KR20160125354A - 삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극 - Google Patents

삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극 Download PDF

Info

Publication number
KR20160125354A
KR20160125354A KR1020167020056A KR20167020056A KR20160125354A KR 20160125354 A KR20160125354 A KR 20160125354A KR 1020167020056 A KR1020167020056 A KR 1020167020056A KR 20167020056 A KR20167020056 A KR 20167020056A KR 20160125354 A KR20160125354 A KR 20160125354A
Authority
KR
South Korea
Prior art keywords
active material
chemical active
voltage
converted
intercalating
Prior art date
Application number
KR1020167020056A
Other languages
English (en)
Other versions
KR102384822B1 (ko
Inventor
티모시 홀름
웨스턴 아서 헤르만
Original Assignee
콴텀스케이프 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 콴텀스케이프 코포레이션 filed Critical 콴텀스케이프 코포레이션
Publication of KR20160125354A publication Critical patent/KR20160125354A/ko
Application granted granted Critical
Publication of KR102384822B1 publication Critical patent/KR102384822B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/388Halogens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 배터리 디바이스 및 그에 대한 방법에 관한 것이다. 더욱 구체적으로, 본 발명의 실시양태는 삽입 화학 물질과 변환 화학 물질을 양자 모두 포함하는 배터리 전극을 제공하며, 이는 자동차 응용에 사용될 수 있다. 기타 실시양태도 제공된다.

