RU2176252C2 - Способ многостадийной полимеризации одного или более олефинов и способ многостадийного получения гетерофазных сополимеров пропилена - Google Patents

Способ многостадийной полимеризации одного или более олефинов и способ многостадийного получения гетерофазных сополимеров пропилена Download PDF

Info

Publication number
RU2176252C2
RU2176252C2 RU96118237/04A RU96118237A RU2176252C2 RU 2176252 C2 RU2176252 C2 RU 2176252C2 RU 96118237/04 A RU96118237/04 A RU 96118237/04A RU 96118237 A RU96118237 A RU 96118237A RU 2176252 C2 RU2176252 C2 RU 2176252C2
Authority
RU
Russia
Prior art keywords
polymerization
stage
compound
catalyst
olefins
Prior art date
Application number
RU96118237/04A
Other languages
English (en)
Other versions
RU96118237A (ru
Inventor
Габриеле Говони
Марио Саккетти
Стефано Паскуали
Original Assignee
Монтелл Текнолоджи Компани Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Монтелл Текнолоджи Компани Б.В. filed Critical Монтелл Текнолоджи Компани Б.В.
Publication of RU96118237A publication Critical patent/RU96118237A/ru
Application granted granted Critical
Publication of RU2176252C2 publication Critical patent/RU2176252C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F295/00Macromolecular compounds obtained by polymerisation using successively different catalyst types without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/05Transitioning, i.e. transition from one catalyst to another with use of a deactivating agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/901Monomer polymerized in vapor state in presence of transition metal containing catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Abstract

Описывается способ многостадийной полимеризации одного или более олефинов общей формулы CH2=CHR, где R представляет собой водород, алкил, циклоалкил, арил, содержащий от 1 до 10 атомов углерода, включающий первую стадию полимеризации, на которой полимеризуют один или более указанных олефинов в одном или более реакторах в присутствии катализатора, и вторую стадию полимеризации, на которой один или более указанных олефинов полимеризуют в одном или более реакторах в присутствии катализатора и продукта, полученного на первой стадии; отличается способ тем, что на первой стадии полимеризации в качестве катализатора используют продукт реакции между алкилалюминиевым соединением и твердым компонентом, включающим соединение титана, не содержащее связей Тi - π, и галогенид магния в активной форме, причем в результате полимеризации получают полимер, пористость которого, выраженная процентным отношением пустот, превышает 5%, полученный продукт приводят в контакт с катализатором - соединением переходного металла М, выбранного из группы, содержащей титан, цирконий или гафний, содержащим не менее одной связи М - π, и, не обязательно, с алкилалюминиевым соединением, затем проводят вторую стадию полимеризации. Технический результат - повышение эластичности получаемых полимеров. Описывается также способ многостадийного получения гетерофазных сополимеров пропилена. 2 с. и 13 з.п.ф-лы, 2 ил.

