RU2348641C1 - Порошковый материал из оксида алюминия (варианты) и способ его получения - Google Patents

Порошковый материал из оксида алюминия (варианты) и способ его получения Download PDF

Info

Publication number
RU2348641C1
RU2348641C1 RU2007120885/15A RU2007120885A RU2348641C1 RU 2348641 C1 RU2348641 C1 RU 2348641C1 RU 2007120885/15 A RU2007120885/15 A RU 2007120885/15A RU 2007120885 A RU2007120885 A RU 2007120885A RU 2348641 C1 RU2348641 C1 RU 2348641C1
Authority
RU
Russia
Prior art keywords
powder material
less
alumina
particle size
shape factor
Prior art date
Application number
RU2007120885/15A
Other languages
English (en)
Inventor
Ральф БАУЭР (CA)
Ральф Бауэр
Дорук ЕНЕР (US)
Дорук Енер
Маргарет СКОУРОН (US)
Маргарет Скоурон
Мартин БАРНС (US)
Мартин Барнс
Original Assignee
Сэнт-Гобэн Керамикс Энд Пластикс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сэнт-Гобэн Керамикс Энд Пластикс, Инк. filed Critical Сэнт-Гобэн Керамикс Энд Пластикс, Инк.
Application granted granted Critical
Publication of RU2348641C1 publication Critical patent/RU2348641C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к получению порошкообразного материала из переходного оксида алюминия. По первому варианту порошковый материал содержит затравочные частицы из переходного оксида алюминия, имеющие коэффициент формы не меньше чем 3:1 и средний размер частиц ориентировочно не меньше чем 110 нм и не больше чем 1000 нм. По второму варианту он содержит затравочные частицы игольчатой формы, содержащие переходный оксид алюминия, имеющие коэффициент формы не меньше чем 3:1, вторичный коэффициент формы не больше чем 3:1 и средний размер частиц ориентировочно не меньше чем 75 нм. По третьему варианту он содержит затравочные частицы пластинчатой формы, содержащие переходный оксид алюминия, имеющие коэффициент формы не меньше чем 3:1, вторичный коэффициент формы не меньше чем 3:1 и средний размер частиц ориентировочно не меньше чем 125 нм. Способ, который включает: использование предшественника бемита и бемитной затравки в суспензии, термообработку суспензии для преобразования предшественника бемита в бемитный порошковый материал при температуре свыше 120°С, обжиг. Изобретения позволяют создать порошок оксида алюминия, имеющий новые морфологические характеристики. 4 н. и 56 з.п. ф-лы, 3 ил.