Description

삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극{HYBRID ELECTRODES WITH BOTH INTERCALATION AND CONVERSION MATERIALS}
본 출원은 발명의 명칭이 "삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극"이고 2014년 2월 25일자 출원된 미국 가특허 출원 제61/944,502호 및 발명의 명칭이 "삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극"이고 2014년 7월 23일자 출원된 미국 가특허 출원 제62/027,908호에 대한 우선권을 주장한다. 이들 가특허 출원 각각은 그 전체 내용이 모든 목적을 위해 본 명세서에 원용에 의해 포함된다.
최근, 화석 연료의 부족과 화석 연료의 소비로 인한 환경적 유해 효과에 대한 경고의 증가에 따라 공공 및 민간 부문에서는 에너지를 저장하고 전달하기 위한 대체 및 친환경 기술을 연구해왔으며, 이중 일부는 재충전 배터리(즉, 이차 배터리, 예를 들어, 구동 배터리)를 포함한다. 많은 유형의 재충전 배터리가 개발되었지만, 부분적으로는 에너지, 전력, 회전능의 조정 불능, 및 소정의 응용에 대한 소정의 배터리의 비용 측면으로 인하여, 많은 응용, 특히 자동차 응용(예: 전기 및 하이브리드 차량)에서 각 유형의 각각의 이점과 단점은 재충전 배터리의 광범위한 상용화를 저지시켜왔다.
상업적 응용에 있어서 특정 배터리 유형(들)의 적합성은 배터리의 물성 및 성능 특성 뿐아니라 구성 물질들의 비용 및 연관된 조립법에 좌우된다. 자동차 응용(예: 전기 및 하이브리드 차량)의 경우, 고전력 및 에너지 용량, 광범위한 전압 작동 범위, 및 기계적 내구성이 모두 바람직한 특성들이지만, 불행하게도 많은 통상의 배터리 디바이스들이 현재 및 미래의 자동차 수요에 있어서 이들 각각의 적어도 한가지 점에서 불충분하다. 전기 자동차의 경우, 배터리는 장거리 운전을 위한 고 에너지 밀도 및 또한 가속 및/또는 제동 시나리오를 위한 고 순간 출력 양자 모두를 증명할 필요가 있다. 대부분의 고 에너지 밀도 배터리는 고 출력능을 결여하기 때문에, 통상의 재충전 배터리는 자동차 응용에 있어서 광범위하게 채용되지 못하였다.
따라서, 새롭고도 개선된 배터리 디바이스 및 이를 제조하고 사용하는 방법이 본 발명 분야에 요구된다.
본 발명은 한 가지 초과 유형의 양극 활물질을 포함하는, 전기화학 전지용 양극 조성물을 기술한다. 일부 실시양태에서, 이들 전극은 변환 화학 활물질 및 삽입 화학 활물질을 포함한다. 이들 실시양태의 일부에서, 삽입 물질에 대한 삽입 전압은 변환 화학 물질에 대한 변환 전압을 초과(above)할 수 있으며, 이 경우에 삽입 화학은 최고 전압(voltage ceiling)을 제공하기 위한 재충전 중에 이용된다. 일부 기타 실시양태에서, 삽입 물질에 대한 삽입 전압은 변환 화학 물질에 대한 변환 전압 미만(below)일 수 있으며, 이 경우에 삽입 화학은 최저 전압(voltage floor)을 제공하기 위한 방전 중에 이용된다. 특정 실시양태에서, 변환 화학 활물질의 상부 작동 전압 평탄부(voltage plateau)(즉, 완전 충전시 전압 대 Li)는 삽입 화학 활물질에 대한 작동 전압 평탄부 미만이며, 이 경우에 삽입 물질은 전기화학 전지가 재충전할 때 최고 전압을 제공한다. 특정 실시양태에서, 변환 화학 활물질의 상부 작동 전압 평탄부(즉, 완전 충전시 전압 대 Li)는 삽입 화학 활물질에 대한 상부 작동 전압 평탄부와 하부 작동 전압 평탄부 사이에 있으며, 이 경우에 삽입 물질은 전기화학 전지가 재충전할 때 최고 전압을 제공한다. 특정의 기타 실시양태에서, 삽입 화학 활물질의 하부 작동 전압 평탄부(즉, 전압 하한, 방전시 전압 대 Li)는 삽입 화학 활물질에 대한 하부 작동 전압 평탄부를 초과하며, 이 경우에 삽입 물질은 전기화학 전지가 방전할 때 최저 전압을 제공한다. 특정의 기타 실시양태에서, 삽입 화학 활물질의 작동 전압 평탄부(즉, 전압 하한, 방전시 전압 대 Li)는 삽입 화학 활물질에 대한 상부 작동 전압 평탄부와 하부 작동 전압 평탄부 사이에 있으며, 이 경우에 삽입 물질은 전기화학 전지가 방전할 때 최저 전압을 제공한다. 특정 실시양태에서, 변환 화학 물질과 혼합된 삽입 화학 물질은 변환 화학 물질에 대한 삽입 방식 전압 범위보다 높은 전압에서 작동한다. 특정의 기타 실시양태에서, 변환 화학 물질과 혼합된 삽입 화학 물질은 변환 화학 물질에 대한 변환 방식 전압 범위보다 낮은 전압에서 작동한다. 또 다른 실시양태에서, 변환 화학 물질과 혼합된 삽입 화학 물질은 변환 화학 물질에 대한 삽입 방식 전압 범위보다 높은 전압 및 변환 화학 활물질에 대한 변환 방식 전압 범위보다 낮은 전압 양자 모두에서 작동한다. 본 명세서는 또한 이들 양극을 제조하고 사용하는 방법을 기술한다.
도 1은 무작위로 혼합된 삽입 화학 물질과 변환 화학 물질을 포함하는 캐소드(즉, 양극) 활물질을 설명하는 도표이다.
도 2는 경사 조성(graded composition)을 나타내는 캐소드를 설명하는 도표이다.
도 3A-C는 삼불화철(FeF3) 단독, 또는 삼불화철(FeF3)과 티탄산리튬(Li4-7Ti5O12, 즉 LTO) 양자 모두의 양극 활물질을 포함하는 양극을 갖는 전기화학 전지에 대한 저온 가속 작동을 설명하는 도표이다.
도 4A-C는 삼불화철(FeF3) 단독, 또는 삼불화철(FeF3)과 티탄산리튬(Li4-7Ti5O12, 즉 LTO) 양자 모두의 양극 활물질을 포함하는 양극을 갖는 전기화학 전지에 대한 저온 회생 제동(regenerative braking) 작동을 설명하는 도표이다.
도 5A-E는 삽입 화학 활물질과 변환 화학 활물질의 혼합물을 포함하는 양극을 갖는 전기화학 전지에 대한 다양한 작동 시나리오를 설명한다.
도 6은 변환 화학 반응에 사용하기에 적합한 상이한 물질들에 대한 작동 전압을 설명하는 표이다.
도 7은 본 명세서에 기술된 일 실시양태에 따른 변환 화학 활물질과 2 가지 유형의 삽입 화학 활물질을 갖는 하이브리드 전극을 포함하는 예시적인 배터리 전지를 설명하는 도표이다.
도 8은 본 명세서에 기술된 배터리 디바이스 실시양태와 사용하기에 적합한 예시적인 양면 캐소드 전극이다.
도 9A-F는 본 명세서에 기술된 양극 활물질, 예를 들어, 변환 화학 물질과 사용하기에 적합한 삽입 물질 및 이들의 상응하는 평균 전압(약 1.3-2.5 V 사이)(Li의 아랫첨자로 Li의 삽입된 양이 표시됨)의 목록이다.
도 10A-F는 본 명세서에 기술된 양극 활물질, 예를 들어, 변환 화학 물질과 사용하기에 적합한 삽입 물질 및 이들의 상응하는 평균 전압(약 2.5-3.8 V 사이)(Li의 아랫첨자로 Li의 삽입된 양이 표시됨)의 목록이다.
도 11은 FeF3 양극 활물질 단독, 또는 80:20 조합의 삼불화철(FeF3)과 티탄산 리튬(LTO, 즉, Li4-7Ti5.5O12) 양극 활물질을 갖는 전기화학 전지의 경우 전압 대 방전 실행 시간, 및 전류 대 방전 실행 시간의 중첩된(overlaid) 플롯이다. 전지는 50 ℃에서 C/10에 방전되었다.
도 12는 FeF3 양극 활물질 단독, 또는 80:20 조합의 삼불화철(FeF3)과 티탄산 리튬(LTO, 즉, Li4-7Ti5.5O12) 양극 활물질을 갖는 전기화학 전지의 경우 전압 대 실행 능동 질량-비용량(Voltage v. Run active mass-specific capacity)(mAh/g), 및 전류 대 실행 능동 질량-비용량(mAh/g)의 중첩된 플롯이다.
도 13은 FeF3 양극 활물질 단독, 또는 80:20 조합의 삼불화철(FeF3)(대조군-1 및 대조군-2로 표지)과 티탄산 리튬(LTO, 즉, Li4-7Ti5.5O12) 양극 활물질(LTO-1 및LTO-2로 표지)을 갖는 전기화학 전지의 경우 전압 대 실행 시간의 중첩된 플롯이다.
도 14는 도 13의 확대된 투시도이며 LTO-1과 대조군-1을 비교한다.
도 15는 FeF3 양극 활물질, 또는 80:20 조합의 삼불화철(FeF3)(대조군-1 내지 대조군-4로 표지)과 티탄산 리튬(LTO, 즉, Li4-7Ti5.5O12) 양극 활물질(LTO-1 내지LTO-6으로 표지)을 갖는 10 가지 전기화학 전지의 경우 면적 비저항(Area Specific Resistance; ASR) 대 충전-방전 펄스의 중첩된 플롯이다.
도 16은 FeF3 양극 활물질 단독, 또는 80:20 조합의 삼불화철(FeF3)과 티탄산 리튬(LTO, 즉, Li4-7Ti5.5O12) 양극 활물질을 갖는 전기화학 전지의 경우 실행 시간(103 초)의 함수로서 전압(대 Li)의 플롯이다.
도 17은 도 16의 확대된 투시도이다.
도 18은 도 16의 확대된 투시도이다.
도 19는 가속 전기 차량의 경우 시간의 함수로서 배터리 전력 수요 시나리오를 설명한다.
도 20은 도 19의 전력 수요 시나리오를 기초로 하여, LTO 양극 활물질, FeF3 양극 활물질, 또는 FeF3 및 LTO 양극 활물질의 95:5 w/w 혼합물을 갖는 전기화학 전지의 경우 시간의 함수로서 전기화학 전지 전압(V 대 Li)의 모의 전압 반응 플롯이다.
도 21은 회생 제동 전기 차량의 경우 시간의 함수로서 배터리 전력 수요 시나리오이다.
도 22는 도 21의 전력 수요 시나리오를 기초로 하여, LTO 양극 활물질, FeF3 양극 활물질, 또는 FeF3 및 LTO 양극 활물질의 95:5 w/w 혼합물을 갖는 전기화학 전지의 경우 시간의 함수로서 전기화학 전지 전압(V 대 Li)의 모의 전압 반응 플롯이다.
도 23은 본 명세서에 기술된 일 실시양태에 따른 하이브리드 양극을 포함하는 예시적인 전기화학 전지이다.
정의
본 명세서에서 사용된 구문 "활물질", "전극 활물질" 또는 "활물질"은 리튬 재충전 배터리 전지에 사용하기에 적합하며 배터리 전지의 충전 및 방전 사이클 중에 리튬 이온을 전달하거나 수용할 책임이 있는 물질을 지칭한다. 활물질은 충전 및 방전 사이클 중에 화학 반응을 겪을 수 있다. 동일한 배터리 전지가 양극 활물질과 음극 활물질을 포함할 수 있다. 예를 들어, 양극 활물질은 불화금속을 포함할 수 있으며 이는 이 물질을 함유하는 배터리 전지의 방전 사이클 중에 금속과 불화리튬으로 변환된다.
본 명세서에서 사용된 구문 "그룹 중에서 선택되는 적어도 하나의 구성원"은 그룹으로부터의 단일 구성원, 그룹으로부터의 하나 초과의 구성원, 또는 그룹으로부터의 구성원 조합을 포함한다. A, B, 및 C로 구성된 그룹 중에서 선택되는 적어도 하나의 구성원은, 예를 들어, A 단독, B 단독, 또는 C 단독 뿐아니라 A 및 B 뿐아니라 A 및 C 뿐아니라 B 및 C 뿐아니라 A, B, 및 C, 또는 A, B, 및 C의 임의의 기타 모든 조합들을 포함한다.
본 명세서에서 사용된 "결합제"는 다른 물질의 접착을 지원하는 물질을 지칭한다. 본 발명에 유용한 결합제로는 폴리프로필렌(PP), 어택틱 폴리프로필렌 (aPP), 이소택틱(isotactive) 폴리프로필렌(iPP), 에틸렌 프로필렌 고무(EPR), 에틸렌 펜텐 공중합체(EPC), 폴리이소부틸렌(PIB), 스티렌 부타디엔 고무(SBR), 폴리올레핀, 폴리에틸렌-코-폴리-1-옥텐(PE-co-PO), PE-코-폴리(메틸렌 사이클로펜탄) (PE-co-PMCP), 스테레오블록 폴리프로필렌, 폴리프로필렌 폴리메틸펜텐 공중합체, 폴리에틸렌 옥사이드(PEO), PEO 블록 공중합체, 실리콘 등을 들 수 있으나, 이로 제한되지는 않는다.
본 명세서에서 사용된 용어 "캐소드" 및 "애노드"는 배터리 전극을 지칭한다. Li-이차 배터리에서의 충전 사이클 중에, Li 이온은 캐소드를 떠나 전해질을 통해 애노드로 이동한다. 충전 사이클 중에, 전자는 캐소드를 떠나 외부 회로를 통해 애노드로 이동한다. Li-이차 배터리에서의 방전 사이클 중에, Li 이온은 전해질을 통해 애노드로부터 캐소드를 향해 이주한다. 방전 사이클 중에, 전자는 애노드를 떠나 외부 회로를 통해 캐소드로 이동한다. 본 명세서에서 사용된 캐소드 영역은 캐소드를 포함하는 전기화학 전지의 물리적 면적이다. 본 명세서에서 사용된 애노드 영역은 애노드를 포함하는 전지화학 전지의 물리적 면적이다. 본 명세서에서 사용된 전해질 영역은 전해질과 캐소드를 포함하는 전기화학 전지의 물리적 면적이다.
본 명세서에서 사용된 용어 "전해질"은 이온, 예를 들어, Li+이 이를 통해 이주하도록 허용하지만 전자가 이를 통해 전도되도록 허용하지 않는 물질을 지칭한다. 전해질은 이차 배터리의 캐소드 및 애노드를 전기적으로 절연시키는 한편 이온, 예를 들어, Li+이 전해질을 통해 전도되도록 허용하는데 유용하다. 본 명세서에서 사용된 용어 "전해질"은 또한 이온전도성이고 전기절연성인 물질을 지칭한다. 고체 전해질은 특히 강성 구조를 통한 이온 호핑에 좌우된다. 고체 전해질은 또한 빠른 이온 전도체 또는 초-이온 전도체로도 지칭될 수 있다. 고체 전해질은 또한 전지의 양극 및 음극을 전기적으로 절연시키는데 사용될 수 있는 한편, 전해질을 통해 이온, 예를 들어, Li+의 전도를 허용한다. 이 경우에, 고체 전해질 층은 고체 전해질 분리기(solid electrolyte separator)로도 지칭될 수 있다. 본 발명에 사용하기에 적합한 일부 전해질로는 Li2S-SiS2, Li-SiS2, Li-S-Si, 및/또는 Li, S, 및 Si로 본질적으로 구성된 음극전해질(catholyte), LixSiySz(여기에서 0.33≤x≤0.5, 0.1≤y≤0.2, 0.4≤z≤0.55이고 10 원자% 이하의 산소를 포함할 수 있음), Li2S 및 SiS2의 혼합물(여기에서 Li2S:SiS2의 비는 90:10, 85:15, 80:20, 75:25, 70:30, 2:1, 65:35, 60:40, 55:45, 또는 50:50 몰비임), Li2S-SnS2, Li2S-SnS, Li-S-Sn, 및/또는 Li, S, 및 Sn으로 본질적으로 구성된 음극전해질, LixSnySz(여기에서 0.25≤x≤0.65, 0.05≤y≤0.2, 및 0.25≤z≤0.65 임), 80:20, 75:25, 70:30, 2:1, 또는 1:1 몰비의 Li2S 및 SnS2의 혼합물(10 원자% 이하의 산소를 포함할 수 있고/있거나 Bi, Sb, As, P, B, Al, Ge, Ga, 및/또는 In에 의해 도핑될 수 있음)를 들 수 있으나 이로 제한되지는 않는다. 기타 적합한 전해질은, 예를 들어, 발명의 명칭이 LIAMPBSC(M=Si, Ge, 및/또는 Sn)를 이용한 배터리용 고체 상태 음극전해질 또는 전해질이고 2014년 5월 16일자 출원되었으며, 그 전체 내용이 원용에 의해 본 명세서에 포함된 국제 특허 출원 제PCT/US2014/038283호에서 발견된다. 기타 적합한 전해질로는 LixPySz(여기에서 0.33≤x≤0.67, 0.07≤y≤0.2 및 0.4≤z≤0.55임), 또는 Li2S:P2S5 혼합물(여기에서 몰비는 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 7:3, 2:1, 또는 1:1임), 또한 LixPySzOw(여기에서 0.33≤x≤0.67, 0.07≤y≤0.2, 0.4≤z≤0.55, 0≤w≤0.15임)를 들 수 있다. 기타 적합한 전해질로는 석류석 결정 구조와 관련된 결정 구조를 특징으로 하는 Li-함유 석류석 옥사이드를 들 수 있다. Li-함유 석류석은 화학식 LiaLabM'cM"dZreOf, LiaLabM'cM"dTaeOf, 또는 LiaLabM'cM"dNbeOf(여기에서 4<a<8.5, 1.5<b<4, 0≤c≤2, 0≤d≤2; 0≤e<2, 10<f<13이고, M' 및 M"는 각각 독립적으로 각 경우에 Al, Mo, W, Nb, Sb, Ca, Ba, Sr, Ce, Hf, Rb, 또는 Ta 중에서 선택됨), 또는 LiaLabZrcAldMe"eOf(여기에서 5<a<7.7, 2<b<4, 0<c≤2.5, 0≤d<2, 0≤e<2, 10<f<13이고, Me"는 Nb, Ta, V, W, Mo, 또는 Sb 중에서 선택되는 금속임)을 나타내는 화합물 및 본 명세서에 기재된 바와 같은 화합물을 포함한다. 본 명세서에서 사용된 "석류석"은 Al2O3로 도핑된 상기 기재된 석류석도 포함한다. 본 명세서에서 사용된 석류석은 Al3+가 Li+를 치환하도록 도핑된 상기 기재된 석류석도 포함한다. 본 명세서에서 사용된 Li-함유 석류석, 및 석류석은 일반적으로 Li7.0La3(Zrt1+Nbt2+Tat3)O12 + 0.35Al2O3(여기에서 La:(Zr/Nb/Ta) 비는 3:2이 되도록 (t1+t2+t3=아랫첨자 2)임)를 포함하지만 이로 제한되지 않는다. 또한, 본 명세서에 사용된 석류석 및 리튬-함유 석류석은 LixLa3Zr2O12 + yAl2O3(여기에서 x는 5.5 내지 9의 범위이고; y는 0 내지 1의 범위임)를 포함할 수 있다. 일부 실시양태에서 x는 7이고 y는 1.0이다. 일부 실시양태에서 x는 7이고 y는 0.35이다. 일부 실시양태에서 x는 7이고 y는 0.7이다. 일부 실시양태에서 x는 7이고 y는 0.4이다. 또한, 본 명세서에 사용된 석류석은 LixLa3Zr2O12 + yAl2O3를 포함할 수 있다. 예시적인 리튬-함유 석류석은 발명의 명칭이 Li 이차 배터리용 석류석 물질 및 석류석 물질의 제조 및 사용 방법이고 2014년 10월 7일자 출원된 국제 특허 출원 제PCT/US2014/059575호 및 제PCT/US2014/059578호에 기술된 조성물에서 발견된다.
본 명세서에서 사용된 구문 "변환 화학 활물질" 또는 "변환 화학 물질"은 이차 배터리의 충전 및 방전 사이클 중에 화학 반응을 겪는 물질을 지칭한다. 본 발명에 유용한 변환 화학 물질은 LiF, Fe, Cu, Ni, FeF2, FeOdF3-2d, FeF3, CoF3, CoF2, CuF2, NiF2(여기에서 0≤d≤0.5) 등을 포함하지만 이로 제한되지는 않는다. 예시적인 변환 화학 물질은, 예를 들어, 각각 그 전체 내용이 원용에 의해 본 명세서에 포함된, 발명의 명칭이 "자기 형성 배터리용 불화금속 조성물"이고 2013년 10월 25일자 출원된 미국 특허 공개 제2014/0117291호 및 발명의 명칭이 "이차 배터리 캐소드용 도핑된 변환 물질"이고 2014년 8월 15일자 출원된 미국 가특허 출원 제62/038,059호에서 발견된다. 예시적인 변환 화학 물질은, 예를 들어, 그 전체 내용이 원용에 의해 본 명세서에 포함된, 미국 특허 출원 제13/922,214호로 2013년 6월 19일자 출원되고 발명의 명칭이 "전기화학적 변환 반응용 나노구조 물질"인 미국 특허 출원 공개 제2014/0170493호에서 발견된다.
본 명세서에서 사용된 용어 C/1의 "C-속도(C-rate)"는 명판 용량(nameplate capacity)이 1 시간에 방전되는 정전류 사이클로서 정의된다. C/X의 C-속도는 상기 속도를 기준으로 하여 정의되며, 여기에서 충전 및 방전 전류는 C/1에서의 전류의 1/X이며, 이는 X 시간 정전류에서의 완전 방전에 대략적으로 상응한다.
본 명세서에서 사용된 구문 "삽입 화학 물질" 또는 "삽입 화학 활물질"은 이차 배터리의 충전 및 방전 사이클 중에 리튬 첨가 반응을 겪는 물질을 지칭한다. 예를 들어, 삽입 화학 물질은 LiFePO4 및 LiCoO2를 포함한다. 이들 물질에서, Li+는 이차 배터리의 방전 및 충전 사이클 중에 삽입 물질 내로 첨가되고 또한 삽입 물질 밖으로 빠져나온다.
본 명세서에서 사용된 "불화금속"(MF)은 금속 구성요소 및 불소(F) 구성요소를 포함하는 물질을 지칭한다. MF는 임의로 리튬(Li) 구성요소를 포함할 수 있다. 충전된 상태에서, MF는 방전된 상태에서의 불화리튬염 및 환원된 금속으로 변환될 수 있는 금속 불화물을 포함한다. 예를 들어, 충전된 상태의 MF는 하기 반응에 따라 배터리의 방전 중에 금속 및 불화리튬으로 변환될 수 있다: Li + MF → LiF + M. 본 발명에 유용한 MF로는 LiF, LizFeF3, LizCuF2, LizNiF2, LizCoF2, LizCoF3, LizMnF2, LizMnF3(여기에서 0≤z≤3) 등을 들 수 있으나 이로 제한되지는 않는다. 일부 실시양태에서, MF는 나노치수일 수 있으며, 일부 실시양태에서, MF는 나노도메인의 형태이다. 일부 실시양태에서, MF는 LiF일 수 있으며 추가로 나노치수의 금속, 예컨대 Fe, Co, Mn, Cu, Ni, Zr, 또는 그의 조합을 포함할 수 있다. 본 발명에 유용한 MF로는, 그 전체 내용이 원용에 의해 본 명세서에 포함된, 미국 특허 출원 제13/922,214호로 2013년 6월 19일자 출원되고 발명의 명칭이 "전기화학적 변환 반응용 나노구조 물질"인 미국 특허 출원 공개 제2014/0170493호에 기술된 것들을 들 수 있다. 본 발명에 유용한 MF로는 또한, 그 전체 내용이 원용에 의해 본 명세서에서 포함된, 발명의 명칭이 "이차 배터리 캐소드용 도핑된 변환 물질"이고 2014년 8월 15일자로 출원된 미국 가특허 출원 제62/038,059호에 기술된 것들을 들 수 있다.
본 명세서에서 사용된 구문 "양극"은 양이온, 예를 들어, Li+이 배터리 방전 중에 이를 향해 전도되거나, 흐르거나 이동하는 이차 배터리 내의 전극을 지칭한다. 본 명세서에서 사용된 구문 "음극"은 양이온, 예를 들어, Li+이 배터리 방전 중에 이로부터 흐르거나 이동하는 이차 배터리 내의 전극을 지칭한다. Li-금속 전극과 변환 화학 전극(conversion chemistry electrode; 즉, 활물질; 예를 들어, NiFx)으로 구성된 배터리에서, 변환 화학 물질을 갖는 전극은 양극으로 지칭된다. 일부 통상의 사용에서, 캐소드는 양극 대신에 사용되며, 애노드는 음극 대신에 사용된다. Li-이차 배터리가 충전될 때, Li 이온은 양극(예: NiFx)으로부터 음극(Li-금속)을 향해 이동한다. Li-이차 배터리가 방전될 때, Li 이온은 양극(예: NiFx; 즉, 캐소드)을 향해 음극(예: Li-금속; 즉, 애노드)으로부터 이동한다.
본 명세서에서 사용된 용어 "음극전해질"은 양극 활물질과 긴밀하게 혼합되거나 이를 둘러싸거나 접촉하는 이온 전도체를 지칭한다. 음극전해질은 그 전체 내용이 원용에 의해 본 명세서에 포함되며 발명의 명칭이 "LiAMPBSC(M=Si, Ge, 및/또는 Sn)를 사용하는 배터리용 고체 상태 음극전해질 또는 전해질"이고 2014년 5월 15일자 출원된 PCT 국제 특허출원 제PCT/US14/38283호에 기술된 음극전해질을 포함한다. 음극전해질은 그 전체 내용이 원용에 의해 본 명세서에 포함되며 발명의 명칭이 "Li 이차 배터리용 석류석 물질 및 석류석 물질의 제조 및 사용 방법"이고 2014년 10월 7일자 출원된 PCT 국제 특허출원 제PCT/US2014/059575호에 기술된 음극전해질을 포함한다.
본 명세서에서 사용된 구문 "약 70 %w/w"은 단어 약에 의해 수식된 수치 주위로 ±10%를 포함하는 범위를 지칭한다. 예를 들어, 약 70은 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 또는 77을 포함한다. 예를 들어, 약 30은 27, 28, 29, 30, 31, 32, 또는 33을 포함한다.
본 명세서에서 사용된 구문 "실질적으로 구분된"은 다른 물질과 공간적으로 분리되어 있는 한 물질과의 사이에 관찰가능한 구별이 존재하는 층상 물질을 지칭한다. 일부 실시예에서, 2 가지 이상의 물질이 실질적으로 구분되어 있는 경우, 이들 물질은 공간적으로 분리되어 있거나 상호간에 구분되어 있다.
본 명세서에서 사용된 구문 "근접한"은 2 가지 이상의 물질의 상대적인 위치를 지칭하며 다른 물질에 근접한 물질은 그 다른 물질에 가장 가까움을 의미한다.
본 명세서에서 사용된 구문 "제공하는"은 제공되는 것의 제공, 발생, 제시, 또는 전달을 지칭한다. 제공함은 무언가를 사용가능하게 함을 포함한다. 예를 들어, LiF를 제공함은 LiF를 이용가능하게 하거나 LiF를 전달하여 LiF가 본 명세서에 기재된 방법에 기술된 대로 사용될 수 있도록 하는 과정을 지칭한다.
본 발명은 배터리 디바이스 및 이들의 구성요소 뿐아니라 이를 제조하고 사용하는 방법에 관한 것이다. 더욱 구체적으로, 본 명세서에 기술된 실시양태는 삽입 화학 물질과 변환 화학 물질을 양자 모두 포함하는 배터리 전극(예: 양극)을 제공하며, 이는 자동차 응용에 사용될 수 있다. 다른 실시양태들도 존재한다.
하기 상세한 설명은 당업자로 하여금 본 명세서에 기술된 디바이스 및 구성요소를 제조 및 이용할 수 있도록 하며 특정 응용의 맥락에서 이들을 포함시킬 수 있도록 제공된다. 다양한 변형 뿐아니라 상이한 응용에서의 각종 용도들이 당업자에게 용이하게 명백해질 것이며, 본 명세서에 정의된 일반적인 원리들은 광범위한 실시양태에 적용될 수 있다. 따라서, 본 발명을 제시된 실시양태로 제한하고자 하지 않으며, 본 명세서에 개시된 원리 및 신규한 특징과 일치하는 가장 넓은 범위에 부합시키고자 한다.
하기 상세한 설명에서는, 본 명세서에 기술된 발명의 더욱 완전한 이해를 제공하기 위하여 많은 특이적 상세사항들이 기술된다. 그러나, 본 발명이 이들 특이적 상세사항으로 필수적으로 제한되지 않고도 실시될 수 있음이 당업자에게 명백해질 것이다. 다른 경우에, 본 명세서에 기술된 발명을 불명확하게 함을 피하기 위하여, 상세하게 나타내기 보다는 블록 도표의 형태로 주지의 구조 및 디바이스를 나타낸다.
독자의 관심은 본 명세서와 함께 제출된 모든 논문 및 문서에 향해 있으며, 이들은 본 명세서와 함께 공중의 열람에 개방되어 있고, 이러한 모든 논문 및 문서의 내용은 원용에 의해 본 명세서에 포함된다. 명시적으로 달리 언급되지 않는 한, 본 명세서(임의의 첨부된 청구범위, 요약서, 및 도면 포함)에 개시된 모든 특징은 동일하거나 균등하거나 유사한 목적을 제공하는 대안적인 특징에 의해 대체될 수 있다. 따라서, 명시적으로 달리 언급되지 않는 한, 개시된 각각의 특징은 일련의 포괄적인 균등하거나 유사한 특징들의 일례일 뿐이다.