Description

Изобретение относится к области многостадийной полимеризации олефинов общей формулы CH2=CHR, где R - водород, или алкил, или циклоалкил, или арил - радикал с 1-10 атомов углерода, проводимой в одном или нескольких реакторах в присутствии катализатора
Многостадийные процессы полимеризации олефинов, проводимых в двух и более реакторах, широко известны из патентной литературы и представляют практический интерес. Возможность независимого варьирования в любом из реакторов таких параметров процесса, как температура, давление, тип и концентрация мономеров, концентрация водорода или иного регулятора молекулярного веса, обеспечивает значительно большую гибкость контроля состава и свойств конечного продукта по сравнению с одностадийным процессом. Обычно многостадийные процессы проводят с использованием одного и того же катализатора на разных стадиях/реакторах: продукт, полученный в одном реакторе, выгружают и непосредственно направляют на следующую стадию/реактор, не меняя при этом природы катализатора.
Многостадийные процессы находят свое применение, например, при синтезе олефиновых (со)полимеров с широким молекулярно-весовым распределением, при этом в разных реакторах получают фракции полимеров с разными молекулярными весами. Молекулярный вес конечного продукта в каждом реакторе, а следовательно, и диапазон его молекулярно-весового распределения обычно контролируют, используя разные регуляторы молекулярного веса, предпочтительно водород. Многостадийные процессы используют также при получении ударопрочных сополимеров пропилена последовательной полимеризацией пропилена и смесей пропилена с этиленом. На первой стадии пропилен гомополимеризуют или сополимеризуют с меньшими количествами этилена и/или олефинов, имеющих от 4 до 10 атомов углерода, получая при этом стереорегулярный полимер; на второй стадии смеси этилена и пропилена полимеризуют в присутствии полимера, содержащего катализатор, полученный на первой стадии, при этом получают полипропиленовые композиции с повышенной ударной прочностью.
Процессы такого типа охарактеризованы в патенте US 4521566. В указанном патенте полипропиленовые композиции с высокой ударной прочностью получают многостадийным процессом, который включает, по меньшей мере, одну стадию гомополимеризации пропилена и, по меньшей мере, одну стадию полимеризации этилен/пропиленовых смесей, причем обе стадии проводят в присутствии катализатора, содержащего соединения титана, нанесенного на подложку галогенида магния в активной форме.
В заявке ЕР-А-433989 охарактеризован процесс получения полипропиленовых композиций, содержащих от 20 до 99% по весу кристаллического (со)полимера, при содержании в нем по весу мономерных пропиленовых звеньев, по меньшей мере, 95%, и от 1 до 80% по весу некристаллического этилен/пропиленового сополимера, при содержании в нем по весу мономерных этиленовых звеньев от 20 до 80%. Указанный процесс осуществляют в две стадии: на первой стадии, проводимой в жидком пропилене, получают кристаллический (со)полимер пропилена, а на второй стадии, проводимой в углеводородном растворителе, получают некристаллический этилен/пропиленовый сополимер. На обеих стадиях используют один и тот же катализатор, содержащий хиральный металлоцен или алюмоксан.
В заявке ЕР-А-433990 охарактеризован двухстадийный процесс получения полимерных композиций на основе пропилена, аналогичных композициям, охарактеризованным в ЕР-А-433989. На первой стадии полимеризацией в жидком пропилене получают указанный поликристаллический (со)полимер пропилена. А на второй стадии методом газофазной полимеризации получают некристаллический этилен/пропиленовый сополимер. На обеих стадиях используют один и тот же катализатор, содержащий хиральный металлоцен или алюмоксан.
В заявке DE 4130429 охарактеризован многостадийный процесс получения блоксополимеров, полностью осуществляемый в газовой фазе. На первой стадии получают матрицу гомо- или сополимера пропилена, ее количество составляет от 45 до 95% по весу от веса общего продукта, на второй стадии, проводимой в присутствии ранее полученной матрицы и использованного при этом катализатора, получают этилен/α-олефиновый сополимер, содержащий от 0,1 до 79,9% по весу мономерных этиленовых звеньев; количество этого сополимера составляет от 5 до 55% по весу от общего продукта. На обеих стадиях полимеризацию проводят в газовой фазе, используя один и тот же металлоценовый катализатор.
Указанные процессы имеют разные ограничения, одно из которых вызвано тем, что один и тот же катализатор используют на разных стадиях процесса, а поэтому характеристики продуктов, получаемых на каждой отдельной стадии, не всегда оптимальны. Например, если гетерофазные сополимеры получают многостадийным процессом, используя неметаллоценовый катализатор на основе титана, то свойства этого резиноподобного сополимера, получаемого на второй стадии, невысоки. Действительно, известно, что с использованием указанных катализаторов получают этилен/пропиленовые сополимеры, содержащие относительно длинные последовательности одних и тех же мономерных звеньев, и, следовательно, у получаемого сополимера эластомерные свойства низки.
Настоящее изобретение направлено на, по меньшей мере, частичное устранение указанных ограничений.
Согласно изобретению предложен способ многостадийной полимеризации одного или более олефинов общей формулы CH2=CHR, где R представляет собой водород, алкил, циклоалкил или арил - радикал, содержащий от 1 до 10 атомов углерода, включающий первую стадию полимеризации, на которой полимеризуют один или более указанных олефинов в одном или более реакторах в присутствии катализатора, и вторую стадию полимеризации, на которой один или более указанных олефинов полимеризуют в одном или более реакторов в присутствии катализатора и продукта, полученного на первой стадии, причем на первой стадии полимеризации в качестве катализатора используют продукт реакции между алкилалюминиевым соединением и твердым компонентом, содержащим соединение титана, не содержащее связей Ti - π, и галогенид магния в активной форме, при этом в результате полимеризации получают полимер, пористость которого, выраженная процентным отношением пустот, превышает 5%, полученный продукт приводят в контакт с соединением переходного металла М, выбранного из группы, содержащей титан, цирконий или гафний, содержащим не менее одной связи М - π и, не обязательно, с алкилалюминиевым соединением, затем проводят вторую стадию полимеризации. Предпочтительно на первой стадии получают продукт, пористость которого превышает 10%, а наиболее предпочтительно пористость которого превышает 15%. Обычно в качестве галогенида магния используют хлорид магния, а указанное соединение переходного металла М1 предпочтительно выбирают из группы, содержащей галогениды титана, галоген-алкоголяты титана, а именно указанное соединение титана выбирают из группы, содержащей TiCl4, TiCl3 и галоген-алкоголяты формулы Ti(OR1)mXn в которой R1 представляет собой углеводородный радикал с 1 - 12 атомами углерода или группу -COR1, X представляет собой галоген, а (m+n) - валентность титана. Обычно указанное твердое соединение, используемое на первой стадии полимеризации, выполнено в форме сфероидальных частиц со средним диаметром от 10 до 150 мкм, а указанное соединение переходного металла содержит, по меньшей мере, один лиганд L с полициклической структурой, содержащей сопряженные π электроны. Преимущественно соединение переходного металла выбирают из ряда, содержащего CpICpIIMR2(l) или (CpI-A-CpII)MR2(II),
где М представляет собой титан, цирконий или гафний,
CpI и CpII - циклопентадиенильные, или инденильные, или замещенные инденильные группы,
А - алкенильный мостик =C2H4, R - галоген или алкил C1 - C20,
