RU2518700C2 - Применение саморегулирующихся ядерных реакторов при обработке подземного пласта - Google Patents

Применение саморегулирующихся ядерных реакторов при обработке подземного пласта Download PDF

Info

Publication number
RU2518700C2
RU2518700C2 RU2011119084/03A RU2011119084A RU2518700C2 RU 2518700 C2 RU2518700 C2 RU 2518700C2 RU 2011119084/03 A RU2011119084/03 A RU 2011119084/03A RU 2011119084 A RU2011119084 A RU 2011119084A RU 2518700 C2 RU2518700 C2 RU 2518700C2
Authority
RU
Russia
Prior art keywords
formation
self
nuclear reactor
heat
regulating nuclear
Prior art date
Application number
RU2011119084/03A
Other languages
English (en)
Other versions
RU2011119084A (ru
Inventor
Скотт Винх НГУЙЭН
Харолд Дж. Винигар
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU2011119084A publication Critical patent/RU2011119084A/ru
Application granted granted Critical
Publication of RU2518700C2 publication Critical patent/RU2518700C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49083Heater type

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Earth Drilling (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Road Paving Structures (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pipe Accessories (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Изобретение относится к системам и способам для обработки подземного пласта. Система термической обработки in situ для добычи углеводородов из подземного пласта, содержит саморегулирующийся ядерный реактор; систему труб, по меньшей мере, частично расположенную в активной зоне саморегулирующегося ядерного реактора, с первым теплоносителем, циркулирующим через систему труб и теплообменник. Теплообменник предназначен для прохождения через него первого теплоносителя для нагрева второго теплоносителя. При этом второй теплоноситель предназначен для повышения температуры, по меньшей мере, части пласта выше температуры, обеспечивающей образование подвижного флюида, легкий крекинг и/или пиролиз углеводородсодержащего материала, приводящих к образованию в пласте подвижных флюидов, флюидов, являющихся результатом легкого крекинга, и/или флюидов, являющихся результатом пиролиза. Причем поступление тепла в, по меньшей мере, часть пласта в течение времени, по меньшей мере, приблизительно соотносится со скоростью затухания саморегулирующегося ядерного реактора. Техническим результатом является повышение эффективности прогрева пласта. 2 н. и 17 з.п. ф-лы, 8 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как углеводородсодержащие пласты.
Уровень техники
Получаемые из подземных пластов углеводороды часто используют в качестве энергетических ресурсов, в качестве разного рода сырья и в качестве потребительских продуктов. Озабоченность по поводу истощения существующих углеводородных ресурсов и озабоченность по поводу снижения в целом качества добываемых углеводородов привели к разработке способов для более эффективных добычи, переработки и/или применения имеющихся углеводородных ресурсов. Для извлечения углеводородных материалов из подземных пластов могут использоваться процессы in situ. С целью обеспечения более легкого извлечения углеводородного материала из подземного пласта может потребоваться изменение химических и/или физических свойств углеводородного материала в подземном пласте. Химические и физические изменения могут включать в себя реакции in situ, результатом которых становится образование извлекаемых флюидов, изменения состава, изменения растворимости, изменения плотности, фазовые изменения и/или изменения вязкости углеводородного материала в пласте. Флюидом могут быть (но без ограничения ими) газ, жидкость, эмульсия, суспензия и/или поток твердых частиц, который имеет характеристики текучести, подобные характеристикам текучести потока жидкости.
Для нагрева пласта в процессе in situ в стволы скважин могут помещаться нагреватели. Существует множество различных типов нагревателей, которые могут быть использованы для нагрева пласта. Эффективность и выгода от добываемых углеводородных материалов, прежде всего, будет определять энергия, необходимая для превращения и/или вывода углеводородных материалов из подземного пласта. Отсюда и интерес к любым системам и/или способам, которые могут приводить к снижению потребности в энергии и/или расходов на энергию, необходимых для добычи углеводородных материалов.
В документе US 3170842 описаны субкритический ядерный реактор и нейтроногенерирующее устройство, пригодные для использования в стволе скважины. В данном документе описаны исследование ствола скважины с ядерным реактором, нагрев ствола скважины с помощью ядерного реактора или пиролиз in situ горючих сланцев с помощью нагревания с использованием ядерного реактора в стволе скважины в качестве теплового источника в указанных сланцах. При этом применяется ядерный реактор, обладающий варьируемой в широких пределах заданной выходной мощностью и выходом нейтронов и имеющий устройство для варьирования или поддержания постоянства указанной выходной мощности или выхода нейтронов на заданном уровне, соответствующем выбранной цели, для которой должен использоваться ядерный реактор. Ядерный реактор включает в себя множество субкритических состояний, возбуждаемых до уровня генерирования нейтронов или выходной мощности в зависимости от положения первичного генератора нейтронов, который может перемещаться относительно корпуса ядерного реактора с помощью механических средств.
В документе US 3237689 описаны способ и установка для перегонки залежей горючих сланцев и других твердых углеродистых материалов in situ, с помощью которых достигаются более эффективная и более полная перегонка при значительной экономии объема производимых работ. Расположенный вблизи разрабатываемого участка ядерный реактор используется для обеспечения теплом теплоносителя, циркулирующего через один или несколько теплообменников, которые подают тепло на один или несколько тепловых фронтов для проведения перегонки in situ залежей горючих сланцев.
В документе US 3598182 описан способ перегонки и дегидрогенизации углеводородного содержимого и углеродистых материалов с использованием горячего водорода для высвобождения и перегонки углеводородного содержимого. Предпочтительно установка для осуществления способа содержит источник водорода, средство для изменения температуры водорода, подземную каверну в углеродистом материале и модулирующее температуру устройство на поверхности сланцев для регулирования температуры водорода. Горячий водород может поступать из любого источника, но предпочтительно его получают из ядерного реактора, в котором водород используется в качестве охладителя, или из процесса карбонизации угля.
В документе US 3766982 описан способ обработки in situ горючего сланца или какого-либо другого углеводородистого материала с использованием в качестве транспортирующего агента горячей текучей среды, такой как воздух или дымовой газ, с целью испарения керогена или какого-либо другого углеводородистого материала и, в частности, также в качестве носителя достаточного объема тепла, чтобы расколоть и расщепить материал, сделав его насквозь проницаемым для газового потока. Добыча улетученного углеводородистого материала производится через один или несколько стволов скважин, удаленных от места ввода горячего газа. Нагрев воздуха или какого-либо другого относительно недорогого теплообменивающего газа до требуемой температуры, либо над, либо под поверхностью грунта, осуществляется в ядерном реакторе, в нагревателе с галечным теплоносителем или в каком-либо другом подходящем нагревательном устройстве.
В документе US 4765406 описан способ пробной добычи сырой нефти с помощью закачки в нефтяной пласт теплоносителя. На этот способ влияет генерирование тепловой энергии в нефтяном месторождении или в том месте, где в это месторождение входит какая-либо скважина, путем проведения реакции каталитического метанирования и переноса образующегося при этом тепла к теплоносителю, которым может быть водяной пар или инертный газ. Теплоноситель вводится в нефтяной пласт и повышает мобильность нефти. Могут использоваться различные источники энергии, включая уголь, нефть, работающие на сжигании газа нагреватели, солнечно-энергетические установки и т.п., хотя нами предпочтительно используется высокотемпературный ядерный реактор.
В документе US 4930574 описан способ третичной нефтедобычи и утилизации газа путем ввода нагретого с помощью ядерного реактора водяного пара в нефтяное месторождение и вывода, отделения и приготовления отходящей водно-нефтегазовой смеси. Способ включает в себя нагрев печи парового реформинга и генерирование водяного пара в парогенераторе с помощью тепла из высокотемпературного реактора с гелиевым охлаждением при частичной подаче производимого в парогенераторе водяного пара через какую-либо трубу в нефтяное месторождение, отделение метана и других компонентов от отходящей водно-нефтегазовой смеси, предварительный нагрев метана в подогревателе и последующую частичную подачу произведенного в парогенераторе водяного пара и метана в печь парового реформинга с целью превращения метана в водород и оксид углерода.
В документе US 20070181301 описаны система и способ извлечения углеводородных продуктов из горючесланцевого пласта. Способ включает в себя использование источников ядерной энергии для того, чтобы энергия осуществляла раскол горючесланцевых пластов и обеспечивала достаточно тепла и давления для образования жидких и газообразных углеводородных продуктов. Способ включает также этапы извлечения углеводородных продуктов из горючесланцевых пластов.
Для разработки способов и систем для экономичной добычи углеводородов, водорода и/или других продуктов из углеводородсодержащих пластов были приложены значительные усилия. Однако в настоящее время все еще существует много углеводородсодержащих пластов, из которых углеводороды, водород и/или другие продукты экономично добыты быть не могут. В связи с этим существует потребность в улучшенных способах и системах, которые бы снизили энергетические затраты на обработку пласта, снизили выбросы в процессе обработки, облегчили установку нагревательной системы и/или снизили потери тепла на нагрев покрывающего слоя по сравнению со способами добычи углеводородов, в которых используется наземное оборудование.
Раскрытие изобретения
Описанные здесь варианты осуществления изобретения относятся в целом к системам и способам для нагрева подземного пласта. В некоторых вариантах осуществления изобретения предлагаются одна или несколько систем и один или несколько способов для обработки подземного пласта.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта; при этом ввод тепла в по меньшей мере часть пласта в течение времени по меньшей мере частично соотносится со скоростью затухания саморегулирующегося ядерного реактора.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта; при этом расстояние между по меньшей мере частью множества стволов скважин в пласте по меньшей мере частично соотносится со скоростью затухания саморегулирующегося ядерного реактора.
В некоторых вариантах осуществления изобретения предлагается система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: множество стволов скважин в пласте; по меньшей мере один нагреватель, расположенный в по меньшей мере двух стволах скважин; и саморегулирующийся ядерный реактор, выполненный с возможностью подачи энергии к по меньшей мере одному из нагревателей для повышения температуры пласта до уровней, которые позволяют осуществлять добычу углеводородов из пласта; при этом саморегулирующийся ядерный реактор затухает со скоростью приблизительно 1/Е.
В некоторых вариантах осуществления изобретения способ добычи углеводородов из подземного пласта может осуществляться с помощью описанной здесь системы. В дополнительных вариантах осуществления изобретения признаки из отдельных вариантов осуществления изобретения могут объединяться с признаками из других вариантов осуществления изобретения. Например, признаки из одного варианта осуществления изобретения могут быть объединены с признаками из каких-либо других вариантов осуществления изобретения. В дополнительных вариантах осуществления изобретения обработка подземного пласта проводится с помощью любых из описанных в заявке систем и способов. В дополнительных вариантах осуществления изобретения к конкретным описанным в заявке вариантам осуществления изобретения могут быть добавлены дополнительные признаки.
Краткое описание чертежей
Преимущества настоящего изобретения могут стать очевидными специалистам благодаря приведенному ниже подробному описанию со ссылками на прилагаемые чертежи.
На фиг.1 схематически показан один из вариантов выполнения одной из частей системы термической обработки in situ для обработки углеводородсодержащего пласта;
на фиг.2 - один из вариантов выполнения системы термической обработки in situ, в которой использован ядерный реактор;
на фиг.3 - один из вариантов выполнения системы термической обработки in situ, в которой использованы реакторы с галечным слоем, вид в вертикальном разрезе;
на фиг.4 - один из вариантов выполнения саморегулирующегося ядерного реактора;
на фиг.5 - один из вариантов выполнения системы термической обработки in situ с u-образными стволами скважин с использованием саморегулирующихся ядерных реакторов;
на фиг.6 - зависимость мощности (Вт/м) (ось y) от времени (годы) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ;
на фиг.7 - зависимость мощности (Вт/м) (ось y) от времени (дни) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ для разных расстояний между стволами скважин;
на фиг.8 - зависимость средней температуры (°С) (ось y) коллектора от времени (дни) (ось х) при термической обработке in situ для разных расстояний между стволами скважин.
Хотя изобретение может иметь различные модификации и альтернативные формы, с помощью приведенного с использованием чертежей примера показаны конкретные варианты его осуществления, которые подробно описаны далее. Чертежи не обязательно масштабированы. Следует, однако, иметь в виду, что чертежи и их подробное описание не рассчитаны на то, чтобы ограничить ими изобретение до конкретной раскрытой формы, а, наоборот, ставилась цель охватить все модификации, эквиваленты и альтернативы, относящиеся к сути и объему настоящего изобретения, определенным в прилагаемой формуле изобретения.
Осуществление изобретения
Следующее ниже описание в целом относится к системам и способам обработки углеводородов в пластах. Такие пласты могут подвергаться обработке с целью получения углеводородных продуктов, водорода и других продуктов.
«АНИ-плотность» обозначает плотность в градусах Американского нефтяного института при 15,5°С (60°F), определяемую согласно методу ASTM Method D6822 или ASTM Method D1298.
«Давление флюида» - это давление, создаваемое каким-либо флюидом в пласте. «Литостатическим давлением» (иногда называемым «литостатическим напряжением») является давление в пласте, равное весу на единицу площади вышележащей массы породы. «Гидростатическим давлением» является давление в пласте, создаваемое столбом воды.
«Пласт» включает в себя один или несколько углеводородсодержащих слоев, один или несколько неуглеводородных слоев, покрывающий слой и/или подстилающий слой. Выражение «углеводородные слои» относится к слоям в пласте, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородный материал и углеводородный материал. «Покрывающий слой» и/или «подстилающий слой» содержат один или несколько различных непроницаемых материалов. Например, покрывающий слой и/или подстилающий слой могут содержать скальную породу, сланец, аргиллит или влажный/плотный карбонат. В некоторых вариантах осуществления операций термической обработки in situ покрывающий слой и/или подстилающий слой могут включать в себя углеводородсодержащий слой или углеводородсодержащие слои, которые относительно непроницаемы и не подвергаются действию температур во время проведения термической обработки in situ, результатом которой являются значительные изменения характеристик углеводородсодержащих слоев покрывающего слоя и/или подстилающего слоя. Например, подстилающий слой может содержать сланец или аргиллит, но подстилающий слой нельзя нагревать до температур пиролиза в процессе термической обработки in situ. В отдельных случаях покрывающий слой и/или подстилающий слой могут быть до некоторой степени проницаемыми.
Под "пластовыми флюидами" подразумеваются флюиды, которые присутствуют в пласте и могут включать в себя пиролизный флюид, синтез-газ, подвижные углеводороды и воду (водяной пар). Пластовые флюиды могут включать в себя как углеводородные флюиды, так и неуглеводородные флюиды. Выражение "подвижный флюид" относится к флюидам в углеводородсодержащем пласте, которые в результате термической обработки пласта приобрели текучесть. Под "добытыми флюидами" подразумеваются флюиды, извлеченные из пласта.
"Источником тепла" является любая система для подачи тепла в по поменьше мере какую-либо часть пласта в основном путем посредством теплопроводности и/или излучения. Источником тепла могут быть, например, электропроводящие материалы и/или электронагреватели типа изолированного проводника, удлиненного элемента и/или проводника, расположенного в кабелепроводе. Нагревателем могут также быть системы, вырабатывающие тепло за счет сжигания топлива вне пласта или в пласте. Этими системами могут быть наземные горелки, скважинные газовые горелки, беспламенные рассредоточенные камеры сгорания и природные рассредоточенные камеры сгорания. В некоторых вариантах осуществления изобретения тепло, подаваемое в один или несколько источников тепла или произведенное в них, может быть получено от других источников энергии. Другие источники энергии могут нагревать пласт непосредственно, или их энергия может передаваться теплоносителю, который непосредственно или опосредованно нагревает пласт. Следует иметь в виду, что в одном или нескольких источниках тепла, которые доставляют тепло в пласт, могут использоваться различные источники энергии. Так, например, для данного пласта некоторые источники тепла могут подавать тепло от электропроводящих материалов, от электронагревателей сопротивления, некоторые источники тепла могут подавать тепло сгорания, а некоторые источники тепла могут подавать тепло от одного или нескольких других источников энергии (например, химических реакций, солнечной энергии, энергии ветра, биомассы, или других источников возобновляемой энергии). Химической реакцией может быть экзотермическая реакция (например, реакция окисления). Источник тепла может также включать в себя электропроводящий материал или нагреватель, который подает тепло в зону, расположенную вблизи места нагрева, и/или окружающую это место нагрева, такое как нагревательную скважину.
"Нагреватель" представляет собой любую систему или источник тепла, генерирующие тепло в скважине или в области, примыкающей к стволу скважины. Нагревателями могут быть (но не ограничиваясь ими) электронагреватели, горелки, камеры сгорания, которые реагируют с материалом в пласте или материалом, полученным из пласта, и/или их комбинации.
«Тяжелые углеводороды» представляют собой вязкие углеводородные флюиды. Тяжелые углеводороды могут включать в себя высоковязкие углеводородные флюиды, как тяжелая нефть, битум и/или асфальтовый битум. Тяжелые углеводороды могут включать в себя как углерод и водород, так и в меньших концентрациях серу, кислород и азот. В малых количествах в тяжелых углеводородах могут присутствовать и другие элементы. Тяжелые углеводороды могут быть расклассифицированы по АНИ-плотности. Как правило, тяжелые углеводороды имеют АНИ-плотность ниже примерно 20°. Тяжелая нефть, например, обычно имеет АНИ-плотность, равную примерно 10-20°, в то время как битум обычно имеет АНИ-плотность ниже примерно 10°. Как правило, вязкость тяжелых углеводородов выше примерно 100 сПз при 15°С. Тяжелые углеводороды могут включать в себя ароматические и другие сложные циклические углеводороды.
Тяжелые углеводороды могут находиться в относительно проницаемых пластах. Относительно проницаемый пласт может содержать тяжелые углеводороды, увлеченные, например, в песок или в карбонат. «Относительно проницаемым» по отношению к пластам или их частям является пласт, средняя проницаемость которого равна или превышает 10 миллидарси (например, 10 или 100 миллидарси). «Относительно низкая проницаемость» по отношению к пластам или их частям определяется как средняя проницаемость, меньшая примерно 10 миллидарси. Один Дарси равен приблизительно 0,99 мкм2. Непроницаемый слой обычно имеет проницаемость меньшую примерно 0,1 миллидарси.
Некоторые типы пластов, которые содержат тяжелые углеводороды, могут также содержать (но не ограничиваясь ими) природные минеральные воски или природные асфальтиты. «Природные минеральные воски» встречаются, как правило, в по существу трубчатых жилах, которые могут иметь несколько метров в ширину, несколько километров в длину и сотни метров в глубину. «Природные асфальтиты» включают в себя твердые углеводороды ароматического состава и обычно встречаются в больших жилах. Извлечение из пластов in situ углеводородов, таких как минеральные воски и природные асфальтиты, может включать плавление с образованием жидких углеводородов и/или растворную добычу углеводородов из пластов.
«Углеводороды» определяются в общем случае как молекулы, образованные преимущественно атомами углерода и водорода. Углеводороды могут также включать в себя и другие элементы, например (но не ограничиваясь ими) галогены, металлические элементы, азот, кислород и/или серу. Углеводородами могут быть (но не ограничиваясь ими) кероген, битум, пиробитум, нефти, природные минеральные воски и асфальтиты. Углеводороды могут находится внутри минеральных матриц в земле или непосредственно вблизи них. Матрицами могут быть (но не ограничиваясь ими) осадочная порода, пески, силицилиты, карбонаты, диатомиты и другие пористые среды. "Углеводородные флюиды" представляют собой флюиды, которые содержат углеводороды. Углеводородные флюиды могут включать, захватывать или быть захваченными неуглеводородными флюидами, например водородом, азотом, оксидом углерода, диоксидом углерода, сероводородом, водой и аммиаком.
«Процесс переработки in situ» представляет собой процесс нагрева углеводородсодержащего пласта от источников тепла с целью повышения температуры по меньшей мере части пласта выше температуры пиролиза, в результате чего в пласте образуется пиролизный флюид.
«Процесс термической обработки in situ» представляет собой процесс нагрева углеводородсодержащего пласта источниками тепла с целью повышения температуры по меньшей мере части пласта выше некоторой температуры, в результате чего образуется подвижный флюид и происходит легкий крекинг и/или пиролиз углеводородсодержащего материала, приводящие к образованию в пласте подвижных флюидов, флюидов, являющихся результатом легкого крекинга, и/или флюидов, являющихся результатом пиролиза.
«Изолированным проводником» называется любой удлиненный материал, который способен проводить электричество и целиком или частично покрыт электроизоляционным материалом.
«Пиролиз» представляет собой разрыв химических связей в результате воздействия теплом. Например, пиролиз может включать в себя превращение какого-либо соединения в одно или несколько других веществ только за счет тепла. Чтобы вызвать пиролиз, тепло может подаваться в какой-либо участок пласта.
Выражение «пиролизные флюиды» или «продукты пиролиза» относится к флюиду, образующемуся главным образом в процессе пиролиза углеводородов. Образующийся в результате пиролизных реакций флюид может смешиваться с другими флюидами в пласте. Такую смесь следует рассматривать как пиролизный флюид или пиролизный продукт. Выражение «зона пиролиза» относится к объему пласта (например, относительно проницаемого пласта такого как пласт битуминозных песков), в котором проведена или проходит реакция с образованием пиролизного флюида.
"Наложение тепла" подразумевает доставку тепла от двух или более источников тепла к выбранному участку пласта таким образом, чтобы источники тепла влияли на температуру пласта в по меньшей мере одном месте между тепловыми источниками.
«Пласт битуминозных песков» - это пласт, в котором углеводороды преимущественно являются тяжелыми углеводородами и/или битумом, захваченными в минеральной зернистой структуре или другой вмещающей породе (например, песке или карбонатной горной породе). Примеры пластов битуминозных песков включают такие пласты как пласты в Атабаске, Гросмонте и на Пис-ривер (все три в штате Альберта, Канада) и пласт Фаха в поясе Ориноко, Венесуэла.
Выражение «толщина» слоя относится к толщине поперечного сечения слоя, которое перпендикулярно лицевой поверхности слоя.
Под «u-образным стволом скважины» понимают ствол скважины, который начинается от первого отверстия в пласте, проходит, по меньшей мере, часть пласта и заканчивается вторым отверстием в пласте. В этом случае форма ствола скважины, который считается «u-образным», может только примерно напоминать буквы «v» или «u», при этом ясно, что «ножки» буквы «u» не обязательно параллельны друг другу или перпендикулярны «нижней части» буквы «u».
«Облагораживание» подразумевает повышение качества углеводородов. Например, облагораживание тяжелых углеводородов может привести к повышению АНИ-плотности тяжелых углеводородов.
Выражение «легкий крекинг» относится к распутыванию молекул во флюиде в процессе термической обработки и/или к разрыву больших молекул на меньшие молекулы при термической обработке, что приводит к снижению вязкости флюида.
Выражение «ствол скважины» относится к отверстию в пласте, выполненному бурением или внедрением в пласт трубопровода. Ствол скважины может иметь в существенной степени круглое поперечное сечение или поперечное сечение какой-либо иной формы. В данном описании выражения «скважина» или «отверстие», относящиеся к отверстию в пласте, могут использоваться взаимозаменяемым образом по отношению к выражению «ствол скважины».
С целью получения множества разных продуктов пласт может обрабатываться различными способами. Для обработки пласта в процессе его термической обработки in situ могут быть использованы разные стадии или операции. В некоторых вариантах осуществления изобретения один или несколько участков пласта разрабатывают с использованием раствора, удаляя из этих участков растворимые минералы. Извлечение минералов в виде раствора может проводиться до, во время и/или после проведения операции термической обработки in situ. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков, в которых осуществляют разработку с использованием раствора, может поддерживаться ниже примерно 120°С.
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают с целью удаления из них воды и/или для удаления из этих участков метана и других летучих углеводородов. В некоторых вариантах осуществления изобретения во время удаления воды и летучих углеводородов средняя температура может быть повышена от температуры окружающей среды до температуры ниже примерно 220°С.
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, которые обеспечивают движение и/или легкий крекинг углеводородов в пласте. В некоторых вариантах осуществления изобретения среднюю температуру одного или нескольких участков пласта повышают до температур подвижности углеводородов в участках (например, до температуры в пределах от 100 до 250°С, от 120 до 240°С или от 150 до 230°С).
В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур, которые обеспечивают протекание в пласте пиролизных реакций. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть повышена до температур пиролиза углеводородов в этих участках (например, до температур в пределах от 230 до 900°С, от 240 до 400°С или от 250 до 350°С).
Нагрев углеводородсодержащего пласта с помощью множества источников тепла может привести к установлению вокруг источников тепла тепловых градиентов, которые повышают температуру углеводородов в пласте до заданных значений при заданных скоростях нагрева. Скорость повышения температуры в диапазоне температур подвижности и/или в диапазоне температур пиролиза для целевых продуктов может повлиять на качество и количество пластовых флюидов, добываемых из углеводородсодержащего пласта. Медленное повышение температуры пласта в диапазоне температур подвижности и/или в диапазоне температур пиролиза может обеспечить добычу из пласта высококачественных, обладающих высокой АНИ-плотностью углеводородов. Медленное повышение температуры пласта в диапазоне температур подвижности и/или в диапазоне температур пиролиза может обеспечить извлечение в качестве углеводородного продукта большого количества находящихся в пласте углеводородов.
В некоторых вариантах осуществления термической обработки in situ вместо медленного повышения температуры в каком-либо температурном диапазоне одну из частей пласта нагревают до какой-либо заданной температуры. В некоторых вариантах осуществления изобретения заданная температура равна 300, 325 или 350°С. В качестве заданной температуры могут быть выбраны и другие температуры.
Наложение тепла от источников тепла позволяет относительно быстро и эффективно устанавливать в пласте заданную температуру. Чтобы поддерживать температуру в пласте на близком к заданному уровне можно осуществлять корректировку поступления в пласт энергии от источников тепла.
Продукты подвижности и/или пиролиза могут добываться из пласта через добывающие скважины. В некоторых вариантах осуществления изобретения среднюю температуру одного или нескольких участков поднимают до температур подвижности и добывают углеводороды через добывающие скважины. После того как обусловленная подвижностью добыча снизится ниже установленного значения, средняя температура одного или нескольких участков может быть повышена до температур пиролиза. В некоторых вариантах осуществления изобретения температуру одного или нескольких участков повышают до температур пиролиза без проведения при этом добычи в значительном объеме до тех пор, пока не будут достигнуты температуры пиролиза. Пластовые флюиды, включая продукты пиролиза, могут добываться через добывающие скважины.
В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков может быть повышена до температур, достаточных для того, чтобы обеспечить добычу синтез-газа после придания подвижности и/или осуществления пиролиза. В некоторых вариантах осуществления изобретения температура углеводородов может быть повышена в достаточной степени для того, чтобы обеспечить образование синтез-газа без проведения при этом добычи в значительном объеме до тех пор, пока не будут достигнуты температуры, достаточные для обеспечения образования синтез-газа. Например, синтез-газ может образовываться в пределах температур от примерно 400 до примерно 1200°С, от примерно 500 до примерно 1100°С или от примерно 550 до примерно 1000°С. Образующий синтез-газ флюид (например, водяной пар и/или воду) можно вводить в участки пласта для генерирования там синтез-газа. Добыча синтез-газа может осуществляться через добывающие скважины.
Добыча с помощью раствора, извлечение летучих углеводородов и воды, придание подвижности углеводородам, пиролиз углеводородов, генерирование синтез-газа и/или другие операции могут проводиться во время процесса термической обработки in situ. В некоторых вариантах осуществления изобретения некоторые операции могут проводиться после процесса термической обработки in situ. В число таких операций могут входить (но не ограничиваясь ими) рекуперация тепла из обработанных участках, хранение флюидов (например, воды и/или углеводородов) в предварительно обработанных участках и/или связывание диоксида углерода в предварительно обработанных участках.
На фиг.1 приведен схематический вид одного из вариантов выполнения части системы термической обработки in situ для обработки углеводородсодержащего пласта. Система термической обработки in situ может включать в себя барьерные скважины 100. Барьерные скважины используются для создания барьера вокруг обрабатываемого участка. Барьер препятствует потоку флюидов к обрабатываемому участку и/или из него. Барьерными скважинами могут быть (но не ограничиваются ими) обезвоживающие скважины, вакуумные скважины, захватывающие скважины, нагнетательные скважины, растворные скважины, замораживающие скважины или их комбинации. В некоторых вариантах осуществления изобретения барьерными скважинами 100 являются обезвоживающие скважины. Обезвоживающие скважины могут удалять жидкую воду и/или препятствовать поступлению жидкой воды в часть предназначенного для нагрева пласта или в нагреваемый пласт. В приведенном на фиг.1 варианте осуществления изобретения барьерные скважины 100 показаны проходящими только вдоль одной стороны источников тепла 102, но, как правило, барьерные скважины опоясывают все используемые или предназначенные для использования источники 102 тепла для нагрева обрабатываемого участка пласта.
Источники 102 тепла помещают в по меньшей мере часть пласта. Источниками 102 тепла могут быть электропроводящие материалы. В некоторых вариантах осуществления изобретения нагревателями являются изолированные проводники, нагреватели типа проводников в каналах, наземные горелки, беспламенные рассредоточенные камеры сгорания и/или природные рассредоточенные камеры сгорания. Источниками 102 тепла могут быть и другие типы нагревателей. Для нагрева углеводородов в пласте источники 102 тепла подают тепло по меньшей мере к части пласта. Энергия может подводиться к источникам 102 тепла по подводящим линиям 104. Подводящие линии 104 могут быть структурно различными в зависимости от типа используемого для нагревания пласта источника тепла или источников тепла. Подводящие линии 104 для источников тепла могут пропускать электричество для электропроводящих материалов или электронагревателей, могут транспортировать топливо для камер сгорания, либо же могут переносить циркулирующий в пласте теплоноситель. В некоторых вариантах осуществления изобретения электричество для операции термической обработки in situ может подаваться от атомной электростанции или от атомных электростанций. Использование энергии атомных электростанций позволяет снизить или исключить выбросы диоксида углерода в процессе термической обработки in situ.
Нагревание пласта может приводить к некоторому увеличению проницаемости и/или пористости пласта. Увеличение проницаемости и/или пористости может быть обусловлено уменьшением массы в пласте в результате испарения и удаления воды, удаления углеводородов и/или образования трещин. Благодаря повышенной проницаемости и/или пористости пласта течение флюида в нагретой части пласта облегчается. Благодаря повышенной проницаемости и/или пористости флюид в нагретой части пласта может перемещаться через пласт на значительное расстояние. Это значительное расстояние может превышать 1000 м в зависимости от различных факторов, таких как проницаемость пласта, свойства флюида, температура пласта и перепад давления, обеспечивающий перемещение флюида. Способность флюида перемещаться на значительное расстояние в пласте позволяет располагать добывающие скважины 106 в пласте на относительно большом расстоянии одна от другой.
Добывающие скважины 106 используются для вывода из пласта пластового флюида. В некоторых вариантах осуществления изобретения добывающая скважина 106 включает в себя какой-либо источник тепла. Источник тепла в добывающей скважине может нагревать одну или несколько частей пласта в добывающей скважине или вблизи нее. В некоторых вариантах осуществления процесса обработки in situ количество тепла, подаваемого в пласт от добывающей скважины с одного метра добывающей скважины, меньше количества тепла, подаваемого в пласт источником тепла, который нагревает пласт, в расчете на один метр источника тепла. Воздействующее на пласт тепло из добывающей скважины может повысить проницаемость пласта вблизи добывающей скважины в результате испарения и удаления жидкофазного флюида вблизи добывающей скважины и/или повысить проницаемость пласта вблизи добывающей скважины в результате образования макро- и/или микротрещин.
В некоторых вариантах осуществления изобретения источник тепла в добывающей скважине 106 позволяет извлекать из пласта паровую фазу пластовых флюидов. Подвод теплоты к добывающей скважине или через добывающую скважину может: (1) препятствовать конденсации и/или обратному потоку добываемого флюида, когда такой добываемый флюид перемещается по направлению к добывающей скважине вблизи покрывающего слоя, (2) увеличить подвод теплоты в пласт, (3) увеличить темп добычи для добывающей скважины по сравнению с добывающей скважиной без источника тепла, (4) препятствовать конденсации соединений с большим количеством атомов углерода (С6 и больше) в добывающей скважине и/или (5) увеличить проницаемость пласта в добывающей скважине или рядом с ней.
Подземное давление в пласте может соответствовать создаваемому в пласте давлению флюида. При повышении температур в нагретой части пласта давление в нагретой части может возрастать в результате теплового расширения флюидов, повышенного образования флюидов и испарения воды. Регулирование скорости вывода флюидов из пласта может позволить контролировать давление в пласте. Давление в пласте может определяться в нескольких разных точках, вблизи или в самих добывающих скважинах, вблизи или в самих источниках тепла, или в мониторинговых скважинах.
В некоторых углеводородсодержащих пластах добычу углеводородов из пласта задерживают до тех пор, пока по меньшей мере некоторая часть углеводородов в пласте не окажется подвижной и/или не подвергнется пиролизу. Пластовый флюид можно добывать из пласта тогда, когда пластовый флюид обладает заданным качеством. В некоторых вариантах осуществления изобретения заданным качеством является АНИ-плотность, равная по меньшей мере примерно 20, 30 или 40°. Задержка добычи до тех пор, пока по меньшей мере некоторая часть углеводородов не окажется подвижной и/или не подвергнется пиролизу, может повысить превращение тяжелых углеводородов в легкие углеводороды. Задержка начала добычи может минимизировать добычу из пласта тяжелых углеводородов. Добыча значительных количеств тяжелых углеводородов могла бы потребовать дорогостоящего оборудования и/или уменьшить срок службы добывающего оборудования.
В некоторых вариантах осуществления изобретения допускается повышение давления, возникающего в результате расширения подвижных флюидов, пиролизных флюидов или других образовавшихся в пласте флюидов, хотя открытый путь к добывающим скважинам 106 или к какому-либо другому сбрасывающему давление участку в пласте может еще не существовать. Можно допустить повышение давления до уровня литостатического давления. Трещины в углеводородсодержащем пласте могут образоваться тогда, когда давление флюида приближается к литостатическому давлению. Трещины могут появляться, например, в направлении от источников 102 тепла в нагреваемой части пласта к добывающим скважинам. Возникновение трещин в нагретой части может частично снижать давление в этой части. Чтобы помешать нежелательной добыче, растрескиванию покрывающего слоя или подстилающего слоя и/или коксованию углеводородов в пласте, может оказаться необходимым поддерживать давление в пласте ниже заданного уровня.
После достижения температур подвижности и/или пиролиза и начала добычи из пласта давление в пласте можно менять с целью изменения и/или изменения состава добываемого пластового флюида, регулирования содержания конденсируемого флюида по отношению к неконденсируемому флюиду в пластовом флюиде и/или регулирования АНИ-плотности добываемого пластового флюида. Например, снижение давления может повлечь за собой добычу большего количества конденсируемого компонента флюида. Конденсируемый компонент флюида может иметь более высокое содержание олефинов.
В некоторых вариантах осуществления операции термической обработки in situ давление в пласте можно поддерживать достаточно высоким, чтобы стимулировать добычу пластового флюида с АНИ-плотностью выше 20°. Поддержание повышенного давления в пласте может препятствовать оседанию пласта во время термической обработки in situ. Поддержание повышенного давления может уменьшить или исключить необходимость сжатия пластовых флюидов на поверхности перед отправкой этих флюидов в сборных трубопроводах на обрабатывающие устройства.
Неожиданным образом оказалось, что поддержание повышенного давления в нагретой части пласта может позволить добывать большие количества углеводородов повышенного качества с относительно низким молекулярным весом. Можно поддерживать такое давление, при котором добываемый пластовый флюид содержал бы минимальное количество соединений с числом атомов углерода, большим заданного. Заданное число атомов углерода может быть в пределах до 25, до 20, до 12 или до 8. Некоторое количество соединений с большим числом атомов углерода может быть захвачено паром в пласте и вынесено с паром из пласта. Поддержание повышенного давления в пласте может препятствовать вынесению паром соединений с большим числом атомов углерода и/или многоядерных углеводородных соединений. Соединения с большим числом атомов углерода и/или многоядерные углеводородные соединения могут оставаться в жидкой фазе в пласте в течение значительных периодов времени. Эти значительные периоды времени могут обеспечить соединениям достаточно времени для того, чтобы они были подвергнуты пиролизу с образованием соединений с меньшим числом атомов углерода.
Пластовый флюид, добываемый из добывающих скважин 106, может транспортироваться по сборному трубопроводу 108 к обрабатывающим устройствам 110. Пластовые флюиды могут также выводиться из источников 102 тепла. Флюид может выводиться из источников 102 тепла, например, с целью регулирования давления в пласте вблизи источников тепла. Флюид, выводимый из источников 102 тепла, может транспортироваться по трубопроводу или системе труб непосредственно к обрабатывающим устройствам 110. В число обрабатывающих устройств 110 могут входить разделительные установки, реакционные установки, облагораживающие установки, топливные элементы, турбины, резервуары-хранилища и/или другие системы и установки для переработки добываемых пластовых флюидов. На обрабатывающих устройствах может производиться моторное топливо из по меньшей мере части добываемых из пласта углеводородов. В некоторых вариантах осуществления изобретения моторным топливом может быть ракетное топливо типа JP-8.
В некоторых вариантах осуществления изобретения источники тепла, источники энергии для источников тепла, добывающее оборудование, подающие линии и/или другую вспомогательную аппаратуру для источников тепла или добычи помещают в туннели, чтобы иметь возможность использовать для обработки пласта меньшие по размерам источники тепла и/или меньшее по размерам оборудование. Расположение этого оборудования и/или конструкций в туннелях может также снизить энергозатраты для обработки пласта, снизить выбросы в процессе обработки, облегчить установку нагревательной системы и/или снизить потери тепла на нагрев покрывающего слоя по сравнению со способами добычи углеводородов, в которых используется наземное оборудование.
В некоторых вариантах осуществления изобретения для нагрева теплоносителя, используемого в циркуляционной системе для нагрева пласта, используется атомная энергия. Источником атомной энергии может быть ядерный реактор, такой как реактор с галечным слоем, реактор на легкой воде или реактор на делящихся гидридах металлов. Использование атомной энергии обеспечивает уменьшение выбросов диоксида углерода или их отсутствие. В некоторых вариантах осуществления изобретения использование атомной энергии является более эффективным благодаря тому, что при непосредственном использовании тепла, производимого в ядерных реакциях без производства электричества, исключаются потери энергии, обусловленные превращением тепла в электричество и электричества в тепло.
В некоторых вариантах осуществления изобретения ядерный реактор нагревает теплоноситель, такой как гелий. Например, гелий протекает через реактор с галечным слоем, и тепло переносится к гелию. Гелий может быть использован в качестве теплоносителя для нагрева пласта. В некоторых вариантах осуществления изобретения ядерный реактор нагревает гелий, а гелий пропускается через теплообменник для передачи тепла какому-либо другому теплоносителю, используемому для нагрева пласта. Ядерный реактор может включать в себя герметичную емкость, в которой содержится инкапсулированное топливо на основе обогащенного диоксида урана. Тепло может передаваться в теплообменнике от гелия к теплоносителю, используемому в циркуляционной системе. Используемым в циркуляционной системе теплоносителем может быть диоксид углерода, расплавленная соль или другие текучие среды. Естественно, возможно, что теплоноситель, в действительности, при определенных температурах может не быть текучей средой. Теплоноситель может обладать многими свойствами твердого вещества при более низких температурах и текучей среды при более высоких температурах. Системы реактора с галечным слоем являются доступными, например от PBMR Ltd (Centurion, Южная Африка).
На фиг.2 схематически показана система, в которой для нагрева обрабатываемого участка 200 используется атомная энергия. Эта система может включать в себя средство 202 перемещения газа для гелиевой системы, ядерный реактор 204, теплообменный блок 206 и средство 208 перемещения теплоносителя. Средство 202 перемещения газа для гелиевой системы может вдувать, перекачивать или сжимать нагретый гелий, поступающий из ядерного реактора 204, для нагрева теплообменного блока 206. Гелий из теплообменного блока 206 может проходить через средство 202 перемещения газа для гелиевой системы к ядерному реактору 204. Гелий из ядерного реактора 204 может иметь температуру от примерно 900 до примерно 1000°С. Гелий из средства перемещения 202 газа может иметь температуру от примерно 500 до примерно 600°С. Средство 208 перемещения теплоносителя может засасывать теплоноситель из теплообменного блока 206 через обрабатываемый участок 200. Теплоноситель может проходить через средство 208 перемещения теплоносителя с целью нагрева теплообменного блока 206. Теплоносителем могут быть диоксид углерода, расплавленная соль и/или какие-либо другие текучие среды. Теплоноситель после выхода из теплообменного блока 206 может иметь температуру от примерно 850 до примерно 950°С.
В некоторых вариантах осуществления изобретения система включает в себя вспомогательную силовую установку 210. В некоторых вариантах осуществления изобретения вспомогательная силовая установка 210 генерирует энергию при проходе гелия из теплообменного блока 206 через генератор для выработки электричества. Гелий может быть направлен в один или несколько компрессоров и/или теплообменников для регулирования давления и температуры гелия перед тем, как гелий будет направлен в ядерный реактор 204. В некоторых вариантах осуществления изобретения вспомогательная силовая установка 210 генерирует энергию с использованием теплоносителя (например, аммиака или аммиачной воды). Гелий из теплообменного блока 206 может направляться в дополнительные теплообменные блоки для переноса тепла к теплоносителю. Теплоноситель может проходить по силовому циклу (такому как цикл Калины) для генерирования электроэнергии. В одном из вариантов осуществления изобретения ядерный реактор 204 представляет собой 400-мегаваттный реактор, а вспомогательная силовая установка 210 генерирует примерно 30 МВт электроэнергии.
На фиг.3 схематически показан вид в вертикальном разрезе компоновки для процесса термической обработки in situ. Стволы скважин (которые могут быть U-образными или иметь иные формы) могут быть образованы в пласте, определяя тем самым участки 200А, 200В, 200С, 200D для обработки. Дополнительные участки для обработки могли бы быть образованы по сторонам показанных участков для обработки. Обрабатываемые участки 200А, 200В, 200С, 200D могут иметь ширину более 300 м, 500 м, 1000 м или 1500 м. Скважинные выходы и входы для стволов скважин могут быть образованы на участке 212 отверстий скважин. По сторонам обрабатываемых участков 200 могут быть уложены рельсовые линии 214. В конце рельсовых линий 214 могут быть расположены склады, административные помещения и/или складские помещения для отработанного топлива. Вдоль ответвлений от рельсовых линий 214 через промежутки могут быть установлены производственные объекты 216. В число производственных объектов могут входить ядерный реактор, компрессоры, теплообменные блоки и/или другое оборудование, необходимое для направления теплоносителя к стволам скважин. В число производственных объектов 216 могут также входить наземные установки для обработки добытого из пласта пластового флюида. В некоторых вариантах осуществления изобретения теплоноситель, приготовляемый на установке 216', может быть повторно нагрет в реакторе на установке 216'' после его пропускания через обрабатываемый участок 200А. В некоторых вариантах осуществления изобретения каждый производственный объект 216 используется для подачи горячей обработочной текучей среды к скважинам в одной половине обрабатываемого участка 200, примыкающего к этому производственному объекту. Производственные объекты 216 могут перемещаться по рельсам к другому участку для производственных объектов после завершения добычи из обрабатываемого участка.
В некоторых вариантах осуществления изобретения атомную энергию используют для непосредственного нагрева подземного пласта. Частью подземного пласта может быть часть углеводородного обрабатываемого участка. Вместо использования ядерной установки для нагрева теплоносителя, который затем подается в подземный пласт с целью нагрева подземного пласта, под землю могут быть помещены один или несколько саморегулирующихся ядерных нагревателей для непосредственного нагрева подземного пласта. Саморегулирующийся ядерный реактор может быть помещен в один или несколько туннелей или вблизи них.
В некоторых вариантах осуществления изобретения для обработки пласта необходим нагрев пласта до заданного начального верхнего диапазона (например, от 250 до 350°С). После нагрева подземного пласта до заданного температурного диапазона температуру можно поддерживать в этом диапазоне в течение заданного времени (например, до определенной степени пиролиза углеводородов или до достижения средней температурой в пласте выбранного значения). По мере повышения температуры пласта температура нагревателя может постепенно снижаться в течение некоторого периода времени. В настоящее время некоторые описываемые здесь ядерные реакторы (например, реакторы с галечным слоем) достигают после активации присущего им предела выходных температур, равного примерно 900°С, затухая позднее по мере истощения уранового (урана-235) топлива, что ведет к понижению с течением времени температур в нагревателе. Кривая естественной выходной мощности в некоторых ядерных реакторах (например, реакторов с галечным слоем) может быть использована для некоторых подземных пластов с целью обеспечения заданного набора параметров зависимости нагрева от времени.
В некоторых вариантах осуществления изобретения атомная энергия подается с помощью саморегулирующегося ядерного реактора (например, реактора с галечным слоем или реактора на делящихся гидридах металлов). Саморегулирующийся ядерный реактор не может превышать определенной температуры, зависящей от его конструкции. Саморегулирующийся ядерный реактор может быть довольно компактным по сравнению с традиционными ядерными реакторами. Саморегулирующийся ядерный реактор может, например, иметь размер 2 м, 3 м или 5 м и даже меньше. Саморегулирующийся ядерный реактор может быть модульным.
На фиг.4 схематически показан саморегулирующийся ядерный реактор 218. В некоторых вариантах осуществления изобретения саморегулирующийся ядерный реактор содержит делящийся гидрид металла 220. Делящийся гидрид металла может выполнять как функцию топлива для ядерной реакции, так и функцию замедлителя для ядерной реакции. Активная зона ядерного реактора может содержать металлогидридный материал. Усиливаемая температурой подвижность содержащегося в гидриде изотопа водорода может выполнять роль регулятора ядерной реакции. Если температура повышается сверх точки, установленной для активной зоны 222 саморегулирующегося ядерного реактора 218, изотоп водорода диссоциирует от гидрида и выходит за пределы активной зоны, в результате чего производство энергии снижается. Если температура активной зоны снижается, изотоп водорода повторно ассоциируется с делящимся гидридом металла, оказывая обратный эффект на процесс. В некоторых вариантах осуществления изобретения делящийся гидрид металла может быть в порошкообразной форме, которая позволяет водороду легче проникать через делящийся гидрид металла.
Благодаря своей базовой конструкции ядерный реактор может содержать мало движущихся деталей, связанных с регулированием самой ядерной реакции, или вообще не содержать их. Малый размер и простая конструкция саморегулирующегося ядерного реактора может иметь отчетливые преимущества, в частности по сравнению с традиционными промышленными ядерными реакторами, широко используемыми в настоящее время во всем мире. Эти преимущества могут включать в себя относительно легкое изготовление, транспортабельность, надежность, безопасность и финансовую реализуемость. Компактная конструкция саморегулирующихся ядерных реакторов может позволить осуществлять их изготовление на одном предприятии и транспортировку их к месту применения, например к углеводородсодержащему пласту. После привоза и монтажа саморегулирующегося ядерного реактора он может быть активирован.
Саморегулирующиеся ядерные реакторы могут производить тепловую энергию порядка десятков мегаватт на одну установку. На углеводородсодержащем пласте могут быть использованы два или более саморегулирующихся ядерных реакторов. Саморегулирующиеся ядерные реакторы могут работать при температуре топлива в пределах от примерно 450 до примерно 900°С, от примерно 500 до примерно 800°С или от примерно 550 до примерно 650°С. Рабочая температура может быть в пределах от 550 до 600°С. Рабочая температура может быть в пределах от 500 до 650°С.
Саморегулирующиеся ядерные реакторы могут включать в себя энергоотводящую систему 224 в активной зоне 222. Энергоотводящая система может содержать теплоноситель, который циркулирует через систему труб 224А и 224В. По меньшей мере часть труб может размещаться в активной зоне ядерного реактора. Система циркуляции текучей среды может работать так, чтобы через систему труб непрерывно циркулировала текучая среда. Плотность размещения и объем размещенной в активной зоне системы труб может зависеть от обогащения делящегося гидрида металла.
В некоторых вариантах осуществления изобретения энергоотводящая система содержит тепловые трубы из щелочного металла (например, калия). Тепловые трубы могут дополнительно упростить саморегулирующийся ядерный реактор, устраняя необходимость в механических насосах для перемещения текучей среды через активную зону. Любое упрощение саморегулирующегося ядерного реактора может снижать риск каких-либо нарушений работы и увеличивает безопасность ядерного реактора. Энергоотводящая система может включать в себя связанный с тепловыми трубами теплообменник. Теплоносители могут переносить тепловую энергию из теплообменника.
Размеры ядерного реактора могут определяться обогащением делящегося гидрида металла. Ядерные реакторы с более высоким обогащением являются реакторами относительно меньшего размера. Подходящие размеры могут в конечном счете определяться конкретными техническими характеристиками углеводородсодержащего пласта и потребностями пласта в энергии. В некоторых вариантах осуществления изобретения делящийся гидрид металла разбавляется воспроизводящим гидридом металла. Воспроизводящий гидрид металла может быть получен из изотопа, отличного от делящейся части. Делящийся гидрид металла может включать в себя делящийся гидрид U235, а воспроизводящий гидрид может включать в себя изотоп U238. В некоторых вариантах осуществления изобретения активная зона ядерного реактора может содержать ядерное топливо, образованное из примерно 5% U235 и примерно 95% U238.
Для работы пригодны также и другие комбинации делящихся гидридов. Делящийся гидрид металла может включать в себя плутоний. Низкая температура плавления плутония (примерно 640°С) делает частицы гидрида менее привлекательными в качестве реакторного топлива для подачи энергии на парогенератор, но может быть полезной в других применениях, где требуются более низкие температуры реактора. Делящийся гидрид металла может включать в себя гидрид тория. Торий позволяет реактору работать при более высокой температуре благодаря своей высокой температуре плавления (примерно 1775°С). В некоторых вариантах осуществления изобретения для получения различных параметров выработки энергии используются различные комбинации делящихся гидридов металлов.
В некоторых вариантах осуществления изобретения ядерный реактор 218 может включать в себя один или несколько резервуаров-хранилищ 226 для водорода. Резервуар-хранилище для водорода может содержать один или несколько неделящихся поглощающих водород материалов для абсорбции водорода, выбрасываемого из активной зоны. Неделящийся поглощающий водород материал может включать неделящийся изотоп гидрида активной зоны. Неделящийся поглощающий водород материал может обладать давлением диссоциации гидрида, близким к давлению диссоциации гидрида делящегося материала.
Активная зона 222 и резервуары-хранилища 226 для водорода могут быть разделены изоляционным слоем 228. Изоляционный слой выполнять функцию отражателя нейтронов для уменьшения утечки нейтронов из активной зоны. Изоляционный слой может уменьшать выделение тепла Пельтье. Изоляционный слой может защищать резервуары-хранилища для водорода от нагрева со стороны активной зоны реактора (например, путем радиационного нагрева или конвекционного нагрева от газа внутри камеры).
Эффективная температура в стационарном режиме активной зоны может регулироваться давлением окружающего водорода. Давление окружающего водорода может регулироваться температурой, при которой выдерживается материал, поглощающий неделящийся водород. Температура делящегося гидрида металла может не зависеть от количества извлекаемой энергии. Выход энергии может зависеть от способности системы извлечения энергии извлекать мощность из ядерного реактора.
Газообразный водород в активной зоне реактора может контролироваться на чистоту и периодически подвергаться восстановлению давления для поддержания нужного количества и содержания изотопов. В некоторых вариантах осуществления изобретения газообразный водород поддерживается в состоянии доступа в активную зону ядерного реактора через одну или несколько труб (например, труб 230А и 230В). Температура саморегулирующегося ядерного реактора может регулироваться путем регулирования давления водорода, подаваемого в саморегулирующийся ядерный реактор. Давление можно регулировать по температуре теплоносителя в одной или нескольких точках (например, в точке, где теплоноситель поступает в один или несколько стволов скважин).
В некоторых вариантах осуществления изобретения протекающая в саморегулирующемся ядерном реакторе ядерная реакция может регулироваться введением нейтронопоглощающего газа. Нейтронопоглощающий газ в достаточных количествах может охладить ядерную реакцию в саморегулирующемся ядерном реакторе (снижая в конечном итоге температуру реактора до температуры окружающей среды). Нейтронопоглощающие газы могут содержать ксенон135.
В некоторых вариантах осуществления изобретения ядерная реакция активированного саморегулирующегося ядерного реактора регулируется с помощью регулирующих стержней. Регулирующие стержни могут размещаться по меньшей мере частично в по меньшей мере части активной зоны саморегулирующегося ядерного реактора. Регулирующие стержни могут быть выполнены из одного или нескольких нейтронопоглощающих материалов. Нейтронопоглощающими материалами могут быть (но не ограничиваясь ими) серебро, индий, кадмий, бор, кобальт, гафний, диспрозий, гадолиний, самарий и европий.
В настоящее время описываемые в заявке саморегулирующиеся ядерные реакторы достигают после активации естественного предела теплового выхода, равного приблизительно 900°С, затухая впоследствии по мере расхода топлива. Кривая естественной выходной мощности саморегулирующихся ядерных реакторов может быть использована для обеспечения заданного временного профиля нагрева для определенных подземных пластов.
В некоторых вариантах осуществления изобретения саморегулирующиеся ядерные реакторы могут обладать естественным выходом энергии, который затухает со скоростью 1/Е (Е иногда называют числом Эйлера, и оно равно приблизительно 2,71828). В некоторых вариантах осуществления изобретения саморегулирующиеся ядерные реакторы могут обладать естественным выходом энергии, который затухает до 1/Е от начальной мощности в течение периода времени от примерно 4 до примерно 8 лет. Как правило, когда пласт нагрет до заданной температуры, потребность в тепле уменьшается, и объем тепловой энергии, подаваемой в пласт для его нагрева, с течением времени уменьшается. В некоторых вариантах осуществления изобретения подача тепла в по меньшей мере часть пласта в течение некоторого времени приблизительно соотносится со скоростью затухания мощности из саморегулирующегося ядерного реактора. С учетом естественного затухания по меньшей мере части саморегулирующихся ядерных реакторов нагревательные системы могут конструироваться таким образом, чтобы в нагревательных системах использовалось преимущество естественной скорости затухания мощности из ядерного реактора. Нагревательные системы включают в себя, как правило, два или более нагревателей. Нагреватели, как правило, помещают в расположенные по всему пласту стволы скважин. Стволами скважин могут быть, например, U-образные и L-образные стволы скважин или стволы скважин иной формы. В некоторых вариантах осуществления изобретения расстояние между стволами скважин определяют на основании скорости затухания выходной мощности саморегулирующихся ядерных реакторов.
Саморегулирующийся ядерный реактор может вначале подавать по меньшей мере к части стволов скважин выходную мощность примерно 900 Вт/м, которая вслед за этим падает в течение предопределенного периода времени до примерно 360 Вт/м. Предопределенный период времени может быть определен типом самого саморегулирующегося ядерного реактора (например, топливом, используемым в активной зоне ядерного реактора, а также обогащением этого топлива). Естественное снижение выходной мощности может соответствовать временной зависимости ввода энергии в пласт. Любую переменную (например, выходную мощность и/или ввод энергии) можно регулировать таким образом, чтобы обе переменные по меньшей мере приблизительно соотносились или соответствовали одна другой. Саморегулирующийся ядерный реактор может быть рассчитан на затухание в течение периода 4-9 лет, 5-7 лет или примерно 7 лет. Период затухания саморегулирующегося ядерного реактора может соответствовать нагревательному циклу IUP (процессу облагораживания in situ) и/или ICP (процессу конверсии in situ).
В некоторых вариантах осуществления изобретения расстояние между стволами скважин нагревателя зависит от скорости затухания одного или нескольких ядерных реакторов, используемых для подачи энергии. В некоторых вариантах осуществления изобретения расстояние между стволами скважин нагревателя составляет от примерно 8 до примерно 11 м, от примерно 9 до примерно 10 м или от примерно 9,4 до примерно 9,8 м.
В некоторых ситуациях может оказаться целесообразным продолжать поддерживать какой-либо конкретный уровень выходной мощности саморегулирующегося ядерного реактора на более длительный период по сравнению с тем периодом, который могло бы обеспечить естественное затухание топливного материала. В некоторых вариантах осуществления изобретения, чтобы сохранять уровень выхода энергии в заданном интервале, к пласту в процессе его обработки (например, нагрева) может быть подключен второй саморегулирующийся ядерный реактор. Второй саморегулирующийся ядерный реактор может в некоторых случаях иметь затухшую выходную мощность. Выходная мощность второго реактора может быть уже пониженной в результате предшествующей эксплуатации. Выходная мощность двух саморегулирующихся ядерных реакторов может быть в существенной степени эквивалентна начальной выходной мощности первого саморегулирующегося ядерного реактора и/или заданной выходной мощности. Дополнительные саморегулирующиеся ядерные реакторы могут подключаться к пласту по мере необходимости для достижения желаемой выходной мощности. Такого рода система может благоприятным образом увеличивать эффективный полезный срок службы саморегулирующихся ядерных реакторов.
Эффективный полезный срок службы саморегулирующихся ядерных реакторов может быть растянут путем использования тепловой энергии, вырабатываемой ядерным реактором для производства водяного пара, для чего в зависимости от пласта и/или применяемых систем может требоваться намного меньше тепловой энергии, чем для других упомянутых в заявке применений. Водяной пар может использоваться для ряда целей, в том числе (не ограничиваясь ими) для производства электроэнергии, производства водорода на месте, превращения углеводородов и/или облагораживания углеводородов. Углеводороды могут превращаться и/или мобилизоваться in situ с помощью закачки в пласт производимого водяного пара.
Продуктовый поток (например, поток содержащий метан, углеводороды и/или тяжелые углеводороды) может добываться из пласта, нагретого с помощью теплоносителей, которые нагреваются ядерным реактором. Водяной пар, производимый с помощью тепла, генерируемого ядерным реактором или вторым ядерным реактором, может быть использован для реформинга по меньшей мере части продуктового потока. Продуктовый поток может быть реформирован для получения по меньшей мере некоторого количества молекулярного водорода.
Молекулярный водород может использоваться для облагораживания по меньшей мере части продуктового потока. Молекулярный водород может закачиваться в пласт. Продуктовый поток может получаться с помощью наземного процесса облагораживания. Продуктовый поток может получаться с использованием способа термической обработки in situ. Продуктовый поток может получаться с использованием способа подземного нагрева водяным паром.
По меньшей мере часть водяного пара может закачиваться в подземный паронагревательный процесс. По меньшей мере некоторое количество водяного пара может быть использовано для реформинга метана. По меньшей мере часть углеводородов в пласте может быть мобилизована с помощью водяного пара и/или тепла от водяного пара.
В некоторых вариантах осуществления изобретения саморегулирующиеся ядерные реакторы могут использоваться для производства электроэнергии (например, с помощью приводимых в действие водяным паром турбин). Электроэнергия может использоваться для любых применений, в которых обычно используется электроэнергия. Конкретно, электроэнергия может использоваться для применений, связанных с требующими энергии процессами термической обработки in situ. Электроэнергия от саморегулирующихся ядерных реакторов может использоваться для подачи энергии к скважинным электронагревателям. Электроэнергия может использоваться для охлаждения текучей среды с целью создания низкотемпературного барьера (замороженного барьера) вокруг обрабатываемых участков и/или подачи электроэнергии к обрабатывающим установкам, расположенным на участке процесса термической обработки in situ или вблизи него. В некоторых вариантах осуществления изобретения производимая ядерными реакторами электроэнергия используется для резистивного нагрева трубопроводов, используемых для циркуляции теплоносителя через обрабатываемый участок. В некоторых вариантах осуществления изобретения атомная энергия используется для генерирования электроэнергии, которая приводит в действие компрессоры и/или насосы (компрессоры/насосы производят сжатые газы (такие как окислительная текучая среда и/или топливо для ряда предназначенных для окисления агрегатов) для обрабатываемого участка), необходимые для процесса термической обработки in situ. Значительные расходы в процессе термической обработки in situ могут быть связаны с эксплуатацией компрессоров и/или насосов на всем протяжении процесса термической обработки in situ, если для приведения в действие компрессоров и/или насосов в процессе термической обработки in situ используются традиционные источники электрической энергии.
Превращение тепла от саморегулирующихся ядерных реакторов в электричество не обязательно должно быть наиболее эффективным использованием тепловой энергии, производимой ядерными реакторами. В некоторых вариантах осуществления изобретения производимая саморегулирующимися ядерными реакторами тепловая энергия используется для непосредственного нагрева частей пласта. В некоторых вариантах осуществления изобретения один или несколько саморегулирующихся ядерных реакторов помещаются под землю в пласт таким образом, чтобы производимая тепловая энергия непосредственно нагревала по меньшей мере часть пласта. Один или несколько саморегулирующихся ядерных реакторов могут быть помещены в подземный пласт под покрывающим слоем так, чтобы повысить эффективное использование производимой саморегулирующимися ядерными реакторами тепловой энергии. В целях дополнительной защиты помещенные под землю саморегулирующиеся ядерные реакторы могут быть заключены внутрь оболочечного материала. Например, помещенные под землю саморегулирующиеся ядерные реакторы могут быть заключены в бетонный контейнер.
В некоторых вариантах осуществления изобретения производимая саморегулирующимися ядерными реакторами тепловая энергия может отводиться с использованием теплоносителей. Производимая саморегулирующимися ядерными реакторами тепловая энергия может передаваться на часть пласта и распределяться по ней с помощью теплоносителей. Теплоносители могут циркулировать по системе труб энергоотводящей системы саморегулирующегося ядерного реактора. При циркуляции теплоносителей в и по активной зоне саморегулирующегося ядерного реактора производимое ядерной реакцией тепло нагревает теплоносители.
В некоторых вариантах осуществления изобретения для переноса производимой саморегулирующимися ядерными реакторами тепловой энергии могут использоваться два или более теплоносителей. Первый теплоноситель может циркулировать по системе труб энергоотводящей системы саморегулирующегося ядерного реактора. Первый теплоноситель может проходить через теплообменник и использоваться для нагрева второго теплоносителя. Второй теплоноситель может использоваться для обработки углеводородных текучих сред in situ, подвода тепла к электролизной ячейке и/или для каких-либо других целей. Первый теплоноситель и второй теплоноситель могут быть разными материалами. Использование двух теплоносителей может снизить риск нежелательного воздействия на системы и персонал радиации, которая может оказаться поглощенной первым теплоносителем. Могут использоваться теплоносители, которые устойчивы к поглощению ядерной радиации (например, азотистокислые или азотнокислые соли).
В некоторых вариантах осуществления изобретения энергоотводящая система включает в себя тепловые трубы из щелочного металла (например, калия). Тепловые трубы могут дополнительно упростить саморегулирующийся ядерный реактор, устраняя необходимость в том, чтобы механические насосы переносили теплоноситель через активную зону. Любое упрощение саморегулирующегося ядерного реактора может снижать опасность нарушений в работе и повышает безопасность ядерного реактора. Энергоотводящая система может включать в себя теплообменник, соединенный с тепловыми трубами. Теплоносители могут переносить тепловую энергию от теплообменника.
Теплоносители могут включать в себя природное или синтетическое масло, расплавленный металл, расплавленную соль или другие типы высокотемпературных теплоносителей. Теплоноситель может иметь низкую вязкость и высокую теплотворную способность в нормальных рабочих условиях. Если теплоносителем является расплавленная соль или какая-либо другая текучая среда, обладающая способностью затвердевать в пласте, трубы в системе могут быть электрически связаны с каким-либо источником электроэнергии для резистивного нагрева труб в случае необходимости, либо в систему труб или рядом с ней может быть помещен один или несколько нагревателей с целью поддержания теплоносителя в жидком состоянии. В некоторых вариантах осуществления изобретения в систему труб может быть помещен изолированный проводник-нагреватель. Изолированный проводник-нагреватель расплавляет твердые материалы в трубе.
На фиг.5 схематически показан один из вариантов выполнения системы термической обработки in situ, помещенной в пласт 232 с u-образными стволами 234 скважин, в которой используются саморегулирующиеся ядерные реакторы 218. Изображенные на фиг.5 саморегулирующиеся ядерные реакторы способны производить 70 МВт тепла. В некоторых вариантах осуществления изобретения расстояние между стволами 234 скважин определяется на основании скорости затухания выхода энергии саморегулирующихся ядерных реакторов 218.
U-образные стволы скважин могут проходить вниз через покрывающий слой 236 в углеводородсодержащий слой 238. Примыкающая к покрывающему слою 236 система труб в стволах 234 скважин может содержать изолированную часть 240. В изолированные резервуары-хранилища 242 может поступать расплавленная соль из пласта 232 через систему 244 труб. Система 244 труб может транспортировать расплавленные соли с температурами в пределах от примерно 350 до примерно 500°С. Температура в резервуарах-хранилищах может зависеть от типа используемой расплавленной соли. Температура в резервуарах-хранилищах может быть вблизи примерно 350°С. Насосы могут перемещать расплавленную соль к саморегулирующимся ядерным реакторам 218 через систему 246 труб. Каждому из насосов может быть необходимо перемещать, например, от 6 до 12 кг/с расплавленной соли. Каждый из саморегулирующихся ядерных реакторов 218 может подавать тепло к расплавленной соли. Расплавленная соль может проходить из системы 248 труб к стволам 234 скважин. В некоторых вариантах осуществления изобретения проходящая через слой 238 нагреваемая часть ствола 234 скважины может иметь длину от примерно 2400 м до примерно 3000 м. Температуры расплавленной соли на выходе из саморегулирующихся ядерных реакторов 218 могут быть порядка 550°С. Каждый из саморегулирующихся ядерных реакторов 218 может подавать расплавленную соль к примерно 20 или более входящих в пласт стволов 234 скважин. Расплавленная соль течет через пласт и обратно к резервуарам-хранилищам 242 через системы 244 труб.
В некоторых вариантах осуществления изобретения атомная энергия используется в процессе комбинированного производства тепловой и электрической энергии. В некоторых вариантах осуществления добычи углеводородов из углеводородсодержащего пласта (например, битуминозного песчаного пласта) добываемые углеводороды могут содержать одну или несколько частей с тяжелыми углеводородами. Углеводороды могут добываться из пласта с использованием более одного способа. В некоторых вариантах осуществления изобретения атомную энергию используют в качестве средства, способствующего добыче по меньшей мере некоторых из углеводородов. По меньшей мере некоторые из добываемых тяжелых углеводородов могут быть подвергнуты воздействию пиролизных температур. Пиролиз тяжелых углеводородов может использоваться для производства водяного пара. Водяной пар может использоваться для ряда целей, включая (но без ограничения этим) производство электроэнергии, конверсию углеводородов и/или облагораживание углеводородов.
В некоторых вариантах осуществления изобретения теплоноситель нагревают с помощью саморегулирующегося ядерного реактора. Теплоноситель может быть нагрет до температур, которые позволяют производить водяной пар (например, от примерно 550 до примерно 600°С). В некоторых вариантах осуществления изобретения получаемые в процессе термической обработки in situ газ и/или топливо поступают на установку реформинга. Часть получаемого в процессе термической обработки in situ газа может поступать на газоразделительную установку. На газоразделительной установке из получаемого в процессе термической обработки in situ газа может удаляться один или несколько компонентов, в результате чего образуется топливный и один или несколько других потоков (например, диоксида углерода или сероводорода). Топливо может содержать (но без ограничения ими) водород, углеводороды с числом атомов углерода до 5 или их смеси.
Установкой реформинга может быть установка парового реформинга. Установка реформинга может вводить водяной пар во взаимодействие с топливом (например, метаном), в результате чего образуется водород. Установка реформинга может, например, содержать катализаторы сдвига водяного газа. Установка реформинга может включать в себя одну или несколько разделительных систем (например, мембраны и/или адсорбционную систему с переменным давлением), способных отделять водород от других компонентов. Реформинг топлива и/или получаемого в процессе термической обработки in situ газа может осуществляться способами, известными в области каталитического или термического реформинга углеводородов, с образованием водорода. В некоторых вариантах осуществления изобретения для получения из водяного пара водорода используется электролиз. Некоторая часть от всего потока водорода может быть использована для других целей, таких как (но без ограничения ими) источник энергии и/или источник водорода для гидрогенизации углеводородов in situ или ex situ.
Саморегулирующиеся ядерные реакторы могут использоваться для производства водорода на установках, расположенных вблизи углеводородсодержащих пластов. Возможность производства водорода на месте около углеводородсодержащих пластов является очень выгодной, если учесть множество направлений, в которых водород используется для конверсии и облагораживания углеводородов на месте на углеводородсодержащих пластах.
В некоторых вариантах осуществления изобретения первый теплоноситель нагревают с использованием тепловой энергии, заключенной в пласте. Тепловая энергия может заключаться в пласте вследствие ряда различных процессов термической обработки.
Саморегулирующиеся ядерные реакторы имеют ряд преимуществ по сравнению с многими существующими ядерными реакторами с постоянным выходом. Однако существует ряд новых ядерных реакторов, конструкция которых получила законодательное одобрение на реализацию. Атомную энергию можно получать от нескольких различных типов существующих ядерных реакторов и ядерных реакторов, находящихся в настоящее время в разработке (например, реакторов четвертого поколения).
В некоторых вариантах осуществления изобретения в число ядерных реакторов входят реакторы, работающие при очень высоких температурах (VHTR). В VHTR может быть, например, использован гелий в качестве охладителя для приведения в действие газовой турбины для обработки углеводородных флюидов in situ, запитывания электролизных ячеек и/или для других целей. VHTR могут производить тепло до примерно 950°С или выше. В некоторых вариантах осуществления VHTR в число ядерных реакторов входит быстрый реактор с натриевым охлаждением (SFR). SFR могут изготовляться в менее крупном масштабе (например, 50 МВт) и, следовательно, могут быть более экономичными при изготовлении на месте для обработки углеводородных флюидов in situ, питания электролизных ячеек и/или для других целей. SFR могут иметь модульную конструкцию и быть потенциально переносными. SFR могут производить температуры в пределах от примерно 500 до примерно 600°С, от примерно 525 до примерно 575°С или от 540 до примерно 560°С.
В некоторых вариантах осуществления изобретения для создания тепловой энергии используют реакторы с галечным слоем. Реакторы с галечным слоем могут производить до 165 МВт энергии. Реакторы с галечным слоем могут обеспечивать температуры в пределах от примерно 500 до примерно 1100°С, от примерно 800 до примерно 1000°С или от примерно 900 до примерно 950°С. В некоторых вариантах осуществления изобретения в число ядерных реакторов входят надкритические водоохлаждаемые реакторы (SCWR) на основе предшествующих реакторов на легкой воде (LWR) и надкритических котлов, работающих на ископаемых топливах. SCWR могут обеспечивать температуры в пределах от примерно 400 до примерно 650°С, от примерно 450 до примерно 550°С или от примерно 500 до примерно 550°С.
В некоторых вариантах осуществления изобретения в число ядерных реакторов входят быстрые реакторы, охлаждаемые свинцом (LFR). LFR могут изготовляться в определенном диапазоне размеров, от модульных систем до нескольких сотен мегаватт или более. LFR могут обеспечивать температуры в пределах от примерно 400 до примерно 900°С, от примерно 500 до примерно 850°С или от примерно 550 до примерно 800°С.
В некоторых вариантах осуществления изобретения в число ядерных реакторов входят реакторы на расплавленной соли (MSR). MSR могут содержать в себе делящиеся, воспроизводящие и осколочные изотопы, растворенные в расплавленной фторидной соли с температурой кипения примерно 1400°С. Расплавленная фторидная соль может выполнять функцию как реакторного топлива, так и охладителя. MSR могут обеспечивать температуры в пределах от примерно 400 до примерно 900°С, от примерно 500 до примерно 850°С или от примерно 600 до примерно 800°С.
В некоторых вариантах осуществления изобретения для переноса тепловой энергии к и/или от углеводородсодержащего пласта используют два или более теплоносителей (например, расплавленные соли). Первый теплоноситель может нагреваться (например, с помощью ядерного реактора). Первый теплоноситель может циркулировать через множество стволов скважин в по меньшей мере части пласта с целью нагрева этой части пласта. Первый теплоноситель может характеризоваться первым температурным диапазоном, в котором первый теплоноситель находится в жидкой форме и является стабильным. Первый теплоноситель может циркулировать через часть пласта до тех пор, пока температура этой части пласта не достигнет заданного температурного диапазона (например, температуры около верхнего предела первого температурного диапазона).
Второй теплоноситель может нагреваться (например, с помощью ядерного реактора). Второй теплоноситель может характеризоваться вторым температурным диапазоном, в котором второй теплоноситель находится в жидкой форме и является стабильным. Верхний предел второго температурного диапазона может быть горячее и выше первого температурного диапазона. Нижний предел второго температурного диапазона может перекрываться первым температурным диапазоном. Второй теплоноситель может циркулировать через множество стволов скважин в части пласта с целью нагрева этой части пласта до более высокой температуры по сравнению с той температурой, которая была бы возможной с помощью первого теплоносителя.
Преимущества использования двух или более разных теплоносителей могут, например, включать способность нагревать часть пласта до намного более высокой температуры, чем это обычно возможно, при минимально возможном использовании других способов дополнительного нагрева (например, электрических нагревателей) для повышения эффективности в целом. Использование двух или более разных теплоносителей может оказаться необходимым в случае отсутствия теплоносителя с температурным диапазоном, способным нагреть часть пласта до заданной температуры.
В некоторых вариантах осуществления изобретения после нагрева части углеводородсодержащего пласта до заданного температурного диапазона первый теплоноситель может циркулировать через часть пласта. Первый теплоноситель может не быть нагрет до его рециркуляции через пласт (не считая необходимого нагрева теплоносителя до его температуры плавления в случае расплавленных солей). Первый теплоноситель может нагреваться с использованием тепловой энергии, уже запасенной в части пласта от предшествующей термической обработки пласта in situ. Первый теплоноситель может затем быть перенесен за пределы пласта так, чтобы тепловая энергия, рекуперированная первым теплоносителем, могла быть утилизирована для какого-либо другого процесса в данной части пласта, в какой-либо второй части пласта и/или в каком-либо дополнительном пласте.
Примеры
Ниже приведены не ограничивающие изобретения примеры.
Моделирование потребностей в энергии.
Проведено моделирование для определения потребностей в энергии для нагрева пласта с помощью расплавленной соли. Расплавленная соль циркулировала через стволы скважин в углеводородсодержащем пласте и в течение некоторого времени определяли потребности в энергии для нагрева пласта с помощью расплавленной соли. Расстояние между стволами скважин изменяли для определения его влияния на потребности в энергии.
На фиг.6 изображена кривая 250 зависимости мощности (Вт/м) (ось у) от времени (годы) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ. На фиг.7 изображена зависимость мощности (Вт/м) (ось y) от времени (годы) (ось х), относящаяся к потребностям во вводе энергии для термической обработки in situ для разных расстояний между стволами скважин. Кривые 252-260 описывают результаты на фиг.7. Кривая 252 описывает зависимость потребностей в энергии от времени для стволов скважин с расстояниями между ними примерно 14,4 м. Кривая 254 описывает зависимость потребностей в энергии от времени для стволов скважин с расстояниями между ними примерно 13,2 м. Кривая 256 описывает зависимость потребностей в энергии от времени для пласта Grosmont в Альберте (Канада) с нагревательными стволами скважин, образующими гексагональный рисунок при расстояниях между ними примерно 12 м. Кривая 258 описывает зависимость потребностей в энергии от времени для нагревательных стволов скважин с расстоянием между ними примерно 9,6 м. Кривая 260 описывает зависимость потребностей в энергии от времени для нагревательных стволов скважин с расстоянием между ними примерно 7,2 м.
Как следует из графика, изображенного на фиг.7, расстояние между стволами скважин, представленное кривой 258, представляет собой расстояние, которое приблизительно соотносится с выходной мощностью в течение некоторого периода времени у некоторых ядерных реакторов (например, по меньшей мере некоторых ядерных реакторов, выходная мощность которых затухает до приблизительно 1/Е в течение, например, от примерно 4 до примерно 9 лет). Кривые 252-256, изображенные на фиг.7, описывают потребность в выходной мощности для нагревательных стволов скважин с расстояниями между ними от примерно 12 до примерно 14,4 м. Для расстояния между нагревательными стволами скважин, большего, чем примерно 12 м, может потребоваться больший ввод энергии, чем могли бы обеспечить некоторые ядерные реакторы. Расстояние же между нагревательными стволами скважин, меньшее, чем примерно 8 м (например, как это представлено кривой 260 на фиг.7), может стать причиной отсутствия эффективного использования поступления энергии, производимой некоторыми ядерными реакторами.
На фиг.8 приведена зависимость средней температуры (°С) (ось y) коллектора от времени (годы) (ось х) при термической обработке in situ для разных расстояний между стволами скважин. Кривые 252-260 описывают повышение температуры пласта в течение некоторого периода времени, отражающее потребности во вводе энергии в зависимости от расстояния между скважинами. Заданная температура для термической обработки углеводородсодержащих пластов в некоторых вариантах осуществления изобретения может, например, быть порядка 350°С. Заданная температура для какого-либо пласта может варьироваться в зависимости от, по меньшей мере, типа пласта и/или целевых углеводородных продуктов. Расстояния между стволами скважин для кривых 252-260, изображенных на фиг.8, те же, что и для кривых 252-260, изображенных на фиг.7. Кривые 252-260, показанные на фиг.8, описывают повышение температуры в пласте в течение некоторого времени для нагревательных стволов скважин с расстояниями между ними в пределах от примерно 12 до примерно 14,4 м. При расстоянии между стволами скважин, большем, чем примерно 12 м, нагрев пласта может быть слишком медленным, в результате чего может потребоваться больше энергии, чем в состоянии обеспечить некоторые ядерные реакторы (в частности, по истечении 5 лет как в настоящем примере). Расстояние же между нагревательными стволами скважин, меньшее, чем примерно 8 м (например, как это представлено кривой 260, изображенной на фиг.8), может в некоторых ситуациях термической обработки in situ стать причиной слишком быстрого нагрева пласта. Как следует из фиг.8, расстояние между стволами скважин, представленное кривой 258, может быть расстоянием, которое обеспечивает типичную целевую температуру примерно 350°С за желаемый отрезок времени (например, примерно 5 лет).
На основании настоящего описания специалисту в данной области станут очевидны дополнительные модификации и альтернативные варианты осуществления разных аспектов изобретения. Соответствующим образом это описание следует рассматривать лишь как иллюстративное, целью которого является показать специалистам общее направление осуществления изобретения. Следует иметь в виду, что показанные и описанные в заявке формы изобретения следует рассматривать как предпочтительные в настоящий момент варианты осуществления. Описанные в заявке элементы и материалы могут быть заменены другими, порядок частей и операций может быть изменен на обратный, а некоторые признаки изобретения могут быть использованы независимым образом, и при этом все из них, как это должно быть очевидным специалистам, содержат в себе выгоду от описания настоящего изобретения. Описанные в заявке элементы могут быть изменены в рамках сути и объема изобретения в том виде, в каком оно описано в приведенной ниже формуле изобретения. Наконец, следует иметь в виду, что описанные в заявке независимым образом признаки в некоторых вариантах осуществления изобретения могут быть объединены.

Claims (19)

1. Система термической обработки in situ для добычи углеводородов из подземного пласта, содержащая: саморегулирующийся ядерный реактор; систему труб, по меньшей мере, частично расположенную в активной зоне саморегулирующегося ядерного реактора, с первым теплоносителем, циркулирующим через систему труб; и теплообменник, предназначенный для прохождения через него первого теплоносителя для нагрева второго теплоносителя, при этом второй теплоноситель предназначен для повышения температуры, по меньшей мере, части пласта выше температуры, обеспечивающей образование подвижного флюида, легкий крекинг и/или пиролиз углеводородсодержащего материала, приводящих к образованию в пласте подвижных флюидов, флюидов, являющихся результатом легкого крекинга, и/или флюидов, являющихся результатом пиролиза, при этом поступление тепла в, по меньшей мере, часть пласта в течение времени, по меньшей мере, приблизительно соотносится со скоростью затухания саморегулирующегося ядерного реактора.
2. Система по п.1, в которой саморегулирующийся ядерный реактор содержит активную зону, в которой находится порошкообразный делящийся металлогидридный материал.
3. Система по п.1, в которой температура саморегулирующегося ядерного реактора имеет возможность снижения при введении нейтронопоглощающего материала.
4. Система по п.1, в которой температура саморегулирующегося ядерного реактора имеет возможность снижения при введении нейтронопоглощающего газа.
5. Система по п.1, в которой в саморегулирующемся ядерном реакторе поддерживается температура в пределах от примерно 500 до примерно 650°C.
6. Система по п.1, в которой саморегулирующийся ядерный реактор расположен в подземном пласте.
7. Система по п.1, в которой саморегулирующийся ядерный реактор расположен в подземном пласте под покрывающим слоем.
8. Система по п.1, дополнительно содержащая второй саморегулирующийся ядерный реактор, который по истечении первого периода времени имеет возможность подключения к саморегулирующемуся ядерному реактору, в результате чего выходная мощность двух соединенных вместе ядерных реакторов является, по меньшей мере, столь же большой, как начальная выходная мощность саморегулирующегося ядерного реактора.
9. Система по п.1, в которой подаваемая саморегулирующимся ядерным реактором энергия обеспечивается теплоносителем, циркулирующим посредством циркуляционной системы через, по меньшей мере, один из нагревателей.
10. Система по п.9, в которой теплоносителем является расплавленная соль.
11. Система по п.9, в которой, по меньшей мере, часть теплоносителя имеет возможность циркуляции непосредственно через саморегулирующийся ядерный реактор.
12. Система по п.1, в которой расстояние между, по меньшей мере, частью множества стволов скважин в пласте по меньшей мере частично соотносится со скоростью затухания мощности саморегулирующегося ядерного реактора.
13. Система по п.1, в которой мощность саморегулирующегося ядерного реактора затухает до примерно 1/E от начальной мощности в течение приблизительно от 4 до 9 лет.
14. Система по п.1, в которой саморегулирующийся ядерный реактор вначале имеет возможность подачи к, по меньшей мере, части стволов скважин выходной мощности, равной примерно 900 Вт/м, которая уменьшается в течение предопределенного периода времени до примерно 360 Вт/м.
15. Система по п.1, в которой саморегулирующийся ядерный реактор вначале имеет возможность подачи к, по меньшей мере, части стволов скважин выходной мощности, равной примерно 900 Вт/м, которая уменьшается в течение предопределенного периода времени до примерно 360 Вт/м, при этом предопределенный период времени составляет от примерно 4 до примерно 8 лет или от примерно 5 до примерно 7 лет.
16. Система по п.1, в которой саморегулирующийся ядерный реактор выполнен с возможностью обеспечения энергией, по меньшей мере, одного из нагревателей для повышения температуры по меньшей мере части пласта до диапазона от примерно 300 до примерно 400°С.
17. Система по п.1, в которой саморегулирующийся ядерный реактор выполнен с возможностью обеспечения энергией, по меньшей мере, одного из нагревателей для повышения температуры по меньшей мере части пласта до диапазона от примерно 300 до примерно 400°C в течение заданных периодов времени от примерно 4 до примерно 8 лет или от примерно 5 до примерно 7 лет.
18. Система по п.1, в которой расстояние между, по меньшей мере, частью множества стволов скважин составляет от примерно 8 до примерно 11 м, от примерно 9 до примерно 10 м или от примерно 9,4 до примерно 9,8 м.
19. Способ добычи углеводородов из подземного пласта с помощью системы по любому из пп.1-18.
RU2011119084/03A 2008-10-13 2009-10-09 Применение саморегулирующихся ядерных реакторов при обработке подземного пласта RU2518700C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10497408P 2008-10-13 2008-10-13
US61/104,974 2008-10-13
US16849809P 2009-04-10 2009-04-10
US61/168,498 2009-04-10
PCT/US2009/060093 WO2010045099A1 (en) 2008-10-13 2009-10-09 Using self-regulating nuclear reactors in treating a subsurface formation

Publications (2)

Publication Number Publication Date
RU2011119084A RU2011119084A (ru) 2012-11-20
RU2518700C2 true RU2518700C2 (ru) 2014-06-10

Family

ID=42097829

Family Applications (6)

Application Number Title Priority Date Filing Date
RU2011119095/03A RU2529537C2 (ru) 2008-10-13 2009-10-09 Системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой
RU2011119081/03A RU2530729C2 (ru) 2008-10-13 2009-10-09 Системы и способы формирования подземных стволов скважин
RU2011119084/03A RU2518700C2 (ru) 2008-10-13 2009-10-09 Применение саморегулирующихся ядерных реакторов при обработке подземного пласта
RU2011119096/03A RU2537712C2 (ru) 2008-10-13 2009-10-09 Нагрев подземных углеводородных пластов циркулируемой теплопереносящей текучей средой
RU2011119093/03A RU2524584C2 (ru) 2008-10-13 2009-10-09 Системы и способы обработки подземного пласта с помощью электрических проводников
RU2011119086/03A RU2518649C2 (ru) 2008-10-13 2009-10-09 Использование саморегулирующихся ядерных реакторов при обработке подземного пласта

Family Applications Before (2)

Application Number Title Priority Date Filing Date
RU2011119095/03A RU2529537C2 (ru) 2008-10-13 2009-10-09 Системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой
RU2011119081/03A RU2530729C2 (ru) 2008-10-13 2009-10-09 Системы и способы формирования подземных стволов скважин

Family Applications After (3)

Application Number Title Priority Date Filing Date
RU2011119096/03A RU2537712C2 (ru) 2008-10-13 2009-10-09 Нагрев подземных углеводородных пластов циркулируемой теплопереносящей текучей средой
RU2011119093/03A RU2524584C2 (ru) 2008-10-13 2009-10-09 Системы и способы обработки подземного пласта с помощью электрических проводников
RU2011119086/03A RU2518649C2 (ru) 2008-10-13 2009-10-09 Использование саморегулирующихся ядерных реакторов при обработке подземного пласта

Country Status (10)

Country Link
US (14) US20100101783A1 (ru)
EP (6) EP2334894A1 (ru)
JP (6) JP5611961B2 (ru)
CN (5) CN102187052B (ru)
AU (6) AU2009303609B2 (ru)
BR (2) BRPI0919775A2 (ru)
CA (6) CA2738805A1 (ru)
IL (5) IL211951A (ru)
RU (6) RU2529537C2 (ru)
WO (7) WO2010045115A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2652909C1 (ru) * 2017-08-28 2018-05-03 Общество с ограниченной ответственностью "Научно-техническая и торгово-промышленная фирма "ТЕХНОПОДЗЕМЭНЕРГО" (ООО "Техноподземэнерго") Шахтно-скважинный газотурбинно-атомный нефтегазодобывающий комплекс (комбинат)
RU2756155C1 (ru) * 2021-03-04 2021-09-28 Акционерное общество «Зарубежнефть» Внутрискважинный кольцевой нагреватель
RU2756152C1 (ru) * 2021-03-04 2021-09-28 Акционерное общество «Зарубежнефть» Внутрискважинный пучковый нагреватель
RU2804628C1 (ru) * 2021-03-04 2023-10-03 Акционерное общество «Зарубежнефть» Способ повышения эффективности извлечения нефти с применением нагревателя на основе источников ионизирующего излучения

Families Citing this family (236)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081240A2 (en) 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In-situ heating of coal formation to produce fluid
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
WO2003036037A2 (en) 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. Installation and use of removable heaters in a hydrocarbon containing formation
US8161998B2 (en) 2007-06-04 2012-04-24 Matos Jeffrey A Frozen/chilled fluid for pipelines and for storage facilities
NZ567052A (en) 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
CA2579496A1 (en) 2004-04-23 2005-11-03 Shell Internationale Research Maatschappij B.V. Subsurface electrical heaters using nitride insulation
US7987613B2 (en) * 2004-10-12 2011-08-02 Great River Energy Control system for particulate material drying apparatus and process
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
EP2010754A4 (en) 2006-04-21 2016-02-24 Shell Int Research ADJUSTING ALLOY COMPOSITIONS FOR SELECTED CHARACTERISTICS IN TEMPERATURE-LIMITED HEATERS
US8159825B1 (en) 2006-08-25 2012-04-17 Hypres Inc. Method for fabrication of electrical contacts to superconducting circuits
US20080083566A1 (en) * 2006-10-04 2008-04-10 George Alexander Burnett Reclamation of components of wellbore cuttings material
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
WO2008097471A1 (en) * 2007-02-02 2008-08-14 Shivvers Steve D High efficiency drier with multi stage heating and drying zones
WO2008131182A1 (en) 2007-04-20 2008-10-30 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
JP5063195B2 (ja) * 2007-05-31 2012-10-31 ラピスセミコンダクタ株式会社 データ処理装置
EP2198118A1 (en) 2007-10-19 2010-06-23 Shell Internationale Research Maatschappij B.V. Irregular spacing of heat sources for treating hydrocarbon containing formations
US8318131B2 (en) 2008-01-07 2012-11-27 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
AT10660U1 (de) * 2008-03-19 2009-07-15 Binder Co Ag Trockner mit kühlmedium
CA2718767C (en) 2008-04-18 2016-09-06 Shell Internationale Research Maatschappij B.V. Using mines and tunnels for treating subsurface hydrocarbon containing formations
US8430168B2 (en) * 2008-05-21 2013-04-30 Valkyrie Commissioning Services, Inc. Apparatus and methods for subsea control system testing
US20100101783A1 (en) 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US8441361B2 (en) 2010-02-13 2013-05-14 Mcallister Technologies, Llc Methods and apparatuses for detection of properties of fluid conveyance systems
US20110203776A1 (en) * 2009-02-17 2011-08-25 Mcalister Technologies, Llc Thermal transfer device and associated systems and methods
WO2010118315A1 (en) 2009-04-10 2010-10-14 Shell Oil Company Treatment methodologies for subsurface hydrocarbon containing formations
US7792250B1 (en) * 2009-04-30 2010-09-07 Halliburton Energy Services Inc. Method of selecting a wellbore cement having desirable characteristics
GB2474249B (en) * 2009-10-07 2015-11-04 Mark Collins An apparatus for generating heat
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
CN102612640B (zh) * 2009-10-09 2014-01-08 国际壳牌研究有限公司 用于估定地下地层中温度的方法
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
WO2011051874A1 (en) * 2009-10-28 2011-05-05 Csir Integrated sensing device for assessing integrity of a rock mass and corresponding method
US8386221B2 (en) * 2009-12-07 2013-02-26 Nuovo Pignone S.P.A. Method for subsea equipment subject to hydrogen induced stress cracking
US8602658B2 (en) * 2010-02-05 2013-12-10 Baker Hughes Incorporated Spoolable signal conduction and connection line and method
KR20130036000A (ko) * 2010-02-13 2013-04-09 맥알리스터 테크놀로지즈 엘엘씨 재복사 표면을 갖는 화학 반응기, 및 관련 시스템과 방법
WO2011100699A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8397828B2 (en) * 2010-03-25 2013-03-19 Baker Hughes Incorporated Spoolable downhole control system and method
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8939207B2 (en) * 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US8967259B2 (en) 2010-04-09 2015-03-03 Shell Oil Company Helical winding of insulated conductor heaters for installation
US20110277992A1 (en) * 2010-05-14 2011-11-17 Paul Grimes Systems and methods for enhanced recovery of hydrocarbonaceous fluids
WO2011150081A2 (en) 2010-05-25 2011-12-01 7Ac Technologies, Inc. Methods and systems using liquid desiccants for air-conditioning and other processes
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
CA2813044C (en) * 2010-10-08 2020-01-14 Charles D'angelo Methods for joining insulated conductors
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US20120085535A1 (en) * 2010-10-08 2012-04-12 Weijian Mo Methods of heating a subsurface formation using electrically conductive particles
US20130251547A1 (en) * 2010-12-28 2013-09-26 Hansen Energy Solutions Llc Liquid Lift Pumps for Gas Wells
WO2012092394A1 (en) 2010-12-29 2012-07-05 Cardinal Health 414, Llc Closed vial fill system for aseptic dispensing
US20120228286A1 (en) * 2011-03-09 2012-09-13 Central Garden And Pet Company Inductive Heating Device for Aquarium Tanks
JP5399436B2 (ja) * 2011-03-30 2014-01-29 公益財団法人地球環境産業技術研究機構 貯留物質の貯留装置および貯留方法
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
AU2012254060B2 (en) * 2011-04-08 2015-07-09 Shell Internationale Research Maatschappij B.V. Compaction of electrical insulation for joining insulated conductors
EP2695247A4 (en) 2011-04-08 2015-09-16 Shell Int Research SYSTEMS FOR CONNECTING INSULATED LADDER
CN102200004A (zh) * 2011-05-12 2011-09-28 刘锋 游梁式抽油机专用节能配套装置及其抽油机
US8978769B2 (en) * 2011-05-12 2015-03-17 Richard John Moore Offshore hydrocarbon cooling system
US8887806B2 (en) 2011-05-26 2014-11-18 Halliburton Energy Services, Inc. Method for quantifying cement blend components
WO2013012822A1 (en) * 2011-07-15 2013-01-24 Cardinal Health 414, Llc Systems, methods, and devices for producing, manufacturing, and control of radiopharmaceuticals
US9417332B2 (en) 2011-07-15 2016-08-16 Cardinal Health 414, Llc Radiopharmaceutical CZT sensor and apparatus
WO2013012813A1 (en) 2011-07-15 2013-01-24 Cardinal Health 414, Llc Modular cassette synthesis unit
CN103828091A (zh) 2011-07-25 2014-05-28 H2催化剂有限责任公司 用于制氢的方法和系统
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
WO2013025640A2 (en) * 2011-08-12 2013-02-21 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
WO2013025659A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, includings for chemical reactors, and associated systems and methods
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
CN103857873A (zh) 2011-08-12 2014-06-11 麦卡利斯特技术有限责任公司 从水下来源除去和处理气体的系统和方法
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
JO3141B1 (ar) 2011-10-07 2017-09-20 Shell Int Research الوصلات المتكاملة للموصلات المعزولة
JO3139B1 (ar) 2011-10-07 2017-09-20 Shell Int Research تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية.
CA2850756C (en) * 2011-10-07 2019-09-03 Scott Vinh Nguyen Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9243482B2 (en) 2011-11-01 2016-01-26 Nem Energy B.V. Steam supply for enhanced oil recovery
EP2776664A4 (en) * 2011-11-07 2016-10-05 Oklahoma Safety Equipment Company Inc DEVICE, SYSTEM AND METHOD FOR PRESSURE LIMITATION
CN102436856A (zh) * 2011-12-13 2012-05-02 匡仲平 核泄漏事故引发的核辐射污染规避方法
RU2485300C1 (ru) * 2011-12-14 2013-06-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи нефти в трещиноватых коллекторах
EP2610570B1 (en) * 2011-12-29 2016-11-23 Ipsen, Inc. Heating element arrangement for a vacuum heat treating furnace
ES2482668T3 (es) * 2012-01-03 2014-08-04 Quantum Technologie Gmbh Aparato y procedimiento para la explotación de arenas petrolíferas
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
WO2013110980A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
WO2013123488A1 (en) * 2012-02-18 2013-08-22 Genie Ip B.V. Method and system for heating a bed of hydrocarbon- containing rocks
CA2811666C (en) 2012-04-05 2021-06-29 Shell Internationale Research Maatschappij B.V. Compaction of electrical insulation for joining insulated conductors
US9303487B2 (en) 2012-04-30 2016-04-05 Baker Hughes Incorporated Heat treatment for removal of bauschinger effect or to accelerate cement curing
AU2012379048B2 (en) * 2012-05-04 2015-09-10 Landmark Graphics Corporation Systems and methods for optimal spacing of horizontal wells
US10210961B2 (en) * 2012-05-11 2019-02-19 Ge-Hitachi Nuclear Energy Americas, Llc System and method for a commercial spent nuclear fuel repository turning heat and gamma radiation into value
US9447675B2 (en) * 2012-05-16 2016-09-20 Chevron U.S.A. Inc. In-situ method and system for removing heavy metals from produced fluids
EP2850155B1 (en) * 2012-05-16 2018-04-04 Chevron U.S.A., Inc. Process for removing mercury from fluids
JP2013249605A (ja) * 2012-05-31 2013-12-12 Ihi Corp ガスハイドレート回収装置
US9101875B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US10076001B2 (en) * 2012-07-05 2018-09-11 Nvent Services Gmbh Mineral insulated cable having reduced sheath temperature
US9896918B2 (en) 2012-07-27 2018-02-20 Mbl Water Partners, Llc Use of ionized water in hydraulic fracturing
US8424784B1 (en) 2012-07-27 2013-04-23 MBJ Water Partners Fracture water treatment method and system
CN104619948A (zh) * 2012-08-13 2015-05-13 雪佛龙美国公司 使用热管激发笼形包合物的开采
WO2014047469A2 (en) * 2012-09-20 2014-03-27 Pentair Thermal Management Downhole wellbore heating system and method
WO2014058777A1 (en) * 2012-10-09 2014-04-17 Shell Oil Company Method for heating a subterranean formation penetrated by a wellbore
CA2899141A1 (en) * 2012-10-16 2014-04-24 Genie Ip B.V. System and method for thermally treating a subsurface formation by a heated molten salt mixture
US10443315B2 (en) * 2012-11-28 2019-10-15 Nextstream Wired Pipe, Llc Transmission line for wired pipe
RU2549654C2 (ru) * 2012-12-04 2015-04-27 Общество с ограниченной ответственностью "Краснодарский Компрессорный Завод" Азотная компрессорная станция для повышения нефтеотдачи пластов (варианты)
EP2929256A4 (en) 2012-12-04 2016-08-03 7Ac Technologies Inc METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH HIGH THERMAL LOADS THROUGH DESICCANT COOLERS
US10087715B2 (en) 2012-12-06 2018-10-02 Siemens Aktiengesellschaft Arrangement and method for introducing heat into a geological formation by means of electromagnetic induction
GB201223055D0 (en) * 2012-12-20 2013-02-06 Carragher Paul Method and apparatus for use in well abandonment
JP6393697B2 (ja) 2013-03-01 2018-09-19 7エーシー テクノロジーズ,インコーポレイテッド デシカント空調方法及びシステム
US20140251608A1 (en) * 2013-03-05 2014-09-11 Cenovus Energy Inc. Single vertical or inclined well thermal recovery process
US20140251596A1 (en) * 2013-03-05 2014-09-11 Cenovus Energy Inc. Single vertical or inclined well thermal recovery process
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
EP3614072B1 (en) 2013-03-14 2022-06-22 Emerson Climate Technologies, Inc. Split liquid desiccant air conditioning system
EP2971984A4 (en) 2013-03-14 2017-02-01 7AC Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US10316644B2 (en) * 2013-04-04 2019-06-11 Shell Oil Company Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation
DE102013104643B3 (de) * 2013-05-06 2014-06-18 Borgwarner Beru Systems Gmbh Korona-Zündeinrichtung
WO2014189491A1 (en) * 2013-05-21 2014-11-27 Halliburton Energy Serviices, Inc. High-voltage drilling methods and systems using hybrid drillstring conveyance
US9470426B2 (en) 2013-06-12 2016-10-18 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US9382785B2 (en) 2013-06-17 2016-07-05 Baker Hughes Incorporated Shaped memory devices and method for using same in wellbores
CA3009048A1 (en) 2013-09-20 2015-03-26 Baker Hughes, A Ge Company, Llc Composites for use in stimulation and sand control operations
US9701892B2 (en) 2014-04-17 2017-07-11 Baker Hughes Incorporated Method of pumping aqueous fluid containing surface modifying treatment agent into a well
EP3046986B1 (en) 2013-09-20 2020-07-22 Baker Hughes Holdings LLC Method of inhibiting fouling on a metallic surface using a surface modifying treatment agent
BR112016005454B1 (pt) 2013-09-20 2022-02-08 Baker Hughes Incorporated Método para tratar um poço que penetra em uma formação subterrânea
CN105555908B (zh) 2013-09-20 2019-10-08 贝克休斯公司 使用表面改性金属处理剂处理地下地层的方法
US9822621B2 (en) 2013-09-20 2017-11-21 Baker Hughes, A Ge Company, Llc Method of using surface modifying treatment agents to treat subterranean formations
DE102013018210A1 (de) * 2013-10-30 2015-04-30 Linde Aktiengesellschaft Verfahren zur Erzeugung eines zusammenhängenden Eiskörpers bei einer Bodenvereisung
GB2538392B (en) * 2013-12-30 2020-08-19 Halliburton Energy Services Inc Ranging using current profiling
US10597579B2 (en) * 2014-01-13 2020-03-24 Conocophillips Company Anti-retention agent in steam-solvent oil recovery
CA2936045C (en) * 2014-01-24 2021-01-19 Halliburton Energy Services, Inc. Method and criteria for trajectory control
CA3176275A1 (en) 2014-02-18 2015-08-18 Athabasca Oil Corporation Cable-based well heater
JP7260953B2 (ja) * 2014-03-07 2023-04-19 グリーンファイア・エナジー・インコーポレイテッド 地熱を発生させるプロセスおよび方法
US9637996B2 (en) 2014-03-18 2017-05-02 Baker Hughes Incorporated Downhole uses of nanospring filled elastomers
CN106164594B (zh) 2014-03-20 2019-10-25 7Ac技术公司 屋顶液体干燥剂系统和方法
US9618435B2 (en) * 2014-03-31 2017-04-11 Dmar Engineering, Inc. Umbilical bend-testing
JP2017512930A (ja) 2014-04-04 2017-05-25 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 熱処理後の最終圧延ステップを使用して形成された絶縁導体
US10078154B2 (en) 2014-06-19 2018-09-18 Evolution Engineering Inc. Downhole system with integrated backup sensors
GB2527847A (en) * 2014-07-04 2016-01-06 Compactgtl Ltd Catalytic reactors
RU2559250C1 (ru) * 2014-08-01 2015-08-10 Олег Васильевич Коломийченко Забойная каталитическая сборка для теплового воздействия на пласты, содержащие углеводороды и твердые органические вещества
US9451792B1 (en) * 2014-09-05 2016-09-27 Atmos Nation, LLC Systems and methods for vaporizing assembly
US9939421B2 (en) * 2014-09-10 2018-04-10 Saudi Arabian Oil Company Evaluating effectiveness of ceramic materials for hydrocarbons recovery
WO2016044549A1 (en) 2014-09-17 2016-03-24 Garrison Dental Solutions, Llc Dental curing light
RU2569375C1 (ru) * 2014-10-21 2015-11-27 Николай Борисович Болотин Способ и устройство для подогрева продуктивного нефтесодержащего пласта
DE102014223621A1 (de) * 2014-11-19 2016-05-19 Siemens Aktiengesellschaft Lagerstättenheizung
CN107110525B (zh) 2014-11-21 2020-02-11 7Ac技术公司 用于微分体液体干燥剂空气调节的方法和系统
AR103391A1 (es) 2015-01-13 2017-05-03 Bp Corp North America Inc Métodos y sistemas para producir hidrocarburos desde roca productora de hidrocarburos a través del tratamiento combinado de la roca y la inyección de agua posterior
RU2591860C1 (ru) * 2015-02-05 2016-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Способ извлечения тяжелой нефти из продуктивного пласта и устройство для его осуществления
FR3032564B1 (fr) * 2015-02-11 2017-03-03 Saipem Sa Procede de raccordement de cables d'une section unitaire de conduite destinee a etre assemblee verticalement sur une conduite sous-marine de transport de fluides
WO2016161439A1 (en) 2015-04-03 2016-10-06 Yelundur Rama Rau Apparatus and method of focused in-situ electrical heating of hydrocarbon bearing formations
CN107850516B (zh) * 2015-05-20 2021-05-28 沙特阿拉伯石油公司 检测碳氢化合物渗漏的取样技术
GB2539045A (en) * 2015-06-05 2016-12-07 Statoil Asa Subsurface heater configuration for in situ hydrocarbon production
WO2017040753A1 (en) * 2015-09-01 2017-03-09 Exotex, Inc. Construction products and systems for providing geothermal heat
US9556719B1 (en) 2015-09-10 2017-01-31 Don P. Griffin Methods for recovering hydrocarbons from shale using thermally-induced microfractures
WO2017079648A1 (en) 2015-11-06 2017-05-11 Oklahoma Safety Equipment Company, Inc. Rupture disc device and method of assembly thereof
US10304591B1 (en) * 2015-11-18 2019-05-28 Real Power Licensing Corp. Reel cooling method
EP3387526B1 (en) 2015-12-09 2019-08-07 Truva Corporation Environment-aware cross-layer communication protocol in underground oil reservoirs
CN106917616B (zh) * 2015-12-28 2019-11-08 中国石油天然气股份有限公司 稠油油藏的预热装置及方法
GB2547672B (en) * 2016-02-25 2018-02-21 Rejuvetech Ltd System and method
US10067201B2 (en) * 2016-04-14 2018-09-04 Texas Instruments Incorporated Wiring layout to reduce magnetic field
WO2017189397A1 (en) 2016-04-26 2017-11-02 Shell Oil Company Roller injector for deploying insulated conductor heaters
GB2550849B (en) * 2016-05-23 2020-06-17 Equinor Energy As Interface and integration method for external control of the drilling control system
US10125588B2 (en) * 2016-06-30 2018-11-13 Must Holding Llc Systems and methods for recovering bitumen from subterranean formations
NO343262B1 (en) * 2016-07-22 2019-01-14 Norges Miljoe Og Biovitenskapelige Univ Nmbu Solar thermal collecting and storage
CN106292277B (zh) * 2016-08-15 2020-01-07 上海交通大学 基于全局滑模控制的亚临界火电机组协调控制方法
CN106168119B (zh) * 2016-08-15 2018-07-13 中国石油天然气股份有限公司 井下电加热水平生产井管柱结构
WO2018067715A1 (en) 2016-10-06 2018-04-12 Shell Oil Company High voltage, low current mineral insulated cable heater
WO2018067713A1 (en) 2016-10-06 2018-04-12 Shell Oil Company Subsurface electrical connections for high voltage, low current mineral insulated cable heaters
CN106595113A (zh) * 2016-12-12 2017-04-26 吉林省联冠石油科技有限公司 超导加温换热装置及换热方法
EP3337290B1 (en) * 2016-12-13 2019-11-27 Nexans Subsea direct electric heating system
WO2018144313A2 (en) * 2017-01-31 2018-08-09 Saudi Arabian Oil Company In-situ hic growth monitoring probe
US10041163B1 (en) 2017-02-03 2018-08-07 Ge-Hitachi Nuclear Energy Americas Llc Plasma spray coating for sealing a defect area in a workpiece
US20180292133A1 (en) * 2017-04-05 2018-10-11 Rex Materials Group Heat treating furnace
EP3389088A1 (en) * 2017-04-12 2018-10-17 ABB Schweiz AG Heat exchanging arrangement and subsea electronic system
CN107387180B (zh) * 2017-07-17 2019-08-20 浙江陆特能源科技股份有限公司 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法
US10760348B2 (en) 2017-08-14 2020-09-01 Schlumberger Technology Corporation Electrical power transmission for well construction apparatus
US10697275B2 (en) 2017-08-14 2020-06-30 Schlumberger Technology Corporation Electrical power transmission for well construction apparatus
US10724341B2 (en) 2017-08-14 2020-07-28 Schlumberger Technology Corporation Electrical power transmission for well construction apparatus
US10699822B2 (en) 2017-08-14 2020-06-30 Schlumberger Technology Corporation Electrical power transmission for well construction apparatus
US10745975B2 (en) 2017-08-14 2020-08-18 Schlumberger Technology Corporation Electrical power transmission for well construction apparatus
US10649427B2 (en) 2017-08-14 2020-05-12 Schlumberger Technology Corporation Electrical power transmission for well construction apparatus
US10655292B2 (en) 2017-09-06 2020-05-19 Schlumberger Technology Corporation Local electrical room module for well construction apparatus
US10662709B2 (en) 2017-09-06 2020-05-26 Schlumberger Technology Corporation Local electrical room module for well construction apparatus
US10472953B2 (en) 2017-09-06 2019-11-12 Schlumberger Technology Corporation Local electrical room module for well construction apparatus
WO2019053550A1 (en) * 2017-09-12 2019-03-21 Politecnico Di Milano CO2 MIXTURES USED AS WORKING FLUID IN THERMODYNAMIC CYCLES
CA3075856A1 (en) 2017-09-13 2019-03-21 Chevron Phillips Chemical Company Lp Pvdf pipe and methods of making and using same
US10704371B2 (en) * 2017-10-13 2020-07-07 Chevron U.S.A. Inc. Low dielectric zone for hydrocarbon recovery by dielectric heating
KR102609680B1 (ko) 2017-11-01 2023-12-05 코프랜드 엘피 액체 건조제 공조 시스템의 멤브레인 모듈에서 액체 건조제의 균일한 분포를 위한 방법 및 장치
US10941948B2 (en) 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
WO2019090345A1 (en) * 2017-11-06 2019-05-09 Concept Group Llc Thermally-insulated modules and related methods
JP7220213B2 (ja) * 2017-11-13 2023-02-09 エセックス フルカワ マグネット ワイヤ ユーエスエイ エルエルシー 内部空洞を有する巻線物品
US11274856B2 (en) * 2017-11-16 2022-03-15 Ari Peter Berman Method of deploying a heat exchanger pipe
RU2669647C1 (ru) * 2017-11-29 2018-10-12 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии разработки
US10399895B2 (en) * 2017-12-13 2019-09-03 Pike Technologies Of Wisconsin, Inc. Bismuth-indium alloy for liquid-tight bonding of optical windows
US10201042B1 (en) * 2018-01-19 2019-02-05 Trs Group, Inc. Flexible helical heater
CN107991158B (zh) * 2018-01-29 2021-11-12 山东交通学院 可控击实温度的沥青混合料马歇尔击实仪及试验方法
US10822942B2 (en) * 2018-02-13 2020-11-03 Baker Hughes, A Ge Company, Llc Telemetry system including a super conductor for a resource exploration and recovery system
CA3117361C (en) * 2018-02-21 2023-08-22 Me Well Services Petrol Ve Saha Hizmetleri San. Tic. Ltd. Sti. A gas injection system
US10137486B1 (en) * 2018-02-27 2018-11-27 Chevron U.S.A. Inc. Systems and methods for thermal treatment of contaminated material
US11149538B2 (en) * 2018-03-01 2021-10-19 Baker Hughes, A Ge Company, Llc Systems and methods for determining bending of a drilling tool, the drilling tool having electrical conduit
US10837248B2 (en) 2018-04-25 2020-11-17 Skye Buck Technology, LLC. Method and apparatus for a chemical capsule joint
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
US11555473B2 (en) 2018-05-29 2023-01-17 Kontak LLC Dual bladder fuel tank
US11638331B2 (en) 2018-05-29 2023-04-25 Kontak LLC Multi-frequency controllers for inductive heating and associated systems and methods
US11053775B2 (en) * 2018-11-16 2021-07-06 Leonid Kovalev Downhole induction heater
CN109779625B (zh) * 2019-01-25 2022-09-09 华北科技学院 一种基于钻孔煤屑尺寸分布状况的突出预测方法与装置
CN112180815A (zh) * 2019-07-01 2021-01-05 苏州五蕴明泰科技有限公司 控制废弃物燃烧过程中二氧化碳排放量的方法
WO2021026432A1 (en) 2019-08-07 2021-02-11 Saudi Arabian Oil Company Determination of geologic permeability correlative with magnetic permeability measured in-situ
CN110705110B (zh) * 2019-10-09 2023-04-14 浙江强盛压缩机制造有限公司 大型往复压缩机高压填料盒的应力和应变计算方法
CN110954676B (zh) * 2019-12-03 2021-06-29 同济大学 用于模拟盾构下穿既有隧道施工可视化试验装置
US11559847B2 (en) 2020-01-08 2023-01-24 General Electric Company Superalloy part and method of processing
US11979950B2 (en) 2020-02-18 2024-05-07 Trs Group, Inc. Heater for contaminant remediation
CN111271038A (zh) * 2020-03-12 2020-06-12 内蒙古科技大学 一种低渗透性煤体的新型煤层气增产方法
US10912154B1 (en) * 2020-08-06 2021-02-02 Michael E. Brown Concrete heating system
CN112096294A (zh) * 2020-09-13 2020-12-18 江苏刘一刀精密机械有限公司 一种高导向性新型金刚石钻头
CN112252121B (zh) * 2020-11-11 2021-11-16 浙江八咏新型材料有限责任公司 一种市政道路施工用沥青加热熔融装置
US11851996B2 (en) 2020-12-18 2023-12-26 Jack McIntyre Oil production system and method
CN112324409B (zh) * 2020-12-31 2021-07-06 西南石油大学 一种在油层中原位产生溶剂开采稠油的方法
RU2753290C1 (ru) * 2021-02-10 2021-08-12 Общество с ограниченной ответственностью «АСДМ-Инжиниринг» Способ и система для борьбы с асфальтосмолопарафиновыми и/или газогидратными отложениями в нефтегазовых скважинах
US11642709B1 (en) 2021-03-04 2023-05-09 Trs Group, Inc. Optimized flux ERH electrode
US11214450B1 (en) * 2021-03-11 2022-01-04 Cciip Llc Method of proofing an innerduct/microduct and proofing manifold
CN113051725B (zh) * 2021-03-12 2022-09-09 哈尔滨工程大学 基于通用型辅助变量法的det与relap5耦合的动态特性分析方法
GB202104638D0 (en) * 2021-03-31 2021-05-12 Head Philip Bismuth metal to metal encapsulated electrical power cable system for ESP
US11713651B2 (en) 2021-05-11 2023-08-01 Saudi Arabian Oil Company Heating a formation of the earth while drilling a wellbore
US11725504B2 (en) 2021-05-24 2023-08-15 Saudi Arabian Oil Company Contactless real-time 3D mapping of surface equipment
US11619097B2 (en) 2021-05-24 2023-04-04 Saudi Arabian Oil Company System and method for laser downhole extended sensing
CN113153250B (zh) * 2021-06-11 2021-11-19 盐城瑞德石化机械有限公司 一种设有限位机构的稳定型井下配注器
CN113266327A (zh) * 2021-07-05 2021-08-17 西南石油大学 一种油气井下多功能涡流加热装置与方法
US11879328B2 (en) 2021-08-05 2024-01-23 Saudi Arabian Oil Company Semi-permanent downhole sensor tool
US20230130169A1 (en) * 2021-10-26 2023-04-27 Jack McIntyre Fracturing Hot Rock
US11860077B2 (en) 2021-12-14 2024-01-02 Saudi Arabian Oil Company Fluid flow sensor using driver and reference electromechanical resonators
CN114300213B (zh) * 2022-01-24 2024-01-26 中国科学院电工研究所 一种高热导铌三锡超导线圈及其制作方法
CN114508336B (zh) * 2022-01-30 2022-09-30 中国矿业大学 一种用于松软煤层的钻孔、解卡和致裂一体装置及方法
US11867049B1 (en) 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
CN115050529B (zh) * 2022-08-15 2022-10-21 中国工程物理研究院流体物理研究所 一种高安全性新型水电阻
CN115340241A (zh) * 2022-08-27 2022-11-15 辽宁大学 一种循环利用的矿井水处理装置
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore
WO2024112086A1 (ko) * 2022-11-22 2024-05-30 한국원자력연구원 미드룹 적용된 오일샌드 채굴용 경수형 원자로

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2133335C1 (ru) * 1996-09-11 1999-07-20 Юрий Алексеевич Трутнев Способ разработки нефтяных месторождений и переработки нефти и устройство для его осуществления
RU2223397C2 (ru) * 2001-07-19 2004-02-10 Хайрединов Нил Шахиджанович Способ разработки нефтяного месторождения
RU2004115602A (ru) * 2001-10-24 2005-10-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) Способы и устройства для нагревания внутри формации, содержащей углеводороды, со вскрытием, соприкасающимся с земной поверхностью в двух местоположениях

Family Cites Families (1047)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA899987A (en) 1972-05-09 Chisso Corporation Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current
SE126674C1 (ru) 1949-01-01
SE123138C1 (ru) 1948-01-01
US94813A (en) 1869-09-14 Improvement in torpedoes for oil-wells
US48994A (en) 1865-07-25 Improvement in devices for oil-wells
US345586A (en) 1886-07-13 Oil from wells
US2734579A (en) * 1956-02-14 Production from bituminous sands
US2732195A (en) 1956-01-24 Ljungstrom
US326439A (en) * 1885-09-15 Protecting wells
SE123136C1 (ru) 1948-01-01
US1457690A (en) * 1923-06-05 Percival iv brine
US760304A (en) * 1903-10-24 1904-05-17 Frank S Gilbert Heater for oil-wells.
US1342741A (en) 1918-01-17 1920-06-08 David T Day Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks
US1269747A (en) 1918-04-06 1918-06-18 Lebbeus H Rogers Method of and apparatus for treating oil-shale.
GB156396A (en) 1919-12-10 1921-01-13 Wilson Woods Hoover An improved method of treating shale and recovering oil therefrom
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US1477802A (en) 1921-02-28 1923-12-18 Cutler Hammer Mfg Co Oil-well heater
US1510655A (en) 1922-11-21 1924-10-07 Clark Cornelius Process of subterranean distillation of volatile mineral substances
US1634236A (en) 1925-03-10 1927-06-28 Standard Dev Co Method of and apparatus for recovering oil
US1646599A (en) * 1925-04-30 1927-10-25 George A Schaefer Apparatus for removing fluid from wells
US1811560A (en) * 1926-04-08 1931-06-23 Standard Oil Dev Co Method of and apparatus for recovering oil
US1666488A (en) * 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1681523A (en) * 1927-03-26 1928-08-21 Patrick V Downey Apparatus for heating oil wells
US2011710A (en) 1928-08-18 1935-08-20 Nat Aniline & Chem Co Inc Apparatus for measuring temperature
US1913395A (en) 1929-11-14 1933-06-13 Lewis C Karrick Underground gasification of carbonaceous material-bearing substances
US2013838A (en) 1932-12-27 1935-09-10 Rowland O Pickin Roller core drilling bit
US2288857A (en) * 1937-10-18 1942-07-07 Union Oil Co Process for the removal of bitumen from bituminous deposits
US2244255A (en) * 1939-01-18 1941-06-03 Electrical Treating Company Well clearing system
US2208087A (en) * 1939-11-06 1940-07-16 Carlton J Somers Electric heater
US2244256A (en) * 1939-12-16 1941-06-03 Electrical Treating Company Apparatus for clearing wells
US2249926A (en) 1940-05-13 1941-07-22 John A Zublin Nontracking roller bit
US2319702A (en) 1941-04-04 1943-05-18 Socony Vacuum Oil Co Inc Method and apparatus for producing oil wells
US2365591A (en) 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2423674A (en) 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2381256A (en) 1942-10-06 1945-08-07 Texas Co Process for treating hydrocarbon fractions
US2390770A (en) 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2484063A (en) 1944-08-19 1949-10-11 Thermactor Corp Electric heater for subsurface materials
US2472445A (en) * 1945-02-02 1949-06-07 Thermactor Company Apparatus for treating oil and gas bearing strata
US2595728A (en) * 1945-03-09 1952-05-06 Westinghouse Electric Corp Polysiloxanes containing allyl radicals
US2481051A (en) 1945-12-15 1949-09-06 Texaco Development Corp Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2444755A (en) * 1946-01-04 1948-07-06 Ralph M Steffen Apparatus for oil sand heating
US2634961A (en) * 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2466945A (en) * 1946-02-21 1949-04-12 In Situ Gases Inc Generation of synthesis gas
US2500305A (en) * 1946-05-28 1950-03-14 Thermactor Corp Electric oil well heater
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2939689A (en) * 1947-06-24 1960-06-07 Svenska Skifferolje Ab Electrical heater for treating oilshale and the like
US2786660A (en) * 1948-01-05 1957-03-26 Phillips Petroleum Co Apparatus for gasifying coal
US2548360A (en) * 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater
US2685930A (en) 1948-08-12 1954-08-10 Union Oil Co Oil well production process
US2630307A (en) 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2595979A (en) 1949-01-25 1952-05-06 Texas Co Underground liquefaction of coal
US2642943A (en) * 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process
US2593477A (en) * 1949-06-10 1952-04-22 Us Interior Process of underground gasification of coal
GB674082A (en) 1949-06-15 1952-06-18 Nat Res Dev Improvements in or relating to the underground gasification of coal
GB676543A (en) 1949-11-14 1952-07-30 Telegraph Constr & Maintenance Improvements in the moulding and jointing of thermoplastic materials for example in the jointing of electric cables
US2670802A (en) 1949-12-16 1954-03-02 Thermactor Company Reviving or increasing the production of clogged or congested oil wells
US2623596A (en) 1950-05-16 1952-12-30 Atlantic Refining Co Method for producing oil by means of carbon dioxide
US2647196A (en) * 1950-11-06 1953-07-28 Union Oil Co Apparatus for heating oil wells
US2714930A (en) 1950-12-08 1955-08-09 Union Oil Co Apparatus for preventing paraffin deposition
US2695163A (en) 1950-12-09 1954-11-23 Stanolind Oil & Gas Co Method for gasification of subterranean carbonaceous deposits
US2647306A (en) 1951-04-14 1953-08-04 John C Hockery Can opener
US2630306A (en) * 1952-01-03 1953-03-03 Socony Vacuum Oil Co Inc Subterranean retorting of shales
US2757739A (en) 1952-01-07 1956-08-07 Parelex Corp Heating apparatus
US2777679A (en) 1952-03-07 1957-01-15 Svenska Skifferolje Ab Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ
US2780450A (en) * 1952-03-07 1957-02-05 Svenska Skifferolje Ab Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US2759877A (en) 1952-03-18 1956-08-21 Sinclair Refining Co Process and separation apparatus for use in the conversions of hydrocarbons
US2789805A (en) 1952-05-27 1957-04-23 Svenska Skifferolje Ab Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member
US2761663A (en) 1952-09-05 1956-09-04 Louis F Gerdetz Process of underground gasification of coal
US2780449A (en) * 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2825408A (en) * 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US2771954A (en) * 1953-04-29 1956-11-27 Exxon Research Engineering Co Treatment of petroleum production wells
US2703621A (en) * 1953-05-04 1955-03-08 George W Ford Oil well bottom hole flow increasing unit
US2743906A (en) 1953-05-08 1956-05-01 William E Coyle Hydraulic underreamer
US2803305A (en) 1953-05-14 1957-08-20 Pan American Petroleum Corp Oil recovery by underground combustion
US2914309A (en) * 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands
US2902270A (en) * 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US2890754A (en) 1953-10-30 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2890755A (en) * 1953-12-19 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2841375A (en) 1954-03-03 1958-07-01 Svenska Skifferolje Ab Method for in-situ utilization of fuels by combustion
US2794504A (en) 1954-05-10 1957-06-04 Union Oil Co Well heater
US2793696A (en) * 1954-07-22 1957-05-28 Pan American Petroleum Corp Oil recovery by underground combustion
US2781851A (en) 1954-10-11 1957-02-19 Shell Dev Well tubing heater system
US2801699A (en) 1954-12-24 1957-08-06 Pure Oil Co Process for temporarily and selectively sealing a well
US2787325A (en) 1954-12-24 1957-04-02 Pure Oil Co Selective treatment of geological formations
US2923535A (en) * 1955-02-11 1960-02-02 Svenska Skifferolje Ab Situ recovery from carbonaceous deposits
US2799341A (en) 1955-03-04 1957-07-16 Union Oil Co Selective plugging in oil wells
US2801089A (en) * 1955-03-14 1957-07-30 California Research Corp Underground shale retorting process
US2818118A (en) * 1955-12-19 1957-12-31 Phillips Petroleum Co Production of oil by in situ combustion
US2862558A (en) * 1955-12-28 1958-12-02 Phillips Petroleum Co Recovering oils from formations
US2819761A (en) * 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US2857002A (en) * 1956-03-19 1958-10-21 Texas Co Recovery of viscous crude oil
US2906340A (en) 1956-04-05 1959-09-29 Texaco Inc Method of treating a petroleum producing formation
US2991046A (en) 1956-04-16 1961-07-04 Parsons Lional Ashley Combined winch and bollard device
US2889882A (en) * 1956-06-06 1959-06-09 Phillips Petroleum Co Oil recovery by in situ combustion
US3120264A (en) 1956-07-09 1964-02-04 Texaco Development Corp Recovery of oil by in situ combustion
US3016053A (en) 1956-08-02 1962-01-09 George J Medovick Underwater breathing apparatus
US2997105A (en) * 1956-10-08 1961-08-22 Pan American Petroleum Corp Burner apparatus
US2932352A (en) 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US2804149A (en) * 1956-12-12 1957-08-27 John R Donaldson Oil well heater and reviver
US3127936A (en) 1957-07-26 1964-04-07 Svenska Skifferolje Ab Method of in situ heating of subsurface preferably fuel containing deposits
US2942223A (en) * 1957-08-09 1960-06-21 Gen Electric Electrical resistance heater
US2906337A (en) 1957-08-16 1959-09-29 Pure Oil Co Method of recovering bitumen
US3080918A (en) * 1957-08-29 1963-03-12 Richfield Oil Corp Petroleum recovery from subsurface oil bearing formation
US3007521A (en) 1957-10-28 1961-11-07 Phillips Petroleum Co Recovery of oil by in situ combustion
US3010516A (en) * 1957-11-18 1961-11-28 Phillips Petroleum Co Burner and process for in situ combustion
US2954826A (en) 1957-12-02 1960-10-04 William E Sievers Heated well production string
GB876401A (en) * 1957-12-23 1961-08-30 Exxon Research Engineering Co Moving bed nuclear reactor for process irradiation
US3085957A (en) * 1957-12-26 1963-04-16 Richfield Oil Corp Nuclear reactor for heating a subsurface stratum
US2994376A (en) 1957-12-27 1961-08-01 Phillips Petroleum Co In situ combustion process
US3061009A (en) * 1958-01-17 1962-10-30 Svenska Skifferolje Ab Method of recovery from fossil fuel bearing strata
US3062282A (en) 1958-01-24 1962-11-06 Phillips Petroleum Co Initiation of in situ combustion in a carbonaceous stratum
US3051235A (en) 1958-02-24 1962-08-28 Jersey Prod Res Co Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation
US3004603A (en) * 1958-03-07 1961-10-17 Phillips Petroleum Co Heater
US3032102A (en) 1958-03-17 1962-05-01 Phillips Petroleum Co In situ combustion method
US3079995A (en) * 1958-04-16 1963-03-05 Richfield Oil Corp Petroleum recovery from subsurface oil-bearing formation
US3004601A (en) * 1958-05-09 1961-10-17 Albert G Bodine Method and apparatus for augmenting oil recovery from wells by refrigeration
US3048221A (en) 1958-05-12 1962-08-07 Phillips Petroleum Co Hydrocarbon recovery by thermal drive
US3026940A (en) * 1958-05-19 1962-03-27 Electronic Oil Well Heater Inc Oil well temperature indicator and control
US3010513A (en) * 1958-06-12 1961-11-28 Phillips Petroleum Co Initiation of in situ combustion in carbonaceous stratum
US2958519A (en) * 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US3044545A (en) 1958-10-02 1962-07-17 Phillips Petroleum Co In situ combustion process
US3050123A (en) 1958-10-07 1962-08-21 Cities Service Res & Dev Co Gas fired oil-well burner
US2950240A (en) * 1958-10-10 1960-08-23 Socony Mobil Oil Co Inc Selective cracking of aliphatic hydrocarbons
US2974937A (en) 1958-11-03 1961-03-14 Jersey Prod Res Co Petroleum recovery from carbonaceous formations
US2998457A (en) * 1958-11-19 1961-08-29 Ashland Oil Inc Production of phenols
US2970826A (en) 1958-11-21 1961-02-07 Texaco Inc Recovery of oil from oil shale
US3097690A (en) 1958-12-24 1963-07-16 Gulf Research Development Co Process for heating a subsurface formation
US3036632A (en) 1958-12-24 1962-05-29 Socony Mobil Oil Co Inc Recovery of hydrocarbon materials from earth formations by application of heat
US2937228A (en) * 1958-12-29 1960-05-17 Robinson Machine Works Inc Coaxial cable splice
US2969226A (en) * 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3017168A (en) 1959-01-26 1962-01-16 Phillips Petroleum Co In situ retorting of oil shale
US3110345A (en) * 1959-02-26 1963-11-12 Gulf Research Development Co Low temperature reverse combustion process
US3113619A (en) 1959-03-30 1963-12-10 Phillips Petroleum Co Line drive counterflow in situ combustion process
US3113620A (en) 1959-07-06 1963-12-10 Exxon Research Engineering Co Process for producing viscous oil
US3113623A (en) 1959-07-20 1963-12-10 Union Oil Co Apparatus for underground retorting
US3181613A (en) 1959-07-20 1965-05-04 Union Oil Co Method and apparatus for subterranean heating
US3132692A (en) 1959-07-27 1964-05-12 Phillips Petroleum Co Use of formation heat from in situ combustion
US3116792A (en) * 1959-07-27 1964-01-07 Phillips Petroleum Co In situ combustion process
US3150715A (en) 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3095031A (en) 1959-12-09 1963-06-25 Eurenius Malte Oscar Burners for use in bore holes in the ground
US3131763A (en) 1959-12-30 1964-05-05 Texaco Inc Electrical borehole heater
US3220479A (en) 1960-02-08 1965-11-30 Exxon Production Research Co Formation stabilization system
US3163745A (en) * 1960-02-29 1964-12-29 Socony Mobil Oil Co Inc Heating of an earth formation penetrated by a well borehole
US3127935A (en) 1960-04-08 1964-04-07 Marathon Oil Co In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs
US3137347A (en) 1960-05-09 1964-06-16 Phillips Petroleum Co In situ electrolinking of oil shale
US3139928A (en) 1960-05-24 1964-07-07 Shell Oil Co Thermal process for in situ decomposition of oil shale
US3106244A (en) 1960-06-20 1963-10-08 Phillips Petroleum Co Process for producing oil shale in situ by electrocarbonization
US3142336A (en) 1960-07-18 1964-07-28 Shell Oil Co Method and apparatus for injecting steam into subsurface formations
US3105545A (en) 1960-11-21 1963-10-01 Shell Oil Co Method of heating underground formations
US3164207A (en) 1961-01-17 1965-01-05 Wayne H Thessen Method for recovering oil
US3138203A (en) 1961-03-06 1964-06-23 Jersey Prod Res Co Method of underground burning
US3191679A (en) 1961-04-13 1965-06-29 Wendell S Miller Melting process for recovering bitumens from the earth
US3207220A (en) 1961-06-26 1965-09-21 Chester I Williams Electric well heater
US3114417A (en) 1961-08-14 1963-12-17 Ernest T Saftig Electric oil well heater apparatus
US3246695A (en) 1961-08-21 1966-04-19 Charles L Robinson Method for heating minerals in situ with radioactive materials
US3057404A (en) 1961-09-29 1962-10-09 Socony Mobil Oil Co Inc Method and system for producing oil tenaciously held in porous formations
US3183675A (en) 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation
US3170842A (en) 1961-11-06 1965-02-23 Phillips Petroleum Co Subcritical borehole nuclear reactor and process
US3209825A (en) 1962-02-14 1965-10-05 Continental Oil Co Low temperature in-situ combustion
US3205946A (en) 1962-03-12 1965-09-14 Shell Oil Co Consolidation by silica coalescence
US3141924A (en) 1962-03-16 1964-07-21 Amp Inc Coaxial cable shield braid terminators
US3165154A (en) 1962-03-23 1965-01-12 Phillips Petroleum Co Oil recovery by in situ combustion
US3149670A (en) 1962-03-27 1964-09-22 Smclair Res Inc In-situ heating process
US3149672A (en) 1962-05-04 1964-09-22 Jersey Prod Res Co Method and apparatus for electrical heating of oil-bearing formations
US3208531A (en) 1962-08-21 1965-09-28 Otis Eng Co Inserting tool for locating and anchoring a device in tubing
US3182721A (en) * 1962-11-02 1965-05-11 Sun Oil Co Method of petroleum production by forward in situ combustion
US3288648A (en) 1963-02-04 1966-11-29 Pan American Petroleum Corp Process for producing electrical energy from geological liquid hydrocarbon formation
US3205942A (en) 1963-02-07 1965-09-14 Socony Mobil Oil Co Inc Method for recovery of hydrocarbons by in situ heating of oil shale
US3221505A (en) 1963-02-20 1965-12-07 Gulf Research Development Co Grouting method
US3221811A (en) 1963-03-11 1965-12-07 Shell Oil Co Mobile in-situ heating of formations
US3250327A (en) 1963-04-02 1966-05-10 Socony Mobil Oil Co Inc Recovering nonflowing hydrocarbons
US3241611A (en) 1963-04-10 1966-03-22 Equity Oil Company Recovery of petroleum products from oil shale
GB959945A (en) 1963-04-18 1964-06-03 Conch Int Methane Ltd Constructing a frozen wall within the ground
US3237689A (en) 1963-04-29 1966-03-01 Clarence I Justheim Distillation of underground deposits of solid carbonaceous materials in situ
US3205944A (en) * 1963-06-14 1965-09-14 Socony Mobil Oil Co Inc Recovery of hydrocarbons from a subterranean reservoir by heating
US3233668A (en) 1963-11-15 1966-02-08 Exxon Production Research Co Recovery of shale oil
US3285335A (en) 1963-12-11 1966-11-15 Exxon Research Engineering Co In situ pyrolysis of oil shale formations
US3273640A (en) 1963-12-13 1966-09-20 Pyrochem Corp Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ
US3272261A (en) 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
US3303883A (en) 1964-01-06 1967-02-14 Mobil Oil Corp Thermal notching technique
US3275076A (en) 1964-01-13 1966-09-27 Mobil Oil Corp Recovery of asphaltic-type petroleum from a subterranean reservoir
US3342258A (en) 1964-03-06 1967-09-19 Shell Oil Co Underground oil recovery from solid oil-bearing deposits
US3294167A (en) 1964-04-13 1966-12-27 Shell Oil Co Thermal oil recovery
US3284281A (en) 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3302707A (en) 1964-09-30 1967-02-07 Mobil Oil Corp Method for improving fluid recoveries from earthen formations
US3310109A (en) 1964-11-06 1967-03-21 Phillips Petroleum Co Process and apparatus for combination upgrading of oil in situ and refining thereof
US3380913A (en) 1964-12-28 1968-04-30 Phillips Petroleum Co Refining of effluent from in situ combustion operation
US3262500A (en) * 1965-03-01 1966-07-26 Beehler Vernon D Hot water flood system for oil wells
US3332480A (en) 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US3338306A (en) 1965-03-09 1967-08-29 Mobil Oil Corp Recovery of heavy oil from oil sands
US3358756A (en) 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3299202A (en) 1965-04-02 1967-01-17 Okonite Co Oil well cable
DE1242535B (de) 1965-04-13 1967-06-22 Deutsche Erdoel Ag Verfahren zur Restausfoerderung von Erdoellagerstaetten
US3316344A (en) 1965-04-26 1967-04-25 Central Electr Generat Board Prevention of icing of electrical conductors
US3342267A (en) 1965-04-29 1967-09-19 Gerald S Cotter Turbo-generator heater for oil and gas wells and pipe lines
US3352355A (en) 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3346044A (en) 1965-09-08 1967-10-10 Mobil Oil Corp Method and structure for retorting oil shale in situ by cycling fluid flows
US3349845A (en) 1965-10-22 1967-10-31 Sinclair Oil & Gas Company Method of establishing communication between wells
US3386515A (en) * 1965-12-03 1968-06-04 Dresser Ind Well completion apparatus
US3379248A (en) 1965-12-10 1968-04-23 Mobil Oil Corp In situ combustion process utilizing waste heat
US3386508A (en) 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
US3362751A (en) 1966-02-28 1968-01-09 Tinlin William Method and system for recovering shale oil and gas
US3595082A (en) 1966-03-04 1971-07-27 Gulf Oil Corp Temperature measuring apparatus
US3410977A (en) 1966-03-28 1968-11-12 Ando Masao Method of and apparatus for heating the surface part of various construction materials
DE1615192B1 (de) 1966-04-01 1970-08-20 Chisso Corp Induktiv beheiztes Heizrohr
US3410796A (en) 1966-04-04 1968-11-12 Gas Processors Inc Process for treatment of saline waters
US3513913A (en) 1966-04-19 1970-05-26 Shell Oil Co Oil recovery from oil shales by transverse combustion
US3372754A (en) 1966-05-31 1968-03-12 Mobil Oil Corp Well assembly for heating a subterranean formation
US3399623A (en) 1966-07-14 1968-09-03 James R. Creed Apparatus for and method of producing viscid oil
US3428125A (en) * 1966-07-25 1969-02-18 Phillips Petroleum Co Hydro-electropyrolysis of oil shale in situ
US3412011A (en) 1966-09-02 1968-11-19 Phillips Petroleum Co Catalytic cracking and in situ combustion process for producing hydrocarbons
NL153755C (nl) 1966-10-20 1977-11-15 Stichting Reactor Centrum Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze.
US3465819A (en) 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
US3389975A (en) 1967-03-10 1968-06-25 Sinclair Research Inc Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide
NL6803827A (ru) 1967-03-22 1968-09-23
US3515213A (en) 1967-04-19 1970-06-02 Shell Oil Co Shale oil recovery process using heated oil-miscible fluids
US3598182A (en) * 1967-04-25 1971-08-10 Justheim Petroleum Co Method and apparatus for in situ distillation and hydrogenation of carbonaceous materials
US3474863A (en) 1967-07-28 1969-10-28 Shell Oil Co Shale oil extraction process
US3528501A (en) 1967-08-04 1970-09-15 Phillips Petroleum Co Recovery of oil from oil shale
US3480082A (en) 1967-09-25 1969-11-25 Continental Oil Co In situ retorting of oil shale using co2 as heat carrier
US3434541A (en) 1967-10-11 1969-03-25 Mobil Oil Corp In situ combustion process
NL154577B (nl) * 1967-11-15 1977-09-15 Shell Int Research Werkwijze voor het winnen van koolwaterstoffen vanuit een permeabele ondergrondse formatie.
US3485300A (en) 1967-12-20 1969-12-23 Phillips Petroleum Co Method and apparatus for defoaming crude oil down hole
US3477058A (en) 1968-02-01 1969-11-04 Gen Electric Magnesia insulated heating elements and methods of production
US3580987A (en) 1968-03-26 1971-05-25 Pirelli Electric cable
US3487753A (en) * 1968-04-10 1970-01-06 Dresser Ind Well swab cup
US3455383A (en) 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3578080A (en) 1968-06-10 1971-05-11 Shell Oil Co Method of producing shale oil from an oil shale formation
US3529682A (en) 1968-10-03 1970-09-22 Bell Telephone Labor Inc Location detection and guidance systems for burrowing device
US3537528A (en) 1968-10-14 1970-11-03 Shell Oil Co Method for producing shale oil from an exfoliated oil shale formation
US3593789A (en) 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3502372A (en) 1968-10-23 1970-03-24 Shell Oil Co Process of recovering oil and dawsonite from oil shale
US3565171A (en) 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US3554285A (en) 1968-10-24 1971-01-12 Phillips Petroleum Co Production and upgrading of heavy viscous oils
US3629551A (en) 1968-10-29 1971-12-21 Chisso Corp Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current
US3501201A (en) 1968-10-30 1970-03-17 Shell Oil Co Method of producing shale oil from a subterranean oil shale formation
US3617471A (en) * 1968-12-26 1971-11-02 Texaco Inc Hydrotorting of shale to produce shale oil
US3562401A (en) 1969-03-03 1971-02-09 Union Carbide Corp Low temperature electric transmission systems
US3614986A (en) 1969-03-03 1971-10-26 Electrothermic Co Method for injecting heated fluids into mineral bearing formations
US3542131A (en) 1969-04-01 1970-11-24 Mobil Oil Corp Method of recovering hydrocarbons from oil shale
US3547192A (en) 1969-04-04 1970-12-15 Shell Oil Co Method of metal coating and electrically heating a subterranean earth formation
US3618663A (en) 1969-05-01 1971-11-09 Phillips Petroleum Co Shale oil production
US3605890A (en) 1969-06-04 1971-09-20 Chevron Res Hydrogen production from a kerogen-depleted shale formation
US3526095A (en) 1969-07-24 1970-09-01 Ralph E Peck Liquid gas storage system
DE1939402B2 (de) 1969-08-02 1970-12-03 Felten & Guilleaume Kabelwerk Verfahren und Vorrichtung zum Wellen von Rohrwandungen
US3599714A (en) 1969-09-08 1971-08-17 Roger L Messman Method of recovering hydrocarbons by in situ combustion
US3547193A (en) 1969-10-08 1970-12-15 Electrothermic Co Method and apparatus for recovery of minerals from sub-surface formations using electricity
US3661423A (en) 1970-02-12 1972-05-09 Occidental Petroleum Corp In situ process for recovery of carbonaceous materials from subterranean deposits
US3943160A (en) 1970-03-09 1976-03-09 Shell Oil Company Heat-stable calcium-compatible waterflood surfactant
US3647358A (en) 1970-07-23 1972-03-07 Anti Pollution Systems Method of catalytically inducing oxidation of carbonaceous materials by the use of molten salts
US3657520A (en) 1970-08-20 1972-04-18 Michel A Ragault Heating cable with cold outlets
US3759574A (en) 1970-09-24 1973-09-18 Shell Oil Co Method of producing hydrocarbons from an oil shale formation
US4305463A (en) * 1979-10-31 1981-12-15 Oil Trieval Corporation Oil recovery method and apparatus
US3703929A (en) * 1970-11-06 1972-11-28 Union Oil Co Well for transporting hot fluids through a permafrost zone
US3679812A (en) * 1970-11-13 1972-07-25 Schlumberger Technology Corp Electrical suspension cable for well tools
US3680633A (en) 1970-12-28 1972-08-01 Sun Oil Co Delaware Situ combustion initiation process
US3675715A (en) 1970-12-30 1972-07-11 Forrester A Clark Processes for secondarily recovering oil
US3700280A (en) 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3770398A (en) 1971-09-17 1973-11-06 Cities Service Oil Co In situ coal gasification process
US3743854A (en) * 1971-09-29 1973-07-03 Gen Electric System and apparatus for dual transmission of petrochemical fluids and unidirectional electric current
US3812913A (en) 1971-10-18 1974-05-28 Sun Oil Co Method of formation consolidation
US3782465A (en) * 1971-11-09 1974-01-01 Electro Petroleum Electro-thermal process for promoting oil recovery
US3893918A (en) 1971-11-22 1975-07-08 Engineering Specialties Inc Method for separating material leaving a well
US3844352A (en) 1971-12-17 1974-10-29 Brown Oil Tools Method for modifying a well to provide gas lift production
US3766982A (en) * 1971-12-27 1973-10-23 Justheim Petrol Co Method for the in-situ treatment of hydrocarbonaceous materials
US3759328A (en) 1972-05-11 1973-09-18 Shell Oil Co Laterally expanding oil shale permeabilization
US3794116A (en) 1972-05-30 1974-02-26 Atomic Energy Commission Situ coal bed gasification
US3779602A (en) 1972-08-07 1973-12-18 Shell Oil Co Process for solution mining nahcolite
US3757860A (en) 1972-08-07 1973-09-11 Atlantic Richfield Co Well heating
US3761599A (en) 1972-09-05 1973-09-25 Gen Electric Means for reducing eddy current heating of a tank in electric apparatus
US3809159A (en) 1972-10-02 1974-05-07 Continental Oil Co Process for simultaneously increasing recovery and upgrading oil in a reservoir
US3804172A (en) 1972-10-11 1974-04-16 Shell Oil Co Method for the recovery of oil from oil shale
US3794113A (en) 1972-11-13 1974-02-26 Mobil Oil Corp Combination in situ combustion displacement and steam stimulation of producing wells
US3804169A (en) 1973-02-07 1974-04-16 Shell Oil Co Spreading-fluid recovery of subterranean oil
US3896260A (en) 1973-04-03 1975-07-22 Walter A Plummer Powder filled cable splice assembly
US3947683A (en) 1973-06-05 1976-03-30 Texaco Inc. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones
US3859503A (en) 1973-06-12 1975-01-07 Richard D Palone Electric heated sucker rod
US4076761A (en) 1973-08-09 1978-02-28 Mobil Oil Corporation Process for the manufacture of gasoline
US3881551A (en) 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
US3907045A (en) * 1973-11-30 1975-09-23 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3853185A (en) 1973-11-30 1974-12-10 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3882941A (en) 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US3946812A (en) 1974-01-02 1976-03-30 Exxon Production Research Company Use of materials as waterflood additives
US4037655A (en) 1974-04-19 1977-07-26 Electroflood Company Method for secondary recovery of oil
US4199025A (en) 1974-04-19 1980-04-22 Electroflood Company Method and apparatus for tertiary recovery of oil
US3922148A (en) 1974-05-16 1975-11-25 Texaco Development Corp Production of methane-rich gas
ZA753184B (en) 1974-05-31 1976-04-28 Standard Oil Co Process for recovering upgraded hydrocarbon products
US3948755A (en) 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3894769A (en) 1974-06-06 1975-07-15 Shell Oil Co Recovering oil from a subterranean carbonaceous formation
US3892270A (en) 1974-06-06 1975-07-01 Chevron Res Production of hydrocarbons from underground formations
US4006778A (en) 1974-06-21 1977-02-08 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbon from tar sands
GB1507675A (en) 1974-06-21 1978-04-19 Pyrotenax Of Ca Ltd Heating cables and manufacture thereof
US4026357A (en) 1974-06-26 1977-05-31 Texaco Exploration Canada Ltd. In situ gasification of solid hydrocarbon materials in a subterranean formation
US3935911A (en) 1974-06-28 1976-02-03 Dresser Industries, Inc. Earth boring bit with means for conducting heat from the bit's bearings
US4014575A (en) 1974-07-26 1977-03-29 Occidental Petroleum Corporation System for fuel and products of oil shale retort
US4005752A (en) 1974-07-26 1977-02-01 Occidental Petroleum Corporation Method of igniting in situ oil shale retort with fuel rich flue gas
US4029360A (en) 1974-07-26 1977-06-14 Occidental Oil Shale, Inc. Method of recovering oil and water from in situ oil shale retort flue gas
US3941421A (en) * 1974-08-13 1976-03-02 Occidental Petroleum Corporation Apparatus for obtaining uniform gas flow through an in situ oil shale retort
GB1454324A (en) 1974-08-14 1976-11-03 Iniex Recovering combustible gases from underground deposits of coal or bituminous shale
US3948319A (en) 1974-10-16 1976-04-06 Atlantic Richfield Company Method and apparatus for producing fluid by varying current flow through subterranean source formation
AR205595A1 (es) 1974-11-06 1976-05-14 Haldor Topsoe As Procedimiento para preparar gases rico en metano
US3933447A (en) 1974-11-08 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Underground gasification of coal
US4138442A (en) 1974-12-05 1979-02-06 Mobil Oil Corporation Process for the manufacture of gasoline
US3952802A (en) 1974-12-11 1976-04-27 In Situ Technology, Inc. Method and apparatus for in situ gasification of coal and the commercial products derived therefrom
US3986556A (en) 1975-01-06 1976-10-19 Haynes Charles A Hydrocarbon recovery from earth strata
US3958636A (en) 1975-01-23 1976-05-25 Atlantic Richfield Company Production of bitumen from a tar sand formation
US4042026A (en) 1975-02-08 1977-08-16 Deutsche Texaco Aktiengesellschaft Method for initiating an in-situ recovery process by the introduction of oxygen
US3972372A (en) 1975-03-10 1976-08-03 Fisher Sidney T Exraction of hydrocarbons in situ from underground hydrocarbon deposits
US4096163A (en) 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US3924680A (en) 1975-04-23 1975-12-09 In Situ Technology Inc Method of pyrolysis of coal in situ
US3973628A (en) 1975-04-30 1976-08-10 New Mexico Tech Research Foundation In situ solution mining of coal
US4016239A (en) 1975-05-22 1977-04-05 Union Oil Company Of California Recarbonation of spent oil shale
US3987851A (en) 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3986557A (en) * 1975-06-06 1976-10-19 Atlantic Richfield Company Production of bitumen from tar sands
US3950029A (en) 1975-06-12 1976-04-13 Mobil Oil Corporation In situ retorting of oil shale
US3993132A (en) 1975-06-18 1976-11-23 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbons from tar sands
US4069868A (en) 1975-07-14 1978-01-24 In Situ Technology, Inc. Methods of fluidized production of coal in situ
US4199024A (en) 1975-08-07 1980-04-22 World Energy Systems Multistage gas generator
US3954140A (en) 1975-08-13 1976-05-04 Hendrick Robert P Recovery of hydrocarbons by in situ thermal extraction
US3986349A (en) 1975-09-15 1976-10-19 Chevron Research Company Method of power generation via coal gasification and liquid hydrocarbon synthesis
US3994341A (en) * 1975-10-30 1976-11-30 Chevron Research Company Recovering viscous petroleum from thick tar sand
US4037658A (en) * 1975-10-30 1977-07-26 Chevron Research Company Method of recovering viscous petroleum from an underground formation
US3994340A (en) 1975-10-30 1976-11-30 Chevron Research Company Method of recovering viscous petroleum from tar sand
US4087130A (en) 1975-11-03 1978-05-02 Occidental Petroleum Corporation Process for the gasification of coal in situ
US4018279A (en) * 1975-11-12 1977-04-19 Reynolds Merrill J In situ coal combustion heat recovery method
US4018280A (en) 1975-12-10 1977-04-19 Mobil Oil Corporation Process for in situ retorting of oil shale
US3992474A (en) 1975-12-15 1976-11-16 Uop Inc. Motor fuel production with fluid catalytic cracking of high-boiling alkylate
US4019575A (en) 1975-12-22 1977-04-26 Chevron Research Company System for recovering viscous petroleum from thick tar sand
US3999607A (en) 1976-01-22 1976-12-28 Exxon Research And Engineering Company Recovery of hydrocarbons from coal
US4031956A (en) 1976-02-12 1977-06-28 In Situ Technology, Inc. Method of recovering energy from subsurface petroleum reservoirs
US4008762A (en) 1976-02-26 1977-02-22 Fisher Sidney T Extraction of hydrocarbons in situ from underground hydrocarbon deposits
US4010800A (en) 1976-03-08 1977-03-08 In Situ Technology, Inc. Producing thin seams of coal in situ
US4048637A (en) 1976-03-23 1977-09-13 Westinghouse Electric Corporation Radar system for detecting slowly moving targets
DE2615874B2 (de) 1976-04-10 1978-10-19 Deutsche Texaco Ag, 2000 Hamburg Anwendung eines Verfahrens zum Gewinnen von Erdöl und Bitumen aus unterirdischen Lagerstätten mittels einer Verbrennungfront bei Lagerstätten beliebigen Gehalts an intermediären Kohlenwasserstoffen im Rohöl bzw. Bitumen
US4022280A (en) * 1976-05-17 1977-05-10 Stoddard Xerxes T Thermal recovery of hydrocarbons by washing an underground sand
GB1544245A (en) 1976-05-21 1979-04-19 British Gas Corp Production of substitute natural gas
US4049053A (en) 1976-06-10 1977-09-20 Fisher Sidney T Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating
US4487257A (en) 1976-06-17 1984-12-11 Raytheon Company Apparatus and method for production of organic products from kerogen
US4193451A (en) 1976-06-17 1980-03-18 The Badger Company, Inc. Method for production of organic products from kerogen
US4067390A (en) 1976-07-06 1978-01-10 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
US4057293A (en) * 1976-07-12 1977-11-08 Garrett Donald E Process for in situ conversion of coal or the like into oil and gas
US4043393A (en) * 1976-07-29 1977-08-23 Fisher Sidney T Extraction from underground coal deposits
US4091869A (en) 1976-09-07 1978-05-30 Exxon Production Research Company In situ process for recovery of carbonaceous materials from subterranean deposits
US4065183A (en) 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4083604A (en) 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4059308A (en) 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4077471A (en) 1976-12-01 1978-03-07 Texaco Inc. Surfactant oil recovery process usable in high temperature, high salinity formations
US4064943A (en) 1976-12-06 1977-12-27 Shell Oil Co Plugging permeable earth formation with wax
US4084637A (en) * 1976-12-16 1978-04-18 Petro Canada Exploration Inc. Method of producing viscous materials from subterranean formations
US4089374A (en) 1976-12-16 1978-05-16 In Situ Technology, Inc. Producing methane from coal in situ
US4093026A (en) 1977-01-17 1978-06-06 Occidental Oil Shale, Inc. Removal of sulfur dioxide from process gas using treated oil shale and water
US4102418A (en) 1977-01-24 1978-07-25 Bakerdrill Inc. Borehole drilling apparatus
US4277416A (en) 1977-02-17 1981-07-07 Aminoil, Usa, Inc. Process for producing methanol
US4085803A (en) 1977-03-14 1978-04-25 Exxon Production Research Company Method for oil recovery using a horizontal well with indirect heating
US4151877A (en) 1977-05-13 1979-05-01 Occidental Oil Shale, Inc. Determining the locus of a processing zone in a retort through channels
US4099567A (en) 1977-05-27 1978-07-11 In Situ Technology, Inc. Generating medium BTU gas from coal in situ
US4169506A (en) 1977-07-15 1979-10-02 Standard Oil Company (Indiana) In situ retorting of oil shale and energy recovery
US4140180A (en) 1977-08-29 1979-02-20 Iit Research Institute Method for in situ heat processing of hydrocarbonaceous formations
US4144935A (en) 1977-08-29 1979-03-20 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
NL181941C (nl) 1977-09-16 1987-12-01 Ir Arnold Willem Josephus Grup Werkwijze voor het ondergronds vergassen van steenkool of bruinkool.
US4125159A (en) 1977-10-17 1978-11-14 Vann Roy Randell Method and apparatus for isolating and treating subsurface stratas
SU915451A1 (ru) 1977-10-21 1988-08-23 Vnii Ispolzovania Способ подземной газификации топлива
US4119349A (en) 1977-10-25 1978-10-10 Gulf Oil Corporation Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale
US4114688A (en) 1977-12-05 1978-09-19 In Situ Technology Inc. Minimizing environmental effects in production and use of coal
US4158467A (en) 1977-12-30 1979-06-19 Gulf Oil Corporation Process for recovering shale oil
US4196914A (en) 1978-01-13 1980-04-08 Dresser Industries, Inc. Chuck for an earth boring machine
US4148359A (en) 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
DE2812490A1 (de) 1978-03-22 1979-09-27 Texaco Ag Verfahren zur ermittlung der raeumlichen ausdehnung von untertaegigen reaktionen
US4162707A (en) 1978-04-20 1979-07-31 Mobil Oil Corporation Method of treating formation to remove ammonium ions
US4197911A (en) 1978-05-09 1980-04-15 Ramcor, Inc. Process for in situ coal gasification
US4228853A (en) 1978-06-21 1980-10-21 Harvey A Herbert Petroleum production method
US4186801A (en) 1978-12-18 1980-02-05 Gulf Research And Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4185692A (en) 1978-07-14 1980-01-29 In Situ Technology, Inc. Underground linkage of wells for production of coal in situ
US4184548A (en) 1978-07-17 1980-01-22 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort
US4257650A (en) * 1978-09-07 1981-03-24 Barber Heavy Oil Process, Inc. Method for recovering subsurface earth substances
US4183405A (en) 1978-10-02 1980-01-15 Magnie Robert L Enhanced recoveries of petroleum and hydrogen from underground reservoirs
US4446917A (en) 1978-10-04 1984-05-08 Todd John C Method and apparatus for producing viscous or waxy crude oils
US4457365A (en) 1978-12-07 1984-07-03 Raytheon Company In situ radio frequency selective heating system
US4299086A (en) 1978-12-07 1981-11-10 Gulf Research & Development Company Utilization of energy obtained by substoichiometric combustion of low heating value gases
US4265307A (en) 1978-12-20 1981-05-05 Standard Oil Company Shale oil recovery
US4194562A (en) 1978-12-21 1980-03-25 Texaco Inc. Method for preconditioning a subterranean oil-bearing formation prior to in-situ combustion
US4258955A (en) 1978-12-26 1981-03-31 Mobil Oil Corporation Process for in-situ leaching of uranium
US4274487A (en) 1979-01-11 1981-06-23 Standard Oil Company (Indiana) Indirect thermal stimulation of production wells
US4324292A (en) 1979-02-21 1982-04-13 University Of Utah Process for recovering products from oil shale
US4260192A (en) 1979-02-21 1981-04-07 Occidental Research Corporation Recovery of magnesia from oil shale
US4243511A (en) 1979-03-26 1981-01-06 Marathon Oil Company Process for suppressing carbonate decomposition in vapor phase water retorting
US4248306A (en) 1979-04-02 1981-02-03 Huisen Allan T Van Geothermal petroleum refining
US4282587A (en) 1979-05-21 1981-08-04 Daniel Silverman Method for monitoring the recovery of minerals from shallow geological formations
US4216079A (en) 1979-07-09 1980-08-05 Cities Service Company Emulsion breaking with surfactant recovery
US4234230A (en) 1979-07-11 1980-11-18 The Superior Oil Company In situ processing of mined oil shale
US4228854A (en) 1979-08-13 1980-10-21 Alberta Research Council Enhanced oil recovery using electrical means
US4701587A (en) 1979-08-31 1987-10-20 Metcal, Inc. Shielded heating element having intrinsic temperature control
US4256945A (en) 1979-08-31 1981-03-17 Iris Associates Alternating current electrically resistive heating element having intrinsic temperature control
US4327805A (en) 1979-09-18 1982-05-04 Carmel Energy, Inc. Method for producing viscous hydrocarbons
US4549396A (en) 1979-10-01 1985-10-29 Mobil Oil Corporation Conversion of coal to electricity
US4370518A (en) 1979-12-03 1983-01-25 Hughes Tool Company Splice for lead-coated and insulated conductors
US4250230A (en) 1979-12-10 1981-02-10 In Situ Technology, Inc. Generating electricity from coal in situ
US4250962A (en) 1979-12-14 1981-02-17 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4398151A (en) 1980-01-25 1983-08-09 Shell Oil Company Method for correcting an electrical log for the presence of shale in a formation
US4359687A (en) 1980-01-25 1982-11-16 Shell Oil Company Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain
US4285547A (en) 1980-02-01 1981-08-25 Multi Mineral Corporation Integrated in situ shale oil and mineral recovery process
USRE30738E (en) 1980-02-06 1981-09-08 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4303126A (en) 1980-02-27 1981-12-01 Chevron Research Company Arrangement of wells for producing subsurface viscous petroleum
US4477376A (en) 1980-03-10 1984-10-16 Gold Marvin H Castable mixture for insulating spliced high voltage cable
US4445574A (en) 1980-03-24 1984-05-01 Geo Vann, Inc. Continuous borehole formed horizontally through a hydrocarbon producing formation
US4417782A (en) 1980-03-31 1983-11-29 Raychem Corporation Fiber optic temperature sensing
JPS56146588A (en) * 1980-04-14 1981-11-14 Mitsubishi Electric Corp Electric heating electrode device for hydrocarbon based underground resources
CA1168283A (en) 1980-04-14 1984-05-29 Hiroshi Teratani Electrode device for electrically heating underground deposits of hydrocarbons
US4273188A (en) 1980-04-30 1981-06-16 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4317485A (en) * 1980-05-23 1982-03-02 Baker International Corporation Pump catcher apparatus
US4306621A (en) 1980-05-23 1981-12-22 Boyd R Michael Method for in situ coal gasification operations
US4409090A (en) 1980-06-02 1983-10-11 University Of Utah Process for recovering products from tar sand
JPS6015109B2 (ja) * 1980-06-03 1985-04-17 三菱電機株式会社 炭化水素系地下資源の電気加熱用電極装置
CA1165361A (en) 1980-06-03 1984-04-10 Toshiyuki Kobayashi Electrode unit for electrically heating underground hydrocarbon deposits
US4381641A (en) 1980-06-23 1983-05-03 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4401099A (en) 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4299285A (en) 1980-07-21 1981-11-10 Gulf Research & Development Company Underground gasification of bituminous coal
DE3030110C2 (de) 1980-08-08 1983-04-21 Vsesojuznyj neftegazovyj naučno-issledovatel'skij institut, Moskva Verfahren zur Gewinnung von Erdöl durch Grubenbaue und durch Wärmezufuhr
US4396062A (en) 1980-10-06 1983-08-02 University Of Utah Research Foundation Apparatus and method for time-domain tracking of high-speed chemical reactions
US4353418A (en) 1980-10-20 1982-10-12 Standard Oil Company (Indiana) In situ retorting of oil shale
US4384613A (en) 1980-10-24 1983-05-24 Terra Tek, Inc. Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US4366864A (en) 1980-11-24 1983-01-04 Exxon Research And Engineering Co. Method for recovery of hydrocarbons from oil-bearing limestone or dolomite
US4401163A (en) 1980-12-29 1983-08-30 The Standard Oil Company Modified in situ retorting of oil shale
JPS57116891A (en) * 1980-12-30 1982-07-21 Kobe Steel Ltd Method of and apparatus for generating steam on shaft bottom
US4385661A (en) 1981-01-07 1983-05-31 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator with improved preheating, combustion and protection features
US4448251A (en) 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
JPS57116891U (ru) 1981-01-12 1982-07-20
US4423311A (en) 1981-01-19 1983-12-27 Varney Sr Paul Electric heating apparatus for de-icing pipes
US4333764A (en) 1981-01-21 1982-06-08 Shell Oil Company Nitrogen-gas-stabilized cement and a process for making and using it
US4366668A (en) 1981-02-25 1983-01-04 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4382469A (en) 1981-03-10 1983-05-10 Electro-Petroleum, Inc. Method of in situ gasification
US4363361A (en) 1981-03-19 1982-12-14 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4390067A (en) 1981-04-06 1983-06-28 Exxon Production Research Co. Method of treating reservoirs containing very viscous crude oil or bitumen
US4399866A (en) 1981-04-10 1983-08-23 Atlantic Richfield Company Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit
US4444255A (en) 1981-04-20 1984-04-24 Lloyd Geoffrey Apparatus and process for the recovery of oil
US4380930A (en) 1981-05-01 1983-04-26 Mobil Oil Corporation System for transmitting ultrasonic energy through core samples
US4429745A (en) 1981-05-08 1984-02-07 Mobil Oil Corporation Oil recovery method
US4378048A (en) 1981-05-08 1983-03-29 Gulf Research & Development Company Substoichiometric combustion of low heating value gases using different platinum catalysts
US4384614A (en) 1981-05-11 1983-05-24 Justheim Pertroleum Company Method of retorting oil shale by velocity flow of super-heated air
US4403110A (en) 1981-05-15 1983-09-06 Walter Kidde And Company, Inc. Electrical cable splice
US4437519A (en) 1981-06-03 1984-03-20 Occidental Oil Shale, Inc. Reduction of shale oil pour point
US4368452A (en) 1981-06-22 1983-01-11 Kerr Jr Robert L Thermal protection of aluminum conductor junctions
US4428700A (en) 1981-08-03 1984-01-31 E. R. Johnson Associates, Inc. Method for disposing of waste materials
US4456065A (en) 1981-08-20 1984-06-26 Elektra Energie A.G. Heavy oil recovering
US4344483A (en) 1981-09-08 1982-08-17 Fisher Charles B Multiple-site underground magnetic heating of hydrocarbons
US4452491A (en) 1981-09-25 1984-06-05 Intercontinental Econergy Associates, Inc. Recovery of hydrocarbons from deep underground deposits of tar sands
US4425967A (en) 1981-10-07 1984-01-17 Standard Oil Company (Indiana) Ignition procedure and process for in situ retorting of oil shale
US4401162A (en) 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4605680A (en) 1981-10-13 1986-08-12 Chevron Research Company Conversion of synthesis gas to diesel fuel and gasoline
US4410042A (en) 1981-11-02 1983-10-18 Mobil Oil Corporation In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant
US4549073A (en) 1981-11-06 1985-10-22 Oximetrix, Inc. Current controller for resistive heating element
US4444258A (en) 1981-11-10 1984-04-24 Nicholas Kalmar In situ recovery of oil from oil shale
US4418752A (en) 1982-01-07 1983-12-06 Conoco Inc. Thermal oil recovery with solvent recirculation
FR2519688A1 (fr) 1982-01-08 1983-07-18 Elf Aquitaine Systeme d'etancheite pour puits de forage dans lequel circule un fluide chaud
US4397732A (en) 1982-02-11 1983-08-09 International Coal Refining Company Process for coal liquefaction employing selective coal feed
GB2117030B (en) 1982-03-17 1985-09-11 Cameron Iron Works Inc Method and apparatus for remote installations of dual tubing strings in a subsea well
US4530401A (en) 1982-04-05 1985-07-23 Mobil Oil Corporation Method for maximum in-situ visbreaking of heavy oil
CA1196594A (en) 1982-04-08 1985-11-12 Guy Savard Recovery of oil from tar sands
US4537252A (en) 1982-04-23 1985-08-27 Standard Oil Company (Indiana) Method of underground conversion of coal
US4491179A (en) 1982-04-26 1985-01-01 Pirson Sylvain J Method for oil recovery by in situ exfoliation drive
US4455215A (en) 1982-04-29 1984-06-19 Jarrott David M Process for the geoconversion of coal into oil
US4412585A (en) 1982-05-03 1983-11-01 Cities Service Company Electrothermal process for recovering hydrocarbons
US4415034A (en) 1982-05-03 1983-11-15 Cities Service Company Electrode well completion
US4524826A (en) 1982-06-14 1985-06-25 Texaco Inc. Method of heating an oil shale formation
US4457374A (en) 1982-06-29 1984-07-03 Standard Oil Company Transient response process for detecting in situ retorting conditions
US4442896A (en) 1982-07-21 1984-04-17 Reale Lucio V Treatment of underground beds
US4407973A (en) 1982-07-28 1983-10-04 The M. W. Kellogg Company Methanol from coal and natural gas
US4449594A (en) 1982-07-30 1984-05-22 Allied Corporation Method for obtaining pressurized core samples from underpressurized reservoirs
US4479541A (en) 1982-08-23 1984-10-30 Wang Fun Den Method and apparatus for recovery of oil, gas and mineral deposits by panel opening
US4460044A (en) 1982-08-31 1984-07-17 Chevron Research Company Advancing heated annulus steam drive
US4544478A (en) 1982-09-03 1985-10-01 Chevron Research Company Process for pyrolyzing hydrocarbonaceous solids to recover volatile hydrocarbons
US4463988A (en) 1982-09-07 1984-08-07 Cities Service Co. Horizontal heated plane process
US4458767A (en) 1982-09-28 1984-07-10 Mobil Oil Corporation Method for directionally drilling a first well to intersect a second well
US4485868A (en) 1982-09-29 1984-12-04 Iit Research Institute Method for recovery of viscous hydrocarbons by electromagnetic heating in situ
US4695713A (en) 1982-09-30 1987-09-22 Metcal, Inc. Autoregulating, electrically shielded heater
US4927857A (en) 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
CA1214815A (en) 1982-09-30 1986-12-02 John F. Krumme Autoregulating electrically shielded heater
US4498531A (en) 1982-10-01 1985-02-12 Rockwell International Corporation Emission controller for indirect fired downhole steam generators
US4485869A (en) 1982-10-22 1984-12-04 Iit Research Institute Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ
ATE21340T1 (de) 1982-11-22 1986-08-15 Shell Int Research Verfahren zur herstellung eines fischer-tropsch- katalysators, der auf diese weise hergestellte katalysator und seine verwendung zur herstellung von kohlenwasserstoffen.
US4474238A (en) 1982-11-30 1984-10-02 Phillips Petroleum Company Method and apparatus for treatment of subsurface formations
US4498535A (en) 1982-11-30 1985-02-12 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line
US4752673A (en) 1982-12-01 1988-06-21 Metcal, Inc. Autoregulating heater
US4520229A (en) 1983-01-03 1985-05-28 Amerace Corporation Splice connector housing and assembly of cables employing same
US4501326A (en) 1983-01-17 1985-02-26 Gulf Canada Limited In-situ recovery of viscous hydrocarbonaceous crude oil
US4609041A (en) 1983-02-10 1986-09-02 Magda Richard M Well hot oil system
US4886118A (en) 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4640352A (en) 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4458757A (en) 1983-04-25 1984-07-10 Exxon Research And Engineering Co. In situ shale-oil recovery process
US4524827A (en) 1983-04-29 1985-06-25 Iit Research Institute Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations
US4545435A (en) 1983-04-29 1985-10-08 Iit Research Institute Conduction heating of hydrocarbonaceous formations
US4518548A (en) 1983-05-02 1985-05-21 Sulcon, Inc. Method of overlaying sulphur concrete on horizontal and vertical surfaces
US4470459A (en) 1983-05-09 1984-09-11 Halliburton Company Apparatus and method for controlled temperature heating of volumes of hydrocarbonaceous materials in earth formations
US4794226A (en) 1983-05-26 1988-12-27 Metcal, Inc. Self-regulating porous heater device
EP0130671A3 (en) 1983-05-26 1986-12-17 Metcal Inc. Multiple temperature autoregulating heater
US5073625A (en) 1983-05-26 1991-12-17 Metcal, Inc. Self-regulating porous heating device
DE3319732A1 (de) 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim Mittellastkraftwerk mit integrierter kohlevergasungsanlage zur erzeugung von strom und methanol
US4583046A (en) 1983-06-20 1986-04-15 Shell Oil Company Apparatus for focused electrode induced polarization logging
US4658215A (en) 1983-06-20 1987-04-14 Shell Oil Company Method for induced polarization logging
US4717814A (en) 1983-06-27 1988-01-05 Metcal, Inc. Slotted autoregulating heater
US4439307A (en) 1983-07-01 1984-03-27 Dravo Corporation Heating process gas for indirect shale oil retorting through the combustion of residual carbon in oil depleted shale
US5209987A (en) 1983-07-08 1993-05-11 Raychem Limited Wire and cable
US4985313A (en) 1985-01-14 1991-01-15 Raychem Limited Wire and cable
US4598392A (en) 1983-07-26 1986-07-01 Mobil Oil Corporation Vibratory signal sweep seismic prospecting method and apparatus
US4501445A (en) 1983-08-01 1985-02-26 Cities Service Company Method of in-situ hydrogenation of carbonaceous material
US4538682A (en) 1983-09-08 1985-09-03 Mcmanus James W Method and apparatus for removing oil well paraffin
US4573530A (en) 1983-11-07 1986-03-04 Mobil Oil Corporation In-situ gasification of tar sands utilizing a combustible gas
US4698149A (en) 1983-11-07 1987-10-06 Mobil Oil Corporation Enhanced recovery of hydrocarbonaceous fluids oil shale
US4489782A (en) * 1983-12-12 1984-12-25 Atlantic Richfield Company Viscous oil production using electrical current heating and lateral drain holes
US4598772A (en) 1983-12-28 1986-07-08 Mobil Oil Corporation Method for operating a production well in an oxygen driven in-situ combustion oil recovery process
US4540882A (en) 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US4571491A (en) 1983-12-29 1986-02-18 Shell Oil Company Method of imaging the atomic number of a sample
US4583242A (en) 1983-12-29 1986-04-15 Shell Oil Company Apparatus for positioning a sample in a computerized axial tomographic scanner
US4542648A (en) 1983-12-29 1985-09-24 Shell Oil Company Method of correlating a core sample with its original position in a borehole
US4635197A (en) 1983-12-29 1987-01-06 Shell Oil Company High resolution tomographic imaging method
US4613754A (en) 1983-12-29 1986-09-23 Shell Oil Company Tomographic calibration apparatus
US4662439A (en) 1984-01-20 1987-05-05 Amoco Corporation Method of underground conversion of coal
US4623401A (en) 1984-03-06 1986-11-18 Metcal, Inc. Heat treatment with an autoregulating heater
US4644283A (en) 1984-03-19 1987-02-17 Shell Oil Company In-situ method for determining pore size distribution, capillary pressure and permeability
US4637464A (en) 1984-03-22 1987-01-20 Amoco Corporation In situ retorting of oil shale with pulsed water purge
US4552214A (en) 1984-03-22 1985-11-12 Standard Oil Company (Indiana) Pulsed in situ retorting in an array of oil shale retorts
US4570715A (en) 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4577690A (en) 1984-04-18 1986-03-25 Mobil Oil Corporation Method of using seismic data to monitor firefloods
US4592423A (en) 1984-05-14 1986-06-03 Texaco Inc. Hydrocarbon stratum retorting means and method
US4597441A (en) 1984-05-25 1986-07-01 World Energy Systems, Inc. Recovery of oil by in situ hydrogenation
US4620592A (en) * 1984-06-11 1986-11-04 Atlantic Richfield Company Progressive sequence for viscous oil recovery
US4663711A (en) 1984-06-22 1987-05-05 Shell Oil Company Method of analyzing fluid saturation using computerized axial tomography
US4577503A (en) 1984-09-04 1986-03-25 International Business Machines Corporation Method and device for detecting a specific acoustic spectral feature
US4577691A (en) 1984-09-10 1986-03-25 Texaco Inc. Method and apparatus for producing viscous hydrocarbons from a subterranean formation
US4576231A (en) 1984-09-13 1986-03-18 Texaco Inc. Method and apparatus for combating encroachment by in situ treated formations
US4597444A (en) 1984-09-21 1986-07-01 Atlantic Richfield Company Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US4691771A (en) 1984-09-25 1987-09-08 Worldenergy Systems, Inc. Recovery of oil by in-situ combustion followed by in-situ hydrogenation
JPS6177795A (ja) * 1984-09-26 1986-04-21 株式会社東芝 原子炉用制御棒
US4616705A (en) 1984-10-05 1986-10-14 Shell Oil Company Mini-well temperature profiling process
JPS61102990A (ja) * 1984-10-24 1986-05-21 近畿イシコ株式会社 基礎工事用機械の昇降装置
US4598770A (en) 1984-10-25 1986-07-08 Mobil Oil Corporation Thermal recovery method for viscous oil
US4572299A (en) 1984-10-30 1986-02-25 Shell Oil Company Heater cable installation
JPS61118692A (ja) * 1984-11-13 1986-06-05 ウエスチングハウス エレクトリック コ−ポレ−ション 加圧水型原子炉発電システムの運転方法
US4669542A (en) 1984-11-21 1987-06-02 Mobil Oil Corporation Simultaneous recovery of crude from multiple zones in a reservoir
US4634187A (en) 1984-11-21 1987-01-06 Isl Ventures, Inc. Method of in-situ leaching of ores
US4585066A (en) 1984-11-30 1986-04-29 Shell Oil Company Well treating process for installing a cable bundle containing strands of changing diameter
US4704514A (en) 1985-01-11 1987-11-03 Egmond Cor F Van Heating rate variant elongated electrical resistance heater
US4614392A (en) 1985-01-15 1986-09-30 Moore Boyd B Well bore electric pump power cable connector for multiple individual, insulated conductors of a pump power cable
US4645906A (en) 1985-03-04 1987-02-24 Thermon Manufacturing Company Reduced resistance skin effect heat generating system
US4643256A (en) 1985-03-18 1987-02-17 Shell Oil Company Steam-foaming surfactant mixtures which are tolerant of divalent ions
US4785163A (en) 1985-03-26 1988-11-15 Raychem Corporation Method for monitoring a heater
US4698583A (en) 1985-03-26 1987-10-06 Raychem Corporation Method of monitoring a heater for faults
US4670634A (en) 1985-04-05 1987-06-02 Iit Research Institute In situ decontamination of spills and landfills by radio frequency heating
FI861646A (fi) 1985-04-19 1986-10-20 Raychem Gmbh Vaermningsanordning.
US4601333A (en) * 1985-04-29 1986-07-22 Hughes Tool Company Thermal slide joint
JPS61282594A (ja) 1985-06-05 1986-12-12 日本海洋掘削株式会社 ストリングスの測長方法
US4671102A (en) 1985-06-18 1987-06-09 Shell Oil Company Method and apparatus for determining distribution of fluids
US4626665A (en) 1985-06-24 1986-12-02 Shell Oil Company Metal oversheathed electrical resistance heater
US4605489A (en) 1985-06-27 1986-08-12 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4623444A (en) 1985-06-27 1986-11-18 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4662438A (en) 1985-07-19 1987-05-05 Uentech Corporation Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole
US4719423A (en) 1985-08-13 1988-01-12 Shell Oil Company NMR imaging of materials for transport properties
US4728892A (en) 1985-08-13 1988-03-01 Shell Oil Company NMR imaging of materials
NO853394L (no) * 1985-08-29 1987-03-02 You Yi Tu Anordning for aa sperre et borehull ved boring etter oljekilder e.l.
US4778586A (en) 1985-08-30 1988-10-18 Resource Technology Associates Viscosity reduction processing at elevated pressure
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
CA1253555A (en) 1985-11-21 1989-05-02 Cornelis F.H. Van Egmond Heating rate variant elongated electrical resistance heater
US4662443A (en) 1985-12-05 1987-05-05 Amoco Corporation Combination air-blown and oxygen-blown underground coal gasification process
US4849611A (en) 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
US4730162A (en) 1985-12-31 1988-03-08 Shell Oil Company Time-domain induced polarization logging method and apparatus with gated amplification level
US4706751A (en) 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US4694907A (en) 1986-02-21 1987-09-22 Carbotek, Inc. Thermally-enhanced oil recovery method and apparatus
US4640353A (en) 1986-03-21 1987-02-03 Atlantic Richfield Company Electrode well and method of completion
US4734115A (en) 1986-03-24 1988-03-29 Air Products And Chemicals, Inc. Low pressure process for C3+ liquids recovery from process product gas
US4793421A (en) * 1986-04-08 1988-12-27 Becor Western Inc. Programmed automatic drill control
US4651825A (en) 1986-05-09 1987-03-24 Atlantic Richfield Company Enhanced well production
GB2190162A (en) * 1986-05-09 1987-11-11 Kawasaki Thermal Systems Inc Thermally insulated telescopic pipe coupling
US4814587A (en) 1986-06-10 1989-03-21 Metcal, Inc. High power self-regulating heater
US4682652A (en) 1986-06-30 1987-07-28 Texaco Inc. Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells
US4893504A (en) 1986-07-02 1990-01-16 Shell Oil Company Method for determining capillary pressure and relative permeability by imaging
US4769602A (en) 1986-07-02 1988-09-06 Shell Oil Company Determining multiphase saturations by NMR imaging of multiple nuclides
US4716960A (en) 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
US4818370A (en) 1986-07-23 1989-04-04 Cities Service Oil And Gas Corporation Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions
US4772634A (en) 1986-07-31 1988-09-20 Energy Research Corporation Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer
US4744245A (en) 1986-08-12 1988-05-17 Atlantic Richfield Company Acoustic measurements in rock formations for determining fracture orientation
US4696345A (en) 1986-08-21 1987-09-29 Chevron Research Company Hasdrive with multiple offset producers
US4769606A (en) 1986-09-30 1988-09-06 Shell Oil Company Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations
US5043668A (en) 1987-08-26 1991-08-27 Paramagnetic Logging Inc. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing
US4983319A (en) 1986-11-24 1991-01-08 Canadian Occidental Petroleum Ltd. Preparation of low-viscosity improved stable crude oil transport emulsions
US5316664A (en) 1986-11-24 1994-05-31 Canadian Occidental Petroleum, Ltd. Process for recovery of hydrocarbons and rejection of sand
US5340467A (en) 1986-11-24 1994-08-23 Canadian Occidental Petroleum Ltd. Process for recovery of hydrocarbons and rejection of sand
CA1288043C (en) 1986-12-15 1991-08-27 Peter Van Meurs Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil
US4766958A (en) 1987-01-12 1988-08-30 Mobil Oil Corporation Method of recovering viscous oil from reservoirs with multiple horizontal zones
US4756367A (en) 1987-04-28 1988-07-12 Amoco Corporation Method for producing natural gas from a coal seam
US4817711A (en) 1987-05-27 1989-04-04 Jeambey Calhoun G System for recovery of petroleum from petroleum impregnated media
US4818371A (en) 1987-06-05 1989-04-04 Resource Technology Associates Viscosity reduction by direct oxidative heating
US4787452A (en) 1987-06-08 1988-11-29 Mobil Oil Corporation Disposal of produced formation fines during oil recovery
US4821798A (en) 1987-06-09 1989-04-18 Ors Development Corporation Heating system for rathole oil well
US4793409A (en) 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US4856341A (en) 1987-06-25 1989-08-15 Shell Oil Company Apparatus for analysis of failure of material
US4827761A (en) 1987-06-25 1989-05-09 Shell Oil Company Sample holder
US4884455A (en) 1987-06-25 1989-12-05 Shell Oil Company Method for analysis of failure of material employing imaging
US4776638A (en) 1987-07-13 1988-10-11 University Of Kentucky Research Foundation Method and apparatus for conversion of coal in situ
US4848924A (en) 1987-08-19 1989-07-18 The Babcock & Wilcox Company Acoustic pyrometer
US4828031A (en) 1987-10-13 1989-05-09 Chevron Research Company In situ chemical stimulation of diatomite formations
US4762425A (en) 1987-10-15 1988-08-09 Parthasarathy Shakkottai System for temperature profile measurement in large furnances and kilns and method therefor
US4815791A (en) 1987-10-22 1989-03-28 The United States Of America As Represented By The Secretary Of The Interior Bedded mineral extraction process
US5306640A (en) 1987-10-28 1994-04-26 Shell Oil Company Method for determining preselected properties of a crude oil
US4987368A (en) 1987-11-05 1991-01-22 Shell Oil Company Nuclear magnetism logging tool using high-temperature superconducting squid detectors
US4842448A (en) 1987-11-12 1989-06-27 Drexel University Method of removing contaminants from contaminated soil in situ
US4808925A (en) 1987-11-19 1989-02-28 Halliburton Company Three magnet casing collar locator
US4823890A (en) 1988-02-23 1989-04-25 Longyear Company Reverse circulation bit apparatus
US4883582A (en) 1988-03-07 1989-11-28 Mccants Malcolm T Vis-breaking heavy crude oils for pumpability
US4866983A (en) 1988-04-14 1989-09-19 Shell Oil Company Analytical methods and apparatus for measuring the oil content of sponge core
US4885080A (en) 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US5046560A (en) 1988-06-10 1991-09-10 Exxon Production Research Company Oil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents
US4884635A (en) * 1988-08-24 1989-12-05 Texaco Canada Resources Enhanced oil recovery with a mixture of water and aromatic hydrocarbons
US4842070A (en) 1988-09-15 1989-06-27 Amoco Corporation Procedure for improving reservoir sweep efficiency using paraffinic or asphaltic hydrocarbons
US4928765A (en) 1988-09-27 1990-05-29 Ramex Syn-Fuels International Method and apparatus for shale gas recovery
GB8824111D0 (en) 1988-10-14 1988-11-23 Nashcliffe Ltd Shaft excavation system
US4856587A (en) 1988-10-27 1989-08-15 Nielson Jay P Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US5064006A (en) 1988-10-28 1991-11-12 Magrange, Inc Downhole combination tool
US4848460A (en) 1988-11-04 1989-07-18 Western Research Institute Contained recovery of oily waste
US5065501A (en) 1988-11-29 1991-11-19 Amp Incorporated Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus
US4859200A (en) 1988-12-05 1989-08-22 Baker Hughes Incorporated Downhole electrical connector for submersible pump
US4974425A (en) 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4860544A (en) 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4933640A (en) 1988-12-30 1990-06-12 Vector Magnetics Apparatus for locating an elongated conductive body by electromagnetic measurement while drilling
US4940095A (en) 1989-01-27 1990-07-10 Dowell Schlumberger Incorporated Deployment/retrieval method and apparatus for well tools used with coiled tubing
US5103920A (en) 1989-03-01 1992-04-14 Patton Consulting Inc. Surveying system and method for locating target subterranean bodies
AU5348490A (en) * 1989-03-13 1990-10-09 University Of Utah, The Method and apparatus for power generation
CA2015318C (en) 1990-04-24 1994-02-08 Jack E. Bridges Power sources for downhole electrical heating
US4895206A (en) 1989-03-16 1990-01-23 Price Ernest H Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes
US4913065A (en) 1989-03-27 1990-04-03 Indugas, Inc. In situ thermal waste disposal system
US4947672A (en) 1989-04-03 1990-08-14 Burndy Corporation Hydraulic compression tool having an improved relief and release valve
NL8901138A (nl) 1989-05-03 1990-12-03 Nkf Kabel Bv Insteekverbinding voor hoogspanningskunststofkabels.
US4959193A (en) * 1989-05-11 1990-09-25 General Electric Company Indirect passive cooling system for liquid metal cooled nuclear reactors
DE3918265A1 (de) 1989-06-05 1991-01-03 Henkel Kgaa Verfahren zur herstellung von tensidgemischen auf ethersulfonatbasis und ihre verwendung
US5059303A (en) 1989-06-16 1991-10-22 Amoco Corporation Oil stabilization
US5041210A (en) 1989-06-30 1991-08-20 Marathon Oil Company Oil shale retorting with steam and produced gas
DE3922612C2 (de) 1989-07-10 1998-07-02 Krupp Koppers Gmbh Verfahren zur Erzeugung von Methanol-Synthesegas
US4982786A (en) 1989-07-14 1991-01-08 Mobil Oil Corporation Use of CO2 /steam to enhance floods in horizontal wellbores
US5050386A (en) 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth
US5097903A (en) 1989-09-22 1992-03-24 Jack C. Sloan Method for recovering intractable petroleum from subterranean formations
US5305239A (en) 1989-10-04 1994-04-19 The Texas A&M University System Ultrasonic non-destructive evaluation of thin specimens
US4926941A (en) 1989-10-10 1990-05-22 Shell Oil Company Method of producing tar sand deposits containing conductive layers
US4984594A (en) 1989-10-27 1991-01-15 Shell Oil Company Vacuum method for removing soil contamination utilizing surface electrical heating
US5656239A (en) 1989-10-27 1997-08-12 Shell Oil Company Method for recovering contaminants from soil utilizing electrical heating
US4986375A (en) 1989-12-04 1991-01-22 Maher Thomas P Device for facilitating drill bit retrieval
US5336851A (en) * 1989-12-27 1994-08-09 Sumitomo Electric Industries, Ltd. Insulated electrical conductor wire having a high operating temperature
US5082055A (en) 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5020596A (en) * 1990-01-24 1991-06-04 Indugas, Inc. Enhanced oil recovery system with a radiant tube heater
US5011329A (en) 1990-02-05 1991-04-30 Hrubetz Exploration Company In situ soil decontamination method and apparatus
CA2009782A1 (en) 1990-02-12 1991-08-12 Anoosh I. Kiamanesh In-situ tuned microwave oil extraction process
TW215446B (ru) * 1990-02-23 1993-11-01 Furukawa Electric Co Ltd
US5152341A (en) 1990-03-09 1992-10-06 Raymond S. Kasevich Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes
US5027896A (en) 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
GB9007147D0 (en) 1990-03-30 1990-05-30 Framo Dev Ltd Thermal mineral extraction system
CA2015460C (en) 1990-04-26 1993-12-14 Kenneth Edwin Kisman Process for confining steam injected into a heavy oil reservoir
US5126037A (en) 1990-05-04 1992-06-30 Union Oil Company Of California Geopreater heating method and apparatus
US5032042A (en) 1990-06-26 1991-07-16 New Jersey Institute Of Technology Method and apparatus for eliminating non-naturally occurring subsurface, liquid toxic contaminants from soil
US5201219A (en) 1990-06-29 1993-04-13 Amoco Corporation Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core
US5054551A (en) 1990-08-03 1991-10-08 Chevron Research And Technology Company In-situ heated annulus refining process
US5109928A (en) 1990-08-17 1992-05-05 Mccants Malcolm T Method for production of hydrocarbon diluent from heavy crude oil
US5042579A (en) 1990-08-23 1991-08-27 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers
US5060726A (en) 1990-08-23 1991-10-29 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication
US5046559A (en) 1990-08-23 1991-09-10 Shell Oil Company Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers
BR9004240A (pt) 1990-08-28 1992-03-24 Petroleo Brasileiro Sa Processo de aquecimento eletrico de tubulacoes
US5085276A (en) 1990-08-29 1992-02-04 Chevron Research And Technology Company Production of oil from low permeability formations by sequential steam fracturing
US5245161A (en) * 1990-08-31 1993-09-14 Tokyo Kogyo Boyeki Shokai, Ltd. Electric heater
US5066852A (en) 1990-09-17 1991-11-19 Teledyne Ind. Inc. Thermoplastic end seal for electric heating elements
US5207273A (en) 1990-09-17 1993-05-04 Production Technologies International Inc. Method and apparatus for pumping wells
US5182427A (en) * 1990-09-20 1993-01-26 Metcal, Inc. Self-regulating heater utilizing ferrite-type body
JPH04272680A (ja) 1990-09-20 1992-09-29 Thermon Mfg Co スイッチ制御形ゾーン式加熱ケーブル及びその組み立て方法
US5517593A (en) 1990-10-01 1996-05-14 John Nenniger Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint
US5400430A (en) 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
JPH0827387B2 (ja) * 1990-10-05 1996-03-21 動力炉・核燃料開発事業団 耐熱高速中性子遮蔽材
US5408047A (en) 1990-10-25 1995-04-18 Minnesota Mining And Manufacturing Company Transition joint for oil-filled cables
US5070533A (en) 1990-11-07 1991-12-03 Uentech Corporation Robust electrical heating systems for mineral wells
FR2669077B2 (fr) 1990-11-09 1995-02-03 Institut Francais Petrole Methode et dispositif pour effectuer des interventions dans des puits ou regnent des temperatures elevees.
US5060287A (en) 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5065818A (en) 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5217076A (en) 1990-12-04 1993-06-08 Masek John A Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess)
US5190405A (en) 1990-12-14 1993-03-02 Shell Oil Company Vacuum method for removing soil contaminants utilizing thermal conduction heating
SU1836876A3 (ru) 1990-12-29 1994-12-30 Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики Способ отработки угольных пластов и комплекс оборудования для его осуществления
US5667008A (en) 1991-02-06 1997-09-16 Quick Connectors, Inc. Seal electrical conductor arrangement for use with a well bore in hazardous areas
US5289882A (en) 1991-02-06 1994-03-01 Boyd B. Moore Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas
US5103909A (en) 1991-02-19 1992-04-14 Shell Oil Company Profile control in enhanced oil recovery
US5261490A (en) 1991-03-18 1993-11-16 Nkk Corporation Method for dumping and disposing of carbon dioxide gas and apparatus therefor
US5204270A (en) 1991-04-29 1993-04-20 Lacount Robert B Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation
US5246273A (en) 1991-05-13 1993-09-21 Rosar Edward C Method and apparatus for solution mining
CA2043092A1 (en) 1991-05-23 1992-11-24 Bruce C. W. Mcgee Electrical heating of oil reservoir
US5117912A (en) 1991-05-24 1992-06-02 Marathon Oil Company Method of positioning tubing within a horizontal well
AU659170B2 (en) 1991-06-17 1995-05-11 Electric Power Research Institute, Inc. Power plant utilizing compressed air energy storage and saturation
DK0519573T3 (da) 1991-06-21 1995-07-03 Shell Int Research Hydrogenerings-katalysator og fremgangsmåde
IT1248535B (it) 1991-06-24 1995-01-19 Cise Spa Sistema per misurare il tempo di trasferimento di un'onda sonora
US5133406A (en) 1991-07-05 1992-07-28 Amoco Corporation Generating oxygen-depleted air useful for increasing methane production
US5189283A (en) 1991-08-28 1993-02-23 Shell Oil Company Current to power crossover heater control
US5168927A (en) 1991-09-10 1992-12-08 Shell Oil Company Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation
US5193618A (en) 1991-09-12 1993-03-16 Chevron Research And Technology Company Multivalent ion tolerant steam-foaming surfactant composition for use in enhanced oil recovery operations
US5347070A (en) 1991-11-13 1994-09-13 Battelle Pacific Northwest Labs Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material
US5349859A (en) 1991-11-15 1994-09-27 Scientific Engineering Instruments, Inc. Method and apparatus for measuring acoustic wave velocity using impulse response
EP0547961B1 (fr) 1991-12-16 1996-03-27 Institut Français du Pétrole Système de surveillance active ou passive d'un gisement souterrain installé a poste fixe
CA2058255C (en) 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
US5246071A (en) 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles
US5420402A (en) 1992-02-05 1995-05-30 Iit Research Institute Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles
US5211230A (en) 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
FI92441C (fi) 1992-04-01 1994-11-10 Vaisala Oy Sähköinen impedanssianturi fysikaalisten suureiden, etenkin lämpötilan mittaamiseksi ja menetelmä kyseisen anturin valmistamiseksi
GB9207174D0 (en) 1992-04-01 1992-05-13 Raychem Sa Nv Method of forming an electrical connection
US5255740A (en) 1992-04-13 1993-10-26 Rrkt Company Secondary recovery process
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
US5366012A (en) 1992-06-09 1994-11-22 Shell Oil Company Method of completing an uncased section of a borehole
US5255742A (en) 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5392854A (en) 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5297626A (en) 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5226961A (en) 1992-06-12 1993-07-13 Shell Oil Company High temperature wellbore cement slurry
US5236039A (en) 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
US5295763A (en) 1992-06-30 1994-03-22 Chambers Development Co., Inc. Method for controlling gas migration from a landfill
JP3276407B2 (ja) * 1992-07-03 2002-04-22 東京瓦斯株式会社 地下の炭化水素水和物の採取法
US5315065A (en) 1992-08-21 1994-05-24 Donovan James P O Versatile electrically insulating waterproof connectors
US5305829A (en) 1992-09-25 1994-04-26 Chevron Research And Technology Company Oil production from diatomite formations by fracture steamdrive
US5229583A (en) 1992-09-28 1993-07-20 Shell Oil Company Surface heating blanket for soil remediation
US5276720A (en) * 1992-11-02 1994-01-04 General Electric Company Emergency cooling system and method
US5339904A (en) 1992-12-10 1994-08-23 Mobil Oil Corporation Oil recovery optimization using a well having both horizontal and vertical sections
US5358045A (en) 1993-02-12 1994-10-25 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Enhanced oil recovery method employing a high temperature brine tolerant foam-forming composition
CA2096034C (en) 1993-05-07 1996-07-02 Kenneth Edwin Kisman Horizontal well gravity drainage combustion process for oil recovery
US5360067A (en) 1993-05-17 1994-11-01 Meo Iii Dominic Vapor-extraction system for removing hydrocarbons from soil
US5384430A (en) * 1993-05-18 1995-01-24 Baker Hughes Incorporated Double armor cable with auxiliary line
SE503278C2 (sv) 1993-06-07 1996-05-13 Kabeldon Ab Förfarande vid skarvning av två kabelparter, samt skarvkropp och monteringsverktyg för användning vid förfarandet
US5325918A (en) 1993-08-02 1994-07-05 The United States Of America As Represented By The United States Department Of Energy Optimal joule heating of the subsurface
WO1995006093A1 (en) 1993-08-20 1995-03-02 Technological Resources Pty. Ltd. Enhanced hydrocarbon recovery method
US5377556A (en) * 1993-09-27 1995-01-03 Teleflex Incorporated Core element tension mechanism having length adjust
US5358058A (en) * 1993-09-27 1994-10-25 Reedrill, Inc. Drill automation control system
US5377756A (en) * 1993-10-28 1995-01-03 Mobil Oil Corporation Method for producing low permeability reservoirs using a single well
US5388640A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388643A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using pressure swing adsorption separation
US5566755A (en) 1993-11-03 1996-10-22 Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US5388645A (en) 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388641A (en) * 1993-11-03 1995-02-14 Amoco Corporation Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations
US5388642A (en) 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using membrane separation of oxygen from air
US5589775A (en) 1993-11-22 1996-12-31 Vector Magnetics, Inc. Rotating magnet for distance and direction measurements from a first borehole to a second borehole
US5411086A (en) 1993-12-09 1995-05-02 Mobil Oil Corporation Oil recovery by enhanced imbitition in low permeability reservoirs
US5435666A (en) 1993-12-14 1995-07-25 Environmental Resources Management, Inc. Methods for isolating a water table and for soil remediation
US5411089A (en) 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US5404952A (en) 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5634984A (en) 1993-12-22 1997-06-03 Union Oil Company Of California Method for cleaning an oil-coated substrate
MY112792A (en) 1994-01-13 2001-09-29 Shell Int Research Method of creating a borehole in an earth formation
US5453599A (en) 1994-02-14 1995-09-26 Hoskins Manufacturing Company Tubular heating element with insulating core
US5411104A (en) 1994-02-16 1995-05-02 Conoco Inc. Coalbed methane drilling
CA2144597C (en) 1994-03-18 1999-08-10 Paul J. Latimer Improved emat probe and technique for weld inspection
US5415231A (en) 1994-03-21 1995-05-16 Mobil Oil Corporation Method for producing low permeability reservoirs using steam
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
US5553478A (en) 1994-04-08 1996-09-10 Burndy Corporation Hand-held compression tool
US5431224A (en) 1994-04-19 1995-07-11 Mobil Oil Corporation Method of thermal stimulation for recovery of hydrocarbons
US5484020A (en) 1994-04-25 1996-01-16 Shell Oil Company Remedial wellbore sealing with unsaturated monomer system
US5429194A (en) 1994-04-29 1995-07-04 Western Atlas International, Inc. Method for inserting a wireline inside coiled tubing
US5409071A (en) 1994-05-23 1995-04-25 Shell Oil Company Method to cement a wellbore
US5503226A (en) 1994-06-22 1996-04-02 Wadleigh; Eugene E. Process for recovering hydrocarbons by thermally assisted gravity segregation
EP0771419A4 (en) 1994-07-18 1999-06-23 Babcock & Wilcox Co SENSOR TRANSPORT SYSTEM FOR A TORCH WELDING DEVICE
US5632336A (en) 1994-07-28 1997-05-27 Texaco Inc. Method for improving injectivity of fluids in oil reservoirs
US5747750A (en) 1994-08-31 1998-05-05 Exxon Production Research Company Single well system for mapping sources of acoustic energy
US5449047A (en) * 1994-09-07 1995-09-12 Ingersoll-Rand Company Automatic control of drilling system
US5525322A (en) 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5553189A (en) 1994-10-18 1996-09-03 Shell Oil Company Radiant plate heater for treatment of contaminated surfaces
US5624188A (en) 1994-10-20 1997-04-29 West; David A. Acoustic thermometer
US5497087A (en) 1994-10-20 1996-03-05 Shell Oil Company NMR logging of natural gas reservoirs
US5498960A (en) 1994-10-20 1996-03-12 Shell Oil Company NMR logging of natural gas in reservoirs
AR004469A1 (es) 1994-12-21 1998-12-16 Shell Int Research Un metodo y un conjunto pra crear un agujero de perforacion en una formacion de tierra
US5554453A (en) 1995-01-04 1996-09-10 Energy Research Corporation Carbonate fuel cell system with thermally integrated gasification
US6088294A (en) 1995-01-12 2000-07-11 Baker Hughes Incorporated Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction
GB2311859B (en) 1995-01-12 1999-03-03 Baker Hughes Inc A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers
US6065538A (en) 1995-02-09 2000-05-23 Baker Hughes Corporation Method of obtaining improved geophysical information about earth formations
DE19505517A1 (de) 1995-02-10 1996-08-14 Siegfried Schwert Verfahren zum Herausziehen eines im Erdreich verlegten Rohres
US5594211A (en) 1995-02-22 1997-01-14 Burndy Corporation Electrical solder splice connector
US5621844A (en) 1995-03-01 1997-04-15 Uentech Corporation Electrical heating of mineral well deposits using downhole impedance transformation networks
CA2152521C (en) 1995-03-01 2000-06-20 Jack E. Bridges Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits
US5935421A (en) 1995-05-02 1999-08-10 Exxon Research And Engineering Company Continuous in-situ combination process for upgrading heavy oil
US5569845A (en) 1995-05-16 1996-10-29 Selee Corporation Apparatus and method for detecting molten salt in molten metal
US5911898A (en) 1995-05-25 1999-06-15 Electric Power Research Institute Method and apparatus for providing multiple autoregulated temperatures
US5571403A (en) 1995-06-06 1996-11-05 Texaco Inc. Process for extracting hydrocarbons from diatomite
US6015015A (en) 1995-06-20 2000-01-18 Bj Services Company U.S.A. Insulated and/or concentric coiled tubing
AUPN469395A0 (en) 1995-08-08 1995-08-31 Gearhart United Pty Ltd Borehole drill bit stabiliser
US5669275A (en) 1995-08-18 1997-09-23 Mills; Edward Otis Conductor insulation remover
US5801332A (en) 1995-08-31 1998-09-01 Minnesota Mining And Manufacturing Company Elastically recoverable silicone splice cover
JPH0972738A (ja) * 1995-09-05 1997-03-18 Fujii Kiso Sekkei Jimusho:Kk ボアホール壁面の性状調査方法と装置
US5899958A (en) 1995-09-11 1999-05-04 Halliburton Energy Services, Inc. Logging while drilling borehole imaging and dipmeter device
DE19536378A1 (de) 1995-09-29 1997-04-03 Bayer Ag Heterocyclische Aryl-, Alkyl- und Cycloalkylessigsäureamide
US5700161A (en) 1995-10-13 1997-12-23 Baker Hughes Incorporated Two-piece lead seal pothead connector
US5759022A (en) 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
GB9521944D0 (en) 1995-10-26 1996-01-03 Camco Drilling Group Ltd A drilling assembly for use in drilling holes in subsurface formations
RU2102587C1 (ru) * 1995-11-10 1998-01-20 Линецкий Александр Петрович Способ разработки и увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр
US5738178A (en) 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation
US5890840A (en) 1995-12-08 1999-04-06 Carter, Jr.; Ernest E. In situ construction of containment vault under a radioactive or hazardous waste site
US5619611A (en) 1995-12-12 1997-04-08 Tub Tauch-Und Baggertechnik Gmbh Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein
GB9526120D0 (en) 1995-12-21 1996-02-21 Raychem Sa Nv Electrical connector
ATE191254T1 (de) 1995-12-27 2000-04-15 Shell Int Research Flamenlose verbrennvorrichtung und verfahren
IE960011A1 (en) 1996-01-10 1997-07-16 Padraig Mcalister Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures
US5784530A (en) 1996-02-13 1998-07-21 Eor International, Inc. Iterated electrodes for oil wells
US5751895A (en) 1996-02-13 1998-05-12 Eor International, Inc. Selective excitation of heating electrodes for oil wells
US5826655A (en) 1996-04-25 1998-10-27 Texaco Inc Method for enhanced recovery of viscous oil deposits
NO302493B1 (no) * 1996-05-13 1998-03-09 Maritime Hydraulics As Glideskjöt
US5652389A (en) 1996-05-22 1997-07-29 The United States Of America As Represented By The Secretary Of Commerce Non-contact method and apparatus for inspection of inertia welds
US6022834A (en) 1996-05-24 2000-02-08 Oil Chem Technologies, Inc. Alkaline surfactant polymer flooding composition and process
US5769569A (en) 1996-06-18 1998-06-23 Southern California Gas Company In-situ thermal desorption of heavy hydrocarbons in vadose zone
US5828797A (en) 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
BR9709857A (pt) 1996-06-21 2002-05-21 Syntroleum Corp processo e sistema de produção de gás de sìntese
US5788376A (en) 1996-07-01 1998-08-04 General Motors Corporation Temperature sensor
MY118075A (en) 1996-07-09 2004-08-30 Syntroleum Corp Process for converting gas to liquids
US6806233B2 (en) * 1996-08-02 2004-10-19 M-I Llc Methods of using reversible phase oil based drilling fluid
US5826653A (en) 1996-08-02 1998-10-27 Scientific Applications & Research Associates, Inc. Phased array approach to retrieve gases, liquids, or solids from subaqueous geologic or man-made formations
US6116357A (en) 1996-09-09 2000-09-12 Smith International, Inc. Rock drill bit with back-reaming protection
SE507262C2 (sv) 1996-10-03 1998-05-04 Per Karlsson Dragavlastning samt verktyg för applicering därav
US5782301A (en) 1996-10-09 1998-07-21 Baker Hughes Incorporated Oil well heater cable
US5875283A (en) 1996-10-11 1999-02-23 Lufran Incorporated Purged grounded immersion heater
US6079499A (en) 1996-10-15 2000-06-27 Shell Oil Company Heater well method and apparatus
US6056057A (en) 1996-10-15 2000-05-02 Shell Oil Company Heater well method and apparatus
US5861137A (en) 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US7426961B2 (en) 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
US5816325A (en) * 1996-11-27 1998-10-06 Future Energy, Llc Methods and apparatus for enhanced recovery of viscous deposits by thermal stimulation
US5862858A (en) 1996-12-26 1999-01-26 Shell Oil Company Flameless combustor
US6427124B1 (en) 1997-01-24 2002-07-30 Baker Hughes Incorporated Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries
SE510452C2 (sv) 1997-02-03 1999-05-25 Asea Brown Boveri Transformator med spänningsregleringsorgan
US5821414A (en) 1997-02-07 1998-10-13 Noy; Koen Survey apparatus and methods for directional wellbore wireline surveying
US6631563B2 (en) * 1997-02-07 2003-10-14 James Brosnahan Survey apparatus and methods for directional wellbore surveying
US6039121A (en) 1997-02-20 2000-03-21 Rangewest Technologies Ltd. Enhanced lift method and apparatus for the production of hydrocarbons
GB9704181D0 (en) 1997-02-28 1997-04-16 Thompson James Apparatus and method for installation of ducts
US5923170A (en) 1997-04-04 1999-07-13 Vector Magnetics, Inc. Method for near field electromagnetic proximity determination for guidance of a borehole drill
US5926437A (en) 1997-04-08 1999-07-20 Halliburton Energy Services, Inc. Method and apparatus for seismic exploration
US5984578A (en) 1997-04-11 1999-11-16 New Jersey Institute Of Technology Apparatus and method for in situ removal of contaminants using sonic energy
US5802870A (en) 1997-05-02 1998-09-08 Uop Llc Sorption cooling process and system
CA2264632C (en) 1997-05-02 2007-11-27 Baker Hughes Incorporated Wellbores utilizing fiber optic-based sensors and operating devices
WO1998050179A1 (en) 1997-05-07 1998-11-12 Shell Internationale Research Maatschappij B.V. Remediation method
US6023554A (en) 1997-05-20 2000-02-08 Shell Oil Company Electrical heater
US5927408A (en) 1997-05-22 1999-07-27 Bucyrus International, Inc. Head brake release with memory and method of controlling a drill head
CA2289080C (en) 1997-06-05 2006-07-25 Shell Canada Limited Contaminated soil remediation method
US6102122A (en) 1997-06-11 2000-08-15 Shell Oil Company Control of heat injection based on temperature and in-situ stress measurement
US6050348A (en) 1997-06-17 2000-04-18 Canrig Drilling Technology Ltd. Drilling method and apparatus
US6112808A (en) 1997-09-19 2000-09-05 Isted; Robert Edward Method and apparatus for subterranean thermal conditioning
SK286044B6 (sk) * 1997-06-19 2008-01-07 European Organization For Nuclear Research Spôsob exponovania materiálu, spôsob produkovaniaužitočného izotopu a spôsob transmutácie zahrnujúci spôsob exponovania
US5984010A (en) 1997-06-23 1999-11-16 Elias; Ramon Hydrocarbon recovery systems and methods
CA2208767A1 (en) 1997-06-26 1998-12-26 Reginald D. Humphreys Tar sands extraction process
WO1999001640A1 (fr) 1997-07-01 1999-01-14 Alexandr Petrovich Linetsky Procede d'exploitation de gisements de gaz et de petrole et d'accroissement du taux d'extraction de gaz et de petrole
US5992522A (en) 1997-08-12 1999-11-30 Steelhead Reclamation Ltd. Process and seal for minimizing interzonal migration in boreholes
US6321862B1 (en) 1997-09-08 2001-11-27 Baker Hughes Incorporated Rotary drill bits for directional drilling employing tandem gage pad arrangement with cutting elements and up-drill capability
US5868202A (en) 1997-09-22 1999-02-09 Tarim Associates For Scientific Mineral And Oil Exploration Ag Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations
US6149344A (en) 1997-10-04 2000-11-21 Master Corporation Acid gas disposal
US6354373B1 (en) 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
FR2772137B1 (fr) 1997-12-08 1999-12-31 Inst Francais Du Petrole Methode de surveillance sismique d'une zone souterraine en cours d'exploitation permettant une meilleure identification d'evenements significatifs
AU1478199A (en) 1997-12-11 1999-06-28 Petroleum Recovery Institute Oilfield in situ hydrocarbon upgrading process
US6152987A (en) 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
US6094048A (en) 1997-12-18 2000-07-25 Shell Oil Company NMR logging of natural gas reservoirs
NO305720B1 (no) 1997-12-22 1999-07-12 Eureka Oil Asa FremgangsmÕte for Õ °ke oljeproduksjonen fra et oljereservoar
US6026914A (en) 1998-01-28 2000-02-22 Alberta Oil Sands Technology And Research Authority Wellbore profiling system
US6269876B1 (en) 1998-03-06 2001-08-07 Shell Oil Company Electrical heater
MA24902A1 (fr) 1998-03-06 2000-04-01 Shell Int Research Rechauffeur electrique
US6540018B1 (en) 1998-03-06 2003-04-01 Shell Oil Company Method and apparatus for heating a wellbore
US6247542B1 (en) 1998-03-06 2001-06-19 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US6035701A (en) 1998-04-15 2000-03-14 Lowry; William E. Method and system to locate leaks in subsurface containment structures using tracer gases
MXPA00011041A (es) 1998-05-12 2003-08-01 Lockheed Corp Proceso para optimizar mediciones gradiometricas de la gravedad.
US6016867A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US6016868A (en) 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US5958365A (en) 1998-06-25 1999-09-28 Atlantic Richfield Company Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods
NO984235L (no) 1998-09-14 2000-03-15 Cit Alcatel Oppvarmingssystem for metallrør for rõoljetransport
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
AU761606B2 (en) 1998-09-25 2003-06-05 Errol A. Sonnier System, apparatus, and method for installing control lines in a well
US6591916B1 (en) 1998-10-14 2003-07-15 Coupler Developments Limited Drilling method
US6192748B1 (en) * 1998-10-30 2001-02-27 Computalog Limited Dynamic orienting reference system for directional drilling
US6138753A (en) 1998-10-30 2000-10-31 Mohaupt Family Trust Technique for treating hydrocarbon wells
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US20040035582A1 (en) 2002-08-22 2004-02-26 Zupanick Joseph A. System and method for subterranean access
US6280000B1 (en) 1998-11-20 2001-08-28 Joseph A. Zupanick Method for production of gas from a coal seam using intersecting well bores
US6269881B1 (en) 1998-12-22 2001-08-07 Chevron U.S.A. Inc Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins and the alpha-olefin compositions
CN2357124Y (zh) * 1999-01-15 2000-01-05 辽河石油勘探局曙光采油厂 可伸缩热采封隔器
US6078868A (en) 1999-01-21 2000-06-20 Baker Hughes Incorporated Reference signal encoding for seismic while drilling measurement
US6318469B1 (en) * 1999-02-09 2001-11-20 Schlumberger Technology Corp. Completion equipment having a plurality of fluid paths for use in a well
US6739409B2 (en) 1999-02-09 2004-05-25 Baker Hughes Incorporated Method and apparatus for a downhole NMR MWD tool configuration
US6429784B1 (en) 1999-02-19 2002-08-06 Dresser Industries, Inc. Casing mounted sensors, actuators and generators
US6283230B1 (en) 1999-03-01 2001-09-04 Jasper N. Peters Method and apparatus for lateral well drilling utilizing a rotating nozzle
US7591304B2 (en) * 1999-03-05 2009-09-22 Varco I/P, Inc. Pipe running tool having wireless telemetry
US6155117A (en) 1999-03-18 2000-12-05 Mcdermott Technology, Inc. Edge detection and seam tracking with EMATs
US6561269B1 (en) 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6110358A (en) 1999-05-21 2000-08-29 Exxon Research And Engineering Company Process for manufacturing improved process oils using extraction of hydrotreated distillates
EG22117A (en) * 1999-06-03 2002-08-30 Exxonmobil Upstream Res Co Method and apparatus for controlling pressure and detecting well control problems during drilling of an offshore well using a gas-lifted riser
US6519308B1 (en) * 1999-06-11 2003-02-11 General Electric Company Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems
US6257334B1 (en) 1999-07-22 2001-07-10 Alberta Oil Sands Technology And Research Authority Steam-assisted gravity drainage heavy oil recovery process
US6269310B1 (en) 1999-08-25 2001-07-31 Tomoseis Corporation System for eliminating headwaves in a tomographic process
US6446737B1 (en) 1999-09-14 2002-09-10 Deep Vision Llc Apparatus and method for rotating a portion of a drill string
US6196350B1 (en) 1999-10-06 2001-03-06 Tomoseis Corporation Apparatus and method for attenuating tube waves in a borehole
US6193010B1 (en) 1999-10-06 2001-02-27 Tomoseis Corporation System for generating a seismic signal in a borehole
DE19948819C2 (de) * 1999-10-09 2002-01-24 Airbus Gmbh Heizleiter mit einem Anschlußelement und/oder einem Abschlußelement sowie ein Verfahren zur Herstellung desselben
US6288372B1 (en) 1999-11-03 2001-09-11 Tyco Electronics Corporation Electric cable having braidless polymeric ground plane providing fault detection
US6353706B1 (en) 1999-11-18 2002-03-05 Uentech International Corporation Optimum oil-well casing heating
US6422318B1 (en) 1999-12-17 2002-07-23 Scioto County Regional Water District #1 Horizontal well system
US6427783B2 (en) 2000-01-12 2002-08-06 Baker Hughes Incorporated Steerable modular drilling assembly
US6452105B2 (en) 2000-01-12 2002-09-17 Meggitt Safety Systems, Inc. Coaxial cable assembly with a discontinuous outer jacket
US6679332B2 (en) 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
US7259688B2 (en) 2000-01-24 2007-08-21 Shell Oil Company Wireless reservoir production control
US6981553B2 (en) 2000-01-24 2006-01-03 Shell Oil Company Controlled downhole chemical injection
US6715550B2 (en) 2000-01-24 2004-04-06 Shell Oil Company Controllable gas-lift well and valve
SE514931C2 (sv) 2000-03-02 2001-05-21 Sandvik Ab Bergborrkrona samt förfarande för dess tillverkning
US7170424B2 (en) 2000-03-02 2007-01-30 Shell Oil Company Oil well casting electrical power pick-off points
EG22420A (en) 2000-03-02 2003-01-29 Shell Int Research Use of downhole high pressure gas in a gas - lift well
US6357526B1 (en) 2000-03-16 2002-03-19 Kellogg Brown & Root, Inc. Field upgrading of heavy oil and bitumen
US6485232B1 (en) 2000-04-14 2002-11-26 Board Of Regents, The University Of Texas System Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system
US6918444B2 (en) 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
GB0009662D0 (en) 2000-04-20 2000-06-07 Scotoil Group Plc Gas and oil production
US7096953B2 (en) * 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US20030085034A1 (en) 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
WO2001081240A2 (en) 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In-situ heating of coal formation to produce fluid
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030066642A1 (en) 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6584406B1 (en) 2000-06-15 2003-06-24 Geo-X Systems, Ltd. Downhole process control method utilizing seismic communication
AU2002246492A1 (en) 2000-06-29 2002-07-30 Paulo S. Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
US6585046B2 (en) 2000-08-28 2003-07-01 Baker Hughes Incorporated Live well heater cable
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
FR2817172B1 (fr) * 2000-11-29 2003-09-26 Inst Francais Du Petrole Reacteur de conversion chimique d'une charge avec apports de chaleur et circulation croisee de la charge et d'un catalyseur
US20020110476A1 (en) 2000-12-14 2002-08-15 Maziasz Philip J. Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
US6554075B2 (en) * 2000-12-15 2003-04-29 Halliburton Energy Services, Inc. CT drilling rig
US20020112987A1 (en) 2000-12-15 2002-08-22 Zhiguo Hou Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts
US20020112890A1 (en) 2001-01-22 2002-08-22 Wentworth Steven W. Conduit pulling apparatus and method for use in horizontal drilling
US6516891B1 (en) 2001-02-08 2003-02-11 L. Murray Dallas Dual string coil tubing injector assembly
US20020153141A1 (en) 2001-04-19 2002-10-24 Hartman Michael G. Method for pumping fluids
CN100545415C (zh) 2001-04-24 2009-09-30 国际壳牌研究有限公司 现场处理含烃地层的方法
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US6571888B2 (en) 2001-05-14 2003-06-03 Precision Drilling Technology Services Group, Inc. Apparatus and method for directional drilling with coiled tubing
US6963053B2 (en) 2001-07-03 2005-11-08 Cci Thermal Technologies, Inc. Corrugated metal ribbon heating element
US20030029617A1 (en) 2001-08-09 2003-02-13 Anadarko Petroleum Company Apparatus, method and system for single well solution-mining
US6591908B2 (en) * 2001-08-22 2003-07-15 Alberta Science And Research Authority Hydrocarbon production process with decreasing steam and/or water/solvent ratio
US6695062B2 (en) * 2001-08-27 2004-02-24 Baker Hughes Incorporated Heater cable and method for manufacturing
US6755251B2 (en) 2001-09-07 2004-06-29 Exxonmobil Upstream Research Company Downhole gas separation method and system
MY129091A (en) 2001-09-07 2007-03-30 Exxonmobil Upstream Res Co Acid gas disposal method
US6470977B1 (en) 2001-09-18 2002-10-29 Halliburton Energy Services, Inc. Steerable underreaming bottom hole assembly and method
US6886638B2 (en) 2001-10-03 2005-05-03 Schlumbergr Technology Corporation Field weldable connections
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
WO2003036037A2 (en) 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. Installation and use of removable heaters in a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
ATE402294T1 (de) 2001-10-24 2008-08-15 Shell Int Research Vereisung von böden als vorwegmassnahme zu deren thermischer behandlung
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US6736222B2 (en) 2001-11-05 2004-05-18 Vector Magnetics, Llc Relative drill bit direction measurement
US6679326B2 (en) 2002-01-15 2004-01-20 Bohdan Zakiewicz Pro-ecological mining system
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US7032809B1 (en) 2002-01-18 2006-04-25 Steel Ventures, L.L.C. Seam-welded metal pipe and method of making the same without seam anneal
US6854534B2 (en) 2002-01-22 2005-02-15 James I. Livingstone Two string drilling system using coil tubing
US6958195B2 (en) 2002-02-19 2005-10-25 Utc Fuel Cells, Llc Steam generator for a PEM fuel cell power plant
US7513318B2 (en) 2002-02-19 2009-04-07 Smith International, Inc. Steerable underreamer/stabilizer assembly and method
US6715553B2 (en) * 2002-05-31 2004-04-06 Halliburton Energy Services, Inc. Methods of generating gas in well fluids
US6942037B1 (en) 2002-08-15 2005-09-13 Clariant Finance (Bvi) Limited Process for mitigation of wellbore contaminants
WO2004018827A1 (en) 2002-08-21 2004-03-04 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric drill string
US20080069289A1 (en) * 2002-09-16 2008-03-20 Peterson Otis G Self-regulating nuclear power module
AU2003261330A1 (en) * 2002-09-16 2004-04-30 The Regents Of The University Of California Self-regulating nuclear power module
JP2004111620A (ja) 2002-09-18 2004-04-08 Murata Mfg Co Ltd イグナイタトランス
CN100359128C (zh) * 2002-10-24 2008-01-02 国际壳牌研究有限公司 在对含烃地层进行就地热处理过程中阻止井眼变形的方法
WO2004038175A1 (en) 2002-10-24 2004-05-06 Shell Internationale Research Maatschappij B.V. Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
CA2504877C (en) 2002-11-06 2014-07-22 Canitron Systems, Inc. Down hole induction and resistive heating tool and method of operating same
WO2004048892A1 (en) * 2002-11-22 2004-06-10 Reduct Method for determining a track of a geographical trajectory
US7048051B2 (en) 2003-02-03 2006-05-23 Gen Syn Fuels Recovery of products from oil shale
US7055602B2 (en) 2003-03-11 2006-06-06 Shell Oil Company Method and composition for enhanced hydrocarbons recovery
FR2853904B1 (fr) 2003-04-15 2007-11-16 Air Liquide Procede de production de liquides hydrocarbones mettant en oeuvre un procede fischer-tropsch
NZ567052A (en) 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
US6951250B2 (en) 2003-05-13 2005-10-04 Halliburton Energy Services, Inc. Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well
US20080087420A1 (en) 2006-10-13 2008-04-17 Kaminsky Robert D Optimized well spacing for in situ shale oil development
CN100392206C (zh) 2003-06-24 2008-06-04 埃克森美孚上游研究公司 处理地下地层以将有机物转化成可采出的烃的方法
US6881897B2 (en) 2003-07-10 2005-04-19 Yazaki Corporation Shielding structure of shielding electric wire
US7073577B2 (en) 2003-08-29 2006-07-11 Applied Geotech, Inc. Array of wells with connected permeable zones for hydrocarbon recovery
US7114880B2 (en) 2003-09-26 2006-10-03 Carter Jr Ernest E Process for the excavation of buried waste
US7147057B2 (en) 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
CN1875168B (zh) 2003-11-03 2012-10-17 艾克森美孚上游研究公司 从不可渗透的油页岩中采收碳氢化合物
US6978837B2 (en) * 2003-11-13 2005-12-27 Yemington Charles R Production of natural gas from hydrates
JP3914994B2 (ja) * 2004-01-28 2007-05-16 独立行政法人産業技術総合研究所 メタンハイドレート堆積層からの天然ガス生産設備と発電設備を具備する統合設備
GB2412389A (en) * 2004-03-27 2005-09-28 Cleansorb Ltd Process for treating underground formations
CA2579496A1 (en) 2004-04-23 2005-11-03 Shell Internationale Research Maatschappij B.V. Subsurface electrical heaters using nitride insulation
CA2803914C (en) 2004-09-03 2016-06-28 Watlow Electric Manufacturing Company Power control system
US7398823B2 (en) * 2005-01-10 2008-07-15 Conocophillips Company Selective electromagnetic production tool
ATE435964T1 (de) 2005-04-22 2009-07-15 Shell Int Research Ein umlaufheizsystem verwendender in-situ- umwandlungsprozess
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7600585B2 (en) 2005-05-19 2009-10-13 Schlumberger Technology Corporation Coiled tubing drilling rig
US20070044957A1 (en) 2005-05-27 2007-03-01 Oil Sands Underground Mining, Inc. Method for underground recovery of hydrocarbons
US7849934B2 (en) 2005-06-07 2010-12-14 Baker Hughes Incorporated Method and apparatus for collecting drill bit performance data
WO2007002111A1 (en) 2005-06-20 2007-01-04 Ksn Energies, Llc Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (ragd)
US7966137B2 (en) 2005-10-03 2011-06-21 Wirescan As Line resonance analysis system
US7303007B2 (en) 2005-10-07 2007-12-04 Weatherford Canada Partnership Method and apparatus for transmitting sensor response data and power through a mud motor
GB2451311A (en) 2005-10-24 2009-01-28 Shell Int Research Systems,methods and processes for use in treating subsurface formations
RU2303198C1 (ru) * 2006-01-10 2007-07-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Котельная установка
US7647967B2 (en) 2006-01-12 2010-01-19 Jimni Development LLC Drilling and opening reservoir using an oriented fissure to enhance hydrocarbon flow and method of making
US7743826B2 (en) 2006-01-20 2010-06-29 American Shale Oil, Llc In situ method and system for extraction of oil from shale
US7921907B2 (en) 2006-01-20 2011-04-12 American Shale Oil, Llc In situ method and system for extraction of oil from shale
JP4298709B2 (ja) 2006-01-26 2009-07-22 矢崎総業株式会社 シールド電線の端末処理方法および端末処理装置
US7445041B2 (en) * 2006-02-06 2008-11-04 Shale And Sands Oil Recovery Llc Method and system for extraction of hydrocarbons from oil shale
RU2418158C2 (ru) 2006-02-16 2011-05-10 ШЕВРОН Ю. Эс. Эй. ИНК. Способ извлечения керобитумов из подземной сланцевой формации и способ разрыва подземной сланцевой формации
WO2007126676A2 (en) 2006-04-21 2007-11-08 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
EP2010754A4 (en) 2006-04-21 2016-02-24 Shell Int Research ADJUSTING ALLOY COMPOSITIONS FOR SELECTED CHARACTERISTICS IN TEMPERATURE-LIMITED HEATERS
CA2649850A1 (en) 2006-04-21 2007-11-01 Osum Oil Sands Corp. Method of drilling from a shaft for underground recovery of hydrocarbons
US7461705B2 (en) * 2006-05-05 2008-12-09 Varco I/P, Inc. Directional drilling control
CN101131886A (zh) * 2006-08-21 2008-02-27 吕应中 固有安全、防核扩散、和成本低廉的核能生产方法与装置
US7705607B2 (en) 2006-08-25 2010-04-27 Instrument Manufacturing Company Diagnostic methods for electrical cables utilizing axial tomography
ITMI20061648A1 (it) 2006-08-29 2008-02-29 Star Progetti Tecnologie Applicate Spa Dispositivo di irraggiamento di calore tramite infrarossi
US8528636B2 (en) 2006-09-13 2013-09-10 Baker Hughes Incorporated Instantaneous measurement of drillstring orientation
GB0618108D0 (en) * 2006-09-14 2006-10-25 Technip France Sa Subsea umbilical
CA2870889C (en) 2006-09-14 2016-11-01 Ernest E. Carter, Jr. Method of forming subterranean barriers with molten wax
US7622677B2 (en) 2006-09-26 2009-11-24 Accutru International Corporation Mineral insulated metal sheathed cable connector and method of forming the connector
US20080078552A1 (en) 2006-09-29 2008-04-03 Osum Oil Sands Corp. Method of heating hydrocarbons
US7665524B2 (en) 2006-09-29 2010-02-23 Ut-Battelle, Llc Liquid metal heat exchanger for efficient heating of soils and geologic formations
WO2008048448A2 (en) 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
AU2007313393B2 (en) * 2006-10-13 2013-08-15 Exxonmobil Upstream Research Company Improved method of developing a subsurface freeze zone using formation fractures
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7823655B2 (en) 2007-09-21 2010-11-02 Canrig Drilling Technology Ltd. Directional drilling control
US7730936B2 (en) 2007-02-07 2010-06-08 Schlumberger Technology Corporation Active cable for wellbore heating and distributed temperature sensing
DE102007040606B3 (de) 2007-08-27 2009-02-26 Siemens Ag Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl
RU2339809C1 (ru) * 2007-03-12 2008-11-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ сооружения и эксплуатации паронагнетательной скважины
CA2675780C (en) 2007-03-22 2015-05-26 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
JP5396268B2 (ja) 2007-03-28 2014-01-22 ルネサスエレクトロニクス株式会社 半導体装置
WO2008131182A1 (en) 2007-04-20 2008-10-30 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US7788967B2 (en) 2007-05-02 2010-09-07 Praxair Technology, Inc. Method and apparatus for leak detection
BRPI0810752A2 (pt) 2007-05-15 2014-10-21 Exxonmobil Upstream Res Co Métodos para o aquecimento in situ de uma formação rochosa rica em composto orgânico, para o aquecimento in situ de uma formação alvejada de xisto oleoso e para produzir um fluido de hidrocarboneto, poço aquecedor para o aquecimento in situ de uma formação rochosa rica em composto orgânico alvejada, e, campo para produzir um fluido de hidrocarboneto a partir de uma formação rica em composto orgânico alvejada.
WO2008150531A2 (en) 2007-05-31 2008-12-11 Carter Ernest E Jr Method for construction of subterranean barriers
CN201106404Y (zh) * 2007-10-10 2008-08-27 中国石油天然气集团公司 套管钻井专用随钻扩眼器
EP2198118A1 (en) 2007-10-19 2010-06-23 Shell Internationale Research Maatschappij B.V. Irregular spacing of heat sources for treating hydrocarbon containing formations
WO2009067418A1 (en) * 2007-11-19 2009-05-28 Shell Oil Company Systems and methods for producing oil and/or gas
US20090139716A1 (en) 2007-12-03 2009-06-04 Osum Oil Sands Corp. Method of recovering bitumen from a tunnel or shaft with heating elements and recovery wells
CA2714106A1 (en) * 2008-02-07 2009-08-13 Shell Internationale Research Maatschappij B.V. Method and composition for enhanced hydrocarbons recovery
MX2010008648A (es) * 2008-02-07 2010-08-31 Shell Int Research Metodo y composicion para la recuperacion mejorada de hidrocarburos.
US7888933B2 (en) 2008-02-15 2011-02-15 Schlumberger Technology Corporation Method for estimating formation hydrocarbon saturation using nuclear magnetic resonance measurements
US20090207041A1 (en) 2008-02-19 2009-08-20 Baker Hughes Incorporated Downhole measurement while drilling system and method
CA2718767C (en) 2008-04-18 2016-09-06 Shell Internationale Research Maatschappij B.V. Using mines and tunnels for treating subsurface hydrocarbon containing formations
US8277642B2 (en) 2008-06-02 2012-10-02 Korea Technology Industries, Co., Ltd. System for separating bitumen from oil sands
US20100101783A1 (en) 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US7909093B2 (en) * 2009-01-15 2011-03-22 Conocophillips Company In situ combustion as adjacent formation heat source
US8812069B2 (en) 2009-01-29 2014-08-19 Hyper Tech Research, Inc Low loss joint for superconducting wire
RU2531292C2 (ru) 2009-04-02 2014-10-20 Пентэйр Термал Менеджмент Ллк Нагревательный кабель с минеральной изоляцией, работающий по принципу скин-эффекта
WO2010118315A1 (en) 2009-04-10 2010-10-14 Shell Oil Company Treatment methodologies for subsurface hydrocarbon containing formations
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US8701768B2 (en) * 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8875788B2 (en) 2010-04-09 2014-11-04 Shell Oil Company Low temperature inductive heating of subsurface formations
US8967259B2 (en) 2010-04-09 2015-03-03 Shell Oil Company Helical winding of insulated conductor heaters for installation
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US20120085535A1 (en) 2010-10-08 2012-04-12 Weijian Mo Methods of heating a subsurface formation using electrically conductive particles
EP2695247A4 (en) 2011-04-08 2015-09-16 Shell Int Research SYSTEMS FOR CONNECTING INSULATED LADDER
CA2850756C (en) 2011-10-07 2019-09-03 Scott Vinh Nguyen Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US20130087551A1 (en) 2011-10-07 2013-04-11 Shell Oil Company Insulated conductors with dielectric screens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2133335C1 (ru) * 1996-09-11 1999-07-20 Юрий Алексеевич Трутнев Способ разработки нефтяных месторождений и переработки нефти и устройство для его осуществления
RU2223397C2 (ru) * 2001-07-19 2004-02-10 Хайрединов Нил Шахиджанович Способ разработки нефтяного месторождения
RU2004115602A (ru) * 2001-10-24 2005-10-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) Способы и устройства для нагревания внутри формации, содержащей углеводороды, со вскрытием, соприкасающимся с земной поверхностью в двух местоположениях