또한, 35 U.S.C. 섹션 112, 단락 6에 특정된 바와 같이, 청구범위에서 특정된 작용을 실행하기 위한 "수단" 또는 특이적 작용을 실행하기 위한 "단계"를 명백히 언급하지 않은 임의의 요소는 "수단" 또는 "단계" 절로 해석되고자 하지 않는다. 특히, 본 청구범위에서 "의 단계" 또는 "의 행위"의 사용은 35 U.S.C. 112, 단락 6의 규정을 적용하고자 하지 않는다.
사용되는 경우, 좌측, 우측, 전, 후, 상부, 하부, 순방향, 역방향, 시계방향 및 시계반대방향의 표시는 단지 편의상 사용된 것으로서 임의의 특정한 고정 방향을 의미하고자 하지 않음에 주목하여야 한다. 대신에, 이들은 물체의 다양한 부분 사이의 상대적인 위치 및/또는 방향을 반영하고자 사용된다.
가장 일반적인 작동 조건(예: 0 ℃ 초과의 온도) 하에, 변환 화학 캐소드에 의존하는 이차 에너지 저장 디바이스는 삽입 화학 캐소드를 갖는 배터리보다 더 높은 에너지 밀도와 더 양호한 성능을 제공할 수 있다. 예를 들어, 변환 화학 캐소드는 1000 mWh/g 초과의 에너지 밀도를 제공할 수 있다. 또한, 특정 유형의 변환 화학 캐소드는 고온 수준(예: 50 ℃ 초과, 또는 80 ℃ 초과, 또는 100 ℃ 초과)에서 작동할 수 있다. 예를 들어, 변환 화학 물질 및 그의 방법은 그 전체 내용이 모든 목적을 위해 원용에 의해 본 명세서에 포함되고 발명의 명칭이 "전기화학적 변환 반응용 나노구조 물질"이며 2013년 6월 19일자 출원된 미국 특허 출원 제13/922,214호에 기재되어 있다. 예를 들어, 변환 화학 물질 및 그의 방법은 양자 모두 그 전체 내용이 모든 목적을 위해 원용에 의해 본 명세서에 포함된 가특허 출원으로서 발명의 명칭이 "이차 배터리 캐소드용 도핑된 변환 물질"이며 2014년 8월 15일자 출원된 미국 가특허 출원 제62/038,059호 및 발명의 명칭이 "이차 배터리 캐소드용 도핑된 변환 물질"이며 2014년 8월 28일자 출원된 미국 가특허 출원 제62/043,353호에 기재되어 있다.
변환 화학 캐소드에 대한 특이적 성능 특성 및 작동 조건이 있다. 본 발명의 이행에 따라, 캐소드(즉, 양극)는 빠른 동력학(고 전력 용량)을 나타내는 활물질 입자와 더 느린 동력학이지만 고 에너지 밀도를 나타내는 활물질 입자를 포함할 수 있다. 변환 화학 캐소드는 고 수준의 에너지 밀도를 제공할 수 있지만, 일부 조건에서는 저 전력 밀도를 제공한다. 예를 들어, 저온(예를 들어 <0 ℃)에서, 변환 물질은 삽입 물질과 비교하여 저 전력 밀도를 나타낼 수 있다. 비교해보면, 삽입 화학 캐소드는 전형적으로 비교적 낮은 에너지 밀도, 그러나 비교적 높은 전력 밀도를 나타낸다.
따라서, 본 명세서에 개시된 실시양태는 삽입 옥사이드 입자(예: LiMPO4(M=Fe, Ni, Co, Mn), LixTiyOz(여기에서 x는 0 내지 8이고, y는 1 내지 12이며, z는 1 내지 24임), LiMn2O4, LiMn2-aNiaO4(여기에서 a는 0 내지 2임), LiCoO2, Li(NiCoMn)O2, Li(NiCoAl)O2, 니켈 코발트 알루미늄 옥사이드[NCA], 및 관련 삽입 옥사이드)와 함께 고 에너지 밀도의 변환 화학 입자(예: FeF2, FeOxF3-2x, FeF3, CoF3, CuF2, NiF2 등)를 포함하는 양극을 제공하는 것으로 인정된다. 부가적인 삽입 옥사이드 입자는 그 전체 내용이 모든 목적을 위해 원용에 의해 본 명세서에 포함되고 발명의 명칭이 "리튬이 풍부한 니켈 망간 옥사이드"이며 2014년 12월 23일자 출원된 미국 가특허 출원 제62/096,510호에서 발견된다. 목적하는 성능을 얻기 위하여, 변환 및 삽입 물질은 본 명세서에 기술된 방법에 따라 혼합되거나(예: 응용에 따라 동종 또는 이종으로), 층을 이루거나, 다중층을 이루거나, 경사지거나, 작동된다. 예를 들어, 펄스(고 전력 수요) 회생 충전 또는 펄스 방전의 조건 하에, 전력은 삽입 화학 활물질로부터 인출될 수 있다. 선택되고 함께 제형화된 물질에 따라, 삽입 전압은 변환 전압을 초과하거나 미만일 수 있다. 초과하는 경우에는 재충전 중에 삽입 화학이 이용되어 최고 전압을 제공하며, 미만인 경우에는 방전 중에 삽입 화학이 이용되어 최저 전압을 제공한다. 상세한 설명이 이하 제공된다.
이행에 따라, 삽입 및 변환 물질이 다양한 방식으로 혼합될 수 있다. 도 1은 본 명세서에 기술된 발명의 일 실시양태에 따라 무작위로 혼합된 삽입 물질과 변환 물질을 포함하는 캐소드 물질을 설명하는 단순화된 도표이다. 본 도표는 단지 일례일 뿐이며, 청구범위를 과도하게 제한해서는 안된다. 당업자는 많은 변화, 대안, 및 변형을 인식할 것이다. 도 1에서, 그늘진 원들은 삽입 물질 입자를 나타내며, 그늘지지 않은 원들은 변환 물질 입자를 나타낸다. 자동차 응용에서, 전기 차량(또는 전기 모터를 갖는 하이브리드 차량)에 동력을 공급하는데 배터리가 사용되는 경우에, 대부분의 작동에 있어서 에너지 용량은 종종 전력 용량보다 더 중요하다. 이와 같이, 본 명세서의 일부 실시예에서, 삽입 물질보다 비교적 더 높은 에너지 용량을 나타내는 변환 화학 물질은 변환 화학 물질 및 삽입 화학 물질을 양자 모두 포함하는 하이브리드 양극에서 주된 구성요소로서 제형화된다. 예를 들어, 도 1에 나타낸 바와 같이, 변환 화학 물질보다 더 적은 양의 삽입 화학 물질이 제공된다. 일부 실시예에서, 본 명세서에 기술된 캐소드 물질의 조성은 20% 미만의 삽입 물질과 나머지 퍼센트의 변환 화학 물질을 나타낸다. 이행에 따라, 삽입 물질과 변환 물질 사이의 비율은 변화할 수 있다.
일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 99:1이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 98:2이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 97:3이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 96:4이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 95:5이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 94:6이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 93:7이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 92:8이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 91:9이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 90:10이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 89:11이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 88:12이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 87:13이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 86:14이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 85:15이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 84:16이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 83:17이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 82:18이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 81:19이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 80:20이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 79:21이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 78:22이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 77:23이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 76:24이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 75:15이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 74:26이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 73:27이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 72:28이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 71:29이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 70:30이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 69:31이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 68:32이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 67:33이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 66:34이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 65:35이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 64:36이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 63:37이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 62:38이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 61:39이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 60:40이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 59:41이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 58:42이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 57:43이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 56:44이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 55:45이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 54:46이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 53:47이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 52:48이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 부피비는 51:49이다.
일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 99:1이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 98:2이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 97:3이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 96:4이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 95:5이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 94:6이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 93:7이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 92:8이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 91:9이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 90:10이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 89:11이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 88:12이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 87:13이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 86:14이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 85:15이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 84:16이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 83:17이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 82:18이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 81:19이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 80:20이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 79:21이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 78:22이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 77:23이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 76:24이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 75:15이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 74:26이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 73:27이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 72:28이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 71:29이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 70:30이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 69:31이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 68:32이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 67:33이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 66:34이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 65:35이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 64:36이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 63:37이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 62:38이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 61:39이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 60:40이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 59:41이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 58:42이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 57:43이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 56:44이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 55:45이다. 일부 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 54:46이다. 다른 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 53:47이다. 특정 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 52:48이다. 일부 실시예에서, 변환 화학 활물질 대 삽입 화학 활물질의 각각의 중량비는 51:49이다.
삽입 및 변환 물질의 혼합은 변화한다. 예를 들어, 도 1은 삽입 및 변환 물질의 실질적인 무작위 혼합을 보여준다. 도 2는 본 명세서에 기술된 발명의 일 실시양태에 따른 경사 조성을 나타내는 캐소드를 설명하는 단순화된 도표이다. 본 도표는 단지 일례일 뿐이며, 청구범위를 과도하게 제한해서는 안된다. 당업자는 많은 변화, 대안, 및 변형을 인식할 것이다. 도 2에서, 그늘진 원들은 삽입 물질 입자를 나타내며, 그늘지지 않은 원들은 변환 물질 입자를 나타낸다. 삽입 화학 물질은 변환 화학 물질에 대해 훨씬 더 적은 양이며 캐소드의 상부 영역(즉, 전해질과 접하거나 가장 근접한 캐소드 영역) 상에 위치한다. 예를 들어, 삽입 물질을 전해질에 가까이 위치시킴으로써, 전기화학 전지가 충전 또는 방전되며 리튬 이온이 전해질을 통해 캐소드 내로 또는 밖으로 이동하는 경우, 삽입 물질이 변환 화학 물질과 비교하여 더 높은 속도로 접근할 수 있다. 다양한 방전 이행에서, 삽입 물질은 유입되는 리튬 이온들이 캐소드 내에서 변환 화학 물질과 반응하기 전에 이들 이온과 반응하도록 위치한다. 예를 들어, 다양한 자동차 관련 응용에서, 전기 차량 가속용 펄스 방전 중에 저온에서 전기 차량을 출발시킬 때 전력 용량이 중요하다. 이들 고 전력 용량 실시예에서, 전해질에 가장 근접한 삽입 물질은 리튬 이온이 변환 화학 물질과 반응하기 전에 캐소드에서 리튬 이온과 반응하는 최초의 물질이 될 것이다.
일부 실시예에서, 하이브리드 양극의 삽입 화학 활물질이 변환 화학 활물질보다 양극 및 음극을 분리하는 전해질에 더 가깝거나 근접한 전기화학 전지를 제공한다.
특정 실시양태에서, 변환 화학 및 삽입 화학 물질이 층으로 배열된다. 경사 또는 층상 혼합물의 경우에, 경사 화학은 듀얼 패스 코팅기에서의 슬러리 코팅에 의해 조립될 수 있으며, 다른 공정들도 가능하다. 예를 들어, 입자가 상이한 크기 또는 밀도를 갖는다면, 입자는 침착 및/또는 건조 중에 슬러리 내에서 우선적으로 구분될 수 있다.
특정 실시양태에서, 변환 화학 및 삽입 화학 물질이 층으로 배열된다. 일부 실시예에서, 전해질과 직접 접촉하는 층은 삽입 물질이며 변환 화학 물질은 삽입 물질과 직접 접촉하고 있지만 전해질과는 직접 접촉하지 않는다. 일부 다른 실시예에서, 전해질과 직접 접촉하는 층은 변환 화학 물질이며 삽입 화학 물질은 삽입 물질과 직접 접촉하고 있지만 전해질과는 직접 접촉하지 않는다.
특정 실시양태에서, 양극은 삽입 및 변환 화학 활물질의 교차 층을 포함하며, 여기에서 전해질에 가장 근위의 층은 삽입 물질이다. 특정의 다른 실시양태에서, 양극은 삽입 및 변환 화학 활물질의 교차 층을 포함하며, 여기에서 전해질에 가장 근위의 층은 변환 화학 물질이다.
캐소드 물질로서, 변환 화학 물질은 삽입 화학 물질보다 훨씬 더 높은 에너지 밀도를 제공할 수 있다. 대부분, 캐소드 내에 가능한 많은 변환 화학 물질을 갖는 것이 바람직하다. 전기 차량 응용에서의 특이적 목적, 예컨대 회생 제동, 저온 시동, 및 가속을 위해 삽입 화학물질을 사용한다. 또한, 휴대용 디바이스에서 저온 작동을 위해 대부분의 변환 캐소드에 삽입 물질을 도입하는 것이 유리할 수 있다.
일례로서, 혼합된 삽입 및 변환 화학을 갖는 캐소드는 특히 추운 날씨의 EV 회생 제동 응용에 특히 유용하다. 저온 작동 환경에서, 변환 화학 물질은 저 전력 용량을 나타낼 수 있다. 캐소드의 부분으로서 이행되는 삽입 화학 물질은 이 조건에서 펄스 전력을 제공할 수 있다. 또한, 삽입 화학 물질은 EV 가속 중에 매우 유용할 수 있으며, 이때 저장된 전기는 신속히 방전되고 삽입 화학 물질은 필요한 펄스 전력을 제공할 수 있다.
다양한 이행에서, 캐소드 화학은 구체적으로 전기 차량에 전력을 공급하도록 환경을 설정하며, 파워트레인 전압 파라미터에 따라 작업한다. 예를 들어, 전기 차량의 전력 전자공학은 전형적으로 1.5 내지 2.5의 최저 내지 최고 전압비를 취급한다. 바로 1.5 V 위에서 방전 전위를 나타내는 삽입 화학 물질(예: LTO 물질)을 포함시킴으로써 최저 전압을 1.3 V에서 1.5 V로 올릴 수 있으며, 이에 따라 2.5 * 1.3 = 3.25 V 대신에 2.5 * 1.5 = 3.75 V의 최고 전압이 허용된다. 최고 전압의 증가는 특히 까다로운 조건 하에 전기 차량을 작동시키는데 필요한 조작상의 자유 및 전력 효율을 제공할 수 있다.
앞에서 설명한 바와 같이, 변환 화학 물질은 높은 수준의 에너지 용량을 특징으로 한다. 예시적인 변환 화학 물질로는 FeF2, FeOxF3-2x, FeF3, CoF3, CoF2, BiF3, CuF2, MnF3, NiF2, 및/또는 기타 고 에너지 밀도 변환 화학 물질을 들 수 있으나 이로 제한되지는 않는다. 다양한 이행에서, 변환 화학 물질은 1000 mWh/g을 초과하는 에너지 용량을 제공할 수 있는 나노구조의 물질일 수 있다. 삽입 화학 물질은 높은 수준의 전력 용량을 특징으로 한다. 예시적인 삽입 화학 물질로는 낮은 전압면(low voltage side) 상의 티탄산 리튬, 및 고압면(high voltage side) 상의 리튬 철 포스페이트, 첨정석, 감람석, LiCoO2, NCM, NCA, 및/또는 기타 상부 전압 삽입 화학 물질을 들 수 있다. 예시적인 삽입 화학 물질이 도 9 및 10의 표에 포함되어 있다.
하기 실시예는 캐소드 조성 내의 삽입 물질 부분이 소정의 배터리 사용 조건에 따라 어떻게 계산될 수 있는지를 설명한다. 이는 또한, 극한의 응용에 요구되는 삽입 물질의 양이 배터리의 에너지 밀도를 유의하게 감소시키지 않음을 설명한다. 전기 차량은 0 ℃에서 약 10 내지 30 초의 3.5E의 방전 펄스 전력을 필요로 할 수 있다. 3.5E 속도(rate)는 배터리를 완전히 방전시키는 1 시간의 지속적인 전력 인출(즉, 방전)로부터 얻어지는 정격 에너지의 3.5 배와 균등한 전력을 배터리가 제공하는 것을 의미한다. 하기 실시예는 30 초 펄스의 고 전력 수요 시나리오를 상정하며, 여기에서 변환 화학 물질은 본 작동 조건(온도 및 속도)에서 요구되는 전력의 일부를 불충분하게 공급한다. 본 실시예에서, 100 Wh 속도의 전지의 경우에, 펄스는 대략 3 Wh(3.5*100 W *30 s *1 hr / 3600 s)의 수요, 또는 전지 에너지의 3%이다. 따라서, 활물질 에너지의 3%가 전력 화학에 의해 본 알키텍쳐에 기여할 것이다. 질량 분획 기여를 산정하기 위하여, 캐소드가 Li4Ti5O12(LTO)를 포함하는 방전 전력 화학을 포함하는 경우, 이는 165 mAh/g(Li 포함)의 비용량 및 1.5 V 방전 전위를 나타낸다. LTO로부터의 3 Wh 기여는 전지가 2 Ah 용량의 LTO(3 Wh/1.5 V=2 Ah)를 포함하여야 함을 내포한다. 100 Wh 전지가 601 mAh/g(Li 포함)의 비용량을 나타내는 42 Ah의 FeF3를 포함한다면, LTO의 질량 분획은 총 중량의 14%(즉, 12.1 g 대 69.9 g)이다. 본 실시예는 배터리 캐소드의 소 분획이 단단히 고정된 삽입 물질을 포함할 수 있으며, 캐소드의 주된 구성요소는 변환 화학 물질이고, 본 실시예에서 고려되는 고 전력 수요를 충족시킴을 설명한다. 요구되는 작동 조건에 따라, 사용되는 삽입 물질의 양이 변화한다.
다른 실시예에서, 배터리 캐소드 조성은 변환 물질과 함께 제형화된 고압의 단단히 고정된 삽입 캐소드 물질을 포함한다. 본 실시예에서, 사양은 10 ℃에서 10 초간 3E 펄스 충전을 요구하며, 변환 물질은 그 충전 속도를 전달할 수 없고, 이 경우에 삽입 화학 물질은 본 시나리오의 요건을 충족시키기 위하여 변환 화학 물질과 함께 제형화될 수 있다. 10초 동안 300 W를 전달하기 위한 삽입 화학 물질로서 LiCoO2(LCO)를 사용하면(4 V, 137 mAh/g 비용량, 리튬 포함), LCO로부터 208 mAh가 전달될 것이 필요하다. 본 실시예에서, 1.5 g의 LCO 또는 약 2%의 질량 분획이 포함된다. 더 짧은 펄스가 필요하기 때문에 본 실시예에서 질량 분획이 더 낮으며, LCO의 전압이 더 높으므로 비에너지가 더 높고 그 에너지를 전달하는데 저 적은 질량이 필요하다. 상기 2 가지 실시예에서 입증된 바와 같이, 사용되는 삽입 물질의 양과 유형은 많은 인자들, 예컨대 삽입 화학 물질, 변환 화학 물질의 특성, 예상되는 작동 조건, 목적하는 내성, 전기 차량의 에너지 및 전력 요구량, 및 기타 인자들에 좌우된다.