или соединение переходного металла выбирают из группы, включающей C2H4(Ind)2ZrCl2, C2H4(H4Ind)2ZrCl2, C2H4(4,7-Me2Ind)2ZrCl2,
мезо-C2H4(4,7-Me2Ind)2HfMe2, (C5H5)TiCl2.
Предпочтительно на второй стадии полимеризации продукт, полученный на первой стадии полимеризации, обрабатывают растворами, содержащими указанное соединение циркония и алкилалюминиевое соединение, выбранное из триалкилалюминиевых соединений, в которых алкильные группы содержат 1 - 8 атомов углерода, и метилалюмоксана. Обычно во время проведения второй стадии полимеризации, по меньшей мере, в один реактор загружают продукт, прошедший обработку после первой стадии полимеризации, и вместе или отдельно загружают алкилалюминиевое соединение, выбранное из триалкилалюминиевых соединений, в которых алкильные группы содержат 1 - 12 атомов углерода, и метилалюмоксана. Преимущественно первую стадию полимеризации проводят в жидкой фазе, содержащей углеводородный растворитель или один или более олефинов CH2=CHR, а вторую стадию проводят в газовой фазе, по крайней мере, в одном реакторе с кипящим слоем или с механически перемешиваемым слоем, однако возможно, что обе стадии полимеризации проводят в газовой фазе в реакторах с кипящим слоем или с механически перемешиваемым слоем. Возможно также, что стадию обработки между стадиями полимеризации проводят в газовой фазе в реакторе с циркуляцией.
Указанный технический результат достигается также использованием способа многостадийного получения гетерофазных сополимеров пропилена, включающего, по меньшей мере, две стадии полимеризации, на первой из которых, по меньшей мере, полимеризуют пропилен или его смесь с этиленом и/или одним или более олефином CH2=CHRII, в которых RII представляет собой углеводородный радикал с 2 - 10 атомами углерода в присутствии катализатора, а на второй стадии, по крайней мере, в одном реакторе полимеризуют один или более олефинов CH2=CHR, где R представляет собой водород, алкильный, циклоалкильный или арильный радикалы с 1 - 10 атомами углерода в присутствии продукта, полученного ранее, и катализатора, причем на первой стадии полимеризации в качестве катализатора используют продукт реакции между алкилалюминиевым соединением, необязательно электронно-донорным соединением, и твердым компонентом, включающим, по меньшей мере, одно соединение титана, не содержащее связей Ti - π, и галогенид магния в активной форме и, не обязательно, электронно-донорное соединение, получая при этом олефиновый полимер, пористость которого, выраженная процентным содержанием пустот, составляет более 5%, содержание мономерных звеньев, производных от этилена и/или CH2=CHRII олефина, составляет по весу менее 20%, содержание мономерных звеньев, производных от пропилена по весу более 80%, а нерастворимость в ксилоле составляет более 60%, после стадии первой полимеризации обрабатывают полученный продукт приведением в контакт с соединением переходного металла М, выбранного из группы, содержащей титан, цирконий, или гафний, содержащим, по меньшей мере, одну связь М - π и, не обязательно, алкилалюминиевым соединением, а затем проводят вторую стадию полимеризации в присутствии продукта, полученного при обработке, получая при этом в значительной степени аморфный олефиновый сополимер, причем процесс проводят таким образом, что получают продукт, количество которого составляет от 20 до 80% по весу от общего количества полимера, полученного на первой и второй стадиях полимеризации.
В качестве катализатора, используемого на первой стадии, могут быть использованы соединения, аналогичные охарактеризованным в заявке ЕР-А-361493.
Блок-диаграмма способа согласно настоящему изобретению приведена на фиг. 1. Цифрой 1 отмечена первая стадия полимеризации (I), на которой полимеризуют один или более олефинов CH2=CHR в присутствии катализатора, содержащего продукт реакции между алкилалюминиевым соединением и твердым компонентом, содержащим, по меньшей мере, одно соединение титана, не содержащее связей Ti - π, получая при этом пористый алюминиевый полимер. Цифрой 2 обозначена стадия обработки (II), на которой пористый полимер, полученный на первой стадии полимеризации, приводят в контакт с соединением переходного металла М, и содержащим связи М - π, и, необязательно, с алкилалюминиевым соединением. Цифрой 3 отмечена вторая стадия полимеризации (III), на которой полимеризуют один или более олефинов CH2=CHR в присутствии продукта, полученного на первой стадии обработки (I), и, необязательно, алкилалюминиевого соединения.
Предпочтительная карта технологического процесса получения гетерофазных сополимеров пропилена приведена на фиг. 2.
Поз. 10 отмечен реактор форполимеризации, в который подают указанный катализатор (101) и указанные мономеры (102). Форполимеризацию предпочтительно проводят в жидком пропилене или в инертном углеводородном растворителе (например, в пропане). Поз. 20 отмечена первая стадия полимеризации (А), проводимая в газовой фазе в одном или больше реакторах с кипящим слоем, на который подают предпочтительно непрерывно форполимер, полученный в реакторе 10, рециркулирующие мономеры (201), необязательно регулятор молекулярного веса (202), инертный газ (203), а также алкилалюминиевое соединение (204). Поз. 30 отмечена стадия обработки (В), которую проводят преимущественно в газовой фазе в реакторе с циркуляцией. На эту стадию при удалении непрореагировавших мономеров подают преимущественно непрерывно указанный пористый полимер, полученный на стадии 20, указанное соединение переходного металла М (301) и, необязательно, алкилалюминиевое соединение (302). В указанном реакторе с циркуляцией циркуляцию полимера осуществляют током инертного газа (303). Поз. 40 отмечена вторая стадия полимеризации (С), проводимая в газовой фазе в одном или более реакторах кипящего слоя. На эту стадию предпочтительно непрерывно подают продукт, поступающий со стадии 30, циркулирующие мономеры (401) и, необязательно, регулятор молекулярного веса (402), инертный газ (403) и алкилалюминиевое соединение (404).
Предпочтительно, чтобы тот же инертный газ, который используют в газофазных реакторах полимеризации, применяли бы и в газофазных реакторах с циркуляцией на стадии (В). В качестве инертного газа могут быть использованы, в частности, азот и алканы с 3 - 5 атомами углерода, предпочтительно пропан.
Приведенные ниже примеры иллюстрируют, но не ограничивают настоящее изобретение.
Указанные свойства определяли с использованием следующих методов:
а) пористость и площадь поверхности по азоту определяют по методике В.Е. Т.;
б) размер частиц катализатора измеряли с использованием оптической дифракции монохроматического лазерного излучения с использованием оборудования "Malvern Instr. 2600". Средний размер составил P50;
в) индекс плавления E (MIE) определяли согласно методике ASTM-D 1238, метод E;
г) индекс плавления F (MIF) определяли согласно методике ASTM-D 1238, метод F;
д) отношение индексов F/E - отношение индексом плавления F и индексом плавления E;
е) индекс плавления L (MIL) определяли согласно методике ASTM-D 1238, метод L;
ж) текучесть - это время, необходимое для протекания 100 г полимера через воронку, выходное отверстие которой имеет диаметр 1,25 см и стенки которой составляют угол 20o с вертикалью;
з) плотность - DIN 53194;
и) морфология и гранулометрический состав частиц полимера - ASTM-D 1921-63;
к) фракции, растворимые в ксилоле, измеряли растворением полимера в ксилоле с определением после охлаждения до 25o С нерастворимого остатка;
л) содержание сомономера - процентное содержание сомономера по весу, определяемое инфракрасной спектроскопией;
м) эффективная пористость - ASTM-D 792;
н) пористость - с использованием дилактометра CD3 (Carlo Erba);