Description

Область техники
Настоящее изобретение в общем имеет отношение к получению порошкового материала из переходного оксида алюминия и к способам его получения. Более конкретно, настоящее изобретение имеет отношение к получению порошкового материала из переходного оксида алюминия, имеющего новые морфологические (структурные) характеристики.
Уровень техники
Содержащие алюминий материалы достаточно широко используют в различных промышленных применениях и технологиях, начиная от монокристаллов в оптических и оптоэлектронных применениях и заканчивая поликристаллическими абразивными зернами, которые используют, например, в свободных абразивах, связанных абразивах и в абразивах с покрытием (в абразивных гибких инструментах). Содержащие алюминий материалы обычно являются полиморфными и могут содержать различные гидратные формы, такие как бемит и гиббсит. Среди различных содержащих алюминий материалов особый интерес представляет оксид алюминия или глинозем. В различных промышленных применениях оксид алюминия используют в его самом твердом и наиболее стабильном аллотропном состоянии, а именно в виде альфа оксида алюминия. Однако переходные формы оксида алюминия, которые включают в себя гамма, дельта и тета оксид алюминия, также вызывают коммерческий интерес, так как эти фазы имеют желательные свойства, такие как высокая твердость и высокая площадь поверхности, что позволяет использовать переходные оксиды алюминия в таких различных областях, как, например, печатная краска и носители катализатора.
В настоящее время переходные оксиды алюминия обычно получают за счет термообработки материалов предшественника переходного оксида алюминия, таких как гиббсит, бемит или бейерит, при температуре желательного фазового превращения. Другие известные технологии основаны на прямом синтезе с использованием влажной химической обработки, например с использованием гидролиза металлоалкоголята алюминия. Известные в настоящее время технологии имеют низкую производительность, высокую стоимость производства и/или ограниченную гибкость, не позволяющую создавать новые морфологии, которые представляют интерес для новых рынков сбыта, основанных на использовании переходных оксидов алюминия.
Таким образом, существует необходимость в создании переходных оксидов алюминия, которые имеют новые морфологические характеристики. Кроме того, существует интерес к созданию новых материалов и технологий обработки, позволяющих создавать такие материалы. В этом отношении, такие технологии обработки должны быть рентабельными, а также должны обеспечивать относительно прямой контроль и высокую производительность.
Сущность изобретения
В соответствии с первым вариантом предлагается порошковый материал из оксида алюминия, который содержит частицы из переходного оксида алюминия, имеющие коэффициент формы не меньше чем 3:1 и средний размер частиц ориентировочно не меньше чем 110 нм и не больше чем 1000 нм.
В соответствии с другим вариантом предлагается порошковый материал из оксида алюминия, который содержит главным образом затравочные частицы игольчатой формы из переходного оксида алюминия, имеющие коэффициент формы не меньше чем 3:1, вторичный коэффициент формы не больше чем 3:1 и средний размер частиц ориентировочно не меньше чем 75 нм.
В соответствии с еще одним вариантом предлагается порошковый материал из оксида алюминия, который содержит главным образом затравочные частицы пластинчатой формы из переходного оксида алюминия, имеющие коэффициент формы не меньше чем 3:1, вторичный коэффициент формы не меньше чем 3:1 и средний размер частиц ориентировочно не меньше чем 125 нм.
Предлагается также способ образования (формирования) порошкового материала из оксида алюминия, который предусматривает использование предшественника бемита и бемитной затравки в суспензии, проведение термообработки суспензии для преобразования предшественника бемита в бемитный порошковый материал; и обжиг бемитного порошкового материала для преобразования бемитного порошкового материала в порошковый материал из переходного оксида алюминия.
Краткое описание чертежей
Указанные ранее и другие характеристики изобретения будут более ясны из последующего детального описания, данного в качестве примера, не имеющего ограничительного характера и приведенного со ссылкой на сопроводительные чертежи, на которых аналогичные элементы имеют одинаковые позиционные обозначения.
На фиг.1 показана микрофотография, полученная на сканирующем электронном микроскопе, где можно видеть частицы из переходного оксида алюминия пластинчатой формы.
На фиг.2 показана микрофотография, полученная на сканирующем электронном микроскопе, где можно видеть частицы из переходного оксида алюминия игольчатой формы.
На фиг.3 показана микрофотография, полученная на сканирующем электронном микроскопе, где можно видеть частицы из переходного оксида алюминия эллипсоидной формы.
Подробное описание предпочтительных вариантов изобретения
В соответствии с первым вариантом настоящего изобретения образуют порошок в виде порошкового материала из переходного оксида алюминия при помощи маршрута обработки с затравкой. Эта обработка типично предусматривает проведение термообработки предшественника переходного оксида алюминия, чтобы получить переходный оксид алюминия, в виде гамма, дельта или тета оксида алюминия, или их комбинации. Переходный оксид алюминия обычно представляет собой массу порошкового материала, состоящую из частиц, которые могут быть полностью дисперсными, частично агломерированными или полностью агломерированными. В сухом виде, порошковый материал может быть описан как порошок. В указанном процессе обычно используют бемит в качестве предшественника переходного оксида алюминия, который обрабатывают с использованием указанного выше маршрута обработки с затравкой. Более подробно, обработка предусматривает использование предшественника бемита и бемитной затравки в суспензии и термообработку (такую как гидротермическая обработка) суспензии (альтернативно, золя или взвеси), чтобы преобразовать предшественник бемита в бемитный порошковый материал, образованный из частиц или кристаллитов. Затем проводят термообработку бемитного порошкового материала для осуществления полиморфного преобразования в переходный оксид алюминия. В соответствии с особым аспектом бемитный порошковый материал имеет относительно удлиненную морфологию частиц, которую обычно описывают с использованием коэффициента формы, как это обсуждается далее более подробно. Кроме того, морфологические характеристики, связанные с бемитом, сохраняются в готовом порошковом материале из переходного оксида алюминия.
Термин "бемит" обычно используют здесь для обозначения гидратов оксида алюминия, в том числе минерального бемита, типично имеющего формулу Al2O3·Н2О и имеющего водосодержание порядка 15%, а также псевдобемита, имеющего водосодержание свыше 15%, например 20-38% по весу. Следует иметь в виду, что бемит (в том числе и псевдобемит) имеет особую и идентифицируемую кристаллическую структуру и, соответственно, уникальную рентгенограмму дифракционных полос, поэтому его легко можно отличить от других содержащих алюминий материалов, в том числе от других гидратных оксидов алюминия, таких как АТН (тригидроксид алюминия), который представляет собой обычный материал предшественника, используемый для получения бемитных порошковых материалов.
Коэффициент формы, определенный как отношение самого длинного (большого) размера к следующему самому длинному размеру, обычно составляет не меньше чем 2:1, а преимущественно не меньше чем 3:1, 4:1 или 6:1. В самом деле, некоторые варианты имеют относительно удлиненные частицы, имеющие коэффициент формы не меньше чем 8:1, 10:1 и в некоторых случаях не меньше чем 14:1. Что касается частиц игольчатой формы, то такие частицы могут быть дополнительно охарактеризованы при помощи вторичного коэффициента формы, который определяют как отношение второго самого длинного размера к третьему самому длинному размеру. Вторичный коэффициент формы обычно составляет не больше чем 3:1, типично не больше чем 2:1 или даже 1.5:1 и часто составляет около 1:1. Вторичный коэффициент формы обычно описывает геометрию поперечного сечения частиц в плоскости, перпендикулярной к самому длинному размеру. Следует иметь в виду, что так как термин коэффициент формы используют здесь для обозначения отношения самого длинного размера к следующему самому длинному размеру, то его можно называть первичным коэффициентом формы.
В соответствии с другим вариантом, бемит может иметь форму пластинок или частиц пластинчатой формы, обычно имеющих удлиненную структуру с коэффициентами формы, соответствующими указанным здесь выше для частиц игольчатой формы. Однако частицы пластинчатой формы обычно имеют противоположные основные поверхности, которые являются главным образом плоскими и обычно параллельными друг другу. Кроме того, частицы пластинчатой формы могут иметь вторичный коэффициент формы, который превышает вторичный коэффициент формы частиц игольчатой формы и обычно составляет ориентировочно не меньше чем 3:1, например составляет ориентировочно не меньше чем 6:1 или даже не меньше чем 10:1. Типично, самый короткий размер или размер кромки, перпендикулярной к противоположным основным поверхностям или сторонам, составляет меньше чем 50 нм, например, ориентировочно меньше чем 40 нм или ориентировочно меньше чем 30 нм.
Морфология (структура) бемитного порошкового материала может быть дополнительно описана при помощи размера частиц, а более конкретно при помощи среднего размера частиц. В данном случае, затравочный бемитный порошковый материал, то есть бемит, образованный при помощи процесса затравливания (как это обсуждается далее более подробно), имеет относительно мелкие частицы или кристаллиты. Обычно средний размер частиц составляет ориентировочно не больше чем 1000 нм и лежит в диапазоне ориентировочно от 100 до 1000 нм. В соответствии с другими вариантами частицы имеют еще более мелкий средний размер, например ориентировочно не больше чем 800 нм, 750 нм, 600 нм, 500 нм, 400 нм и даже меньше чем 300 нм, в случае мелкого порошкового материала. В случае мелкого порошкового материала частицы могут иметь средний размер меньше чем 250 нм, например не больше чем 225 нм. Один из возможных диапазонов средних размеров частиц простирается от 50 до 200 нм. За счет технологических ограничений некоторых вариантов, самый малый средний размер частиц обычно является ограниченным и составляет ориентировочно не меньше чем 75 нм, 100 нм (особенно в случае пластинчатого порошкового материала, когда минимальный размер частиц составляет 110 нм), 125 нм или 135 нм.
Использованный здесь термин "средний размер частиц" обозначает средний самый длинный размер частиц. За счет удлиненной морфологии частиц, обычные методики измерения не позволяют точно измерять средний размер частиц, так как эти методики обычно основаны на предположении, что частицы являются сферическими или практически сферическими. Поэтому в соответствии с настоящим изобретением средний размер частиц определяют с использованием множества представительных выборок за счет физического измерения размеров частиц, имеющихся в представительных выборках. Такие выборки могут быть получены при помощи различных средств, в том числе при помощи растровой электронной микроскопии. Термин "средний размер частиц" также обозначает первичный размер частиц, связанный с индивидуально идентифицируемыми частицами, которые могут быть дисперсными или агломерированными. Само собой разумеется, что агломераты имеют относительно больший средний размер частиц, причем настоящее изобретение не сфокусировано на измерении размеров агломератов.
Было обнаружено, что затравочный бемитный порошковый материал имеет мелкий средний размер частиц, причем часто обычные технологии без использования затравки не позволяют получать частицы с такими малыми средними размерами. В этом отношении, следует иметь в виду, что часто в различных публикациях указывают размеры частиц, которые не соответствуют средним размерам, определенным здесь выше, а скорее относятся к номинальному диапазону размеров частиц, полученному при физической проверке образцов порошкового материала. Поэтому средний размер частиц будет лежать внутри указанного в таких публикациях диапазона размеров частиц, обычно около арифметической средней точки в указанном диапазоне, при ожидаемом гауссовском распределении частиц по размерам. Иначе говоря, когда в случае технологий, не основанных на использовании затравки, говорят о частицах малых размеров, то обычно речь идет о нижнем пределе наблюдаемого распределения частиц по размерам, а не о среднем размере частиц.