특정 실시예 전기 차량 응용의 경우, 고압 삽입 화학 물질은 변환 화학 물질의 저속, 고온 충전 전위(예: FeF3의 경우 약 3.7 V)보다 크지만 시스템 고압 컷오프(일부 경우에 약 4.2 V)보다는 낮은 충전 전압을 나타낸다. 사용될 수 있는 고압 물질의 예는 LiMPO4(M=Co, Ni, Mn, Fe, 및 그의 조합), LiNi0.5Mn1.5O4, LiMn0.5Ni0.5O2, LiMn2O4, LiCoO2, 및 Li3V2PO4이다. 부가적인 고압 물질이 도 10A-10F에 열거되어 있다. 낮은 전압 삽입 화학 물질은 시스템 낮은 전압 컷오프(일부 경우에 약 1.3 V)보다 크지만 변환 화학 물질의 고온, 저속 방전 전위(FeF3의 경우에 2.4 V)보다 낮은 방전 전위를 나타내고자 한다. 사용될 수 있는 낮은 전압 물질의 예는 Li4Ti5O12이다. 부가적인 낮은 전압 물질이 도 9A-9F에 열거되어 있다. 본 명세서에 기술된 일부 실시예에서, 변환 화학 물질은 낮은 전압 삽입 화학 물질 및 또한 고압 삽입 화학 물질 양자 모두와 함께 제형화된다. 본 명세서에 기술된 일부 실시예에서, 변환 화학 물질은 도 9A-F의 표에 열거된 삽입 화학 물질 및 또한 도 10A-F의 표에 열거된 삽입 화학 물질과 함께 제형화된다.
앞에서 기재한 바와 같이, 삽입 화학 물질과 변환 화학 물질은 적어도 한 가지 측면에서 상승적이다. LTO와 같은 낮은 전압 삽입 화학 물질은 방전 펄스(예: 고전력 수요 펄스 또는 가속)에 대해 방전 에너지를 제공할 수 있으며, 그 후 이는 펄스가 완료됨에 따라 변환 화학 물질(예: FeF3)에 의해 재충전될 수 있다. 낮은 전압 삽입 화학 물질(예: LTO)가 재충전되도록 방전 펄스가 충분히 일시적으로 간격을 두고 있는 한, 각각의 방전 펄스에 대해 공정은 반복적으로 사용될 수 있다. 바람직한 실시양태에서, 단일 최장의 예상된 방전 펄스에 대해 에너지를 제공하기 위해서는 충분한 LTO 만이 하이브리드 양극에 포함될 필요가 있다.
도 3은 전기 차량이 가속하고 있는 저온에서 본 명세서에 기술된 발명의 실시양태에 따라 혼합 물질 캐소드의 작동을 설명하는 단순화된 도표이다. 본 도표는 일례일 뿐, 청구범위를 과도하게 제한해서는 안된다. 당업자는 많은 변화, 대안, 및 변형을 인식할 것이다. 도 3A는 저온(예: 0 ℃)에서 차량의 예시적인 전력 수요를 보여준다. 도 3B는 변환 화학 물질(예: FeF3 또는 기타 유형의 변환 화학 물질)을 포함하는 배터리 전지의 경우, 시간의 함수로서 전압 출력을 보여준다. 도 3C는 변환 화학 물질 및 삽입 화학 물질(예: LTO 또는 기타 유형의 삽입 물질)을 양자 모두 포함하는 배터리 전지의 경우, 시간의 함수로서 전압 출력을 보여준다.
도 3A에 나타낸 바와 같이, 일부 실시예에서, 전기 차량에 대한 전력 수요는 전력 수요가 피크인 전기 차량이 시점 301A 및 302A에 가속할 때를 제외하고는, 실질적으로 일정하다. 충전 상태에 따라, 전기 차량에 대한 배터리 전지는 전기 차량이 가속할 때의 전력 수요를 만족시키기에 충분한 전력을 가질 수도 있고 갖지 못할 수도 있다. 도 3B에 나타낸 바와 같이, 전기 차량용 배터리 전지의 전지 전압은 캐소드가 변환 화학 물질(예: FeF3 및/또는 기타 유형의 변환 화학 물질) 만을 포함하는 경우 전기 차량이 작동함에 따라 초기의 고압 수준(상부 전압 컷오프 수준에 근접)으로부터 낮은 전압 수준(하부 전압 컷오프 수준에 근접)까지 하부 작동 전압 컷오프 미만으로 점진적으로 떨어진다. 그러나, 도 3C에 나타낸 바와 같이, 캐소드가 낮은 전압 삽입 물질도 포함하는 경우, 하부 전압 컷오프는 레일링된다(railded). 도 3C에서, 배터리 전압은 하부 전압 컷오프 미만으로 떨어지지 않는데, 왜냐하면 삽입 물질은 변환 화학 물질 만이 존재하는 경우 가능한 것보다 높은 전지 전압을 유지하기 때문이다.
충전 상태 및 변환 물질의 유형에 따라, 변환 화학 물질을 갖는 배터리 전지는 2 가지 방식 하에 작동할 수 있다. 배터리 충전이 실질적으로 완료되었을 때, 배터리 전지는 삽입(신속) 방식으로 작동한다. 즉, 변환 화학 물질은 삽입 공정으로 방전된다. 삽입 방식 중에, 전지 전압은 비교적 높으며 시점 301B에 필요한 전력과 전압을 제공하기에 충분한 헤드룸(headroom)을 갖는다. 시점 301B에, 시점 301A의 전기 차량 가속에 상응하는 전압의 강하는 전지 전압 수준이 하부 전압 컷오프 미만으로 떨어지도록 유발하지 않으며, 전기 차량은 정상적으로 작동한다.
그러나, 도 3B에 나타낸 바와 같이 시점 301B와 302B 사이에 배터리 전지가 변환 방식으로 작동하는 경우(즉, 변환 물질이 변환 화학 반응을 거쳐 그리고 삽입 화학 반응을 거치지 않고 방전 또는 충전되는 경우), 배터리 전지 전압은 실질적으로 일정하지만 더 낮은 수준에 있으며, 이는 하부 전압 컷오프 수준에 근접할 수 있다. 시점 302A 중에 전기 차량이 가속하는 경우, 시점 302B에 나타낸 바와 같이, 전력 수요의 증가는 전지 전압이 하부 전압 컷오프 수준 미만으로 떨어지도록 유발할 수 있다. 배터리 전지의 전압 수준이 하부 전압 컷오프 미만으로 떨어지는 경우, 전지는 필요한 전력을 전달할 수 없다. 배터리 전지(또는 많은 배터리 전지로 만들어진 배터리 팩)가 하부 전압 컷오프 수준을 초과하지 않는 경우, 이는 전력 수요를 충족시킬 수 없고, 결과적으로 전기 차량은 원하는 대로 가속할 수 없다.
캐소드가 삽입 및 변환 화학 물질 양자 모두를 포함하는 경우, 도 3C에 입증된 바와 같이, 전기 차량의 작동이 유의하게 개선된다. 도 3C의 그래프는 삽입 화학 물질(예: LTO) 및 변환 화학 물질(예: FeF3) 양자 모두를 갖는 배터리 캐소드에 대한 전지 전압을 보여준다. 앞에서 설명한 바와 같이, 다른 유형의 삽입 화학 물질과 변환 화학 물질도 사용될 수 있다. 시점 301C에서, 전지 전압은 하부 전압 컷오프 수준을 훨씬 초과하므로 시점 301A에서의 가속이 전지 전압 수준을 떨어뜨리는 경우에도 전지 전압 수준은 여전히 하부 전압 컷오프 수준을 훨씬 초과한다. 시점 302C에, 주로(예: 총 중량의 80% 초과) 변환 화학 물질을 포함하는 전지는 변환 방식으로 작동한다. 시점 302C에, 전지 전압은 하부 전압 컷오프 수준과 근접한다. 시점 302C에 삽입 화학 물질은, 전기 차량이 시점 302A에 작동하는 경우 많이 필요한 전력을 제공함으로써 전지 전압이 시점 302C에 하부 전압 컷오프 미만으로 떨어지는 것을 방지하고 전기 차량이 원하는 대로 가속하도록 허용한다. 예를 들어, 하부 전압 컷오프 수준은 약 1.5 V이다. 1.5 V 부근에서, 삽입 화학 물질은 전기 차량에 의해 요구되는 전력에 기여한다. 전지 전압은 "레일링"되거나 삽입 물질에 기인하는 전압 수준에서 안정화되고, 배터리 백(battery back)은 전체적으로 가속의 경우 전기 차량의 전력 수요를 충족시킬 수 있다. 전기 차량이 가속하는 경우 전력 수요의 증가는 전지 전압이 떨어지도록 유발함에 주목하고자 한다. 가속이 중단되고 전력 수요가 감소할 때, 변환 화학 물질은 방전할 수 있고 이에 의해 삽입 화학 물질을 재충전할 수 있다. 앞에서 언급한 바와 같이, 삽입 물질은 시점 302C와 같은 상황에서 작동 헤드룸을 제공하도록 구체적으로 설정되며, 배터리 전지 캐소드의 작은 부분만을 형성한다. 따라서, 삽입 물질은 가능한 경우 재충전되며, 재충전된 삽입 물질은 필요한 경우 나중에 보충 전력을 제공할 수 있다.
도 4는 전기 차량이 회생 제동을 실행하고 있는 저온에서 혼합 물질 캐소드의 작동을 설명하는 단순화된 도표이다. 본 도표는 일례일 뿐, 청구범위를 과도하게 제한해서는 안된다. 당업자는 많은 변화, 대안, 및 변형을 인식할 것이다. 도 4A는 저온(예: 0 ℃)에서 차량의 회생 제동의 경우 시간의 함수로서 전력 수요를 보여준다. 예를 들어, 차량은 전기 차량 또는 하이브리드 차량일 수 있다. 도 4B는 캐소드가 변환 화학 물질(예: FeF3 또는 기타 유형의 변환 화학 물질)을 포함하는 배터리 전지의 경우, 시간의 함수로서 전압 출력을 보여준다. 도 4C는 캐소드가 변환 화학 물질 및 삽입 화학 물질(예: LTO 또는 기타 유형의 삽입 물질)을 양자 모두 포함하는 배터리 전지의 경우, 시간의 함수로서 전압 출력을 보여준다.
도 4A에 나타낸 바와 같이, 0 ℃ 등온 조건 하에, 차량으로부터의 전력 수요는 차량이 제동 중인 시점 401A 및 시점 401B를 제외하고는 실질적으로 일정하다. 시점 401A 및 401B 중에, 회생 제동 과정이 제동 과정으로부터 전력을 발생시킴에 따라 전력 수요는 낮고 음성이며, 회생 제동 과정으로부터의 전력은 배터리를 충전하는데 사용될 수 있다. 도 4B에서, 그래프는 변환 화학 물질(예: FeF3 또는 기타 유형의 변환 화학 물질)을 포함하는 배터리 전지의 작동을 보여준다. 도 4B에서 변환-화학-단독 배터리 전지는 초기의 삽입 방식 및 그 후 전압이 떨어짐에 따라 변환 방식의 2 가지 방식으로 작동한다. 삽입 방식 중에, 전지 전압은 비교적 높게 시작하여 상부 전압 컷오프 수준에 근접하게 된다. 예를 들어, 상부 전압 컷오프 수준은 4.2 V 부근일 수 있다. 차량 작동이 배터리 전지를 인출함에 따라, 배터리 전지가 변환 방식으로 작동하기 시작할 때까지 전지 전압이 떨어진다. 회생 제동의 시점 401A에 상응하는 시점 401B 중에, 배터리가 회생 제동 과정에 의해 재충전됨에 따라 전지 전압이 높아진다. 시점 401B에서의 전지 전압 수준이 비교적 높고 상부 전압 컷오프 수준에 근접하므로, 회생 제동 과정으로부터의 배터리 재충전은 상부 전압 컷오프 수준을 초과하는 수준까지 전지 전압을 올린다. 배터리 전지의 재충전이 일반적으로 바람직하지만, 일단 전압이 상부 수준 컷오프를 초과하게 되면 배터리 전지는 재충전을 허용할 수 없다. 회생 제동 재충전으로부터 전력을 낭비하는 것에 부가하여, 상부 전압 컷오프 수준을 초과하는 전력은 배터리 전지에 대해 안전하지 못한 작동 조건을 유발할 수 있다. 배터리 전지가 변환 방식으로 작동하는 경우, 전압 수준은 비교적 낮고, 시점 402B에서의 전지 전압 스파이크는 전지 전압이 높고 고압 컷오프에 근접할 때와 동일한 유형의 문제를 부과하지 않는다.
도 4C는 삽입 화학 및 변환 화학 물질을 양자 모두 포함하는 배터리 전지의 이점을 보여준다. 예를 들어, 삽입 화학 물질은 LCO 물질을 포함하지만 이로 제한되지는 않으며, 변환 화학 물질은 FeF3 물질을 포함하지만 이로 제한되지는 않는다. 기타 물질도 가능하다. 시점 401A에 상응하는 시점 401C에, 배터리 전지가 회생 제동으로 부터 재충전되지만 전지 전압은 상부 전압 컷오프 수준(예: 4.2 V)을 초과하지 않는다. 이는 전압 수준이 4.2 V를 초과하는 경우 삽입 화학 물질(예: LCO 물질)이 회생 전력을 수용하기 때문이다. 전압은 상부 전압 컷오프 수준에서 "레일링"되는데, 왜냐하면 4.2 V를 초과하는 전력이 삽입 화학 물질에 의해 흡수되기, 즉, 삽입 화학 물질이 시점 401C에 충전되기 때문이다. 전압이 상부 전압 컷오프 수준이거나 이를 초과하는 경우 삽입 화학 물질이 전력을 흡수하기 때문에 4.2 V를 초과하는 전압의 잠재적으로 안전하지 않은 작동 조건이 시점 401C에 회피된다. 삽입 화학 물질은 시점 402C 중에 부분적으로 충전될 수 있지만, 상부 전압 컷오프 수준 미만으로 전압 수준을 유지할 목적에 이는 필수적이지 않다.
응용에 따라, 캐소드는 변환 화학 물질에 부가하여 2 가지 이상의 삽입 화학 물질을 포함할 수 있다. 2 가지 삽입 화학 물질은 상이한 작동 전압을 나타내며, 이는 작동 조건의 범위를 넓힐 수 있다. 예를 들어, 2 가지 삽입 화학 물질은 제2 삽입 물질 및 변환 화학 물질보다 낮지만 시스템 컷오프 전압을 초과하는 전압 평탄부를 특징으로 하는 제1 삽입 물질을 포함한다. 제2 삽입 물질은 제1 삽입 물질 및 변환 화학 물질보다 높지만 시스템 컷오프 전압보다 낮은 전압 평탄부를 특징으로 한다. 특이적 실시양태에서, 제1 삽입 물질은 Li4Ti5O12 또는 기타 티탄산 리튬을 포함하고, 그의 전압 평탄부는 Li에 대해 약 1.5 V이며; 제2 삽입 물질은 LiCoO2 또는 기타 리튬 코발트 옥사이드를 포함하고, 그의 전압 평탄부는 Li에 대해 약 4 V이다. 따라서, 2 가지 삽입 화학 물질과 변환 화학 물질을 갖는 캐소드는 약 1.5 내지 4.2 V의 작동 전압 범위를 나타낼 수 있다.
도 3-4에 나타내고 앞에서 기재한 바와 같이, 변환 화학 물질은 전압 및/또는 충전 상태에 따라 삽입 방식 및 변환 방식 양자 모두로 작동한다. 삽입 방식으로 작동하는 경우 변환 화학 물질은 제1 전압 범위를 나타내고, 변환 방식으로 작동하는 경우 변환 화학 물질은 제1 전압 범위와 상이한 제2 전압 범위를 나타내는 것으로 이해된다. 예를 들어, 변환 화학 물질 CoF3는 삽입 방식 중에 약 3-5 V의 전압 범위를 나타내고 변환 방식 중에 약 1.6-2.4 V의 전압 범위를 나타낸다. 일례로, 불화철은 삽입 방식 및 변환 방식 양자 모두로 작동하는 변환 화학 물질이다:
Li+ + FeF3 + e- = LiFeF3 (삽입)
2Li+ + LiFeF3 + 2e- = 3LiF + Fe (변환)
불화철을 사용하는 경우, 삽입 반응은 전형적으로 약 2.7-4 V의 전압에서 이루어지고, 변환 반응은 전형적으로 2.4 V 미만의 전압에서 이루어진다. 기타 유형의 변환 화학 물질은 그들 각각의 삽입 및 변환 전압을 나타내며, 이때 삽입 방식 전압 범위는 변환 방식 전압 범위보다 높다. 본 명세서에 기술된 특정 실시양태에 따라, 변환 화학 물질과 혼합된 삽입 화학 물질은 삽입 방식 전압 범위보다 높은 전압 및/또는 변환 방식 전압 범위보다 낮은 전압에서 작동한다.
도 5A-E는 본 명세서에 기술된 발명의 실시양태에 따라 혼합된 변환 및 삽입 물질을 갖는 캐소드의 작동 시나리오를 설명하는 단순화된 도표이다. 이들 도표는 일례를 제공할 뿐이며, 청구범위를 과도하게 제한해서는 안된다. 당업자는 많은 변화, 대안, 및 변형을 인식할 것이다. 방전 중의 변환 물질은 하나 또는 두개의 전압 평탄부 또는 수준을 특징으로 할 수 있다. 전압 평탄부는 저속(예: C/10 또는 더 느린 정전류 속도) 방전 중의 완만한 기울기를 나타내는 전압 대 충전 플롯 상의 영역이다. 도 5A는 삽입 전압 방식 및 변환 전압(하부) 방식을 나타내는 변환 물질과 변환 물질의 2 가지 전압 방식 사이의 삽입 전압을 나타내는 제2 물질의 비제한적 전압 대 충전 곡선 실시예를 설명한다. 도 5B는 변환 물질의 변환 전위 미만의 전압 평탄부, 저충전 상태(state of charge; SOC)에서의 저온 가속 조건에서 도울 수 있는 배열을 나타내는 비제한적 삽입 물질 실시예를 설명한다. 도 5C는 삽입 물질의 고압을 초과하는 전압 평탄부, 고 SOC에서의 저온 회생 제동 조건에서 도울 수 있는 배열을 나타내는 삽입 물질을 보여준다. 도 5D는 변환 물질 변환 전압을 묶는(bracketing) 전압 평탄부를 나타내는 2 가지 삽입 물질을 보여준다. 도 5E는 하나는 변환 물질의 삽입 방식 초과의 전압 평탄부를 동반하고 다른 하나는 변환 물질의 변환 평탄부 미만의 전압 평탄부를 나타내는 2 가지 삽입 물질을 보여준다.
많은 유형의 변환 화학 및 삽입 화학 물질이 존재하며, 상이한 물질은 상이한 작동 조건, 예컨대 작동 온도, 작동 전압 등을 나타내는 것이 인정된다. 도 6은 변환 반응에서 상이한 금속 물질의 작동 전압을 설명하는 표이다. 도 6과 같은 열역학적 계산 및 표는 변환 물질의 대략적인 전압을 결정하는데 사용될 수 있는 반면, 경험적으로 전압을 입증하기 위해서는 실험이 필요할 수 있다. 따라서, 도 6을 사용하여 적절한 전압 평탄부를 나타내는 삽입 물질을 선택함에 의해 하이브리드 삽입/변환 양극을 고안할 수 있다.
도 7은 본 발명의 일 실시양태에 따른 배터리 전지를 설명하는 단순화된 도표이다. 본 도표는 단지 일례일 뿐이며, 청구범위를 과도하게 제한해서는 안된다. 당업자는 많은 변화, 대안, 및 변형을 인식할 것이다. 도 7에 나타낸 바와 같이, 배터리 전지(700)는 전류 집전체(705 및 704), 애노드(703), 전해질(702) 및 캐소드(701)를 포함한다. 캐소드(701)는 3 가지 물질: 변환 물질(701C), 제1 삽입 물질(701A) 및 제2 삽입 물질(701B)의 층을 포함한다. 일부 실시예에서, 제1 삽입 물질(701A)은 변환 물질의 하부 전압보다 낮은 전압 평탄부를 나타내며 제2 삽입 물질(701B)과 변환 물질(701C)에 비해 전해질(702)에 더 가까이 위치한다. 제2 변환 물질(701B)은 변환 물질의 상부 전압보다 높은 전압 평탄부를 나타내며, 제1 삽입 물질(701A)과 변환 물질(701C)의 사이에 위치한다. 다양한 이행에서, 제1 삽입 물질(701A)이 더 낮은 전압을 나타내므로 제2 삽입 물질(701B)과 변환 물질(701C)보다 높은 전류 밀도를 나타낼 것이며, 이에 따라 전해질(702)에 더 가까운 이온성 접근을 필요로 한다.
도 23은 본 발명의 일 실시양태에 따른 배터리 전지를 설명하는 단순화된 도표이다. 본 도표는 단지 일례일 뿐이며, 청구범위를 과도하게 제한해서는 안된다. 당업자는 많은 변화, 대안, 및 변형을 인식할 것이다. 도 23에 나타낸 바와 같이, 배터리 전지(2400)는 전류 집전체(2402 및 2407), 음극(2406), 전해질(2405), 및 양극(2401)을 포함한다. 양극(2401)은 2 가지 물질: 변환 물질(2403) 및 삽입 물질(2404)의 층을 포함한다. 일부 실시예에서, 삽입 물질(2404)은 변환 물질의 하부 전압보다 낮은 전압 평탄부를 나타내며, 변환 물질(2403)보다 전해질(2405)에 더 가까이 위치한다. 일부 다른 실시예에서, 삽입 물질(2404)은 변환 물질의 상부 전압보다 높은 전압 평탄부를 나타내며, 변환 물질(2403)보다 전해질(2405)에 더 가까이 위치한다.
도 8은 본 명세서에 기술된 배터리 디바이스와 사용하기에 적합한 캐소드 전극 실시예를 보여준다. 도 8에서, 캐소드용 전류 집전체는 전류 집전체의 양쪽 반대면 상의 캐소드 활물질을 가진다. 이들 캐소드 활물질은 변환 화학 물질, 삽입 화학 물질, 변환 화학 물질과 삽입 화학 물질의 양자 모두, 한 가지 초과 유형의 삽입 물질, 변환 화학 물질 및 한 가지 초과 유형의 삽입 물질, 또는 이들 옵션의 조합을 포함할 수 있다. 음극전해질이 또한 이들 캐소드 활물질과 함께 포함될 수 있다. 일부 실시예에서, 아래 기재한 바와 같이, 상이한 유형의 변환 화학 물질이 전류 집전체의 각각의 반대면 위에 사용된다. 일부 실시예에서, 도 8에 나타낸 바와 같이, 전류 집전체의 한 면 위의 캐소드 두께는 전류 집전체의 다른 면 위의 캐소드 두께와 동일하지 않다. 일부 실시예에서, 전류 집전체의 한 면은 전류 집전체의 다른 면 상의 캐소드 활물질의 층보다 더 두꺼운 캐소드 활물질의 층을 가진다.
도 9(도 9A-9F로 제시됨)는 본 명세서에도 기술된 캐소드 활물질, 예를 들어, 변환 화학 물질과 사용하기에 적합한, 약 1.3-2.5 V 범위의 방전 전압을 나타내는 삽입 물질 목록을 보여준다. 일부 실시예에서, 본 명세서에 기술된 조성은 변환 화학 물질, 예를 들어, 불화금속과 조합되고 약 1.8-2.1 V 범위의 방전 전압을 나타내는 적어도 하나 이상의 삽입 물질을 포함한다.
도 10(도 10A-10F로 제시됨)은 본 명세서에도 기술된 캐소드 활물질, 예를 들어, 변환 화학 물질과 사용하기에 적합한, 약 2.5-3.8 V 범위의 방전 전압을 나타내는 삽입 물질 목록을 보여준다. 일부 실시예에서, 본 명세서에 기술된 조성은 변환 화학 물질, 예를 들어, 불화금속, 불화니켈과 조합되고 약 2.5-3.8 V 범위의 방전 전압을 나타내는 적어도 하나 이상의 삽입 물질을 포함한다.
일부 실시예에서, 본 명세서에 기술된 조성은 약 2.5-3.8 V 범위의 방전 전압을 나타내는 적어도 하나 이상의 삽입 물질과 조합되고, 변환 화학 물질, 예를 들어, 불화금속, 불화니켈, 불화철과 조합되며, 약 1.8-2.1 V 범위의 방전 전압을 나타내는 적어도 하나 이상의 삽입 물질을 포함한다.
캐소드 내의 변환 화학 및 삽입 화학 물질의 조합 실시예
본 명세서에 기술된 일부 실시예에서, 하이브리드 전극은 옥사이드 또는 포스페이트 또는 양자 모두인 적어도 하나의 삽입 물질과 조합하여, 본 출원에 기재된 변환 화학 물질을 포함한다. 일부 실시예에서, 이들 옥사이드 또는 포스페이트는 도 9(도 9A-9F로 표지된 다중 시트의 형태로 제시됨)의 표에 열거된 물질 중에서 선택된다. 일부 실시예에서, 이들 삽입 물질은 1.3 내지 2.5 V 범위의 방전 전압을 나타낸다. 일부 다른 실시예에서, 이들 삽입 물질은 1.8 내지 2.1 V 범위의 방전 전압을 나타낸다. 이들 실시예의 일부에서, 이들 삽입 물질과 조합되는 변환 물질은 불화철이다.
일부 실시예에서, 이들 옥사이드 또는 포스페이트는 도 10의 표에 열거된 물질 중에서 선택된다. 일부 실시예에서, 이들 삽입 물질은 2.5 내지 3.0 V 범위의 방전 전압을 나타낸다. 이들 실시예의 일부에서, 이들 삽입 물질과 조합된 변환 물질은 불화니켈이다. 이들 실시예의 일부에서, 이들 삽입 물질과 조합된 변환 물질은 불화철이다. 이들 실시예의 일부에서, 이들 삽입 물질과 조합된 변환 물질은 불화니켈과 불화철(예: FeF3)의 조합이다.
일부 실시예에서, 변환 화학 물질이 불화니켈인 경우 조합되는 삽입 화학 물질은 2.5 내지 3.0 V 범위의 방전 전압을 나타낸다.
일부 실시예에서, 하이브리드 전극은 변환 화학 물질로서 불화금속(예: NiF2, FeF3, 또는 그의 조합)과 TiS2, FeS, FeS2, CuS, LTO(예: LiTiO2, 또는 Li4-7Ti5O12, 또는 Li4Ti5O12, 즉, 티탄산리튬 또는 LTO), 및 그의 조합으로 구성된 그룹 중에서 선택되는 구성원을 포함한다. 이들 실시예의 일부에서, 불화금속은 FeF3, CuF2, NiF2, 및 그의 조합으로 구성된 그룹 중에서 선택되는 구성원이다. 이들 실시예의 일부에서, 불화금속은 불화철, 불화구리, 불화니켈, 및 그의 조합으로 구성된 그룹 중에서 선택되는 구성원이다. 이들 실시예의 일부에서, 불화금속은 Cu, Ni, Li2O, 전이금속 옥사이드, 또는 그의 조합에 의해 도핑된다. 일부 실시예에서, 하이브리드 전극은 FeF3 및 도 9A-F, 도 10A-F의 삽입 물질, 또는 도 9A-F 및 도 10A-F 양자 모두 중에서 선택되는 삽입 물질을 포함한다.
일부 실시예에서, 하이브리드 전극은 FeF3 및 TiS2를 포함한다. 일부 실시예에서, 하이브리드 전극은 FeF3 및 FeS를 포함한다. 일부 실시예에서, 하이브리드 전극은 FeF3 및 FeS2를 포함한다. 일부 실시예에서, 하이브리드 전극은 FeF3 및 CuS를 포함한다. 일부 실시예에서, 하이브리드 전극은 FeF3 및 LTO(즉, 티탄산리튬)를 포함한다. 일부 실시예에서, 하이브리드 전극은 FeF3 및 Li0-1TiO2를 포함한다. 일부 실시예에서, 하이브리드 전극은 FeF3 및 Li0-1FeCuS2를 포함한다.
이들 실시예의 일부에서, FeS는 Li에 대해 1.6 V의 방전 전압을 나타낸다. 일부 실시예에서, FeS2는 Li에 대해 약 1.5 V - 1.8 V의 방전 전압을 나타낸다. 일부 실시예에서, CuS는 Li에 대해 약 1.7 - 2.05 V의 방전 전압을 나타낸다. 일부 실시예에서, TiS2는 Li에 대해 1.6 - 2.2 V의 방전 전압을 나타낸다. 일부 실시예에서, LTO는 Li에 대해 1.5 V의 방전 전압을 나타낸다.
이들 실시예의 일부에서, 음극전해질은 변환 화학 물질과 삽입 화학 물질의 이들 캐소드 조합과 함께 포함된다. 일부 실시예에서, 음극전해질은 리튬, 포스포러스, 및 황 함유 종이다. 일부 실시예에서, 음극전해질은 리튬, 포스포러스, 및 황 함유 종을 포함한다. 일부 실시예에서, 음극전해질은 리튬 함유 석류석이다. 일부 실시예에서, 음극전해질은 알루미나로 도핑된 리튬 함유 석류석이다. 일부 실시예에서, 음극전해질은 리튬 실리콘 설파이드이다. 일부 실시예에서, 음극전해질은 리튬 실리콘 설파이드를 포함한다. 일부 실시예에서, 음극전해질은 리튬, 포스포러스, 주석, 황화규소를 포함한다. 적합한 음극전해질 물질은 그 전체 내용이 모든 목적을 위해 원용에 의해 본 명세서에 포함되고, 발명의 명칭이 "LiAMPBSC(M=Si, Ge, 및/또는 Sn)를 사용하는 배터리용 고체 상태 음극전해질 또는 전해질"이며, 2014년 5월 15일자 출원된 PCT 특허 출원 제PCT/US14/38283호에서 발견할 수 있다.
일부 실시예에서, 캐소드는 FeF3, 음극전해질, 및 Li에 대해 1.8 내지 2.1 V 범위의 방전 전압을 나타내는 삽입 물질을 포함한다. 일부 실시예에서, 캐소드는 FeF3, 음극전해질, 및 Li에 대해 약 2.0 V의 방전 전압을 나타내는 삽입 물질을 포함한다. 일부 실시예에서, 캐소드는 FeF3, 음극전해질, 및 Li에 대해 2.0 V의 방전 전압을 나타내는 삽입 물질을 포함한다. 일부 실시예에서, 캐소드는 FeF3, 음극전해질, 및 Li에 대해 약 1.3-2.5 V의 방전 전압을 나타내는 삽입 물질을 포함한다. 일부 실시예에서, 캐소드는 FeF3, 음극전해질, 및 Li에 대해 약 1.8-2.1 V의 방전 전압을 나타내는 삽입 물질을 포함한다. 일부 실시예에서, 캐소드는 FeF3, 음극전해질, 및 도 9의 표의 구성원 또는 도 9의 표의 구성원의 조합 중에서 선택되는 삽입 물질을 포함한다.
일부 실시예에서, 하이브리드 전극은 NiF2 및 Li0-1FeO2를 포함한다. 일부 실시예에서, 하이브리드 전극은 NiF2 및 Li0-1MnO2를 포함한다. 일부 실시예에서, 하이브리드 전극은 NiF2 및 Li1.33-2CuO2를 포함한다. 일부 실시예에서, 하이브리드 전극은 NiF2 및 도 10의 삽입 물질을 포함한다.