о) экстрагируемость в гексане определяли обработкой полимера н-гексаном (700 см3) при температуре кипения этого растворителя в течение 1 часа.
Примеры реализации.
Пример 1. Получение твердого каталитического компонента, содержащего титан.
Твердый компонент, содержащий титан, получали по методике из примера 3 по заявке EP-A-395083.
Получение гомополимера пропилена (стадия (I)).
В стеклянной колбе емкостью 100 см3, предварительно продутой азотом при 90oC в течение 3 часов, привели в контакт 0,0098 г приведенного выше компонента, 0,76 г триэтилалюминия (TEAL) и 0,313 г циклогексилметилдиметоксисилана (CMMS), контакт осуществляли в течение 5 мин в гексане. Затем полученную смесь загрузили в 4 литровый стальной автоклав, предварительно продутый азотом при 90oC в течение 3 часов. Загрузку проводили при 30oC в атмосфере пропилена. Дополнительно ввели 1000 см3 водорода и 1,2 кг пропилена и нагрели автоклав до 70oC. Полимеризацию осуществляли в течение 2 ч, а затем в течение 1 ч проводили дегазацию током азота при 70oC. Было получено 238 г сферического полимера со следующими характеристиками: MIL = 3,5; пористость (% пустот) = 24%.
Получение смеси метилалюмоксана (МАО) и этиленбис(тетрагидроинденил)цирконий дихлорида (EBTHI-ZrCl2).
В стеклянную колбу емкостью 100 см3, предварительно очищенную азотом, загрузили 0,002 г EBTHI-ZrCl2, 0,27 г МАО и 50 см3 толуола, полученный раствор перемешивали в течение 30 мин при 20oC.
Обработка гомополимера смесью МАО/EBTHI-ZrCl2(стадия II).
В предварительно очищенный стальной автоклав загрузили 238 г полученного предварительно гомополимера и при помешивании ввели раствор МАО/EBTHI-ZrCl2. Полученную смесь непрерывно перемешивали в течение примерно 30 мин при 30oC, а в конце в токе азота удалили растворитель.
Сополимеризация этилена/пропилена (стадия III).
После стадии обработки II в тот же самый автоклав загружали этилен/пропиленовую смесь в соотношении 60/40 до тех пор, пока общее давление не достигло 9 бар. Полимеризацию осуществляли в течение 3 ч при 50oC, сохраняя при этом давление постоянным. Было получено 340 г гетерофазного полимера в виде сфероидальных частиц с хорошей текучестью и содержанием 30% по весу этилен/пропиленового сополимера. Полученный этилен/пропиленовый сополимер отделяли от матрицы гомополимера экстракцией н-гексаном и затем исследовали. Этот сополимер имел следующие характеристики: [η] = 1,1; Mw/Mn = 2.
Пример 2.
Титановый катализатор и пропиленовый гомополимер получали согласно методике по примеру 1.
Получение смеси метилалюмоксана (МАО) и этиленбис(тетрагидроинденил)цирконий дихлорида (EBTHI-ZrCl2).
12,5 см3 М-МАО (модифицированный МАО) в растворе Isopar С, 0,01 EBTHI-ZrCl2 и 200 см3 безводного гексана привели в предварительный контакт в колбе емкостью 250 см3, предварительно продутой азотом при 90oC в течение 3 ч. В течение 30 мин при 20oC непрерывно проводили перемешивание.
Обработка гомополимера смесью МАО/EBTHI-ZrCl2(стадия II).
В газофазный предварительно очищенный реактор объемом 1000 см3 загрузили 100 г ранее полученного гомополимера, осуществляя его циркуляцию вместе с током азота. Посредством распылителя в течение 90 мин при температуре 30oC вводили раствор М-МАО/EBTHI-ZrCl2. В итоге получили целевой продукт в виде свободно текущих частиц.
Сополимеризация этилена/пропилена (стадия III).
100 г полимера, обработанного смесью МАО/EBTHI-ZrCl2, загрузили в газофазный реактор общим объемом 35 дм3, который предварительно продули азотом в течение 3 ч при 90oC. Полученную систему подвергли псевдоожижению 5 бар пропана и ввели смесь этилен/пропилена в соотношении 60/40 до давления 9 бар при 50oC. В течение 3 ч проводили полимеризацию при постоянном давлении. Было получено 160 г гетерофазного сополимера, содержащего по весу 37,5% этилен/пропиленового сополимера в форме свободно текущих сферических частиц. Полученный этилен/пропиленовый сополимер отделили от матрицы гомополимера экстракцией н-гексаном и затем исследовали. Этот сополимер имел следующие характеристики: [η] 1,5; этилен = 69%; Mw/Mn = 2,8.
Пример 3.
Титановый катализатор и пропиленовый гомополимер получали согласно методике из примера 1.
Получение МАО, этилен-бис-инденил-цирконий дихлорида (EBI), раствора триизобутилалюминия (TIBAL).
В круглодонную колбу емкостью 250 см3, предварительно продутую азотом при 90oC в течение 3 ч, загрузили 110 см3 безводного толуола, 1,4 г МАО, 0,045 г EBI и 14 см3 раствора TIBAL в гексане концентрацией 100 г/дм3. Полученную систему выдерживали в течение 1 ч при перемешивании при 20oC до получения прозрачного раствора.
Обработка гомополимера раствором TIBAL/MAO/EBTHI.
192 г полученного ранее гомополимера добавили к указанному раствору TIBAL/MAO/EBTHI способом, приведенном в примере 2.
Сополимеризация этилена/бутена.
Полимер, обработанный предварительно раствором TIBAL/MAO/EBTHI, ввели в газофазный реактор, охарактеризованный в примере 2. Полученную систему подвергли псевдоожижению 5 бар пропана при 75oC и загрузили 330 г этилена и 100 г бутена до тех пор, пока не было достигнуто общее давление 15 бар. Реакцию проводили в течение 3 ч. Было получено 650 г смеси полимера в форме сферических частиц.
Пример 4.
Титановый катализатор получили согласно методике примера 1.
Полимеризация с использование титанового катализатора.
Указанный выше катализатор использовали в процессе полимеризации, проводимом при таких же условиях, что и в примере 1, с той лишь разницей, что вводили 10 г этилена. Было получено 240 г статического сополимера этилен/пропилена в форме сферических частиц со следующими характеристиками: MIL = 4,5; С2Н4 = 2,2; пористость = 23%.
Получение раствора МАО/TIBAL/этилен-бис-4,7-диметилинденил цирконий дихлорида (EBDMI).
В реактор объемом 250 см3 предварительно продутый азотом в течение 3 ч при 90oC, ввели 150 см3 безводного толуола, 1,5 г TIBAL в гексане ([с] = 100 г/дм3), 0,02 г EBDMI и 0,2 г МАО. Полученную систему сохраняли при перемешивании в течение 1 ч при 20oC.
Обработка сополимера раствором МАО/TIBAL/EBDMI.
200 г указанного выше сополимера обработали раствором МАО/TIBAL/EBDMI при условиях, указанных в примере 2.
Сополимеризация этилен/бутена.
В процессе полимеризации, проводимом аналогично примеру 3, но с загрузкой 335 г этилена и 200 г бутена, использовали 176 г сополимера, полученного на предыдущей стадии. Было получено 310 г смеси полимера в форме сферических частиц.
Пример 5.
Титановый катализатор получали согласно методике примера 1.
Полимеризация с использованием титанового катализатора.
0,0116 г выше указанного катализатора предварительно привели в контакт с 0,25 г TEAL в 25 см3 гексана на 5 мин при 20oC. Потом его загрузили в 4-литровый стальной автоклав, содержащий 800 г пропана при 20oC. Всю систему прогрели до 75oС и загрузили 0,5 бар азота и 7 бар этилена. В течение 3 ч проводили полимеризацию, при этом получили примерно 450 г полиэтилена в форме сферических частиц.
Получение раствора MAO/TIBAL/EBI.
В очищенный предварительно реактор объемом 250 см3 загрузили 100 см3 толуола, 0,178 г МАО, 0,095 г EBI, 15 см3 раствора TIBAL в гексане ([с] = 100 г/дм3), при этом полученную смесь выдерживали под азотом в течение 1 ч при 20oC.
Обработка полимера раствором МАО/TIBAL/EBDMI.
184 г полученного на предыдущей стадии полимера обработали раствором МАО/TIBAL/EBDMI согласно методике, приведенной в примере 2.
Полимеризация этилена.
113 полученного и обработанного на предыдущей стадии полимера ввели в газофазный реактор и подвергли псевдоожижению 8 бар пропана и 7 бар этилена при 75oC. Полимеризацию осуществляли в течение 3 ч. Было получено 206 г полиэтилена сферической формы, имеющего следующие свойства: MIE = 0,22; F/E = 52,3; [η] = 3,67; Mw/Mn = 6,3.5