Аналогично, указанный здесь выше коэффициент формы обычно соответствует среднему коэффициенту формы, полученному из представительной выборки, а не верхнему или нижнему пределам, связанным с коэффициентом формы порошкового материала. Часто в различных публикациях указывают коэффициенты формы частиц, которые не соответствуют средним коэффициентам формы, как в настоящем описании изобретения, а скорее представляют собой номинальный диапазон коэффициентов формы, полученный при физической проверке образцов порошкового материала. Таким образом, средний коэффициент формы будет лежать внутри указанного в этих публикациях диапазона, обычно у арифметической средней точки указанного диапазона, при ожидаемом гауссовском распределении частиц по размерам. Иначе говоря, когда в случае технологий, не основанных на использовании затравки, говорят о коэффициенте формы, то обычно речь идет о нижнем пределе наблюдаемого распределения коэффициентов формы, а не о среднем коэффициенте формы.
В дополнение к коэффициенту формы и среднему размеру частиц порошкового материала, морфологию порошкового материала можно дополнительно характеризовать при помощи удельной площади поверхности. В этом случае известная BET методика была использована для измерения удельной площади поверхности частиц порошкового материала. В соответствии с различными вариантами бемитный порошковый материал имеет относительно большую удельную площадь поверхности, которая обычно составляет ориентировочно не меньше чем 10 м2/г, например составляет ориентировочно не меньше чем 50 м2/г, 70 м2/г или же составляет ориентировочно не меньше чем 90 м2/г. Так как удельная площадь поверхности является функцией морфологии частиц, так же как и размера частиц, обычно удельная площадь поверхности в соответствии с вариантами настоящего изобретения составляет ориентировочно меньше чем 400 м2/г, например, ориентировочно меньше чем 350 или 300 м2/г. Специфические диапазоны удельной площади поверхности простираются ориентировочно от 75 м2/г до 200 м2/г.
Обратимся теперь к рассмотрению деталей процессов, при помощи которых может быть образован бемитный порошковый материал (образующий предшественник переходного оксида алюминия или исходный материал). Обычно эллипсоидные, игольчатые или пластинчатые частицы бемита образуют из предшественника бемита (причем типично содержащий алюминий материал содержит бокситные минералы), при помощи гидротермической обработки, которая описана в патенте США No. 4797139 общего применения. Более конкретно, бемитный порошковый материал может быть образован за счет объединения предшественника бемита и бемитной затравки в суспензии, термообработки суспензии (альтернативно, золя или взвеси), чтобы вызвать преобразование исходного материала в бемитный порошковый материал, на который дополнительно воздействуют при помощи бемитной затравки, содержащейся в суспензии. Нагревание обычно проводят в автогенной среде, то есть в автоклаве, так что повышенное давление создается во время обработки. Значение рН суспензии обычно выбирают в диапазоне значений от меньше чем 7 до больше чем 8, причем бемитный затравочный материал имеет частицы размером ориентировочно меньше чем 0.5 мкм. Обычно количество затравочных частиц составляет ориентировочно больше чем 1% от веса предшественника бемита (в пересчете на Al2O3), причем нагревание проводят при температуре ориентировочно больше чем 120°С, например, ориентировочно больше чем 125°С или даже ориентировочно больше чем 130°С, и под автогенным давлением, которое обычно составляет около 30 psi (фунтов на кв. дюйм).
Порошковый материал может быть получен при длительном гидротермическом воздействии в сочетании с относительно низким уровнем затравки и при кислотном рН, что приводит к преимущественному росту бемита вдоль одной оси или вдоль двух осей. Более длительная гидротермическая обработка может быть использована для получения более длинных частиц бемита с более высокими коэффициентами формы и/или для получения более крупных частиц.
После термообработки, такой как гидротермическая обработка, и преобразования бемита имеющуюся жидкость обычно удаляют, например, при помощи процесса ультрафильтрации или при помощи термообработки, чтобы испарить остающуюся жидкость. После этого полученную массу обычно размалывают, например, до размера частиц 100 меш. Следует иметь в виду, что размер частиц обычно относится к размеру отдельных кристаллитов, образованных при помощи обработки, а не к размеру агломератов, которые могут оставаться в некоторых вариантах (например, в случае материала заполнителя).
В соответствии с настоящим изобретением различные параметры могут быть изменены во время обработки бемитного исходного материала, чтобы получить желательную морфологию. Эти параметры включают в себя весовое отношение, то есть отношение предшественника бемита к бемитной затравке, тип или разновидности кислоты или щелочи, которые используют при обработке (а также относительный уровень рН), и температуру (которая прямо пропорциональна давлению в автогенной гидротермической среде) системы.
В частности, когда изменяют весовое отношение при поддержании других параметров постоянными, изменяются форма и размер частиц, образующих бемитный порошковый материал. Например, когда обработку проводят при 180°С в течение двух часов в 2 вес.% растворе азотной кислоты, 90:10 отношение АТН:бемитная затравка позволяет получать частицы игольчатой формы (АТН представляет собой разновидности предшественника бемита). В отличие от этого, когда отношение АТН:бемитная затравка снижается до значения 80:20, частицы становятся более эллиптическими по форме. Если указанное отношение уменьшить до величины 60:40, частицы становятся не сферическими. Таким образом, наиболее типичное отношение предшественника бемита к бемитной затравке составляет ориентировочно не меньше чем 60:40, например составляет ориентировочно не меньше чем 70:30 или 80:20. Однако для обеспечения необходимого уровня затравки, чтобы содействовать получению желательной мелкой морфологии порошкового материала, весовое соотношение предшественника бемита к бемитной затравке обычно составляет ориентировочно не больше чем 98:2. На основании изложенного можно сказать, что повышение весового отношения обычно увеличивает коэффициент формы, в то время как снижение весового отношения обычно уменьшает коэффициент формы.
Кроме того, когда изменяют тип кислоты или щелочи, при поддержании других параметров постоянными, изменяется форма (например, коэффициент формы) и размер частиц. Например, когда обработку проводят при 180°С в течение двух часов при отношении 90:10 АТН:бемитная затравка в растворе 2 вес.% азотной кислоты, синтезированные (полученные) частицы обычно являются частицами игольчатой формы. В отличие от этого, когда кислоту заменяют на HCl при содержании 1 вес.% или меньше, синтезированные частицы обычно являются почти сферическими. Когда используют 2 вес.% или больше HCl, синтезированные частицы обычно имеют игольчатую форму. При 1 вес.% муравьиной кислоты, синтезированные частицы обычно имеют пластинчатую форму. Кроме того, когда используют базовый раствор, такой как 1 вес.% КОН, синтезированные частицы обычно имеют пластинчатую форму. Если используют смесь кислот и щелочей, например 1 вес.% КОН и 0.7 вес.% азотной кислоты, получают синтезированные частицы пластинчатой формы. Следует иметь в виду, что указанные вес.% кислот и щелочей приведены в пересчете на содержание твердых веществ в соответствующих суспензиях или взвесях, то есть не основаны на полном вес.% суспензий.
В качестве примеров подходящих кислот и щелочей можно привести неорганические кислоты, такие как азотная кислота, органические кислоты, такие как муравьиная кислота, галоидоводородные кислоты, такие как соляная кислота, и кислые соли, такие как азотнокислый алюминий и сульфат магния. В качестве примеров эффективных щелочей можно привести амины, содержащие аммиак, щелочные гидроксиды, такие как гидроксид калия и гидроксид кальция, и базовые соли.
Кроме того, когда температуру изменяют при поддержании других параметров постоянными (неизменными), типично изменения проявляются в размере частиц. Например, когда обработку проводят при отношении АТН:бемитная затравка, равном 90:10, в растворе 2 вес.% азотной кислоты при 150°С в течение двух часов, то дифракционный рентгеновский анализ дает размер кристаллинов 115 ангстрем. Однако при 160°С средний размер частиц составляет уже 143 ангстрема. Таким образом, когда температура повышается, размер частиц также повышается, так что существует прямая пропорциональная зависимость между размером частиц и температурой.
В соответствии с описанными здесь вариантами относительно мощные и гибкие методологии обработки могут быть использованы для создания желательных морфологий в предшественнике бемита. Особую важность имеют варианты с использованием затравочной обработки, позволяющие при низкой стоимости и высокой степени контроля получать желательные мелкие средние размеры частиц, а также контролируемое распределение частиц по размерам. Комбинация (i) идентифицирующих и контролирующих ключевых параметров в методологии обработки, таких как весовое отношение, разновидности кислоты и щелочи и температура, и (ii) технологии на базе затравливания, имеет особое значение, так как она позволяет осуществлять воспроизводимую и контролируемую обработку, чтобы получать желательные морфологии бемитного порошкового материала.
Несмотря на то что предыдущее описание было сфокусировано на получении бемита, который представляет собой исходный материал или материал предшественника переходного оксида алюминия, в соответствии с особым аспектом настоящего изобретения предусмотрена дополнительная обработка материала предшественника, чтобы получить переходный оксид алюминия. В этом случае, предшественник бемита подвергают термообработке за счет обжига при температуре, достаточной для того, чтобы вызвать преобразование в переходную фазу оксида алюминия, или в комбинацию переходных фаз. Типично, обжиг или термообработку проводят при температуре ориентировочно больше чем 250°С, но ниже чем 1100°С. При температурах меньше чем 250°С преобразование в низшую температурную форму переходного оксида алюминия, а именно в гамма оксид алюминия, типично не происходит. При температурах больше чем 1100°С предшественник типично преобразуется в альфа фазу, образования которой следует избегать, чтобы получить порошковый материал из переходного оксида алюминия. В соответствии с некоторыми вариантами обжиг проводят при температуре больше чем 400°С, при такой как ориентировочно меньше чем 450°С. Максимальная температура обжига может быть меньше чем 1050 или 1100°С, причем эти верхние температуры обычно приводят к получению существенной пропорции тета фазы оксида алюминия, которая представляет собой наивысшую температурную форму переходного оксида алюминия.
В соответствии с другими вариантами обжиг проводят при температуре меньше чем 950°С, например в диапазоне от 750 до 950°С, чтобы получить существенное содержание дельта оксида алюминия. В соответствии с особыми вариантами обжиг проводят при температуре ориентировочно меньше чем 800°С, например ориентировочно меньше чем 775°С или 750°С, чтобы произвести преобразование в преобладающую гамма фазу.
Обжиг может быть проведен в различных средах, в том числе в контролируемой газовой среде и при контролируемом давлении. Так как обжиг обычно проводят для осуществления фазовых изменений в материале предшественника, а не для осуществления химической реакции, и так как полученный материал является главным образом оксидом, то нет необходимости в использовании специальных газовых сред и специальных давлений, кроме тех, которые позволяют получать наиболее желательные переходные оксиды алюминия.
Типично, обжиг проводят в течение заданного периода времени, чтобы получить воспроизводимое и надежное преобразование для различных партий исходных материалов. Наиболее типичный исходный материал обжигу не подвергают, так как трудно контролировать температуру и, следовательно, контролировать распределение фаз. Время обжига типично лежит в диапазоне ориентировочно от 0.5 минут до 60 минут, а преимущественно составляет от 1 минуты до 15 минут.
Обычно в результате обжига получают порошковый материал, который в основном (больше чем 50 вес.%) представляет собой переходный оксид алюминия. Более типично, преобразованный порошковый материал содержит по меньшей мере 70 вес.%, типично по меньшей мере 80 вес.%, например, по меньшей мере 90 вес.% переходного оксида алюминия. Точное распределение фаз переходного оксида алюминия может варьировать в зависимости от различных вариантов, причем это может быть смесь переходных фаз или главным образом одна фаза переходного оксида алюминия (например, это может быть по меньшей мере 95 вес.%, 98 вес.% или даже до 100 вес.% одной фазы переходного оксида алюминия).
В соответствии с особой характеристикой настоящего изобретения морфология бемитного исходного материала в основном сохраняется в конечном образованном переходном оксиде алюминия. Таким образом, желательные морфологические характеристики могут быть введены в бемит в соответствии с известными методиками, и эти характеристики сохранены (в готовом материале). Например, некоторые варианты настоящего изобретения позволяют по меньшей мере сохранять удельную площадь поверхности исходного материала, а в некоторых случаях увеличивать удельную площадь поверхности по меньшей мере на 8%, 10%, 12%, 14% или больше. Так как морфология в основном сохраняется в конечном материале, то проведенное описание, связанное с морфологическими характеристиками бемита, применимо также и для порошкового материала из переходного оксида алюминия.
Например, коэффициент формы порошкового материала из переходного оксида алюминия обычно составляет не меньше чем 1:1, а преимущественно не меньше чем 3:1, 4:1 или 6:1. В самом деле, в соответствии с некоторыми вариантами получают относительно удлиненные частицы, имеющие коэффициент формы не меньше чем 8:1, 10:1, а в некоторых случаях не меньше чем 14:1. Что касается частиц игольчатой формы, то для них вторичный коэффициент формы обычно составляет не больше чем 3:1, типично не больше чем 2:1, или даже 1.5:1, и часто около 1:1. Вторичный коэффициент формы обычно описывает геометрию поперечного сечения частиц в плоскости, перпендикулярной к самому длинному размеру.
Частицы переходного оксида алюминия пластинчатой формы обычно имеют удлиненную структуру, имеющую коэффициенты формы, указанные здесь выше для частиц игольчатой формы. Однако частицы пластинчатой формы обычно имеют противоположные основные поверхности, причем эти противоположные основные поверхности обычно являются плоскими и в целом параллельными друг другу. Кроме того, частицы пластинчатой формы имеют вторичный коэффициент формы, который превышает вторичный коэффициент формы частиц игольчатой формы, и обычно составляет ориентировочно не меньше чем 3:1, например составляет ориентировочно не меньше чем 6:1 или даже не меньше чем 10:1. Типично, наиболее короткий размер или размер кромки, перпендикулярной к противоположным основным поверхностям или сторонам, обычно составляет меньше чем 50 нм, например, ориентировочно меньше чем 40 нм или ориентировочно меньше чем 30 нм.
Кроме того, средний размер частиц порошкового материала из переходного оксида алюминия обычно составляет ориентировочно не больше чем 1000 нм и находится в диапазоне ориентировочно от 75 до 750 нм. Другие варианты имеют еще более мелкий средний размер частиц, например ориентировочно не больше чем 600 нм, 500 нм, 400 нм, 300 нм, и даже средний размер частиц меньше чем 275 нм, в случае мелкого порошкового материала. Что касается мелкого порошкового материала, в различных вариантах частицы имеют средний размер меньше чем 250 нм, например, не больше чем 225 нм, причем в одном из вариантов средний размер частиц лежит в диапазоне от 150 до 200 нм. За счет ограничений процесса в некоторых вариантах обычно ограничен самый мелкий средний размер частиц, который составляет ориентировочно не меньше чем 75 нм, 100 нм (особенно в случае пластинчатого порошкового материала, когда минимальный размер частиц составляет 110 нм), 125 нм или 135 нм.
Использованный здесь термин "средний размер частиц" обозначает средний самый длинный размер частиц. За счет удлиненной морфологии частиц, обычные методики измерения не позволяют точно измерять средний размер частиц, так как эти методики обычно основаны на предположении, что частицы являются сферическими или практически сферическими. Поэтому средний размер частиц в соответствии с настоящим изобретением определяют с использованием множества представительных выборок за счет физического измерения размеров частиц, имеющихся в представительных выборках. Такие выборки могут быть получены при помощи различных средств, в том числе при помощи растровой электронной микроскопии. Следует иметь в виду, что часто в различных публикациях указаны размеры частиц, которые не соответствуют средним размерам, определенным здесь выше, а скорее относятся к номинальному диапазону размеров частиц, полученному при физической проверке образцов порошкового материала. Поэтому средний размер частиц, указанный в таких публикациях, будет лежать внутри указанного в этих публикациях диапазона, обычно у арифметической средней точки указанного диапазона, при ожидаемом гауссовском распределении частиц по размерам. Термин "средний размер частиц" также обозначает первичный размер частиц, связанный с индивидуально идентифицируемыми частицами, которые могут быть дисперсными или агломерированными. Само собой разумеется, что агломераты имеют относительно больший средний размер частиц, причем настоящее изобретение не сфокусировано на измерении размеров агломератов.
Аналогичным образом, указанные здесь выше коэффициенты формы обычно соответствуют средним коэффициентам формы, полученным с использованием представительных выборок, а не верхнему или нижнему пределам, связанным с коэффициентом формы порошкового материала. Часто в различных публикациях указаны коэффициенты формы частиц, которые не соответствуют средним коэффициентам формы, как в настоящем описании изобретения, а скорее представляют собой номинальный диапазон коэффициентов формы, полученный при физической проверке образцов порошкового материала. Таким образом, средний коэффициент формы будет лежать внутри указанного в этих публикациях диапазона, обычно у арифметической средней точки указанного диапазона, при ожидаемом гауссовском распределении частиц по размерам. Иначе говоря, когда в случае технологий, не основанных на использовании затравки, говорят о коэффициенте формы, то обычно речь идет о нижнем пределе наблюдаемого распределения коэффициентов формы, а не о среднем коэффициенте формы.
В дополнение к коэффициенту формы и среднему размеру частиц порошкового материала, морфологию порошкового материала можно дополнительно характеризовать при помощи удельной площади поверхности. В этом случае известная BET методика была использована для измерения удельной площади поверхности частиц порошкового материала. В соответствии с различными вариантами, бемитный порошковый материал имеет относительно большую удельную площадь поверхности, которая обычно составляет ориентировочно не меньше чем 10 м2/г, например составляет ориентировочно не меньше чем 50 м2/г, 70 м2/г или же составляет ориентировочно не меньше чем 90 м2/г. Так как удельная площадь поверхности является функцией морфологии частиц, так же как и размера частиц, обычно удельная площадь поверхности в соответствии с вариантами настоящего изобретения составляет ориентировочно меньше чем 400 м2/г, например ориентировочно меньше чем 350 или 300 м2/г. Специфические диапазоны удельной площади поверхности простираются ориентировочно от 75 м2/г до 200 м2/г.
Особое внимание придается маршруту обработки при помощи затравливания, так как маршрут обработки при помощи затравливания позволяет не только образовать предшественник переходного оксида алюминия с жестко контролируемой морфологией предшественника (которая в значительной степени сохраняется в готовом материале), но и придает желательные физические свойства готовому материалу, в том числе композиционные, морфологические и кристаллические отличия от переходного оксида алюминия, полученного с использованием маршрута обработки без использования затравки.
Пример 1. Синтез частиц пластинчатой формы
В автоклав загружали 7.42 фунта тригидроксида алюминия марки Hydral 710, закупленного на фирме Alcoa; 0.82 фунта бемита в виде псевдобемита марки Catapal В, закупленного на фирме SASOL; 66.5 фунта деионизированной воды; 0.037 фунта гидроксида калия; и 0.18 фунта 22 вес.% азотной кислоты. Бемит предварительно диспергировали в 5 фунтах воды и в 0.18 фунта кислоты, ранее добавления к тригидроксиду алюминия, к остальной воде и к гидроксиду калия.
Автоклав нагревали до 185°С в течение 45 минут и поддерживали эту температуру в течение 2 часов при перемешивании со скоростью 530 об/мин. Было получено автогенно генерируемое давление около 163 psi, которое поддерживалось. После этого бемитную дисперсию извлекали из автоклава. После автоклава рН золя был около 10. Имеющуюся жидкость удаляли при температуре 65°С. Полученную массу измельчали до частиц размером меньше чем 100 меш. Удельная площадь поверхности (SSA) полученного порошка составляет около 62 м2/г.
Этот материал прокаливали при 530°С в течение 5 минут, чтобы преобразовать в гамма оксид алюминия. После обжига при помощи рентгеновского дифракционного анализа было подтверждено, что материал на 100% представляет собой гамма оксид алюминия. Удельная площадь поверхности этого материала составляет 100.7 м2/г (см. фиг.1).
Пример 2. Синтез частиц игольчатой формы
В автоклав загружали 250 г тригидроксида алюминия марки Hydral 710, закупленного на фирме Alcoa; 25 г бемита в виде псевдобемита марки Catapal В, закупленного на фирме SASOL; 1000 г деионизированной воды; 34.7 г 18% азотной кислоты. Бемит предварительно диспергировали в 100 г воды и в 6.9 г кислоты, ранее добавления к тригидроксиду алюминия, к остальной воде и к остальной кислоте.
Автоклав нагревали до 180°С в течение 45 минут и поддерживали эту температуру в течение 2 часов при перемешивании со скоростью 530 об/мин. Было получено автогенно генерируемое давление около 150 psi, которое поддерживалось. После этого, бемитную дисперсию извлекали из автоклава. После автоклава рН золя был около 3. Имеющуюся жидкость удаляли при температуре 95°С. Полученную массу измельчали до частиц размером меньше чем 100 меш. Удельная площадь поверхности (SSA) полученного порошка составляет около 120 м2/г.
Этот материал прокаливали при 530°С в течение 5 минут, чтобы преобразовать в гамма оксид алюминия. После обжига при помощи рентгеновского дифракционного анализа было подтверждено, что материал на 100% представляет собой гамма оксид алюминия. Удельная площадь поверхности этого материала составляет 145.1 м2/г (см. фиг.2).
Пример 3. Синтез частиц эллипсоидной формы
В автоклав загружали 220 г тригидроксида алюминия марки Hydral 710, закупленного на фирме Alcoa; 55 г бемита в виде псевдобемита марки Catapal В, закупленного на фирме SASOL; 1000 г деионизированной воды; 21.4 г 18% азотной кислоты. Бемит предварительно диспергировали в 100 г воды и в 15.3 г кислоты, ранее добавления к тригидроксиду алюминия, к остальной воде и к остальной кислоте.
Автоклав нагревали до 172°С в течение 45 минут и поддерживали эту температуру в течение 3 часов при перемешивании со скоростью 530 об/мин. Было получено автогенно генерируемое давление около 120 psi, которое поддерживалось. После этого бемитную дисперсию извлекали из автоклава. После автоклава рН золя был около 4. Имеющуюся жидкость удаляли при температуре 95°С. Полученную массу измельчали до частиц размером меньше чем 100 меш. Удельная площадь поверхности (SSA) полученного порошка составляет около 135 м2/г.
Этот материал прокаливали при 530°С в течение 5 минут, чтобы преобразовать в гамма оксид алюминия. После обжига при помощи рентгеновского дифракционного анализа было подтверждено, что материал на 100% представляет собой гамма оксид алюминия. Удельная площадь поверхности этого материала составляет 167.8 м2/г (см. фиг.3).
Различные аспекты настоящего изобретения позволяют использовать бемитный порошковый материал в самых различных применениях, в том числе в таких применениях, которые не особенно хорошо подходят для использования бемита, например в применениях, где требуется высокая твердость и/или где предусмотрена высокая температура обработки, таких как обработка расплава фторированных полимеров. Высокие свойства замедления распространения пламени, УФ защиты, способности переносить атмосферные условия, стойкости к химическому воздействию, удельной теплопроводности и электрического сопротивления делают предлагаемый переходный оксид алюминия важным промышленным материалом. В качестве примеров других возможных применений следует указать использование в качестве добавки к бумаге, поглотителя краски в струйной печати, катализатора, средства фильтрации или как абразива при ответственном химико-механическом полировании в электронной промышленности.
Несмотря на то что были описаны предпочтительные варианты осуществления изобретения, совершенно ясно, что в него специалистами в данной области могут быть внесены изменения и дополнения, которые не выходят за рамки формулы изобретения.