양면 코팅 전극
일부 실시예에서, 본 명세서에 기술된 배터리 디바이스는 더 두꺼운 전극으로 코팅된 전류 집전체 호일의 한 면과 더 얇은 전극으로 코팅된 다른 면을 갖는 양면 코팅 전극을 포함한다. 예를 들어, 도 8은 이러한 양면 코팅 전극의 비제한적인 실시예를 설명한다. 일부 실시예에서, 더 두꺼운 전극은 더 얇은 전극의 캐소드 활물질의 방전 전압보다 높은 변환 평탄부를 나타내는 불화금속이다.
일부 실시예에서, 삽입 화학 물질과 변환 화학 물질의 조합은 변환 화학 물질로서 불화금속을 포함한다. 일부 실시예에서, 양면 코팅 전극의 양쪽 면은 변환 화학 물질과 삽입 화학 물질을 포함한다. 일부 실시예에서, 양면 코팅 전극의 양쪽 면은 변환 화학 물질과 삽입 화학 물질을 포함하지만, 양면 코팅 전극의 각각의 면은 상이한 유형의 변환 화학 물질을 가진다. 이들 실시예의 일부에서, 한쪽 면은 불화금속을 가지며, 다른쪽 면은 도핑된 불화금속을 가진다. 일부 실시예에서, 양면 코팅 전극의 양쪽 면은 변환 화학 물질과 삽입 화학 물질을 포함하지만, 양면 코팅 전극의 각각의 면은 상이한 양의 변환 화학 물질을 가진다.
일부 실시예에서, 양면 코팅 전극의 양쪽 면은 변환 화학 물질과 삽입 화학 물질을 포함하지만, 양면 코팅 전극의 각각의 면은 상이한 유형의 삽입 화학 물질을 가진다. 일부 실시예에서, 양면 코팅 전극의 양쪽 면은 변환 화학 물질과 삽입 화학 물질을 포함하지만, 양면 코팅 전극의 각각의 면은 상이한 양의 삽입 화학 물질을 가진다.
일부 실시예에서, 양면 코팅 전극의 양쪽 면은 변환 화학 물질과 삽입 화학 물질을 포함하지만, 양면 코팅 전극의 각각의 면은 상이한 유형의 변환 화학 물질과 삽입 화학 물질을 가진다. 일부 실시예에서, 양면 코팅 전극의 양쪽 면은 변환 화학 물질과 삽입 화학 물질을 포함하지만, 양면 코팅 전극의 각각의 면은 상이한 양의 각각의 유형의 변환 화학 물질과 삽입 화학 물질을 가진다.
또 다른 실시예에서, 양면 코팅 전극의 한쪽 면은 변환 화학 물질을 포함하고 양면 코팅 전극의 다른쪽 면은 삽입 화학 물질을 포함한다.
일부 실시예에서, 더 두꺼운 전극 면은 더 얇은 전극보다 높은, 예를 들어, 50-200 mV 더 높은 방전 변환 평탄부를 나타내는 도핑된 변환 물질을 포함한다. 본 알키텍쳐는 놀랍게도 더 얇은 전극이 펄스 또는 저온 전력 이벤트로 고갈된 후 이를 "재충전"하기 위한 추진력을 제공한다.
일부 실시예에서, 양면 코팅 캐소드의 한쪽 면 또는 양쪽 면이 경사를 이룬다. 일부 실시예에서, 양면 코팅 캐소드의 한쪽 면 또는 양쪽 면은 2개-층 단일 전극이다.
일부 실시예에서, 양면 코팅 캐소드의 한쪽 면 또는 양쪽 면은 2개-층 단일 전극이며 이때 전류 집전체와 바로 접촉하는 층은 다른 캐소드 활물질보다 높은 전압 변환 평탄부를 나타내는 "도핑된" 변환 물질을 포함한다. 본 알키텍쳐에서, 도핑되지 않은 변환 물질은 "전력" 층으로서 작용한다. 본 알키텍쳐의 일부 실시예에서, 이들 층 사이의 개방 회로 전압 차이는 캐소드의 한 층이 캐소드의 다른 층을 재충전하기 위한 엔탈피 추진력을 제공한다.
캐소드에서 나노치수 변환 화학 및 삽입 화학 물질
본 명세서에 기술된 일부 실시예에서, 변환 화학 물질 또는 삽입 화학 물질, 또는 양자 모두는 나노치수이다. 일부 실시예에서, 변환 화학 물질은 나노치수이고 변환 화학 물질의 입자(particle) 또는 그레인(grain)으로 기재되며 여기에서 입자 또는 그레인은 약 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 또는 30 nm의 d50 직경을 나타낸다. 일부 실시예에서, 삽입 화학 물질은 나노치수이고 삽입 화학 물질의 입자 또는 그레인으로 기재되며 여기에서 입자는 약 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 또는 30 nm의 d50 직경을 나타낸다. 일부 실시예에서, 변환 화학 물질 및 삽입 화학 물질의 이들 나노치수 입자들은 함께 긴밀하게 혼합된다.
본 명세서에서 사용된, d50은 주사 전자 현미경과 같은, 그러나 이로 제한되지는 않는, 현미경 기술에 의해 측정된 크기 분포에서의 중간 직경 또는 중간 크기를 지칭한다. 본 명세서에서 사용된 d50은 입자의 50%가 언급된 크기보다 작은 특징적인 치수를 포함한다.
본 명세서에서 사용된 d50은, 예를 들어, 용매로서 아세토니트릴을 사용하고 측정 전에 1-분 초음파 처리를 사용하는 Horiba LA-950 V2 입자 크기 분석에 대한 광산란에 의해 측정된다.
일부 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 1 nm의 d50을 나타낸다. 일부 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 2 nm의 d50을 나타낸다. 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 3 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 4 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 5 nm의 d50을 나타낸다. 일부 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 6 nm의 d50을 나타낸다. 일부 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 7 nm의 d50을 나타낸다. 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 8 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 9 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 10 nm의 d50을 나타낸다. 일부 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 11 nm의 d50을 나타낸다. 일부 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 12 nm의 d50을 나타낸다. 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 13 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 14 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 15 nm의 d50을 나타낸다. 일부 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 16 nm의 d50을 나타낸다. 일부 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 17 nm의 d50을 나타낸다. 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 18 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 19 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 20 nm의 d50을 나타낸다. 일부 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 21 nm의 d50을 나타낸다. 일부 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 22 nm의 d50을 나타낸다. 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 23 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 24 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 25 nm의 d50을 나타낸다. 일부 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 26 nm의 d50을 나타낸다. 일부 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 27 nm의 d50을 나타낸다. 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 28 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 29 nm의 d50을 나타낸다. 또 다른 실시예에서, 삽입 화학 물질과 혼합되는 변환 화학 물질의 그레인은 30 nm의 d50을 나타낸다.
캐소드에서 변환 화학 및 삽입 화학 물질의 양
일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 30% w/w(중량비) 미만이다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 29.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 29.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 28.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 28.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 27.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 27.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 26.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 26.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 25.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 25.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 24.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 24.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 23.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 23.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 22.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 22.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 21.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 21.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 20.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 19.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 18.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 18.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 17.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 17.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 16.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 16.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 15.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 15.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 15.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 15.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 14.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 14.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 13.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 13.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 12.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 12.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 11.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 11.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 10.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 9.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 9.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 8.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 8.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 7.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 7.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 6.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 6.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 6.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 5.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 4.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 4.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 4.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 3.5% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 3.0% w/w의 양으로 캐소드 내에 존재한다. 일부 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 2.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 2.0% w/w의 양으로 캐소드 내에 존재한다. 특정 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 1.5% w/w의 양으로 캐소드 내에 존재한다. 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 1.0% w/w의 양으로 캐소드 내에 존재한다. 또 다른 실시예에서, 변환 화학 물질과 혼합되는 삽입 화학 물질의 양은 0.5% w/w의 양으로 캐소드 내에 존재한다.
일부 실시예에서, 변환 물질은 FeF3 또는 NiF2이고, 삽입 물질은 캐소드 내에 10% w/w의 양으로 존재한다. 일부 실시예에서, 변환 물질은 FeF3 또는 NiF2이고, 삽입 물질은 캐소드 내에 5% w/w의 양으로 존재한다.
본 명세서에 기술된 발명의 실시양태는 관용적인 배터리 시스템 및 방법에 대해 많은 이점을 제공하는 것으로 인정된다. 무엇보다도, 혼합된 삽입 및 변환 화학 물질을 사용하면, 배터리 전지의 캐소드 영역이 고 에너지 밀도 및 작동 유연성 양자 모두를 제공할 수 있다. 캐소드에서 비교적 적은 양의 삽입 화학 물질은 배터리 디자인에 부가적인 정도의 유연성을 제공하여 저온 또는 그의 전압 한계 근처에서 너무 많은 중량의 부가없이도 배터리 작동의 요건을 충족시킬 수 있다. 예를 들어, 전기 차량 작동의 회생 제동 과정 중에, 삽입 화학 물질은 전압이 변환 화학 물질에 대해 너무 높은 경우 전력을 흡수한다. 다른 실시예로서, 변환 화학 물질이 변환 방식 하에 작동하고 전지 전압이 낮은 경우에, 삽입 화학 물질은 피크 전력 수요를 만족시킬 수 있다. 삽입 화학 물질보다 높은 에너지 밀도 및 용량을 제시하는 변환 화학 물질은 전기 모터의 다른 작동에 대해 일관된 전압으로 에너지를 제공한다. 다른 이점들도 존재한다.
[실시예]
실시예 1 - 양극 제조
결정성 FeF3 또는 결정성 삼불화철(즉, FeF3)과 티탄산리튬(LTO)의 80:20 w/w 혼합물을 카본(C65 전도성 카본 블랙) 및 에틸렌 프로필렌 고무 결합제(EPR)와 함께 혼합 및 제분하여 양극을 제조하였다. Li-금속 애노드 위에 배치되어 접촉하는 액체 전해질 포함 셀가드(celgard) 막 위로 이들 양극을 배치하였다. 셀가드 분리기는 액체 전해질을 함유하며 물리적으로 양극과 음극을 분리하였다. 액체 전해질은 1M LiPF6 염과 함께 에틸렌 카보네이트(EC)와 디메틸카보네이트(DMC) 용매를 50:50 v/v(EC:DMC) 비로 포함하였다. 일부 실시예에서, 전기화학 전지는 양극 활물질로서 FeF3 만을 포함하였다. 일부 다른 실시예에서, 전기화학 전지는 양극 활물질로서 FeF3 및 LTO 양자 모두를 80:20 w/w 비로 포함하였다.
실시예 2 - 변환 화학 활물질을 갖는 양극과 비교하여 하이브리드 양극의 전기화학적 시험
도 11은 전기화학 전지를 조립한 후 초기의 고속 방전(즉, 0차 방전)을 보여준다. 방전은 C/10 속도로 50 ℃에서 실행되었다. LTO-포함 샘플에서 1.6 V의 평탄부는 FeF3 및 LTO를 양자 모두 갖는 양극이 1.5 V 최저에 도달하는데 방전 중에 더 긴 시간이 걸렸음을 보여준다. 본 실시예는 FeF3에 대한 최저 변환 전압을 초과하는 하부 작동 전압을 나타내는 LTO가 LTO의 부재(즉, FeF3 만을 갖는 전기화학 전지)로 되자마자 전기화학 전지가 1.5 V까지 떨어지는 것을 "레일링"하거나 방지하였음을 입증한다.
도 12는 도 11의 데이터를 생성하기 위한 실험에 사용된 전기화학 전지의 후속 충전을 보여준다. LTO-포함 샘플에서 1.6 V의 초기 평탄부는 FeF3 및 LTO를 양자 모두 갖는 양극이 FeF3 활물질 만을 갖는 양극보다 높은 전압에서 충전 사이클을 시작함을 보여준다. 본 실시예는 또한, FeF3에 대한 최저 변환 전압을 초과하는 하부 작동 전압을 나타내는 LTO가 LTO의 부재(즉, FeF3 만을 갖는 전기화학 전지)로 되자마자 전기화학 전지가 1.5 V까지 떨어지는 것을 "레일링"하였음을 입증한다.
실시예 3 - 변환 화학 활물질을 갖는 양극과 비교하여 하이브리드 양극의 전기화학적 시험
전기화학 전지를 실시예 1에 따라 제조하였다. 하기 펄스 사이클을 사용하여 50 ℃에서 이들 전기화학 전지를 분석하였다: C/10 속도의 지속적인 방전 펄스 다음 전지 전압이 평형을 이루도록 휴지시키고, C/5, C/3 및 C/2의 1 분 전류 펄스(각각 방전 펄스 사이에 5 분의 휴지기를 가짐)를 수행. 실행 시간(s)의 함수로 전지 전압(V 대 Li)을 관찰하고 도 13-18에 기록하였다. 대조군 샘플은 양극 활물질로 FeF3 만을 포함하였다. LTO 샘플은 FeF3 및 LTO(티탄산리튬) 양자 모두를 80:20 w/w 비로 포함하였다.
도 13은 100% 변환 화학, FeF3, 캐소드를 갖는 2개의 대표적인 대조군 전지와 하이브리드 캐소드로서 80 wt% 변환 화학, FeF3, 및 20 중량% 삽입 화학, LTO를 갖는 2개의 대표적인 전지를 비교하기 위한, 방전 종료점 부근의 시간 대 방전 전압을 보여준다. 삽입 물질은 1.55-1.64 V 범위의 방전 전압을 나타낸다. 도 13 및 14는 하이브리드 캐소드가 전류 펄스 중에 더 얕은 전압 스파이크를 나타내며, 따라서 변환 화학 활물질 만을 갖는 캐소드보다 늦게 전압 최저에 달함을 보여준다. 도 13 및 13은 하이브리드 캐소드가 거의 10% 더 많은 용량 및 더 적은 전해질 분해를 나타내며 이에 따라 더 긴 배터리 수명을 갖는 것으로 관찰됨을 보여준다.
도 14는 마지막 방전을 보여주기 위해 상기와 동일한 조건을 사용하지만 확대된(즉, 클로즈업된) 전기화학적 시험을 보여주며, 명확을 기하기 위하여 각각의 배치로부터 하나의 대표적인 전지만을 보여준다. 특기 사항은 왼쪽 화살표로 표시된 39500 초 부근의 상대적인 전압 스파이크이며, 두 번째 화살표로 표시된 얕은 방전 전압, 및 후속의 방전이다. 본 실시예는 FeF3에 대한 최저 변환 전압을 초과하는 방전 전압을 나타내는 LTO가 전기화학 전지가 FeF3 만을 갖는 캐소드가 달성하는 것보다 낮은 전압으로 떨어지는 것을 "레일링"하거나 방지하였음을 입증한다.
실시예 4 - 변환 화학 활물질을 갖는 양극과 비교하여 하이브리드 양극의 전기화학적 시험
도 15는 상기와 동일한 조건을 사용한 전기화학적 시험을 보여준다. 본 실시예에서, 데이터를 분석하여 방전 중의 면적-비저항(ASRdc) 대 펄스 사이클을 추출하였다. 도 15에 나타낸 바와 같이, LTO 및 FeF3를 포함하는 캐소드는 방전 중에, 특히 마지막 펄스에서 더 낮은 ASR을 나타내는 것으로 관찰되었다.
도 16-18은 마지막 방전을 보여주기 위해 상기와 동일한 조건을 사용하지만 확대된(즉, 클로즈업된) 부가적인 전기화학적 실험 결과를 보여주며, 명확을 기하기 위하여 각각의 배치로부터 하나의 대표적인 전지만을 보여준다. 본 실시예는 FeF3에 대한 최저 변환 전압을 초과하는 방전 전압을 나타내는 LTO가 전기화학 전지가 FeF3 만을 갖는 캐소드가 달성하는 것보다 낮은 전압으로 떨어지는 것을 "레일링"하거나 방지하였음을 입증한다.
실시예 5 - 변환 화학 활물질 만을 갖거나 삽입 화학 활물질 만을 갖는 양극과 비교하여 하이브리드 양극에 대한 하이브리드 전극 계산
캐소드 물질의 혼합이 전압 반응에 어떻게 영향을 미치는지 모의하기 위하여 시스템의 동등한 회로 모델을 제작하였다. 모델은 이온 또는 전자 전달에 대한 옴 저항 모델을 만드는데 사용되는 저항 요소; 전기화학적으로 전하를 저장하고 개방 회로 전압 및 용량을 양자 모두 갖는 물질을 나타내는 용량 요소; 및 반응 동력학에 의해 교환 전류가 제한되는 충전-수송 효과 모델을 만드는 저항기-콘덴서 쌍을 포함하는 3 가지 유형의 구성요소와 양극 전압을 계산하기에 유용한 선형 수학식을 포함하였다. 변환 및 삽입 물질을 포함하는 구성요소는 분리된 층으로 배열되어 하이브리드 화학 전극을 나타내었다. 이들 구성요소의 특성은 온도, 충전 상태, 부하 전류의 방향, 부하 전류의 크기, 및 다양한 기타 인자들에 따라 변화할 수 있다. 이들 구성요소의 특성은 본 특허에 언급된 임의의 변환 또는 삽입 화학을 모의하도록 설정될 수 있다. 배터리의 전압 반응을 모의하기 위하여, 모델의 말단에 제어된 부하 전류를 부착시켰다. 공지의 부하 전류를 사용하여, 회로 분석 기술에 의해 전지 전압을 결정할 수 있다.
물질 - 본 실시예에서, 총 3 개의 캐소드 층을 사용하였다. 2 개의 변환 물질(FeF3) 층과 1 개의 삽입 물질(LTO 또는 LCO) 층이 존재한다. 삽입 물질 층을 배터리의 애노드에 가장 가깝게 위치시켰다. 선택되는 물질의 개수 및 유형과 이들 각각의 용량은 목적하는 조합을 모의하기에 필요한 대로 조정될 수 있는 것으로 인정된다.
결과 - 도 19에 나타낸 전력 수요 프로파일은 도 20의 전압 반응을 발생시키는 제어된 부하 자극(load stimulus)을 보여준다. 도 20은 3 가지 세트의 모의 결과를 보여준다. 첫 번째는 양극에 변환 화학 활물질 만이 존재하는 경우 배터리로부터의 전력 수요에 대한 전압 반응을 보여준다. 두 번째는 양극에서 삽입 화학 활물질과 변환 화학 활물질이 양자 모두 95:5 w/w의 비로 혼합된 경우 배터리로부터의 전력 수요에 대한 전압 반응을 보여준다. 세 번째는 양극에 삽입 물질 만이 존재하는 경우 배터리로부터의 전력 수요에 대한 전압 반응을 보여준다.
도 20에서, 본 실시예는 낮은 충전 상태에서 고 전력 수요 이벤트 중에 혼합 화학 배터리의 전압이 전압 하한 미만으로 떨어지지 않았음을 보여준다.
도 21에 나타낸 전력 수요 프로파일은 도 22의 전압 반응을 발생시키는 제어된 부하 자극을 보여준다. 도 22는 3 가지 세트의 모의 결과를 보여준다. 첫 번째는 양극에 변환 화학 활물질 만이 존재하는 경우 배터리로부터의 전력 수요에 대한 전압 반응을 보여준다. 두 번째는 양극에서 삽입 화학 활물질과 변환 화학 활물질이 양자 모두 90:10 w/w의 비로 혼합된 경우 배터리로부터의 전력 수요에 대한 전압 반응을 보여준다. 세 번째는 양극에 삽입 물질 만이 존재하는 경우 배터리로부터의 전력 수요에 대한 전압 반응을 보여준다.
도 222에서, 본 실시예는 높은 충전 상태에서 고 전력 회생 제동 이벤트 중에 혼합 화학 배터리의 전압이 상부 전압 컷오프를 초과하지 않았음을 보여준다.
앞에서 특이적 실시양태들을 완전히 기술하기는 하였지만, 다양한 변형, 대안적인 구성 및 균등물이 사용될 수 있다. 따라서, 상기 기재 및 설명은 첨부된 청구범위에 의해 정의되는 본 발명의 범위를 제한하는 것으로 인정되지 않는다.