Claims (14)

1. Способ многостадийной полимеризации одного или более олефинов общей формулы CH2=CHR, где R представляет собой водород, алкил, циклоалкил, арил, содержащий от 1 до 10 атомов углерода, включающий первую стадию полимеризации, на которой полимеризуют один или более указанных олефинов в одном или более реакторах в присутствии катализатора, и вторую стадию полимеризации, на которой один или более указанных олефинов полимеризуют в одном или более реакторах в присутствии катализатора и продукта, полученного на первой стадии, отличающийся тем, что на первой стадии полимеризации в качестве катализатора используют продукт реакции между алкилалюминиевым соединением и твердым компонентом, включающим соединение титана, не содержащее связей Ti - π, и галогенид магния в активной форме, причем в результате полимеризации получают полимер, пористость которого, выраженная процентным отношением пустот, превышает 5%, полученный продукт приводят в контакт с катализатором-соединением переходного металла М, выбранного из группы, содержащей титан, цирконий или гафний, содержащим не менее одной связи М - π и, не обязательно, с алкилалюминиевым соединением, затем проводят вторую стадию полимеризации.
2. Способ по п.1, отличающийся тем, что на первой стадии получают продукт, пористость которого превышает 10%.
3. Способ по п.1, отличающийся тем, что на первой стадии получают продукт, пористость которого превышает 15%.
4. Способ по п. 1, отличающийся тем, что в качестве галогенида магния используют хлорид магния, а указанное соединение титана выбирают из группы, содержащей галогениды титана, галоген-алкоголяты титана.
5. Способ по п.4, отличающийся тем, что указанное соединение титана выбирают из группы, содержащей TiCl4, TiCl3 и галогеналкоголяты формулы Ti(OR1)mXn, в которой R1 представляет собой углеводородный радикал с 1-12 атомами углерода или группу -COR1, X представляет собой галоген, а (m+n) - валентность титана.
6. Способ по п.1, отличающийся тем, что указанное твердое соединение, используемое на первой стадии полимеризации, выполнено в форме сфероидальных частиц со средним диаметром от 10 до 150 мкм.
7. Способ по п.1, отличающийся тем, что указанное соединение переходного металла содержит, по меньшей мере, один лиганд L с полициклической структурой, содержащей сопряженные π электроны.
8. Способ по п.7, отличающийся тем, что соединение переходного металла выбирают из соединения общей формулы:
C'PC''PMR2 (I) или (C'P - A - C''P)MR2 (II),
где М представляет собой Ti, Zr или Hf;
С'Р и С''Р представляют собой циклопентадиенильные или инденильные или замещенные инденильные группы, А - алкенильный мостик = С2Н4;
R - галоген или алкил С120.
9. Способ по п.7, отличающийся тем, что соединение переходного металла выбирают из группы, включающей C2H4(Ind)2ZrCl2, C2H4(H4Ind)2ZrCl2, C2H4(4,7-Me2Ind)2ZrCl2, мезо-C2H4(4,7-Me2Ind)2HfMe2, (C5H5)2TiCl2. 10. Способ по п. 1, отличающийся тем, что на второй стадии полимеризации продукт, полученный на первой стадии полимеризации, обрабатывают растворами, содержащими указанное соединение циркония и алкилалюминиевое соединение, выбранное из триалкилалюминиевых соединений, в которых алкильные группы содержат 1-8 атомов углерода, и метилалюмоксана.
11. Способ по п. 1, отличающийся тем, что во время проведения второй стадии полимеризации, по меньшей мере, в один реактор загружают продукт, прошедший обработку после первой стадии полимеризации, и вместе или отдельно загружают алкилалюминиевое соединение, выбранное из триалкилалюминиевых соединений, в которых алкильные группы содержат 1-12 атомов углерода, и метилалюмоксана.
12. Способ по п. 1, отличающийся тем, что первую стадию полимеризации проводят в жидкой фазе, содержащей углеводородный растворитель или один или более олефинов СН2=CHR, а вторую стадию проводят в газовой фазе, по крайней мере, в одном реакторе с кипящим слоем или с механически перемешиваемым слоем.
13. Способ по п.1, отличающийся тем, что обе стадии полимеризации проводят в газовой фазе в реакторах с кипящим слоем или с механически перемешиваемым слоем.
14. Способ по п.1, отличающийся тем, что стадию обработки между стадиями полимеризации проводят в газовой фазе в реакторе с циркуляцией.
15. Способ многостадийного получения гетерофазных сополимеров пропилена, включающий, по меньшей мере, две стадии полимеризации, на первой из которых, по меньшей мере, полимеризуют пропилен или его смесь с этиленом и/или одним или более олефинов CH2= CHR'', в которых R'' представляет собой углеводородный радикал с 2-10 атомами углерода в присутствии катализатора, а на второй стадии, по крайней мере, в одном реакторе полимеризуют один или более олефинов CH2= CHR, где R представляет собой водород, алкильный, циклоалкильный или арильный радикал с 1-10 атомами углерода, в присутствии катализатора и продукта, полученного ранее, отличающийся тем, что на первой стадии полимеризации в качестве катализатора используют продукт реакции между алкилалюминиевым соединением, необязательно, электронно-донорным соединением и твердым компонентом, включающим соединение титана, не содержащее связей Ti - π, и галогенид магния в активной форме и, необязательно, электронно-донорное соединение, получая при этом олефиновый полимер, пористость которого, выраженная процентным содержанием пустот, составляет более 5%, содержание мономерных звеньев, производных от этилена и/или CH2=CHR'' олефина составляет по весу менее 20%, содержание мономерных звеньев, производных от пропилена по весу более 80%, а нерастворимость в ксилоле составляет более 60%, после стадии первой полимеризации обрабатывают полученный продукт приведением в контакт с катализатором-соединением переходного металла М, выбранного из группы, содержащей титан, цирконий или гафний, содержащим не менее одной связи М - π и, не обязательно, алкилалюминиевым соединением, а затем проводят вторую стадию полимеризации в присутствии продукта, полученного при обработке, получая при этом в значительной степени аморфный олефиновый сополимер, причем процесс проводят таким образом, что получают продукт, количество которого составляет от 20 до 80% по весу от общего количества полимера, полученного на первой и второй стадиях полимеризации.
RU96118237/04A 1994-07-20 1995-07-18 Способ многостадийной полимеризации одного или более олефинов и способ многостадийного получения гетерофазных сополимеров пропилена RU2176252C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITM194A001515 1994-07-20
ITMI941515A IT1273660B (it) 1994-07-20 1994-07-20 Procedimento per la preparazione di polimeri amorfi del propilene
ITMI94A001515 1994-07-20