Claims (60)

1. Порошковый материал из оксида алюминия, который содержит:
затравочные частицы из переходного оксида алюминия, имеющие коэффициент формы не меньше чем 3:1 и средний размер частиц ориентировочно не меньше чем 110 нм и не больше чем 1000 нм.
2. Порошковый материал по п.1, в котором переходный оксид алюминия выбран из группы, в которую входят гамма-оксид алюминия, дельта-оксид алюминия и тета-оксид алюминия.
3. Порошковый материал по п.2, в котором переходный оксид алюминия выбран из группы, в которую входят гамма-оксид алюминия и дельта-оксид алюминия.
4. Порошковый материал по п.3, в котором переходный оксид алюминия представляет собой гамма-оксид алюминия.
5. Порошковый материал по п.1, в котором частицы содержат по меньшей мере 70 вес.% переходного оксида алюминия.
6. Порошковый материал по п.5, в котором частицы содержат по меньшей мере 80 вес.% переходного оксида алюминия.
7. Порошковый материал по п.6, в котором частицы содержат по меньшей мере 90 вес.% переходного оксида алюминия.
8. Порошковый материал по п.7, в котором переходный оксид алюминия выбран из группы, в которую входят гамма-оксид алюминия, дельта-оксид алюминия и тета-оксид алюминия.
9. Порошковый материал по п.8, в котором переходный оксид алюминия выбран из группы, в которую входят гамма-оксид алюминия и дельта-оксид алюминия.
10. Порошковый материал по п.1, в котором коэффициент формы составляет не меньше чем 5:1.
11. Порошковый материал по п.10, в котором коэффициент формы составляет не меньше чем 6:1.
12. Порошковый материал по п.11, в котором коэффициент формы составляет не меньше чем 8:1.
13. Порошковый материал по п.12, в котором коэффициент формы составляет не меньше чем 10:1.
14. Порошковый материал по п.1, в котором средний размер частиц составляет не меньше чем 125 нм.
15. Порошковый материал по п.14, в котором средний размер частиц составляет не меньше чем 135 нм.
16. Порошковый материал по п.1, в котором средний размер частиц составляет не больше чем 750 нм.
17. Порошковый материал по п.16, в котором средний размер частиц составляет не больше чем 500 нм.
18. Порошковый материал по п.17, в котором средний размер частиц составляет не больше чем 300 нм.
19. Порошковый материал по п.18, в котором средний размер частиц лежит в диапазоне от 150 до 200 нм.
20. Порошковый материал по п.1, в котором частицы имеют пластинчатую форму и имеют вторичный коэффициент формы не меньше чем 3:1.
21. Порошковый материал по п.20, в котором вторичный коэффициент формы составляет не меньше чем 6:1.
22. Порошковый материал по п.21, в котором вторичный коэффициент формы составляет не меньше чем 10:1.
23. Порошковый материал по п.1, в котором частицы имеют игольчатую форму и вторичный коэффициент формы не больше чем 3:1.
24. Порошковый материал по п.20, в котором вторичный коэффициент формы составляет не больше чем 2:1.
25. Порошковый материал по п.21, в котором вторичный коэффициент формы составляет не больше чем 1.5:1.
26. Порошковый материал по п.1, в котором удельная площадь поверхности составляет ориентировочно не меньше чем 50 м2/г.
27. Порошковый материал по п.26, в котором удельная площадь поверхности составляет ориентировочно не меньше чем 70 м2/г.
28. Порошковый материал по п.1, в котором удельная площадь поверхности составляет ориентировочно не больше чем 400 м2/г.
29. Порошковый материал по п.28, в котором удельная площадь поверхности составляет ориентировочно не больше чем 300 м2/г.
30. Порошковый материал по п.1, который представляет собой затравочный порошковый материал из оксида алюминия.
31. Порошковый материал по п.1, который состоит главным образом из указанных частиц.
32. Порошковый материал из оксида алюминия, который содержит:
затравочные частицы игольчатой формы, содержащие переходный оксид алюминия, имеющие коэффициент формы не меньше чем 3:1, вторичный коэффициент формы не больше чем 3:1 и средний размер частиц ориентировочно не меньше чем 75 нм.
33. Порошковый материал по п.32, в котором вторичный коэффициент формы составляет не больше чем 2:1.
34. Порошковый материал из оксида алюминия, который содержит:
затравочные частицы пластинчатой формы, содержащие переходный оксид алюминия, имеющие коэффициент формы не меньше чем 3:1, вторичный коэффициент формы не меньше чем 3:1 и средний размер частиц ориентировочно не меньше чем 125 нм.
35. Порошковый материал из оксида алюминия по п.34, в котором вторичный коэффициент формы составляет не меньше чем 6:1.
36. Способ получения порошкового материала из оксида алюминия, который включает в себя следующие операции:
использование предшественника бемита и бемитной затравки в суспензии;
термообработку суспензии для преобразования предшественника бемита в бемитный порошковый материал;
обжиг бемитного порошкового материала для его преобразования в порошковый материал из переходного оксида алюминия.
37. Способ по п.36, в котором термообработку проводят при температуре свыше 120°С.
38. Способ по п.36, в котором термообработку проводят при автогенном давлении.
39. Способ по п.36, в котором весовое отношение предшественника бемита к бемитовой затравке составляет не меньше чем 60:40.
40. Способ по п.39, в котором весовое соотношение составляет не меньше чем 80:20.
41. Способ по п.40, в котором весовое отношение предшественника бемита к бемитовой затравке составляет не больше чем 98:2.
42. Способ по п.36, в котором средний размер частиц порошкового материала из переходного оксида алюминия составляет не меньше чем 75 нм.
43. Способ по п.42, в котором средний размер частиц составляет не меньше чем 100 нм.
44. Способ по п.36, в котором средний размер частиц составляет не больше чем 300 нм.
45. Способ по п.44, в котором средний размер частиц составляет не больше чем 250 нм.
46. Способ по п.45, в котором средний размер частиц составляет не больше чем 225 нм.
47. Способ по п.46, в котором средний размер частиц лежит в диапазоне от 150 до200 нм.
48. Способ по п.36, в котором порошковый материал из переходного оксида алюминия имеет форму пластинок и имеет вторичный коэффициент формы не меньше чем 3:1.
49. Способ по п.48, в котором вторичный коэффициент формы составляет не меньше чем 6:1.
50. Способ по п.49, в котором вторичный коэффициент формы составляет не меньше чем 10:1.
51. Способ по п.36, в котором порошковый материал из переходного оксида алюминия имеет игольчатую форму и имеет вторичный коэффициент формы не больше чем 3:1.
52. Способ по п.51, в котором вторичный коэффициент формы составляет не больше чем 2:1.
53. Способ по п.52, в котором вторичный коэффициент формы составляет не больше чем 1.5:1.
54. Способ по п.36, в котором для поддержания морфологии порошкового материала из бемита проводят обжиг.
55. Способ по п.54, в котором удельная площадь поверхности порошкового материала из переходного оксида алюминия больше, чем удельная площадь поверхности порошкового материала из бемита.
56. Способ по п.55, в котором удельная площадь поверхности порошкового материала из переходного оксида алюминия по меньшей мере на 8% больше, чем удельная площадь поверхности порошкового материала из бемита.
57. Способ по п.55, в котором удельная площадь поверхности порошкового материала из переходного оксида алюминия составляет не меньше чем 50 м2/г.
58. Способ по п.57, в котором удельная площадь поверхности порошкового материала из переходного оксида алюминия составляет не меньше чем 70 м2/г.
59. Способ по п.55, в котором удельная площадь поверхности порошкового материала из переходного оксида алюминия составляет не больше чем 400 м2/г.
60. Способ по п.59, в котором удельная площадь поверхности порошкового материала из переходного оксида алюминия составляет не больше чем 300 м2/г.
RU2007120885/15A 2004-11-18 2005-11-18 Порошковый материал из оксида алюминия (варианты) и способ его получения RU2348641C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/992,477 US20060104895A1 (en) 2004-11-18 2004-11-18 Transitional alumina particulate materials having controlled morphology and processing for forming same
US10/992,477 2004-11-18

Publications (1)

Publication Number Publication Date
RU2348641C1 true RU2348641C1 (ru) 2009-03-10

Family

ID=36227748

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007120885/15A RU2348641C1 (ru) 2004-11-18 2005-11-18 Порошковый материал из оксида алюминия (варианты) и способ его получения

Country Status (16)

Country Link
US (2) US20060104895A1 (ru)
EP (1) EP1843979A1 (ru)
JP (1) JP5128953B2 (ru)
KR (1) KR100888161B1 (ru)
CN (1) CN101061068B (ru)
AU (1) AU2005310155B2 (ru)
BR (1) BRPI0518310A2 (ru)
CA (1) CA2587226C (ru)
IL (1) IL183119A0 (ru)
MX (1) MX2007005919A (ru)
NO (1) NO20073075L (ru)
NZ (2) NZ587683A (ru)
RU (1) RU2348641C1 (ru)
TW (1) TWI320777B (ru)
UA (1) UA87716C2 (ru)
WO (1) WO2006060206A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692721C2 (ru) * 2017-09-19 2019-06-26 МСД Текнолоджис С.а.р.л. СПОСОБ ОКИСЛЕНИЯ АЛЮМИНИЯ, КАТАЛИЗАТОР ОКИСЛЕНИЯ АЛЮМИНИЯ И НАНОМАТЕРИАЛ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ (варианты)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050124745A1 (en) * 2002-04-19 2005-06-09 Saint-Gobain Ceramics & Plastics, Inc. Flame retardant composites
US20050227000A1 (en) * 2004-04-13 2005-10-13 Saint-Gobain Ceramics & Plastics, Inc. Surface coating solution
RU2271929C2 (ru) * 2002-04-19 2006-03-20 Сэнт-Гобэн Керамикс Энд Пластикс, Инк. Модифицированный полимерный материал (варианты) и способ формирования экструдированного продукта
TWI297673B (en) * 2004-11-11 2008-06-11 Univ Nat Cheng Kung High specific surface area composite alumina powder with thermal resistance and method for producing the same
US20060104895A1 (en) 2004-11-18 2006-05-18 Saint-Gobain Ceramics & Plastics, Inc. Transitional alumina particulate materials having controlled morphology and processing for forming same
TWI290944B (en) * 2004-12-01 2007-12-11 Saint Gobain Ceramics Rubber formulation and methods for manufacturing same
JP2006160541A (ja) * 2004-12-03 2006-06-22 Sumitomo Chemical Co Ltd 針状水酸化アルミニウムの製造方法
DE102004061700A1 (de) * 2004-12-22 2006-07-06 Degussa Ag Aluminiumoxidpulver, Dispersion und Beschichtungszusammensetzung
TWI262172B (en) * 2005-03-21 2006-09-21 Univ Nat Cheng Kung Method for producing nano-scale theta-phase alumina microparticles
US8685123B2 (en) 2005-10-14 2014-04-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particulate material, and method of planarizing a workpiece using the abrasive particulate material
US7479324B2 (en) * 2005-11-08 2009-01-20 Saint-Gobain Ceramics & Plastics, Inc. Pigments comprising alumina hydrate and a dye, and polymer composites formed thereof
DE102007032820A1 (de) * 2006-07-14 2008-02-21 Sumitomo Chemical Co., Ltd. Nadelförmiges Böhmit und Verfahren zu dessen Herstellung
JP2008266613A (ja) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd ベーマイト充填ポリプロピレン樹脂組成物およびそれからなる成形体
EP2231523A2 (en) * 2007-12-19 2010-09-29 Saint-Gobain Ceramics & Plastics, Inc. Aggregates of alumina hydrates
US20090172723A1 (en) * 2007-12-31 2009-07-02 Almondnet, Inc. Television advertisement placement more resistant to user skipping
JP5316482B2 (ja) * 2008-03-13 2013-10-16 株式会社デンソー アルミナ粒子の製造方法
JP2009242226A (ja) * 2008-03-13 2009-10-22 Denso Corp アルミナ粒子の製造方法
JP5530672B2 (ja) * 2008-08-18 2014-06-25 株式会社フジミインコーポレーテッド ベーマイト粒子の製造方法及びアルミナ粒子の製造方法
JP5612583B2 (ja) * 2008-10-06 2014-10-22 ダウ グローバル テクノロジーズ エルエルシー エチレンオキサイド及びアンモニアからのエタノールアミン及びエチレンアミンの製造方法並びに関連方法
CN102171178B (zh) * 2008-10-06 2015-07-29 联合碳化化学品及塑料技术公司 乙二胺和其它乙撑胺的连续氨基转移
EP2340240B1 (en) * 2008-10-06 2014-07-23 Union Carbide Chemicals & Plastics Technology LLC Transalkoxylation of nucleophilic compounds
WO2010042157A1 (en) 2008-10-06 2010-04-15 Union Carbide Chemicals & Plastics Technology Llc Low metal loaded, alumina supported, catalyst compositions and amination process
CN102224129B (zh) 2008-10-06 2015-02-11 联合碳化化学品及塑料技术公司 制备乙撑胺的方法
WO2010042159A1 (en) * 2008-10-06 2010-04-15 Union Carbide Chemicals & Plastics Technology Llc Methods of making cyclic, n-amino functional triamines
WO2010042161A1 (en) 2008-10-06 2010-04-15 Union Carbide Chemicals & Plastics Technology Llc Low metal (nickel and rhenium) catalyst compositions including acidic mixed metal oxide as support
WO2010069690A1 (en) * 2008-12-17 2010-06-24 Evonik Degussa Gmbh Process for preparing an aluminium oxide powder having a high alpha-al2o3 content
US8460768B2 (en) * 2008-12-17 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. Applications of shaped nano alumina hydrate in inkjet paper
US20120058272A1 (en) * 2010-09-03 2012-03-08 Simpson Sharon M Transparent ink-jet recording films, compositions, and methods
JP5637830B2 (ja) * 2010-12-09 2014-12-10 河合石灰工業株式会社 いがぐり状ベーマイト及びその製造方法
US9391258B2 (en) 2011-02-18 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric element
JP5786093B2 (ja) 2011-06-29 2015-09-30 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド シリカドープしたアルミナ微粒子材料
WO2013095810A1 (en) 2011-12-22 2013-06-27 Dow Global Technologies Llc Reductive amination of diethanolamine and resulting product mixture
BR112014016218A8 (pt) 2011-12-29 2017-07-04 Dow Global Technologies Llc produto de reação, composição de reação e método para manufaturar uma amina polifuncional
JP2013208582A (ja) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial Science & Technology 触媒担体用γ−アルミナ及びその製造方法
FR3000059A1 (fr) * 2012-12-21 2014-06-27 Saint Gobain Placo Composition pour plaques de platre et produits obtenus
JP5635650B2 (ja) * 2013-06-18 2014-12-03 関東電化工業株式会社 アルミナ微粒子及びその製造方法
CN105745251B (zh) 2013-12-02 2019-04-23 陶氏环球技术有限责任公司 高分子量的、支化的、无环多亚烷基胺及其混合物的制备
US20160001265A1 (en) * 2014-07-01 2016-01-07 Uop Llc Alumina materials with increased surface acidity, methods for making, and methods for using the same
CN106698489B (zh) * 2017-01-04 2019-03-01 杭州智华杰科技有限公司 一种高切削高亮度氧化铝抛光粉的制备方法
CN107699552B (zh) * 2017-11-23 2018-10-23 中国科学院近代物理研究所 一种提高绿色木霉产纤维素酶酶活的方法
CN110302741A (zh) * 2019-07-16 2019-10-08 新疆维吾尔自治区环境保护科学研究院 一种气体净化颗粒及其制备方法与应用
JP7398304B2 (ja) * 2020-03-19 2023-12-14 株式会社フジミインコーポレーテッド 研磨用組成物、研磨方法および半導体基板の製造方法