Claims (59)

  1. 전기화학적 디바이스로서,
    애노드 영역;
    전해질 영역; 및
    삽입 화학 활물질과 변환 화학 활물질을 포함하는 캐소드 영역을 포함하며,
    여기에서 전해질 영역이 애노드 영역과 캐소드 영역 사이에 위치하고,
    여기에서 변환 화학 활물질이 캐소드 영역 내 활물질의 약 70 w/w%를 초과하는 중량 분획(fraction)으로 캐소드 영역 내에 존재하며,
    여기에서 삽입 화학 활물질이 캐소드 활성 영역 내 활물질의 약 30 w/w% 미만의 중량 분획으로 캐소드 영역 내에 존재하는, 전기화학적 디바이스.
  2. 제1항에 있어서,
    삽입 화학 활물질과 변환 화학 활물질이 실질적으로 2 개의 층으로 구분되어 있는 디바이스.
  3. 제1항에 있어서,
    삽입 화학 활물질과 변환 화학 활물질이 캐소드 영역 내에서 균질하게 혼합되어 있는 디바이스.
  4. 제1항에 있어서,
    삽입 화학 활물질이 더 높은 농도로 전해질에 근접하도록 삽입 화학 활물질과 변환 화학 활물질이 캐소드 영역 내부에서 경사를 이루고 있는 디바이스.
  5. 제1항에 있어서,
    변환 화학 활물질이 더 높은 농도로 전해질에 근접하도록 삽입 화학 활물질과 변환 화학 활물질이 캐소드 영역 내부에서 경사를 이루고 있는 디바이스.
  6. 제2항에 있어서,
    삽입 화학 활물질 층이 변환 화학 활물질 층과 전해질 영역 사이에 위치하는 디바이스.
  7. 제1항에 있어서,
    애노드 전류 집전체를 추가로 포함하는 디바이스.
  8. 제1항에 있어서,
    전해질 영역이 실질적으로 고체인 디바이스.
  9. 제1항에 있어서,
    전해질 영역이 석류석 전해질 또는 설파이드 전해질을 포함하는 디바이스.
  10. 제1항에 있어서,
    변환 화학 활물질이 FeF2, NiF2, FeOxF3-2x, FeF3, MnF3, CoF3, CuF2 물질 및 그의 합금 또는 조합으로 구성된 그룹 중에서 선택되는 디바이스.
  11. 제1항에 있어서,
    삽입 화학 활물질이 LiFePO4, LixTiyOz, LiNixMn2-xO4, LiCoO2, Li(NiCoMn)O2, 및/또는 Li(NiCoAl)O2 물질을 포함하는 디바이스.
  12. 제1항에 있어서,
    삽입 화학 활물질이 LiMPO4(M=Fe, Ni, Co, Mn), LixTiyOz(여기에서 x는 0 내지 8이고, y는 1 내지 12이며, z는 1 내지 24임), LiMn2O4, LiMn2-aNiaO4(여기에서 a는 0 내지 2임), LiCoO2, Li(NiCoMn)O2, Li(NiCoAl)O2, 및 니켈 코발트 알루미늄 옥사이드[NCA]로 구성된 그룹 중에서 선택되는 디바이스.
  13. 제1항에 있어서,
    삽입 화학 활물질과 변환 화학 활물질이 캐소드 영역 내에서 무작위로 혼합되는 디바이스.
  14. 제1항에 있어서,
    변환 화학 활물질이 제1 상부 전압 수준을 특징으로 하고 삽입 화학 활물질이 제2 상부 전압 수준을 특징으로 하며, 제1 상부 전압 수준이 제2 상부 전압 수준보다 낮은 디바이스.
  15. 제1항에 있어서,
    변환 화학 활물질이 삽입 화학 활물질의 삽입 전압보다 낮은 변환 전압을 특징으로 하는 디바이스.
  16. 제1항에 있어서,
    변환 화학 활물질이 삽입 화학 활물질의 삽입 전압을 초과하는 변환 전압을 특징으로 하는 디바이스.
  17. 제1항에 있어서,
    캐소드 영역이 4.0 V를 초과하는 전압에서 충전될 수 있는 디바이스.
  18. 제1항에 있어서,
    변환 화학 활물질의 방전 중 변환 전압 수준이 삽입 화학 활물질의 방전 중 삽입 전압 수준을 초과하는 디바이스.
  19. 제1항에 있어서,
    캐소드 영역이 변환 물질과 적어도 2가지의 상이한 유형의 삽입 화학 활물질을 포함하는 디바이스.
  20. 제19항에 있어서,
    제1 삽입 화학 활물질이 변환 화학 활물질의 상부 전압 수준보다 높은 전압 수준을 나타내고, 제2 삽입 화학 활물질이 변환 화학 활물질의 낮은 전압 수준보다 낮은 전압 수준을 나타내는 디바이스.
  21. 배터리 시스템으로서,
    배터리 관리 시스템(battery management system; BMS);
    복수의 배터리 전지를 포함하는 배터리 팩을 포함하며,
    여기에서 각각의 배터리 전지가
    애노드 영역;
    전해질 영역; 및
    삽입 화학 활물질과 변환 화학 활물질을 포함하는 캐소드 영역을 포함하고, 전해질 영역이 애노드 영역과 캐소드 영역 사이에 위치하며, 캐소드 영역이 제1 중량을 특징으로 하고, 삽입 화학 활물질이 제2 중량을 특징으로 하며, 제2 중량이 제1 중량의 20% 미만인, 배터리 시스템.
  22. 배터리 시스템으로서,
    배터리 관리 시스템(BMS);
    복수의 배터리 전지를 포함하는 배터리 팩을 포함하며,
    여기에서 각각의 배터리 전지가 제1항에 따른 전기화학적 디바이스를 포함하는, 배터리 시스템.
  23. 제21항에 있어서,
    BMS가 펄스 충전에 의해 배터리 팩을 충전시키도록 설정된 시스템.
  24. 제21항에 있어서,
    배터리 시스템이 전기 모터에 전기적으로 커플링되고;
    여기에서 전기 모터가 회생 제동(regenerative braking)을 실행할 때 BMS가 배터리 팩을 충전시키며 캐소드 영역이 4.0 V를 초과하는 전압 수준에서 재충전될 수 있는 시스템.
  25. 제21항에 있어서,
    캐소드 영역이 약 2 V의 전지 전압 미만에서 작동할 수 있는 시스템.
  26. 제21항에 있어서,
    배터리 팩이 약 -30 내지 120 ℃의 작동 온도 범위를 특징으로 하는 시스템.
  27. 삽입 화학 활물질을 제1 양으로 제공하는 단계;
    변환 화학 활물질을 제2 양으로 제공하고, 제2 양이 제1 양보다 적어도 3배 많은 단계;
    기판 위에 삽입 화학 활물질과 변환 화학 활물질을 침착시켜 캐소드 영역을 형성하는 단계;
    캐소드 영역과 접하는 전해질 영역을 제공하는 단계; 및
    전해질 영역과 접하는 애노드 영역을 제공하고, 전해질 영역은 캐소드 영역과 애노드 영역 사이에 위치하는 단계를 포함하는, 전기화학적 디바이스의 제조 방법.
  28. 제27항에 있어서,
    삽입 화학 활물질과 변환 화학 활물질을 무작위로 혼합하는 단계를 추가로 포함하는 방법.
  29. 제27항에 있어서,
    기판이 캐소드 전류 집전체를 포함하는 방법.
  30. 제27항에 있어서,
    삽입 화학 활물질 층을 형성하는 단계;
    삽입 화학 활물질 층과 접하는 변환 화학 활물질 층을 형성하는 단계를 추가로 포함하는 방법.
  31. 제27항에 있어서,
    변환 화학 활물질이 20 nm 미만의 규모로 구조를 이룬 영역을 갖는 방법.
  32. 전기화학적 디바이스로서,
    애노드 영역;
    전해질 영역; 및
    하나 이상의 삽입 화학 활물질과 변환 화학 활물질을 포함하는 캐소드 영역을 포함하며;
    여기에서 변환 화학 활물질 대 하나 이상의 삽입 화학 활물질의 중량비가 70:30 내지 99:1인, 전기화학적 디바이스.
  33. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질에 대한 삽입 전압 평탄부(plateau)가 변환 화학 활물질에 대한 변환 전압 평탄부를 초과하는 전기화학적 디바이스.
  34. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질에 대한 삽입 전압 평탄부가 변환 화학 활물질에 대한 변환 전압 미만인 전기화학적 디바이스.
  35. 제32항에 있어서,
    변환 화학 활물질의 작동 전압 평탄부 또는 전압 상한이 하나 이상의 삽입 화학 활물질에 대한 상부 작동 전압 평탄부 또는 전압 상한 미만인 전기화학적 디바이스.
  36. 제32항에 있어서,
    변환 화학 활물질의 작동 전압 평탄부가 하나 이상의 삽입 화학 활물질에 대한 상부 작동 전압 평탄부 미만인 전기화학적 디바이스.
  37. 제32항에 있어서,
    변환 화학 활물질의 상부 작동 전압 평탄부 또는 전압 상한이 하나 이상의 삽입 화학 활물질에 대한 상부 및 하부 작동 전압 평탄부 사이에 있는 전기화학적 디바이스.
  38. 제32항에 있어서,
    변환 화학 활물질의 상부 작동 전압 평탄부가 하나 이상의 삽입 화학 활물질에 대한 상부 작동 전압 평탄부와 하부 작동 전압 평탄부 사이에 있는 전기화학적 디바이스.
  39. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질의 하부 작동 전압 또는 전압 하한이 변환 화학 활물질에 대한 하부 작동 전압 평탄부를 초과하는 전기화학적 디바이스.
  40. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질의 하부 작동 전압 평탄부가 변환 화학 활물질에 대한 하부 작동 전압 평탄부를 초과하는 전기화학적 디바이스.
  41. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질의 하부 작동 전압이 변환 화학 활물질에 대한 상부 작동 전압 평탄부와 하부 작동 전압 평탄부 사이에 있는 전기화학적 디바이스.
  42. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질이 변환 화학 활물질과 혼합되고, 변환 화학 활물질에 대한 삽입 방식 전압 범위보다 높은 전압에서 작동하는 전기화학적 디바이스.
  43. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질이 변환 화학 활물질과 혼합되고, 변환 화학 활물질에 대한 변환 방식 전압 범위보다 낮은 전압에서 작동하는 전기화학적 디바이스.
  44. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질이 변환 화학 활물질과 혼합되고, 변환 화학 활물질에 대한 삽입 방식 전압 범위보다 낮은 전압에서 작동하는 전기화학적 디바이스.
  45. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질이 변환 화학 활물질과 혼합되고, 변환 화학 활물질에 대한 삽입 방식 전압 범위보다 높은 전압 및 변환 화학 활물질에 대한 변환 방식 전압 범위보다 낮은 전압의 양자 모두에서 작동하는 전기화학적 디바이스.
  46. 제1항에 있어서,
    삽입 화학 활물질이 적어도 2가지의 상이한 유형의 삽입 화학 활물질을 포함하는 디바이스.
  47. 제1항에 있어서,
    캐소드 영역이 3.0 V를 초과하는 전압에서 충전될 수 있는 디바이스.
  48. 제21항에 있어서,
    배터리 팩이 약 70 내지 80 ℃의 작동 온도 범위를 특징으로 하는 시스템.
  49. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질에 대한 삽입 전압 평탄부가 변환 화학 활물질에 대한 변환 전압 OCV를 초과하는 전기화학적 디바이스.
  50. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질에 대한 삽입 전압 평탄부가 변환 화학 활물질에 대한 OCV 변환 전압 미만인 전기화학적 디바이스.
  51. 제32항에 있어서,
    변환 화학 활물질의 작동 전압 평탄부 또는 전압 상한이 하나 이상의 삽입 화학 활물질의 상부 작동 전압 평탄부 또는 전압 상한 미만인 전기화학적 디바이스.
  52. 제32항에 있어서,
    변환 화학 활물질의 OCV 전압이 하나 이상의 삽입 화학 활물질에 대한 OCV 전압 미만인 전기화학적 디바이스.
  53. 제32항에 있어서,
    변환 화학 활물질의 OCV 전압이 하나 이상의 삽입 화학 활물질에 대한 상부 및 하부 작동 전압 평탄부 사이에 있는 전기화학적 디바이스.
  54. 제32항에 있어서,
    변환 화학 활물질에 대한 OCV 전압이 하나 이상의 삽입 화학 활물질에 대한 상부 작동 전압 평탄부와 하부 작동 전압 평탄부 사이에 있는 전기화학적 디바이스.
  55. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질의 하부 작동 전압 또는 전압 하한이 변환 화학 활물질에 대한 OCV 전압을 초과하는 전기화학적 디바이스.
  56. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질의 하부 작동 전압 평탄부가 변환 화학 활물질에 대한 하부 작동 전압 평탄부를 초과하는 전기화학적 디바이스.
  57. 제32항에 있어서,
    변환 화학 활물질에 대한 변환 OCV가 하나 이상의 삽입 화학 활물질에 대한 삽입 전압을 초과하는 전기화학적 디바이스.
  58. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질이 변환 화학 활물질과 혼합되고, 변환 화학 활물질에 대한 변환 OCV 전압보다 낮은 전압에서 작동하는 전기화학적 디바이스.
  59. 제32항에 있어서,
    하나 이상의 삽입 화학 활물질이 변환 화학 활물질과 혼합되고, 변환 화학 활물질에 대한 삽입 방식 전압 범위보다 높은 전압 및 변환 화학 활물질에 대한 변환 OCV 전압 범위보다 낮은 전압의 양자 모두에서 작동하는 전기화학적 디바이스.
KR1020167020056A 2014-02-25 2015-02-25 삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극 KR102384822B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461944502P 2014-02-25 2014-02-25
US61/944,502 2014-02-25
US201462027908P 2014-07-23 2014-07-23
US62/027,908 2014-07-23
PCT/US2015/017584 WO2015130831A1 (en) 2014-02-25 2015-02-25 Hybrid electrodes with both intercalation and conversion materials