Publications (2)

Publication Number Publication Date
RU96118237A RU96118237A (ru) 1998-07-20
RU2176252C2 true RU2176252C2 (ru) 2001-11-27

Family

ID=11369316

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96118237/04A RU2176252C2 (ru) 1994-07-20 1995-07-18 Способ многостадийной полимеризации одного или более олефинов и способ многостадийного получения гетерофазных сополимеров пропилена

Country Status (27)

Country Link
US (1) US5589549A (ru)
EP (1) EP0720629B1 (ru)
JP (1) JP4131986B2 (ru)
KR (1) KR100375361B1 (ru)
CN (1) CN1070504C (ru)
AT (1) ATE179724T1 (ru)
AU (1) AU693239B2 (ru)
BG (1) BG63015B1 (ru)
BR (1) BR9506342A (ru)
CA (1) CA2171835A1 (ru)
CZ (1) CZ290718B6 (ru)
DE (1) DE69509488T2 (ru)
DK (1) DK0720629T3 (ru)
ES (1) ES2132695T3 (ru)
FI (1) FI961268A (ru)
HU (1) HU214988B (ru)
IL (1) IL114638A (ru)
IT (1) IT1273660B (ru)
MX (1) MX9601041A (ru)
NO (1) NO309430B1 (ru)
PL (1) PL313587A1 (ru)
RU (1) RU2176252C2 (ru)
SK (1) SK281620B6 (ru)
TR (1) TR199500879A2 (ru)
TW (1) TW424099B (ru)
WO (1) WO1996002583A1 (ru)
ZA (1) ZA955987B (ru)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1269931B (it) * 1994-03-29 1997-04-16 Spherilene Srl Componenti e catalizzatori per la polimerizzazione di olefine
KR100388716B1 (ko) * 1994-09-08 2003-11-28 엑손모빌 오일 코포레이션 단일반응기내에서의분자량분포가넓거나또는이중모드인수지의촉매적조절방법
CN1125839C (zh) * 1995-02-07 2003-10-29 三井化学株式会社 制备烯烃聚合物的方法
CA2188722A1 (en) * 1995-10-26 1997-04-27 George Norris Foster Process for preparing an in situ polyethylene blend
US6468258B1 (en) 1997-07-18 2002-10-22 Baxter International Inc. Plastic compositions including vitamin E for medical containers and methods for providing such compositions and containers
US5952423A (en) * 1997-07-18 1999-09-14 Baxter International Inc. Plastic compositions for medical containers and methods for providing such containers and for storing red blood cells
EP0905153B1 (en) * 1997-09-27 2004-03-31 ATOFINA Research Production of polyethylene having a broad molecular weight distribution
EP0905151A1 (en) 1997-09-27 1999-03-31 Fina Research S.A. Production of polyethylene having a broad molecular weight distribution
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
US6197910B1 (en) * 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
EP0942011B1 (en) * 1998-03-09 2003-05-14 Basell Poliolefine Italia S.p.A. Multi-stage process for the polymerization of olefins
ES2198098T3 (es) 1998-03-09 2004-01-16 Basell Poliolefine Italia S.P.A. Procedimiento multietapas para la polimerizacion de olefinas.
US7354880B2 (en) * 1998-07-10 2008-04-08 Univation Technologies, Llc Catalyst composition and methods for its preparation and use in a polymerization process
NL1010294C2 (nl) * 1998-10-12 2000-04-13 Dsm Nv Werkwijze en inrichting voor de bereiding van een olefine-polymeer.
WO2000053646A1 (en) * 1999-03-09 2000-09-14 Basell Technology Company B.V. Multi-stage process for the (co)polymerization of olefins
ITMI991552A1 (it) * 1999-07-14 2001-01-14 Licio Zambon Componenti di catalizzatori per la polimerizzazione di olefine
DE60024595T2 (de) 1999-12-28 2006-07-27 Basell Polyolefine Gmbh Verfahren zur Herstellung von Ethylenpolymeren
US6765066B2 (en) * 1999-12-30 2004-07-20 Bridgestone Corporation Copolymers prepared by using both anionic polymerization techniques and coordination catalysts
CA2396053C (en) * 1999-12-30 2010-03-30 Bridgestone Corporation Copolymers prepared by using both anionic polymerization techniques and coordination catalysts
TR200103338T1 (tr) 2000-03-22 2002-07-22 Basell Technology Company Bv İsotaktik propilen polimerlerin termoplastik bileşimleri.
GB0008690D0 (en) * 2000-04-07 2000-05-31 Borealis Polymers Oy Process
WO2002051887A2 (en) * 2000-12-22 2002-07-04 Basell Poliolefine Italia S.P.A. Process for the preparation of porous polymers and polymers obtainable thereof
WO2003008496A1 (en) 2001-07-17 2003-01-30 Basell Polyolefine Gmbh Multistep process for the (co)polymerization of olefins
MXPA04001496A (es) 2001-08-17 2004-05-14 Dow Global Technologies Inc Composicion de polietileno bimodal y articulos elaborados a partir de la misma.
EP1448625A1 (en) * 2001-11-27 2004-08-25 Basell Poliolefine Italia S.p.A. Porous polymers of propylene
US7022793B2 (en) 2001-11-27 2006-04-04 Basell Polyolefine Gmbh Process for the treatment of polymer compositions
US6916892B2 (en) * 2001-12-03 2005-07-12 Fina Technology, Inc. Method for transitioning between Ziegler-Natta and metallocene catalysts in a bulk loop reactor for the production of polypropylene
US6890876B2 (en) * 2002-11-26 2005-05-10 Univation Technologies, Llc Processes for producing fluorided catalysts from nitrogenous metallocenes
WO2004092230A1 (en) * 2003-04-17 2004-10-28 Basell Polyolefine Gmbh Process for preparing porous polymers and polymers thereof
EP1518866A1 (en) * 2003-09-29 2005-03-30 Basell Poliolefine Italia S.P.A. Process for the preparation of porous ethylene polymers
EP2216347A1 (en) * 2009-01-30 2010-08-11 Borealis AG A method of catalyst transitions in olefin polymerizations
EP2383298A1 (en) * 2010-04-30 2011-11-02 Ineos Europe Limited Polymerization process
EP2383301A1 (en) 2010-04-30 2011-11-02 Ineos Europe Limited Polymerization process
US10647795B2 (en) 2014-02-07 2020-05-12 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US11267916B2 (en) 2014-02-07 2022-03-08 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US9399686B2 (en) 2014-02-07 2016-07-26 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US10308740B2 (en) 2014-02-07 2019-06-04 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US10723824B2 (en) 2014-02-07 2020-07-28 Eastman Chemical Company Adhesives comprising amorphous propylene-ethylene copolymers
