов из подземного пласта с помощью системы по любому из пп.1-18.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10497408P | 2008-10-13 | 2008-10-13 | |
US61/104,974 | 2008-10-13 | ||
US16849809P | 2009-04-10 | 2009-04-10 | |
US61/168,498 | 2009-04-10 | ||
PCT/US2009/060093 WO2010045099A1 (en) | 2008-10-13 | 2009-10-09 | Using self-regulating nuclear reactors in treating a subsurface formation |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011119084A RU2011119084A (ru) | 2012-11-20 |
RU2518700C2 true RU2518700C2 (ru) | 2014-06-10 |
Family
ID=42097829
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011119095/03A RU2529537C2 (ru) | 2008-10-13 | 2009-10-09 | Системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой |
RU2011119081/03A RU2530729C2 (ru) | 2008-10-13 | 2009-10-09 | Системы и способы формирования подземных стволов скважин |
RU2011119084/03A RU2518700C2 (ru) | 2008-10-13 | 2009-10-09 | Применение саморегулирующихся ядерных реакторов при обработке подземного пласта |
RU2011119096/03A RU2537712C2 (ru) | 2008-10-13 | 2009-10-09 | Нагрев подземных углеводородных пластов циркулируемой теплопереносящей текучей средой |
RU2011119093/03A RU2524584C2 (ru) | 2008-10-13 | 2009-10-09 | Системы и способы обработки подземного пласта с помощью электрических проводников |
RU2011119086/03A RU2518649C2 (ru) | 2008-10-13 | 2009-10-09 | Использование саморегулирующихся ядерных реакторов при обработке подземного пласта |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011119095/03A RU2529537C2 (ru) | 2008-10-13 | 2009-10-09 | Системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой |
RU2011119081/03A RU2530729C2 (ru) | 2008-10-13 | 2009-10-09 | Системы и способы формирования подземных стволов скважин |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011119096/03A RU2537712C2 (ru) | 2008-10-13 | 2009-10-09 | Нагрев подземных углеводородных пластов циркулируемой теплопереносящей текучей средой |
RU2011119093/03A RU2524584C2 (ru) | 2008-10-13 | 2009-10-09 | Системы и способы обработки подземного пласта с помощью электрических проводников |
RU2011119086/03A RU2518649C2 (ru) | 2008-10-13 | 2009-10-09 | Использование саморегулирующихся ядерных реакторов при обработке подземного пласта |
Country Status (10)
Country | Link |
---|---|
US (14) | US20100101783A1 (ru) |
EP (6) | EP2334894A1 (ru) |
JP (6) | JP5611961B2 (ru) |
CN (5) | CN102187052B (ru) |
AU (6) | AU2009303609B2 (ru) |
BR (2) | BRPI0919775A2 (ru) |
CA (6) | CA2738805A1 (ru) |
IL (5) | IL211951A (ru) |
RU (6) | RU2529537C2 (ru) |
WO (7) | WO2010045115A2 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2652909C1 (ru) * | 2017-08-28 | 2018-05-03 | Общество с ограниченной ответственностью "Научно-техническая и торгово-промышленная фирма "ТЕХНОПОДЗЕМЭНЕРГО" (ООО "Техноподземэнерго") | Шахтно-скважинный газотурбинно-атомный нефтегазодобывающий комплекс (комбинат) |
RU2756155C1 (ru) * | 2021-03-04 | 2021-09-28 | Акционерное общество «Зарубежнефть» | Внутрискважинный кольцевой нагреватель |
RU2756152C1 (ru) * | 2021-03-04 | 2021-09-28 | Акционерное общество «Зарубежнефть» | Внутрискважинный пучковый нагреватель |
RU2804628C1 (ru) * | 2021-03-04 | 2023-10-03 | Акционерное общество «Зарубежнефть» | Способ повышения эффективности извлечения нефти с применением нагревателя на основе источников ионизирующего излучения |
Families Citing this family (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001081240A2 (en) | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In-situ heating of coal formation to produce fluid |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
WO2003036037A2 (en) | 2001-10-24 | 2003-05-01 | Shell Internationale Research Maatschappij B.V. | Installation and use of removable heaters in a hydrocarbon containing formation |
US8161998B2 (en) | 2007-06-04 | 2012-04-24 | Matos Jeffrey A | Frozen/chilled fluid for pipelines and for storage facilities |
NZ567052A (en) | 2003-04-24 | 2009-11-27 | Shell Int Research | Thermal process for subsurface formations |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
US7987613B2 (en) * | 2004-10-12 | 2011-08-02 | Great River Energy | Control system for particulate material drying apparatus and process |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
EP2010754A4 (en) | 2006-04-21 | 2016-02-24 | Shell Int Research | ADJUSTING ALLOY COMPOSITIONS FOR SELECTED CHARACTERISTICS IN TEMPERATURE-LIMITED HEATERS |
US8159825B1 (en) | 2006-08-25 | 2012-04-17 | Hypres Inc. | Method for fabrication of electrical contacts to superconducting circuits |
US20080083566A1 (en) * | 2006-10-04 | 2008-04-10 | George Alexander Burnett | Reclamation of components of wellbore cuttings material |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
WO2008097471A1 (en) * | 2007-02-02 | 2008-08-14 | Shivvers Steve D | High efficiency drier with multi stage heating and drying zones |
WO2008131182A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
JP5063195B2 (ja) * | 2007-05-31 | 2012-10-31 | ラピスセミコンダクタ株式会社 | データ処理装置 |
EP2198118A1 (en) | 2007-10-19 | 2010-06-23 | Shell Internationale Research Maatschappij B.V. | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8318131B2 (en) | 2008-01-07 | 2012-11-27 | Mcalister Technologies, Llc | Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods |
US9188086B2 (en) | 2008-01-07 | 2015-11-17 | Mcalister Technologies, Llc | Coupled thermochemical reactors and engines, and associated systems and methods |
AT10660U1 (de) * | 2008-03-19 | 2009-07-15 | Binder Co Ag | Trockner mit kühlmedium |
CA2718767C (en) | 2008-04-18 | 2016-09-06 | Shell Internationale Research Maatschappij B.V. | Using mines and tunnels for treating subsurface hydrocarbon containing formations |
US8430168B2 (en) * | 2008-05-21 | 2013-04-30 | Valkyrie Commissioning Services, Inc. | Apparatus and methods for subsea control system testing |
US20100101783A1 (en) | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Using self-regulating nuclear reactors in treating a subsurface formation |
US8441361B2 (en) | 2010-02-13 | 2013-05-14 | Mcallister Technologies, Llc | Methods and apparatuses for detection of properties of fluid conveyance systems |
US20110203776A1 (en) * | 2009-02-17 | 2011-08-25 | Mcalister Technologies, Llc | Thermal transfer device and associated systems and methods |
WO2010118315A1 (en) | 2009-04-10 | 2010-10-14 | Shell Oil Company | Treatment methodologies for subsurface hydrocarbon containing formations |
US7792250B1 (en) * | 2009-04-30 | 2010-09-07 | Halliburton Energy Services Inc. | Method of selecting a wellbore cement having desirable characteristics |
GB2474249B (en) * | 2009-10-07 | 2015-11-04 | Mark Collins | An apparatus for generating heat |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
CN102612640B (zh) * | 2009-10-09 | 2014-01-08 | 国际壳牌研究有限公司 | 用于估定地下地层中温度的方法 |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
WO2011051874A1 (en) * | 2009-10-28 | 2011-05-05 | Csir | Integrated sensing device for assessing integrity of a rock mass and corresponding method |
US8386221B2 (en) * | 2009-12-07 | 2013-02-26 | Nuovo Pignone S.P.A. | Method for subsea equipment subject to hydrogen induced stress cracking |
US8602658B2 (en) * | 2010-02-05 | 2013-12-10 | Baker Hughes Incorporated | Spoolable signal conduction and connection line and method |
KR20130036000A (ko) * | 2010-02-13 | 2013-04-09 | 맥알리스터 테크놀로지즈 엘엘씨 | 재복사 표면을 갖는 화학 반응기, 및 관련 시스템과 방법 |
WO2011100699A2 (en) | 2010-02-13 | 2011-08-18 | Mcalister Roy E | Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods |
US8397828B2 (en) * | 2010-03-25 | 2013-03-19 | Baker Hughes Incorporated | Spoolable downhole control system and method |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8939207B2 (en) * | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8967259B2 (en) | 2010-04-09 | 2015-03-03 | Shell Oil Company | Helical winding of insulated conductor heaters for installation |
US20110277992A1 (en) * | 2010-05-14 | 2011-11-17 | Paul Grimes | Systems and methods for enhanced recovery of hydrocarbonaceous fluids |
WO2011150081A2 (en) | 2010-05-25 | 2011-12-01 | 7Ac Technologies, Inc. | Methods and systems using liquid desiccants for air-conditioning and other processes |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
CA2813044C (en) * | 2010-10-08 | 2020-01-14 | Charles D'angelo | Methods for joining insulated conductors |
US8732946B2 (en) | 2010-10-08 | 2014-05-27 | Shell Oil Company | Mechanical compaction of insulator for insulated conductor splices |
US20120085535A1 (en) * | 2010-10-08 | 2012-04-12 | Weijian Mo | Methods of heating a subsurface formation using electrically conductive particles |
US20130251547A1 (en) * | 2010-12-28 | 2013-09-26 | Hansen Energy Solutions Llc | Liquid Lift Pumps for Gas Wells |
WO2012092394A1 (en) | 2010-12-29 | 2012-07-05 | Cardinal Health 414, Llc | Closed vial fill system for aseptic dispensing |
US20120228286A1 (en) * | 2011-03-09 | 2012-09-13 | Central Garden And Pet Company | Inductive Heating Device for Aquarium Tanks |
JP5399436B2 (ja) * | 2011-03-30 | 2014-01-29 | 公益財団法人地球環境産業技術研究機構 | 貯留物質の貯留装置および貯留方法 |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
AU2012254060B2 (en) * | 2011-04-08 | 2015-07-09 | Shell Internationale Research Maatschappij B.V. | Compaction of electrical insulation for joining insulated conductors |
EP2695247A4 (en) | 2011-04-08 | 2015-09-16 | Shell Int Research | SYSTEMS FOR CONNECTING INSULATED LADDER |
CN102200004A (zh) * | 2011-05-12 | 2011-09-28 | 刘锋 | 游梁式抽油机专用节能配套装置及其抽油机 |
US8978769B2 (en) * | 2011-05-12 | 2015-03-17 | Richard John Moore | Offshore hydrocarbon cooling system |
US8887806B2 (en) | 2011-05-26 | 2014-11-18 | Halliburton Energy Services, Inc. | Method for quantifying cement blend components |
WO2013012822A1 (en) * | 2011-07-15 | 2013-01-24 | Cardinal Health 414, Llc | Systems, methods, and devices for producing, manufacturing, and control of radiopharmaceuticals |
US9417332B2 (en) | 2011-07-15 | 2016-08-16 | Cardinal Health 414, Llc | Radiopharmaceutical CZT sensor and apparatus |
WO2013012813A1 (en) | 2011-07-15 | 2013-01-24 | Cardinal Health 414, Llc | Modular cassette synthesis unit |
CN103828091A (zh) | 2011-07-25 | 2014-05-28 | H2催化剂有限责任公司 | 用于制氢的方法和系统 |
US8821602B2 (en) | 2011-08-12 | 2014-09-02 | Mcalister Technologies, Llc | Systems and methods for providing supplemental aqueous thermal energy |
US8673509B2 (en) | 2011-08-12 | 2014-03-18 | Mcalister Technologies, Llc | Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods |
US8826657B2 (en) | 2011-08-12 | 2014-09-09 | Mcallister Technologies, Llc | Systems and methods for providing supplemental aqueous thermal energy |
WO2013025640A2 (en) * | 2011-08-12 | 2013-02-21 | Mcalister Technologies, Llc | Geothermal energization of a non-combustion chemical reactor and associated systems and methods |
WO2013025659A1 (en) | 2011-08-12 | 2013-02-21 | Mcalister Technologies, Llc | Reducing and/or harvesting drag energy from transport vehicles, includings for chemical reactors, and associated systems and methods |
US8888408B2 (en) | 2011-08-12 | 2014-11-18 | Mcalister Technologies, Llc | Systems and methods for collecting and processing permafrost gases, and for cooling permafrost |
US8669014B2 (en) | 2011-08-12 | 2014-03-11 | Mcalister Technologies, Llc | Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods |
US8734546B2 (en) | 2011-08-12 | 2014-05-27 | Mcalister Technologies, Llc | Geothermal energization of a non-combustion chemical reactor and associated systems and methods |
CN103857873A (zh) | 2011-08-12 | 2014-06-11 | 麦卡利斯特技术有限责任公司 | 从水下来源除去和处理气体的系统和方法 |
US9302681B2 (en) | 2011-08-12 | 2016-04-05 | Mcalister Technologies, Llc | Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods |
US8911703B2 (en) | 2011-08-12 | 2014-12-16 | Mcalister Technologies, Llc | Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods |
JO3141B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | الوصلات المتكاملة للموصلات المعزولة |
JO3139B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية. |
CA2850756C (en) * | 2011-10-07 | 2019-09-03 | Scott Vinh Nguyen | Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US9243482B2 (en) | 2011-11-01 | 2016-01-26 | Nem Energy B.V. | Steam supply for enhanced oil recovery |
EP2776664A4 (en) * | 2011-11-07 | 2016-10-05 | Oklahoma Safety Equipment Company Inc | DEVICE, SYSTEM AND METHOD FOR PRESSURE LIMITATION |
CN102436856A (zh) * | 2011-12-13 | 2012-05-02 | 匡仲平 | 核泄漏事故引发的核辐射污染规避方法 |
RU2485300C1 (ru) * | 2011-12-14 | 2013-06-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи нефти в трещиноватых коллекторах |
EP2610570B1 (en) * | 2011-12-29 | 2016-11-23 | Ipsen, Inc. | Heating element arrangement for a vacuum heat treating furnace |
ES2482668T3 (es) * | 2012-01-03 | 2014-08-04 | Quantum Technologie Gmbh | Aparato y procedimiento para la explotación de arenas petrolíferas |
AU2012367347A1 (en) | 2012-01-23 | 2014-08-28 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
WO2013110980A1 (en) | 2012-01-23 | 2013-08-01 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
WO2013123488A1 (en) * | 2012-02-18 | 2013-08-22 | Genie Ip B.V. | Method and system for heating a bed of hydrocarbon- containing rocks |
CA2811666C (en) | 2012-04-05 | 2021-06-29 | Shell Internationale Research Maatschappij B.V. | Compaction of electrical insulation for joining insulated conductors |
US9303487B2 (en) | 2012-04-30 | 2016-04-05 | Baker Hughes Incorporated | Heat treatment for removal of bauschinger effect or to accelerate cement curing |
AU2012379048B2 (en) * | 2012-05-04 | 2015-09-10 | Landmark Graphics Corporation | Systems and methods for optimal spacing of horizontal wells |
US10210961B2 (en) * | 2012-05-11 | 2019-02-19 | Ge-Hitachi Nuclear Energy Americas, Llc | System and method for a commercial spent nuclear fuel repository turning heat and gamma radiation into value |
US9447675B2 (en) * | 2012-05-16 | 2016-09-20 | Chevron U.S.A. Inc. | In-situ method and system for removing heavy metals from produced fluids |
EP2850155B1 (en) * | 2012-05-16 | 2018-04-04 | Chevron U.S.A., Inc. | Process for removing mercury from fluids |
JP2013249605A (ja) * | 2012-05-31 | 2013-12-12 | Ihi Corp | ガスハイドレート回収装置 |
US9101875B2 (en) | 2012-06-11 | 2015-08-11 | 7Ac Technologies, Inc. | Methods and systems for turbulent, corrosion resistant heat exchangers |
US10076001B2 (en) * | 2012-07-05 | 2018-09-11 | Nvent Services Gmbh | Mineral insulated cable having reduced sheath temperature |
US9896918B2 (en) | 2012-07-27 | 2018-02-20 | Mbl Water Partners, Llc | Use of ionized water in hydraulic fracturing |
US8424784B1 (en) | 2012-07-27 | 2013-04-23 | MBJ Water Partners | Fracture water treatment method and system |
CN104619948A (zh) * | 2012-08-13 | 2015-05-13 | 雪佛龙美国公司 | 使用热管激发笼形包合物的开采 |
WO2014047469A2 (en) * | 2012-09-20 | 2014-03-27 | Pentair Thermal Management | Downhole wellbore heating system and method |
WO2014058777A1 (en) * | 2012-10-09 | 2014-04-17 | Shell Oil Company | Method for heating a subterranean formation penetrated by a wellbore |
CA2899141A1 (en) * | 2012-10-16 | 2014-04-24 | Genie Ip B.V. | System and method for thermally treating a subsurface formation by a heated molten salt mixture |
US10443315B2 (en) * | 2012-11-28 | 2019-10-15 | Nextstream Wired Pipe, Llc | Transmission line for wired pipe |
RU2549654C2 (ru) * | 2012-12-04 | 2015-04-27 | Общество с ограниченной ответственностью "Краснодарский Компрессорный Завод" | Азотная компрессорная станция для повышения нефтеотдачи пластов (варианты) |
EP2929256A4 (en) | 2012-12-04 | 2016-08-03 | 7Ac Technologies Inc | METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH HIGH THERMAL LOADS THROUGH DESICCANT COOLERS |
US10087715B2 (en) | 2012-12-06 | 2018-10-02 | Siemens Aktiengesellschaft | Arrangement and method for introducing heat into a geological formation by means of electromagnetic induction |
GB201223055D0 (en) * | 2012-12-20 | 2013-02-06 | Carragher Paul | Method and apparatus for use in well abandonment |
JP6393697B2 (ja) | 2013-03-01 | 2018-09-19 | 7エーシー テクノロジーズ,インコーポレイテッド | デシカント空調方法及びシステム |
US20140251608A1 (en) * | 2013-03-05 | 2014-09-11 | Cenovus Energy Inc. | Single vertical or inclined well thermal recovery process |
US20140251596A1 (en) * | 2013-03-05 | 2014-09-11 | Cenovus Energy Inc. | Single vertical or inclined well thermal recovery process |
US8926719B2 (en) | 2013-03-14 | 2015-01-06 | Mcalister Technologies, Llc | Method and apparatus for generating hydrogen from metal |
EP3614072B1 (en) | 2013-03-14 | 2022-06-22 | Emerson Climate Technologies, Inc. | Split liquid desiccant air conditioning system |
EP2971984A4 (en) | 2013-03-14 | 2017-02-01 | 7AC Technologies, Inc. | Methods and systems for liquid desiccant air conditioning system retrofit |
US10316644B2 (en) * | 2013-04-04 | 2019-06-11 | Shell Oil Company | Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation |
DE102013104643B3 (de) * | 2013-05-06 | 2014-06-18 | Borgwarner Beru Systems Gmbh | Korona-Zündeinrichtung |
WO2014189491A1 (en) * | 2013-05-21 | 2014-11-27 | Halliburton Energy Serviices, Inc. | High-voltage drilling methods and systems using hybrid drillstring conveyance |
US9470426B2 (en) | 2013-06-12 | 2016-10-18 | 7Ac Technologies, Inc. | In-ceiling liquid desiccant air conditioning system |
US9382785B2 (en) | 2013-06-17 | 2016-07-05 | Baker Hughes Incorporated | Shaped memory devices and method for using same in wellbores |
CA3009048A1 (en) | 2013-09-20 | 2015-03-26 | Baker Hughes, A Ge Company, Llc | Composites for use in stimulation and sand control operations |
US9701892B2 (en) | 2014-04-17 | 2017-07-11 | Baker Hughes Incorporated | Method of pumping aqueous fluid containing surface modifying treatment agent into a well |
EP3046986B1 (en) | 2013-09-20 | 2020-07-22 | Baker Hughes Holdings LLC | Method of inhibiting fouling on a metallic surface using a surface modifying treatment agent |
BR112016005454B1 (pt) | 2013-09-20 | 2022-02-08 | Baker Hughes Incorporated | Método para tratar um poço que penetra em uma formação subterrânea |
CN105555908B (zh) | 2013-09-20 | 2019-10-08 | 贝克休斯公司 | 使用表面改性金属处理剂处理地下地层的方法 |
US9822621B2 (en) | 2013-09-20 | 2017-11-21 | Baker Hughes, A Ge Company, Llc | Method of using surface modifying treatment agents to treat subterranean formations |
DE102013018210A1 (de) * | 2013-10-30 | 2015-04-30 | Linde Aktiengesellschaft | Verfahren zur Erzeugung eines zusammenhängenden Eiskörpers bei einer Bodenvereisung |
GB2538392B (en) * | 2013-12-30 | 2020-08-19 | Halliburton Energy Services Inc | Ranging using current profiling |
US10597579B2 (en) * | 2014-01-13 | 2020-03-24 | Conocophillips Company | Anti-retention agent in steam-solvent oil recovery |
CA2936045C (en) * | 2014-01-24 | 2021-01-19 | Halliburton Energy Services, Inc. | Method and criteria for trajectory control |
CA3176275A1 (en) | 2014-02-18 | 2015-08-18 | Athabasca Oil Corporation | Cable-based well heater |
JP7260953B2 (ja) * | 2014-03-07 | 2023-04-19 | グリーンファイア・エナジー・インコーポレイテッド | 地熱を発生させるプロセスおよび方法 |
US9637996B2 (en) | 2014-03-18 | 2017-05-02 | Baker Hughes Incorporated | Downhole uses of nanospring filled elastomers |
CN106164594B (zh) | 2014-03-20 | 2019-10-25 | 7Ac技术公司 | 屋顶液体干燥剂系统和方法 |
US9618435B2 (en) * | 2014-03-31 | 2017-04-11 | Dmar Engineering, Inc. | Umbilical bend-testing |
JP2017512930A (ja) | 2014-04-04 | 2017-05-25 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | 熱処理後の最終圧延ステップを使用して形成された絶縁導体 |
US10078154B2 (en) | 2014-06-19 | 2018-09-18 | Evolution Engineering Inc. | Downhole system with integrated backup sensors |
GB2527847A (en) * | 2014-07-04 | 2016-01-06 | Compactgtl Ltd | Catalytic reactors |
RU2559250C1 (ru) * | 2014-08-01 | 2015-08-10 | Олег Васильевич Коломийченко | Забойная каталитическая сборка для теплового воздействия на пласты, содержащие углеводороды и твердые органические вещества |
US9451792B1 (en) * | 2014-09-05 | 2016-09-27 | Atmos Nation, LLC | Systems and methods for vaporizing assembly |
US9939421B2 (en) * | 2014-09-10 | 2018-04-10 | Saudi Arabian Oil Company | Evaluating effectiveness of ceramic materials for hydrocarbons recovery |
WO2016044549A1 (en) | 2014-09-17 | 2016-03-24 | Garrison Dental Solutions, Llc | Dental curing light |
RU2569375C1 (ru) * | 2014-10-21 | 2015-11-27 | Николай Борисович Болотин | Способ и устройство для подогрева продуктивного нефтесодержащего пласта |
DE102014223621A1 (de) * | 2014-11-19 | 2016-05-19 | Siemens Aktiengesellschaft | Lagerstättenheizung |
CN107110525B (zh) | 2014-11-21 | 2020-02-11 | 7Ac技术公司 | 用于微分体液体干燥剂空气调节的方法和系统 |
AR103391A1 (es) | 2015-01-13 | 2017-05-03 | Bp Corp North America Inc | Métodos y sistemas para producir hidrocarburos desde roca productora de hidrocarburos a través del tratamiento combinado de la roca y la inyección de agua posterior |
RU2591860C1 (ru) * | 2015-02-05 | 2016-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) | Способ извлечения тяжелой нефти из продуктивного пласта и устройство для его осуществления |
FR3032564B1 (fr) * | 2015-02-11 | 2017-03-03 | Saipem Sa | Procede de raccordement de cables d'une section unitaire de conduite destinee a etre assemblee verticalement sur une conduite sous-marine de transport de fluides |
WO2016161439A1 (en) | 2015-04-03 | 2016-10-06 | Yelundur Rama Rau | Apparatus and method of focused in-situ electrical heating of hydrocarbon bearing formations |
CN107850516B (zh) * | 2015-05-20 | 2021-05-28 | 沙特阿拉伯石油公司 | 检测碳氢化合物渗漏的取样技术 |
GB2539045A (en) * | 2015-06-05 | 2016-12-07 | Statoil Asa | Subsurface heater configuration for in situ hydrocarbon production |
WO2017040753A1 (en) * | 2015-09-01 | 2017-03-09 | Exotex, Inc. | Construction products and systems for providing geothermal heat |
US9556719B1 (en) | 2015-09-10 | 2017-01-31 | Don P. Griffin | Methods for recovering hydrocarbons from shale using thermally-induced microfractures |
WO2017079648A1 (en) | 2015-11-06 | 2017-05-11 | Oklahoma Safety Equipment Company, Inc. | Rupture disc device and method of assembly thereof |
US10304591B1 (en) * | 2015-11-18 | 2019-05-28 | Real Power Licensing Corp. | Reel cooling method |
EP3387526B1 (en) | 2015-12-09 | 2019-08-07 | Truva Corporation | Environment-aware cross-layer communication protocol in underground oil reservoirs |
CN106917616B (zh) * | 2015-12-28 | 2019-11-08 | 中国石油天然气股份有限公司 | 稠油油藏的预热装置及方法 |
GB2547672B (en) * | 2016-02-25 | 2018-02-21 | Rejuvetech Ltd | System and method |
US10067201B2 (en) * | 2016-04-14 | 2018-09-04 | Texas Instruments Incorporated | Wiring layout to reduce magnetic field |
WO2017189397A1 (en) | 2016-04-26 | 2017-11-02 | Shell Oil Company | Roller injector for deploying insulated conductor heaters |
GB2550849B (en) * | 2016-05-23 | 2020-06-17 | Equinor Energy As | Interface and integration method for external control of the drilling control system |
US10125588B2 (en) * | 2016-06-30 | 2018-11-13 | Must Holding Llc | Systems and methods for recovering bitumen from subterranean formations |
NO343262B1 (en) * | 2016-07-22 | 2019-01-14 | Norges Miljoe Og Biovitenskapelige Univ Nmbu | Solar thermal collecting and storage |
CN106292277B (zh) * | 2016-08-15 | 2020-01-07 | 上海交通大学 | 基于全局滑模控制的亚临界火电机组协调控制方法 |
CN106168119B (zh) * | 2016-08-15 | 2018-07-13 | 中国石油天然气股份有限公司 | 井下电加热水平生产井管柱结构 |
WO2018067715A1 (en) | 2016-10-06 | 2018-04-12 | Shell Oil Company | High voltage, low current mineral insulated cable heater |
WO2018067713A1 (en) | 2016-10-06 | 2018-04-12 | Shell Oil Company | Subsurface electrical connections for high voltage, low current mineral insulated cable heaters |
CN106595113A (zh) * | 2016-12-12 | 2017-04-26 | 吉林省联冠石油科技有限公司 | 超导加温换热装置及换热方法 |
EP3337290B1 (en) * | 2016-12-13 | 2019-11-27 | Nexans | Subsea direct electric heating system |
WO2018144313A2 (en) * | 2017-01-31 | 2018-08-09 | Saudi Arabian Oil Company | In-situ hic growth monitoring probe |
US10041163B1 (en) | 2017-02-03 | 2018-08-07 | Ge-Hitachi Nuclear Energy Americas Llc | Plasma spray coating for sealing a defect area in a workpiece |
US20180292133A1 (en) * | 2017-04-05 | 2018-10-11 | Rex Materials Group | Heat treating furnace |
EP3389088A1 (en) * | 2017-04-12 | 2018-10-17 | ABB Schweiz AG | Heat exchanging arrangement and subsea electronic system |
CN107387180B (zh) * | 2017-07-17 | 2019-08-20 | 浙江陆特能源科技股份有限公司 | 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法 |
US10760348B2 (en) | 2017-08-14 | 2020-09-01 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10697275B2 (en) | 2017-08-14 | 2020-06-30 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10724341B2 (en) | 2017-08-14 | 2020-07-28 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10699822B2 (en) | 2017-08-14 | 2020-06-30 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10745975B2 (en) | 2017-08-14 | 2020-08-18 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10649427B2 (en) | 2017-08-14 | 2020-05-12 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10655292B2 (en) | 2017-09-06 | 2020-05-19 | Schlumberger Technology Corporation | Local electrical room module for well construction apparatus |
US10662709B2 (en) | 2017-09-06 | 2020-05-26 | Schlumberger Technology Corporation | Local electrical room module for well construction apparatus |
US10472953B2 (en) | 2017-09-06 | 2019-11-12 | Schlumberger Technology Corporation | Local electrical room module for well construction apparatus |
WO2019053550A1 (en) * | 2017-09-12 | 2019-03-21 | Politecnico Di Milano | CO2 MIXTURES USED AS WORKING FLUID IN THERMODYNAMIC CYCLES |
CA3075856A1 (en) | 2017-09-13 | 2019-03-21 | Chevron Phillips Chemical Company Lp | Pvdf pipe and methods of making and using same |
US10704371B2 (en) * | 2017-10-13 | 2020-07-07 | Chevron U.S.A. Inc. | Low dielectric zone for hydrocarbon recovery by dielectric heating |
KR102609680B1 (ko) | 2017-11-01 | 2023-12-05 | 코프랜드 엘피 | 액체 건조제 공조 시스템의 멤브레인 모듈에서 액체 건조제의 균일한 분포를 위한 방법 및 장치 |
US10941948B2 (en) | 2017-11-01 | 2021-03-09 | 7Ac Technologies, Inc. | Tank system for liquid desiccant air conditioning system |
WO2019090345A1 (en) * | 2017-11-06 | 2019-05-09 | Concept Group Llc | Thermally-insulated modules and related methods |
JP7220213B2 (ja) * | 2017-11-13 | 2023-02-09 | エセックス フルカワ マグネット ワイヤ ユーエスエイ エルエルシー | 内部空洞を有する巻線物品 |
US11274856B2 (en) * | 2017-11-16 | 2022-03-15 | Ari Peter Berman | Method of deploying a heat exchanger pipe |
RU2669647C1 (ru) * | 2017-11-29 | 2018-10-12 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии разработки |
US10399895B2 (en) * | 2017-12-13 | 2019-09-03 | Pike Technologies Of Wisconsin, Inc. | Bismuth-indium alloy for liquid-tight bonding of optical windows |
US10201042B1 (en) * | 2018-01-19 | 2019-02-05 | Trs Group, Inc. | Flexible helical heater |
CN107991158B (zh) * | 2018-01-29 | 2021-11-12 | 山东交通学院 | 可控击实温度的沥青混合料马歇尔击实仪及试验方法 |
US10822942B2 (en) * | 2018-02-13 | 2020-11-03 | Baker Hughes, A Ge Company, Llc | Telemetry system including a super conductor for a resource exploration and recovery system |
CA3117361C (en) * | 2018-02-21 | 2023-08-22 | Me Well Services Petrol Ve Saha Hizmetleri San. Tic. Ltd. Sti. | A gas injection system |
US10137486B1 (en) * | 2018-02-27 | 2018-11-27 | Chevron U.S.A. Inc. | Systems and methods for thermal treatment of contaminated material |
US11149538B2 (en) * | 2018-03-01 | 2021-10-19 | Baker Hughes, A Ge Company, Llc | Systems and methods for determining bending of a drilling tool, the drilling tool having electrical conduit |
US10837248B2 (en) | 2018-04-25 | 2020-11-17 | Skye Buck Technology, LLC. | Method and apparatus for a chemical capsule joint |
US11022330B2 (en) | 2018-05-18 | 2021-06-01 | Emerson Climate Technologies, Inc. | Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture |
US11555473B2 (en) | 2018-05-29 | 2023-01-17 | Kontak LLC | Dual bladder fuel tank |
US11638331B2 (en) | 2018-05-29 | 2023-04-25 | Kontak LLC | Multi-frequency controllers for inductive heating and associated systems and methods |
US11053775B2 (en) * | 2018-11-16 | 2021-07-06 | Leonid Kovalev | Downhole induction heater |
CN109779625B (zh) * | 2019-01-25 | 2022-09-09 | 华北科技学院 | 一种基于钻孔煤屑尺寸分布状况的突出预测方法与装置 |
CN112180815A (zh) * | 2019-07-01 | 2021-01-05 | 苏州五蕴明泰科技有限公司 | 控制废弃物燃烧过程中二氧化碳排放量的方法 |
WO2021026432A1 (en) | 2019-08-07 | 2021-02-11 | Saudi Arabian Oil Company | Determination of geologic permeability correlative with magnetic permeability measured in-situ |
CN110705110B (zh) * | 2019-10-09 | 2023-04-14 | 浙江强盛压缩机制造有限公司 | 大型往复压缩机高压填料盒的应力和应变计算方法 |
CN110954676B (zh) * | 2019-12-03 | 2021-06-29 | 同济大学 | 用于模拟盾构下穿既有隧道施工可视化试验装置 |
US11559847B2 (en) | 2020-01-08 | 2023-01-24 | General Electric Company | Superalloy part and method of processing |
US11979950B2 (en) | 2020-02-18 | 2024-05-07 | Trs Group, Inc. | Heater for contaminant remediation |
CN111271038A (zh) * | 2020-03-12 | 2020-06-12 | 内蒙古科技大学 | 一种低渗透性煤体的新型煤层气增产方法 |
US10912154B1 (en) * | 2020-08-06 | 2021-02-02 | Michael E. Brown | Concrete heating system |
CN112096294A (zh) * | 2020-09-13 | 2020-12-18 | 江苏刘一刀精密机械有限公司 | 一种高导向性新型金刚石钻头 |
CN112252121B (zh) * | 2020-11-11 | 2021-11-16 | 浙江八咏新型材料有限责任公司 | 一种市政道路施工用沥青加热熔融装置 |
US11851996B2 (en) | 2020-12-18 | 2023-12-26 | Jack McIntyre | Oil production system and method |
CN112324409B (zh) * | 2020-12-31 | 2021-07-06 | 西南石油大学 | 一种在油层中原位产生溶剂开采稠油的方法 |
RU2753290C1 (ru) * | 2021-02-10 | 2021-08-12 | Общество с ограниченной ответственностью «АСДМ-Инжиниринг» | Способ и система для борьбы с асфальтосмолопарафиновыми и/или газогидратными отложениями в нефтегазовых скважинах |
US11642709B1 (en) | 2021-03-04 | 2023-05-09 | Trs Group, Inc. | Optimized flux ERH electrode |
US11214450B1 (en) * | 2021-03-11 | 2022-01-04 | Cciip Llc | Method of proofing an innerduct/microduct and proofing manifold |
CN113051725B (zh) * | 2021-03-12 | 2022-09-09 | 哈尔滨工程大学 | 基于通用型辅助变量法的det与relap5耦合的动态特性分析方法 |
GB202104638D0 (en) * | 2021-03-31 | 2021-05-12 | Head Philip | Bismuth metal to metal encapsulated electrical power cable system for ESP |
US11713651B2 (en) | 2021-05-11 | 2023-08-01 | Saudi Arabian Oil Company | Heating a formation of the earth while drilling a wellbore |
US11725504B2 (en) | 2021-05-24 | 2023-08-15 | Saudi Arabian Oil Company | Contactless real-time 3D mapping of surface equipment |
US11619097B2 (en) | 2021-05-24 | 2023-04-04 | Saudi Arabian Oil Company | System and method for laser downhole extended sensing |
CN113153250B (zh) * | 2021-06-11 | 2021-11-19 | 盐城瑞德石化机械有限公司 | 一种设有限位机构的稳定型井下配注器 |
CN113266327A (zh) * | 2021-07-05 | 2021-08-17 | 西南石油大学 | 一种油气井下多功能涡流加热装置与方法 |
US11879328B2 (en) | 2021-08-05 | 2024-01-23 | Saudi Arabian Oil Company | Semi-permanent downhole sensor tool |
US20230130169A1 (en) * | 2021-10-26 | 2023-04-27 | Jack McIntyre | Fracturing Hot Rock |
US11860077B2 (en) | 2021-12-14 | 2024-01-02 | Saudi Arabian Oil Company | Fluid flow sensor using driver and reference electromechanical resonators |
CN114300213B (zh) * | 2022-01-24 | 2024-01-26 | 中国科学院电工研究所 | 一种高热导铌三锡超导线圈及其制作方法 |
CN114508336B (zh) * | 2022-01-30 | 2022-09-30 | 中国矿业大学 | 一种用于松软煤层的钻孔、解卡和致裂一体装置及方法 |
US11867049B1 (en) | 2022-07-19 | 2024-01-09 | Saudi Arabian Oil Company | Downhole logging tool |
CN115050529B (zh) * | 2022-08-15 | 2022-10-21 | 中国工程物理研究院流体物理研究所 | 一种高安全性新型水电阻 |
CN115340241A (zh) * | 2022-08-27 | 2022-11-15 | 辽宁大学 | 一种循环利用的矿井水处理装置 |
US11913329B1 (en) | 2022-09-21 | 2024-02-27 | Saudi Arabian Oil Company | Untethered logging devices and related methods of logging a wellbore |
WO2024112086A1 (ko) * | 2022-11-22 | 2024-05-30 | 한국원자력연구원 | 미드룹 적용된 오일샌드 채굴용 경수형 원자로 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2133335C1 (ru) * | 1996-09-11 | 1999-07-20 | Юрий Алексеевич Трутнев | Способ разработки нефтяных месторождений и переработки нефти и устройство для его осуществления |
RU2223397C2 (ru) * | 2001-07-19 | 2004-02-10 | Хайрединов Нил Шахиджанович | Способ разработки нефтяного месторождения |
RU2004115602A (ru) * | 2001-10-24 | 2005-10-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) | Способы и устройства для нагревания внутри формации, содержащей углеводороды, со вскрытием, соприкасающимся с земной поверхностью в двух местоположениях |
Family Cites Families (1047)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA899987A (en) | 1972-05-09 | Chisso Corporation | Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current | |
SE126674C1 (ru) | 1949-01-01 | |||
SE123138C1 (ru) | 1948-01-01 | |||
US94813A (en) | 1869-09-14 | Improvement in torpedoes for oil-wells | ||
US48994A (en) | 1865-07-25 | Improvement in devices for oil-wells | ||
US345586A (en) | 1886-07-13 | Oil from wells | ||
US2734579A (en) * | 1956-02-14 | Production from bituminous sands | ||
US2732195A (en) | 1956-01-24 | Ljungstrom | ||
US326439A (en) * | 1885-09-15 | Protecting wells | ||
SE123136C1 (ru) | 1948-01-01 | |||
US1457690A (en) * | 1923-06-05 | Percival iv brine | ||
US760304A (en) * | 1903-10-24 | 1904-05-17 | Frank S Gilbert | Heater for oil-wells. |
US1342741A (en) | 1918-01-17 | 1920-06-08 | David T Day | Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks |
US1269747A (en) | 1918-04-06 | 1918-06-18 | Lebbeus H Rogers | Method of and apparatus for treating oil-shale. |
GB156396A (en) | 1919-12-10 | 1921-01-13 | Wilson Woods Hoover | An improved method of treating shale and recovering oil therefrom |
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US1477802A (en) | 1921-02-28 | 1923-12-18 | Cutler Hammer Mfg Co | Oil-well heater |
US1510655A (en) | 1922-11-21 | 1924-10-07 | Clark Cornelius | Process of subterranean distillation of volatile mineral substances |
US1634236A (en) | 1925-03-10 | 1927-06-28 | Standard Dev Co | Method of and apparatus for recovering oil |
US1646599A (en) * | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1811560A (en) * | 1926-04-08 | 1931-06-23 | Standard Oil Dev Co | Method of and apparatus for recovering oil |
US1666488A (en) * | 1927-02-05 | 1928-04-17 | Crawshaw Richard | Apparatus for extracting oil from shale |
US1681523A (en) * | 1927-03-26 | 1928-08-21 | Patrick V Downey | Apparatus for heating oil wells |
US2011710A (en) | 1928-08-18 | 1935-08-20 | Nat Aniline & Chem Co Inc | Apparatus for measuring temperature |
US1913395A (en) | 1929-11-14 | 1933-06-13 | Lewis C Karrick | Underground gasification of carbonaceous material-bearing substances |
US2013838A (en) | 1932-12-27 | 1935-09-10 | Rowland O Pickin | Roller core drilling bit |
US2288857A (en) * | 1937-10-18 | 1942-07-07 | Union Oil Co | Process for the removal of bitumen from bituminous deposits |
US2244255A (en) * | 1939-01-18 | 1941-06-03 | Electrical Treating Company | Well clearing system |
US2208087A (en) * | 1939-11-06 | 1940-07-16 | Carlton J Somers | Electric heater |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2249926A (en) | 1940-05-13 | 1941-07-22 | John A Zublin | Nontracking roller bit |
US2319702A (en) | 1941-04-04 | 1943-05-18 | Socony Vacuum Oil Co Inc | Method and apparatus for producing oil wells |
US2365591A (en) | 1942-08-15 | 1944-12-19 | Ranney Leo | Method for producing oil from viscous deposits |
US2423674A (en) | 1942-08-24 | 1947-07-08 | Johnson & Co A | Process of catalytic cracking of petroleum hydrocarbons |
US2381256A (en) | 1942-10-06 | 1945-08-07 | Texas Co | Process for treating hydrocarbon fractions |
US2390770A (en) | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2484063A (en) | 1944-08-19 | 1949-10-11 | Thermactor Corp | Electric heater for subsurface materials |
US2472445A (en) * | 1945-02-02 | 1949-06-07 | Thermactor Company | Apparatus for treating oil and gas bearing strata |
US2595728A (en) * | 1945-03-09 | 1952-05-06 | Westinghouse Electric Corp | Polysiloxanes containing allyl radicals |
US2481051A (en) | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2444755A (en) * | 1946-01-04 | 1948-07-06 | Ralph M Steffen | Apparatus for oil sand heating |
US2634961A (en) * | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2466945A (en) * | 1946-02-21 | 1949-04-12 | In Situ Gases Inc | Generation of synthesis gas |
US2500305A (en) * | 1946-05-28 | 1950-03-14 | Thermactor Corp | Electric oil well heater |
US2497868A (en) * | 1946-10-10 | 1950-02-21 | Dalin David | Underground exploitation of fuel deposits |
US2939689A (en) * | 1947-06-24 | 1960-06-07 | Svenska Skifferolje Ab | Electrical heater for treating oilshale and the like |
US2786660A (en) * | 1948-01-05 | 1957-03-26 | Phillips Petroleum Co | Apparatus for gasifying coal |
US2548360A (en) * | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2685930A (en) | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US2630307A (en) | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US2595979A (en) | 1949-01-25 | 1952-05-06 | Texas Co | Underground liquefaction of coal |
US2642943A (en) * | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
US2593477A (en) * | 1949-06-10 | 1952-04-22 | Us Interior | Process of underground gasification of coal |
GB674082A (en) | 1949-06-15 | 1952-06-18 | Nat Res Dev | Improvements in or relating to the underground gasification of coal |
GB676543A (en) | 1949-11-14 | 1952-07-30 | Telegraph Constr & Maintenance | Improvements in the moulding and jointing of thermoplastic materials for example in the jointing of electric cables |
US2670802A (en) | 1949-12-16 | 1954-03-02 | Thermactor Company | Reviving or increasing the production of clogged or congested oil wells |
US2623596A (en) | 1950-05-16 | 1952-12-30 | Atlantic Refining Co | Method for producing oil by means of carbon dioxide |
US2647196A (en) * | 1950-11-06 | 1953-07-28 | Union Oil Co | Apparatus for heating oil wells |
US2714930A (en) | 1950-12-08 | 1955-08-09 | Union Oil Co | Apparatus for preventing paraffin deposition |
US2695163A (en) | 1950-12-09 | 1954-11-23 | Stanolind Oil & Gas Co | Method for gasification of subterranean carbonaceous deposits |
US2647306A (en) | 1951-04-14 | 1953-08-04 | John C Hockery | Can opener |
US2630306A (en) * | 1952-01-03 | 1953-03-03 | Socony Vacuum Oil Co Inc | Subterranean retorting of shales |
US2757739A (en) | 1952-01-07 | 1956-08-07 | Parelex Corp | Heating apparatus |
US2777679A (en) | 1952-03-07 | 1957-01-15 | Svenska Skifferolje Ab | Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ |
US2780450A (en) * | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2759877A (en) | 1952-03-18 | 1956-08-21 | Sinclair Refining Co | Process and separation apparatus for use in the conversions of hydrocarbons |
US2789805A (en) | 1952-05-27 | 1957-04-23 | Svenska Skifferolje Ab | Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member |
US2761663A (en) | 1952-09-05 | 1956-09-04 | Louis F Gerdetz | Process of underground gasification of coal |
US2780449A (en) * | 1952-12-26 | 1957-02-05 | Sinclair Oil & Gas Co | Thermal process for in-situ decomposition of oil shale |
US2825408A (en) * | 1953-03-09 | 1958-03-04 | Sinclair Oil & Gas Company | Oil recovery by subsurface thermal processing |
US2771954A (en) * | 1953-04-29 | 1956-11-27 | Exxon Research Engineering Co | Treatment of petroleum production wells |
US2703621A (en) * | 1953-05-04 | 1955-03-08 | George W Ford | Oil well bottom hole flow increasing unit |
US2743906A (en) | 1953-05-08 | 1956-05-01 | William E Coyle | Hydraulic underreamer |
US2803305A (en) | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) * | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2902270A (en) * | 1953-07-17 | 1959-09-01 | Svenska Skifferolje Ab | Method of and means in heating of subsurface fuel-containing deposits "in situ" |
US2890754A (en) | 1953-10-30 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2890755A (en) * | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2841375A (en) | 1954-03-03 | 1958-07-01 | Svenska Skifferolje Ab | Method for in-situ utilization of fuels by combustion |
US2794504A (en) | 1954-05-10 | 1957-06-04 | Union Oil Co | Well heater |
US2793696A (en) * | 1954-07-22 | 1957-05-28 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2781851A (en) | 1954-10-11 | 1957-02-19 | Shell Dev | Well tubing heater system |
US2801699A (en) | 1954-12-24 | 1957-08-06 | Pure Oil Co | Process for temporarily and selectively sealing a well |
US2787325A (en) | 1954-12-24 | 1957-04-02 | Pure Oil Co | Selective treatment of geological formations |
US2923535A (en) * | 1955-02-11 | 1960-02-02 | Svenska Skifferolje Ab | Situ recovery from carbonaceous deposits |
US2799341A (en) | 1955-03-04 | 1957-07-16 | Union Oil Co | Selective plugging in oil wells |
US2801089A (en) * | 1955-03-14 | 1957-07-30 | California Research Corp | Underground shale retorting process |
US2818118A (en) * | 1955-12-19 | 1957-12-31 | Phillips Petroleum Co | Production of oil by in situ combustion |
US2862558A (en) * | 1955-12-28 | 1958-12-02 | Phillips Petroleum Co | Recovering oils from formations |
US2819761A (en) * | 1956-01-19 | 1958-01-14 | Continental Oil Co | Process of removing viscous oil from a well bore |
US2857002A (en) * | 1956-03-19 | 1958-10-21 | Texas Co | Recovery of viscous crude oil |
US2906340A (en) | 1956-04-05 | 1959-09-29 | Texaco Inc | Method of treating a petroleum producing formation |
US2991046A (en) | 1956-04-16 | 1961-07-04 | Parsons Lional Ashley | Combined winch and bollard device |
US2889882A (en) * | 1956-06-06 | 1959-06-09 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3120264A (en) | 1956-07-09 | 1964-02-04 | Texaco Development Corp | Recovery of oil by in situ combustion |
US3016053A (en) | 1956-08-02 | 1962-01-09 | George J Medovick | Underwater breathing apparatus |
US2997105A (en) * | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US2932352A (en) | 1956-10-25 | 1960-04-12 | Union Oil Co | Liquid filled well heater |
US2804149A (en) * | 1956-12-12 | 1957-08-27 | John R Donaldson | Oil well heater and reviver |
US3127936A (en) | 1957-07-26 | 1964-04-07 | Svenska Skifferolje Ab | Method of in situ heating of subsurface preferably fuel containing deposits |
US2942223A (en) * | 1957-08-09 | 1960-06-21 | Gen Electric | Electrical resistance heater |
US2906337A (en) | 1957-08-16 | 1959-09-29 | Pure Oil Co | Method of recovering bitumen |
US3080918A (en) * | 1957-08-29 | 1963-03-12 | Richfield Oil Corp | Petroleum recovery from subsurface oil bearing formation |
US3007521A (en) | 1957-10-28 | 1961-11-07 | Phillips Petroleum Co | Recovery of oil by in situ combustion |
US3010516A (en) * | 1957-11-18 | 1961-11-28 | Phillips Petroleum Co | Burner and process for in situ combustion |
US2954826A (en) | 1957-12-02 | 1960-10-04 | William E Sievers | Heated well production string |
GB876401A (en) * | 1957-12-23 | 1961-08-30 | Exxon Research Engineering Co | Moving bed nuclear reactor for process irradiation |
US3085957A (en) * | 1957-12-26 | 1963-04-16 | Richfield Oil Corp | Nuclear reactor for heating a subsurface stratum |
US2994376A (en) | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3061009A (en) * | 1958-01-17 | 1962-10-30 | Svenska Skifferolje Ab | Method of recovery from fossil fuel bearing strata |
US3062282A (en) | 1958-01-24 | 1962-11-06 | Phillips Petroleum Co | Initiation of in situ combustion in a carbonaceous stratum |
US3051235A (en) | 1958-02-24 | 1962-08-28 | Jersey Prod Res Co | Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation |
US3004603A (en) * | 1958-03-07 | 1961-10-17 | Phillips Petroleum Co | Heater |
US3032102A (en) | 1958-03-17 | 1962-05-01 | Phillips Petroleum Co | In situ combustion method |
US3079995A (en) * | 1958-04-16 | 1963-03-05 | Richfield Oil Corp | Petroleum recovery from subsurface oil-bearing formation |
US3004601A (en) * | 1958-05-09 | 1961-10-17 | Albert G Bodine | Method and apparatus for augmenting oil recovery from wells by refrigeration |
US3048221A (en) | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3026940A (en) * | 1958-05-19 | 1962-03-27 | Electronic Oil Well Heater Inc | Oil well temperature indicator and control |
US3010513A (en) * | 1958-06-12 | 1961-11-28 | Phillips Petroleum Co | Initiation of in situ combustion in carbonaceous stratum |
US2958519A (en) * | 1958-06-23 | 1960-11-01 | Phillips Petroleum Co | In situ combustion process |
US3044545A (en) | 1958-10-02 | 1962-07-17 | Phillips Petroleum Co | In situ combustion process |
US3050123A (en) | 1958-10-07 | 1962-08-21 | Cities Service Res & Dev Co | Gas fired oil-well burner |
US2950240A (en) * | 1958-10-10 | 1960-08-23 | Socony Mobil Oil Co Inc | Selective cracking of aliphatic hydrocarbons |
US2974937A (en) | 1958-11-03 | 1961-03-14 | Jersey Prod Res Co | Petroleum recovery from carbonaceous formations |
US2998457A (en) * | 1958-11-19 | 1961-08-29 | Ashland Oil Inc | Production of phenols |
US2970826A (en) | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3097690A (en) | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US3036632A (en) | 1958-12-24 | 1962-05-29 | Socony Mobil Oil Co Inc | Recovery of hydrocarbon materials from earth formations by application of heat |
US2937228A (en) * | 1958-12-29 | 1960-05-17 | Robinson Machine Works Inc | Coaxial cable splice |
US2969226A (en) * | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3017168A (en) | 1959-01-26 | 1962-01-16 | Phillips Petroleum Co | In situ retorting of oil shale |
US3110345A (en) * | 1959-02-26 | 1963-11-12 | Gulf Research Development Co | Low temperature reverse combustion process |
US3113619A (en) | 1959-03-30 | 1963-12-10 | Phillips Petroleum Co | Line drive counterflow in situ combustion process |
US3113620A (en) | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3113623A (en) | 1959-07-20 | 1963-12-10 | Union Oil Co | Apparatus for underground retorting |
US3181613A (en) | 1959-07-20 | 1965-05-04 | Union Oil Co | Method and apparatus for subterranean heating |
US3132692A (en) | 1959-07-27 | 1964-05-12 | Phillips Petroleum Co | Use of formation heat from in situ combustion |
US3116792A (en) * | 1959-07-27 | 1964-01-07 | Phillips Petroleum Co | In situ combustion process |
US3150715A (en) | 1959-09-30 | 1964-09-29 | Shell Oil Co | Oil recovery by in situ combustion with water injection |
US3095031A (en) | 1959-12-09 | 1963-06-25 | Eurenius Malte Oscar | Burners for use in bore holes in the ground |
US3131763A (en) | 1959-12-30 | 1964-05-05 | Texaco Inc | Electrical borehole heater |
US3220479A (en) | 1960-02-08 | 1965-11-30 | Exxon Production Research Co | Formation stabilization system |
US3163745A (en) * | 1960-02-29 | 1964-12-29 | Socony Mobil Oil Co Inc | Heating of an earth formation penetrated by a well borehole |
US3127935A (en) | 1960-04-08 | 1964-04-07 | Marathon Oil Co | In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs |
US3137347A (en) | 1960-05-09 | 1964-06-16 | Phillips Petroleum Co | In situ electrolinking of oil shale |
US3139928A (en) | 1960-05-24 | 1964-07-07 | Shell Oil Co | Thermal process for in situ decomposition of oil shale |
US3106244A (en) | 1960-06-20 | 1963-10-08 | Phillips Petroleum Co | Process for producing oil shale in situ by electrocarbonization |
US3142336A (en) | 1960-07-18 | 1964-07-28 | Shell Oil Co | Method and apparatus for injecting steam into subsurface formations |
US3105545A (en) | 1960-11-21 | 1963-10-01 | Shell Oil Co | Method of heating underground formations |
US3164207A (en) | 1961-01-17 | 1965-01-05 | Wayne H Thessen | Method for recovering oil |
US3138203A (en) | 1961-03-06 | 1964-06-23 | Jersey Prod Res Co | Method of underground burning |
US3191679A (en) | 1961-04-13 | 1965-06-29 | Wendell S Miller | Melting process for recovering bitumens from the earth |
US3207220A (en) | 1961-06-26 | 1965-09-21 | Chester I Williams | Electric well heater |
US3114417A (en) | 1961-08-14 | 1963-12-17 | Ernest T Saftig | Electric oil well heater apparatus |
US3246695A (en) | 1961-08-21 | 1966-04-19 | Charles L Robinson | Method for heating minerals in situ with radioactive materials |
US3057404A (en) | 1961-09-29 | 1962-10-09 | Socony Mobil Oil Co Inc | Method and system for producing oil tenaciously held in porous formations |
US3183675A (en) | 1961-11-02 | 1965-05-18 | Conch Int Methane Ltd | Method of freezing an earth formation |
US3170842A (en) | 1961-11-06 | 1965-02-23 | Phillips Petroleum Co | Subcritical borehole nuclear reactor and process |
US3209825A (en) | 1962-02-14 | 1965-10-05 | Continental Oil Co | Low temperature in-situ combustion |
US3205946A (en) | 1962-03-12 | 1965-09-14 | Shell Oil Co | Consolidation by silica coalescence |
US3141924A (en) | 1962-03-16 | 1964-07-21 | Amp Inc | Coaxial cable shield braid terminators |
US3165154A (en) | 1962-03-23 | 1965-01-12 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3149670A (en) | 1962-03-27 | 1964-09-22 | Smclair Res Inc | In-situ heating process |
US3149672A (en) | 1962-05-04 | 1964-09-22 | Jersey Prod Res Co | Method and apparatus for electrical heating of oil-bearing formations |
US3208531A (en) | 1962-08-21 | 1965-09-28 | Otis Eng Co | Inserting tool for locating and anchoring a device in tubing |
US3182721A (en) * | 1962-11-02 | 1965-05-11 | Sun Oil Co | Method of petroleum production by forward in situ combustion |
US3288648A (en) | 1963-02-04 | 1966-11-29 | Pan American Petroleum Corp | Process for producing electrical energy from geological liquid hydrocarbon formation |
US3205942A (en) | 1963-02-07 | 1965-09-14 | Socony Mobil Oil Co Inc | Method for recovery of hydrocarbons by in situ heating of oil shale |
US3221505A (en) | 1963-02-20 | 1965-12-07 | Gulf Research Development Co | Grouting method |
US3221811A (en) | 1963-03-11 | 1965-12-07 | Shell Oil Co | Mobile in-situ heating of formations |
US3250327A (en) | 1963-04-02 | 1966-05-10 | Socony Mobil Oil Co Inc | Recovering nonflowing hydrocarbons |
US3241611A (en) | 1963-04-10 | 1966-03-22 | Equity Oil Company | Recovery of petroleum products from oil shale |
GB959945A (en) | 1963-04-18 | 1964-06-03 | Conch Int Methane Ltd | Constructing a frozen wall within the ground |
US3237689A (en) | 1963-04-29 | 1966-03-01 | Clarence I Justheim | Distillation of underground deposits of solid carbonaceous materials in situ |
US3205944A (en) * | 1963-06-14 | 1965-09-14 | Socony Mobil Oil Co Inc | Recovery of hydrocarbons from a subterranean reservoir by heating |
US3233668A (en) | 1963-11-15 | 1966-02-08 | Exxon Production Research Co | Recovery of shale oil |
US3285335A (en) | 1963-12-11 | 1966-11-15 | Exxon Research Engineering Co | In situ pyrolysis of oil shale formations |
US3273640A (en) | 1963-12-13 | 1966-09-20 | Pyrochem Corp | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ |
US3272261A (en) | 1963-12-13 | 1966-09-13 | Gulf Research Development Co | Process for recovery of oil |
US3303883A (en) | 1964-01-06 | 1967-02-14 | Mobil Oil Corp | Thermal notching technique |
US3275076A (en) | 1964-01-13 | 1966-09-27 | Mobil Oil Corp | Recovery of asphaltic-type petroleum from a subterranean reservoir |
US3342258A (en) | 1964-03-06 | 1967-09-19 | Shell Oil Co | Underground oil recovery from solid oil-bearing deposits |
US3294167A (en) | 1964-04-13 | 1966-12-27 | Shell Oil Co | Thermal oil recovery |
US3284281A (en) | 1964-08-31 | 1966-11-08 | Phillips Petroleum Co | Production of oil from oil shale through fractures |
US3302707A (en) | 1964-09-30 | 1967-02-07 | Mobil Oil Corp | Method for improving fluid recoveries from earthen formations |
US3310109A (en) | 1964-11-06 | 1967-03-21 | Phillips Petroleum Co | Process and apparatus for combination upgrading of oil in situ and refining thereof |
US3380913A (en) | 1964-12-28 | 1968-04-30 | Phillips Petroleum Co | Refining of effluent from in situ combustion operation |
US3262500A (en) * | 1965-03-01 | 1966-07-26 | Beehler Vernon D | Hot water flood system for oil wells |
US3332480A (en) | 1965-03-04 | 1967-07-25 | Pan American Petroleum Corp | Recovery of hydrocarbons by thermal methods |
US3338306A (en) | 1965-03-09 | 1967-08-29 | Mobil Oil Corp | Recovery of heavy oil from oil sands |
US3358756A (en) | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3299202A (en) | 1965-04-02 | 1967-01-17 | Okonite Co | Oil well cable |
DE1242535B (de) | 1965-04-13 | 1967-06-22 | Deutsche Erdoel Ag | Verfahren zur Restausfoerderung von Erdoellagerstaetten |
US3316344A (en) | 1965-04-26 | 1967-04-25 | Central Electr Generat Board | Prevention of icing of electrical conductors |
US3342267A (en) | 1965-04-29 | 1967-09-19 | Gerald S Cotter | Turbo-generator heater for oil and gas wells and pipe lines |
US3352355A (en) | 1965-06-23 | 1967-11-14 | Dow Chemical Co | Method of recovery of hydrocarbons from solid hydrocarbonaceous formations |
US3346044A (en) | 1965-09-08 | 1967-10-10 | Mobil Oil Corp | Method and structure for retorting oil shale in situ by cycling fluid flows |
US3349845A (en) | 1965-10-22 | 1967-10-31 | Sinclair Oil & Gas Company | Method of establishing communication between wells |
US3386515A (en) * | 1965-12-03 | 1968-06-04 | Dresser Ind | Well completion apparatus |
US3379248A (en) | 1965-12-10 | 1968-04-23 | Mobil Oil Corp | In situ combustion process utilizing waste heat |
US3386508A (en) | 1966-02-21 | 1968-06-04 | Exxon Production Research Co | Process and system for the recovery of viscous oil |
US3362751A (en) | 1966-02-28 | 1968-01-09 | Tinlin William | Method and system for recovering shale oil and gas |
US3595082A (en) | 1966-03-04 | 1971-07-27 | Gulf Oil Corp | Temperature measuring apparatus |
US3410977A (en) | 1966-03-28 | 1968-11-12 | Ando Masao | Method of and apparatus for heating the surface part of various construction materials |
DE1615192B1 (de) | 1966-04-01 | 1970-08-20 | Chisso Corp | Induktiv beheiztes Heizrohr |
US3410796A (en) | 1966-04-04 | 1968-11-12 | Gas Processors Inc | Process for treatment of saline waters |
US3513913A (en) | 1966-04-19 | 1970-05-26 | Shell Oil Co | Oil recovery from oil shales by transverse combustion |
US3372754A (en) | 1966-05-31 | 1968-03-12 | Mobil Oil Corp | Well assembly for heating a subterranean formation |
US3399623A (en) | 1966-07-14 | 1968-09-03 | James R. Creed | Apparatus for and method of producing viscid oil |
US3428125A (en) * | 1966-07-25 | 1969-02-18 | Phillips Petroleum Co | Hydro-electropyrolysis of oil shale in situ |
US3412011A (en) | 1966-09-02 | 1968-11-19 | Phillips Petroleum Co | Catalytic cracking and in situ combustion process for producing hydrocarbons |
NL153755C (nl) | 1966-10-20 | 1977-11-15 | Stichting Reactor Centrum | Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze. |
US3465819A (en) | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
US3389975A (en) | 1967-03-10 | 1968-06-25 | Sinclair Research Inc | Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide |
NL6803827A (ru) | 1967-03-22 | 1968-09-23 | ||
US3515213A (en) | 1967-04-19 | 1970-06-02 | Shell Oil Co | Shale oil recovery process using heated oil-miscible fluids |
US3598182A (en) * | 1967-04-25 | 1971-08-10 | Justheim Petroleum Co | Method and apparatus for in situ distillation and hydrogenation of carbonaceous materials |
US3474863A (en) | 1967-07-28 | 1969-10-28 | Shell Oil Co | Shale oil extraction process |
US3528501A (en) | 1967-08-04 | 1970-09-15 | Phillips Petroleum Co | Recovery of oil from oil shale |
US3480082A (en) | 1967-09-25 | 1969-11-25 | Continental Oil Co | In situ retorting of oil shale using co2 as heat carrier |
US3434541A (en) | 1967-10-11 | 1969-03-25 | Mobil Oil Corp | In situ combustion process |
NL154577B (nl) * | 1967-11-15 | 1977-09-15 | Shell Int Research | Werkwijze voor het winnen van koolwaterstoffen vanuit een permeabele ondergrondse formatie. |
US3485300A (en) | 1967-12-20 | 1969-12-23 | Phillips Petroleum Co | Method and apparatus for defoaming crude oil down hole |
US3477058A (en) | 1968-02-01 | 1969-11-04 | Gen Electric | Magnesia insulated heating elements and methods of production |
US3580987A (en) | 1968-03-26 | 1971-05-25 | Pirelli | Electric cable |
US3487753A (en) * | 1968-04-10 | 1970-01-06 | Dresser Ind | Well swab cup |
US3455383A (en) | 1968-04-24 | 1969-07-15 | Shell Oil Co | Method of producing fluidized material from a subterranean formation |
US3578080A (en) | 1968-06-10 | 1971-05-11 | Shell Oil Co | Method of producing shale oil from an oil shale formation |
US3529682A (en) | 1968-10-03 | 1970-09-22 | Bell Telephone Labor Inc | Location detection and guidance systems for burrowing device |
US3537528A (en) | 1968-10-14 | 1970-11-03 | Shell Oil Co | Method for producing shale oil from an exfoliated oil shale formation |
US3593789A (en) | 1968-10-18 | 1971-07-20 | Shell Oil Co | Method for producing shale oil from an oil shale formation |
US3502372A (en) | 1968-10-23 | 1970-03-24 | Shell Oil Co | Process of recovering oil and dawsonite from oil shale |
US3565171A (en) | 1968-10-23 | 1971-02-23 | Shell Oil Co | Method for producing shale oil from a subterranean oil shale formation |
US3554285A (en) | 1968-10-24 | 1971-01-12 | Phillips Petroleum Co | Production and upgrading of heavy viscous oils |
US3629551A (en) | 1968-10-29 | 1971-12-21 | Chisso Corp | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
US3501201A (en) | 1968-10-30 | 1970-03-17 | Shell Oil Co | Method of producing shale oil from a subterranean oil shale formation |
US3617471A (en) * | 1968-12-26 | 1971-11-02 | Texaco Inc | Hydrotorting of shale to produce shale oil |
US3562401A (en) | 1969-03-03 | 1971-02-09 | Union Carbide Corp | Low temperature electric transmission systems |
US3614986A (en) | 1969-03-03 | 1971-10-26 | Electrothermic Co | Method for injecting heated fluids into mineral bearing formations |
US3542131A (en) | 1969-04-01 | 1970-11-24 | Mobil Oil Corp | Method of recovering hydrocarbons from oil shale |
US3547192A (en) | 1969-04-04 | 1970-12-15 | Shell Oil Co | Method of metal coating and electrically heating a subterranean earth formation |
US3618663A (en) | 1969-05-01 | 1971-11-09 | Phillips Petroleum Co | Shale oil production |
US3605890A (en) | 1969-06-04 | 1971-09-20 | Chevron Res | Hydrogen production from a kerogen-depleted shale formation |
US3526095A (en) | 1969-07-24 | 1970-09-01 | Ralph E Peck | Liquid gas storage system |
DE1939402B2 (de) | 1969-08-02 | 1970-12-03 | Felten & Guilleaume Kabelwerk | Verfahren und Vorrichtung zum Wellen von Rohrwandungen |
US3599714A (en) | 1969-09-08 | 1971-08-17 | Roger L Messman | Method of recovering hydrocarbons by in situ combustion |
US3547193A (en) | 1969-10-08 | 1970-12-15 | Electrothermic Co | Method and apparatus for recovery of minerals from sub-surface formations using electricity |
US3661423A (en) | 1970-02-12 | 1972-05-09 | Occidental Petroleum Corp | In situ process for recovery of carbonaceous materials from subterranean deposits |
US3943160A (en) | 1970-03-09 | 1976-03-09 | Shell Oil Company | Heat-stable calcium-compatible waterflood surfactant |
US3647358A (en) | 1970-07-23 | 1972-03-07 | Anti Pollution Systems | Method of catalytically inducing oxidation of carbonaceous materials by the use of molten salts |
US3657520A (en) | 1970-08-20 | 1972-04-18 | Michel A Ragault | Heating cable with cold outlets |
US3759574A (en) | 1970-09-24 | 1973-09-18 | Shell Oil Co | Method of producing hydrocarbons from an oil shale formation |
US4305463A (en) * | 1979-10-31 | 1981-12-15 | Oil Trieval Corporation | Oil recovery method and apparatus |
US3703929A (en) * | 1970-11-06 | 1972-11-28 | Union Oil Co | Well for transporting hot fluids through a permafrost zone |
US3679812A (en) * | 1970-11-13 | 1972-07-25 | Schlumberger Technology Corp | Electrical suspension cable for well tools |
US3680633A (en) | 1970-12-28 | 1972-08-01 | Sun Oil Co Delaware | Situ combustion initiation process |
US3675715A (en) | 1970-12-30 | 1972-07-11 | Forrester A Clark | Processes for secondarily recovering oil |
US3700280A (en) | 1971-04-28 | 1972-10-24 | Shell Oil Co | Method of producing oil from an oil shale formation containing nahcolite and dawsonite |
US3770398A (en) | 1971-09-17 | 1973-11-06 | Cities Service Oil Co | In situ coal gasification process |
US3743854A (en) * | 1971-09-29 | 1973-07-03 | Gen Electric | System and apparatus for dual transmission of petrochemical fluids and unidirectional electric current |
US3812913A (en) | 1971-10-18 | 1974-05-28 | Sun Oil Co | Method of formation consolidation |
US3782465A (en) * | 1971-11-09 | 1974-01-01 | Electro Petroleum | Electro-thermal process for promoting oil recovery |
US3893918A (en) | 1971-11-22 | 1975-07-08 | Engineering Specialties Inc | Method for separating material leaving a well |
US3844352A (en) | 1971-12-17 | 1974-10-29 | Brown Oil Tools | Method for modifying a well to provide gas lift production |
US3766982A (en) * | 1971-12-27 | 1973-10-23 | Justheim Petrol Co | Method for the in-situ treatment of hydrocarbonaceous materials |
US3759328A (en) | 1972-05-11 | 1973-09-18 | Shell Oil Co | Laterally expanding oil shale permeabilization |
US3794116A (en) | 1972-05-30 | 1974-02-26 | Atomic Energy Commission | Situ coal bed gasification |
US3779602A (en) | 1972-08-07 | 1973-12-18 | Shell Oil Co | Process for solution mining nahcolite |
US3757860A (en) | 1972-08-07 | 1973-09-11 | Atlantic Richfield Co | Well heating |
US3761599A (en) | 1972-09-05 | 1973-09-25 | Gen Electric | Means for reducing eddy current heating of a tank in electric apparatus |
US3809159A (en) | 1972-10-02 | 1974-05-07 | Continental Oil Co | Process for simultaneously increasing recovery and upgrading oil in a reservoir |
US3804172A (en) | 1972-10-11 | 1974-04-16 | Shell Oil Co | Method for the recovery of oil from oil shale |
US3794113A (en) | 1972-11-13 | 1974-02-26 | Mobil Oil Corp | Combination in situ combustion displacement and steam stimulation of producing wells |
US3804169A (en) | 1973-02-07 | 1974-04-16 | Shell Oil Co | Spreading-fluid recovery of subterranean oil |
US3896260A (en) | 1973-04-03 | 1975-07-22 | Walter A Plummer | Powder filled cable splice assembly |
US3947683A (en) | 1973-06-05 | 1976-03-30 | Texaco Inc. | Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones |
US3859503A (en) | 1973-06-12 | 1975-01-07 | Richard D Palone | Electric heated sucker rod |
US4076761A (en) | 1973-08-09 | 1978-02-28 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US3881551A (en) | 1973-10-12 | 1975-05-06 | Ruel C Terry | Method of extracting immobile hydrocarbons |
US3907045A (en) * | 1973-11-30 | 1975-09-23 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3853185A (en) | 1973-11-30 | 1974-12-10 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3882941A (en) | 1973-12-17 | 1975-05-13 | Cities Service Res & Dev Co | In situ production of bitumen from oil shale |
US3946812A (en) | 1974-01-02 | 1976-03-30 | Exxon Production Research Company | Use of materials as waterflood additives |
US4037655A (en) | 1974-04-19 | 1977-07-26 | Electroflood Company | Method for secondary recovery of oil |
US4199025A (en) | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
US3922148A (en) | 1974-05-16 | 1975-11-25 | Texaco Development Corp | Production of methane-rich gas |
ZA753184B (en) | 1974-05-31 | 1976-04-28 | Standard Oil Co | Process for recovering upgraded hydrocarbon products |
US3948755A (en) | 1974-05-31 | 1976-04-06 | Standard Oil Company | Process for recovering and upgrading hydrocarbons from oil shale and tar sands |
US3894769A (en) | 1974-06-06 | 1975-07-15 | Shell Oil Co | Recovering oil from a subterranean carbonaceous formation |
US3892270A (en) | 1974-06-06 | 1975-07-01 | Chevron Res | Production of hydrocarbons from underground formations |
US4006778A (en) | 1974-06-21 | 1977-02-08 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbon from tar sands |
GB1507675A (en) | 1974-06-21 | 1978-04-19 | Pyrotenax Of Ca Ltd | Heating cables and manufacture thereof |
US4026357A (en) | 1974-06-26 | 1977-05-31 | Texaco Exploration Canada Ltd. | In situ gasification of solid hydrocarbon materials in a subterranean formation |
US3935911A (en) | 1974-06-28 | 1976-02-03 | Dresser Industries, Inc. | Earth boring bit with means for conducting heat from the bit's bearings |
US4014575A (en) | 1974-07-26 | 1977-03-29 | Occidental Petroleum Corporation | System for fuel and products of oil shale retort |
US4005752A (en) | 1974-07-26 | 1977-02-01 | Occidental Petroleum Corporation | Method of igniting in situ oil shale retort with fuel rich flue gas |
US4029360A (en) | 1974-07-26 | 1977-06-14 | Occidental Oil Shale, Inc. | Method of recovering oil and water from in situ oil shale retort flue gas |
US3941421A (en) * | 1974-08-13 | 1976-03-02 | Occidental Petroleum Corporation | Apparatus for obtaining uniform gas flow through an in situ oil shale retort |
GB1454324A (en) | 1974-08-14 | 1976-11-03 | Iniex | Recovering combustible gases from underground deposits of coal or bituminous shale |
US3948319A (en) | 1974-10-16 | 1976-04-06 | Atlantic Richfield Company | Method and apparatus for producing fluid by varying current flow through subterranean source formation |
AR205595A1 (es) | 1974-11-06 | 1976-05-14 | Haldor Topsoe As | Procedimiento para preparar gases rico en metano |
US3933447A (en) | 1974-11-08 | 1976-01-20 | The United States Of America As Represented By The United States Energy Research And Development Administration | Underground gasification of coal |
US4138442A (en) | 1974-12-05 | 1979-02-06 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US3952802A (en) | 1974-12-11 | 1976-04-27 | In Situ Technology, Inc. | Method and apparatus for in situ gasification of coal and the commercial products derived therefrom |
US3986556A (en) | 1975-01-06 | 1976-10-19 | Haynes Charles A | Hydrocarbon recovery from earth strata |
US3958636A (en) | 1975-01-23 | 1976-05-25 | Atlantic Richfield Company | Production of bitumen from a tar sand formation |
US4042026A (en) | 1975-02-08 | 1977-08-16 | Deutsche Texaco Aktiengesellschaft | Method for initiating an in-situ recovery process by the introduction of oxygen |
US3972372A (en) | 1975-03-10 | 1976-08-03 | Fisher Sidney T | Exraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4096163A (en) | 1975-04-08 | 1978-06-20 | Mobil Oil Corporation | Conversion of synthesis gas to hydrocarbon mixtures |
US3924680A (en) | 1975-04-23 | 1975-12-09 | In Situ Technology Inc | Method of pyrolysis of coal in situ |
US3973628A (en) | 1975-04-30 | 1976-08-10 | New Mexico Tech Research Foundation | In situ solution mining of coal |
US4016239A (en) | 1975-05-22 | 1977-04-05 | Union Oil Company Of California | Recarbonation of spent oil shale |
US3987851A (en) | 1975-06-02 | 1976-10-26 | Shell Oil Company | Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale |
US3986557A (en) * | 1975-06-06 | 1976-10-19 | Atlantic Richfield Company | Production of bitumen from tar sands |
US3950029A (en) | 1975-06-12 | 1976-04-13 | Mobil Oil Corporation | In situ retorting of oil shale |
US3993132A (en) | 1975-06-18 | 1976-11-23 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbons from tar sands |
US4069868A (en) | 1975-07-14 | 1978-01-24 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4199024A (en) | 1975-08-07 | 1980-04-22 | World Energy Systems | Multistage gas generator |
US3954140A (en) | 1975-08-13 | 1976-05-04 | Hendrick Robert P | Recovery of hydrocarbons by in situ thermal extraction |
US3986349A (en) | 1975-09-15 | 1976-10-19 | Chevron Research Company | Method of power generation via coal gasification and liquid hydrocarbon synthesis |
US3994341A (en) * | 1975-10-30 | 1976-11-30 | Chevron Research Company | Recovering viscous petroleum from thick tar sand |
US4037658A (en) * | 1975-10-30 | 1977-07-26 | Chevron Research Company | Method of recovering viscous petroleum from an underground formation |
US3994340A (en) | 1975-10-30 | 1976-11-30 | Chevron Research Company | Method of recovering viscous petroleum from tar sand |
US4087130A (en) | 1975-11-03 | 1978-05-02 | Occidental Petroleum Corporation | Process for the gasification of coal in situ |
US4018279A (en) * | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4018280A (en) | 1975-12-10 | 1977-04-19 | Mobil Oil Corporation | Process for in situ retorting of oil shale |
US3992474A (en) | 1975-12-15 | 1976-11-16 | Uop Inc. | Motor fuel production with fluid catalytic cracking of high-boiling alkylate |
US4019575A (en) | 1975-12-22 | 1977-04-26 | Chevron Research Company | System for recovering viscous petroleum from thick tar sand |
US3999607A (en) | 1976-01-22 | 1976-12-28 | Exxon Research And Engineering Company | Recovery of hydrocarbons from coal |
US4031956A (en) | 1976-02-12 | 1977-06-28 | In Situ Technology, Inc. | Method of recovering energy from subsurface petroleum reservoirs |
US4008762A (en) | 1976-02-26 | 1977-02-22 | Fisher Sidney T | Extraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4010800A (en) | 1976-03-08 | 1977-03-08 | In Situ Technology, Inc. | Producing thin seams of coal in situ |
US4048637A (en) | 1976-03-23 | 1977-09-13 | Westinghouse Electric Corporation | Radar system for detecting slowly moving targets |
DE2615874B2 (de) | 1976-04-10 | 1978-10-19 | Deutsche Texaco Ag, 2000 Hamburg | Anwendung eines Verfahrens zum Gewinnen von Erdöl und Bitumen aus unterirdischen Lagerstätten mittels einer Verbrennungfront bei Lagerstätten beliebigen Gehalts an intermediären Kohlenwasserstoffen im Rohöl bzw. Bitumen |
US4022280A (en) * | 1976-05-17 | 1977-05-10 | Stoddard Xerxes T | Thermal recovery of hydrocarbons by washing an underground sand |
GB1544245A (en) | 1976-05-21 | 1979-04-19 | British Gas Corp | Production of substitute natural gas |
US4049053A (en) | 1976-06-10 | 1977-09-20 | Fisher Sidney T | Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4193451A (en) | 1976-06-17 | 1980-03-18 | The Badger Company, Inc. | Method for production of organic products from kerogen |
US4067390A (en) | 1976-07-06 | 1978-01-10 | Technology Application Services Corporation | Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc |
US4057293A (en) * | 1976-07-12 | 1977-11-08 | Garrett Donald E | Process for in situ conversion of coal or the like into oil and gas |
US4043393A (en) * | 1976-07-29 | 1977-08-23 | Fisher Sidney T | Extraction from underground coal deposits |
US4091869A (en) | 1976-09-07 | 1978-05-30 | Exxon Production Research Company | In situ process for recovery of carbonaceous materials from subterranean deposits |
US4065183A (en) | 1976-11-15 | 1977-12-27 | Trw Inc. | Recovery system for oil shale deposits |
US4083604A (en) | 1976-11-15 | 1978-04-11 | Trw Inc. | Thermomechanical fracture for recovery system in oil shale deposits |
US4059308A (en) | 1976-11-15 | 1977-11-22 | Trw Inc. | Pressure swing recovery system for oil shale deposits |
US4077471A (en) | 1976-12-01 | 1978-03-07 | Texaco Inc. | Surfactant oil recovery process usable in high temperature, high salinity formations |
US4064943A (en) | 1976-12-06 | 1977-12-27 | Shell Oil Co | Plugging permeable earth formation with wax |
US4084637A (en) * | 1976-12-16 | 1978-04-18 | Petro Canada Exploration Inc. | Method of producing viscous materials from subterranean formations |
US4089374A (en) | 1976-12-16 | 1978-05-16 | In Situ Technology, Inc. | Producing methane from coal in situ |
US4093026A (en) | 1977-01-17 | 1978-06-06 | Occidental Oil Shale, Inc. | Removal of sulfur dioxide from process gas using treated oil shale and water |
US4102418A (en) | 1977-01-24 | 1978-07-25 | Bakerdrill Inc. | Borehole drilling apparatus |
US4277416A (en) | 1977-02-17 | 1981-07-07 | Aminoil, Usa, Inc. | Process for producing methanol |
US4085803A (en) | 1977-03-14 | 1978-04-25 | Exxon Production Research Company | Method for oil recovery using a horizontal well with indirect heating |
US4151877A (en) | 1977-05-13 | 1979-05-01 | Occidental Oil Shale, Inc. | Determining the locus of a processing zone in a retort through channels |
US4099567A (en) | 1977-05-27 | 1978-07-11 | In Situ Technology, Inc. | Generating medium BTU gas from coal in situ |
US4169506A (en) | 1977-07-15 | 1979-10-02 | Standard Oil Company (Indiana) | In situ retorting of oil shale and energy recovery |
US4140180A (en) | 1977-08-29 | 1979-02-20 | Iit Research Institute | Method for in situ heat processing of hydrocarbonaceous formations |
US4144935A (en) | 1977-08-29 | 1979-03-20 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
NL181941C (nl) | 1977-09-16 | 1987-12-01 | Ir Arnold Willem Josephus Grup | Werkwijze voor het ondergronds vergassen van steenkool of bruinkool. |
US4125159A (en) | 1977-10-17 | 1978-11-14 | Vann Roy Randell | Method and apparatus for isolating and treating subsurface stratas |
SU915451A1 (ru) | 1977-10-21 | 1988-08-23 | Vnii Ispolzovania | Способ подземной газификации топлива |
US4119349A (en) | 1977-10-25 | 1978-10-10 | Gulf Oil Corporation | Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale |
US4114688A (en) | 1977-12-05 | 1978-09-19 | In Situ Technology Inc. | Minimizing environmental effects in production and use of coal |
US4158467A (en) | 1977-12-30 | 1979-06-19 | Gulf Oil Corporation | Process for recovering shale oil |
US4196914A (en) | 1978-01-13 | 1980-04-08 | Dresser Industries, Inc. | Chuck for an earth boring machine |
US4148359A (en) | 1978-01-30 | 1979-04-10 | Shell Oil Company | Pressure-balanced oil recovery process for water productive oil shale |
DE2812490A1 (de) | 1978-03-22 | 1979-09-27 | Texaco Ag | Verfahren zur ermittlung der raeumlichen ausdehnung von untertaegigen reaktionen |
US4162707A (en) | 1978-04-20 | 1979-07-31 | Mobil Oil Corporation | Method of treating formation to remove ammonium ions |
US4197911A (en) | 1978-05-09 | 1980-04-15 | Ramcor, Inc. | Process for in situ coal gasification |
US4228853A (en) | 1978-06-21 | 1980-10-21 | Harvey A Herbert | Petroleum production method |
US4186801A (en) | 1978-12-18 | 1980-02-05 | Gulf Research And Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4185692A (en) | 1978-07-14 | 1980-01-29 | In Situ Technology, Inc. | Underground linkage of wells for production of coal in situ |
US4184548A (en) | 1978-07-17 | 1980-01-22 | Standard Oil Company (Indiana) | Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort |
US4257650A (en) * | 1978-09-07 | 1981-03-24 | Barber Heavy Oil Process, Inc. | Method for recovering subsurface earth substances |
US4183405A (en) | 1978-10-02 | 1980-01-15 | Magnie Robert L | Enhanced recoveries of petroleum and hydrogen from underground reservoirs |
US4446917A (en) | 1978-10-04 | 1984-05-08 | Todd John C | Method and apparatus for producing viscous or waxy crude oils |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
US4299086A (en) | 1978-12-07 | 1981-11-10 | Gulf Research & Development Company | Utilization of energy obtained by substoichiometric combustion of low heating value gases |
US4265307A (en) | 1978-12-20 | 1981-05-05 | Standard Oil Company | Shale oil recovery |
US4194562A (en) | 1978-12-21 | 1980-03-25 | Texaco Inc. | Method for preconditioning a subterranean oil-bearing formation prior to in-situ combustion |
US4258955A (en) | 1978-12-26 | 1981-03-31 | Mobil Oil Corporation | Process for in-situ leaching of uranium |
US4274487A (en) | 1979-01-11 | 1981-06-23 | Standard Oil Company (Indiana) | Indirect thermal stimulation of production wells |
US4324292A (en) | 1979-02-21 | 1982-04-13 | University Of Utah | Process for recovering products from oil shale |
US4260192A (en) | 1979-02-21 | 1981-04-07 | Occidental Research Corporation | Recovery of magnesia from oil shale |
US4243511A (en) | 1979-03-26 | 1981-01-06 | Marathon Oil Company | Process for suppressing carbonate decomposition in vapor phase water retorting |
US4248306A (en) | 1979-04-02 | 1981-02-03 | Huisen Allan T Van | Geothermal petroleum refining |
US4282587A (en) | 1979-05-21 | 1981-08-04 | Daniel Silverman | Method for monitoring the recovery of minerals from shallow geological formations |
US4216079A (en) | 1979-07-09 | 1980-08-05 | Cities Service Company | Emulsion breaking with surfactant recovery |
US4234230A (en) | 1979-07-11 | 1980-11-18 | The Superior Oil Company | In situ processing of mined oil shale |
US4228854A (en) | 1979-08-13 | 1980-10-21 | Alberta Research Council | Enhanced oil recovery using electrical means |
US4701587A (en) | 1979-08-31 | 1987-10-20 | Metcal, Inc. | Shielded heating element having intrinsic temperature control |
US4256945A (en) | 1979-08-31 | 1981-03-17 | Iris Associates | Alternating current electrically resistive heating element having intrinsic temperature control |
US4327805A (en) | 1979-09-18 | 1982-05-04 | Carmel Energy, Inc. | Method for producing viscous hydrocarbons |
US4549396A (en) | 1979-10-01 | 1985-10-29 | Mobil Oil Corporation | Conversion of coal to electricity |
US4370518A (en) | 1979-12-03 | 1983-01-25 | Hughes Tool Company | Splice for lead-coated and insulated conductors |
US4250230A (en) | 1979-12-10 | 1981-02-10 | In Situ Technology, Inc. | Generating electricity from coal in situ |
US4250962A (en) | 1979-12-14 | 1981-02-17 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4398151A (en) | 1980-01-25 | 1983-08-09 | Shell Oil Company | Method for correcting an electrical log for the presence of shale in a formation |
US4359687A (en) | 1980-01-25 | 1982-11-16 | Shell Oil Company | Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain |
US4285547A (en) | 1980-02-01 | 1981-08-25 | Multi Mineral Corporation | Integrated in situ shale oil and mineral recovery process |
USRE30738E (en) | 1980-02-06 | 1981-09-08 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
US4303126A (en) | 1980-02-27 | 1981-12-01 | Chevron Research Company | Arrangement of wells for producing subsurface viscous petroleum |
US4477376A (en) | 1980-03-10 | 1984-10-16 | Gold Marvin H | Castable mixture for insulating spliced high voltage cable |
US4445574A (en) | 1980-03-24 | 1984-05-01 | Geo Vann, Inc. | Continuous borehole formed horizontally through a hydrocarbon producing formation |
US4417782A (en) | 1980-03-31 | 1983-11-29 | Raychem Corporation | Fiber optic temperature sensing |
JPS56146588A (en) * | 1980-04-14 | 1981-11-14 | Mitsubishi Electric Corp | Electric heating electrode device for hydrocarbon based underground resources |
CA1168283A (en) | 1980-04-14 | 1984-05-29 | Hiroshi Teratani | Electrode device for electrically heating underground deposits of hydrocarbons |
US4273188A (en) | 1980-04-30 | 1981-06-16 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4317485A (en) * | 1980-05-23 | 1982-03-02 | Baker International Corporation | Pump catcher apparatus |
US4306621A (en) | 1980-05-23 | 1981-12-22 | Boyd R Michael | Method for in situ coal gasification operations |
US4409090A (en) | 1980-06-02 | 1983-10-11 | University Of Utah | Process for recovering products from tar sand |
JPS6015109B2 (ja) * | 1980-06-03 | 1985-04-17 | 三菱電機株式会社 | 炭化水素系地下資源の電気加熱用電極装置 |
CA1165361A (en) | 1980-06-03 | 1984-04-10 | Toshiyuki Kobayashi | Electrode unit for electrically heating underground hydrocarbon deposits |
US4381641A (en) | 1980-06-23 | 1983-05-03 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4401099A (en) | 1980-07-11 | 1983-08-30 | W.B. Combustion, Inc. | Single-ended recuperative radiant tube assembly and method |
US4299285A (en) | 1980-07-21 | 1981-11-10 | Gulf Research & Development Company | Underground gasification of bituminous coal |
DE3030110C2 (de) | 1980-08-08 | 1983-04-21 | Vsesojuznyj neftegazovyj naučno-issledovatel'skij institut, Moskva | Verfahren zur Gewinnung von Erdöl durch Grubenbaue und durch Wärmezufuhr |
US4396062A (en) | 1980-10-06 | 1983-08-02 | University Of Utah Research Foundation | Apparatus and method for time-domain tracking of high-speed chemical reactions |
US4353418A (en) | 1980-10-20 | 1982-10-12 | Standard Oil Company (Indiana) | In situ retorting of oil shale |
US4384613A (en) | 1980-10-24 | 1983-05-24 | Terra Tek, Inc. | Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases |
US4366864A (en) | 1980-11-24 | 1983-01-04 | Exxon Research And Engineering Co. | Method for recovery of hydrocarbons from oil-bearing limestone or dolomite |
US4401163A (en) | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
JPS57116891A (en) * | 1980-12-30 | 1982-07-21 | Kobe Steel Ltd | Method of and apparatus for generating steam on shaft bottom |
US4385661A (en) | 1981-01-07 | 1983-05-31 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator with improved preheating, combustion and protection features |
US4448251A (en) | 1981-01-08 | 1984-05-15 | Uop Inc. | In situ conversion of hydrocarbonaceous oil |
JPS57116891U (ru) | 1981-01-12 | 1982-07-20 | ||
US4423311A (en) | 1981-01-19 | 1983-12-27 | Varney Sr Paul | Electric heating apparatus for de-icing pipes |
US4333764A (en) | 1981-01-21 | 1982-06-08 | Shell Oil Company | Nitrogen-gas-stabilized cement and a process for making and using it |
US4366668A (en) | 1981-02-25 | 1983-01-04 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4382469A (en) | 1981-03-10 | 1983-05-10 | Electro-Petroleum, Inc. | Method of in situ gasification |
US4363361A (en) | 1981-03-19 | 1982-12-14 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4390067A (en) | 1981-04-06 | 1983-06-28 | Exxon Production Research Co. | Method of treating reservoirs containing very viscous crude oil or bitumen |
US4399866A (en) | 1981-04-10 | 1983-08-23 | Atlantic Richfield Company | Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit |
US4444255A (en) | 1981-04-20 | 1984-04-24 | Lloyd Geoffrey | Apparatus and process for the recovery of oil |
US4380930A (en) | 1981-05-01 | 1983-04-26 | Mobil Oil Corporation | System for transmitting ultrasonic energy through core samples |
US4429745A (en) | 1981-05-08 | 1984-02-07 | Mobil Oil Corporation | Oil recovery method |
US4378048A (en) | 1981-05-08 | 1983-03-29 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases using different platinum catalysts |
US4384614A (en) | 1981-05-11 | 1983-05-24 | Justheim Pertroleum Company | Method of retorting oil shale by velocity flow of super-heated air |
US4403110A (en) | 1981-05-15 | 1983-09-06 | Walter Kidde And Company, Inc. | Electrical cable splice |
US4437519A (en) | 1981-06-03 | 1984-03-20 | Occidental Oil Shale, Inc. | Reduction of shale oil pour point |
US4368452A (en) | 1981-06-22 | 1983-01-11 | Kerr Jr Robert L | Thermal protection of aluminum conductor junctions |
US4428700A (en) | 1981-08-03 | 1984-01-31 | E. R. Johnson Associates, Inc. | Method for disposing of waste materials |
US4456065A (en) | 1981-08-20 | 1984-06-26 | Elektra Energie A.G. | Heavy oil recovering |
US4344483A (en) | 1981-09-08 | 1982-08-17 | Fisher Charles B | Multiple-site underground magnetic heating of hydrocarbons |
US4452491A (en) | 1981-09-25 | 1984-06-05 | Intercontinental Econergy Associates, Inc. | Recovery of hydrocarbons from deep underground deposits of tar sands |
US4425967A (en) | 1981-10-07 | 1984-01-17 | Standard Oil Company (Indiana) | Ignition procedure and process for in situ retorting of oil shale |
US4401162A (en) | 1981-10-13 | 1983-08-30 | Synfuel (An Indiana Limited Partnership) | In situ oil shale process |
US4605680A (en) | 1981-10-13 | 1986-08-12 | Chevron Research Company | Conversion of synthesis gas to diesel fuel and gasoline |
US4410042A (en) | 1981-11-02 | 1983-10-18 | Mobil Oil Corporation | In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4444258A (en) | 1981-11-10 | 1984-04-24 | Nicholas Kalmar | In situ recovery of oil from oil shale |
US4418752A (en) | 1982-01-07 | 1983-12-06 | Conoco Inc. | Thermal oil recovery with solvent recirculation |
FR2519688A1 (fr) | 1982-01-08 | 1983-07-18 | Elf Aquitaine | Systeme d'etancheite pour puits de forage dans lequel circule un fluide chaud |
US4397732A (en) | 1982-02-11 | 1983-08-09 | International Coal Refining Company | Process for coal liquefaction employing selective coal feed |
GB2117030B (en) | 1982-03-17 | 1985-09-11 | Cameron Iron Works Inc | Method and apparatus for remote installations of dual tubing strings in a subsea well |
US4530401A (en) | 1982-04-05 | 1985-07-23 | Mobil Oil Corporation | Method for maximum in-situ visbreaking of heavy oil |
CA1196594A (en) | 1982-04-08 | 1985-11-12 | Guy Savard | Recovery of oil from tar sands |
US4537252A (en) | 1982-04-23 | 1985-08-27 | Standard Oil Company (Indiana) | Method of underground conversion of coal |
US4491179A (en) | 1982-04-26 | 1985-01-01 | Pirson Sylvain J | Method for oil recovery by in situ exfoliation drive |
US4455215A (en) | 1982-04-29 | 1984-06-19 | Jarrott David M | Process for the geoconversion of coal into oil |
US4412585A (en) | 1982-05-03 | 1983-11-01 | Cities Service Company | Electrothermal process for recovering hydrocarbons |
US4415034A (en) | 1982-05-03 | 1983-11-15 | Cities Service Company | Electrode well completion |
US4524826A (en) | 1982-06-14 | 1985-06-25 | Texaco Inc. | Method of heating an oil shale formation |
US4457374A (en) | 1982-06-29 | 1984-07-03 | Standard Oil Company | Transient response process for detecting in situ retorting conditions |
US4442896A (en) | 1982-07-21 | 1984-04-17 | Reale Lucio V | Treatment of underground beds |
US4407973A (en) | 1982-07-28 | 1983-10-04 | The M. W. Kellogg Company | Methanol from coal and natural gas |
US4449594A (en) | 1982-07-30 | 1984-05-22 | Allied Corporation | Method for obtaining pressurized core samples from underpressurized reservoirs |
US4479541A (en) | 1982-08-23 | 1984-10-30 | Wang Fun Den | Method and apparatus for recovery of oil, gas and mineral deposits by panel opening |
US4460044A (en) | 1982-08-31 | 1984-07-17 | Chevron Research Company | Advancing heated annulus steam drive |
US4544478A (en) | 1982-09-03 | 1985-10-01 | Chevron Research Company | Process for pyrolyzing hydrocarbonaceous solids to recover volatile hydrocarbons |
US4463988A (en) | 1982-09-07 | 1984-08-07 | Cities Service Co. | Horizontal heated plane process |
US4458767A (en) | 1982-09-28 | 1984-07-10 | Mobil Oil Corporation | Method for directionally drilling a first well to intersect a second well |
US4485868A (en) | 1982-09-29 | 1984-12-04 | Iit Research Institute | Method for recovery of viscous hydrocarbons by electromagnetic heating in situ |
US4695713A (en) | 1982-09-30 | 1987-09-22 | Metcal, Inc. | Autoregulating, electrically shielded heater |
US4927857A (en) | 1982-09-30 | 1990-05-22 | Engelhard Corporation | Method of methanol production |
CA1214815A (en) | 1982-09-30 | 1986-12-02 | John F. Krumme | Autoregulating electrically shielded heater |
US4498531A (en) | 1982-10-01 | 1985-02-12 | Rockwell International Corporation | Emission controller for indirect fired downhole steam generators |
US4485869A (en) | 1982-10-22 | 1984-12-04 | Iit Research Institute | Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ |
ATE21340T1 (de) | 1982-11-22 | 1986-08-15 | Shell Int Research | Verfahren zur herstellung eines fischer-tropsch- katalysators, der auf diese weise hergestellte katalysator und seine verwendung zur herstellung von kohlenwasserstoffen. |
US4474238A (en) | 1982-11-30 | 1984-10-02 | Phillips Petroleum Company | Method and apparatus for treatment of subsurface formations |
US4498535A (en) | 1982-11-30 | 1985-02-12 | Iit Research Institute | Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line |
US4752673A (en) | 1982-12-01 | 1988-06-21 | Metcal, Inc. | Autoregulating heater |
US4520229A (en) | 1983-01-03 | 1985-05-28 | Amerace Corporation | Splice connector housing and assembly of cables employing same |
US4501326A (en) | 1983-01-17 | 1985-02-26 | Gulf Canada Limited | In-situ recovery of viscous hydrocarbonaceous crude oil |
US4609041A (en) | 1983-02-10 | 1986-09-02 | Magda Richard M | Well hot oil system |
US4886118A (en) | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US4640352A (en) | 1983-03-21 | 1987-02-03 | Shell Oil Company | In-situ steam drive oil recovery process |
US4458757A (en) | 1983-04-25 | 1984-07-10 | Exxon Research And Engineering Co. | In situ shale-oil recovery process |
US4524827A (en) | 1983-04-29 | 1985-06-25 | Iit Research Institute | Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations |
US4545435A (en) | 1983-04-29 | 1985-10-08 | Iit Research Institute | Conduction heating of hydrocarbonaceous formations |
US4518548A (en) | 1983-05-02 | 1985-05-21 | Sulcon, Inc. | Method of overlaying sulphur concrete on horizontal and vertical surfaces |
US4470459A (en) | 1983-05-09 | 1984-09-11 | Halliburton Company | Apparatus and method for controlled temperature heating of volumes of hydrocarbonaceous materials in earth formations |
US4794226A (en) | 1983-05-26 | 1988-12-27 | Metcal, Inc. | Self-regulating porous heater device |
EP0130671A3 (en) | 1983-05-26 | 1986-12-17 | Metcal Inc. | Multiple temperature autoregulating heater |
US5073625A (en) | 1983-05-26 | 1991-12-17 | Metcal, Inc. | Self-regulating porous heating device |
DE3319732A1 (de) | 1983-05-31 | 1984-12-06 | Kraftwerk Union AG, 4330 Mülheim | Mittellastkraftwerk mit integrierter kohlevergasungsanlage zur erzeugung von strom und methanol |
US4583046A (en) | 1983-06-20 | 1986-04-15 | Shell Oil Company | Apparatus for focused electrode induced polarization logging |
US4658215A (en) | 1983-06-20 | 1987-04-14 | Shell Oil Company | Method for induced polarization logging |
US4717814A (en) | 1983-06-27 | 1988-01-05 | Metcal, Inc. | Slotted autoregulating heater |
US4439307A (en) | 1983-07-01 | 1984-03-27 | Dravo Corporation | Heating process gas for indirect shale oil retorting through the combustion of residual carbon in oil depleted shale |
US5209987A (en) | 1983-07-08 | 1993-05-11 | Raychem Limited | Wire and cable |
US4985313A (en) | 1985-01-14 | 1991-01-15 | Raychem Limited | Wire and cable |
US4598392A (en) | 1983-07-26 | 1986-07-01 | Mobil Oil Corporation | Vibratory signal sweep seismic prospecting method and apparatus |
US4501445A (en) | 1983-08-01 | 1985-02-26 | Cities Service Company | Method of in-situ hydrogenation of carbonaceous material |
US4538682A (en) | 1983-09-08 | 1985-09-03 | Mcmanus James W | Method and apparatus for removing oil well paraffin |
US4573530A (en) | 1983-11-07 | 1986-03-04 | Mobil Oil Corporation | In-situ gasification of tar sands utilizing a combustible gas |
US4698149A (en) | 1983-11-07 | 1987-10-06 | Mobil Oil Corporation | Enhanced recovery of hydrocarbonaceous fluids oil shale |
US4489782A (en) * | 1983-12-12 | 1984-12-25 | Atlantic Richfield Company | Viscous oil production using electrical current heating and lateral drain holes |
US4598772A (en) | 1983-12-28 | 1986-07-08 | Mobil Oil Corporation | Method for operating a production well in an oxygen driven in-situ combustion oil recovery process |
US4540882A (en) | 1983-12-29 | 1985-09-10 | Shell Oil Company | Method of determining drilling fluid invasion |
US4571491A (en) | 1983-12-29 | 1986-02-18 | Shell Oil Company | Method of imaging the atomic number of a sample |
US4583242A (en) | 1983-12-29 | 1986-04-15 | Shell Oil Company | Apparatus for positioning a sample in a computerized axial tomographic scanner |
US4542648A (en) | 1983-12-29 | 1985-09-24 | Shell Oil Company | Method of correlating a core sample with its original position in a borehole |
US4635197A (en) | 1983-12-29 | 1987-01-06 | Shell Oil Company | High resolution tomographic imaging method |
US4613754A (en) | 1983-12-29 | 1986-09-23 | Shell Oil Company | Tomographic calibration apparatus |
US4662439A (en) | 1984-01-20 | 1987-05-05 | Amoco Corporation | Method of underground conversion of coal |
US4623401A (en) | 1984-03-06 | 1986-11-18 | Metcal, Inc. | Heat treatment with an autoregulating heater |
US4644283A (en) | 1984-03-19 | 1987-02-17 | Shell Oil Company | In-situ method for determining pore size distribution, capillary pressure and permeability |
US4637464A (en) | 1984-03-22 | 1987-01-20 | Amoco Corporation | In situ retorting of oil shale with pulsed water purge |
US4552214A (en) | 1984-03-22 | 1985-11-12 | Standard Oil Company (Indiana) | Pulsed in situ retorting in an array of oil shale retorts |
US4570715A (en) | 1984-04-06 | 1986-02-18 | Shell Oil Company | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature |
US4577690A (en) | 1984-04-18 | 1986-03-25 | Mobil Oil Corporation | Method of using seismic data to monitor firefloods |
US4592423A (en) | 1984-05-14 | 1986-06-03 | Texaco Inc. | Hydrocarbon stratum retorting means and method |
US4597441A (en) | 1984-05-25 | 1986-07-01 | World Energy Systems, Inc. | Recovery of oil by in situ hydrogenation |
US4620592A (en) * | 1984-06-11 | 1986-11-04 | Atlantic Richfield Company | Progressive sequence for viscous oil recovery |
US4663711A (en) | 1984-06-22 | 1987-05-05 | Shell Oil Company | Method of analyzing fluid saturation using computerized axial tomography |
US4577503A (en) | 1984-09-04 | 1986-03-25 | International Business Machines Corporation | Method and device for detecting a specific acoustic spectral feature |
US4577691A (en) | 1984-09-10 | 1986-03-25 | Texaco Inc. | Method and apparatus for producing viscous hydrocarbons from a subterranean formation |
US4576231A (en) | 1984-09-13 | 1986-03-18 | Texaco Inc. | Method and apparatus for combating encroachment by in situ treated formations |
US4597444A (en) | 1984-09-21 | 1986-07-01 | Atlantic Richfield Company | Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation |
US4691771A (en) | 1984-09-25 | 1987-09-08 | Worldenergy Systems, Inc. | Recovery of oil by in-situ combustion followed by in-situ hydrogenation |
JPS6177795A (ja) * | 1984-09-26 | 1986-04-21 | 株式会社東芝 | 原子炉用制御棒 |
US4616705A (en) | 1984-10-05 | 1986-10-14 | Shell Oil Company | Mini-well temperature profiling process |
JPS61102990A (ja) * | 1984-10-24 | 1986-05-21 | 近畿イシコ株式会社 | 基礎工事用機械の昇降装置 |
US4598770A (en) | 1984-10-25 | 1986-07-08 | Mobil Oil Corporation | Thermal recovery method for viscous oil |
US4572299A (en) | 1984-10-30 | 1986-02-25 | Shell Oil Company | Heater cable installation |
JPS61118692A (ja) * | 1984-11-13 | 1986-06-05 | ウエスチングハウス エレクトリック コ−ポレ−ション | 加圧水型原子炉発電システムの運転方法 |
US4669542A (en) | 1984-11-21 | 1987-06-02 | Mobil Oil Corporation | Simultaneous recovery of crude from multiple zones in a reservoir |
US4634187A (en) | 1984-11-21 | 1987-01-06 | Isl Ventures, Inc. | Method of in-situ leaching of ores |
US4585066A (en) | 1984-11-30 | 1986-04-29 | Shell Oil Company | Well treating process for installing a cable bundle containing strands of changing diameter |
US4704514A (en) | 1985-01-11 | 1987-11-03 | Egmond Cor F Van | Heating rate variant elongated electrical resistance heater |
US4614392A (en) | 1985-01-15 | 1986-09-30 | Moore Boyd B | Well bore electric pump power cable connector for multiple individual, insulated conductors of a pump power cable |
US4645906A (en) | 1985-03-04 | 1987-02-24 | Thermon Manufacturing Company | Reduced resistance skin effect heat generating system |
US4643256A (en) | 1985-03-18 | 1987-02-17 | Shell Oil Company | Steam-foaming surfactant mixtures which are tolerant of divalent ions |
US4785163A (en) | 1985-03-26 | 1988-11-15 | Raychem Corporation | Method for monitoring a heater |
US4698583A (en) | 1985-03-26 | 1987-10-06 | Raychem Corporation | Method of monitoring a heater for faults |
US4670634A (en) | 1985-04-05 | 1987-06-02 | Iit Research Institute | In situ decontamination of spills and landfills by radio frequency heating |
FI861646A (fi) | 1985-04-19 | 1986-10-20 | Raychem Gmbh | Vaermningsanordning. |
US4601333A (en) * | 1985-04-29 | 1986-07-22 | Hughes Tool Company | Thermal slide joint |
JPS61282594A (ja) | 1985-06-05 | 1986-12-12 | 日本海洋掘削株式会社 | ストリングスの測長方法 |
US4671102A (en) | 1985-06-18 | 1987-06-09 | Shell Oil Company | Method and apparatus for determining distribution of fluids |
US4626665A (en) | 1985-06-24 | 1986-12-02 | Shell Oil Company | Metal oversheathed electrical resistance heater |
US4605489A (en) | 1985-06-27 | 1986-08-12 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4623444A (en) | 1985-06-27 | 1986-11-18 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4662438A (en) | 1985-07-19 | 1987-05-05 | Uentech Corporation | Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole |
US4719423A (en) | 1985-08-13 | 1988-01-12 | Shell Oil Company | NMR imaging of materials for transport properties |
US4728892A (en) | 1985-08-13 | 1988-03-01 | Shell Oil Company | NMR imaging of materials |
NO853394L (no) * | 1985-08-29 | 1987-03-02 | You Yi Tu | Anordning for aa sperre et borehull ved boring etter oljekilder e.l. |
US4778586A (en) | 1985-08-30 | 1988-10-18 | Resource Technology Associates | Viscosity reduction processing at elevated pressure |
US4662437A (en) | 1985-11-14 | 1987-05-05 | Atlantic Richfield Company | Electrically stimulated well production system with flexible tubing conductor |
CA1253555A (en) | 1985-11-21 | 1989-05-02 | Cornelis F.H. Van Egmond | Heating rate variant elongated electrical resistance heater |
US4662443A (en) | 1985-12-05 | 1987-05-05 | Amoco Corporation | Combination air-blown and oxygen-blown underground coal gasification process |
US4849611A (en) | 1985-12-16 | 1989-07-18 | Raychem Corporation | Self-regulating heater employing reactive components |
US4730162A (en) | 1985-12-31 | 1988-03-08 | Shell Oil Company | Time-domain induced polarization logging method and apparatus with gated amplification level |
US4706751A (en) | 1986-01-31 | 1987-11-17 | S-Cal Research Corp. | Heavy oil recovery process |
US4694907A (en) | 1986-02-21 | 1987-09-22 | Carbotek, Inc. | Thermally-enhanced oil recovery method and apparatus |
US4640353A (en) | 1986-03-21 | 1987-02-03 | Atlantic Richfield Company | Electrode well and method of completion |
US4734115A (en) | 1986-03-24 | 1988-03-29 | Air Products And Chemicals, Inc. | Low pressure process for C3+ liquids recovery from process product gas |
US4793421A (en) * | 1986-04-08 | 1988-12-27 | Becor Western Inc. | Programmed automatic drill control |
US4651825A (en) | 1986-05-09 | 1987-03-24 | Atlantic Richfield Company | Enhanced well production |
GB2190162A (en) * | 1986-05-09 | 1987-11-11 | Kawasaki Thermal Systems Inc | Thermally insulated telescopic pipe coupling |
US4814587A (en) | 1986-06-10 | 1989-03-21 | Metcal, Inc. | High power self-regulating heater |
US4682652A (en) | 1986-06-30 | 1987-07-28 | Texaco Inc. | Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells |
US4893504A (en) | 1986-07-02 | 1990-01-16 | Shell Oil Company | Method for determining capillary pressure and relative permeability by imaging |
US4769602A (en) | 1986-07-02 | 1988-09-06 | Shell Oil Company | Determining multiphase saturations by NMR imaging of multiple nuclides |
US4716960A (en) | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
US4818370A (en) | 1986-07-23 | 1989-04-04 | Cities Service Oil And Gas Corporation | Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions |
US4772634A (en) | 1986-07-31 | 1988-09-20 | Energy Research Corporation | Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer |
US4744245A (en) | 1986-08-12 | 1988-05-17 | Atlantic Richfield Company | Acoustic measurements in rock formations for determining fracture orientation |
US4696345A (en) | 1986-08-21 | 1987-09-29 | Chevron Research Company | Hasdrive with multiple offset producers |
US4769606A (en) | 1986-09-30 | 1988-09-06 | Shell Oil Company | Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations |
US5043668A (en) | 1987-08-26 | 1991-08-27 | Paramagnetic Logging Inc. | Methods and apparatus for measurement of electronic properties of geological formations through borehole casing |
US4983319A (en) | 1986-11-24 | 1991-01-08 | Canadian Occidental Petroleum Ltd. | Preparation of low-viscosity improved stable crude oil transport emulsions |
US5316664A (en) | 1986-11-24 | 1994-05-31 | Canadian Occidental Petroleum, Ltd. | Process for recovery of hydrocarbons and rejection of sand |
US5340467A (en) | 1986-11-24 | 1994-08-23 | Canadian Occidental Petroleum Ltd. | Process for recovery of hydrocarbons and rejection of sand |
CA1288043C (en) | 1986-12-15 | 1991-08-27 | Peter Van Meurs | Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil |
US4766958A (en) | 1987-01-12 | 1988-08-30 | Mobil Oil Corporation | Method of recovering viscous oil from reservoirs with multiple horizontal zones |
US4756367A (en) | 1987-04-28 | 1988-07-12 | Amoco Corporation | Method for producing natural gas from a coal seam |
US4817711A (en) | 1987-05-27 | 1989-04-04 | Jeambey Calhoun G | System for recovery of petroleum from petroleum impregnated media |
US4818371A (en) | 1987-06-05 | 1989-04-04 | Resource Technology Associates | Viscosity reduction by direct oxidative heating |
US4787452A (en) | 1987-06-08 | 1988-11-29 | Mobil Oil Corporation | Disposal of produced formation fines during oil recovery |
US4821798A (en) | 1987-06-09 | 1989-04-18 | Ors Development Corporation | Heating system for rathole oil well |
US4793409A (en) | 1987-06-18 | 1988-12-27 | Ors Development Corporation | Method and apparatus for forming an insulated oil well casing |
US4856341A (en) | 1987-06-25 | 1989-08-15 | Shell Oil Company | Apparatus for analysis of failure of material |
US4827761A (en) | 1987-06-25 | 1989-05-09 | Shell Oil Company | Sample holder |
US4884455A (en) | 1987-06-25 | 1989-12-05 | Shell Oil Company | Method for analysis of failure of material employing imaging |
US4776638A (en) | 1987-07-13 | 1988-10-11 | University Of Kentucky Research Foundation | Method and apparatus for conversion of coal in situ |
US4848924A (en) | 1987-08-19 | 1989-07-18 | The Babcock & Wilcox Company | Acoustic pyrometer |
US4828031A (en) | 1987-10-13 | 1989-05-09 | Chevron Research Company | In situ chemical stimulation of diatomite formations |
US4762425A (en) | 1987-10-15 | 1988-08-09 | Parthasarathy Shakkottai | System for temperature profile measurement in large furnances and kilns and method therefor |
US4815791A (en) | 1987-10-22 | 1989-03-28 | The United States Of America As Represented By The Secretary Of The Interior | Bedded mineral extraction process |
US5306640A (en) | 1987-10-28 | 1994-04-26 | Shell Oil Company | Method for determining preselected properties of a crude oil |
US4987368A (en) | 1987-11-05 | 1991-01-22 | Shell Oil Company | Nuclear magnetism logging tool using high-temperature superconducting squid detectors |
US4842448A (en) | 1987-11-12 | 1989-06-27 | Drexel University | Method of removing contaminants from contaminated soil in situ |
US4808925A (en) | 1987-11-19 | 1989-02-28 | Halliburton Company | Three magnet casing collar locator |
US4823890A (en) | 1988-02-23 | 1989-04-25 | Longyear Company | Reverse circulation bit apparatus |
US4883582A (en) | 1988-03-07 | 1989-11-28 | Mccants Malcolm T | Vis-breaking heavy crude oils for pumpability |
US4866983A (en) | 1988-04-14 | 1989-09-19 | Shell Oil Company | Analytical methods and apparatus for measuring the oil content of sponge core |
US4885080A (en) | 1988-05-25 | 1989-12-05 | Phillips Petroleum Company | Process for demetallizing and desulfurizing heavy crude oil |
US5046560A (en) | 1988-06-10 | 1991-09-10 | Exxon Production Research Company | Oil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents |
US4884635A (en) * | 1988-08-24 | 1989-12-05 | Texaco Canada Resources | Enhanced oil recovery with a mixture of water and aromatic hydrocarbons |
US4842070A (en) | 1988-09-15 | 1989-06-27 | Amoco Corporation | Procedure for improving reservoir sweep efficiency using paraffinic or asphaltic hydrocarbons |
US4928765A (en) | 1988-09-27 | 1990-05-29 | Ramex Syn-Fuels International | Method and apparatus for shale gas recovery |
GB8824111D0 (en) | 1988-10-14 | 1988-11-23 | Nashcliffe Ltd | Shaft excavation system |
US4856587A (en) | 1988-10-27 | 1989-08-15 | Nielson Jay P | Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix |
US5064006A (en) | 1988-10-28 | 1991-11-12 | Magrange, Inc | Downhole combination tool |
US4848460A (en) | 1988-11-04 | 1989-07-18 | Western Research Institute | Contained recovery of oily waste |
US5065501A (en) | 1988-11-29 | 1991-11-19 | Amp Incorporated | Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus |
US4859200A (en) | 1988-12-05 | 1989-08-22 | Baker Hughes Incorporated | Downhole electrical connector for submersible pump |
US4974425A (en) | 1988-12-08 | 1990-12-04 | Concept Rkk, Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4860544A (en) | 1988-12-08 | 1989-08-29 | Concept R.K.K. Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4933640A (en) | 1988-12-30 | 1990-06-12 | Vector Magnetics | Apparatus for locating an elongated conductive body by electromagnetic measurement while drilling |
US4940095A (en) | 1989-01-27 | 1990-07-10 | Dowell Schlumberger Incorporated | Deployment/retrieval method and apparatus for well tools used with coiled tubing |
US5103920A (en) | 1989-03-01 | 1992-04-14 | Patton Consulting Inc. | Surveying system and method for locating target subterranean bodies |
AU5348490A (en) * | 1989-03-13 | 1990-10-09 | University Of Utah, The | Method and apparatus for power generation |
CA2015318C (en) | 1990-04-24 | 1994-02-08 | Jack E. Bridges | Power sources for downhole electrical heating |
US4895206A (en) | 1989-03-16 | 1990-01-23 | Price Ernest H | Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes |
US4913065A (en) | 1989-03-27 | 1990-04-03 | Indugas, Inc. | In situ thermal waste disposal system |
US4947672A (en) | 1989-04-03 | 1990-08-14 | Burndy Corporation | Hydraulic compression tool having an improved relief and release valve |
NL8901138A (nl) | 1989-05-03 | 1990-12-03 | Nkf Kabel Bv | Insteekverbinding voor hoogspanningskunststofkabels. |
US4959193A (en) * | 1989-05-11 | 1990-09-25 | General Electric Company | Indirect passive cooling system for liquid metal cooled nuclear reactors |
DE3918265A1 (de) | 1989-06-05 | 1991-01-03 | Henkel Kgaa | Verfahren zur herstellung von tensidgemischen auf ethersulfonatbasis und ihre verwendung |
US5059303A (en) | 1989-06-16 | 1991-10-22 | Amoco Corporation | Oil stabilization |
US5041210A (en) | 1989-06-30 | 1991-08-20 | Marathon Oil Company | Oil shale retorting with steam and produced gas |
DE3922612C2 (de) | 1989-07-10 | 1998-07-02 | Krupp Koppers Gmbh | Verfahren zur Erzeugung von Methanol-Synthesegas |
US4982786A (en) | 1989-07-14 | 1991-01-08 | Mobil Oil Corporation | Use of CO2 /steam to enhance floods in horizontal wellbores |
US5050386A (en) | 1989-08-16 | 1991-09-24 | Rkk, Limited | Method and apparatus for containment of hazardous material migration in the earth |
US5097903A (en) | 1989-09-22 | 1992-03-24 | Jack C. Sloan | Method for recovering intractable petroleum from subterranean formations |
US5305239A (en) | 1989-10-04 | 1994-04-19 | The Texas A&M University System | Ultrasonic non-destructive evaluation of thin specimens |
US4926941A (en) | 1989-10-10 | 1990-05-22 | Shell Oil Company | Method of producing tar sand deposits containing conductive layers |
US4984594A (en) | 1989-10-27 | 1991-01-15 | Shell Oil Company | Vacuum method for removing soil contamination utilizing surface electrical heating |
US5656239A (en) | 1989-10-27 | 1997-08-12 | Shell Oil Company | Method for recovering contaminants from soil utilizing electrical heating |
US4986375A (en) | 1989-12-04 | 1991-01-22 | Maher Thomas P | Device for facilitating drill bit retrieval |
US5336851A (en) * | 1989-12-27 | 1994-08-09 | Sumitomo Electric Industries, Ltd. | Insulated electrical conductor wire having a high operating temperature |
US5082055A (en) | 1990-01-24 | 1992-01-21 | Indugas, Inc. | Gas fired radiant tube heater |
US5020596A (en) * | 1990-01-24 | 1991-06-04 | Indugas, Inc. | Enhanced oil recovery system with a radiant tube heater |
US5011329A (en) | 1990-02-05 | 1991-04-30 | Hrubetz Exploration Company | In situ soil decontamination method and apparatus |
CA2009782A1 (en) | 1990-02-12 | 1991-08-12 | Anoosh I. Kiamanesh | In-situ tuned microwave oil extraction process |
TW215446B (ru) * | 1990-02-23 | 1993-11-01 | Furukawa Electric Co Ltd | |
US5152341A (en) | 1990-03-09 | 1992-10-06 | Raymond S. Kasevich | Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes |
US5027896A (en) | 1990-03-21 | 1991-07-02 | Anderson Leonard M | Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry |
GB9007147D0 (en) | 1990-03-30 | 1990-05-30 | Framo Dev Ltd | Thermal mineral extraction system |
CA2015460C (en) | 1990-04-26 | 1993-12-14 | Kenneth Edwin Kisman | Process for confining steam injected into a heavy oil reservoir |
US5126037A (en) | 1990-05-04 | 1992-06-30 | Union Oil Company Of California | Geopreater heating method and apparatus |
US5032042A (en) | 1990-06-26 | 1991-07-16 | New Jersey Institute Of Technology | Method and apparatus for eliminating non-naturally occurring subsurface, liquid toxic contaminants from soil |
US5201219A (en) | 1990-06-29 | 1993-04-13 | Amoco Corporation | Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core |
US5054551A (en) | 1990-08-03 | 1991-10-08 | Chevron Research And Technology Company | In-situ heated annulus refining process |
US5109928A (en) | 1990-08-17 | 1992-05-05 | Mccants Malcolm T | Method for production of hydrocarbon diluent from heavy crude oil |
US5042579A (en) | 1990-08-23 | 1991-08-27 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers |
US5060726A (en) | 1990-08-23 | 1991-10-29 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication |
US5046559A (en) | 1990-08-23 | 1991-09-10 | Shell Oil Company | Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers |
BR9004240A (pt) | 1990-08-28 | 1992-03-24 | Petroleo Brasileiro Sa | Processo de aquecimento eletrico de tubulacoes |
US5085276A (en) | 1990-08-29 | 1992-02-04 | Chevron Research And Technology Company | Production of oil from low permeability formations by sequential steam fracturing |
US5245161A (en) * | 1990-08-31 | 1993-09-14 | Tokyo Kogyo Boyeki Shokai, Ltd. | Electric heater |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
US5207273A (en) | 1990-09-17 | 1993-05-04 | Production Technologies International Inc. | Method and apparatus for pumping wells |
US5182427A (en) * | 1990-09-20 | 1993-01-26 | Metcal, Inc. | Self-regulating heater utilizing ferrite-type body |
JPH04272680A (ja) | 1990-09-20 | 1992-09-29 | Thermon Mfg Co | スイッチ制御形ゾーン式加熱ケーブル及びその組み立て方法 |
US5517593A (en) | 1990-10-01 | 1996-05-14 | John Nenniger | Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint |
US5400430A (en) | 1990-10-01 | 1995-03-21 | Nenniger; John E. | Method for injection well stimulation |
JPH0827387B2 (ja) * | 1990-10-05 | 1996-03-21 | 動力炉・核燃料開発事業団 | 耐熱高速中性子遮蔽材 |
US5408047A (en) | 1990-10-25 | 1995-04-18 | Minnesota Mining And Manufacturing Company | Transition joint for oil-filled cables |
US5070533A (en) | 1990-11-07 | 1991-12-03 | Uentech Corporation | Robust electrical heating systems for mineral wells |
FR2669077B2 (fr) | 1990-11-09 | 1995-02-03 | Institut Francais Petrole | Methode et dispositif pour effectuer des interventions dans des puits ou regnent des temperatures elevees. |
US5060287A (en) | 1990-12-04 | 1991-10-22 | Shell Oil Company | Heater utilizing copper-nickel alloy core |
US5065818A (en) | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5217076A (en) | 1990-12-04 | 1993-06-08 | Masek John A | Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess) |
US5190405A (en) | 1990-12-14 | 1993-03-02 | Shell Oil Company | Vacuum method for removing soil contaminants utilizing thermal conduction heating |
SU1836876A3 (ru) | 1990-12-29 | 1994-12-30 | Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики | Способ отработки угольных пластов и комплекс оборудования для его осуществления |
US5667008A (en) | 1991-02-06 | 1997-09-16 | Quick Connectors, Inc. | Seal electrical conductor arrangement for use with a well bore in hazardous areas |
US5289882A (en) | 1991-02-06 | 1994-03-01 | Boyd B. Moore | Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas |
US5103909A (en) | 1991-02-19 | 1992-04-14 | Shell Oil Company | Profile control in enhanced oil recovery |
US5261490A (en) | 1991-03-18 | 1993-11-16 | Nkk Corporation | Method for dumping and disposing of carbon dioxide gas and apparatus therefor |
US5204270A (en) | 1991-04-29 | 1993-04-20 | Lacount Robert B | Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation |
US5246273A (en) | 1991-05-13 | 1993-09-21 | Rosar Edward C | Method and apparatus for solution mining |
CA2043092A1 (en) | 1991-05-23 | 1992-11-24 | Bruce C. W. Mcgee | Electrical heating of oil reservoir |
US5117912A (en) | 1991-05-24 | 1992-06-02 | Marathon Oil Company | Method of positioning tubing within a horizontal well |
AU659170B2 (en) | 1991-06-17 | 1995-05-11 | Electric Power Research Institute, Inc. | Power plant utilizing compressed air energy storage and saturation |
DK0519573T3 (da) | 1991-06-21 | 1995-07-03 | Shell Int Research | Hydrogenerings-katalysator og fremgangsmåde |
IT1248535B (it) | 1991-06-24 | 1995-01-19 | Cise Spa | Sistema per misurare il tempo di trasferimento di un'onda sonora |
US5133406A (en) | 1991-07-05 | 1992-07-28 | Amoco Corporation | Generating oxygen-depleted air useful for increasing methane production |
US5189283A (en) | 1991-08-28 | 1993-02-23 | Shell Oil Company | Current to power crossover heater control |
US5168927A (en) | 1991-09-10 | 1992-12-08 | Shell Oil Company | Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation |
US5193618A (en) | 1991-09-12 | 1993-03-16 | Chevron Research And Technology Company | Multivalent ion tolerant steam-foaming surfactant composition for use in enhanced oil recovery operations |
US5347070A (en) | 1991-11-13 | 1994-09-13 | Battelle Pacific Northwest Labs | Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material |
US5349859A (en) | 1991-11-15 | 1994-09-27 | Scientific Engineering Instruments, Inc. | Method and apparatus for measuring acoustic wave velocity using impulse response |
EP0547961B1 (fr) | 1991-12-16 | 1996-03-27 | Institut Français du Pétrole | Système de surveillance active ou passive d'un gisement souterrain installé a poste fixe |
CA2058255C (en) | 1991-12-20 | 1997-02-11 | Roland P. Leaute | Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells |
US5246071A (en) | 1992-01-31 | 1993-09-21 | Texaco Inc. | Steamflooding with alternating injection and production cycles |
US5420402A (en) | 1992-02-05 | 1995-05-30 | Iit Research Institute | Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles |
US5211230A (en) | 1992-02-21 | 1993-05-18 | Mobil Oil Corporation | Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion |
FI92441C (fi) | 1992-04-01 | 1994-11-10 | Vaisala Oy | Sähköinen impedanssianturi fysikaalisten suureiden, etenkin lämpötilan mittaamiseksi ja menetelmä kyseisen anturin valmistamiseksi |
GB9207174D0 (en) | 1992-04-01 | 1992-05-13 | Raychem Sa Nv | Method of forming an electrical connection |
US5255740A (en) | 1992-04-13 | 1993-10-26 | Rrkt Company | Secondary recovery process |
US5332036A (en) | 1992-05-15 | 1994-07-26 | The Boc Group, Inc. | Method of recovery of natural gases from underground coal formations |
US5366012A (en) | 1992-06-09 | 1994-11-22 | Shell Oil Company | Method of completing an uncased section of a borehole |
US5255742A (en) | 1992-06-12 | 1993-10-26 | Shell Oil Company | Heat injection process |
US5392854A (en) | 1992-06-12 | 1995-02-28 | Shell Oil Company | Oil recovery process |
US5297626A (en) | 1992-06-12 | 1994-03-29 | Shell Oil Company | Oil recovery process |
US5226961A (en) | 1992-06-12 | 1993-07-13 | Shell Oil Company | High temperature wellbore cement slurry |
US5236039A (en) | 1992-06-17 | 1993-08-17 | General Electric Company | Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale |
US5295763A (en) | 1992-06-30 | 1994-03-22 | Chambers Development Co., Inc. | Method for controlling gas migration from a landfill |
JP3276407B2 (ja) * | 1992-07-03 | 2002-04-22 | 東京瓦斯株式会社 | 地下の炭化水素水和物の採取法 |
US5315065A (en) | 1992-08-21 | 1994-05-24 | Donovan James P O | Versatile electrically insulating waterproof connectors |
US5305829A (en) | 1992-09-25 | 1994-04-26 | Chevron Research And Technology Company | Oil production from diatomite formations by fracture steamdrive |
US5229583A (en) | 1992-09-28 | 1993-07-20 | Shell Oil Company | Surface heating blanket for soil remediation |
US5276720A (en) * | 1992-11-02 | 1994-01-04 | General Electric Company | Emergency cooling system and method |
US5339904A (en) | 1992-12-10 | 1994-08-23 | Mobil Oil Corporation | Oil recovery optimization using a well having both horizontal and vertical sections |
US5358045A (en) | 1993-02-12 | 1994-10-25 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Enhanced oil recovery method employing a high temperature brine tolerant foam-forming composition |
CA2096034C (en) | 1993-05-07 | 1996-07-02 | Kenneth Edwin Kisman | Horizontal well gravity drainage combustion process for oil recovery |
US5360067A (en) | 1993-05-17 | 1994-11-01 | Meo Iii Dominic | Vapor-extraction system for removing hydrocarbons from soil |
US5384430A (en) * | 1993-05-18 | 1995-01-24 | Baker Hughes Incorporated | Double armor cable with auxiliary line |
SE503278C2 (sv) | 1993-06-07 | 1996-05-13 | Kabeldon Ab | Förfarande vid skarvning av två kabelparter, samt skarvkropp och monteringsverktyg för användning vid förfarandet |
US5325918A (en) | 1993-08-02 | 1994-07-05 | The United States Of America As Represented By The United States Department Of Energy | Optimal joule heating of the subsurface |
WO1995006093A1 (en) | 1993-08-20 | 1995-03-02 | Technological Resources Pty. Ltd. | Enhanced hydrocarbon recovery method |
US5377556A (en) * | 1993-09-27 | 1995-01-03 | Teleflex Incorporated | Core element tension mechanism having length adjust |
US5358058A (en) * | 1993-09-27 | 1994-10-25 | Reedrill, Inc. | Drill automation control system |
US5377756A (en) * | 1993-10-28 | 1995-01-03 | Mobil Oil Corporation | Method for producing low permeability reservoirs using a single well |
US5388640A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5388643A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using pressure swing adsorption separation |
US5566755A (en) | 1993-11-03 | 1996-10-22 | Amoco Corporation | Method for recovering methane from a solid carbonaceous subterranean formation |
US5388645A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5388641A (en) * | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations |
US5388642A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using membrane separation of oxygen from air |
US5589775A (en) | 1993-11-22 | 1996-12-31 | Vector Magnetics, Inc. | Rotating magnet for distance and direction measurements from a first borehole to a second borehole |
US5411086A (en) | 1993-12-09 | 1995-05-02 | Mobil Oil Corporation | Oil recovery by enhanced imbitition in low permeability reservoirs |
US5435666A (en) | 1993-12-14 | 1995-07-25 | Environmental Resources Management, Inc. | Methods for isolating a water table and for soil remediation |
US5411089A (en) | 1993-12-20 | 1995-05-02 | Shell Oil Company | Heat injection process |
US5433271A (en) | 1993-12-20 | 1995-07-18 | Shell Oil Company | Heat injection process |
US5404952A (en) | 1993-12-20 | 1995-04-11 | Shell Oil Company | Heat injection process and apparatus |
US5634984A (en) | 1993-12-22 | 1997-06-03 | Union Oil Company Of California | Method for cleaning an oil-coated substrate |
MY112792A (en) | 1994-01-13 | 2001-09-29 | Shell Int Research | Method of creating a borehole in an earth formation |
US5453599A (en) | 1994-02-14 | 1995-09-26 | Hoskins Manufacturing Company | Tubular heating element with insulating core |
US5411104A (en) | 1994-02-16 | 1995-05-02 | Conoco Inc. | Coalbed methane drilling |
CA2144597C (en) | 1994-03-18 | 1999-08-10 | Paul J. Latimer | Improved emat probe and technique for weld inspection |
US5415231A (en) | 1994-03-21 | 1995-05-16 | Mobil Oil Corporation | Method for producing low permeability reservoirs using steam |
US5439054A (en) | 1994-04-01 | 1995-08-08 | Amoco Corporation | Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation |
US5553478A (en) | 1994-04-08 | 1996-09-10 | Burndy Corporation | Hand-held compression tool |
US5431224A (en) | 1994-04-19 | 1995-07-11 | Mobil Oil Corporation | Method of thermal stimulation for recovery of hydrocarbons |
US5484020A (en) | 1994-04-25 | 1996-01-16 | Shell Oil Company | Remedial wellbore sealing with unsaturated monomer system |
US5429194A (en) | 1994-04-29 | 1995-07-04 | Western Atlas International, Inc. | Method for inserting a wireline inside coiled tubing |
US5409071A (en) | 1994-05-23 | 1995-04-25 | Shell Oil Company | Method to cement a wellbore |
US5503226A (en) | 1994-06-22 | 1996-04-02 | Wadleigh; Eugene E. | Process for recovering hydrocarbons by thermally assisted gravity segregation |
EP0771419A4 (en) | 1994-07-18 | 1999-06-23 | Babcock & Wilcox Co | SENSOR TRANSPORT SYSTEM FOR A TORCH WELDING DEVICE |
US5632336A (en) | 1994-07-28 | 1997-05-27 | Texaco Inc. | Method for improving injectivity of fluids in oil reservoirs |
US5747750A (en) | 1994-08-31 | 1998-05-05 | Exxon Production Research Company | Single well system for mapping sources of acoustic energy |
US5449047A (en) * | 1994-09-07 | 1995-09-12 | Ingersoll-Rand Company | Automatic control of drilling system |
US5525322A (en) | 1994-10-12 | 1996-06-11 | The Regents Of The University Of California | Method for simultaneous recovery of hydrogen from water and from hydrocarbons |
US5553189A (en) | 1994-10-18 | 1996-09-03 | Shell Oil Company | Radiant plate heater for treatment of contaminated surfaces |
US5624188A (en) | 1994-10-20 | 1997-04-29 | West; David A. | Acoustic thermometer |
US5497087A (en) | 1994-10-20 | 1996-03-05 | Shell Oil Company | NMR logging of natural gas reservoirs |
US5498960A (en) | 1994-10-20 | 1996-03-12 | Shell Oil Company | NMR logging of natural gas in reservoirs |
AR004469A1 (es) | 1994-12-21 | 1998-12-16 | Shell Int Research | Un metodo y un conjunto pra crear un agujero de perforacion en una formacion de tierra |
US5554453A (en) | 1995-01-04 | 1996-09-10 | Energy Research Corporation | Carbonate fuel cell system with thermally integrated gasification |
US6088294A (en) | 1995-01-12 | 2000-07-11 | Baker Hughes Incorporated | Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction |
GB2311859B (en) | 1995-01-12 | 1999-03-03 | Baker Hughes Inc | A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers |
US6065538A (en) | 1995-02-09 | 2000-05-23 | Baker Hughes Corporation | Method of obtaining improved geophysical information about earth formations |
DE19505517A1 (de) | 1995-02-10 | 1996-08-14 | Siegfried Schwert | Verfahren zum Herausziehen eines im Erdreich verlegten Rohres |
US5594211A (en) | 1995-02-22 | 1997-01-14 | Burndy Corporation | Electrical solder splice connector |
US5621844A (en) | 1995-03-01 | 1997-04-15 | Uentech Corporation | Electrical heating of mineral well deposits using downhole impedance transformation networks |
CA2152521C (en) | 1995-03-01 | 2000-06-20 | Jack E. Bridges | Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits |
US5935421A (en) | 1995-05-02 | 1999-08-10 | Exxon Research And Engineering Company | Continuous in-situ combination process for upgrading heavy oil |
US5569845A (en) | 1995-05-16 | 1996-10-29 | Selee Corporation | Apparatus and method for detecting molten salt in molten metal |
US5911898A (en) | 1995-05-25 | 1999-06-15 | Electric Power Research Institute | Method and apparatus for providing multiple autoregulated temperatures |
US5571403A (en) | 1995-06-06 | 1996-11-05 | Texaco Inc. | Process for extracting hydrocarbons from diatomite |
US6015015A (en) | 1995-06-20 | 2000-01-18 | Bj Services Company U.S.A. | Insulated and/or concentric coiled tubing |
AUPN469395A0 (en) | 1995-08-08 | 1995-08-31 | Gearhart United Pty Ltd | Borehole drill bit stabiliser |
US5669275A (en) | 1995-08-18 | 1997-09-23 | Mills; Edward Otis | Conductor insulation remover |
US5801332A (en) | 1995-08-31 | 1998-09-01 | Minnesota Mining And Manufacturing Company | Elastically recoverable silicone splice cover |
JPH0972738A (ja) * | 1995-09-05 | 1997-03-18 | Fujii Kiso Sekkei Jimusho:Kk | ボアホール壁面の性状調査方法と装置 |
US5899958A (en) | 1995-09-11 | 1999-05-04 | Halliburton Energy Services, Inc. | Logging while drilling borehole imaging and dipmeter device |
DE19536378A1 (de) | 1995-09-29 | 1997-04-03 | Bayer Ag | Heterocyclische Aryl-, Alkyl- und Cycloalkylessigsäureamide |
US5700161A (en) | 1995-10-13 | 1997-12-23 | Baker Hughes Incorporated | Two-piece lead seal pothead connector |
US5759022A (en) | 1995-10-16 | 1998-06-02 | Gas Research Institute | Method and system for reducing NOx and fuel emissions in a furnace |
GB9521944D0 (en) | 1995-10-26 | 1996-01-03 | Camco Drilling Group Ltd | A drilling assembly for use in drilling holes in subsurface formations |
RU2102587C1 (ru) * | 1995-11-10 | 1998-01-20 | Линецкий Александр Петрович | Способ разработки и увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр |
US5738178A (en) | 1995-11-17 | 1998-04-14 | Baker Hughes Incorporated | Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation |
US5890840A (en) | 1995-12-08 | 1999-04-06 | Carter, Jr.; Ernest E. | In situ construction of containment vault under a radioactive or hazardous waste site |
US5619611A (en) | 1995-12-12 | 1997-04-08 | Tub Tauch-Und Baggertechnik Gmbh | Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein |
GB9526120D0 (en) | 1995-12-21 | 1996-02-21 | Raychem Sa Nv | Electrical connector |
ATE191254T1 (de) | 1995-12-27 | 2000-04-15 | Shell Int Research | Flamenlose verbrennvorrichtung und verfahren |
IE960011A1 (en) | 1996-01-10 | 1997-07-16 | Padraig Mcalister | Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures |
US5784530A (en) | 1996-02-13 | 1998-07-21 | Eor International, Inc. | Iterated electrodes for oil wells |
US5751895A (en) | 1996-02-13 | 1998-05-12 | Eor International, Inc. | Selective excitation of heating electrodes for oil wells |
US5826655A (en) | 1996-04-25 | 1998-10-27 | Texaco Inc | Method for enhanced recovery of viscous oil deposits |
NO302493B1 (no) * | 1996-05-13 | 1998-03-09 | Maritime Hydraulics As | Glideskjöt |
US5652389A (en) | 1996-05-22 | 1997-07-29 | The United States Of America As Represented By The Secretary Of Commerce | Non-contact method and apparatus for inspection of inertia welds |
US6022834A (en) | 1996-05-24 | 2000-02-08 | Oil Chem Technologies, Inc. | Alkaline surfactant polymer flooding composition and process |
US5769569A (en) | 1996-06-18 | 1998-06-23 | Southern California Gas Company | In-situ thermal desorption of heavy hydrocarbons in vadose zone |
US5828797A (en) | 1996-06-19 | 1998-10-27 | Meggitt Avionics, Inc. | Fiber optic linked flame sensor |
BR9709857A (pt) | 1996-06-21 | 2002-05-21 | Syntroleum Corp | processo e sistema de produção de gás de sìntese |
US5788376A (en) | 1996-07-01 | 1998-08-04 | General Motors Corporation | Temperature sensor |
MY118075A (en) | 1996-07-09 | 2004-08-30 | Syntroleum Corp | Process for converting gas to liquids |
US6806233B2 (en) * | 1996-08-02 | 2004-10-19 | M-I Llc | Methods of using reversible phase oil based drilling fluid |
US5826653A (en) | 1996-08-02 | 1998-10-27 | Scientific Applications & Research Associates, Inc. | Phased array approach to retrieve gases, liquids, or solids from subaqueous geologic or man-made formations |
US6116357A (en) | 1996-09-09 | 2000-09-12 | Smith International, Inc. | Rock drill bit with back-reaming protection |
SE507262C2 (sv) | 1996-10-03 | 1998-05-04 | Per Karlsson | Dragavlastning samt verktyg för applicering därav |
US5782301A (en) | 1996-10-09 | 1998-07-21 | Baker Hughes Incorporated | Oil well heater cable |
US5875283A (en) | 1996-10-11 | 1999-02-23 | Lufran Incorporated | Purged grounded immersion heater |
US6079499A (en) | 1996-10-15 | 2000-06-27 | Shell Oil Company | Heater well method and apparatus |
US6056057A (en) | 1996-10-15 | 2000-05-02 | Shell Oil Company | Heater well method and apparatus |
US5861137A (en) | 1996-10-30 | 1999-01-19 | Edlund; David J. | Steam reformer with internal hydrogen purification |
US7426961B2 (en) | 2002-09-03 | 2008-09-23 | Bj Services Company | Method of treating subterranean formations with porous particulate materials |
US5816325A (en) * | 1996-11-27 | 1998-10-06 | Future Energy, Llc | Methods and apparatus for enhanced recovery of viscous deposits by thermal stimulation |
US5862858A (en) | 1996-12-26 | 1999-01-26 | Shell Oil Company | Flameless combustor |
US6427124B1 (en) | 1997-01-24 | 2002-07-30 | Baker Hughes Incorporated | Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries |
SE510452C2 (sv) | 1997-02-03 | 1999-05-25 | Asea Brown Boveri | Transformator med spänningsregleringsorgan |
US5821414A (en) | 1997-02-07 | 1998-10-13 | Noy; Koen | Survey apparatus and methods for directional wellbore wireline surveying |
US6631563B2 (en) * | 1997-02-07 | 2003-10-14 | James Brosnahan | Survey apparatus and methods for directional wellbore surveying |
US6039121A (en) | 1997-02-20 | 2000-03-21 | Rangewest Technologies Ltd. | Enhanced lift method and apparatus for the production of hydrocarbons |
GB9704181D0 (en) | 1997-02-28 | 1997-04-16 | Thompson James | Apparatus and method for installation of ducts |
US5923170A (en) | 1997-04-04 | 1999-07-13 | Vector Magnetics, Inc. | Method for near field electromagnetic proximity determination for guidance of a borehole drill |
US5926437A (en) | 1997-04-08 | 1999-07-20 | Halliburton Energy Services, Inc. | Method and apparatus for seismic exploration |
US5984578A (en) | 1997-04-11 | 1999-11-16 | New Jersey Institute Of Technology | Apparatus and method for in situ removal of contaminants using sonic energy |
US5802870A (en) | 1997-05-02 | 1998-09-08 | Uop Llc | Sorption cooling process and system |
CA2264632C (en) | 1997-05-02 | 2007-11-27 | Baker Hughes Incorporated | Wellbores utilizing fiber optic-based sensors and operating devices |
WO1998050179A1 (en) | 1997-05-07 | 1998-11-12 | Shell Internationale Research Maatschappij B.V. | Remediation method |
US6023554A (en) | 1997-05-20 | 2000-02-08 | Shell Oil Company | Electrical heater |
US5927408A (en) | 1997-05-22 | 1999-07-27 | Bucyrus International, Inc. | Head brake release with memory and method of controlling a drill head |
CA2289080C (en) | 1997-06-05 | 2006-07-25 | Shell Canada Limited | Contaminated soil remediation method |
US6102122A (en) | 1997-06-11 | 2000-08-15 | Shell Oil Company | Control of heat injection based on temperature and in-situ stress measurement |
US6050348A (en) | 1997-06-17 | 2000-04-18 | Canrig Drilling Technology Ltd. | Drilling method and apparatus |
US6112808A (en) | 1997-09-19 | 2000-09-05 | Isted; Robert Edward | Method and apparatus for subterranean thermal conditioning |
SK286044B6 (sk) * | 1997-06-19 | 2008-01-07 | European Organization For Nuclear Research | Spôsob exponovania materiálu, spôsob produkovaniaužitočného izotopu a spôsob transmutácie zahrnujúci spôsob exponovania |
US5984010A (en) | 1997-06-23 | 1999-11-16 | Elias; Ramon | Hydrocarbon recovery systems and methods |
CA2208767A1 (en) | 1997-06-26 | 1998-12-26 | Reginald D. Humphreys | Tar sands extraction process |
WO1999001640A1 (fr) | 1997-07-01 | 1999-01-14 | Alexandr Petrovich Linetsky | Procede d'exploitation de gisements de gaz et de petrole et d'accroissement du taux d'extraction de gaz et de petrole |
US5992522A (en) | 1997-08-12 | 1999-11-30 | Steelhead Reclamation Ltd. | Process and seal for minimizing interzonal migration in boreholes |
US6321862B1 (en) | 1997-09-08 | 2001-11-27 | Baker Hughes Incorporated | Rotary drill bits for directional drilling employing tandem gage pad arrangement with cutting elements and up-drill capability |
US5868202A (en) | 1997-09-22 | 1999-02-09 | Tarim Associates For Scientific Mineral And Oil Exploration Ag | Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations |
US6149344A (en) | 1997-10-04 | 2000-11-21 | Master Corporation | Acid gas disposal |
US6354373B1 (en) | 1997-11-26 | 2002-03-12 | Schlumberger Technology Corporation | Expandable tubing for a well bore hole and method of expanding |
FR2772137B1 (fr) | 1997-12-08 | 1999-12-31 | Inst Francais Du Petrole | Methode de surveillance sismique d'une zone souterraine en cours d'exploitation permettant une meilleure identification d'evenements significatifs |
AU1478199A (en) | 1997-12-11 | 1999-06-28 | Petroleum Recovery Institute | Oilfield in situ hydrocarbon upgrading process |
US6152987A (en) | 1997-12-15 | 2000-11-28 | Worcester Polytechnic Institute | Hydrogen gas-extraction module and method of fabrication |
US6094048A (en) | 1997-12-18 | 2000-07-25 | Shell Oil Company | NMR logging of natural gas reservoirs |
NO305720B1 (no) | 1997-12-22 | 1999-07-12 | Eureka Oil Asa | FremgangsmÕte for Õ °ke oljeproduksjonen fra et oljereservoar |
US6026914A (en) | 1998-01-28 | 2000-02-22 | Alberta Oil Sands Technology And Research Authority | Wellbore profiling system |
US6269876B1 (en) | 1998-03-06 | 2001-08-07 | Shell Oil Company | Electrical heater |
MA24902A1 (fr) | 1998-03-06 | 2000-04-01 | Shell Int Research | Rechauffeur electrique |
US6540018B1 (en) | 1998-03-06 | 2003-04-01 | Shell Oil Company | Method and apparatus for heating a wellbore |
US6247542B1 (en) | 1998-03-06 | 2001-06-19 | Baker Hughes Incorporated | Non-rotating sensor assembly for measurement-while-drilling applications |
US6035701A (en) | 1998-04-15 | 2000-03-14 | Lowry; William E. | Method and system to locate leaks in subsurface containment structures using tracer gases |
MXPA00011041A (es) | 1998-05-12 | 2003-08-01 | Lockheed Corp | Proceso para optimizar mediciones gradiometricas de la gravedad. |
US6016867A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking |
US6016868A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking |
US5958365A (en) | 1998-06-25 | 1999-09-28 | Atlantic Richfield Company | Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods |
NO984235L (no) | 1998-09-14 | 2000-03-15 | Cit Alcatel | Oppvarmingssystem for metallrør for rõoljetransport |
US6388947B1 (en) | 1998-09-14 | 2002-05-14 | Tomoseis, Inc. | Multi-crosswell profile 3D imaging and method |
AU761606B2 (en) | 1998-09-25 | 2003-06-05 | Errol A. Sonnier | System, apparatus, and method for installing control lines in a well |
US6591916B1 (en) | 1998-10-14 | 2003-07-15 | Coupler Developments Limited | Drilling method |
US6192748B1 (en) * | 1998-10-30 | 2001-02-27 | Computalog Limited | Dynamic orienting reference system for directional drilling |
US6138753A (en) | 1998-10-30 | 2000-10-31 | Mohaupt Family Trust | Technique for treating hydrocarbon wells |
US5968349A (en) | 1998-11-16 | 1999-10-19 | Bhp Minerals International Inc. | Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands |
US20040035582A1 (en) | 2002-08-22 | 2004-02-26 | Zupanick Joseph A. | System and method for subterranean access |
US6280000B1 (en) | 1998-11-20 | 2001-08-28 | Joseph A. Zupanick | Method for production of gas from a coal seam using intersecting well bores |
US6269881B1 (en) | 1998-12-22 | 2001-08-07 | Chevron U.S.A. Inc | Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins and the alpha-olefin compositions |
CN2357124Y (zh) * | 1999-01-15 | 2000-01-05 | 辽河石油勘探局曙光采油厂 | 可伸缩热采封隔器 |
US6078868A (en) | 1999-01-21 | 2000-06-20 | Baker Hughes Incorporated | Reference signal encoding for seismic while drilling measurement |
US6318469B1 (en) * | 1999-02-09 | 2001-11-20 | Schlumberger Technology Corp. | Completion equipment having a plurality of fluid paths for use in a well |
US6739409B2 (en) | 1999-02-09 | 2004-05-25 | Baker Hughes Incorporated | Method and apparatus for a downhole NMR MWD tool configuration |
US6429784B1 (en) | 1999-02-19 | 2002-08-06 | Dresser Industries, Inc. | Casing mounted sensors, actuators and generators |
US6283230B1 (en) | 1999-03-01 | 2001-09-04 | Jasper N. Peters | Method and apparatus for lateral well drilling utilizing a rotating nozzle |
US7591304B2 (en) * | 1999-03-05 | 2009-09-22 | Varco I/P, Inc. | Pipe running tool having wireless telemetry |
US6155117A (en) | 1999-03-18 | 2000-12-05 | Mcdermott Technology, Inc. | Edge detection and seam tracking with EMATs |
US6561269B1 (en) | 1999-04-30 | 2003-05-13 | The Regents Of The University Of California | Canister, sealing method and composition for sealing a borehole |
US6110358A (en) | 1999-05-21 | 2000-08-29 | Exxon Research And Engineering Company | Process for manufacturing improved process oils using extraction of hydrotreated distillates |
EG22117A (en) * | 1999-06-03 | 2002-08-30 | Exxonmobil Upstream Res Co | Method and apparatus for controlling pressure and detecting well control problems during drilling of an offshore well using a gas-lifted riser |
US6519308B1 (en) * | 1999-06-11 | 2003-02-11 | General Electric Company | Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems |
US6257334B1 (en) | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6269310B1 (en) | 1999-08-25 | 2001-07-31 | Tomoseis Corporation | System for eliminating headwaves in a tomographic process |
US6446737B1 (en) | 1999-09-14 | 2002-09-10 | Deep Vision Llc | Apparatus and method for rotating a portion of a drill string |
US6196350B1 (en) | 1999-10-06 | 2001-03-06 | Tomoseis Corporation | Apparatus and method for attenuating tube waves in a borehole |
US6193010B1 (en) | 1999-10-06 | 2001-02-27 | Tomoseis Corporation | System for generating a seismic signal in a borehole |
DE19948819C2 (de) * | 1999-10-09 | 2002-01-24 | Airbus Gmbh | Heizleiter mit einem Anschlußelement und/oder einem Abschlußelement sowie ein Verfahren zur Herstellung desselben |
US6288372B1 (en) | 1999-11-03 | 2001-09-11 | Tyco Electronics Corporation | Electric cable having braidless polymeric ground plane providing fault detection |
US6353706B1 (en) | 1999-11-18 | 2002-03-05 | Uentech International Corporation | Optimum oil-well casing heating |
US6422318B1 (en) | 1999-12-17 | 2002-07-23 | Scioto County Regional Water District #1 | Horizontal well system |
US6427783B2 (en) | 2000-01-12 | 2002-08-06 | Baker Hughes Incorporated | Steerable modular drilling assembly |
US6452105B2 (en) | 2000-01-12 | 2002-09-17 | Meggitt Safety Systems, Inc. | Coaxial cable assembly with a discontinuous outer jacket |
US6679332B2 (en) | 2000-01-24 | 2004-01-20 | Shell Oil Company | Petroleum well having downhole sensors, communication and power |
US6633236B2 (en) | 2000-01-24 | 2003-10-14 | Shell Oil Company | Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters |
US7259688B2 (en) | 2000-01-24 | 2007-08-21 | Shell Oil Company | Wireless reservoir production control |
US6981553B2 (en) | 2000-01-24 | 2006-01-03 | Shell Oil Company | Controlled downhole chemical injection |
US6715550B2 (en) | 2000-01-24 | 2004-04-06 | Shell Oil Company | Controllable gas-lift well and valve |
SE514931C2 (sv) | 2000-03-02 | 2001-05-21 | Sandvik Ab | Bergborrkrona samt förfarande för dess tillverkning |
US7170424B2 (en) | 2000-03-02 | 2007-01-30 | Shell Oil Company | Oil well casting electrical power pick-off points |
EG22420A (en) | 2000-03-02 | 2003-01-29 | Shell Int Research | Use of downhole high pressure gas in a gas - lift well |
US6357526B1 (en) | 2000-03-16 | 2002-03-19 | Kellogg Brown & Root, Inc. | Field upgrading of heavy oil and bitumen |
US6485232B1 (en) | 2000-04-14 | 2002-11-26 | Board Of Regents, The University Of Texas System | Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system |
US6918444B2 (en) | 2000-04-19 | 2005-07-19 | Exxonmobil Upstream Research Company | Method for production of hydrocarbons from organic-rich rock |
GB0009662D0 (en) | 2000-04-20 | 2000-06-07 | Scotoil Group Plc | Gas and oil production |
US7096953B2 (en) * | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US20030085034A1 (en) | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
WO2001081240A2 (en) | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In-situ heating of coal formation to produce fluid |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US20030066642A1 (en) | 2000-04-24 | 2003-04-10 | Wellington Scott Lee | In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6584406B1 (en) | 2000-06-15 | 2003-06-24 | Geo-X Systems, Ltd. | Downhole process control method utilizing seismic communication |
AU2002246492A1 (en) | 2000-06-29 | 2002-07-30 | Paulo S. Tubel | Method and system for monitoring smart structures utilizing distributed optical sensors |
US6585046B2 (en) | 2000-08-28 | 2003-07-01 | Baker Hughes Incorporated | Live well heater cable |
US6412559B1 (en) | 2000-11-24 | 2002-07-02 | Alberta Research Council Inc. | Process for recovering methane and/or sequestering fluids |
FR2817172B1 (fr) * | 2000-11-29 | 2003-09-26 | Inst Francais Du Petrole | Reacteur de conversion chimique d'une charge avec apports de chaleur et circulation croisee de la charge et d'un catalyseur |
US20020110476A1 (en) | 2000-12-14 | 2002-08-15 | Maziasz Philip J. | Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility |
US6554075B2 (en) * | 2000-12-15 | 2003-04-29 | Halliburton Energy Services, Inc. | CT drilling rig |
US20020112987A1 (en) | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US20020112890A1 (en) | 2001-01-22 | 2002-08-22 | Wentworth Steven W. | Conduit pulling apparatus and method for use in horizontal drilling |
US6516891B1 (en) | 2001-02-08 | 2003-02-11 | L. Murray Dallas | Dual string coil tubing injector assembly |
US20020153141A1 (en) | 2001-04-19 | 2002-10-24 | Hartman Michael G. | Method for pumping fluids |
CN100545415C (zh) | 2001-04-24 | 2009-09-30 | 国际壳牌研究有限公司 | 现场处理含烃地层的方法 |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US6571888B2 (en) | 2001-05-14 | 2003-06-03 | Precision Drilling Technology Services Group, Inc. | Apparatus and method for directional drilling with coiled tubing |
US6963053B2 (en) | 2001-07-03 | 2005-11-08 | Cci Thermal Technologies, Inc. | Corrugated metal ribbon heating element |
US20030029617A1 (en) | 2001-08-09 | 2003-02-13 | Anadarko Petroleum Company | Apparatus, method and system for single well solution-mining |
US6591908B2 (en) * | 2001-08-22 | 2003-07-15 | Alberta Science And Research Authority | Hydrocarbon production process with decreasing steam and/or water/solvent ratio |
US6695062B2 (en) * | 2001-08-27 | 2004-02-24 | Baker Hughes Incorporated | Heater cable and method for manufacturing |
US6755251B2 (en) | 2001-09-07 | 2004-06-29 | Exxonmobil Upstream Research Company | Downhole gas separation method and system |
MY129091A (en) | 2001-09-07 | 2007-03-30 | Exxonmobil Upstream Res Co | Acid gas disposal method |
US6470977B1 (en) | 2001-09-18 | 2002-10-29 | Halliburton Energy Services, Inc. | Steerable underreaming bottom hole assembly and method |
US6886638B2 (en) | 2001-10-03 | 2005-05-03 | Schlumbergr Technology Corporation | Field weldable connections |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
WO2003036037A2 (en) | 2001-10-24 | 2003-05-01 | Shell Internationale Research Maatschappij B.V. | Installation and use of removable heaters in a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
ATE402294T1 (de) | 2001-10-24 | 2008-08-15 | Shell Int Research | Vereisung von böden als vorwegmassnahme zu deren thermischer behandlung |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US6736222B2 (en) | 2001-11-05 | 2004-05-18 | Vector Magnetics, Llc | Relative drill bit direction measurement |
US6679326B2 (en) | 2002-01-15 | 2004-01-20 | Bohdan Zakiewicz | Pro-ecological mining system |
US6684948B1 (en) | 2002-01-15 | 2004-02-03 | Marshall T. Savage | Apparatus and method for heating subterranean formations using fuel cells |
US7032809B1 (en) | 2002-01-18 | 2006-04-25 | Steel Ventures, L.L.C. | Seam-welded metal pipe and method of making the same without seam anneal |
US6854534B2 (en) | 2002-01-22 | 2005-02-15 | James I. Livingstone | Two string drilling system using coil tubing |
US6958195B2 (en) | 2002-02-19 | 2005-10-25 | Utc Fuel Cells, Llc | Steam generator for a PEM fuel cell power plant |
US7513318B2 (en) | 2002-02-19 | 2009-04-07 | Smith International, Inc. | Steerable underreamer/stabilizer assembly and method |
US6715553B2 (en) * | 2002-05-31 | 2004-04-06 | Halliburton Energy Services, Inc. | Methods of generating gas in well fluids |
US6942037B1 (en) | 2002-08-15 | 2005-09-13 | Clariant Finance (Bvi) Limited | Process for mitigation of wellbore contaminants |
WO2004018827A1 (en) | 2002-08-21 | 2004-03-04 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric drill string |
US20080069289A1 (en) * | 2002-09-16 | 2008-03-20 | Peterson Otis G | Self-regulating nuclear power module |
AU2003261330A1 (en) * | 2002-09-16 | 2004-04-30 | The Regents Of The University Of California | Self-regulating nuclear power module |
JP2004111620A (ja) | 2002-09-18 | 2004-04-08 | Murata Mfg Co Ltd | イグナイタトランス |
CN100359128C (zh) * | 2002-10-24 | 2008-01-02 | 国际壳牌研究有限公司 | 在对含烃地层进行就地热处理过程中阻止井眼变形的方法 |
WO2004038175A1 (en) | 2002-10-24 | 2004-05-06 | Shell Internationale Research Maatschappij B.V. | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
CA2504877C (en) | 2002-11-06 | 2014-07-22 | Canitron Systems, Inc. | Down hole induction and resistive heating tool and method of operating same |
WO2004048892A1 (en) * | 2002-11-22 | 2004-06-10 | Reduct | Method for determining a track of a geographical trajectory |
US7048051B2 (en) | 2003-02-03 | 2006-05-23 | Gen Syn Fuels | Recovery of products from oil shale |
US7055602B2 (en) | 2003-03-11 | 2006-06-06 | Shell Oil Company | Method and composition for enhanced hydrocarbons recovery |
FR2853904B1 (fr) | 2003-04-15 | 2007-11-16 | Air Liquide | Procede de production de liquides hydrocarbones mettant en oeuvre un procede fischer-tropsch |
NZ567052A (en) | 2003-04-24 | 2009-11-27 | Shell Int Research | Thermal process for subsurface formations |
US6951250B2 (en) | 2003-05-13 | 2005-10-04 | Halliburton Energy Services, Inc. | Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well |
US20080087420A1 (en) | 2006-10-13 | 2008-04-17 | Kaminsky Robert D | Optimized well spacing for in situ shale oil development |
CN100392206C (zh) | 2003-06-24 | 2008-06-04 | 埃克森美孚上游研究公司 | 处理地下地层以将有机物转化成可采出的烃的方法 |
US6881897B2 (en) | 2003-07-10 | 2005-04-19 | Yazaki Corporation | Shielding structure of shielding electric wire |
US7073577B2 (en) | 2003-08-29 | 2006-07-11 | Applied Geotech, Inc. | Array of wells with connected permeable zones for hydrocarbon recovery |
US7114880B2 (en) | 2003-09-26 | 2006-10-03 | Carter Jr Ernest E | Process for the excavation of buried waste |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
CN1875168B (zh) | 2003-11-03 | 2012-10-17 | 艾克森美孚上游研究公司 | 从不可渗透的油页岩中采收碳氢化合物 |
US6978837B2 (en) * | 2003-11-13 | 2005-12-27 | Yemington Charles R | Production of natural gas from hydrates |
JP3914994B2 (ja) * | 2004-01-28 | 2007-05-16 | 独立行政法人産業技術総合研究所 | メタンハイドレート堆積層からの天然ガス生産設備と発電設備を具備する統合設備 |
GB2412389A (en) * | 2004-03-27 | 2005-09-28 | Cleansorb Ltd | Process for treating underground formations |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
CA2803914C (en) | 2004-09-03 | 2016-06-28 | Watlow Electric Manufacturing Company | Power control system |
US7398823B2 (en) * | 2005-01-10 | 2008-07-15 | Conocophillips Company | Selective electromagnetic production tool |
ATE435964T1 (de) | 2005-04-22 | 2009-07-15 | Shell Int Research | Ein umlaufheizsystem verwendender in-situ- umwandlungsprozess |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US7600585B2 (en) | 2005-05-19 | 2009-10-13 | Schlumberger Technology Corporation | Coiled tubing drilling rig |
US20070044957A1 (en) | 2005-05-27 | 2007-03-01 | Oil Sands Underground Mining, Inc. | Method for underground recovery of hydrocarbons |
US7849934B2 (en) | 2005-06-07 | 2010-12-14 | Baker Hughes Incorporated | Method and apparatus for collecting drill bit performance data |
WO2007002111A1 (en) | 2005-06-20 | 2007-01-04 | Ksn Energies, Llc | Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (ragd) |
US7966137B2 (en) | 2005-10-03 | 2011-06-21 | Wirescan As | Line resonance analysis system |
US7303007B2 (en) | 2005-10-07 | 2007-12-04 | Weatherford Canada Partnership | Method and apparatus for transmitting sensor response data and power through a mud motor |
GB2451311A (en) | 2005-10-24 | 2009-01-28 | Shell Int Research | Systems,methods and processes for use in treating subsurface formations |
RU2303198C1 (ru) * | 2006-01-10 | 2007-07-20 | Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет | Котельная установка |
US7647967B2 (en) | 2006-01-12 | 2010-01-19 | Jimni Development LLC | Drilling and opening reservoir using an oriented fissure to enhance hydrocarbon flow and method of making |
US7743826B2 (en) | 2006-01-20 | 2010-06-29 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
US7921907B2 (en) | 2006-01-20 | 2011-04-12 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
JP4298709B2 (ja) | 2006-01-26 | 2009-07-22 | 矢崎総業株式会社 | シールド電線の端末処理方法および端末処理装置 |
US7445041B2 (en) * | 2006-02-06 | 2008-11-04 | Shale And Sands Oil Recovery Llc | Method and system for extraction of hydrocarbons from oil shale |
RU2418158C2 (ru) | 2006-02-16 | 2011-05-10 | ШЕВРОН Ю. Эс. Эй. ИНК. | Способ извлечения керобитумов из подземной сланцевой формации и способ разрыва подземной сланцевой формации |
WO2007126676A2 (en) | 2006-04-21 | 2007-11-08 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
EP2010754A4 (en) | 2006-04-21 | 2016-02-24 | Shell Int Research | ADJUSTING ALLOY COMPOSITIONS FOR SELECTED CHARACTERISTICS IN TEMPERATURE-LIMITED HEATERS |
CA2649850A1 (en) | 2006-04-21 | 2007-11-01 | Osum Oil Sands Corp. | Method of drilling from a shaft for underground recovery of hydrocarbons |
US7461705B2 (en) * | 2006-05-05 | 2008-12-09 | Varco I/P, Inc. | Directional drilling control |
CN101131886A (zh) * | 2006-08-21 | 2008-02-27 | 吕应中 | 固有安全、防核扩散、和成本低廉的核能生产方法与装置 |
US7705607B2 (en) | 2006-08-25 | 2010-04-27 | Instrument Manufacturing Company | Diagnostic methods for electrical cables utilizing axial tomography |
ITMI20061648A1 (it) | 2006-08-29 | 2008-02-29 | Star Progetti Tecnologie Applicate Spa | Dispositivo di irraggiamento di calore tramite infrarossi |
US8528636B2 (en) | 2006-09-13 | 2013-09-10 | Baker Hughes Incorporated | Instantaneous measurement of drillstring orientation |
GB0618108D0 (en) * | 2006-09-14 | 2006-10-25 | Technip France Sa | Subsea umbilical |
CA2870889C (en) | 2006-09-14 | 2016-11-01 | Ernest E. Carter, Jr. | Method of forming subterranean barriers with molten wax |
US7622677B2 (en) | 2006-09-26 | 2009-11-24 | Accutru International Corporation | Mineral insulated metal sheathed cable connector and method of forming the connector |
US20080078552A1 (en) | 2006-09-29 | 2008-04-03 | Osum Oil Sands Corp. | Method of heating hydrocarbons |
US7665524B2 (en) | 2006-09-29 | 2010-02-23 | Ut-Battelle, Llc | Liquid metal heat exchanger for efficient heating of soils and geologic formations |
WO2008048448A2 (en) | 2006-10-13 | 2008-04-24 | Exxonmobil Upstream Research Company | Heating an organic-rich rock formation in situ to produce products with improved properties |
AU2007313393B2 (en) * | 2006-10-13 | 2013-08-15 | Exxonmobil Upstream Research Company | Improved method of developing a subsurface freeze zone using formation fractures |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US7823655B2 (en) | 2007-09-21 | 2010-11-02 | Canrig Drilling Technology Ltd. | Directional drilling control |
US7730936B2 (en) | 2007-02-07 | 2010-06-08 | Schlumberger Technology Corporation | Active cable for wellbore heating and distributed temperature sensing |
DE102007040606B3 (de) | 2007-08-27 | 2009-02-26 | Siemens Ag | Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl |
RU2339809C1 (ru) * | 2007-03-12 | 2008-11-27 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ сооружения и эксплуатации паронагнетательной скважины |
CA2675780C (en) | 2007-03-22 | 2015-05-26 | Exxonmobil Upstream Research Company | Granular electrical connections for in situ formation heating |
JP5396268B2 (ja) | 2007-03-28 | 2014-01-22 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
WO2008131182A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US7788967B2 (en) | 2007-05-02 | 2010-09-07 | Praxair Technology, Inc. | Method and apparatus for leak detection |
BRPI0810752A2 (pt) | 2007-05-15 | 2014-10-21 | Exxonmobil Upstream Res Co | Métodos para o aquecimento in situ de uma formação rochosa rica em composto orgânico, para o aquecimento in situ de uma formação alvejada de xisto oleoso e para produzir um fluido de hidrocarboneto, poço aquecedor para o aquecimento in situ de uma formação rochosa rica em composto orgânico alvejada, e, campo para produzir um fluido de hidrocarboneto a partir de uma formação rica em composto orgânico alvejada. |
WO2008150531A2 (en) | 2007-05-31 | 2008-12-11 | Carter Ernest E Jr | Method for construction of subterranean barriers |
CN201106404Y (zh) * | 2007-10-10 | 2008-08-27 | 中国石油天然气集团公司 | 套管钻井专用随钻扩眼器 |
EP2198118A1 (en) | 2007-10-19 | 2010-06-23 | Shell Internationale Research Maatschappij B.V. | Irregular spacing of heat sources for treating hydrocarbon containing formations |
WO2009067418A1 (en) * | 2007-11-19 | 2009-05-28 | Shell Oil Company | Systems and methods for producing oil and/or gas |
US20090139716A1 (en) | 2007-12-03 | 2009-06-04 | Osum Oil Sands Corp. | Method of recovering bitumen from a tunnel or shaft with heating elements and recovery wells |
CA2714106A1 (en) * | 2008-02-07 | 2009-08-13 | Shell Internationale Research Maatschappij B.V. | Method and composition for enhanced hydrocarbons recovery |
MX2010008648A (es) * | 2008-02-07 | 2010-08-31 | Shell Int Research | Metodo y composicion para la recuperacion mejorada de hidrocarburos. |
US7888933B2 (en) | 2008-02-15 | 2011-02-15 | Schlumberger Technology Corporation | Method for estimating formation hydrocarbon saturation using nuclear magnetic resonance measurements |
US20090207041A1 (en) | 2008-02-19 | 2009-08-20 | Baker Hughes Incorporated | Downhole measurement while drilling system and method |
CA2718767C (en) | 2008-04-18 | 2016-09-06 | Shell Internationale Research Maatschappij B.V. | Using mines and tunnels for treating subsurface hydrocarbon containing formations |
US8277642B2 (en) | 2008-06-02 | 2012-10-02 | Korea Technology Industries, Co., Ltd. | System for separating bitumen from oil sands |
US20100101783A1 (en) | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Using self-regulating nuclear reactors in treating a subsurface formation |
US7909093B2 (en) * | 2009-01-15 | 2011-03-22 | Conocophillips Company | In situ combustion as adjacent formation heat source |
US8812069B2 (en) | 2009-01-29 | 2014-08-19 | Hyper Tech Research, Inc | Low loss joint for superconducting wire |
RU2531292C2 (ru) | 2009-04-02 | 2014-10-20 | Пентэйр Термал Менеджмент Ллк | Нагревательный кабель с минеральной изоляцией, работающий по принципу скин-эффекта |
WO2010118315A1 (en) | 2009-04-10 | 2010-10-14 | Shell Oil Company | Treatment methodologies for subsurface hydrocarbon containing formations |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8701768B2 (en) * | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8967259B2 (en) | 2010-04-09 | 2015-03-03 | Shell Oil Company | Helical winding of insulated conductor heaters for installation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US20120085535A1 (en) | 2010-10-08 | 2012-04-12 | Weijian Mo | Methods of heating a subsurface formation using electrically conductive particles |
EP2695247A4 (en) | 2011-04-08 | 2015-09-16 | Shell Int Research | SYSTEMS FOR CONNECTING INSULATED LADDER |
CA2850756C (en) | 2011-10-07 | 2019-09-03 | Scott Vinh Nguyen | Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor |
US20130087551A1 (en) | 2011-10-07 | 2013-04-11 | Shell Oil Company | Insulated conductors with dielectric screens |
-
2009
- 2009-10-09 US US12/576,722 patent/US20100101783A1/en not_active Abandoned
- 2009-10-09 EP EP09821049A patent/EP2334894A1/en not_active Withdrawn
- 2009-10-09 WO PCT/US2009/060162 patent/WO2010045115A2/en active Application Filing
- 2009-10-09 US US12/576,763 patent/US8256512B2/en not_active Expired - Fee Related
- 2009-10-09 RU RU2011119095/03A patent/RU2529537C2/ru not_active IP Right Cessation
- 2009-10-09 CN CN200980140450.8A patent/CN102187052B/zh active Active
- 2009-10-09 CN CN2009801404495A patent/CN102187053A/zh active Pending
- 2009-10-09 RU RU2011119081/03A patent/RU2530729C2/ru not_active IP Right Cessation
- 2009-10-09 CA CA2738805A patent/CA2738805A1/en not_active Abandoned
- 2009-10-09 WO PCT/US2009/060093 patent/WO2010045099A1/en active Application Filing
- 2009-10-09 EP EP09821046A patent/EP2361343A1/en not_active Withdrawn
- 2009-10-09 RU RU2011119084/03A patent/RU2518700C2/ru not_active IP Right Cessation
- 2009-10-09 WO PCT/US2009/060090 patent/WO2010045097A1/en active Application Filing
- 2009-10-09 AU AU2009303609A patent/AU2009303609B2/en not_active Ceased
- 2009-10-09 WO PCT/US2009/060099 patent/WO2010045102A1/en active Application Filing
- 2009-10-09 US US12/576,697 patent/US8281861B2/en not_active Expired - Fee Related
- 2009-10-09 RU RU2011119096/03A patent/RU2537712C2/ru not_active IP Right Cessation
- 2009-10-09 US US12/576,815 patent/US9051829B2/en not_active Expired - Fee Related
- 2009-10-09 JP JP2011531189A patent/JP5611961B2/ja not_active Expired - Fee Related
- 2009-10-09 RU RU2011119093/03A patent/RU2524584C2/ru not_active IP Right Cessation
- 2009-10-09 CN CN200980140452.7A patent/CN102187054B/zh not_active Expired - Fee Related
- 2009-10-09 US US12/576,751 patent/US9129728B2/en not_active Expired - Fee Related
- 2009-10-09 JP JP2011531195A patent/JP5611963B2/ja not_active Expired - Fee Related
- 2009-10-09 AU AU2009303605A patent/AU2009303605B2/en not_active Ceased
- 2009-10-09 EP EP09821050A patent/EP2334901A1/en not_active Withdrawn
- 2009-10-09 WO PCT/US2009/060097 patent/WO2010045101A1/en active Application Filing
- 2009-10-09 CA CA2738939A patent/CA2738939A1/en not_active Abandoned
- 2009-10-09 WO PCT/US2009/060092 patent/WO2010045098A1/en active Application Filing
- 2009-10-09 EP EP09821048A patent/EP2361344A1/en not_active Withdrawn
- 2009-10-09 CN CN2009801436706A patent/CN102203377A/zh active Pending
- 2009-10-09 WO PCT/US2009/060100 patent/WO2010045103A1/en active Application Filing
- 2009-10-09 JP JP2011531191A patent/JP2012508838A/ja not_active Ceased
- 2009-10-09 US US12/576,782 patent/US8353347B2/en not_active Expired - Fee Related
- 2009-10-09 AU AU2009303608A patent/AU2009303608B2/en not_active Ceased
- 2009-10-09 US US12/576,790 patent/US8267170B2/en not_active Expired - Fee Related
- 2009-10-09 JP JP2011531190A patent/JP5611962B2/ja not_active Expired - Fee Related
- 2009-10-09 BR BRPI0919775A patent/BRPI0919775A2/pt not_active IP Right Cessation
- 2009-10-09 CN CN200980140451.2A patent/CN102187055B/zh not_active Expired - Fee Related
- 2009-10-09 CA CA2739088A patent/CA2739088A1/en not_active Abandoned
- 2009-10-09 BR BRPI0920141A patent/BRPI0920141A2/pt not_active IP Right Cessation
- 2009-10-09 US US12/576,707 patent/US8267185B2/en not_active Expired - Fee Related
- 2009-10-09 US US12/576,800 patent/US8261832B2/en not_active Expired - Fee Related
- 2009-10-09 CA CA2739039A patent/CA2739039C/en active Active
- 2009-10-09 CA CA2738804A patent/CA2738804A1/en not_active Abandoned
- 2009-10-09 AU AU2009303606A patent/AU2009303606B2/en not_active Ceased
- 2009-10-09 AU AU2009303610A patent/AU2009303610A1/en not_active Abandoned
- 2009-10-09 US US12/576,732 patent/US8220539B2/en not_active Expired - Fee Related
- 2009-10-09 US US12/576,772 patent/US9022118B2/en not_active Expired - Fee Related
- 2009-10-09 US US12/576,825 patent/US8881806B2/en active Active
- 2009-10-09 AU AU2009303604A patent/AU2009303604B2/en not_active Ceased
- 2009-10-09 RU RU2011119086/03A patent/RU2518649C2/ru not_active IP Right Cessation
- 2009-10-09 CA CA2739086A patent/CA2739086A1/en not_active Abandoned
- 2009-10-09 US US12/576,845 patent/US20100155070A1/en not_active Abandoned
- 2009-10-09 EP EP09821044A patent/EP2361342A1/en not_active Withdrawn
- 2009-10-09 JP JP2011531193A patent/JP2012509417A/ja not_active Ceased
- 2009-10-09 EP EP09821045A patent/EP2334900A1/en not_active Withdrawn
- 2009-10-09 JP JP2011531194A patent/JP2012509418A/ja active Pending
-
2011
- 2011-03-27 IL IL211951A patent/IL211951A/en not_active IP Right Cessation
- 2011-03-27 IL IL211950A patent/IL211950A/en not_active IP Right Cessation
- 2011-03-29 IL IL211990A patent/IL211990A/en not_active IP Right Cessation
- 2011-03-29 IL IL211991A patent/IL211991A/en not_active IP Right Cessation
- 2011-03-29 IL IL211989A patent/IL211989A/en not_active IP Right Cessation
-
2016
- 2016-03-30 US US15/085,561 patent/US20160281482A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2133335C1 (ru) * | 1996-09-11 | 1999-07-20 | Юрий Алексеевич Трутнев | Способ разработки нефтяных месторождений и переработки нефти и устройство для его осуществления |
RU2223397C2 (ru) * | 2001-07-19 | 2004-02-10 | Хайрединов Нил Шахиджанович | Способ разработки нефтяного месторождения |
RU2004115602A (ru) * | 2001-10-24 | 2005-10-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) | Способы и устройства для нагревания внутри формации, содержащей углеводороды, со вскрытием, соприкасающимся с земной поверхностью в двух местоположениях |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2652909C1 (ru) * | 2017-08-28 | 2018-05-03 | Общество с ограниченной ответственностью "Научно-техническая и торгово-промышленная фирма "ТЕХНОПОДЗЕМЭНЕРГО" (ООО "Техноподземэнерго") | Шахтно-скважинный газотурбинно-атомный нефтегазодобывающий комплекс (комбинат) |
RU2756155C1 (ru) * | 2021-03-04 | 2021-09-28 | Акционерное общество «Зарубежнефть» | Внутрискважинный кольцевой нагреватель |
RU2756152C1 (ru) * | 2021-03-04 | 2021-09-28 | Акционерное общество «Зарубежнефть» | Внутрискважинный пучковый нагреватель |
RU2804628C1 (ru) * | 2021-03-04 | 2023-10-03 | Акционерное общество «Зарубежнефть» | Способ повышения эффективности извлечения нефти с применением нагревателя на основе источников ионизирующего излучения |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2518700C2 (ru) | Применение саморегулирующихся ядерных реакторов при обработке подземного пласта | |
RU2487236C2 (ru) | Способ обработки подземного пласта (варианты) и моторное топливо, полученное с использованием способа | |
JP5378223B2 (ja) | 段階的ラインドライブプロセスによる炭化水素含有層の加熱 | |
JP5149959B2 (ja) | 地下累層用の並列ヒーターシステム | |
RU2439289C2 (ru) | Барьер из серы для использования с процессами на месте залегания для обработки пластов | |
EA019751B1 (ru) | Способ и система для обработки подземного углеводородсодержащего пласта | |
RU2612774C2 (ru) | Аккомодация теплового расширения для систем с циркулирующей текучей средой, используемых для нагревания толщи пород | |
AU2011237624B2 (en) | Leak detection in circulated fluid systems for heating subsurface formations | |
CN116498282A (zh) | 一种基于微型核反应堆原位气化稠油的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20151010 |