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE956535C (de) 1951-08-09 1957-01-17 Pechiney Prod Chimiques Sa Verfahren zur Herstellung tonerdehaltiger Pigmente
US2763620A (en) * 1951-12-05 1956-09-18 Du Pont Process for preparing alumina sols
US3056747A (en) 1957-12-13 1962-10-02 Du Pont Process for the production of fibrous alumina monohydrate
US2915475A (en) * 1958-12-29 1959-12-01 Du Pont Fibrous alumina monohydrate and its production
US3117944A (en) 1960-07-28 1964-01-14 Du Pont Coagula of colloidal fibrous boehmite and acrylamide polymers and processes for making same
US3108888A (en) * 1960-08-04 1963-10-29 Du Pont Colloidal, anisodiametric transition aluminas and processes for making them
US3202626A (en) 1961-12-28 1965-08-24 Vincent G Fitzsimmons Modified polytetrafluoroethylene dispersions and solid products
US3136644A (en) 1962-02-27 1964-06-09 Du Pont Regenerated cellulose shaped articles and process
NL302055A (ru) 1962-12-27
GB1022944A (en) 1963-07-11 1966-03-16 Continental Oil Co Colloidal alumina monohydrate
US3357791A (en) * 1964-07-20 1967-12-12 Continental Oil Co Process for producing colloidal-size particles of alumina monohydrate
US3385663A (en) * 1964-07-31 1968-05-28 Du Pont Preparation of high surface area, waterdispersible alumina monohydrate from low surface area alumina trihydrate
US3387447A (en) * 1965-12-27 1968-06-11 Celanese Corp Traveler rings
GB1189304A (en) 1966-07-26 1970-04-22 British Petroleum Co New Sulphur-Containing Phosphonate Esters and Lubricating Compositions containing them
US3814782A (en) 1968-12-27 1974-06-04 Universal Oil Prod Co Making alumina fibers from a mixture of alumina sol and hexamethylene-tetramine
DE2104897A1 (de) 1971-02-03 1972-08-17 Bayer Verfahren zur Herstellung von kolloidalem faserförmigen Böhmit
US3853688A (en) 1971-06-23 1974-12-10 Du Pont Continuous filaments and yarns
US3978103A (en) 1971-08-17 1976-08-31 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Sulfur containing organosilicon compounds
BE787691A (fr) 1971-08-17 1973-02-19 Degussa Composes organosiliciques contenant du soufre
US3873489A (en) 1971-08-17 1975-03-25 Degussa Rubber compositions containing silica and an organosilane
DE2163678C2 (de) 1971-12-22 1981-10-15 Bayer Ag, 5090 Leverkusen Aluminiumoxidfasern und Verfahren zu ihrer Herstellung
US3865917A (en) 1972-02-10 1975-02-11 United Aircraft Corp Preparation of alumina monofilaments
JPS49125298A (ru) * 1973-04-06 1974-11-30
SU580840A3 (ru) 1974-02-07 1977-11-15 Дегусса (Фирма) Способ получени серосодержащих кремнийорганических соединений
US3950180A (en) 1974-07-02 1976-04-13 Mitsubishi Kinzoku Kabushiki Kaisha Coloring composites
US4002594A (en) 1975-07-08 1977-01-11 Ppg Industries, Inc. Scorch retardants for rubber reinforced with siliceous pigment and mercapto-type coupling agent
CS195426B1 (cs) 1976-05-11 1980-02-29 Jan Zemlicka Polotovar pro výrobu kysličníkové keramiky
CA1110930A (en) 1976-09-29 1981-10-20 Union Carbide Corporation Treated hydrated alumina
US4117105A (en) * 1977-03-21 1978-09-26 Pq Corporation Process for preparing dispersible boehmite alumina
HU178412B (en) 1978-12-29 1982-05-28 Almasfuezitoei Timfoeldgyar Process for preparing spherical gamma aluminium oxide absorbent with high mechanical resistance
FR2449650A1 (fr) * 1979-02-26 1980-09-19 Rhone Poulenc Ind Procede de preparation d'alumine au moins partiellement sous forme de boehmite ultra-fine
EP0038620A3 (en) 1980-03-21 1982-06-09 Imperial Chemical Industries Plc Particulate filler and polymer composition containing the filler
US4386185A (en) 1980-05-06 1983-05-31 Phillips Petroleum Company Phosphonates as silica-to-rubber coupling agents
US4525494A (en) 1981-06-09 1985-06-25 Robert Andy High strength flame resistant poly-olefins comprising surface coated alumina hydrate plus organic titanate and methods of making the same
FR2520722A1 (fr) * 1982-01-29 1983-08-05 Rhone Poulenc Spec Chim Boehmites et pseudo-
JPS6046923A (ja) 1983-08-23 1985-03-14 Mitsubishi Chem Ind Ltd ベ−マイト
JPS58222128A (ja) 1982-06-18 1983-12-23 Kyowa Chem Ind Co Ltd ハロゲン含有ゴムの耐水性改良法
HU189188B (en) 1982-11-09 1986-06-30 Magyar Szenhidregenipari Kutato-Fejlesztoe Intezet,Hu Process for producing active aluminium-oxid
US5194243A (en) * 1983-09-22 1993-03-16 Aluminum Company Of America Production of aluminum compound
US5445807A (en) 1983-09-22 1995-08-29 Aluminum Company Of America Production of aluminum compound
US4539365A (en) 1984-02-21 1985-09-03 The B. F. Goodrich Company Universal cement for natural and synthetic rubber tire compounds
US4623738A (en) 1985-04-22 1986-11-18 Kenrich Petrochemicals, Inc. Neoalkoxy organo-titanates and organo-zirconates useful as coupling and polymer processing agents
US4632364A (en) 1985-03-08 1986-12-30 Bethea Electrical Products, Inc. Bundle conductor stringing block gate
GB2174998B (en) 1985-03-20 1989-01-05 Dainichi Nippon Cables Ltd Flame-retardant resin compositions
DE3512404A1 (de) * 1985-04-04 1986-10-09 Vereinigte Aluminium-Werke AG, 1000 Berlin und 5300 Bonn Verfahren zur verminderung der organischen bestandteile in aluminatlaugen
US4835124A (en) * 1985-09-30 1989-05-30 Aluminum Company Of America Alumina ceramic product from colloidal alumina
US4891127A (en) 1985-12-31 1990-01-02 Exxon Research And Engineering Company Preparation and use of catalysts comprising a mixture of tungsten oxide and silica supported on a boehmite-like surface
JPS63131321A (ja) 1986-11-20 1988-06-03 Sumitomo Chem Co Ltd 磁気記録媒体
US5302368A (en) * 1987-01-29 1994-04-12 Sumitomo Chemical Company, Limited Process for preparation of alumina
SU1444080A1 (ru) 1987-04-27 1988-12-15 Белорусский Политехнический Институт Способ получени керамических изделий из порошка алюмини
US4797139A (en) * 1987-08-11 1989-01-10 Norton Company Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom
DE3817251A1 (de) * 1988-05-20 1989-11-23 Condea Chemie Gmbh Lackentklebungs- und sedimentationsmittel
JP2686833B2 (ja) 1989-10-02 1997-12-08 エスケ−化研株式会社 鉄に対する付着力の優れた耐火被覆組成物
US5321055A (en) 1990-01-31 1994-06-14 Slocum Donald H Process for the preparation of a synthetic quartzite-marble/granite material
EP0464627B2 (en) * 1990-06-29 1999-03-24 Sumitomo Chemical Company Limited Heat resistant transition alumina and process for producing the same
GB2248841A (en) 1990-10-17 1992-04-22 Aei Cables Ltd Coloured polymeric material
FR2673187B1 (fr) 1991-02-25 1994-07-01 Michelin & Cie Composition de caoutchouc et enveloppes de pneumatiques a base de ladite composition.
DE4118564A1 (de) * 1991-06-06 1992-12-17 Vaw Ver Aluminium Werke Ag Teilkristalline uebergangsaluminiumoxide, verfahren zu deren herstellung und verwendung zur gewinnung von formkoerpern, die im wesentlichen aus gamma-al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts) bestehen
DE4131986A1 (de) * 1991-09-26 1993-04-01 Basf Ag Unverstaerkte polyamidformmassen
US5344489A (en) 1991-11-15 1994-09-06 Manfred R. Kuehnle Synthetic, monodispersed color pigments for the coloration of media such as printing inks, and method and apparatus for making same
JPH05238729A (ja) * 1991-12-18 1993-09-17 Sumitomo Chem Co Ltd 遷移アルミナの製造方法
JP2887023B2 (ja) * 1992-03-30 1999-04-26 ワイケイケイ株式会社 微細板状ベーマイト粒子及びその製造方法
US5286290A (en) 1992-04-16 1994-02-15 Avonite, Inc. Filler and artificial stone made therewith
DE69324581T2 (de) * 1992-06-02 1999-11-18 Sumitomo Chemical Co., Ltd. Alpha-aluminiumoxid
US5277702A (en) * 1993-03-08 1994-01-11 St. Gobain/Norton Industrial Ceramics Corp. Plately alumina
US5635291A (en) 1993-04-28 1997-06-03 Canon Kabushiki Kaisha Ink-jet recording medium
GB9312356D0 (en) 1993-06-16 1993-07-28 Bp Chem Int Ltd Stabilised polyketone compositions
US5723529A (en) 1994-12-21 1998-03-03 The Goodyear Tire & Rubber Company Silica based aggregates, elastomers reinforced therewith and tire tread thereof
US5525659A (en) 1993-09-08 1996-06-11 The Dow Chemical Company Batch inclusion packages
DE69427828T2 (de) * 1993-10-21 2001-11-08 Condea Vista Comp., Austin Mit aluminiumoxid verdickte latexzusammensetzungen
DE69504875T2 (de) 1994-02-14 1999-03-11 Toyota Jidosha K.K., Toyota, Aichi Verfahren zur Herstellung von Aluminiumboratwhiskern mit einer verbesserten Oberfläche auf der Basis von Gamma-Aluminiumoxyd
EP0697432B1 (en) 1994-08-19 2003-10-15 Bridgestone Corporation Rubber composition for tire treads
JP2887098B2 (ja) * 1994-10-26 1999-04-26 キヤノン株式会社 被記録媒体、その製造方法及び画像形成方法
JP3402821B2 (ja) 1995-02-09 2003-05-06 科学技術振興事業団 超微粒子の製造方法と超微粒子配向成長体の製造方法
US5580919A (en) 1995-03-14 1996-12-03 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and use in tires
US5725162A (en) 1995-04-05 1998-03-10 Saint Gobain/Norton Industrial Ceramics Corporation Firing sol-gel alumina particles
JP2921785B2 (ja) 1995-04-05 1999-07-19 キヤノン株式会社 被記録媒体、該媒体の製造方法及び画像形成方法
DE19530200A1 (de) * 1995-08-17 1997-02-20 Bayer Ag Feinstteilige anorganische Pulver als Flammschutzmittel in thermoplastischen Formmassen
JP3304360B2 (ja) 1996-03-05 2002-07-22 護郎 佐藤 アルミナゾル及びその製造方法、及びそれを用いたアルミナ成型体の製造方法、及びそれによって得られたアルミナ系触媒
US5583245A (en) 1996-03-06 1996-12-10 The Goodyear Tire & Rubber Company Preparation of sulfur-containing organosilicon compounds
CA2205518A1 (en) 1996-05-16 1997-11-16 Toshiyuki Mizoe Aluminum hydroxide, method for producing the same, and method of use of the same
FR2749313A1 (fr) * 1996-05-28 1997-12-05 Michelin & Cie Composition de caoutchouc dienique a base d'alumine en tant que charge renforcante et son utilisation pour la fabrication d'enveloppes de pneumatiques
US5853886A (en) 1996-06-17 1998-12-29 Claytec, Inc. Hybrid nanocomposites comprising layered inorganic material and methods of preparation
US5696197A (en) 1996-06-21 1997-12-09 The Goodyear Tire & Rubber Company Heterogeneous silica carbon black-filled rubber compound
US5989515A (en) * 1996-07-24 1999-11-23 Nissan Chemical Industries, Ltd. Process for producing an acidic aqueous alumina sol
US5663396A (en) 1996-10-31 1997-09-02 The Goodyear Tire & Rubber Company Preparation of sulfur-containing organosilicon compounds
PL328862A1 (en) 1996-12-31 1999-03-01 Dow Chemical Co Polymer/organocaly composites and their production
US5684171A (en) 1997-02-11 1997-11-04 The Goodyear Tire & Rubber Company Process for the preparation of organosilicon polysulfide compounds
US5684172A (en) 1997-02-11 1997-11-04 The Goodyear Tire & Rubber Company Process for the preparation of organosilicon polysulfide compounds
DE19722750C2 (de) * 1997-05-30 2001-07-19 Rwe Dea Ag Verwendung einer Zusammensetzung als Lackentklebungs- und Sedimentationsmittel
FR2764213B1 (fr) * 1997-06-10 1999-07-16 Inst Francais Du Petrole Catalyseur d'hydrotraitement de charges hydrocarbonees dans un reacteur a lit fixe
US5973048A (en) 1997-08-08 1999-10-26 General Electric Company Melt and color stabilization of aliphatic polyketones
CN1217859C (zh) * 1997-11-28 2005-09-07 米什兰集团总公司 补强性铝填料和含有这种填料的橡胶组合物
MY117813A (en) * 1998-01-08 2004-08-30 Nissan Chemical Ind Ltd Alumina powder, process for producing the same and polishing composition.
DE19812279C1 (de) * 1998-03-20 1999-05-12 Nabaltec Gmbh Flammwidrige Kunststoffmischung und Verfahren zur Herstellung eines Füllstoffs
CA2272448A1 (en) 1998-05-29 1999-11-29 Martinswerk Gmbh Fur Chemische Und Metallurgische Produktion Non-hygroscopic thermally stable aluminium hydroxide
JP3283475B2 (ja) * 1998-09-16 2002-05-20 河合石灰工業株式会社 板状ベーマイト及び板状アルミナ並びにそれらの製造方法
DE19847161A1 (de) 1998-10-14 2000-04-20 Degussa Mittels Aerosol dotiertes pyrogen hergestelltes Siliciumdioxid
US6656992B2 (en) 1998-11-09 2003-12-02 Bridgestone Corporation Rubber composition
WO2000034379A1 (en) 1998-12-07 2000-06-15 Eastman Chemical Company A colorant composition, a polymer nanocomposite comprising the colorant composition and articles produced therefrom
US6511642B1 (en) 1999-01-12 2003-01-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous material, catalyst, method of producing the porous material and method for purifying exhaust gas
JP3616269B2 (ja) 1999-02-19 2005-02-02 河合石灰工業株式会社 針状ベーマイトの製造方法及び針状ベーマイト
WO2000073372A1 (fr) * 1999-05-28 2000-12-07 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique, a base d'elastomere dienique et d'un oxyde de titane renforçant
DE19931204A1 (de) 1999-07-07 2001-01-18 Rwe Dea Ag Verfahren zur Herstellung von in organischen Lösungsmitteln dispergierbaren Metalloxiden
AU6027600A (en) 1999-07-13 2001-01-30 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Nanocomposite coatings
PT1200350E (pt) 1999-08-11 2005-03-31 Albemarle Netherlands Bv Processo para a preparacao de boehmites quasi-cristalinas
US7208446B2 (en) 1999-08-11 2007-04-24 Albemarle Netherlands B. V. Quasi-crystalline boehmites containing additives
JP4402213B2 (ja) 1999-08-23 2010-01-20 大塚化学株式会社 板状Al2O3粒及びその製造方法
JP4639443B2 (ja) 1999-08-30 2011-02-23 住友化学株式会社 ベーマイト及びそれを用いて形成してなる磁気記録媒体の下地層
KR20010021420A (ko) * 1999-08-30 2001-03-15 고사이 아끼오 보우마이트 및 자기 기록 매체의 초벌층
US6417286B1 (en) 1999-09-08 2002-07-09 The Goodyear Tire & Rubber Company Titanium and zirconium compounds
US6413308B1 (en) * 1999-10-15 2002-07-02 J. M. Huber Corporation Structured boehmite pigment and method for making same
DE60013750T2 (de) 1999-12-27 2005-10-06 Sumitomo Chemical Co., Ltd. Aluminiumhydroxid, Zusammensetzung einer Reifenlauffläche und Luftreifen enthaltend Aluminiumhydroxid
JP3694627B2 (ja) 1999-12-28 2005-09-14 キンセイマテック株式会社 薄片状ベーマイト粒子の製造方法
JP2001207077A (ja) 2000-01-26 2001-07-31 Otsuka Chem Co Ltd 真珠光沢顔料
DE60119799T2 (de) * 2000-01-28 2007-04-26 Oji Paper Co., Ltd. Tintenstrahlaufzeichnungsmaterial
JP3615683B2 (ja) 2000-02-28 2005-02-02 株式会社日本触媒 増粘剤
JP2001261976A (ja) 2000-03-16 2001-09-26 Otsuka Chem Co Ltd 樹脂組成物
CN1108276C (zh) 2000-03-30 2003-05-14 中国科学院上海硅酸盐研究所 一种-水软铝石超细纳米粉体的制备方法
JP2001303458A (ja) 2000-04-21 2001-10-31 Kuraray Co Ltd 銀面層を有する皮革様シートおよびその製造方法
BR0111359B1 (pt) 2000-05-17 2012-03-20 ômétodo para fabricar papel e cartonagem e papel ou cartonagem feita de uma folha de papel contínua drenadaö.
JP2001323188A (ja) 2000-05-19 2001-11-20 Nisshin Steel Co Ltd 透明光触媒分散塗膜形成用塗料及び透明光触媒分散塗膜が形成された塗装金属板
WO2002020655A1 (fr) 2000-09-06 2002-03-14 Jsr Corporation Composite a base de caoutchouc dienique et de matiere minerale, procede de production de ce composite et composition de caoutchouc
US6635700B2 (en) 2000-12-15 2003-10-21 Crompton Corporation Mineral-filled elastomer compositions
WO2002053634A1 (fr) 2001-01-02 2002-07-11 Societe De Technologie Michelin Composition de caoutchouc a base d'élastomère dienique et d'un carbure de silicium renforçant
US6534584B2 (en) 2001-01-08 2003-03-18 The Goodyear Tire & Rubber Company Silica reinforced rubber composition which contains carbon black supported thioglycerol coupling agent and article of manufacture, including a tire, having at least one component comprised of such rubber composition
DE60214444T2 (de) 2001-01-17 2007-09-20 Bridgestone Corp. Kautschukzusammensetzung und Reifen
WO2002064877A2 (en) 2001-01-30 2002-08-22 The Procter & Gamble Company Coating compositions for modifying surfaces
JP2002332381A (ja) 2001-05-10 2002-11-22 Sumitomo Chem Co Ltd ゴム組成物およびそれを用いるタイヤ
JP3663369B2 (ja) 2001-06-18 2005-06-22 河合石灰工業株式会社 六角板状ベーマイト及び六角板状アルミナの製造方法
US6858665B2 (en) 2001-07-02 2005-02-22 The Goodyear Tire & Rubber Company Preparation of elastomer with exfoliated clay and article with composition thereof
DE10135452A1 (de) 2001-07-20 2003-02-06 Degussa Pyrogen hergestellte Aluminium-Silicium-Mischoxide
DE10137046A1 (de) 2001-07-31 2003-02-20 Basf Ag Verfahren zur Herstellung von thermoplastischen Poly(3-hydroxyalkanoaten)
JP3930273B2 (ja) 2001-08-08 2007-06-13 岐阜県 針状ベーマイト及びそれを含有する樹脂組成物
US6653387B2 (en) 2001-09-26 2003-11-25 The Goodyear Tire & Rubber Company Alumina reinforced rubber composition which contains tetrathiodipropionic and/or trithiodipropionic acid coupling agent and article of manufacture, including a tire, having at least one component comprised of such rubber composition
JP2003107206A (ja) 2001-09-28 2003-04-09 Dainippon Printing Co Ltd 光学機能性膜用樹脂組成物、光学機能性膜及び反射防止膜
US6706660B2 (en) * 2001-12-18 2004-03-16 Caterpillar Inc Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems
DE10203047A1 (de) 2002-01-26 2003-08-07 Degussa Kationische Mischoxid-Dispersion, Streichfarbe und tintenaufnehmendes Medium
US6646026B2 (en) 2002-02-07 2003-11-11 University Of Massachusetts Methods of enhancing dyeability of polymers
JP4236146B2 (ja) 2002-02-19 2009-03-11 河合石灰工業株式会社 多孔質ベーマイト成形体及び多孔質アルミナ成形体
JP4368118B2 (ja) 2002-02-20 2009-11-18 大明化学工業株式会社 ベーマイトスラリーの製造方法、ベーマイトゾルの製造方法、ベーマイトゾル、ベーマイト、記録媒体の製造方法、および記録媒体
JP3686384B2 (ja) 2002-02-28 2005-08-24 住友ゴム工業株式会社 トレッド用ゴム組成物およびそれを用いた空気入りタイヤ
US20050227000A1 (en) 2004-04-13 2005-10-13 Saint-Gobain Ceramics & Plastics, Inc. Surface coating solution
US20040265219A1 (en) 2002-04-19 2004-12-30 Saint-Gobain Ceramics & Plastics, Inc. Seeded boehmite particulate material and methods for forming same
US20050124745A1 (en) * 2002-04-19 2005-06-09 Saint-Gobain Ceramics & Plastics, Inc. Flame retardant composites
RU2271929C2 (ru) 2002-04-19 2006-03-20 Сэнт-Гобэн Керамикс Энд Пластикс, Инк. Модифицированный полимерный материал (варианты) и способ формирования экструдированного продукта
JP4029760B2 (ja) 2002-04-19 2008-01-09 王子製紙株式会社 インクジェット記録シートの製造方法
US20060106129A1 (en) 2002-05-08 2006-05-18 Michael Gernon Optimized alkanolamines for latex paints
JP4281943B2 (ja) 2002-07-17 2009-06-17 日立マクセル株式会社 板状アルミナ粒子の製造方法
JP2004059643A (ja) * 2002-07-25 2004-02-26 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP4480011B2 (ja) 2002-07-26 2010-06-16 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク ポリスルフィド橋かけを含む有機リン化合物
US6924011B2 (en) 2002-08-27 2005-08-02 Agfa Gevaert Ink jet recording material
US6841207B2 (en) 2002-09-30 2005-01-11 Hewlett-Packard Development Company, L.P. Porous media coatings having surface-modified alumina particulates
WO2004056915A1 (fr) 2002-12-19 2004-07-08 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique a base d'un aluminosilicate renforcant
US7666410B2 (en) 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
FR2853660A1 (fr) 2003-04-09 2004-10-15 Michelin Soc Tech Composite(metal/caoutchouc)pour pneumatique
US7226647B2 (en) 2003-10-16 2007-06-05 Hewlett-Packard Development Company, L.P. Permanent fixation of dyes to surface-modified inorganic particulate-coated media
FR2872817B1 (fr) 2004-07-07 2006-09-22 Michelin Soc Tech Composition de caoutchouc pour pneumatique a base d'un hydroxyde metallique renforcant
US20060104895A1 (en) 2004-11-18 2006-05-18 Saint-Gobain Ceramics & Plastics, Inc. Transitional alumina particulate materials having controlled morphology and processing for forming same
TWI290944B (en) 2004-12-01 2007-12-11 Saint Gobain Ceramics Rubber formulation and methods for manufacturing same
US7479324B2 (en) 2005-11-08 2009-01-20 Saint-Gobain Ceramics & Plastics, Inc. Pigments comprising alumina hydrate and a dye, and polymer composites formed thereof
US20080313808A1 (en) 2007-06-22 2008-12-25 Dean Crue Adjustable Headboard Frame
FR2927267B1 (fr) 2008-02-07 2010-04-16 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et son procede de preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692721C2 (ru) * 2017-09-19 2019-06-26 МСД Текнолоджис С.а.р.л. СПОСОБ ОКИСЛЕНИЯ АЛЮМИНИЯ, КАТАЛИЗАТОР ОКИСЛЕНИЯ АЛЮМИНИЯ И НАНОМАТЕРИАЛ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ (варианты)