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2652909C1 (ru) * 2017-08-28 2018-05-03 Общество с ограниченной ответственностью "Научно-техническая и торгово-промышленная фирма "ТЕХНОПОДЗЕМЭНЕРГО" (ООО "Техноподземэнерго") Шахтно-скважинный газотурбинно-атомный нефтегазодобывающий комплекс (комбинат)
RU2756155C1 (ru) * 2021-03-04 2021-09-28 Акционерное общество «Зарубежнефть» Внутрискважинный кольцевой нагреватель
RU2756152C1 (ru) * 2021-03-04 2021-09-28 Акционерное общество «Зарубежнефть» Внутрискважинный пучковый нагреватель
RU2804628C1 (ru) * 2021-03-04 2023-10-03 Акционерное общество «Зарубежнефть» Способ повышения эффективности извлечения нефти с применением нагревателя на основе источников ионизирующего излучения

Also Published As

Publication number Publication date
US20100155070A1 (en) 2010-06-24
CN102187055A (zh) 2011-09-14
JP5611961B2 (ja) 2014-10-22
US8267185B2 (en) 2012-09-18
US8281861B2 (en) 2012-10-09
US20100101784A1 (en) 2010-04-29
WO2010045103A1 (en) 2010-04-22
WO2010045098A1 (en) 2010-04-22
EP2334894A1 (en) 2011-06-22
US20100108310A1 (en) 2010-05-06
EP2361343A1 (en) 2011-08-31
JP5611963B2 (ja) 2014-10-22
RU2524584C2 (ru) 2014-07-27
US8353347B2 (en) 2013-01-15
IL211989A0 (en) 2011-06-30
CN102203377A (zh) 2011-09-28
JP2012509415A (ja) 2012-04-19
US9051829B2 (en) 2015-06-09
EP2334901A1 (en) 2011-06-22
US20100096137A1 (en) 2010-04-22
AU2009303605B2 (en) 2013-10-03
RU2529537C2 (ru) 2014-09-27
IL211989A (en) 2014-12-31
US8261832B2 (en) 2012-09-11
CA2739039A1 (en) 2010-04-22
CA2739086A1 (en) 2010-04-22
US20100101794A1 (en) 2010-04-29
US8267170B2 (en) 2012-09-18
US20100147522A1 (en) 2010-06-17
AU2009303605A1 (en) 2010-04-22
US20100224368A1 (en) 2010-09-09
IL211991A (en) 2014-12-31
BRPI0919775A2 (pt) 2017-06-27
JP2012509418A (ja) 2012-04-19
RU2530729C2 (ru) 2014-10-10
IL211950A0 (en) 2011-06-30
CA2739088A1 (en) 2010-04-22
IL211991A0 (en) 2011-06-30
JP2012509416A (ja) 2012-04-19
AU2009303609A1 (en) 2010-04-22
CN102187052B (zh) 2015-01-07
AU2009303610A1 (en) 2010-04-22
RU2011119093A (ru) 2012-11-20
EP2361342A1 (en) 2011-08-31
CA2738805A1 (en) 2010-04-22
AU2009303604A1 (en) 2010-04-22
US20100206570A1 (en) 2010-08-19
JP2012509417A (ja) 2012-04-19
WO2010045101A1 (en) 2010-04-22
US20100089586A1 (en) 2010-04-15
RU2518649C2 (ru) 2014-06-10
CN102187053A (zh) 2011-09-14
US20100108379A1 (en) 2010-05-06
CA2738939A1 (en) 2010-04-22
RU2011119086A (ru) 2012-11-20
US8256512B2 (en) 2012-09-04
RU2537712C2 (ru) 2015-01-10
AU2009303609B2 (en) 2014-07-17
RU2011119081A (ru) 2012-11-20
JP5611962B2 (ja) 2014-10-22
WO2010045115A3 (en) 2010-06-24
CN102187054B (zh) 2014-08-27
IL211950A (en) 2013-11-28
JP2012509419A (ja) 2012-04-19
AU2009303608A1 (en) 2010-04-22
AU2009303608B2 (en) 2013-11-14
US20100089584A1 (en) 2010-04-15
US9129728B2 (en) 2015-09-08
US9022118B2 (en) 2015-05-05
CA2738804A1 (en) 2010-04-22
US20160281482A1 (en) 2016-09-29
AU2009303606B2 (en) 2013-12-05
AU2009303606A1 (en) 2010-04-22
CN102187055B (zh) 2014-09-10
US8220539B2 (en) 2012-07-17
JP2012508838A (ja) 2012-04-12
BRPI0920141A2 (pt) 2017-06-27
WO2010045115A2 (en) 2010-04-22
RU2011119095A (ru) 2012-11-20
WO2010045099A1 (en) 2010-04-22
US20100101783A1 (en) 2010-04-29
AU2009303604B2 (en) 2013-09-26
CA2739039C (en) 2018-01-02
IL211990A0 (en) 2011-06-30
IL211951A (en) 2013-10-31
IL211951A0 (en) 2011-06-30
WO2010045102A1 (en) 2010-04-22
IL211990A (en) 2013-11-28
EP2361344A1 (en) 2011-08-31
US20100147521A1 (en) 2010-06-17
CN102187054A (zh) 2011-09-14
RU2011119096A (ru) 2012-11-20
EP2334900A1 (en) 2011-06-22
CN102187052A (zh) 2011-09-14
RU2011119084A (ru) 2012-11-20
WO2010045097A1 (en) 2010-04-22
US8881806B2 (en) 2014-11-11

Similar Documents

Publication Publication Date Title
RU2518700C2 (ru) Применение саморегулирующихся ядерных реакторов при обработке подземного пласта
RU2487236C2 (ru) Способ обработки подземного пласта (варианты) и моторное топливо, полученное с использованием способа
JP5378223B2 (ja) 段階的ラインドライブプロセスによる炭化水素含有層の加熱
JP5149959B2 (ja) 地下累層用の並列ヒーターシステム
RU2439289C2 (ru) Барьер из серы для использования с процессами на месте залегания для обработки пластов
EA019751B1 (ru) Способ и система для обработки подземного углеводородсодержащего пласта
RU2612774C2 (ru) Аккомодация теплового расширения для систем с циркулирующей текучей средой, используемых для нагревания толщи пород
AU2011237624B2 (en) Leak detection in circulated fluid systems for heating subsurface formations
CN116498282A (zh) 一种基于微型核反应堆原位气化稠油的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151010