US10696765B2 (en) 2014-02-07 2020-06-30 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and propylene polymer
US10329360B2 (en) 2015-06-05 2019-06-25 Exxonmobil Chemical Patents Inc. Catalyst system comprising supported alumoxane and unsupported alumoxane particles
US9738779B2 (en) 2015-06-05 2017-08-22 Exxonmobil Chemical Patents Inc. Heterophasic copolymers and sequential polymerization
CN107690441A (zh) 2015-06-05 2018-02-13 埃克森美孚化学专利公司 聚合物在气相或淤浆相中的单反应器制备
US10077325B2 (en) 2015-06-05 2018-09-18 Exxonmobil Chemical Patents Inc. Silica supports with high aluminoxane loading capability
US10280235B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst system containing high surface area supports and sequential polymerization to produce heterophasic polymers
WO2016195866A1 (en) * 2015-06-05 2016-12-08 Exxonmobil Chemical Patents Inc. High activity catalyst supportation
US10570219B2 (en) 2015-06-05 2020-02-25 Exxonmobil Chemical Patents Inc. Production of heterophasic polymers in gas or slurry phase
US9920176B2 (en) 2015-06-05 2018-03-20 Exxonmobil Chemical Patents Inc. Single site catalyst supportation
US9725537B2 (en) 2015-06-05 2017-08-08 Exxonmobil Chemical Patents Inc. High activity catalyst supportation
US10294316B2 (en) 2015-06-05 2019-05-21 Exxonmobil Chemical Patents Inc. Silica supports with high aluminoxane loading capability
US9809664B2 (en) 2015-06-05 2017-11-07 Exxonmobil Chemical Patents Inc. Bimodal propylene polymers and sequential polymerization
US9725569B2 (en) 2015-06-05 2017-08-08 Exxonmobil Chemical Patents Inc. Porous propylene polymers
CN107709379A (zh) * 2015-06-05 2018-02-16 埃克森美孚化学专利公司 单中心催化剂负载
US10723821B2 (en) 2015-06-05 2020-07-28 Exxonmobil Chemical Patents Inc. Supported metallocene catalyst systems for polymerization
US10280233B2 (en) 2015-06-05 2019-05-07 Exxonmobil Chemical Patents Inc. Catalyst systems and methods of making and using the same
EP3464390A1 (en) 2016-05-27 2019-04-10 ExxonMobil Chemical Patents Inc. Metallocene catalyst compositions and polymerization process therewith
CN109819654B (zh) * 2016-10-03 2021-11-16 东邦钛株式会社 烯烃类聚合用固体催化剂成分及其制造方法、烯烃类聚合物的制造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL162661B (nl) * 1968-11-21 1980-01-15 Montedison Spa Werkwijze om een katalysator te bereiden voor de poly- merisatie van alkenen-1.
YU35844B (en) * 1968-11-25 1981-08-31 Montedison Spa Process for obtaining catalysts for the polymerization of olefines
JPS5610506A (en) * 1979-07-09 1981-02-03 Mitsui Petrochem Ind Ltd Production of ethylene polymer composition
IT1140221B (it) * 1981-10-14 1986-09-24 Montedison Spa Composizioni polipropileniche aventi migliorate caratteristiche di resistenza all'urto alle basse temperature e procedimento di preparazione
JPS59120611A (ja) * 1982-12-27 1984-07-12 Idemitsu Petrochem Co Ltd プロピレンブロツク共重合体の製造方法
IT1227260B (it) * 1988-09-30 1991-03-28 Himont Inc Dieteri utilizzabili nella preparazione di catalizzatori ziegler-natta
IT1230134B (it) * 1989-04-28 1991-10-14 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine.
EP0436328A3 (en) * 1989-12-13 1992-09-16 Mitsui Toatsu Chemicals, Inc. Method for polymerizing alpha-olefin
DE3942364A1 (de) * 1989-12-21 1991-06-27 Hoechst Ag Verfahren zur herstellung einer polypropylen-formmasse
DE3942363A1 (de) * 1989-12-21 1991-06-27 Hoechst Ag Verfahren zur herstellung einer polypropylen-formmasse
DE4005947A1 (de) * 1990-02-26 1991-08-29 Basf Ag Loesliche katalysatorsysteme zur polymerisation von c(pfeil abwaerts)2(pfeil abwaerts)- bis c(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)-alk-1-enen
KR0179033B1 (ko) * 1990-05-22 1999-05-15 에토 다케토시 프로필렌 공중합체의 제조방법
JP3044668B2 (ja) * 1990-09-27 2000-05-22 三菱化学株式会社 プロピレンブロック共重合体の製造法
ES2162953T3 (es) * 1990-11-12 2002-01-16 Basell Polyolefine Gmbh Procedimiento para la obtencion de un polimero de olefina.
ES2091273T3 (es) * 1990-11-12 1996-11-01 Hoechst Ag Procedimiento para la preparacion de un polimero olefinico de alto peso molecular.
JP3089713B2 (ja) * 1991-07-04 2000-09-18 住友化学工業株式会社 エチレン−プロピレンブロック共重合体の製造方法
DE4130429A1 (de) * 1991-09-13 1993-03-18 Basf Ag Verfahren zur herstellung von mehrphasigen blockcopolymerisaten auf der basis von alk-1-enen
DE59206948D1 (de) * 1991-11-30 1996-09-26 Hoechst Ag Metallocene mit benzokondensierten Indenylderivaten als Liganden, Verfahren zu ihrer Herstellung und ihre Verwendung als Katalysatoren
IT1262934B (it) * 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1262935B (it) * 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
IT1254547B (it) * 1992-03-23 1995-09-25 Montecatini Tecnologie Srl Copolimeri elastomerici dell'etilene con alfa-olefine.
FI112233B (fi) * 1992-04-01 2003-11-14 Basell Polyolefine Gmbh Katalyytti olefiinipolymerointia varten, menetelmä sen valmistamiseksi ja sen käyttö
IT1264406B1 (it) * 1993-05-11 1996-09-23 Spherilene Srl Copolimeri amorfi dell'etilene con alfa-olefine e procedimento per la loro preparazione
EP0598543B1 (en) * 1992-11-10 1997-01-15 Mitsubishi Chemical Corporation Method for producing Alpha-olefin polymers
IT1256260B (it) * 1992-12-30 1995-11-29 Montecatini Tecnologie Srl Polipropilene atattico
IT1264482B1 (it) * 1993-06-30 1996-09-23 Spherilene Srl Copolimeri amorfi dell'etilene con propilene e procedimento per la loro preparazione
IT1264483B1 (it) * 1993-06-30 1996-09-23 Spherilene Srl Copolimeri elastomerici dell'etilene con propilene
JPH0790035A (ja) * 1993-07-27 1995-04-04 Ube Ind Ltd プロピレンブロック共重合体の製造方法
IT1271407B (it) * 1993-09-13 1997-05-28 Spherilene Srl Procedimento per la preparazione di copolimeri elastomerici dell'etilene e prodotti ottenuti
IT1271406B (it) * 1993-09-13 1997-05-28 Spherilene Srl Procedimento per la preparazione di polimeri dell'etilene e prodotti ottenuti

Also Published As

Publication number Publication date
HUT74779A (en) 1997-02-28
DE69509488T2 (de) 1999-11-04
JP4131986B2 (ja) 2008-08-13
DK0720629T3 (da) 1999-11-01
BG63015B1 (bg) 2001-01-31
FI961268A (fi) 1996-05-02
FI961268A0 (fi) 1996-03-19
TW424099B (en) 2001-03-01
HU9600841D0 (en) 1996-05-28
HU214988B (hu) 1998-08-28
ATE179724T1 (de) 1999-05-15
IT1273660B (it) 1997-07-09
PL313587A1 (en) 1996-07-08
SK49396A3 (en) 1997-03-05
KR960704955A (ko) 1996-10-09
BG100515A (en) 1997-01-31
CN1134712A (zh) 1996-10-30
JPH09503250A (ja) 1997-03-31
CZ113596A3 (en) 1996-10-16
NO961108L (no) 1996-05-10
DE69509488D1 (de) 1999-06-10
CZ290718B6 (cs) 2002-10-16
EP0720629B1 (en) 1999-05-06
AU693239B2 (en) 1998-06-25
SK281620B6 (sk) 2001-05-10
AU3113295A (en) 1996-02-16
EP0720629A1 (en) 1996-07-10
CN1070504C (zh) 2001-09-05
IL114638A (en) 1999-12-31
CA2171835A1 (en) 1996-02-01
IL114638A0 (en) 1995-11-27
ZA955987B (en) 1996-06-18
KR100375361B1 (ko) 2003-05-12
ITMI941515A0 (it) 1994-07-20
MX9601041A (es) 1997-06-28
NO309430B1 (no) 2001-01-29
ITMI941515A1 (it) 1996-01-20
WO1996002583A1 (en) 1996-02-01
ES2132695T3 (es) 1999-08-16
BR9506342A (pt) 1997-08-05
TR199500879A2 (tr) 1996-06-21
US5589549A (en) 1996-12-31
NO961108D0 (no) 1996-03-19

Similar Documents

Publication Publication Date Title
RU2176252C2 (ru) Способ многостадийной полимеризации одного или более олефинов и способ многостадийного получения гетерофазных сополимеров пропилена
RU2171265C2 (ru) Способ (со)полимеризации олефинов
EP1741725B1 (en) Propylene polymer composition
EP0347128B1 (en) Process for production of a high molecular weight ethylene a-olefin elastomer with a metallogene alumoxane catalyst
KR100653018B1 (ko) 분지형 반결정질 에틸렌-프로필렌 조성물
US6221802B1 (en) Catalyst support and catalyst for the polymerization of α-olefins
AU8222398A (en) Multistage polymerization process using a catalyst having different catalytically active sites
CA2510679A1 (en) Polymerization catalysts comprising titanium and magnesium
JPH04110308A (ja) α−オレフィンの重合方法
EP1114069B1 (en) A method for preparing a supported catalyst system and its use in a polymerization process
US6417300B1 (en) Terpolymerization
EP1448633B1 (en) Two-step polymerization process
EP0585512B1 (en) Process for the preparation of an olefin polymerization catalyst component
JPH0632828A (ja) α−オレフィンの立体特異性重合用触媒系、その重合法及び得られたポリマー
KR100251599B1 (ko) 구상 촉매 성분의 제조방법
JPH10245418A (ja) オレフィン重合体の製造方法
JP3689208B2 (ja) エチレン−α−オレフィン共重合体
JPH05295027A (ja) エチレン重合体の製造法
Soares Dynamic mathematical modelling of polymerization of olefins using heterogeneous and homogeneous Ziegler-Natta catalysts
JPH11269220A (ja) エチレン重合用固体触媒成分、エチレン重合用触媒及びエチレン系重合体の製造方法
JPH0134246B2 (ru)
JPH10298226A (ja) エチレン系重合体の製造方法、それに用いるオレフィン重合用触媒およびその固体触媒成分
JPH0476009A (ja) 3‐メチルペンテン‐1重合体の製造方法
JPH072778B2 (ja) オレフイン重合用触媒成分の製造法
JPH06256413A (ja) エチレン系重合体の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080719