Publications (2)

Publication Number Publication Date
KR20160125354A true KR20160125354A (ko) 2016-10-31
KR102384822B1 KR102384822B1 (ko) 2022-04-08

Family

ID=53883098

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167020056A KR102384822B1 (ko) 2014-02-25 2015-02-25 삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극

Country Status (4)

Country Link
US (3) US20150243974A1 (ko)
EP (1) EP3111493B1 (ko)
KR (1) KR102384822B1 (ko)
WO (1) WO2015130831A1 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692039B2 (en) 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
WO2015103548A1 (en) 2014-01-03 2015-07-09 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
US9761861B1 (en) 2013-06-25 2017-09-12 Quantumscape Corporation Pulse plating of lithium material in electrochemical devices
CN105683127B (zh) 2013-10-07 2020-08-28 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法
WO2015061443A1 (en) 2013-10-25 2015-04-30 Quantumscape Corporation Thermal and electrical management of battery packs
EP3111493B1 (en) 2014-02-25 2020-12-09 QuantumScape Corporation Hybrid electrodes with both intercalation and conversion materials
KR20230164760A (ko) 2014-06-04 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 혼합 입자 크기를 가진 전극 물질
WO2016025866A1 (en) 2014-08-15 2016-02-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
US9834114B2 (en) 2014-08-27 2017-12-05 Quantumscape Corporation Battery thermal management system and methods of use
US10205155B2 (en) 2014-10-14 2019-02-12 Quantumscape Corporation High surface area anode with volume expansion features
CN114163219A (zh) 2015-04-16 2022-03-11 昆腾斯科普电池公司 用于固体电解质制作的承烧板和用其制备致密固体电解质的方法
US9960458B2 (en) * 2015-06-23 2018-05-01 Quantumscape Corporation Battery systems having multiple independently controlled sets of battery cells
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
US20170331092A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
EP3494613A4 (en) 2016-08-05 2020-03-11 QuantumScape Corporation TRANSPARENT AND TRANSPARENT SEPARATORS
EP3529839A1 (en) 2016-10-21 2019-08-28 QuantumScape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
US11735780B2 (en) 2017-03-10 2023-08-22 Quantumscape Battery, Inc. Metal negative electrode ultrasonic charging
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
EP3642899B1 (en) 2017-06-23 2024-02-21 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
US11715863B2 (en) 2018-08-08 2023-08-01 Brightvolt, Inc. Solid polymer matrix electrolytes (PME) and methods and uses thereof
US10725112B1 (en) * 2019-03-01 2020-07-28 Ses Holdings Pte. Ltd. Methods of controlling secondary lithium metal batteries to access reserve energy capacity and battery control systems incorporating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134770A (ja) * 2004-11-08 2006-05-25 Sony Corp 正極および電池
CN101901936A (zh) * 2009-08-13 2010-12-01 湖南海星高科动力电池有限公司 一种新型铁锂电池制备方法
KR20120132533A (ko) * 2010-03-31 2012-12-05 도요타 지도샤(주) 전고체 리튬 전지