Also Published As

Publication number Publication date
TWI320777B (en) 2010-02-21
NZ587683A (en) 2012-02-24
KR20070084383A (ko) 2007-08-24
EP1843979A1 (en) 2007-10-17
CA2587226A1 (en) 2006-06-08
CN101061068A (zh) 2007-10-24
AU2005310155A1 (en) 2006-06-08
NZ554941A (en) 2010-09-30
UA87716C2 (ru) 2009-08-10
JP2008520542A (ja) 2008-06-19
JP5128953B2 (ja) 2013-01-23
NO20073075L (no) 2007-06-15
MX2007005919A (es) 2007-06-20
KR100888161B1 (ko) 2009-03-10
CN101061068B (zh) 2012-10-31
BRPI0518310A2 (pt) 2008-11-11
CA2587226C (en) 2013-04-30
US8088355B2 (en) 2012-01-03
IL183119A0 (en) 2007-09-20
TW200624382A (en) 2006-07-16
WO2006060206A1 (en) 2006-06-08
US20080003131A1 (en) 2008-01-03
AU2005310155B2 (en) 2009-07-16
US20060104895A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
RU2348641C1 (ru) Порошковый материал из оксида алюминия (варианты) и способ его получения
EP1735240B1 (en) Method for making seeded particulate boehmite material
RU2342321C2 (ru) Способ получения бемитного порошкового материала
RU2401856C2 (ru) Абразивный порошковый материал и абразивная суспензия для избирательного полирования полупроводниковой подложки и способ полирования
US7582277B2 (en) Seeded boehmite particulate material and methods for forming same
JP5530672B2 (ja) ベーマイト粒子の製造方法及びアルミナ粒子の製造方法
NO175774B (no) Aluminiumoksidbaserte slipekorn, fremgangsmåte til deres fremstilling samt slipende gjenstand
JP4281943B2 (ja) 板状アルミナ粒子の製造方法
US8173099B2 (en) Method of forming a porous aluminous material
ZA200703961B (en) Transitional alumina particulate materials having controlled morphology and processing for forming same
RU2229441C1 (ru) Способ получения мелкокристаллического корунда

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131119