Family Cites Families (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722490A (en) 1950-07-24 1955-11-01 Bell Telephone Labor Inc Germanium elements and methods of preparing same
US2722559A (en) 1954-04-01 1955-11-01 Du Pont Fluorocarbon production at high temperatures
US3918988A (en) 1969-03-19 1975-11-11 Honeywell Inc Electric current-producing cells
US3764380A (en) 1971-06-03 1973-10-09 Gates Rubber Co Electrode having a coated positive contact surface
US3972729A (en) 1971-06-30 1976-08-03 Centre National D'etudes Spatiales Method of producing electrodes
US4476204A (en) 1972-11-13 1984-10-09 Gte Laboratories Incorporated Electrochemical cell utilizing a mixture of phosphorus oxychloride and a low freezing solvent as the electrolyte
US4007122A (en) 1974-04-29 1977-02-08 Gould Inc. Solid electrolytes for use in solid state electrochemical devices
US4127708A (en) 1977-08-05 1978-11-28 P. R. Mallory & Co. Inc. Solid state cell with halogen-chalcogen-metal solid cathode
JPS5623285A (en) 1979-08-02 1981-03-05 Nobuatsu Watanabe Production of fluorine
US4367267A (en) 1980-04-25 1983-01-04 Hitachi, Ltd. Amorphous lithium fluoaluminate
EP0076119B1 (en) 1981-09-25 1986-07-23 Showa Denko Kabushiki Kaisha Reinforced acetylene high polymers, process for preparing same and battery having same
JPS58134636A (ja) 1982-02-05 1983-08-10 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料処理用画像安定化液
US4463212A (en) 1982-12-10 1984-07-31 Uop Inc. Selective oligomerization of olefins
DE3484403D1 (de) 1983-05-04 1991-05-16 Showa Denko Kk Batterie mit elektrode aus polymermaterial mit konjugierten doppelbindungen.
NL8301652A (nl) 1983-05-10 1984-12-03 Philips Nv Werkwijze voor het aanbrengen van magnesiumfluoridelagen en antireflectieve lagen verkregen met deze werkwijze.
EP0149421A3 (en) 1983-12-16 1986-05-14 Eltech Systems Corporation Solid state alkali metal-halogen cell
GB8412304D0 (en) * 1984-05-14 1984-06-20 Atomic Energy Authority Uk Composite cathode
US4840859A (en) 1986-06-16 1989-06-20 Mine Safety Appliances Company Thermal battery
JP2729254B2 (ja) 1988-08-05 1998-03-18 信淳 渡辺 低分極性炭素電極
DE3930804A1 (de) 1989-09-14 1991-03-28 Univ Ernst Moritz Arndt Festelektrolytbatterie
CA2110097C (en) 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US5296318A (en) 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US5360686A (en) 1993-08-20 1994-11-01 The United States Of America As Represented By The National Aeronautics And Space Administration Thin composite solid electrolyte film for lithium batteries
US5618640A (en) 1993-10-22 1997-04-08 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US5522955A (en) 1994-07-07 1996-06-04 Brodd; Ralph J. Process and apparatus for producing thin lithium coatings on electrically conductive foil for use in solid state rechargeable electrochemical cells
JPH08138635A (ja) 1994-11-02 1996-05-31 Hitachi Maxell Ltd 筒形マンガン乾電池
JP3606289B2 (ja) 1995-04-26 2005-01-05 日本電池株式会社 リチウム電池用正極活物質およびその製造法
US5792574A (en) 1996-03-04 1998-08-11 Sharp Kabushiki Kaisha Nonaqueous secondary battery
US5670277A (en) 1996-06-13 1997-09-23 Valence Technology, Inc. Lithium copper oxide cathode for lithium cells and batteries
CN1134851C (zh) 1996-07-22 2004-01-14 日本电池株式会社 锂电池用正极
US5788738A (en) 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
US6087042A (en) 1996-10-18 2000-07-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Positive electrode material for secondary lithium battery
US5744258A (en) 1996-12-23 1998-04-28 Motorola,Inc. High power, high energy, hybrid electrode and electrical energy storage device made therefrom
US6037095A (en) 1997-03-28 2000-03-14 Fuji Photo Film Co., Ltd. Non-aqueous lithium ion secondary battery
US5759720A (en) 1997-06-04 1998-06-02 Bell Communications Research, Inc. Lithium aluminum manganese oxy-fluorides for Li-ion rechargeable battery electrodes
RU2136083C1 (ru) 1997-07-23 1999-08-27 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики - РФЯЦ ВНИИЭФ Твердотельный химический источник тока
US6982132B1 (en) 1997-10-15 2006-01-03 Trustees Of Tufts College Rechargeable thin film battery and method for making the same
JP3928231B2 (ja) 1997-12-15 2007-06-13 株式会社日立製作所 リチウム2次電池
US6517974B1 (en) 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
US5945163A (en) 1998-02-19 1999-08-31 First Solar, Llc Apparatus and method for depositing a material on a substrate
US6037241A (en) 1998-02-19 2000-03-14 First Solar, Llc Apparatus and method for depositing a semiconductor material
JP3524762B2 (ja) 1998-03-19 2004-05-10 三洋電機株式会社 リチウム二次電池
DE19840156A1 (de) 1998-09-03 2000-03-09 Basf Ag Bismutvanadatpigmente mit mindestens einer metallfluoridhaltigen Beschichtung
KR100307160B1 (ko) 1999-03-06 2001-09-26 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
US6153333A (en) 1999-03-23 2000-11-28 Valence Technology, Inc. Lithium-containing phosphate active materials
KR100326455B1 (ko) 1999-03-30 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
US6168884B1 (en) 1999-04-02 2001-01-02 Lockheed Martin Energy Research Corporation Battery with an in-situ activation plated lithium anode
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
US6204219B1 (en) 1999-07-29 2001-03-20 W. R. Grace & Co.-Conn. Thermally stable support material and method for making the same
US6635114B2 (en) 1999-12-17 2003-10-21 Applied Material, Inc. High temperature filter for CVD apparatus
KR100354224B1 (ko) 1999-12-24 2002-09-26 삼성에스디아이 주식회사 리튬 이온 이차 전지용 망간계 양극 활물질 및 그 제조 방법
US6636838B1 (en) 2000-02-23 2003-10-21 Sun Microsystems, Inc. Content screening with end-to-end encryption
US6686090B2 (en) 2000-03-15 2004-02-03 Kabushiki Kaisha Toshiba Battery with a nonaqueous electrolyte and a negative electrode having a negative electrode active material occluding and releasing an active material
US7524584B2 (en) 2000-04-27 2009-04-28 Valence Technology, Inc. Electrode active material for a secondary electrochemical cell
US6387568B1 (en) 2000-04-27 2002-05-14 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
US6964827B2 (en) 2000-04-27 2005-11-15 Valence Technology, Inc. Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials
US6551747B1 (en) * 2000-04-27 2003-04-22 Wilson Greatbatch Ltd. Sandwich cathode design for alkali metal electrochemical cell with high discharge rate capability
US6432581B1 (en) 2000-05-11 2002-08-13 Telcordia Technologies, Inc. Rechargeable battery including an inorganic anode
US7468223B2 (en) 2000-06-22 2008-12-23 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
CA2325791A1 (en) 2000-11-10 2002-05-10 Jeffrey Phillips Negative electrode formulation for a low toxicity zinc electrode having additives with redox potentials positive to zinc potential
US7829221B2 (en) 2000-11-10 2010-11-09 Powergenix Systems, Inc. Cobalt containing positive electrode formulation for a nickel-zinc cell
JP4608128B2 (ja) 2000-11-15 2011-01-05 パナソニック株式会社 コバルト化合物およびその製造方法ならびにそれを用いたアルカリ蓄電池用正極板およびアルカリ蓄電池
US6743550B2 (en) 2000-11-17 2004-06-01 Wilson Greatbatch Ltd. Double current collector cathode design using chemically similar active materials for alkali metal electrochemical
US6645452B1 (en) 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US6753112B2 (en) 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
EP1244114A1 (de) 2001-03-20 2002-09-25 ILFORD Imaging Switzerland GmbH Elektrisch aktive Filme
CN100372158C (zh) 2001-04-06 2008-02-27 威伦斯技术公司 钠离子电池
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US6495481B1 (en) 2001-05-21 2002-12-17 Nano Technologies Glasses for laser and fiber amplifier applications and method for making thereof
US6680145B2 (en) 2001-08-07 2004-01-20 3M Innovative Properties Company Lithium-ion batteries
US6719848B2 (en) 2001-08-16 2004-04-13 First Solar, Llc Chemical vapor deposition system
US20040072072A1 (en) 2001-11-20 2004-04-15 Tadashi Suzuki Electrode active material electrode lithium-ion secondary battery method of making electrode active material and method of making lithium-ion secondary battery
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
US6689192B1 (en) 2001-12-13 2004-02-10 The Regents Of The University Of California Method for producing metallic nanoparticles
US6737193B2 (en) 2001-12-20 2004-05-18 Im&T Research, Inc. Tetraketopiperazine unit-containing compound as an active material in batteries
JP2003229172A (ja) 2002-01-31 2003-08-15 Sony Corp 非水電解質電池
US7208195B2 (en) 2002-03-27 2007-04-24 Ener1Group, Inc. Methods and apparatus for deposition of thin films
KR100458568B1 (ko) 2002-04-03 2004-12-03 삼성에스디아이 주식회사 리튬 전지용 전해질 및 이를 포함하는 리튬 전지
US20090220838A9 (en) 2002-04-04 2009-09-03 Jeremy Barker Secondary electrochemical cell
US20080003496A1 (en) 2002-08-09 2008-01-03 Neudecker Bernd J Electrochemical apparatus with barrier layer protected substrate
US20040126659A1 (en) 2002-09-10 2004-07-01 Graetz Jason A. High-capacity nanostructured silicon and lithium alloys thereof
DE10242694A1 (de) 2002-09-13 2004-03-25 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Neuartige Elektrodenmaterialien und Elektroden für elektrochemische Energiespeichereinrichtungen auf Li-Basis
US7625671B2 (en) 2002-10-01 2009-12-01 Rutgers, The State University Transition metal fluoride: carbon nanoamalgam rechargeable battery cell electrode material
US7371338B2 (en) 2002-10-01 2008-05-13 Rutgers, The State University Metal fluorides as electrode materials
US9065137B2 (en) 2002-10-01 2015-06-23 Rutgers, The State University Of New Jersey Copper fluoride based nanocomposites as electrode materials
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
EP2323145A1 (en) 2002-10-31 2011-05-18 Mitsubishi Chemical Corporation Electrolytic solution for electrolytic capacitor and electrolytic capacitor as well as method for preparing an organic onium tetrafluoroaluminate
AU2003251798A1 (en) 2003-01-15 2005-10-07 Quallion Llc Battery
US7169471B1 (en) 2003-02-06 2007-01-30 Emd Chemicals, Inc. Laser-marking additive
US20040191633A1 (en) 2003-02-26 2004-09-30 The University Of Chicago Electrodes for lithium batteries
US7314684B2 (en) 2003-03-14 2008-01-01 U Chicago Argonne Llc Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries
US20040185346A1 (en) 2003-03-19 2004-09-23 Takeuchi Esther S. Electrode having metal vanadium oxide nanoparticles for alkali metal-containing electrochemical cells
US7968235B2 (en) 2003-07-17 2011-06-28 Uchicago Argonne Llc Long life lithium batteries with stabilized electrodes
US7476463B2 (en) * 2003-08-15 2009-01-13 Pacific Lithium New Zealand Limited Rechargeable bipolar high power electrochemical device with reduced monitoring requirement
CN1279639C (zh) 2003-12-16 2006-10-11 湖南晶鑫科技股份有限公司 锰镍钴复合嵌锂氧化物及其制造方法
US7160647B2 (en) 2003-12-22 2007-01-09 The Gillette Company Battery cathode
JP4100341B2 (ja) 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
US7008726B2 (en) 2004-01-22 2006-03-07 Valence Technology, Inc. Secondary battery electrode active materials and methods for making the same
US7780787B2 (en) 2004-08-11 2010-08-24 First Solar, Inc. Apparatus and method for depositing a material on a substrate
US20060088767A1 (en) 2004-09-01 2006-04-27 Wen Li Battery with molten salt electrolyte and high voltage positive active material
US7709149B2 (en) 2004-09-24 2010-05-04 Lg Chem, Ltd. Composite precursor for aluminum-containing lithium transition metal oxide and process for preparation of the same
JP2008515170A (ja) 2004-10-01 2008-05-08 ルトガース,ザ ステート ユニヴァーシティ オブ ニュージャーシー 電極材料としてのフッ化ビスマスをベースとするナノコンポジット
US8039149B2 (en) 2004-10-01 2011-10-18 Rutgers, The State University Bismuth oxyfluoride based nanocomposites as electrode materials
NZ556348A (en) 2005-01-06 2011-01-28 Univ Rutgers Electrochemically self assembled batteries
US7410631B2 (en) 2005-03-02 2008-08-12 Aps Laboratory Metal phosphate sols, metal nanoparticles, metal-chalcogenide nanoparticles, and nanocomposites made therefrom
KR100822013B1 (ko) * 2005-04-15 2008-04-14 주식회사 에너세라믹 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
RU2295178C2 (ru) 2005-04-21 2007-03-10 Общество с ограниченной ответственностью "Высокоэнергетические батарейные системы" (ООО "ВЭБС") Твердотельный вторичный источник тока
RU2295177C2 (ru) 2005-04-21 2007-03-10 Общество с ограниченной ответственностью "Высокоэнергетические батарейные системы" (ООО "ВЭБС") Способ изготовления вторичного твердотельного источника тока
US7968145B2 (en) 2005-04-26 2011-06-28 First Solar, Inc. System and method for depositing a material on a substrate
US7910166B2 (en) 2005-04-26 2011-03-22 First Solar, Inc. System and method for depositing a material on a substrate
US7931937B2 (en) 2005-04-26 2011-04-26 First Solar, Inc. System and method for depositing a material on a substrate
US7927659B2 (en) 2005-04-26 2011-04-19 First Solar, Inc. System and method for depositing a material on a substrate
US7955031B2 (en) 2005-07-06 2011-06-07 First Solar, Inc. Material supply system and method
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
KR20140105871A (ko) 2006-03-03 2014-09-02 캘리포니아 인스티튜트 오브 테크놀로지 불화물이온 전기화학 셀
JP5615497B2 (ja) 2006-03-03 2014-10-29 カリフォルニア・インスティテュート・オブ・テクノロジーCalifornia Institute Oftechnology フッ化物イオン電気化学セル
CA2581806C (en) 2006-03-08 2012-06-26 Tekna Plasma Systems Inc. Plasma synthesis of nanopowders
US20100210453A1 (en) 2006-03-29 2010-08-19 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Preparation Of Nanostructured Metals And Metal Compounds And Their Uses
KR100822012B1 (ko) 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
US9017480B2 (en) 2006-04-06 2015-04-28 First Solar, Inc. System and method for transport
US8492030B2 (en) 2006-06-19 2013-07-23 Uchicago Argonne Llc Cathode material for lithium batteries
US8603250B2 (en) 2006-06-27 2013-12-10 First Solar, Inc. System and method for deposition of a material on a substrate
US8192867B2 (en) * 2006-10-03 2012-06-05 Greatbatch Ltd. Hybrid cathode design for an electrochemical cell
DE602007004918D1 (de) * 2006-10-03 2010-04-08 Greatbatch Ltd Hybridkathodenentwurf für eine elektrochemische Zelle
US20080153002A1 (en) 2006-11-27 2008-06-26 Nazar Linda Faye Mixed Lithium/Sodium Ion Iron Fluorophosphate Cathodes for Lithium Ion Batteries
US8465602B2 (en) 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
EP2615057B1 (en) 2007-02-02 2016-06-01 Rutgers, The State University Metal fluoride and phosphate nanocomposites as electrode materials
WO2008121793A1 (en) 2007-03-30 2008-10-09 The Penn State Research Foundation Mist fabrication of quantum dot devices
JP4797105B2 (ja) * 2007-05-11 2011-10-19 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
US20080283048A1 (en) 2007-05-16 2008-11-20 Johan Petersen Two-stage reduction of aerosol droplet size
US20080299411A1 (en) 2007-05-30 2008-12-04 Oladeji Isaiah O Zinc oxide film and method for making
KR101271852B1 (ko) 2007-08-10 2013-06-07 유미코르 황을 함유하는 도핑된 리튬 전이금속 산화물
WO2009091713A1 (en) 2008-01-15 2009-07-23 First Solar, Inc. System and method for depositing a material on a substrate
JP5575744B2 (ja) 2008-04-03 2014-08-20 エルジー・ケム・リミテッド リチウム遷移金属酸化物製造用の前駆物質
US20110171398A1 (en) 2010-01-12 2011-07-14 Oladeji Isaiah O Apparatus and method for depositing alkali metals
US8951668B2 (en) 2010-11-19 2015-02-10 Rutgers, The State University Of New Jersey Iron oxyfluoride electrodes for electrochemical energy storage
US8623549B2 (en) * 2008-05-23 2014-01-07 Nathalie Pereira Iron oxyfluoride electrodes for electrochemical energy storage
US8277683B2 (en) 2008-05-30 2012-10-02 Uchicago Argonne, Llc Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries
EP2330664B1 (en) 2008-09-10 2017-12-13 LG Chem, Ltd. Positive electrode active substance for lithium secondary battery
CN101378126B (zh) 2008-09-17 2010-06-02 宁波金和新材料股份有限公司 镍锰基包钴锂离子正极材料的制备方法
JP2010086896A (ja) * 2008-10-02 2010-04-15 Sanyo Electric Co Ltd 非水電解質二次電池及び非水電解質二次電池用活物質
US8389160B2 (en) * 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8628617B2 (en) 2008-12-03 2014-01-14 First Solar, Inc. System and method for top-down material deposition
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US20100159324A1 (en) * 2008-12-19 2010-06-24 Conocophillips Company Lithium powders for batteries
DE102009017262A1 (de) 2009-04-11 2010-10-14 Karlsruher Institut für Technologie Kathodenmaterial für fluoridbasierte Konversionselektroden, Verfahren zu seiner Herstellung und seine Verwendung
HUE054466T2 (hu) 2009-05-19 2021-09-28 Oned Mat Inc Nanoszerkezetû anyagok akkumulátor alkalmazásokhoz
CN102428031B (zh) * 2009-05-26 2016-08-10 石原产业株式会社 钛酸锂、生产钛酸锂的方法以及各自包含钛酸锂的电极活性材料和蓄电装置
US20110006254A1 (en) 2009-07-07 2011-01-13 Toyota Motor Engineering & Manufacturing North America, Inc. Process to make electrochemically active/inactive nanocomposite material
US8328218B2 (en) * 2009-07-13 2012-12-11 Columbia Cycle Works, LLC Commuter vehicle
US7972899B2 (en) 2009-07-30 2011-07-05 Sisom Thin Films Llc Method for fabricating copper-containing ternary and quaternary chalcogenide thin films
WO2011028527A2 (en) 2009-08-24 2011-03-10 Applied Materials, Inc. In-situ deposition of battery active lithium materials by plasma spraying
EP2471129B1 (en) * 2009-08-27 2016-11-16 Commonwealth Scientific and Industrial Research Organisation Electrical storage device and electrode thereof
CN102870256A (zh) 2009-08-27 2013-01-09 安维亚系统公司 基于锂的电池的经金属氧化物涂布的正电极材料
WO2011059766A1 (en) * 2009-10-29 2011-05-19 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for advanced rechargeable batteries
US9484594B2 (en) 2009-11-09 2016-11-01 Rutgers, The State University Of New Jersey Metal fluoride compositions for self formed batteries
CN102782924B (zh) 2009-11-20 2016-11-09 凯密特尔有限责任公司 含有含氧转化电极的可充电锂电池
US20110129732A1 (en) 2009-12-01 2011-06-02 Applied Materials, Inc. Compressed powder 3d battery electrode manufacturing
US20110171528A1 (en) 2010-01-12 2011-07-14 Oladeji Isaiah O Solid state electrolytes having high lithium ion conduction
CN102244231A (zh) 2010-05-14 2011-11-16 中国科学院物理研究所 对正极活性材料和/或正极进行表面包覆的方法以及正极和电池的制备方法
US9196901B2 (en) 2010-06-14 2015-11-24 Lee Se-Hee Lithium battery electrodes with ultra-thin alumina coatings
JP5349427B2 (ja) * 2010-08-26 2013-11-20 トヨタ自動車株式会社 硫化物固体電解質材料、正極体およびリチウム固体電池
KR20120024001A (ko) * 2010-09-03 2012-03-14 현대자동차주식회사 전기자동차의 제동 제어 방법
US8591774B2 (en) 2010-09-30 2013-11-26 Uchicago Argonne, Llc Methods for preparing materials for lithium ion batteries
JP2012089441A (ja) 2010-10-22 2012-05-10 Sharp Corp 正極活物質およびこれを含む正極を備える非水系二次電池
EP2641289B1 (en) 2010-11-17 2020-03-18 Uchicago Argonne, LLC, Operator Of Argonne National Laboratory Electrode structures and surfaces for li batteries
US8465556B2 (en) 2010-12-01 2013-06-18 Sisom Thin Films Llc Method of forming a solid state cathode for high energy density secondary batteries
KR101492175B1 (ko) 2011-05-03 2015-02-10 주식회사 엘지화학 양극 활물질 입자의 표면 처리 방법 및 이로부터 형성된 양극 활물질 입자
JP2013073792A (ja) 2011-09-28 2013-04-22 Panasonic Corp 非水電解質二次電池
US20130108802A1 (en) 2011-11-01 2013-05-02 Isaiah O. Oladeji Composite electrodes for lithium ion battery and method of making
KR101375701B1 (ko) 2011-11-11 2014-03-20 에스케이씨 주식회사 플루오르화 포스페이트 함유 리튬이차전지용 양극활물질 및 이의 제조방법
US20140377664A1 (en) * 2012-01-10 2014-12-25 The Regents Of The University Of Colorado, A Body Corporate Lithium all-solid-state battery
US20130202502A1 (en) 2012-02-08 2013-08-08 Martin Schulz-Dobrick Process for preparing mixed carbonates which may comprise hydroxide(s)
US8932764B2 (en) * 2012-02-28 2015-01-13 Sila Nanotechnologies, Inc. Core-shell composites for sulfur-based cathodes in metal-ion batteries
US9203109B2 (en) * 2012-03-07 2015-12-01 Massachusetts Institute Of Technology Rechargeable lithium battery for wide temperature operation
US9070950B2 (en) * 2012-03-26 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Power storage element, manufacturing method thereof, and power storage device
EP3255444B1 (en) * 2012-04-13 2020-01-08 LG Chem, Ltd. Method for managing a secondary battery
US20130344391A1 (en) 2012-06-18 2013-12-26 Sila Nanotechnologies Inc. Multi-shell structures and fabrication methods for battery active materials with expansion properties
US9692039B2 (en) 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
US8753724B2 (en) 2012-09-26 2014-06-17 Front Edge Technology Inc. Plasma deposition on a partially formed battery through a mesh screen
US9048497B2 (en) 2012-10-05 2015-06-02 Rutgers, The State University Of New Jersey Metal fluoride compositions for self formed batteries
KR102007411B1 (ko) 2013-01-07 2019-10-01 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극과 리튬 전지, 및 상기 양극 활물질의 제조방법
US9017777B2 (en) 2013-02-26 2015-04-28 Quantumscape Corporation Inorganic films using a cascaded source for battery devices
US9786905B2 (en) 2013-03-13 2017-10-10 Quantumscape Corporation Iron, fluorine, sulfur compounds for battery cell cathodes
US8916062B2 (en) * 2013-03-15 2014-12-23 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US9159994B2 (en) 2013-03-15 2015-10-13 Wildcat Discovery Technologies, Inc. High energy materials for a battery and methods for making and use
US10374232B2 (en) 2013-03-15 2019-08-06 Nano One Materials Corp. Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders for lithium metal oxides for battery applications
US9446966B2 (en) 2013-03-21 2016-09-20 Quantumscape Corporation Method for forming metal fluoride material
WO2014197751A1 (en) 2013-06-06 2014-12-11 Quantumscape Corporation Flash evaporation of solid state battery component
EP2816639A3 (en) 2013-06-19 2015-05-13 QuantumScape Corporation Protective coatings for conversion material cathodes
US9466830B1 (en) 2013-07-25 2016-10-11 Quantumscape Corporation Method and system for processing lithiated electrode material
US20150050522A1 (en) 2013-08-14 2015-02-19 Arumugam Manthiram Lithium-rich layered oxide cathodes and rechargeable batteries containing lithium-rich layered oxides
US9979024B2 (en) 2013-09-04 2018-05-22 Lg Chem, Ltd. Transition metal-pyrophosphate anode active material, method of preparing the same, and lithium secondary battery or hybrid capacitor including the anode active material
US20150099169A1 (en) 2013-10-07 2015-04-09 Ut-Battelle, Llc High energy density multivalent conversion based cathodes for lithium batteries
US10224537B2 (en) * 2013-11-29 2019-03-05 Sila Nanotechnologies, Inc. Fluorides in nanoporous, electrically-conductive scaffolding matrix for metal and metal-ion batteries
US9985313B2 (en) * 2014-01-02 2018-05-29 Wildcat Discovery Technologies, Inc. Solid state electrolyte and electrode compositions
US9339784B2 (en) 2014-01-03 2016-05-17 Quantumscape Corporation Plasma synthesis of metal and lithium fluoride nanostructures
EP3111493B1 (en) 2014-02-25 2020-12-09 QuantumScape Corporation Hybrid electrodes with both intercalation and conversion materials
KR20230164760A (ko) 2014-06-04 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 혼합 입자 크기를 가진 전극 물질
WO2016025866A1 (en) 2014-08-15 2016-02-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
US20160164135A1 (en) 2014-12-05 2016-06-09 Quantumscape Corporation Nanocomposite particles of conversion chemistry and mixed electronic ionic conductor materials
WO2016106321A1 (en) 2014-12-23 2016-06-30 Quantumscape Corporation Lithium rich nickel manganese cobalt oxide (lr-nmc)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134770A (ja) * 2004-11-08 2006-05-25 Sony Corp 正極および電池
CN101901936A (zh) * 2009-08-13 2010-12-01 湖南海星高科动力电池有限公司 一种新型铁锂电池制备方法
KR20120132533A (ko) * 2010-03-31 2012-12-05 도요타 지도샤(주) 전고체 리튬 전지

Also Published As

Publication number Publication date
KR102384822B1 (ko) 2022-04-08
EP3111493A4 (en) 2017-09-27
US20200144611A1 (en) 2020-05-07
EP3111493A1 (en) 2017-01-04
US20150243974A1 (en) 2015-08-27
US20230290935A1 (en) 2023-09-14
EP3111493B1 (en) 2020-12-09
US11557756B2 (en) 2023-01-17
WO2015130831A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
US11557756B2 (en) Hybrid electrodes with both intercalation and conversion materials
US10608249B2 (en) Conformal coating of lithium anode via vapor deposition for rechargeable lithium ion batteries
US8765306B2 (en) High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
JP5787196B2 (ja) リチウムイオン二次電池
US10020506B2 (en) Active material for a cathode of a battery cell, cathode, and battery cell
US20190260104A1 (en) Battery and supercapacitor hybrid
US20110279088A1 (en) Battery pack, discharge system, charge and discharge system, and discharge control method of lithium ion secondary battery
US10622665B2 (en) Formation method for sodium ion cell or battery
KR102205362B1 (ko) 리튬 이온 배터리용 양극
US20200220223A1 (en) Ionic liquid electrolytes for high voltage battery application
US10700386B2 (en) Electrically restorable rechargeable battery, and methods of manufacture and methods of operating the battery
KR102577861B1 (ko) 전기적으로 복원가능하고 재충전가능한 배터리, 및 상기 배터리의 제조방법 및 상기 배터리의 작동방법
US10833319B2 (en) Active material for a positive electrode of a battery cell, positive electrode, and battery cell
US10790502B2 (en) Active material for a positive electrode of a battery cell, positive electrode, and battery cell
US10763502B2 (en) Active material for a positive electrode of a battery cell, positive electrode, and battery cell
JP2024015450A (ja) 蓄電素子及び蓄電素子の使用方法
WO2018230519A1 (ja) 蓄電素子、蓄電素子の製造方法、蓄電素子の制御方法、及び蓄電素子を備える蓄電装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant