KR20160060717A - 비수 전해질 2차 전지 - Google Patents

비수 전해질 2차 전지 Download PDF

Info

Publication number
KR20160060717A
KR20160060717A KR1020167010617A KR20167010617A KR20160060717A KR 20160060717 A KR20160060717 A KR 20160060717A KR 1020167010617 A KR1020167010617 A KR 1020167010617A KR 20167010617 A KR20167010617 A KR 20167010617A KR 20160060717 A KR20160060717 A KR 20160060717A
Authority
KR
South Korea
Prior art keywords
substituted
group
electrolytic solution
unsaturated
electrolyte
Prior art date
Application number
KR1020167010617A
Other languages
English (en)
Inventor
아츠오 야마다
유키 야마다
코헤이 마세
토모유키 가와이
요시히로 나카가키
유키 하세가와
노부히로 고다
Original Assignee
고쿠리츠다이가쿠호징 도쿄다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고쿠리츠다이가쿠호징 도쿄다이가쿠 filed Critical 고쿠리츠다이가쿠호징 도쿄다이가쿠
Publication of KR20160060717A publication Critical patent/KR20160060717A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7011

Abstract

알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체로부터의 Al의 용출을 억제하고, 또한 열특성이 우수하고, 입출력 특성이 우수한 비수 전해질 2차 전지를 제공한다. 정극과, 부극과, 전해액을 갖는 비수 전해질 2차 전지로서, 정극은, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 갖고, 전해액은, 금속염과, 헤테로 원소를 갖는 유기 용매를 포함하고, 전해액의 진동 분광 스펙트럼에 있어서의 유기 용매 유래의 피크 강도에 대해, 유기 용매 본래의 피크의 강도를 Io로 하고, 피크가 시프트한 피크의 강도를 Is로 한 경우, Is>Io인 것을 특징으로 한다.

Description

비수 전해질 2차 전지{NONAQUEOUS ELECTROLYTE SECONDARY BATTERY}
본 발명은, 비수 전해질 2차 전지에 관한 것이다.
전자 기기의 소형화, 경량화가 진행되어, 그 전원으로서 에너지 밀도가 높은 2차 전지가 요망되고 있다. 2차 전지란, 전해질을 개재한 화학 반응에 의해 정극 활물질과 부극 활물질이 갖는 화학 에너지를 외부로 전기 에너지로서 뽑아내는 것이다. 이러한 2차 전지에 있어서, 비수 전해질을 사용하여, 이온을 정극과 부극과의 사이로 이동시킴으로써 충방전을 행하는 비수 전해질 2차 전지가 알려져 있다.
비수 전해질 2차 전지의 하나인 리튬 이온 2차 전지는, 휴대 전화나, 전기 자동차(EV: Electric Vehicle) 등의 여러 가지 용도에 이용되고 있으며, 리튬 이온 2차 전지에 요구되는 특성으로서, 고에너지 밀도화, 사이클 특성 및 여러 가지 동작 환경에서의 안전성 등이 있다.
리튬 이온 2차 전지의 정극용 집전체에는, 전해질에 의한 부식에 견디기 위해, 표면에 안정적인 부동태막을 형성하는 Al 등의 금속을 사용하는 것이 일반적이다. 예를 들면 Al을 정극용 집전체에 이용한 경우, 그 표면에 Al2O3, AlF3 등의 부동태막이 형성된다고 생각되고 있다. Al의 집전체는 표면에 상기 부동태막을 형성함으로써 부식되기 어려워져, 집전 기능을 유지할 수 있다.
최근, 리튬 이온 2차 전지는, 고전압 사용 환경하(본 명세서에서는 4.3V 이상의 전압으로 사용하는 것을 고전압 사용이라고 정의함)에서도 양호하게 사용할 수 있는 것이 요망되고 있다. 상기 Al의 집전체는 고전압 사용 환경하에서는 그 표면에 부동태막이 형성되어 있어도 서서히 부식이 일어나기 쉬워, 집전체로부터 Al이 용출되어 갈 우려가 있다.
리튬 이온 2차 전지의 전해액에는, 적절한 전해질이 적절한 농도 범위로 첨가되어 있다. 예를 들면, 리튬 이온 2차 전지의 전해액에는, LiClO4, LiAsF6, LiPF6, LiBF4, CF3SO3Li, (CF3SO2)2NLi 등의 리튬염이 전해질로서 첨가되는 것이 일반적이고, 그리고, 전해액에 있어서의 리튬염의 농도는, 대체로 1㏖/L로 되는 것이 일반적이다.
실제로, 특허문헌 1에는, LiPF6을 1㏖/L의 농도로 포함하는 전해액을 이용한 리튬 이온 2차 전지가 개시되어 있다. 또한, 특허문헌 2에는, (CF3SO2)2NLi를 1㏖/L의 농도로 포함하는 전해액을 이용한 리튬 이온 2차 전지가 개시되어 있다.
Al의 용출에 관해서는, 예를 들면, 전해질로서 LiPF6을 이용하는 리튬 이온 2차 전지에 있어서, LiPF6이 가수분해되어 HF를 발생하고, 그 HF에 의해 집전체의 Al을 부식한다고 추측되고 있다. 또한 LiPF6보다도 가수분해 내성이 높은 이미드염계의 전해질, 예를 들면 (CF3SO2)2NLi(LiTFSA)나 (FSO2)2NLi(LiFSA)를 이용한 리튬 이온 2차 전지에 있어서도, 정극용 집전체로부터 Al이 용출하는 것이 비특허문헌 1 및 비특허문헌 2에 개시되어 있다.
일본공개특허공보 2008-53207호 일본공개특허공보 2010-225539호
Journal of Power Sources 196 (2011) 3623-3632 ECS Electrochemistry Letters, 1 (5) C9-C11 (2012)
알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체로부터 Al의 용출을 억제하고, 열특성이 우수하고, 또한 입출력 특성이 우수한 비수 전해질 2차 전지를 제공하는 것을 목적으로 한다.
특허문헌 1∼2에 기재된 바와 같이, 종래, 리튬 이온 2차 전지에 이용되는 전해액에 있어서는, 리튬염을 대체로 1㏖/L의 농도로 포함하는 것이 기술 상식으로 되어 있었다. 이러한 종래의 기술 상식에 반하여, 본 발명자들은, 전해액 중의 금속염과 용매와의 관계에 착안하여, 금속염 및 용매가 새로운 상태에서 존재하는 전해액을 발견했다. 그리고, 놀랍게도, 새로운 전해액과, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 조합하면, 정극용 집전체로부터의 Al의 용출이 억제되는 것을 발견했다.
즉, 본 발명의 비수 전해질 2차 전지는, 정극과, 부극과, 전해액을 갖는 비수 전해질 2차 전지로서, 정극은, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 갖고, 전해액은, 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하고, 전해액의 진동 분광 스펙트럼에 있어서의 유기 용매 유래의 피크 강도에 대해, 유기 용매 본래의 피크의 강도를 Io로 하고, 피크가 시프트한 피크의 강도를 Is로 한 경우, Is>Io인 것을 특징으로 한다.
염의 양이온은 리튬인 것이 바람직하다.
본 발명의 비수 전해질 2차 전지는 리튬 이온 2차 전지인 것이 바람직하다.
본 발명의 비수 전해질 2차 전지는, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체로부터 Al의 용출을 억제할 수 있고, 또한 열특성이 우수하고, 입출력 특성이 우수하다.
도 1은 전해액 E3의 IR 스펙트럼이다.
도 2는 전해액 E4의 IR 스펙트럼이다.
도 3은 전해액 E7의 IR 스펙트럼이다.
도 4는 전해액 E8의 IR 스펙트럼이다.
도 5는 전해액 E9의 IR 스펙트럼이다.
도 6은 전해액 C2의 IR 스펙트럼이다.
도 7은 전해액 C4의 IR 스펙트럼이다.
도 8은 아세토니트릴의 IR 스펙트럼이다.
도 9는 (CF3SO2)2NLi의 IR 스펙트럼이다.
도 10은 (FSO2)2NLi의 IR 스펙트럼이다(2100∼2400㎝-1).
도 11은 전해액 E10의 전해액의 IR 스펙트럼이다.
도 12는 전해액 E11의 전해액의 IR 스펙트럼이다.
도 13은 전해액 E12의 전해액의 IR 스펙트럼이다.
도 14는 전해액 E13의 전해액의 IR 스펙트럼이다.
도 15는 전해액 E14의 전해액의 IR 스펙트럼이다.
도 16은 전해액 C6의 전해액의 IR 스펙트럼이다.
도 17은 디메틸카보네이트의 IR 스펙트럼이다.
도 18은 전해액 E15의 전해액의 IR 스펙트럼이다.
도 19는 전해액 E16의 전해액의 IR 스펙트럼이다.
도 20은 전해액 E17의 전해액의 IR 스펙트럼이다.
도 21은 전해액 C7의 전해액의 IR 스펙트럼이다.
도 22는 에틸메틸카보네이트의 IR 스펙트럼이다.
도 23은 전해액 E18의 전해액의 IR 스펙트럼이다.
도 24는 전해액 E19의 전해액의 IR 스펙트럼이다.
도 25는 전해액 E20의 전해액의 IR 스펙트럼이다.
도 26은 전해액 C8의 전해액의 IR 스펙트럼이다.
도 27은 디에틸카보네이트의 IR 스펙트럼이다.
도 28은 (FSO2)2NLi의 IR 스펙트럼이다(1900∼1600㎝-1).
도 29는 평가예 7의 급속 충방전의 반복에 대한 응답성의 결과이다.
도 30은 평가예 9에 있어서의 실시예 1의 리튬 이온 2차 전지의 DSC 차트이다.
도 31은 평가예 9에 있어서의 비교예 1의 리튬 이온 2차 전지의 DSC 차트이다.
도 32는 실시예 12 및 비교예 7의 하프 셀의 전극 전위와 전류의 관계를 나타내는 그래프이다.
도 33은 실시예 1의 리튬 이온 2차 전지의 알루미늄 집전체의 XPS에 의한 표면 분석 결과를 나타내는 그래프이다.
도 34는 실시예 2의 리튬 이온 2차 전지의 알루미늄 집전체의 XPS에 의한 표면 분석 결과를 나타내는 그래프이다.
도 35는 실시예 5의 하프 셀에 대한 전위(3.1∼4.6V)와 응답 전류의 관계를 나타내는 그래프이다.
도 36은 실시예 5의 하프 셀에 대한 전위(3.1∼5.1V)와 응답 전류의 관계를 나타내는 그래프이다.
도 37은 실시예 6의 하프 셀에 대한 전위(3.1∼4.6V)와 응답 전류의 관계를 나타내는 그래프이다.
도 38은 실시예 6의 하프 셀에 대한 전위(3.1∼5.1V)와 응답 전류의 관계를 나타내는 그래프이다.
도 39는 실시예 7의 하프 셀에 대한 전위(3.1∼4.6V)와 응답 전류의 관계를 나타내는 그래프이다.
도 40은 실시예 7의 하프 셀에 대한 전위(3.1∼5.1V)와 응답 전류의 관계를 나타내는 그래프이다.
도 41은 실시예 8의 하프 셀에 대한 전위(3.1∼4.6V)와 응답 전류의 관계를 나타내는 그래프이다.
도 42는 실시예 8의 하프 셀에 대한 전위(3.1∼5.1V)와 응답 전류의 관계를 나타내는 그래프이다.
도 43은 비교예 4의 하프 셀에 대한 전위(3.1∼4.6V)와 응답 전류의 관계를 나타내는 그래프이다.
도 44는 실시예 6의 하프 셀에 대한 전위(3.0∼4.5V)와 응답 전류의 관계를 나타내는 그래프이다.
도 45는 실시예 6의 하프 셀에 대한 전위(3.0∼5.0V)와 응답 전류의 관계를 나타내는 그래프이다.
도 46은 실시예 9의 하프 셀에 대한 전위(3.0∼4.5V)와 응답 전류의 관계를 나타내는 그래프이다.
도 47은 실시예 9의 하프 셀에 대한 전위(3.0∼5.0V)와 응답 전류의 관계를 나타내는 그래프이다.
도 48은 비교예 5의 하프 셀에 대한 전위(3.0∼4.5V)와 응답 전류의 관계를 나타내는 그래프이다.
도 49는 비교예 5의 하프 셀에 대한 전위(3.0∼5.0V)와 응답 전류의 관계를 나타내는 그래프이다.
도 50은 전해액 E8의 라만 스펙트럼이다.
도 51은 전해액 E21의 라만 스펙트럼이다.
도 52는 전해액 C4의 라만 스펙트럼이다.
도 53은 전해액 E10의 라만 스펙트럼이다.
도 54는 전해액 E12의 라만 스펙트럼이다.
도 55는 전해액 E14의 라만 스펙트럼이다.
도 56은 전해액 C6의 라만 스펙트럼이다.
도 57은 실시예 11, 비교예 1의 리튬 이온 2차 전지에 대해서, 사이클 시험시에 있어서의 사이클수의 평방근과 방전 용량 유지율과의 관계를 나타내는 그래프이다.
도 58은 각 전류 레이트에 있어서의, 참고예 3의 하프 셀의 전압 커브를 나타내는 그래프이다.
도 59는 각 전류 레이트에 있어서의, 참고예 4의 하프 셀의 전압 커브를 나타내는 그래프이다.
도 60은 평가예 22에 있어서의, 전지의 복소 임피던스 평면 플롯이다.
(발명을 실시하기 위한 형태)
이하에, 본 발명을 실시하기 위한 형태를 설명한다. 또한, 특별히 언급하지 않는 한, 본 명세서에 기재된 수치 범위 「a∼b」는, 하한 a 및 상한 b를 그 범위에 포함한다. 그리고, 이들 상한값 및 하한값, 그리고 실시예 중에 열기한 수치도 포함하고 그들을 임의로 조합함으로써 수치 범위를 구성할 수 있다. 또한 수치 범위 내로부터 임의로 선택한 수치를 상한, 하한의 수치로 할 수 있다.
본 발명의 비수 전해질 2차 전지는, 정극과, 부극과, 전해액을 갖는다.
본 발명의 비수 전해질 2차 전지로서는, 예를 들면 리튬 이온 2차 전지를 들 수 있다. 본 발명의 비수 전해질 2차 전지는, 전해액과, 정극은, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 갖는 것에 특징이 있으며, 비수 전해질 2차 전지를 구성하는 다른 구성 요소는, 각각의 비수 전해질 2차 전지에 적합한 공지의 것을 사용할 수 있다.
이하에 우선은 전해액에 대해서 상세하게 설명한다.
(전해액)
전해액은, 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염(이하, 「금속염」 또는 단순히 「염」이라고 하는 경우가 있음)과, 헤테로 원소를 갖는 유기 용매를 포함하는 전해액으로서, 전해액의 진동 분광 스펙트럼에 있어서의 유기 용매 유래의 피크 강도에 대해, 유기 용매 본래의 피크 파수에 있어서의 피크의 강도를 Io로 하고, 유기 용매 본래의 피크가 파수 시프트한 피크의 강도를 Is로 한 경우, Is>Io인 것을 특징으로 한다.
또한, 종래의 전해액은, Is와 Io와의 관계가 Is<Io이다.
이하, 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는 전해액으로서, 전해액의 진동 분광 스펙트럼에 있어서의 유기 용매 유래의 피크 강도에 대해, 유기 용매 본래의 피크의 강도를 Io로 하고, 피크가 시프트한 피크의 강도를 Is로 한 경우, Is>Io인 전해액을, 「본 발명의 전해액」이라고 하는 경우가 있다.
금속염은, 통상, 전지의 전해액에 포함되는 LiClO4, LiAsF6, LiPF6, LiBF4, LiAlCl4, 등의 전해질로서 이용되는 화합물이면 좋다. 금속염의 양이온으로서는, 리튬, 나트륨, 칼륨 등의 알칼리 금속, 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨 등의 알칼리 토금속 및, 알루미늄을 들 수 있다. 금속염의 양이온은, 전해액을 사용하는 전지의 전하 담체와 동일한 금속 이온인 것이 바람직하다. 예를 들면, 본 발명의 전해액을 리튬 이온 2차 전지용의 전해액으로서 사용한다면, 금속염의 양이온은 리튬이 바람직하다.
염의 음이온의 화학 구조는, 할로겐, 붕소, 질소, 산소, 황 또는 탄소로부터 선택되는 적어도 1개의 원소를 포함하면 좋다. 할로겐 또는 붕소를 포함하는 음이온의 화학 구조를 구체적으로 예시하면, ClO4, PF6, AsF6, SbF6, TaF6, BF4, SiF6, B(C6H5)4, B(oxalate)2, Cl, Br, I를 들 수 있다.
질소, 산소, 황 또는 탄소를 포함하는 음이온의 화학 구조에 대해서, 이하, 구체적으로 설명한다.
염의 음이온의 화학 구조는, 하기 일반식 (1), 일반식 (2) 또는 일반식 (3)으로 나타나는 화학 구조가 바람직하다.
(R1X1)(R2X2)N             일반식 (1)
(R1은, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
R2는, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
또한, R1과 R2는, 서로 결합하여 환을 형성해도 좋다.
X1은, SO2, C=O, C=S, RaP=O, RbP=S, S=O, Si=O로부터 선택된다.
X2는, SO2, C=O, C=S, RcP=O, RdP=S, S=O, Si=O로부터 선택된다.
Ra, Rb, Rc, Rd는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
또한, Ra, Rb, Rc, Rd는, R1 또는 R2와 결합하여 환을 형성해도 좋다.)
R3X3Y             일반식 (2)
(R3은, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
X3은, SO2, C=O, C=S, ReP=O, RfP=S, S=O, Si=O로부터 선택된다.
Re, Rf는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
또한, Re, Rf는, R3과 결합하여 환을 형성해도 좋다.
Y는, O, S로부터 선택됨).
(R4X4)(R5X5)(R6X6)C             일반식 (3)
(R4는, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
R5는, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
R6은, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
또한, R4, R5, R6 중, 어느 2개 또는 3개가 결합하여 환을 형성해도 좋다.
X4는, SO2, C=O, C=S, RgP=O, RhP=S, S=O, Si=O로부터 선택된다.
X5는, SO2, C=O, C=S, RiP=O, RjP=S, S=O, Si=O로부터 선택된다.
X6은, SO2, C=O, C=S, RkP=O, RlP=S, S=O, Si=O로부터 선택된다.
Rg, Rh, Ri, Rj, Rk, Rl은, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
또한, Rg, Rh, Ri, Rj, Rk, Rl은, R4, R5 또는 R6과 결합하여 환을 형성해도 좋다.)
상기 일반식 (1)∼(3)으로 나타나는 화학 구조에 있어서의, 「치환기로 치환되어 있어도 좋다」라는 문언에 대해서 설명한다. 예를 들면 「치환기로 치환되어 있어도 좋은 알킬기」이면, 알킬기의 수소의 1개 또는 복수가 치환기로 치환되어 있는 알킬기, 또는, 특단의 치환기를 갖지 않는 알킬기를 의미한다.
「치환기로 치환되어 있어도 좋다」라는 문언에 있어서의 치환기로서는, 알킬기, 알케닐기, 알키닐기, 사이클로알킬기, 불포화 사이클로알킬기, 방향족기, 복소환기, 할로겐, OH, SH, CN, SCN, OCN, 니트로기, 알콕시기, 불포화 알콕시기, 아미노기, 알킬아미노기, 디알킬아미노기, 아릴옥시기, 아실기, 알콕시카보닐기, 아실옥시기, 아릴옥시카보닐기, 아실아미노기, 알콕시카보닐아미노기, 아릴옥시카보닐아미노기, 술포닐아미노기, 술파모일, 카르바모일기, 알킬티오기, 아릴티오기, 술포닐기, 술피닐기, 우레이도기, 인산 아미드기, 술포기, 카복실기, 하이드록삼산기, 술피노기, 하이드라지노기, 이미노기, 실릴기 등을 들 수 있다. 이들 치환기는 더욱 치환되어도 좋다. 또한 치환기가 2개 이상 있는 경우, 치환기는 동일해도 상이해도 좋다.
염의 음이온의 화학 구조는, 하기 일반식 (4), 일반식 (5) 또는 일반식 (6)으로 나타나는 화학 구조가 보다 바람직하다.
(R7X7)(R8X8)N      일반식 (4)
(R7, R8은, 각각 독립적으로, CnHaFbClcBrdIe(CN)f(SCN)g(OCN)h이다.
n, a, b, c, d, e, f, g, h는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e+f+g+h를 충족한다.
또한, R7과 R8은, 서로 결합하여 환을 형성해도 좋고, 그 경우는, 2n=a+b+c+d+e+f+g+h를 충족한다.
X7은, SO2, C=O, C=S, RmP=O, RnP=S, S=O, Si=O로부터 선택된다.
X8은, SO2, C=O, C=S, RoP=O, RpP=S, S=O, Si=O로부터 선택된다.
Rm, Rn, Ro, Rp는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
또한, Rm, Rn, Ro, Rp는, R7 또는 R8과 결합하여 환을 형성해도 좋다.)
R9X9Y             일반식 (5)
(R9는, CnHaFbClcBrdIe(CN)f(SCN)g(OCN)h이다.
n, a, b, c, d, e, f, g, h는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e+f+g+h를 충족한다.
X9는, SO2, C=O, C=S, RqP=O, RrP=S, S=O, Si=O로부터 선택된다.
Rq, Rr은, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
또한, Rq, Rr은, R9와 결합하여 환을 형성해도 좋다.
Y는, O, S로부터 선택된다.)
(R10X10)(R11X11)(R12X12)C         일반식 (6)
(R10, R11, R12는, 각각 독립적으로, CnHaFbClcBrdIe(CN)f(SCN)g(OCN)h이다.
n, a, b, c, d, e, f, g, h는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e+f+g+h를 충족한다.
R10, R11, R12 중 어느 2개가 결합하여 환을 형성해도 좋고, 그 경우, 환을 형성하는 기는 2n=a+b+c+d+e+f+g+h를 충족한다. 또한, R10, R11, R12의 3개가 결합하여 환을 형성해도 좋고, 그 경우, 3개 중 2개의 기(基)가 2n=a+b+c+d+e+f+g+h를 충족하고, 1개의 기가 2n-1=a+b+c+d+e+f+g+h를 충족한다.
X10은, SO2, C=O, C=S, RsP=O, RtP=S, S=O, Si=O로부터 선택된다.
X11은, SO2, C=O, C=S, RuP=O, RvP=S, S=O, Si=O로부터 선택된다.
X12는, SO2, C=O, C=S, RwP=O, RxP=S, S=O, Si=O로부터 선택된다.
Rs, Rt, Ru, Rv, Rw, Rx는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
또한, Rs, Rt, Ru, Rv, Rw, Rx는, R10, R11 또는 R12와 결합하여 환을 형성해도 좋다.)
상기 일반식 (4)∼(6)으로 나타나는 화학 구조에 있어서의, 「치환기로 치환되어 있어도 좋다」라는 문언의 의미는, 상기 일반식 (1)∼(3)에서 설명한 것과 동일한 의미이다.
상기 일반식 (4)∼(6)으로 나타나는 화학 구조에 있어서, n은 0∼6의 정수가 바람직하고, 0∼4의 정수가 보다 바람직하고, 0∼2의 정수가 특히 바람직하다. 또한, 상기 일반식 (4)∼(6)으로 나타나는 화학 구조의, R7과 R8이 결합, 또는, R10, R11, R12가 결합하여 환을 형성하고 있는 경우에는, n은 1∼8의 정수가 바람직하고, 1∼7의 정수가 보다 바람직하고, 1∼3의 정수가 특히 바람직하다.
염의 음이온의 화학 구조는, 하기 일반식 (7), 일반식 (8) 또는 일반식 (9)로 나타나는 것이 더욱 바람직하다.
(R13SO2)(R14SO2)N          일반식 (7)
(R13, R14는, 각각 독립적으로, CnHaFbClcBrdIe이다.
n, a, b, c, d, e는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e를 충족한다.
또한, R13과 R14는, 서로 결합하여 환을 형성해도 좋고, 그 경우는, 2n=a+b+c+d+e를 충족한다)
R15SO3             일반식 (8)
(R15는, CnHaFbClcBrdIe이다.
 n, a, b, c, d, e는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e를 충족한다.)
(R16SO2)(R17SO2)(R18SO2)C        일반식 (9)
(R16, R17, R18은, 각각 독립적으로, CnHaFbClcBrdIe이다.
n, a, b, c, d, e는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e를 충족한다.
R16, R17, R18 중 어느 2개가 결합하여 환을 형성해도 좋고, 그 경우, 환을 형성하는 기는 2n=a+b+c+d+e를 충족한다. 또한, R16, R17, R18의 3개가 결합하여 환을 형성해도 좋고, 그 경우, 3개 중 2개의 기가 2n=a+b+c+d+e를 충족하고, 1개의 기가 2n-1=a+b+c+d+e를 충족한다.)
상기 일반식 (7)∼(9)로 나타나는 화학 구조에 있어서, n은 0∼6의 정수가 바람직하고, 0∼4의 정수가 보다 바람직하고, 0∼2의 정수가 특히 바람직하다. 또한, 상기 일반식 (7)∼(9)로 나타나는 화학 구조의, R13과 R14가 결합, 또는, R16, R17, R18이 결합하여 환을 형성하고 있는 경우에는, n은 1∼8의 정수가 바람직하고, 1∼7의 정수가 보다 바람직하고, 1∼3의 정수가 특히 바람직하다.
또한, 상기 일반식 (7)∼(9)로 나타나는 화학 구조에 있어서, a, c, d, e가 0인 것이 바람직하다.
금속염은, (CF3SO2)2NLi(이하, 「LiTFSA」라고 하는 경우가 있음), (FSO2)2 NLi(이하, 「LiFSA」라고 하는 경우가 있음), (C2F5SO2)2NLi, FSO2(CF3SO2)NLi, (SO2CF2CF2SO2)NLi, (SO2CF2CF2CF2SO2)NLi, FSO2(CH3SO2)NLi, FSO2(C2F5SO2)NLi, 또는 FSO2(C2H5SO2)NLi가 특히 바람직하다.
본 발명의 금속염은, 이상에서 설명한 양이온과 음이온을 각각 적절한 수로 조합한 것을 채용하면 좋다. 본 발명의 전해액에 있어서의 금속염은 1종류를 채용해도 좋고, 복수종을 병용해도 좋다.
헤테로 원소를 갖는 유기 용매로서는, 헤테로 원소가 질소, 산소, 황, 할로겐으로부터 선택되는 적어도 1개인 유기 용매가 바람직하고, 헤테로 원소가 질소 또는 산소로부터 선택되는 적어도 1개인 유기 용매가 보다 바람직하다. 또한, 헤테로 원소를 갖는 유기 용매로서는, NH기, NH2기, OH기, SH기 등의 프로톤 공여기를 갖지 않는, 비프로톤성 용매가 바람직하다.
헤테로 원소를 갖는 유기 용매(이하, 단순히 「유기 용매」라고 하는 경우가 있음)를 구체적으로 예시하면, 아세토니트릴, 프로피오니트릴, 아크릴로니트릴, 말로노니트릴 등의 니트릴류, 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라하이드로푸란, 1,2-디옥산, 1,3-디옥산, 1,4-디옥산, 2,2-디메틸-1,3-디옥솔란, 2-메틸테트라하이드로피란, 2-메틸테트라하이드로푸란, 크라운에테르 등의 에테르류, 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트 등의 카보네이트류, 포름아미드, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 아미드류, 이소프로필이소시아네이트, n-프로필이소시아네이트, 클로로메틸이소시아네이트 등의 이소시아네이트류, 아세트산 메틸, 아세트산 에틸, 아세트산 프로필, 프로피온산 메틸, 포름산 메틸, 포름산 에틸, 아세트산 비닐, 메틸아크릴레이트, 메틸메타크릴레이트 등의 에스테르류, 글리시딜메틸에테르, 에폭시부탄, 2-에틸옥시란 등의 에폭시류, 옥사졸, 2-에틸옥사졸, 옥사졸린, 2-메틸-2-옥사졸린 등의 옥사졸류, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류, 무수 아세트산, 무수 프로피온산 등의 산 무수물, 디메틸술폰, 술포란 등의 술폰류, 디메틸술폭사이드 등의 술폭사이드류, 1-니트로프로판, 2-니트로프로판 등의 니트로류, 푸란, 푸르푸랄 등의 푸란류, γ-부티로락톤, γ-발레로락톤, δ-발레로락톤 등의 환상 에스테르류, 티오펜, 피리딘 등의 방향족 복소환류, 테트라하이드로-4-피론, 1-메틸피롤리딘, N-메틸모르폴린 등의 복소환류, 인산 트리메틸, 인산 트리에틸 등의 인산 에스테르류를 들 수 있다.
유기 용매로서, 하기 일반식 (10)으로 나타나는 쇄상 카보네이트를 들 수 있다.
R19OCOOR20                일반식 (10)
(R19, R20은, 각각 독립적으로, 쇄상 알킬인 CnHaFbClcBrdIe, 또는, 환상 알킬을 화학 구조에 포함하는 CmHfFgClhBriIj 중 어느 것으로부터 선택된다. n, a, b, c, d, e, m, f, g, h, i, j는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e, 2 m=f+g+h+i+j를 충족한다.)
상기 일반식 (10)으로 나타나는 쇄상 카보네이트에 있어서, n은 1∼6의 정수가 바람직하고, 1∼4의 정수가 보다 바람직하고, 1∼2의 정수가 특히 바람직하다. m은 3∼8의 정수가 바람직하고, 4∼7의 정수가 보다 바람직하고, 5∼6의 정수가 특히 바람직하다. 또한, 상기 일반식 (10)으로 나타나는 쇄상 카보네이트 중, 디메틸카보네이트(이하, 「DMC」라고 하는 경우가 있음), 디에틸카보네이트(이하, 「DEC」라고 하는 경우가 있음), 에틸메틸카보네이트(이하, 「EMC」라고 하는 경우가 있음)가 특히 바람직하다.
유기 용매로서는, 비유전율이 20 이상 또는 도너성의 에테르 산소를 갖는 용매가 바람직하고, 그러한 유기 용매로서, 아세토니트릴, 프로피오니트릴, 아크릴로니트릴, 말론니트릴 등의 니트릴류, 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라 하이드로푸란, 1,2-디옥산, 1,3-디옥산, 1,4-디옥산, 2,2-디메틸-1,3-디옥솔란, 2-메틸테트라하이드로피란, 2-메틸테트라하이드로푸란, 크라운에테르 등의 에테르류, N,N-디메틸포름아미드, 아세톤, 디메틸술폭사이드, 술포란을 들 수 있고, 특히, 아세토니트릴(이하, 「AN」이라고 하는 경우가 있음), 1,2-디메톡시에탄(이하, 「DME」라고 하는 경우가 있음)이 바람직하다.
이들 유기 용매는 단독으로 전해액에 이용해도 좋고, 복수를 병용해도 좋다.
본 발명의 전해액은, 그 진동 분광 스펙트럼에 있어서, 전해액에 포함되는 유기 용매 유래의 피크 강도에 대해, 유기 용매 본래의 피크의 강도를 Io로 하고, 유기 용매 본래의 피크가 시프트한 피크(이하, 「시프트 피크」라고 하는 경우가 있음)의 강도를 Is로 한 경우, Is>Io인 것을 특징으로 한다. 즉, 본 발명의 전해액을 진동 분광 측정에 제공하여 얻어지는 진동 분광 스펙트럼 차트에 있어서, 상기 2개의 피크 강도의 관계는 Is>Io가 된다.
여기에서, 「유기 용매 본래의 피크」란, 유기 용매만을 진동 분광 측정한 경우의 피크 위치(파수)에, 관찰되는 피크를 의미한다. 유기 용매 본래의 피크의 강도 Io의 값과, 시프트 피크의 강도 Is의 값은, 진동 분광 스펙트럼에 있어서의 각 피크의 베이스 라인으로부터의 높이 또는 면적이다.
본 발명의 전해액의 진동 분광 스펙트럼에 있어서, 유기 용매 본래의 피크가 시프트한 피크가 복수 존재하는 경우에는, 가장 Is와 Io의 관계를 판단하기 쉬운 피크에 기초하여 당해 관계를 판단하면 좋다. 또한, 본 발명의 전해액에 헤테로 원소를 갖는 유기 용매를 복수종 이용한 경우에는, 가장 Is와 Io의 관계를 판단하기 쉬운(가장 Is와 Io의 차이가 현저한) 유기 용매를 선택하고, 그 피크 강도에 기초하여 Is와 Io의 관계를 판단하면 좋다. 또한, 피크의 시프트량이 작아, 시프트 전후의 피크가 겹쳐 완만한 산과 같이 보이는 경우는, 기지의 수단을 이용하여 피크 분리를 행하여, Is와 Io의 관계를 판단해도 좋다.
또한, 헤테로 원소를 갖는 유기 용매를 복수종 이용한 전해액의 진동 분광 스펙트럼에 있어서는, 양이온과 가장 배위(配位)하기 쉬운 유기 용매(이하, 「우선 배위 용매」라고 하는 경우가 있음)의 피크가 다른 곳에 우선하여 시프트한다. 헤테로 원소를 갖는 유기 용매를 복수종 이용한 전해액에 있어서, 헤테로 원소를 갖는 유기 용매 전체에 대한 우선 배위 용매의 질량%는, 40% 이상이 바람직하고, 50% 이상이 보다 바람직하고, 60% 이상이 더욱 바람직하고, 80% 이상이 특히 바람직하다. 또한, 헤테로 원소를 갖는 유기 용매를 복수종 이용한 전해액에 있어서, 헤테로 원소를 갖는 유기 용매 전체에 대한 우선 배위 용매의 체적%는, 40% 이상이 바람직하고, 50% 이상이 보다 바람직하고, 60% 이상이 더욱 바람직하고, 80% 이상이 특히 바람직하다.
본 발명의 전해액의 진동 분광 스펙트럼에 있어서의 상기 2개의 피크 강도의 관계는, Is>2×Io의 조건을 충족하는 것이 바람직하고, Is>3×Io의 조건을 충족하는 것이 보다 바람직하고, Is>5×Io의 조건을 충족하는 것이 더욱 바람직하고, Is>7×Io의 조건을 충족하는 것이 특히 바람직하다. 가장 바람직한 것은, 본 발명의 전해액의 진동 분광 스펙트럼에 있어서, 유기 용매 본래의 피크의 강도 Io가 관찰되지 않고, 시프트 피크의 강도 Is가 관찰되는 전해액이다. 당해 전해액에 있어서는, 전해액에 포함되는 유기 용매의 분자 전부가 금속염과 완전하게 용매화(溶媒和)하고 있는 것을 의미한다. 본 발명의 전해액은, 전해액에 포함되는 유기 용매의 분자 전부가 금속염과 완전하게 용매화되어 있는 상태(Io=0 상태)가 가장 바람직하다.
본 발명의 전해액에 있어서는, 금속염과, 헤테로 원소를 갖는 유기 용매(또는 우선 배위 용매)가, 상호 작용을 미치고 있다고 추정된다. 구체적으로는, 금속염과, 헤테로 원소를 갖는 유기 용매(또는 우선 배위 용매)의 헤테로 원소가, 배위 결합을 형성하여, 금속염과 헤테로 원소를 갖는 유기 용매(또는 우선 배위 용매)로 이루어지는 안정적인 클러스터를 형성하고 있다고 추정된다. 이 클러스터는, 후술하는 평가예의 결과로부터 보아, 대체로, 금속염 1분자에 대하여, 헤테로 원소를 갖는 유기 용매(또는 우선 배위 용매) 2분자가 배위함으로써 형성되어 있다고 추정된다. 이 점을 고려하면, 본 발명의 전해액에 있어서의, 금속염 1몰에 대한 헤테로 원소를 갖는 유기 용매(또는 우선 배위 용매)의 몰 범위는, 1.4몰 이상 3.5몰 미만이 바람직하고, 1.5몰 이상 3.1몰 이하가 보다 바람직하고, 1.6몰 이상 3몰 이하가 더욱 바람직하다.
본 발명의 전해액에 있어서는, 대체로, 금속염 1분자에 대하여, 헤테로 원소를 갖는 유기 용매(또는 우선 배위 용매) 2분자가 배위함으로써 클러스터가 형성되어 있다고 추정되기 때문에, 본 발명의 전해액의 농도(㏖/L)는, 금속염 및 유기 용매 각각의 분자량과, 용액으로 한 경우의 밀도에 의존한다. 그 때문에, 본 발명의 전해액의 농도를 일률적으로 규정하는 것은 적당하지 않다.
본 발명의 전해액의 농도 c(㏖/L)를 표 1에 개별적으로 예시한다.
Figure pct00001
클러스터를 형성하고 있는 유기 용매와, 클러스터의 형성에 관여하고 있지 않은 유기 용매는, 각각의 존재 환경이 상이하다. 그 때문에, 진동 분광 측정에 있어서, 클러스터를 형성하고 있는 유기 용매 유래의 피크는, 클러스터의 형성에 관여하고 있지 않은 유기 용매 유래의 피크(유기 용매 본래의 피크)의 관찰되는 파수로부터, 고파수(high wave number)측 또는 저파수(low wave number)측에 시프트하여 관찰된다. 즉, 시프트 피크는, 클러스터를 형성하고 있는 유기 용매의 피크에 상당한다.
진동 분광 스펙트럼으로서는, IR 스펙트럼 또는 라만 스펙트럼을 들 수 있다. IR 측정의 측정 방법으로서는, 누졸법(Nujol mull method), 액막법(liquid film method) 등의 투과 측정 방법, ATR법 등의 반사 측정 방법을 들 수 있다. IR 스펙트럼 또는 라만 스펙트럼 중 어느 것을 선택할지에 대해서는, 본 발명의 전해액의 진동 분광 스펙트럼에 있어서, Is와 Io의 관계를 판단하기 쉬운 스펙트럼의 쪽을 선택하면 좋다. 또한, 진동 분광 측정은, 대기 중의 수분의 영향을 경감 또는 무시할 수 있는 조건으로 행하는 것이 좋다. 예를 들면, 드라이 룸, 글로브 박스 등의 저습도 또는 무습도 조건하에서 IR 측정을 행하는 것, 또는, 전해액을 밀폐 용기에 넣은 채의 상태에서 라만 측정을 행하는 것이 좋다.
여기에서, 금속염으로서 LiTFSA, 유기 용매로서 아세토니트릴을 포함하는 본 발명의 전해액에 있어서의 피크에 대해, 구체적으로 설명한다.
아세토니트릴만을 IR 측정한 경우, C 및 N 간의 삼중 결합의 신축 진동(stretching vibration)에 유래되는 피크가 통상 2100∼2400㎝-1 부근에 관찰된다.
여기에서, 종래의 기술 상식에 따라, 아세토니트릴 용매에 대하여 LiTFSA를 1㏖/L의 농도로 용해하여 전해액으로 한 경우를 상정한다. 아세토니트릴 1L는 약 19㏖에 해당하기 때문에, 종래의 전해액 1L에는, 1㏖의 LiTFSA와 19㏖의 아세토니트릴이 존재한다. 그러면, 종래의 전해액에 있어서는, LiTFSA와 용매화되어 있는(Li에 배위하고 있음) 아세토니트릴과 동시에, LiTFSA와 용매화되어 있지 않은(Li에 배위하고 있지 않음) 아세토니트릴이 다수 존재한다. 그런데, LiTFSA와 용매화되어 있는 아세토니트릴 분자와, LiTFSA와 용매화되어 있지 않은 아세토니트릴 분자는, 아세토니트릴 분자가 놓여져 있는 환경이 상이하기 때문에, IR 스펙트럼에 있어서는, 양자의 아세토니트릴 피크가 구별하여 관찰된다. 보다 구체적으로는, LiTFSA와 용매화되어 있지 않은 아세토니트릴의 피크는, 아세토니트릴만을 IR 측정한 경우와 동일한 위치(파수)에 관찰되지만, 다른 한편, LiTFSA와 용매화되어 있는 아세토니트릴의 피크는, 피크 위치(파수)가 고파수측에 시프트하여 관찰된다.
그리고, 종래의 전해액의 농도에 있어서는, LiTFSA와 용매화되어 있지 않은 아세토니트릴이 다수 존재하는 것이기 때문에, 종래의 전해액의 진동 분광 스펙트럼에 있어서, 아세토니트릴 본래의 피크의 강도 Io와, 아세토니트릴 본래의 피크가 시프트한 피크의 강도 Is와의 관계는, Is<Io가 된다.
다른 한편, 본 발명의 전해액은 종래의 전해액과 비교하여 LiTFSA의 농도가 높고, 또한, 전해액에 있어서 LiTFSA와 용매화되어 있는(클러스터를 형성하고 있음) 아세토니트릴 분자의 수가, LiTFSA와 용매화되어 있지 않은 아세토니트릴 분자의 수보다도 많다. 그러면, 본 발명의 전해액의 진동 분광 스펙트럼에 있어서의, 아세토니트릴 본래의 피크의 강도 Io와, 아세토니트릴 본래의 피크가 시프트한 피크의 강도 Is와의 관계는, Is>Io가 된다.
표 2에, 본 발명의 전해액의 진동 분광 스펙트럼에 있어서, Io 및 Is의 산출에 유용하다고 생각되는 유기 용매의 파수와, 그 귀속을 예시한다. 또한, 진동 분광 스펙트럼의 측정 장치, 측정 환경, 측정 조건에 의해, 관찰되는 피크의 파수가 이하의 파수와 상이한 경우가 있는 것을 덧붙여 둔다.
Figure pct00002
유기 용매의 파수와 그 귀속에 대해, 공지의 데이터를 참고로 해도 좋다. 참고 문헌으로서, 일본 분광학회 측정법 시리즈 17 라만 분광법, 하마구치 히로오, 히라카와 아키코, 학회 출판 센터, 231∼249페이지를 들 수 있다. 또한, 컴퓨터를 이용한 계산에서도, Io 및 Is의 산출에 유용하다고 생각되는 유기 용매의 파수와, 유기 용매와 금속염이 배위한 경우의 파수 시프트를 예측할 수 있다. 예를 들면, Gaussian09(등록상표, 가우시안사)를 이용하여, 밀도 범함수를 B3LYP, 기저 함수를 6-311G++(d,p)로 하여 계산하면 좋다. 당업자는, 표 2의 기재, 공지의 데이터, 컴퓨터에서의 계산 결과를 참고로 하여, 유기 용매의 피크를 선정하고, Io 및 Is를 산출할 수 있다.
본 발명의 전해액은, 종래의 전해액과 비교하여, 금속염과 유기 용매의 존재 환경이 상이하고, 또한, 금속염 농도가 높기 때문에, 전해액 중의 금속 이온 수송 속도의 향상(특히, 금속이 리튬인 경우, 리튬 수율의 향상), 전극과 전해액 계면의 반응 속도의 향상, 전지의 하이레이트(high rate) 충방전시에 일어나는 전해액의 염 농도의 편재의 완화, 전기 이중층 용량의 증대 등을 기대할 수 있다. 또한, 본 발명의 전해액에 있어서는, 헤테로 원소를 갖는 유기 용매의 대부분이 금속염과 클러스터를 형성하고 있는 점에서, 전해액에 포함되는 유기 용매의 증기압이 낮아진다. 그 결과로서, 본 발명의 전해액으로부터의 유기 용매의 휘발을 저감할 수 있다.
본 발명의 전해액은, 종래의 전지의 전해액과 비교하여, 점도가 높다. 그 때문에, 본 발명의 전해액을 이용한 전지이면, 가령 전지가 파손됐다고 해도, 전해액 누출이 억제된다. 또한, 종래의 전해액을 이용한 리튬 이온 2차 전지는, 고속 충방전 사이클시에 용량 감소가 현저했다. 그 이유의 하나로서, 급속하게 충방전을 반복했을 때의 전해액 중에 발생한 Li 농도 불균일에 의해, 전극과의 반응 계면에 충분한 양의 Li를 전해액이 공급할 수 없게 된 점, 즉, 전해액의 Li 농도의 편재가 생각된다. 그러나, 본 발명의 전해액을 이용한 2차 전지는, 고속 충방전시에 용량이 적합하게 유지되는 것이 분명해졌다. 본 발명의 전해액의 고점도와의 물성에 의해, 전해액의 Li 농도의 편재를 억제할 수 있던 것이 이유라고 생각된다. 또한, 본 발명의 전해액의 고점도와의 물성에 의해, 전극 계면에 있어서의 전해액의 보액성이 향상되어, 전극 계면에서 전해액이 부족해지는 상태(소위 액 마름 상태)를 억제하는 것도, 고속 충방전 사이클시의 용량 저하가 억제된 한 요인이라고 생각된다.
본 발명의 전해액의 점도 η(mPa·s)에 대해서 서술하면, 10<η<500의 범위가 바람직하고, 12<η<400의 범위가 보다 바람직하고, 15<η<300의 범위가 더욱 바람직하고, 18<η<150의 범위가 특히 바람직하고, 20<η<140의 범위가 가장 바람직하다.
전해액의 이온 전도도 σ(mS/㎝)는 높으면 높을수록, 전해액 중에서 이온이 이동하기 쉽다. 이 때문에, 이러한 전해액은 우수한 전지의 전해액이 될 수 있다. 본 발명의 전해액의 이온 전도도 σ(mS/㎝)에 대해서 서술하면, 1≤σ인 것이 바람직하다. 본 발명의 전해액의 이온 전도도 σ(mS/㎝)에 대해, 굳이, 상한을 포함한 적합한 범위를 나타내면, 2<σ<200의 범위가 바람직하고, 3<σ<100의 범위가 보다 바람직하고, 4<σ<50의 범위가 더욱 바람직하고, 5<σ<35의 범위가 특히 바람직하다.
그런데, 본 발명의 전해액은 금속염의 양이온을 고농도로 함유한다. 이 때문에, 본 발명의 전해액 중에 있어서, 서로 이웃하는 양이온 간의 거리는 매우 가깝다. 그리고, 2차 전지의 충방전시에 리튬 이온 등의 양이온이 정극과 부극과의 사이를 이동할 때에는, 이동처의 전극에 가장 가까운 양이온이 먼저 당해 전극에 공급된다. 그리고, 공급된 당해 양이온이 있던 장소에는, 당해 양이온에 서로 이웃하는 다른 양이온이 이동한다. 즉, 본 발명의 전해액 중에 있어서는, 서로 이웃하는 양이온이 공급 대상이 되는 전극을 향하여 순서대로 1개씩 위치를 바꾼다는, 도미노 쓰러뜨림과 같은 현상이 발생하고 있다고 예상된다. 이 때문에, 충방전시의 양이온의 이동 거리는 짧고, 그 분만큼 양이온의 이동 속도가 높다고 생각된다. 그리고, 이점에 기인하여, 본 발명의 전해액을 갖는 2차 전지의 반응 속도는 높다고 생각된다.
본 발명의 전해액에 있어서의 밀도 d(g/㎤)는, 바람직하게는 d≥1.2 또는 d≤2.2이고, 1.2≤d≤2.2의 범위 내가 보다 바람직하고, 1.24≤d≤2.0의 범위 내가 보다 바람직하고, 1.26≤d≤1.8의 범위 내가 더욱 바람직하고, 1.27≤d≤1.6의 범위 내가 특히 바람직하다. 또한, 본 발명의 전해액에 있어서의 밀도 d(g/㎤)는, 20℃에서의 밀도를 의미한다.
본 발명의 전해액에 있어서의 전해액의 밀도 d(g/㎤)를 전해액의 농도 c(㏖/L)로 나눈 d/c는, 0.15≤d/c≤0.71의 범위 내가 바람직하고, 0.15≤d/c≤0.56의 범위 내가 바람직하고, 0.25≤d/c≤0.56의 범위 내가 보다 바람직하고, 0.26≤d/c≤0.50의 범위 내가 더욱 바람직하고, 0.27≤d/c≤0.47의 범위 내가 특히 바람직하다.
본 발명의 전해액에 있어서의 d/c는, 금속염과 유기 용매를 특정한 경우라도 규정할 수 있다. 예를 들면, 금속염으로서 LiTFSA, 유기 용매로서 DME를 선택한 경우에는, d/c는 0.42≤d/c≤0.56의 범위 내가 바람직하고, 0.44≤d/c≤0.52의 범위 내가 보다 바람직하다. 금속염으로서 LiTFSA, 유기 용매로서 AN을 선택한 경우에는, d/c는 0.35≤d/c≤0.41의 범위 내가 바람직하고, 0.36≤d/c≤0.39의 범위 내가 보다 바람직하다. 금속염으로서 LiFSA, 유기 용매로서 DME를 선택한 경우에는, d/c는 0.32≤d/c≤0.46의 범위 내가 바람직하고, 0.34≤d/c≤0.42의 범위 내가 보다 바람직하다. 금속염으로서 LiFSA, 유기 용매로서 AN을 선택한 경우에는, d/c는 0.25≤d/c≤0.31의 범위 내가 바람직하고, 0.26≤d/c≤0.29의 범위 내가 보다 바람직하다. 금속염으로서 LiFSA, 유기 용매로서 DMC를 선택한 경우에는, d/c는 0.32≤d/c≤0.48의 범위 내가 바람직하고, 0.32≤d/c≤0.46의 범위 내가 바람직하고, 0.34≤d/c≤0.42의 범위 내가 보다 바람직하다. 금속염으로서 LiFSA, 유기 용매로서 EMC를 선택한 경우에는, d/c는 0.34≤d/c≤0.50의 범위 내가 바람직하고, 0.37≤d/c≤0.45의 범위 내가 보다 바람직하다. 금속염으로서 LiFSA, 유기 용매로서 DEC를 선택한 경우에는, d/c는 0.36≤d/c≤0.54의 범위 내가 바람직하고, 0.39≤d/c≤0.48의 범위 내가 보다 바람직하다.
본 발명의 전해액의 제조 방법을 설명한다. 본 발명의 전해액은 종래의 전해액과 비교하여 금속염의 함유량이 많기 때문에, 고체(분체)의 금속염에 유기 용매를 더하는 제조 방법에서는 응집체가 얻어져 버려, 용액 상태의 전해액을 제조하는 것이 곤란하다. 따라서, 본 발명의 전해액의 제조 방법에 있어서는, 유기 용매에 대하여 금속염을 서서히 더하고, 또한, 전해액의 용액 상태를 유지하면서 제조하는 것이 바람직하다.
금속염과 유기 용매의 종류에 의해, 본 발명의 전해액은, 종래 생각되어 온 포화 용해도를 초과하여 금속염이 유기 용매에 용해되고 있는 액체를 포함한다. 그러한 본 발명의 전해액의 제조 방법은, 헤테로 원소를 갖는 유기 용매와 금속염을 혼합하고, 금속염을 용해하여, 제1 전해액을 조제하는 제1 용해 공정과, 교반 및/또는 가온 조건하, 제1 전해액에 금속염을 더하고, 금속염을 용해하여, 과포화 상태의 제2 전해액을 조제하는 제2 용해 공정과, 교반 및/또는 가온 조건하, 제2 전해액에 금속염을 더하고, 금속염을 용해하여, 제3 전해액을 조제하는 제3 용해 공정을 포함한다.
여기에서, 상기 「과포화 상태」란, 교반 및/또는 가온 조건을 해제한 경우, 또는, 진동 등의 결정핵 생성 에너지를 부여한 경우에, 전해액으로부터 금속염 결정이 석출되는 상태의 것을 의미한다. 제2 전해액은 「과포화 상태」이고, 제1 전해액 및 제3 전해액은 「과포화 상태」가 아니다.
환언하면, 본 발명의 전해액의 상기 제조 방법은, 열역학적으로 안정적인 액체 상태로서 종래의 금속염 농도를 포함하는 제1 전해액을 거쳐, 열역학적으로 불안정한 액체 상태의 제2 전해액을 경유하고, 그리고, 열역학적으로 안정적인 새로운 액체 상태의 제3 전해액, 즉 본 발명의 전해액이 된다.
안정적인 액체 상태의 제3 전해액은 통상의 조건으로 액체 상태를 유지하는 점에서, 제3 전해액에 있어서는, 예를 들면, 리튬염 1분자에 대하여 유기 용매 2분자로 구성되고 이들 분자 간의 강한 배위 결합에 의해 안정화된 클러스터가 리튬염의 결정화를 저해하고 있다고 추정된다.
제1 용해 공정은, 헤테로 원자를 갖는 유기 용매와 금속염을 혼합하고, 금속염을 용해하여, 제1 전해액을 조제하는 공정이다.
헤테로 원자를 갖는 유기 용매와 금속염을 혼합하기 위해서는, 헤테로 원자를 갖는 유기 용매에 대하여 금속염을 더해도 좋고, 금속염에 대하여 헤테로 원자를 갖는 유기 용매를 더해도 좋다.
제1 용해 공정은, 교반 및/또는 가온 조건하에서 행해지는 것이 바람직하다. 교반 속도에 대해서는 적절하게 설정하면 좋다. 가온 조건에 대해서는, 워터 배스 (water bath)또는 오일 배스(oil bath) 등의 항온조에서 적절하게 제어하는 것이 바람직하다. 금속염의 용해시에는 용해열이 발생하기 때문에, 열에 불안정한 금속염을 이용하는 경우에는, 온도 조건을 엄밀하게 제어하는 것이 바람직하다. 또한, 미리, 유기 용매를 냉각해 두어도 좋고, 제1 용해 공정을 냉각 조건하에서 행해도 좋다.
제1 용해 공정과 제2 용해 공정은 연속하여 실시해도 좋고, 제1 용해 공정에서 얻은 제1 전해액을 일단 보관(정치)해 두고, 일정 시간 경과한 후에, 제2 용해 공정을 실시해도 좋다.
제2 용해 공정은, 교반 및/또는 가온 조건하, 제1 전해액에 금속염을 더하고, 금속염을 용해하여, 과포화 상태의 제2 전해액을 조제하는 공정이다.
제2 용해 공정은, 열역학적으로 불안정한 과포화 상태의 제2 전해액을 조제하기 때문에, 교반 및/또는 가온 조건하에서 행하는 것이 필수이다. 믹서 등의 교반기를 수반한 교반 장치로 제2 용해 공정을 행함으로써, 교반 조건하로 해도 좋고, 교반자와 교반자를 동작시키는 장치(스터러(stirrer))를 이용하여 제2 용해 공정을 행함으로써, 교반 조건하로 해도 좋다. 가온 조건에 대해서는, 워터 배스 또는 오일 배스 등의 항온조에서 적절하게 제어하는 것이 바람직하다. 물론, 교반 기능과 가온 기능을 겸비하는 장치 또는 시스템을 이용하여 제2 용해 공정을 행하는 것이 특히 바람직하다. 또한, 전해액의 제조 방법에서 말하는 가온이란, 대상물을 상온(25℃) 이상의 온도로 따뜻하게 하는 것을 가리킨다. 가온 온도는 30℃ 이상인 것이 보다 바람직하고, 35℃ 이상인 것이 더욱 바람직하다. 또한, 가온 온도는, 유기 용매의 비점보다도 낮은 온도인 것이 좋다.
제2 용해 공정에 있어서, 더한 금속염이 충분히 용해되지 않는 경우에는, 교반 속도의 증가 및/또는 더 한층의 가온을 실시한다. 이 경우에는, 제2 용해 공정의 전해액에 헤테로 원자를 갖는 유기 용매를 소량 더해도 좋다.
제2 용해 공정에서 얻은 제2 전해액을 일단 정치하면 금속염의 결정이 석출되어 버리기 때문에, 제2 용해 공정과 제3 용해 공정은 연속하여 실시하는 것이 바람직하다.
제3 용해 공정은, 교반 및/또는 가온 조건하, 제2 전해액에 금속염을 더하고, 금속염을 용해하여, 제3 전해액을 조제하는 공정이다. 제3 용해 공정에서는, 과포화 상태의 제2 전해액에 금속염을 더하여, 용해할 필요가 있기 때문에, 제2 용해 공정과 동일하게 교반 및/또는 가온 조건하에서 행하는 것이 필수이다. 구체적인 교반 및/또는 가온 조건은, 제2 용해 공정의 조건과 동일하다.
제1 용해 공정, 제2 용해 공정 및 제3 용해 공정을 통하여 더한 유기 용매와 금속염과의 몰비가 대체로 2:1 정도가 되면, 제3 전해액(본 발명의 전해액)의 제조가 종료된다. 교반 및/또는 가온 조건을 해제해도, 본 발명의 전해액으로부터 금속염 결정은 석출되지 않는다. 이들 사정으로부터 보아, 본 발명의 전해액은, 예를 들면, 리튬염 1분자에 대하여 유기 용매 2분자로 이루어지고, 이들 분자 간의 강한 배위 결합에 의해 안정화된 클러스터를 형성하고 있다고 추정된다.
또한, 본 발명의 전해액을 제조함에 있어서, 금속염과 유기 용매의 종류에 의해, 각 용해 공정에서의 처리 온도에 있어서, 상기 과포화 상태를 경유하지 않는 경우라도, 상기 제1∼3 용해 공정에서 서술한 구체적인 용해 수단을 이용하여 본 발명의 전해액을 적절하게 제조할 수 있다.
또한, 본 발명의 전해액의 제조 방법에 있어서는, 제조 도중의 전해액을 진동 분광 측정하는 진동 분광 측정 공정을 갖는 것이 바람직하다. 구체적인 진동 분광 측정 공정으로서는, 예를 들면, 제조 도중의 각 전해액을 일부 샘플링하여 진동 분광 측정에 제공하는 방법이라도 좋고, 각 전해액을 in situ(그 자리)에서 진동 분광 측정하는 방법이라도 좋다. 전해액을 in situ에서 진동 분광 측정하는 방법으로서는, 투명한 플로우 셀에 제조 도중의 전해액을 도입하여 진동 분광 측정하는 방법, 또는, 투명한 제조 용기를 이용하여 당해 용기 밖으로부터 라만 측정하는 방법을 들 수 있다. 본 발명의 전해액의 제조 방법에 진동 분광 측정 공정을 포함함으로써, 전해액에 있어서의 Is와 Io와의 관계를 제조 도중에서 확인할 수 있기 때문에, 제조 도중의 전해액이 본 발명의 전해액에 도달했는지 아닌지를 판단할 수 있으며, 또한, 제조 도중의 전해액이 본 발명의 전해액에 도달하고 있지 않은 경우에 어느 정도의 양의 금속염을 추가하면 본 발명의 전해액에 도달하는지를 파악할 수 있다.
본 발명의 전해액에는, 상기 헤테로 원소를 갖는 유기 용매 이외에, 저극성(저유전율) 또는 저도너수(low donor number)로서, 금속염과 특단의 상호 작용을 나타내지 않는 용매, 즉, 본 발명의 전해액에 있어서의 상기 클러스터의 형성 및 유지에 영향을 미치지 않는 용매를 더할 수 있다. 이러한 용매를 본 발명의 전해액에 더함으로써, 본 발명의 전해액의 상기 클러스터의 형성을 유지한 채로, 전해액의 점도를 낮게 하는 효과를 기대할 수 있다.
금속염과 특단의 상호 작용을 나타내지 않는 용매로서는, 구체적으로 벤젠, 톨루엔, 에틸벤젠, o-자일렌, m-자일렌, p-자일렌, 1-메틸나프탈렌, 헥산, 헵탄, 사이클로헥산을 예시할 수 있다.
또한, 본 발명의 전해액에는, 상기 헤테로 원소를 갖는 유기 용매 이외에, 난연성의 용매를 더할 수 있다. 난연성의 용매를 본 발명의 전해액에 더함으로써, 본 발명의 전해액의 안전도를 더욱 높일 수 있다. 난연성의 용매로서는, 4염화 탄소, 테트라클로로에탄, 하이드로플루오로에테르 등의 할로겐계 용매, 인산 트리메틸, 인산 트리에틸 등의 인산 유도체를 예시할 수 있다.
또한, 본 발명의 전해액을 폴리머나 무기 필러와 혼합하여 혼합물로 하면, 당해 혼합물이 전해액을 봉입하여, 의사 고체 전해질(pseudo solid electrolyte)이 된다. 의사 고체 전해질을 전지의 전해액으로서 이용함으로써, 전지에 있어서의 전해액의 액 누출을 억제할 수 있다.
상기 폴리머로서는, 리튬 이온 2차 전지 등의 전지에 사용되는 폴리머나 일반적인 화학 가교한 폴리머를 채용할 수 있다. 특히, 폴리불화 비닐리덴이나 폴리헥사플루오로프로필렌 등 전해액을 흡수하여 겔화할 수 있는 폴리머나, 폴리에틸렌옥사이드 등의 폴리머에 이온 도전성기를 도입한 것이 적합하다.
구체적인 폴리머로서는, 폴리메틸아크릴레이트, 폴리메틸메타크릴레이트, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리아크릴로니트릴, 폴리불화 비닐리덴, 폴리에틸렌글리콜디메타크릴레이트, 폴리에틸렌글리콜아크릴레이트, 폴리글리시돌, 폴리테트라플루오로에틸렌, 폴리헥사플루오로프로필렌, 폴리실록산, 폴리아세트산 비닐, 폴리비닐알코올, 폴리아크릴산, 폴리메타크릴산, 폴리이타콘산, 폴리 푸마르산, 폴리크로톤산, 폴리앙겔산, 카복시메틸셀룰로오스 등의 폴리카본산, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 폴리스티렌, 폴리카보네이트, 무수 말레산과 글리콜류를 공중합한 불포화 폴리에스테르, 치환기를 갖는 폴리에틸렌옥사이드 유도체, 불화 비닐리덴과 헥사플루오로프로필렌과의 공중합체를 예시할 수 있다. 또한, 상기 폴리머로서, 상기 구체적인 폴리머를 구성하는 2종류 이상의 모노머를 공중합시킨 공중합체를 선택해도 좋다.
상기 폴리머로서, 다당류도 적합하다. 구체적인 다당류로서, 글리코겐, 셀룰로오스, 키틴, 아가로오스, 카라기난, 헤파린, 히알루론산, 펙틴, 아밀로펙틴, 자일로글루칸, 아밀로오스를 예시할 수 있다. 또한, 이들 다당류를 포함하는 재료를 상기 폴리머로서 채용해도 좋고, 당해 재료로서, 아가로오스 등의 다당류를 포함하는 한천을 예시할 수 있다.
상기 무기 필러로서는, 산화물이나 질화물 등의 무기 세라믹스가 바람직하다.
무기 세라믹스는 그 표면에 친수성 및 소수성의 관능기를 갖고 있다. 그 때문에, 당해 관능기가 전해액을 끌어당김으로써, 무기 세라믹스 내에 도전성 통로가 형성될 수 있다. 또한, 전해액에서 분산한 무기 세라믹스는 상기 관능기에 의해 무기 세라믹스끼리의 네트워크를 형성하여, 전해액을 봉입하는 역할을 다할 수 있다. 무기 세라믹스의 이러한 기능에 의해, 전지에 있어서의 전해액의 액 누출을 더욱 적합하게 억제할 수 있다. 무기 세라믹스의 상기 기능을 적합하게 발휘하기 위해, 무기 세라믹스는 입자 형상의 것이 바람직하고, 특히 그 입자경이 나노 수준인 것이 바람직하다.
무기 세라믹스의 종류로서는, 일반적인 알루미나, 실리카, 티타니아, 지르코니아, 리튬 인산염 등을 들 수 있다. 또한, 무기 세라믹스 자체에 리튬 전도성이 있는 것이라도 좋고, 구체적으로는, Li3N, LiI, LiI-Li3N-LiOH, LiI-Li2S-P2O5, LiI-Li2S-P2S5, LiI-Li2S-B2S3, Li2O-B2S3, Li2O-V2O3-SiO2, Li2O-B2O3-P2O5, Li2O-B2O3-ZnO, Li2O-Al2O3-TiO2-SiO2-P2O5, LiTi2(PO4)3, Li-βAl2O3, LiTaO3을 예시할 수 있다.
무기 필러로서 유리 세라믹스를 채용해도 좋다. 유리 세라믹스는 이온성 액체를 봉입할 수 있기 때문에, 본 발명의 전해액에 대해서도 동일한 효과를 기대할 수 있다. 유리 세라믹스로서는, xLi2S-(1-x)P2S5로 나타나는 화합물, 그리고, 당해 화합물의 S의 일부를 다른 원소로 치환한 것 및, 당해 화합물의 P의 일부를 게르마늄으로 치환한 것을 예시할 수 있다.
이상 설명한 본 발명의 전해액은, 우수한 이온 전도도를 나타내기 때문에, 전지 등 축전 장치의 전해액으로서 적합하게 사용된다. 특히, 2차 전지의 전해액으로서 사용되는 것이 바람직하고, 그 중에서도 리튬 이온 2차 전지의 전해액으로서 사용되는 것이 바람직하다.
본 발명의 비수 전해질 2차 전지는, 상기한 전해액을 갖고, 또한 정극과, 부극을 갖고, 정극은, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 갖는다. 정극 및 부극은 각 비수 전해질 2차 전지에 적합한 것이 사용된다. 비수 전해질 2차 전지의 일 예로서 이하에 리튬 이온 2차 전지의 구성을 설명한다.
(리튬 이온 2차 전지)
본 발명의 리튬 이온 2차 전지는, 정극과, 부극과, 금속염으로서 리튬염을 채용한 본 발명의 전해액을 구비한다.
정극은, 정극용 집전체와, 정극용 집전체 상에 배치된 정극 활물질층을 갖는다.
정극용 집전체는, 알루미늄 또는 알루미늄 합금으로 이루어진다. 여기에서 알루미늄은, 순알루미늄을 가리키고, 순도 99.0% 이상의 알루미늄을 순알루미늄이라고 칭한다. 순알루미늄에 여러 가지의 원소를 첨가하여 합금으로 한 것을 알루미늄 합금이라고 칭한다. 알루미늄 합금으로서는, Al-Cu계, Al-Mn계, Al-Fe계, Al-Si계, Al-Mg계, AL-Mg-Si계, Al-Zn-Mg계를 들 수 있다.
또한, 알루미늄 또는 알루미늄 합금으로서, 구체적으로는, 예를 들면 JIS A1085, A1N30 등의 A1000계 합금(순알루미늄계), JIS A3003, A3004 등의 A3000계 합금(Al-Mn계), JIS A8079, A8021 등의 A8000계 합금(Al-Fe계)을 들 수 있다.
집전체는, 리튬 이온 2차 전지의 방전 또는 충전의 동안, 전극에 전류를 계속 흘리기 위한 화학적으로 불활성한 전자 고전도체를 말한다.
정극용 집전체는 박(foil), 시트(sheet), 필름(film), 선상(line shape), 막대 형상(bar shape), 메시(mesh) 등의 형태를 취할 수 있다. 정극용 집전체로서, 예를 들면, 박을 적합하게 이용할 수 있다. 정극용 집전체가 박, 시트, 필름 형태의 경우는, 그 두께가 1㎛∼100㎛의 범위 내인 것이 바람직하다. 또한 정극용 집전체는, 공지의 보호층에서 피복되어 있어도 좋다.
정극 활물질층은, 정극 활물질, 그리고 필요에 따라서 결착제 및/또는 도전조제를 포함한다.
정극 활물질로서는, 층상 화합물의 LiaNibCocMndDeOf(0.2≤a≤1.2, b+c+d+e=1, 0≤e<1, D는 Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La로부터 선택되는 적어도 1의 원소, 1.7≤f≤2.1), Li2MnO3을 들 수 있다. 또한, 정극 활물질로서, LiMn2O4 등의 스피넬 및, 스피넬과 층상 화합물의 혼합물로 구성되는 고용체, LiMPO4, LiMVO4 또는 Li2MSiO4(식 중의 M은 Co, Ni, Mn, Fe 중 적어도 1종으로부터 선택됨) 등으로 나타나는 폴리 음이온계 화합물을 들 수 있다. 또한, 정극 활물질로서, LiFePO4F 등의 LiMPO4F(M은 전이 금속)로 나타나는 타보라이트계 화합물, LiFeBO3 등의 LiMBO3(M은 전이 금속)으로 나타나는 보레이트계 화합물을 들 수 있다. 정극 활물질로서 이용되는 어느 금속 산화물도 상기의 조성식을 기본 조성으로 하면 좋고, 기본 조성에 포함되는 금속 원소를 다른 금속 원소로 치환한 것도 사용 가능하다. 또한, 정극 활물질로서, 전하 담체(예를 들면 충방전에 기여하는 리튬 이온)를 포함하지 않는 것을 이용해도 좋다. 예를 들면, 황 단체(S), 황과 탄소를 복합화한 화합물, TiS2 등의 금속 황화물, V2O5, MnO2 등의 산화물, 폴리아닐린 및 안트라퀴논 그리고 이들 방향족을 화학 구조에 포함하는 화합물, 공액 2아세트산계 유기물 등의 공액계 재료, 그 외 공지의 재료를 이용할 수도 있다. 또한, 니트록사이드, 니트로닐니트록사이드, 가르비녹실, 페녹실 등의 안정적인 라디칼을 갖는 화합물을 정극 활물질로서 채용해도 좋다. 리튬 등의 전하 담체를 포함하지 않는 정극 활물질 재료를 이용하는 경우에는, 정극 및/또는 부극에, 공지의 방법에 의해, 미리 전하 담체를 첨가해 둘 필요가 있다. 전하 담체는, 이온의 상태에서 첨가해도 좋고, 금속 등의 비이온의 상태에서 첨가해도 좋다. 예를 들면, 전하 담체가 리튬인 경우에는, 리튬박을 정극 및/또는 부극에 접착하는 등하여 일체화해도 좋다.
결착제는 활물질 및 도전조제를 집전체의 표면에 묶어 두는 역할을 하는 것이다.
결착제로서는, 폴리불화 비닐리덴, 폴리테트라플루오로에틸렌, 불소 고무 등의 불소 함유 수지, 폴리프로필렌, 폴리에틸렌 등의 열가소성 수지, 폴리이미드, 폴리아미드이미드 등의 이미드계 수지, 알콕시실릴기 함유 수지를 예시할 수 있다.
또한, 결착제로서, 친수기를 갖는 폴리머를 채용해도 좋다. 친수기를 갖는 폴리머의 친수기로서는, 카복실기, 술포기, 실라놀기, 아미노기, 수산기, 인산기 등 인산계의 기(group) 등이 예시된다. 그 중에서도, 폴리아크릴산(PAA), 카복시메틸셀룰로오스(CMC), 폴리메타크릴산 등, 분자 중에 카복실기를 포함하는 폴리머, 또는, 폴리(p-스티렌술폰산) 등의 술포기를 포함하는 폴리머가 바람직하다.
폴리아크릴산, 혹은 아크릴산과 비닐술폰산과의 공중합체 등, 카복실기 및/또는 술포기를 많이 포함하는 폴리머는 수용성이 된다. 따라서 친수기를 갖는 폴리머는, 수용성 폴리머인 것이 바람직하고, 1분자 중에 복수의 카복실기 및/또는 술포기를 포함하는 폴리머가 바람직하다.
분자 중에 카복실기를 포함하는 폴리머는, 예를 들면, 산 모노머를 중합하거나, 혹은 폴리머에 카복실기를 부여하는, 등의 방법으로 제조할 수 있다. 산 모노머로서는, 아크릴산, 메타크릴산, 비닐벤조산, 크로톤산, 펜텐산, 앙겔산, 티글산 등 분자 중에 하나의 카복실기를 갖는 산 모노머, 이타콘산, 메사콘산, 시트라콘산, 푸마르산, 말레산, 2-펜텐2산, 메틸렌숙신산, 알릴말론산, 이소프로필리덴숙신산, 2,4-헥사디엔2산, 아세틸렌디카본산 등 분자 내에 2개 이상의 카복실기를 갖는 산 모노머 등이 예시된다. 이들로부터 선택되는 2종 이상의 모노머를 중합하여 이루어지는 공중합 폴리머를 이용해도 좋다.
예를 들면 일본공개특허공보 2013-065493호에 기재된 바와 같은, 아크릴산과 이타콘산과의 공중합체로 이루어지고, 카복실기끼리가 축합하여 형성된 산 무수물기를 분자 중에 포함하고 있는 폴리머를 결착제로서 이용하는 것도 바람직하다. 1분자 중에 카복실기를 2개 이상 갖는 산성도가 높은 모노머 유래의 구조가 있음으로써, 충전시에 전해액 분해 반응이 일어나기 전에 리튬 이온 등을 트랩하기 쉬워진다고 생각되고 있다. 또한, 폴리아크릴산이나 폴리메타크릴산에 비하여 카복실기가 많아 산성도가 높아짐과 함께, 소정량의 카복실기가 산 무수물기로 변화하고 있기 때문에, 산성도가 지나치게 높아지는 일도 없다. 그 때문에, 이 결착제를 이용하여 형성된 전극을 갖는 2차 전지는, 초기 효율이 향상되고, 입출력 특성이 향상된다.
정극 활물질층 중의 결착제의 배합 비율은, 질량비로, 정극 활물질:결착제=1:0.05∼1:0.5인 것이 바람직하다. 결착제가 지나치게 적으면 전극의 성형성이 저하되고, 또한, 결착제가 지나치게 많으면 전극의 에너지 밀도가 낮아지기 때문이다.
도전조제는, 전극의 도전성을 높이기 위해 첨가된다. 도전조제로서는, 화학적으로 불활성한 전자 고전도체이면 좋고, 탄소질 미립자인 카본 블랙, 흑연, 아세틸렌 블랙, 케첸 블랙(등록상표), 기상법 탄소 섬유(Vapor Grown Carbon Fiber: VGCF) 및, 각종 금속 입자 등이 예시된다. 이들 도전조제를 단독 또는 2종 이상 조합하여 활물질층에 첨가할 수 있다. 정극 활물질층 중의 도전조제의 배합 비율은, 질량비로, 정극 활물질:도전조제=1:0.01∼1:0.5인 것이 바람직하다. 도전조제가 지나치게 적으면 효율이 좋은 도전 패스를 형성하지 못하고, 또한, 도전조제가 지나치게 많으면 정극 활물질층의 성형성이 나빠짐과 함께 전극의 에너지 밀도가 낮아지기 때문이다.
부극은, 부극용 집전체와, 부극용 집전체의 표면에 배치된 부극 활물질층을 갖는다.
부극용 집전체의 재료로서는, 은, 구리, 금, 알루미늄, 텅스텐, 코발트, 아연, 니켈, 철, 백금, 주석, 인듐, 티탄, 루테늄, 탄탈, 크롬, 몰리브덴으로부터 선택되는 적어도 1종, 그리고 스테인리스 강 등의 금속 재료를 예시할 수 있다. 부극용 집전체는 공지의 보호층에서 피복되어 있어도 좋다.
부극용 집전체는 박, 시트, 필름, 선상, 막대 형상, 메시 등의 형태를 취할 수 있다. 그 때문에, 부극용 집전체로서, 예를 들면, 구리박, 니켈박, 알루미늄박, 스텐인리스박 등의 금속박을 적합하게 이용할 수 있다. 부극용 집전체가 박, 시트, 필름 형태의 경우는, 그 두께가 1㎛∼100㎛의 범위 내인 것이 바람직하다.
부극 활물질층은, 부극 활물질, 그리고 필요에 따라서 결착제 및/또는 도전조제를 포함한다. 부극의 결착제 및 도전조제는 정극에서 설명한 것과 동일하다.
부극 활물질로서는, 리튬 이온을 흡장 및 방출할 수 있는 재료가 사용 가능하다. 따라서, 리튬 이온을 흡장 및 방출 가능한 단체, 합금 또는 화합물이면 특별히 한정은 없다. 예를 들면, 부극 활물질로서 Li나, 탄소, 규소, 게르마늄, 주석 등의 14족 원소, 알루미늄, 인듐 등의 13족 원소, 아연, 카드뮴 등의 12족 원소, 안티몬, 비스무트 등의 15족 원소, 마그네슘, 칼슘 등의 알칼리 토금속, 은, 금 등의 11족 원소를 각각 단체로 채용하면 좋다. 규소 등을 부극 활물질에 채용하면, 규소 1원자가 복수의 리튬과 반응하기 때문에, 고용량의 활물질이 되지만, 리튬의 흡장 및 방출에 수반하는 체적의 팽창 및 수축이 현저해진다는 문제가 발생할 우려가 있기 때문에, 당해 우려의 경감을 위해, 규소 등의 단체에 전이 금속 등의 다른 원소를 조합한 합금 또는 화합물을 부극 활물질로서 채용하는 것도 적합하다. 합금 또는 화합물의 구체예로서는, Ag-Sn 합금, Cu-Sn 합금, Co-Sn 합금 등의 주석계 재료, 각종 흑연 등의 탄소계 재료, 규소 단체와 이산화 규소에 불균화하는 SiOx(0.3≤x≤1.6) 등의 규소계 재료, 규소 단체 또는 규소계 재료와 탄소계 재료를 조합한 복합체를 들 수 있다. 또한, 부극 활물질로서, Nb2O5, TiO2, Li4Ti5O12, WO2, MoO2, Fe2O3 등의 산화물, 또는, Li3 - xMxN(M=Co, Ni, Cu)으로 나타나는 질화물을 채용해도 좋다. 부극 활물질로서, 이들의 것 중의 1종 이상을 사용할 수 있다.
집전체의 표면에 활물질층을 형성시키려면, 롤 코팅법(roll coating method), 다이 코팅법(die coating method), 딥 코팅법(deep coating method), 닥터 블레이드법(doctor blade method), 스프레이 코팅법(spry coating method), 커튼 코팅법(curtain coating method) 등의 종래로부터 공지의 방법을 이용하여, 집전체의 표면에 활물질을 도포하면 좋다. 구체적으로는, 활물질, 그리고 필요에 따라서 결착제 및 도전조제를 포함하는 활물질층 형성용 조성물을 조제하고, 이 조성물에 적당한 용제를 더하여 페이스트 형상으로 하고 나서, 집전체의 표면에 도포 후, 건조한다. 용제로서는, N-메틸-2-피롤리돈, 메탄올, 메틸이소부틸케톤, 물을 예시할 수 있다. 전극 밀도를 높이기 위해, 건조 후의 것을 압축해도 좋다.
리튬 이온 2차 전지에는 필요에 따라서 세퍼레이터가 이용된다. 세퍼레이터는, 정극과 부극을 격리하여, 양극의 접촉에 의한 전류의 단락을 방지하면서, 리튬 이온을 통과시키는 것이다. 세퍼레이터로서는, 폴리테트라플루오로에틸렌, 폴리프로필렌, 폴리에틸렌, 폴리이미드, 폴리아미드, 폴리아라미드(Aromatic polyamide), 폴리에스테르, 폴리아크릴로니트릴 등의 합성 수지, 셀룰로오스, 아밀로오스 등의 다당류, 피브로인, 케라틴, 리그닌, 수베린 등의 천연 고분자, 세라믹스 등의 전기 절연성 재료를 1종 또는 복수 이용한 다공체, 부직포, 직포 등을 들 수 있다. 또한, 세퍼레이터는 다층 구조로 해도 좋다. 본 발명의 전해액은 점도가 약간 높고 극성이 높기 때문에, 물 등의 극성 용매가 침입하기 쉬운 막이 바람직하다. 구체적으로는, 존재하는 공극의 90% 이상으로 물 등의 극성 용매가 침 입하는 막이 더욱 바람직하다.
정극 및 부극에 필요에 따라서 세퍼레이터를 끼워 장착시켜 전극체로 한다. 전극체는, 정극, 세퍼레이터 및 부극을 겹친 적층형, 또는, 정극, 세퍼레이터 및 부극을 감은 권회형의 어느 형으로 해도 좋다. 정극의 집전체 및 부극의 집전체로부터 외부로 통하는 정극 단자 및 부극 단자까지의 사이를, 집전용 리드 등을 이용하여 접속한 후에, 전극체에 본 발명의 전해액을 더하여 리튬 이온 2차 전지로 하면 좋다. 또한, 본 발명의 리튬 이온 2차 전지는, 전극에 포함되는 활물질의 종류에 적합한 전압 범위에서 충방전이 실행되면 좋다.
본 발명의 비수 전해질 2차 전지의 형상은 특별히 한정되는 것이 아니며, 원통형, 각형, 코인형, 라미네이트형 등, 여러 가지 형상을 채용할 수 있다.
본 발명의 비수 전해질 2차 전지는, 차량에 탑재해도 좋다. 차량은, 그 동력원의 전부 혹은 일부에 비수 전해질 2차 전지에 의한 전기 에너지를 사용하고 있는 차량이면 좋고, 예를 들면, 전기 차량, 하이브리드 차량 등이면 좋다. 차량에 비수 전해질 2차 전지를 탑재하는 경우에는, 비수 전해질 2차 전지를 복수 직렬로 접속하여 조전지(assembled battery)로 하면 좋다.
비수 전해질 2차 전지를 탑재하는 기기로서는, 차량 이외에도, 퍼스널 컴퓨터, 휴대 통신 기기 등, 전지로 구동되는 각종의 가전 제품, 오피스 기기, 산업 기기 등을 들 수 있다. 또한, 본 발명의 비수 전해질 2차 전지는, 풍력 발전, 태양광 발전, 수력 발전 그 외 전력 계통의 축전 장치 및 전력 평활화 장치, 선박 등의 동력 및/또는 보기류의 전력 공급원, 항공기, 우주선 등의 동력 및/또는 보기류의 전력 공급원, 전기를 동력원에 이용하지 않는 차량의 보조용 전원, 이동식의 가정용 로봇의 전원, 시스템 백업용 전원, 무정전 전원 장치의 전원, 전동 차량용 충전 스테이션 등에 있어서 충전에 필요한 전력을 일시 저장하는 축전 장치에 이용해도 좋다.
이상, 본 발명의 비수 전해질 2차 전지의 실시 형태를 설명했지만, 본 발명은, 상기 실시 형태에 한정되는 것은 아니다. 본 발명의 요지를 일탈하지 않는 범위에 있어서, 당업자가 행할 수 있는 변경, 개량 등을 행한 여러 가지의 형태로 실시할 수 있다.
실시예
이하에, 실시예 및 비교예를 나타내고, 본 발명을 구체적으로 설명한다. 또한, 본 발명은, 이들 실시예에 의해 한정되는 것은 아니다. 이하에 있어서, 특별히 언급하지 않는 한, 「부」는 질량부를 의미하고, 「%」는 질량%를 의미한다.
또한 참고 실험으로서 전해액의 실험을 행한 결과를 우선 설명한다.
(전해액 E1)
본 발명에서 이용하는 전해액을 이하와 같이 제조했다.
유기 용매인 1,2-디메톡시에탄 약 5mL를, 교반자 및 온도계를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 1,2-디메톡시에탄에 대하여, 리튬염인 (CF3SO2)2NLi를 용액 온도가 40℃ 이하를 유지하도록 서서히 더하여, 용해시켰다. 약 13g의 (CF3SO2)2NLi를 더한 시점에서 (CF3SO2)2NLi의 용해가 일시 정체했기 때문에, 상기 플라스크를 항온조에 투입하고, 플라스크 내의 용액 온도가 50℃가 되도록 가온하여, (CF3SO2)2NLi를 용해시켰다. 약 15g의 (CF3SO2)2NLi를 더한 시점에서 (CF3SO2)2NLi의 용해가 재차 정체했기 때문에, 1,2-디메톡시에탄을 피펫으로 1물방울 더한 결과, (CF3SO2)2NLi는 용해했다. 또한, (CF3SO2)2NLi를 서서히 더하고, 소정의 (CF3SO2)2NLi를 전량 더했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 1,2-디메톡시에탄을 더했다. 이것을 전해액 E1로 했다. 얻어진 전해액은 용적 20mL이고, 이 전해액에 포함되는 (CF3SO2)2NLi는 18.38g이었다. 전해액 E1에 있어서의 (CF3SO2)2NLi의 농도는 3.2㏖/L였다. 전해액 E1에 있어서는, (CF3SO2)2NLi 1분자에 대하여 1,2-디메톡시에탄 1.6분자가 포함되어 있다.
또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
(전해액 E2)
16.08g의 (CF3SO2)2NLi를 이용하고, 전해액 E1과 동일한 방법으로, (CF3SO2)2NLi의 농도가 2.8㏖/L인 전해액 E2를 제조했다. 전해액 E2에 있어서는, (CF3SO2)2NLi 1분자에 대하여 1,2-디메톡시에탄 2.1분자가 포함되어 있다.
(전해액 E3)
유기 용매인 아세토니트릴 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 아세토니트릴에 대하여, 리튬염인 (CF3SO2)2NLi를 서서히 더하여, 용해시켰다. (CF3SO2)2NLi를 전량으로 19.52g 더한 후 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 아세토니트릴을 더했다. 이것을 전해액 E3으로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 E3에 있어서의 (CF3SO2)2NLi의 농도는 3.4㏖/L였다. 전해액 E3에 있어서는, (CF3SO2)2NLi 1분자에 대하여 아세토니트릴 3분자가 포함되어 있다.
(전해액 E4)
24.11g의 (CF3SO2)2NLi를 이용하고, 전해액 E3과 동일한 방법으로, (CF3SO2)2NLi의 농도가 4.2㏖/L인 전해액 E4를 제조했다. 전해액 E4에 있어서는, (CF3SO2)2NLi 1분자에 대하여 아세토니트릴 1.9분자가 포함되어 있다.
(전해액 E5)
리튬염으로서 13.47g의 (FSO2)2NLi를 이용하고, 유기 용매로서 1,2-디메톡시 에탄을 이용한 이외는, 전해액 E3과 동일한 방법으로, (FSO2)2NLi의 농도가 3.6㏖/L인 전해액 E5를 제조했다. 전해액 E5에 있어서는, (FSO2)2NLi 1분자에 대하여 1,2-디메톡시에탄 1.9분자가 포함되어 있다.
(전해액 E6)
14.97g의 (FSO2)2NLi를 이용하고, 전해액 E5와 동일한 방법으로, (FSO2)2NLi의 농도가 4.0㏖/L인 전해액 E6을 제조했다. 전해액 E6에 있어서는, (FSO2)2NLi 1분자에 대하여 1,2-디메톡시에탄 1.5분자가 포함되어 있다.
(전해액 E7)
리튬염으로서 15.72g의 (FSO2)2NLi를 이용한 이외는, 전해액 E3과 동일한 방법으로, (FSO2)2NLi의 농도가 4.2㏖/L인 전해액 E7을 제조했다. 전해액 E7에 있어서는, (FSO2)2NLi 1분자에 대하여 아세토니트릴 3분자가 포함되어 있다.
(전해액 E8)
16.83g의 (FSO2)2NLi를 이용하고, 전해액 E7과 동일한 방법으로, (FSO2)2NLi의 농도가 4.5㏖/L인 전해액 E8을 제조했다. 전해액 E8에 있어서는, (FSO2)2NLi 1분자에 대하여 아세토니트릴 2.4분자가 포함되어 있다.
(전해액 E9)
20.21g의 (FSO2)2NLi를 이용하고, 전해액 E7과 동일한 방법으로, (FSO2)2NLi의 농도가 5.4㏖/L인 전해액 E9를 제조했다. 전해액 E9에 있어서는, (FSO2)2NLi 1분자에 대하여 아세토니트릴 2분자가 포함되어 있다.
(전해액 E10)
유기 용매인 디메틸카보네이트 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 디메틸카보네이트에 대하여, 리튬염인 (FSO2)2NLi를 서서히 더하여, 용해시켰다. (FSO2)2NLi를 전량으로 14.64g 더한 후 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 디메틸카보네이트를 더했다. 이것을 전해액 E10으로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 E10에 있어서의 (FSO2)2NLi의 농도는 3.9㏖/L였다. 전해액 E10에 있어서는, (FSO2)2NLi 1분자에 대하여 디메틸카보네이트 2분자가 포함되어 있다.
(전해액 E11)
전해액 E10에 디메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 3.4㏖/L의 전해액 E11로 했다. 전해액 E11에 있어서는, (FSO2)2NLi 1분자에 대하여 디메틸카보네이트 2.5분자가 포함되어 있다.
(전해액 E12)
전해액 E10에 디메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 2.9㏖/L의 전해액 E12로 했다. 전해액 E12에 있어서는, (FSO2)2NLi 1분자에 대하여 디메틸카보네이트 3분자가 포함되어 있다.
(전해액 E13)
전해액 E10에 디메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 2.6㏖/L의 전해액 E13으로 했다. 전해액 E13에 있어서는, (FSO2)2NLi 1분자에 대하여 디메틸카보네이트 3.5분자가 포함되어 있다.
(전해액 E14)
전해액 E10에 디메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 2.0㏖/L의 전해액 E14로 했다. 전해액 E14에 있어서는, (FSO2)2NLi 1분자에 대하여 디메틸카보네이트 5분자가 포함되어 있다.
(전해액 E15)
유기 용매인 에틸메틸카보네이트 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 에틸메틸카보네이트에 대하여, 리튬염인 (FSO2)2NLi를 서서히 더하여, 용해시켰다. (FSO2)2NLi를 전량으로 12.81g 더한 후에 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 에틸메틸카보네이트를 더했다. 이것을 전해액 E15로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 E15에 있어서의 (FSO2)2NLi의 농도는 3.4㏖/L였다. 전해액 E15에 있어서는, (FSO2)2NLi 1분자에 대하여 에틸메틸카보네이트 2분자가 포함되어 있다.
(전해액 E16)
전해액 E15에 에틸메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 2.9㏖/L의 전해액 E16으로 했다. 전해액 E16에 있어서는, (FSO2)2NLi 1분자에 대하여 에틸메틸카보네이트 2.5분자가 포함되어 있다.
(전해액 E17)
전해액 E15에 에틸메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 2.2㏖/L의 전해액 E17로 했다. 전해액 E17에 있어서는, (FSO2)2NLi 1분자에 대하여 에틸메틸카보네이트 3.5분자가 포함되어 있다.
(전해액 E18)
유기 용매인 디에틸카보네이트 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 디에틸카보네이트에 대하여, 리튬염인 (FSO2)2NLi를 서서히 더하여, 용해시켰다. (FSO2)2NLi를 전량으로 11.37g 더한 후에 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 디에틸카보네이트를 더했다. 이것을 전해액 E18로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 E18에 있어서의 (FSO2)2NLi의 농도는 3.0㏖/L였다. 전해액 E18에 있어서는, (FSO2)2NLi 1분자에 대하여 디에틸카보네이트 2분자가 포함되어 있다.
(전해액 E19)
전해액 E18에 디에틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 2.6㏖/L의 전해액 E19로 했다. 전해액 E19에 있어서는, (FSO2)2NLi 1분자에 대하여 디에틸카보네이트 2.5분자가 포함되어 있다.
(전해액 E20)
전해액 E18에 디에틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 2.0㏖/L의 전해액 E20으로 했다. 전해액 E20에 있어서는, (FSO2)2NLi 1분자에 대하여 디에틸카보네이트 3.5분자가 포함되어 있다.
(전해액 E21)
18.71g의 (FSO2)2NLi를 이용하고, 전해액 E7과 동일한 방법으로, (FSO2)2NLi의 농도가 5.0㏖/L인 전해액 E21을 제조했다. 전해액 E21에 있어서는, (FSO2)2NLi 1분자에 대하여 아세토니트릴 2.1분자가 포함되어 있다.
(전해액 C1)
5.74g의 (CF3SO2)2NLi를 이용하고, 유기 용매로서 1,2-디메톡시에탄을 이용한 이외는, 전해액 E3과 동일한 방법으로, (CF3SO2)2NLi의 농도가 1.0㏖/L인 전해액 C1을 제조했다. 전해액 C1에 있어서는, (CF3SO2)2NLi 1분자에 대하여 1,2-디메톡시 에탄 8.3분자가 포함되어 있다.
(전해액 C2)
5.74g의 (CF3SO2)2NLi를 이용하고, 전해액 E3과 동일한 방법으로, (CF3SO2)2NLi의 농도가 1.0㏖/L인 전해액 C2를 제조했다. 전해액 C2에 있어서는, (CF3SO2)2NLi 1분자에 대하여 아세토니트릴 16분자가 포함되어 있다.
(전해액 C3)
3.74g의 (FSO2)2NLi를 이용하고, 전해액 E5와 동일한 방법으로, (FSO2)2NLi의 농도가 1.0㏖/L인 전해액 C3을 제조했다. 전해액 C3에 있어서는, (FSO2)2NLi 1분자에 대하여 1,2-디메톡시에탄 8.8분자가 포함되어 있다.
(전해액 C4)
3.74g의 (FSO2)2NLi를 이용하고, 전해액 E7과 동일한 방법으로, (FSO2)2NLi의 농도가 1.0㏖/L인 전해액 C4를 제조했다. 전해액 C4에 있어서는, (FSO2)2NLi 1분자에 대하여 아세토니트릴 17분자가 포함되어 있다.
(전해액 C5)
유기 용매로서 에틸렌카보네이트 및 디에틸카보네이트의 혼합 용매(체적비 3:7, 이하, 「EC/DEC」라고 하는 경우가 있음)를 이용하고, 리튬염으로서 3.04g의 LiPF6을 이용한 이외는, 전해액 E3과 동일한 방법으로, LiPF6의 농도가 1.0㏖/L인 전해액 C5를 제조했다.
(전해액 C6)
전해액 E10에 디메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 1.1㏖/L의 전해액 C6으로 했다. 전해액 C6에 있어서는, (FSO2)2NLi 1분자에 대하여 디메틸카보네이트 10분자가 포함되어 있다.
(전해액 C7)
전해액 E15에 에틸메틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 1.1㏖/L의 전해액 C7로 했다. 전해액 C7에 있어서는, (FSO2)2NLi 1분자에 대하여 에틸메틸카보네이트 8분자가 포함되어 있다.
(전해액 C8)
전해액 E18에 디에틸카보네이트를 더하고 희석하여, (FSO2)2NLi의 농도가 1.1㏖/L의 전해액 C8로 했다. 전해액 C8에 있어서는, (FSO2)2NLi 1분자에 대하여 디에틸카보네이트 7분자가 포함되어 있다.
표 3에 전해액 E1∼E21 및 전해액 C1∼C8의 일람을 나타낸다.
Figure pct00003
(평가예 1: IR 측정)
전해액 E3, 전해액 E4, 전해액 E7, 전해액 E8, 전해액 E9, 전해액 C2, 전해액 C4, 그리고, 아세토니트릴, (CF3SO2)2NLi, (FSO2)2NLi에 대해, 이하의 조건으로 IR 측정을 행했다. 2100㎝-1∼2400㎝-1의 범위의 IR 스펙트럼을 각각 도 1∼도 10에 나타낸다. 또한, 전해액 E10∼E20, 전해액 C6∼C8, 그리고, 디메틸카보네이트, 에틸메틸카보네이트, 디에틸카보네이트에 대해, 이하의 조건으로 IR 측정을 행했다. 1900∼1600㎝-1의 범위의 IR 스펙트럼을 각각 도 11∼도 27에 나타낸다. 또한, (FSO2)2NLi에 대해, 1900∼1600㎝-1의 범위의 IR 스펙트럼을 도 28에 나타낸다. 도면의 횡축은 파수(㎝-1)이고, 종축은 흡광도(반사 흡광도)이다.
IR 측정 조건
장치: FT-IR(브루커옵틱스사 제조)
측정 조건: ATR법(다이아몬드 사용)
측정 분위기: 불활성 가스 분위기하
도 8에서 나타나는 아세토니트릴의 IR 스펙트럼의 2250㎝-1 부근에는, 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 관찰되었다. 또한, 도 9에서 나타나는 (CF3SO2)2NLi의 IR 스펙트럼 및 도 10에서 나타나는 (FSO2)2NLi의 IR 스펙트럼의 2250㎝-1 부근에는, 특단의 피크가 관찰되지 않았다.
도 1에서 나타나는 전해액 E3의 IR 스펙트럼에는, 2250㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.00699) 관찰되었다. 또한 도 1의 IR 스펙트럼에는, 2250㎝-1 부근으로부터 고파수측에 시프트한 2280㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.05828에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=8×Io였다.
도 2에서 나타나는 전해액 E4의 IR 스펙트럼에는, 2250㎝-1 부근에 아세토니트릴 유래의 피크가 관찰되지 않고, 2250㎝-1 부근으로부터 고파수측에 시프트한 2280㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.05234에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io였다.
도 3에서 나타나는 전해액 E7의 IR 스펙트럼에는, 2250㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.00997) 관찰되었다. 또한 도 3의 IR 스펙트럼에는, 2250㎝-1 부근으로부터 고파수측에 시프트한 2280㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.08288에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=8×Io였다. 도 4에서 나타나는 전해액 E8의 IR 스펙트럼에 대해서도, 도 3의 IR 차트와 동일한 강도의 피크가 동일한 파수로 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=11×Io였다.
도 5에서 나타나는 전해액 E9의 IR 스펙트럼에는, 2250㎝-1 부근에 아세토니트릴 유래의 피크가 관찰되지 않고, 2250㎝-1 부근으로부터 고파수측에 시프트한 2280㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.07350에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io였다.
도 6에서 나타나는 전해액 C2의 IR 스펙트럼에는, 도 8과 동일하게, 2250㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Io=0.04441에서 관찰되었다. 또한 도 6의 IR 스펙트럼에는, 2250㎝-1 부근으로부터 고파수측에 시프트한 2280㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.03018에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is<Io였다.
도 7에서 나타나는 전해액 C4의 IR 스펙트럼에는, 도 8과 동일하게, 2250㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Io=0.04975에서 관찰되었다. 또한 도 7의 IR 스펙트럼에는, 2250㎝-1 부근으로부터 고파수측에 시프트한 2280㎝-1 부근에 아세토니트릴의 C 및 N 간의 삼중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.03804에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is<Io였다.
도 17에서 나타나는 디메틸카보네이트의 IR 스펙트럼의 1750㎝-1 부근에는, 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 관찰되었다. 또한, 도 28에서 나타나는 (FSO2)2NLi의 IR 스펙트럼의 1750㎝-1 부근에는, 특단의 피크가 관찰되지 않았다.
도 11에서 나타나는 전해액 E10의 IR 스펙트럼에는, 1750㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.16628) 관찰되었다. 또한 도 11의 IR 스펙트럼에는, 1750㎝-1 부근으로부터 저파수측에 시프트한 1717㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.48032에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=2.89×Io였다.
도 12에서 나타나는 전해액 E11의 IR 스펙트럼에는, 1750㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.18129) 관찰되었다. 또한 도 12의 IR 스펙트럼에는, 1750㎝-1 부근으로부터 저파수측에 시프트한 1717㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.52005에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=2.87×Io였다.
도 13에서 나타나는 전해액 E12의 IR 스펙트럼에는, 1750㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.20293) 관찰되었다. 또한 도 13의 IR 스펙트럼에는, 1750㎝-1 부근으로부터 저파수측에 시프트한 1717㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.53091에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=2.62×Io였다.
도 14에서 나타나는 전해액 E13의 IR 스펙트럼에는, 1750㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.23891) 관찰되었다. 또한 도 14의 IR 스펙트럼에는, 1750㎝-1 부근으로부터 저파수측에 시프트한 1717㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.53098에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=2.22×Io였다.
도 15에서 나타나는 전해액 E14의 IR 스펙트럼에는, 1750㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.30514) 관찰되었다. 또한 도 15의 IR 스펙트럼에는, 1750㎝-1 부근으로부터 저파수측에 시프트한 1717㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.50223에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=1.65×Io였다.
도 16에서 나타나는 전해액 C6의 IR 스펙트럼에는, 1750㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 (Io=0.48204) 관찰되었다. 또한 도 16의 IR 스펙트럼에는, 1750㎝-1 부근으로부터 저파수측에 시프트한 1717㎝-1 부근에 디메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.39244에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is<Io였다.
도 22에서 나타나는 에틸메틸카보네이트의 IR 스펙트럼의 1745㎝-1 부근에는, 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 관찰되었다.
도 18에서 나타나는 전해액 E15의 IR 스펙트럼에는, 1745㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.13582) 관찰되었다. 또한 도 18의 IR 스펙트럼에는, 1745㎝-1 부근으로부터 저파수측에 시프트한 1711㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.45888에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=3.38×Io였다.
도 19에서 나타나는 전해액 E16의 IR 스펙트럼에는, 1745㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.15151) 관찰되었다. 또한 도 19의 IR 스펙트럼에는, 1745㎝-1 부근으로부터 저파수측에 시프트한 1711㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.48779에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=3.22×Io였다.
도 20에서 나타나는 전해액 E17의 IR 스펙트럼에는, 1745㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.20191) 관찰되었다. 또한 도 20의 IR 스펙트럼에는, 1745㎝-1 부근으로부터 저파수측에 시프트한 1711㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.48407에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=2.40×Io였다.
도 21에서 나타나는 전해액 C7의 IR 스펙트럼에는, 1745㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 (Io=0.41907) 관찰되었다. 또한 도 21의 IR 스펙트럼에는, 1745㎝-1 부근으로부터 저파수측에 시프트한 1711㎝-1 부근에 에틸메틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.33929에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is<Io였다.
도 27에서 나타나는 디에틸카보네이트의 IR 스펙트럼의 1742㎝-1 부근에는, 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 관찰되었다.
도 23에서 나타나는 전해액 E18의 IR 스펙트럼에는, 1742㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.11202) 관찰되었다. 또한 도 23의 IR 스펙트럼에는, 1742㎝-1 부근으로부터 저파수측에 시프트한 1706㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.42925에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=3.83×Io였다.
도 24에서 나타나는 전해액 E19의 IR 스펙트럼에는, 1742㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.15231) 관찰되었다. 또한 도 24의 IR 스펙트럼에는, 1742㎝-1 부근으로부터 저파수측에 시프트한 1706㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.45679에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=3.00×Io였다.
도 25에서 나타나는 전해액 E20의 IR 스펙트럼에는, 1742㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 근소하게(Io=0.20337) 관찰되었다. 또한 도 25의 IR 스펙트럼에는, 1742㎝-1 부근으로부터 저파수측에 시프트한 1706㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.43841에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is>Io이고, Is=2.16×Io였다.
도 26에서 나타나는 전해액 C8의 IR 스펙트럼에는, 1742㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 (Io=0.39636) 관찰되었다. 또한 도 26의 IR 스펙트럼에는, 1742㎝-1 부근으로부터 저파수측에 시프트한 1709㎝-1 부근에 디에틸카보네이트의 C 및 O 간의 이중 결합의 신축 진동에 유래하는 특징적인 피크가 피크 강도 Is=0.31129에서 관찰되었다. Is와 Io의 피크 강도의 관계는 Is<Io였다.
(평가예 2: 이온 전도도)
전해액 E1, 전해액 E2, 전해액 E4∼E6, 전해액 E8, 전해액 E10, 전해액 E12, 전해액 E15, 전해액 E18, 전해액 E21의 이온 전도도를 이하의 조건으로 측정했다. 결과를 표 4에 나타낸다.
이온 전도도 측정 조건
Ar 분위기하, 백금극을 구비한 셀 정수 기지의 유리제 셀에, 전해액을 봉입하고, 30℃, 1㎑에서의 임피던스를 측정했다. 임피던스의 측정 결과로부터, 이온 전도도를 산출했다. 측정 기기는 Solartron 147055BEC(솔라트론사)를 사용했다.
Figure pct00004
전해액 E1, 전해액 E2, 전해액 E4∼E6, 전해액 E8, 전해액 E10, 전해액 E12, 전해액 E15, 전해액 E18, 전해액 E21은, 모두 이온 전도성을 나타냈다. 따라서, 본 발명의 전해액은, 모두 각종의 전지의 전해액으로서 기능할 수 있다고 이해할 수 있다.
(평가예 3: 점도)
전해액 E1, 전해액 E2, 전해액 E4∼E6, 전해액 E8, 전해액 E10, 전해액 E12, 전해액 E15, 전해액 E18, 전해액 E21, 그리고 전해액 C1∼C4, 전해액 C6∼C8의 점도를 이하의 조건으로 측정했다. 결과를 표 5에 나타낸다.
점도 측정 조건
낙구식 점도계(falling ball viscometer)(AntonPaar GmbH(안톤파사) 제조 Lovis 2000M)를 이용하여, Ar 분위기하, 시험 셀에 전해액을 봉입하고, 30℃의 조건하에서 점도를 측정했다.
Figure pct00005
전해액 E1, 전해액 E2, 전해액 E4∼E6, 전해액 E8, 전해액 E10, 전해액 E12, 전해액 E15, 전해액 E18, 전해액 E21의 점도는, 전해액 C1∼C4, 전해액 C6∼C8의 점도와 비교하여, 현저하게 높았다. 따라서, 본 발명의 전해액을 이용한 전지이면, 가령 전지가 파손되었다고 해도, 전해액 누출이 억제된다.
(평가예 4: 휘발성)
전해액 E2, E4, E8, E10, E12, C1, C2, C4, C6의 휘발성을 이하의 방법으로 측정했다.
약 10㎎의 전해액을 알루미늄제의 팬에 넣고, 열중량 측정 장치(TA 인스투르먼스트사 제조, SDT600)에 배치하여, 실온에서의 전해액의 중량 변화를 측정했다. 중량 변화(질량%)를 시간으로 미분함으로써 휘발 속도를 산출했다. 휘발 속도 중 최대의 것을 선택하여, 표 6에 나타냈다.
Figure pct00006
전해액 E2, E4, E8, E10, E12의 최대 휘발 속도는, 전해액 C1, C2, C4, C6의 최대 휘발 속도와 비교하여, 현저하게 작았다. 따라서, 본 발명의 전해액을 이용한 전지는, 가령 손상되었다고 해도, 전해액의 휘발 속도가 작기 때문에, 전지 밖으로의 유기 용매의 급속한 휘발이 억제된다.
(평가예 5: 연소성)
전해액 E4, 전해액 C2의 연소성을 이하의 방법으로 시험했다.
전해액을 유리 필터에 피펫으로 3방울 적하하고, 전해액을 유리 필터에 보존유지시켰다. 당해 유리 필터를 핀셋으로 파지하고, 그리고, 당해 유리 필터에 접염(接炎)시켰다.
전해액 E4는 15초간 접염시켜도 인화되지 않았다. 다른 한편, 전해액 C2는 5초 남짓으로 모두 타버렸다.
본 발명의 전해액은 연소되기 어려운 것이 뒷받침되었다.
(평가예 6: 레이트 특성)
(참고예 1)
전해액 E8을 이용한 하프 셀을 이하와 같이 제조했다.
활물질인 평균 입경 10㎛의 흑연 90질량부 및, 결착제인 폴리불화 비닐리덴 10질량부를 혼합했다. 이 혼합물을 적량의 N-메틸-2-피롤리돈에 분산시켜, 슬러리를 제작했다. 집전체로서 두께 20㎛의 구리박을 준비했다. 이 구리박의 표면에, 닥터 블레이드를 이용하여, 상기 슬러리를 막 형상으로 도포했다. 슬러리가 도포된 구리박을 건조하여 N-메틸-2-피롤리돈을 제거하고, 그 후, 구리박을 프레스하여, 접합물을 얻었다. 얻어진 접합물을 진공 건조기로 120℃, 6시간 가열 건조하여, 활물질층이 형성된 구리박을 얻었다. 이것을 작용극으로 했다.
대극은 금속 Li로 했다.
작용극, 대극, 양자의 사이에 끼워 장착한 두께 400㎛의 세퍼레이터(GE 헬스케어·재팬 주식회사 제조 Whatman 유리 섬유 여과지) 및 전해액 E8을 전지 케이스(호센 주식회사 제조 CR2032형 코인 셀 케이스)에 수용하여 하프 셀을 구성했다. 이것을 참고예 1의 하프 셀로 했다.
(참고예 2)
전해액으로서 전해액 C5를 이용한 이외는, 참고예 1과 동일한 방법으로, 참고예 2의 하프 셀을 제조했다.
참고예 1, 참고예 2의 하프 셀의 레이트 특성을 이하의 방법으로 시험했다.
하프 셀에 대하여, 0.1C, 0.2C, 0.5C, 1C, 2C 레이트(1C와는 일정 전류에 있어서 1시간으로 전지를 완전 충전 또는 방전시키기 위해 필요로 하는 전류값을 의미함)로 충전을 행한 후에 방전을 행하고, 각각의 속도에 있어서의 작용극의 용량(방전 용량)을 측정했다. 또한, 여기에서의 기술은, 대극을 부극, 작용극을 정극으로 간주하고 있다. 0.1C 레이트에서의 작용극의 용량에 대한 다른 레이트에 있어서의 용량의 비율(레이트 특성)을 산출했다. 결과를 표 7에 나타낸다.
Figure pct00007
참고예 1의 하프 셀은, 0.2C, 0.5C, 1C, 2C의 어느 레이트에 있어서도, 참고예 2의 하프 셀과 비교하여, 용량의 저하가 억제되고 있어, 우수한 레이트 특성을 나타냈다. 본 발명의 전해액을 사용한 2차 전지는, 우수한 레이트 특성을 나타내는 것이 뒷받침되었다.
(평가예 7: 급속 충방전의 반복에 대한 응답성)
참고예 1, 참고예 2의 하프 셀에 대하여, 1C 레이트로 충방전을 3회 반복했을 때의, 용량과 전압의 변화를 관찰했다. 결과를 도 29에 나타낸다.
참고예 2의 하프 셀은 충방전을 반복하는 것에 수반하여, 1C 레이트로 전류를 흘린 경우의 분극이 커지는 경향이 있으며, 2V에서 0.01V에 도달하기까지 얻어지는 용량이 급속하게 저하되었다. 다른 한편, 참고예 1의 하프 셀은 충방전을 반복해도, 도 29에 있어서 3개의 곡선이 겹쳐 있는 모습으로부터도 확인할 수 있는 바와 같이 분극의 증감이 거의 없어, 적합하게 용량을 유지했다. 참고예 2의 하프 셀에 있어서 분극이 증가한 이유로서, 급속하게 충방전을 반복했을 때의 전해액 중에 발생한 Li 농도 불균일에 의해, 전극과의 반응 계면에 충분한 양의 Li를 전해액이 공급할 수 없게 된 점, 즉, 전해액의 Li 농도의 편재가 생각된다. 참고예 1의 하프 셀에서는, Li 농도가 높은 본 발명의 전해액을 이용함으로써, 전해액의 Li 농도의 편재를 억제할 수 있던 것으로 생각된다. 본 발명의 전해액을 사용한 2차 전지는, 급속 충방전에 대하여, 우수한 응답성을 나타내는 것이 뒷받침되었다.
(평가예 8: Li 수율)
전해액 E2, 전해액 E8, 전해액 C4 및 전해액 C5의 Li 수율을 이하의 조건으로 측정했다. 결과를 표 8A에 나타낸다.
<Li 수율 측정 조건>
전해액 E2, 전해액 E8, 전해액 C4 또는 전해액 C5를 넣은 NMR관을 PFG-NMR 장치(ECA-500, 일본전자)에 제공하고, 7Li, 19F를 대상으로 하고, 실온 30℃에서, 스핀 에코법(spin echo method)을 이용하여, 자장 펄스폭을 변화시키면서, 각 전해액 중의 Li 이온 및 음이온의 확산 계수를 측정했다. Li 수율은 이하의 식으로 산출했다.
Li 수율=(Li 이온 확산 계수)/(Li 이온 확산 계수+음이온 확산 계수)
(표 8A)
Figure pct00008
전해액 E2, 전해액 E8의 Li 수율은, 전해액 C4 및 전해액 C5의 Li 수율과 비교하여, 현저하게 높았다. 여기에서, 전해액의 Li 이온 전도도는, 전해액에 포함되는 이온 전도도(전이온 전도도)에 Li 수율을 곱하여 산출할 수 있다. 그러면, 본 발명의 전해액은, 동 정도의 이온 전도도를 나타내는 종래의 전해액과 비교하여, 리튬 이온(양이온)의 수송 속도가 높다고 말할 수 있다.
또한 전해액 E8의 측정 온도를 변화시켜 Li 수율을 측정했다. 측정 온도는 30℃, 10℃, -10℃, -30℃로 했다. 결과를 표 8B에 나타낸다.
(표 8B)
Figure pct00009
표 8B의 결과로부터, 본 발명의 전해액은, 온도에 의하지 않고, 적합한 Li 수율을 유지하는 것을 알 수 있다. 본 발명의 전해액은, 저온에서도 액체 상태를 유지하고 있다고 말할 수 있다.
(실시예 1)
전해액 E8을 이용한 실시예 1의 리튬 이온 2차 전지를 이하와 같이 제조했다.
정극 활물질인 LiNi5 /10Co2 /10Mn3 /10O2에서 나타나는 층상 암염 구조의 리튬 함유 금속 산화물 94질량부, 도전조제인 아세틸렌 블랙 3질량부 및, 결착제인 폴리불화 비닐리덴 3질량부를 혼합했다. 이 혼합물을 적량의 N-메틸-2-피롤리돈에 분산시켜, 슬러리를 제작했다. 정극용 집전체로서 두께 20㎛의 알루미늄박(JIS A1000번계)을 준비했다. 이 알루미늄박의 표면에, 닥터 블레이드를 이용하여 상기 슬러리가 막 형상이 되도록 도포했다. 슬러리가 도포된 알루미늄박을 80℃에서 20분간 건조함으로써 N-메틸-2-피롤리돈을 휘발에 의해 제거했다. 그 후, 이 알루미늄박을 프레스하여 접합물을 얻었다. 얻어진 접합물을 진공 건조기로 120℃, 6시간 가열 건조하여, 정극 활물질층이 형성된 알루미늄박을 얻었다. 이것을 정극으로 했다. 이때의 정극의 코팅은, 11㎎/㎠였다.
부극 활물질인 천연 흑연 98질량부, 그리고 결착제인 스티렌부타디엔 고무 1질량부 및 카복시메틸셀룰로오스 1질량부를 혼합했다. 이 혼합물을 적량의 이온 교환수에 분산시켜, 슬러리를 제작했다. 부극용 집전체로서 두께 20㎛의 구리박을 준비했다. 이 구리박의 표면에, 닥터 블레이드를 이용하여, 상기 슬러리를 막 형상으로 도포했다. 슬러리가 도포된 구리박을 건조하여 물을 제거하고, 그 후, 구리박을 프레스하여, 접합물을 얻었다. 얻어진 접합물을 진공 건조기로 100℃, 6시간 가열 건조하여, 부극 활물질층이 형성된 구리박을 얻었다. 이것을 부극으로 했다. 이때의 부극의 코팅는, 8㎎/㎠였다.
세퍼레이터로서, 셀룰로오스 여과지(동양여지 주식회사, 두께 260㎛)를 준비했다.
정극과 부극으로 세퍼레이터를 끼워 지지하여, 극판군으로 했다. 이 극판군을 2매 1조의 라미네이트 필름으로 덮고, 세 변을 시일한 후, 주머니 형상이 된 라미네이트 필름에 전해액 E8을 주입했다. 그 후, 남은 한 변을 시일함으로써, 네 변이 기밀하게 시일되어, 극판군 및 전해액이 밀폐된 리튬 이온 2차 전지를 얻었다. 이 전지를 실시예 1의 리튬 이온 2차 전지로 했다.
(실시예 2)
전해액 E8을 대신하여 전해액 E4를 이용한 이외는, 실시예 1의 리튬 이온 2차 전지와 동일하게 하여, 실시예 2의 리튬 이온 2차 전지를 작성했다.
(비교예 1)
전해액 E8을 대신하여 전해액 C5를 이용한 이외는, 실시예 1과 동일하게 하여, 비교예 1의 리튬 이온 2차 전지를 작성했다.
(평가예 9: 열 안정성)
실시예 1, 비교예 1의 리튬 이온 2차 전지의 충전 상태의 정극에 대한 전해액의 열 안정성을 이하의 방법으로 평가했다.
리튬 이온 2차 전지에 대하여, 충전 종시 전압 4.2V, 정전류 정전압 조건으로 만충전했다. 만충전 후의 리튬 이온 2차 전지를 해체하고, 정극을 취출했다. 당해 정극 3㎎ 및 전해액 1.8μL를 스테인리스제의 팬에 넣고, 당해 팬을 밀폐했다. 밀폐 팬을 이용하여, 질소 분위기하, 승온 속도 20℃/min.의 조건으로 시차주사 열량 분석을 행하여, DSC 곡선을 관찰했다. 시차 주사 열량 측정 장치로서 Rigaku DSC8230을 사용했다. 실시예 1의 리튬 이온 2차 전지의 충전 상태의 정극과 전해액을 공존시킨 경우의 DSC 차트를 도 30에, 비교예 1의 리튬 이온 2차 전지의 충전 상태의 정극과 전해액을 공존시킨 경우의 DSC 차트를 도 31에 각각 나타낸다.
도 30 및 도 31의 결과로부터 분명한 바와 같이, 실시예 1의 리튬 이온 2차 전지에 있어서의 충전 상태의 정극과 전해액을 공존시킨 경우의 DSC 곡선은 거의 흡발열 피크가 관찰되지 않았던 것에 대하여, 비교예 1의 리튬 이온 2차 전지의 충전 상태의 정극과 전해액을 공존시킨 경우의 DSC 곡선에 있어서는 300℃ 부근에 발열 피크가 관찰되었다. 이 발열 피크는, 정극 활물질과 전해액이 반응한 결과, 발생한 것으로 추정된다.
이들 결과로부터, 본 발명의 전해액을 이용한 리튬 이온 2차 전지는, 종래의 전해액을 이용한 리튬 이온 2차 전지와 비교하여, 정극 활물질과 전해액과의 반응성이 낮고, 열 안정성이 우수한 것을 알 수 있다.
(평가예 10: Al의 용출 확인)
(실시예 12)
전해액 E8을 이용한 하프 셀을 이하와 같이 제조했다.
두께 20㎛의 알루미늄박(JIS A1000번계)을 작용극으로 하고, 대극은 금속 Li로 했다. 세퍼레이터는, GE 헬스케어·재팬 주식회사 제조, 두께 400㎛, 품번 1825-055의 Whatman 유리 섬유 여과지로 했다.
작용극, 대극, 세퍼레이터 및 전해액 E8을 전지 케이스(호센 주식회사 제조 CR2032형 코인 셀 케이스)에 수용하여 하프 셀을 구성했다. 이것을 실시예 12의 하프 셀로 했다.
(비교예 7)
두께 20㎛의 SUS박을 작용극으로 한 이외는 실시예 12와 동일하게 하여 비교예 7의 하프 셀을 작성했다.
실시예 12 및 비교예 7의 하프 셀에 대하여, 1mV/s의 속도로 3.1V∼4.6V(vs.Li 기준)의 범위에서 리니어 스위프 볼타메트리(약칭 LSV) 측정을 10회 반복했을 때의, 전류와 전극 전위의 변화를 관찰했다. 실시예 12 및 비교예 7의 하프 셀의 충방전 1회째, 2회째, 3회째의 전류와 전극 전위와의 관계를 나타내는 그래프를 도 32에 나타낸다.
도 32로부터, 작용극을 SUS로 한 비교예 7에서는, 4.0V 부근에서 큰 전류를 확인했다. 그것에 대하여 작용극을 Al로 한 실시예 12에서는, 4.0V에서는 전류가 거의 확인되지 않으며, 4.3V에서 일단 근소하게 전류가 증대하지만, 그 후 4.6V까지 대폭적인 증대는 보이지 않았다.
또한, 작용극을 SUS로 한 비교예 7에서는, 반복 회수가 증가할수록 전류량은 증대하는 것에 대하여, 작용극을 Al로 한 실시예 12에서는, 반복에 의해 전류량은 감소하여 정상화를 향했다.
이상의 결과로부터, 본 발명의 전해액을 사용한 2차 전지는, 고전위에서도 Al의 용출이 일어나지 않는다고 생각된다. Al의 용출이 일어나지 않는다고 여겨지는 이유는 명확하지 않지만, 본 발명의 전해액은, 종래의 전해액과는 금속염과 유기 용매의 종류, 존재 환경 및 금속염 농도가 상이하여, 종래의 전해액에 비하여, 본 발명의 전해액에 대한 Al의 용해성이 낮은 것이 아닌지 추측한다.
또한 본 발명의 전해액을 사용한 2차 전지는, SUS를 정극용의 집전체에 이용하면, 고전위에 있어서 전류가 증대하는 것을 알 수 있었다. 그 때문에, 본 발명의 전해액을 사용한 2차 전지는, 집전체에 SUS가 아닌 Al을 이용하는 쪽이 좋은 것을 알 수 있었다.
(평가예 11: Al의 용출 확인 2)
실시예 1, 실시예 2 및 비교예 1의 리튬 이온 2차 전지를, 사용 전압 범위 3V∼4.2V로 하고, 레이트 1C로 충방전을 100회 반복하고, 충방전 100회 후에 해체하고, 부극을 취출했다. 정극으로부터 전해액에 용출하여, 부극의 표면으로 침착한 Al의 양을 ICP(고주파 유도 결합 플라즈마) 발광 분광 분석 장치로 측정했다. 측정 결과를 표 9에 나타낸다. 표 9의 Al량(%)은 부극 활물질층 1g당의 Al의 질량을 %로 나타낸 것이며, Al량(μg/매)은, 부극 활물질층 1매당의 Al의 질량(μg)을 나타내고, Al량(%)÷100×각 부극 활물질층 1매의 질량=Al량(μg/매)의 계산식에 의해 산출했다.
Figure pct00010
실시예 1 및 실시예 2의 리튬 이온 2차 전지에서는, 비교예 1의 리튬 이온 2차 전지보다도, 부극 표면에 침착하고 있는 Al의 양이 대폭으로 적었다. 이 점에서, 본 발명의 전해액을 이용한 실시예 1 및 실시예 2의 리튬 이온 2차 전지에서는, 종래의 전해액을 이용한 비교예 1의 리튬 이온 2차 전지보다도 정극의 집전체로부터의 Al의 용출이 억제된 것을 알 수 있었다.
(평가예 12: Al 집전체의 표면 분석)
실시예 1 및 실시예 2의 리튬 이온 2차 전지를, 사용 전압 범위 3V∼4.2V로 하고, 레이트 1C로 충방전을 100회 반복하고, 충방전 100회 후에 해체하고, 정극용 집전체인 알루미늄박을 각각 취출하여, 알루미늄박의 표면을 디메틸카보네이트로 세정했다.
세정 후의 실시예 1 및 실시예 2의 리튬 이온 2차 전지의 알루미늄박의 표면을, Ar 스퍼터로 에칭하면서 X선 광전자 분광법(XPS)으로 표면 분석을 행했다. 실시예 1 및 실시예 2의 리튬 이온 2차 전지의 충방전 후의 알루미늄박의 표면 분석 결과를 도 33 및 도 34에 나타낸다.
도 33 및 도 34를 비교하면, 실시예 1 및 실시예 2의 리튬 이온 2차 전지의 충방전 후의 정극용 집전체인 알루미늄박의 표면 분석 결과는 양자 모두 거의 동일하고, 이하의 것을 말할 수 있다. 알루미늄박의 표면에 있어서, 최표면의 Al의 화학 상태는 AlF3이었다. 깊이 방향으로 에칭해 가면, Al, O, F의 피크가 검출되었다. 표면으로부터 1회∼3회 에칭해 간 개소는 Al-F 결합 및 Al-O 결합의 복합 상태인 것을 알 수 있었다. 또한 에칭해 가면 4회 에칭(SiO2 환산으로 깊이 약 25㎚)한 곳으로부터 O, F의 피크가 소실되어, Al만의 피크가 관찰되었다. 또한, XPS 측정 데이터에 있어서, AlF3은, Al 피크 위치 76.3eV에 관찰되고, 순Al은, Al 피크 위치 73eV에 관찰되고, Al-F 결합 및 Al-O 결합의 복합 상태에서는, Al 피크 위치 74eV∼76.3eV에 관찰된다. 도 33 및 도 34에 나타내는 파선은, AlF3, Al, Al2O3 각각의 대표적인 피크 위치를 나타낸다.
이상의 결과로부터, 본 발명의 충방전 후의 리튬 이온 2차 전지의 알루미늄박의 표면에는, 깊이 방향으로 약 25㎚의 두께로, Al-F 결합(AlF3이라고 추측됨)의 층과, Al-F 결합(AlF3이라고 추측됨) 및 Al-O 결합(Al2O3이라고 추측됨)의 혼재하는 층이 형성되어 있는 것을 확인할 수 있었다.
즉, 본 발명의 리튬 이온 2차 전지에 있어서, 본 발명의 전해액을 이용해도 충방전 후에는 알루미늄박의 최표면에는 Al-F 결합(AlF3이라고 추측됨)으로 이루어지는 부동태막이 형성되는 것을 알 수 있었다.
평가예 10∼12의 결과로부터, 본 발명의 전해액과, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 조합하는 리튬 이온 2차 전지에서는, 충방전에 의해 정극용 집전체의 표면에는 부동태막이 형성되고, 또한, 고전위 상태에 있어서도 정극용 집전체로부터의 Al의 용출이 억제되는 것을 알 수 있었다.
(평가예 13: 리튬 이온 2차 전지의 출력 특성 평가 I)
(0℃, SOC 20%에서의 출력 특성 평가)
상기의 실시예 1 및 비교예 1의 리튬 이온 2차 전지의 출력 특성을 평가했다. 평가 조건은, 충전 상태(SOC) 20%, 0℃, 사용 전압 범위 3V-4.2V, 용량 13.5mAh이다. SOC 20%, 0℃는, 예를 들면, 냉장실 등에서 사용하는 경우와 같이 출력 특성이 나오기 어려운 영역이다. 실시예 1 및 비교예 1의 리튬 이온 2차 전지의 출력 특성의 평가는, 각각 2초 출력과 5초 출력에 대해서 각각 3회 행했다. 출력 특성의 평가 결과를 표 10에 나타냈다. 표 10 중의 「2초 출력」은, 방전 개시부터 2초 후에서의 출력을 의미하고, 「5초 출력」은 방전 개시부터 5초 후에서의 출력을 의미하고 있다.
표 10에 나타내는 바와 같이, 실시예 1의 리튬 이온 2차 전지의 0℃, SOC 20%의 출력은, 비교예 1의 리튬 이온 2차 전지의 출력에 비하여, 1.2배∼1.3배 높았다.
(25℃, SOC 20%에서의 출력 특성 평가)
실시예 1 및 비교예 1의 리튬 이온 전지의 출력 특성을, 충전 상태(SOC) 20%, 25℃, 사용 전압 범위 3V-4.2V, 용량 13.5mAh의 조건으로 평가했다. 실시예 1 및 비교예 1의 리튬 이온 2차 전지의 출력 특성의 평가는, 각각 2초 출력과 5초 출력에 대해서 각각 3회 행했다. 평가 결과를 표 10에 나타냈다.
표 10에 나타내는 바와 같이, 실시예 1의 리튬 이온 2차 전지의 25℃, SOC 20%의 출력은, 비교예 1의 리튬 이온 2차 전지의 출력에 비하여, 1.2배∼1.3배 높았다.
(출력 특성에 대한 온도의 영향)
또한, 상기의 실시예 1 및 비교예 1의 리튬 이온 2차 전지의 출력 특성에 대한, 측정시의 온도의 영향을 조사했다. 0℃와 25℃에서 측정하고, 어느 온도하에서의 측정에 있어서도, 평가 조건은, 충전 상태(SOC) 20%, 사용 전압 범위 3V-4.2V, 용량 13.5mAh로 했다. 25℃에서의 출력에 대한 0℃에서의 출력의 비율(0℃ 출력/25℃ 출력)을 구했다. 그 결과를 표 10에 나타냈다.
표 10에 나타내는 바와 같이, 실시예 1의 리튬 이온 2차 전지는, 2초 출력 및 5초 출력에 있어서의 25℃에서의 출력에 대한 0℃에서의 출력의 비율(0℃ 출력/25℃ 출력)이, 비교예 1의 리튬 이온 2차 전지와 동 정도이며, 실시예 1의 리튬 이온 2차 전지는, 비교예 1의 리튬 이온 2차 전지와 동 정도로는 저온에서의 출력 저하를 억제할 수 있는 것을 알 수 있었다.
(레이트 용량 특성의 평가)
실시예 1 및 비교예 1의 리튬 이온 2차 전지의 레이트 용량 특성을 평가했다. 각 전지의 용량은, 160mAh/g이 되도록 조정했다. 평가 조건은, 0.1C, 0.2C, 0.5C, 1C, 2C의 레이트로 충전을 행한 후에 방전을 행하고, 각각의 레이트에 있어서의 정극의 용량(방전 용량)을 측정했다. 0.1C 방전 후 및 1C 방전 후의 방전 용량을 표 10에 나타냈다. 표 10에 나타낸 방전 용량은, 정극 질량당의 용량의 산출값이다.
표 10에 나타내는 바와 같이, 0.1C 방전 용량은 실시예 1의 리튬 이온 2차 전지와 비교예 1의 리튬 이온 2차 전지로 큰 차이가 없었지만, 1C 방전 용량은 실시예 1의 리튬 이온 2차 전지의 쪽이 비교예 1의 리튬 이온 2차 전지보다도 컸다.
Figure pct00011
(평가예 14: 리튬 이온 2차 전지의 입출력 특성)
(실시예 3의 리튬 이온 2차 전지)
세퍼레이터로서, 두께 20㎛의 셀룰로오스제 부직포를 이용한 이외는 실시예 1의 리튬 이온 2차 전지와 동일하게 하여 실시예 3의 리튬 이온 2차 전지를 작성했다.
(실시예 4의 리튬 이온 2차 전지)
이하와 같이 제작한 부극을 이용한 이외는 실시예 3의 리튬 이온 2차 전지와 동일하게 하여, 실시예 4의 리튬 이온 2차 전지를 작성했다.
부극 활물질인 천연 흑연 90질량부 및, 결착제인 폴리불화 비닐리덴 10질량부를 혼합했다. 이 혼합물을 적량의 이온 교환수에 분산시켜, 슬러리를 제작했다. 부극 집전체로서 두께 20㎛의 구리박을 준비했다. 이 구리박의 표면에, 닥터 블레이드를 이용하여, 상기 슬러리를 막 형상으로 도포했다. 슬러리가 도포된 구리박을 건조하여 물을 제거하고, 그 후, 구리박을 프레스하여, 접합물을 얻었다. 얻어진 접합물을 진공 건조기로 120℃, 6시간 가열 건조하여, 부극 활물질층이 형성된 구리박을 얻었다. 이것을 부극으로 했다.
(비교예 2의 리튬 이온 2차 전지)
전해액 E8을 대신하여 전해액 C5를 이용한 이외는, 실시예 3의 리튬 이온 2차 전지와 동일하게 하여, 비교예 2의 리튬 이온 2차 전지를 작성했다.
(비교예 3의 리튬 이온 2차 전지)
전해액 E8을 대신하여 전해액 C5를 이용한 이외는, 실시예 4의 리튬 이온 2차 전지와 동일하게 하여, 비교예 3의 리튬 이온 2차 전지를 작성했다.
실시예 3, 4, 비교예 2, 3의 리튬 이온 2차 전지의 출력 특성을 이하의 조건으로 평가했다.
(1) 0℃ 또는 25℃, SOC 80%에서의 입력 특성 평가
평가 조건은, 충전 상태(SOC) 80%, 0℃ 또는 25℃, 사용 전압 범위 3V-4.2V, 용량 13.5mAh로 했다. 입력 특성의 평가는, 2초 입력과 5초 입력에 대해서 전지마다 각각 3회 행했다.
또한, 각 전지의 체적에 기초하여, 25℃, 2초 입력에 있어서의 전지 출력 밀도(W/L)를 산출했다.
입력 특성의 평가 결과를 표 11에 나타낸다. 표 11 중의 「2초 입력」은, 충전 개시부터 2초 후에서의 입력을 의미하고, 「5초 입력」은 충전 개시부터 5초 후에서의 입력을 의미하고 있다.
표 11에 나타내는 바와 같이, 온도의 차이에 관계없이, 실시예 3의 리튬 이온 2차 전지의 입력은, 비교예 2의 리튬 이온 2차 전지의 입력에 비하여, 현저하게 높았다. 마찬가지로, 실시예 4의 리튬 이온 2차 전지의 입력은, 비교예 3의 리튬 이온 2차 전지의 입력에 비하여, 현저하게 높았다.
또한, 실시예 3의 리튬 이온 2차 전지의 전지 입력 밀도는, 비교예 2의 리튬 이온 2차 전지의 전지 입력 밀도에 비하여, 현저하게 높았다. 마찬가지로, 실시예 4의 리튬 이온 2차 전지의 전지 입력 밀도는, 비교예 3의 리튬 이온 2차 전지의 전지 입력 밀도에 비하여, 현저하게 높았다.
(2) 0℃ 또는 25℃, SOC 20%에서의 출력 특성 평가
평가 조건은, 충전 상태(SOC) 20%, 0℃ 또는 25℃, 사용 전압 범위 3V-4.2V, 용량 13.5mAh로 했다. SOC 20%, 0℃는, 예를 들면, 냉장실 등에서 사용하는 경우와 같이 출력 특성이 나오기 어려운 영역이다. 출력 특성의 평가는, 2초 출력과 5초 출력에 대해서 전지마다 각각 3회 행했다.
또한, 각 전지의 체적에 기초하여, 25℃, 2초 출력에 있어서의 전지 출력 밀도(W/L)를 산출했다.
출력 특성의 평가 결과를 표 11에 나타낸다. 표 11 중의 「2초 출력」은, 방전 개시부터 2초 후에서의 출력을 의미하고, 「5초 출력」은 방전 개시부터 5초 후에서의 출력을 의미하고 있다.
표 11에 나타내는 바와 같이, 온도의 차이에 관계없이, 실시예 3의 리튬 이온 2차 전지의 출력은, 비교예 2의 리튬 이온 2차 전지의 출력에 비하여, 현저하게 높았다. 마찬가지로, 실시예 4의 리튬 이온 2차 전지의 출력은, 비교예 3의 리튬 이온 2차 전지의 출력에 비하여, 현저하게 높았다.
또한, 실시예 3의 리튬 이온 2차 전지의 전지 출력 밀도는, 비교예 2의 리튬 이온 2차 전지의 전지 출력 밀도에 비하여, 현저하게 높았다. 마찬가지로, 실시예 4의 리튬 이온 2차 전지의 전지 출력 밀도는, 비교예 3의 리튬 이온 2차 전지의 전지 출력 밀도에 비하여, 현저하게 높았다.
Figure pct00012
평가예 13∼평가예 14의 결과로부터, 본 발명의 전해액과, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 조합하는 본 발명의 리튬 이온 2차 전지에서는, 입출력 특성이 종래의 전해액을 이용한 리튬 이온 2차 전지보다 우수한 것을 알 수 있었다.
(평가예 15: 저온 시험)
전해액 E10, 전해액 E12, 전해액 E15, 전해액 E18을 각각 용기에 넣고, 불활성 가스를 충전하여 밀폐했다. 이들을 -30℃의 냉동고에 2일간 보관했다. 보관 후에 각 전해액을 관찰했다. 어느 전해액도 고화되지 않고 액체 상태를 유지하고 있으며, 염의 석출도 관찰되지 않았다.
(실시예 5)
전해액 E8을 이용한 하프 셀을 이하와 같이 제조했다.
지름 13.82㎜, 면적 1.5㎠의 알루미늄박(JIS A1000번계)을 작용극으로 했다. 대극은 금속 Li로 했다. 세퍼레이터는, GE 헬스케어·재팬 주식회사 제조의 Whatman 유리 섬유 여과지로 했다.
작용극, 대극, 세퍼레이터 및 전해액 E8을 전지 케이스(호센 주식회사 제조 CR2032형 코인 셀 케이스)에 수용하여 하프 셀을 구성했다. 이것을 실시예 5의 하프 셀로 했다.
(실시예 6)
전해액 E8을 대신하여 전해액 E10을 이용한 이외는, 실시예 5의 하프 셀과 동일하게 하여, 실시예 6의 하프 셀을 작성했다.
(실시예 7)
전해액 E8을 대신하여 전해액 E15를 이용한 이외는, 실시예 5의 하프 셀과 동일하게 하여, 실시예 7의 하프 셀을 작성했다.
(실시예 8)
전해액 E8을 대신하여 전해액 E18을 이용한 이외는, 실시예 5의 하프 셀과 동일하게 하여, 실시예 8의 하프 셀을 작성했다.
(실시예 9)
전해액 E8을 대신하여 전해액 E12를 이용한 이외는, 실시예 5의 하프 셀과 동일하게 하여, 실시예 9의 하프 셀을 작성했다.
(비교예 4)
전해액 E8을 대신하여 전해액 C5를 이용한 이외는, 실시예 5의 하프 셀과 동일하게 하여, 비교예 4의 하프 셀을 작성했다.
(비교예 5)
전해액 E8을 대신하여 전해액 C6을 이용한 이외는, 실시예 5의 하프 셀과 동일하게 하여, 비교예 5의 하프 셀을 작성했다.
(평가예 16: 작용극 Al에서의 사이클릭 볼타메트리 평가)
실시예 5∼8, 비교예 4의 하프 셀에 대하여, 3.1V∼4.6V, 1mV/s의 조건으로, 5사이클의 사이클릭 볼타메트리 평가를 행하고, 그 후, 실시예 5∼8의 하프 셀에 대하여, 3.1V∼5.1V, 1mV/s의 조건으로, 5사이클의 사이클릭 볼타메트리 평가를 행했다.
또한, 실시예 6, 실시예 9 및 비교예 5의 하프 셀에 대하여, 3.0V∼4.5V, 1mV/s의 조건으로, 10사이클의 사이클릭 볼타메트리 평가를 행하고, 그 후, 3.0V∼5.0V, 1mV/s의 조건으로, 10사이클의 사이클릭 볼타메트리 평가를 행했다.
실시예 5∼8, 비교예 4의 하프 셀에 대한 전위와 응답 전류와의 관계를 나타내는 그래프를 도 35∼도 43에 나타낸다. 또한, 실시예 6, 실시예 9 및 비교예 5의 하프 셀에 대한 전위와 응답 전류와의 관계를 나타내는 그래프를 도 44∼도 49에 나타낸다.
도 43으로부터, 비교예 4의 하프 셀에서는, 2사이클 이후도 3.1V 내지 4.6V에 걸쳐 전류가 흘러, 고전위가 됨에 따라 전류가 증대하고 있는 것을 알 수 있다. 또한, 도 48 및 도 49로부터, 비교예 5의 하프 셀에 있어서도 동일하게, 2사이클 이후도 3.0V 내지 4.5V에 걸쳐 전류가 흘러, 고전위가 됨에 따라 전류가 증대하고 있다. 이 전류는, 작용극의 알루미늄이 부식한 것에 의한 Al의 산화 전류로 추정된다.
다른 한편, 도 35∼도 42로부터, 실시예 5∼8의 하프 셀에서는, 2사이클 이후는 3.1V 내지 4.6V에 걸쳐 거의 전류가 흐르고 있지 않은 것을 알 수 있다. 4.3V 이상에서는 전위 상승에 수반하여 근소하게 전류의 증대가 관찰되기는 하지만, 사이클을 반복함에 따라, 전류의 양은 감소하여, 정상 상태로 향했다. 특히, 실시예 6∼8의 하프 셀에 있어서는, 고전위인 5.1V까지 전류의 현저한 증대가 관찰되지 않고, 게다가, 사이클의 반복에 수반하여 전류량의 감소가 관찰되었다.
또한, 도 44∼도 47로부터, 실시예 6 및 실시예 9의 하프 셀에 있어서도 동일하게, 2사이클 이후는 3.0V 내지 4.5V에 걸쳐 거의 전류가 흐르고 있지 않은 것을 알 수 있다. 특히 3사이클째 이후에서는 4.5V에 이르기까지 전류의 증대는 거의 없다. 그리고, 실시예 9의 하프 셀에서는 고전위가 되는 4.5V 이후에 전류의 증대가 보이지만, 이것은 비교예 5의 하프 셀에 있어서의 4.5V 이후의 전류값에 비하면 훨씬 작은 값이다. 실시예 6의 하프 셀에 대해서는, 4.5V 이후도 5.0V에 이르기까지 전류의 증대는 거의 없고, 사이클의 반복에 수반하여 전류량의 감소가 관찰되었다.
사이클릭 볼타메트리 평가의 결과로부터, 5V를 초과하는 고전위 조건에서도, 전해액 E8, 전해액 E10, 전해액 E12, 전해액 E15 및 전해액 E18의 알루미늄에 대한 부식성은 낮다고 말할 수 있다. 즉, 전해액 E8, 전해액 E10, 전해액 E12, 전해액 E15 및 전해액 E18은, 집전체 등에 알루미늄을 이용한 전지에 대하여, 적합한 전해액이라고 말할 수 있다.
(평가예 17: 리튬 이온 2차 전지 출력 특성 평가 Ⅱ)
(코팅의 검토)
(실시예 10)
정극의 코팅을 5.5㎎/㎠, 부극의 코팅을 4㎎/㎠로 한 이외는 실시예 3의 리튬 이온 2차 전지와 동일하게 하여 실시예 10의 리튬 이온 2차 전지를 작성했다.
(비교예 6)
정극의 코팅을 5.5㎎/㎠, 부극의 코팅을 4㎎/㎠로 한 이외는 비교예 2의 리튬 이온 2차 전지와 동일하게 하여 비교예 6의 리튬 이온 2차 전지를 작성했다.
실시예 10, 비교예 6의 리튬 이온 2차 전지의 입출력 특성을 이하의 조건으로 평가했다.
(25℃ SOC 80%, -10℃ SOC 30%, -30℃ SOC 30%에서의 입출력 특성 평가)
평가 조건은, 충전 상태(SOC) 80%, 25℃, 사용 전압 범위 3V-4.2V, 용량 13.5mAh, 5초 입력과, 충전 상태(SOC) 30%, -10℃ 또는 -30℃, 사용 전압 범위 3V-4.2V, 용량 13.5mAh, 2초 출력으로 했다. 여기에서 -10℃, -30℃는, 저온 환경에서 사용하는 경우와 같이 출력 특성이 나오기 어려운 영역이다.
입출력 특성의 평가 결과를 표 12에 나타낸다. 표 12 중의 「5초 입력」은 충전 개시부터 5초 후에서의 입력을 의미하고, 「2초 출력」은, 방전 개시부터 2초 후에서의 출력을 의미하고 있다.
표 12에 나타내는 바와 같이, 온도의 차이에 관계없이, 저코팅의 리튬 이온 2차 전지에 있어서도, 실시예 10의 리튬 이온 2차 전지의 입출력은, 비교예 6의 리튬 이온 2차 전지의 입출력에 비하여, 현저하게 높았다.
Figure pct00013
(평가예 18: 라만 스펙트럼 측정)
전해액 E8, 전해액 E21, 전해액 C4, 그리고, 전해액 E10, 전해액 E12, 전해액 E14, 전해액 C6에 대해, 이하의 조건으로 라만 스펙트럼 측정을 행했다. 각 전해액의 금속염의 음이온 부분에 유래하는 피크가 관찰된 라만 스펙트럼을 각각 도 50∼도 56에 나타낸다. 도면의 횡축은 파수(㎝-1)이며, 종축은 산란 강도이다.
라만 스펙트럼 측정 조건
장치: 레이저 라만 분광 광도계(일본분광 주식회사 NRS 시리즈)
레이저 파장: 532㎚
불활성 가스 분위기하에서 전해액을 석영 셀에 밀폐하여, 측정에 제공했다.
도 50∼52에서 나타나는 전해액 E8, 전해액 E21, 전해액 C4의 라만 스펙트럼의 700∼800㎝-1에는, 아세토니트릴에 용해한 LiFSA의 (FSO2)2N에 유래하는 특징적인 피크가 관찰되었다. 여기에서, 도 50∼52로부터, LiFSA의 농도의 증가에 수반하여, 상기 피크가 고파수측에 시프트하는 것을 알 수 있다. 전해액이 고농도화함에 따라, 염의 음이온에 해당하는 (FSO2)2N이, 보다 많은 Li와 상호 작용하는 상태가 되는, 환언하면, 농도가 낮은 경우는 Li와 음이온은 SSIP(Solvent-separated ion pairs) 상태를 주로 형성하고 있으며, 고농도화에 수반하여 CIP(Contact ion pairs) 상태나 AGG(aggregate) 상태를 주로 형성하고 있다고 추찰된다. 그리고, 이러한 상태의 변화가 라만 스펙트럼의 피크 시프트로서 관찰되었다고 고찰할 수 있다.
도 53∼56에서 나타나는 전해액 E10, 전해액 E12, 전해액 E14, 전해액 C6의 라만 스펙트럼의 700∼800㎝-1에는, 디메틸카보네이트에 용해한 LiFSA의 (FSO2)2N에 유래하는 특징적인 피크가 관찰되었다. 여기에서, 도 53∼56으로부터, LiFSA의 농도의 증가에 수반하여, 상기 피크가 고파수측에 시프트하는 것을 알 수 있다. 이 현상은, 전(前)단락에서 고찰한 것과 동일하게, 전해액이 고농도화함에 따라, 염의 음이온에 해당하는 (FSO2)2N이 Li와 상호 작용하는 상태가 되며, 그리고, 이러한 상태의 변화가 라만 스펙트럼의 피크 시프트로서 관찰되었다고 고찰할 수 있다.
(평가예 19: 용량 유지율 측정)
(실시예 11)
리튬 이온 2차 전지의 전해액으로서, 전해액 E10을 이용한 이외는, 실시예 1의 리튬 이온 2차 전지와 동일하게 하여 실시예 11의 리튬 이온 2차 전지를 작성했다.
실시예 11의 리튬 이온 2차 전지 및 비교예 1의 리튬 이온 2차 전지를 이용하여, 각각 온도 25℃, 1C의 CC 충전의 조건하에 있어서 4.1V까지 충전하고, 1분간 휴지한 후, 1C의 CC 방전으로 3.0V까지 방전하고, 1분간 휴지하는 사이클을 500사이클 반복하는 사이클 시험을 행했다. 각 사이클에 있어서의 방전 용량 유지율을 측정하고, 결과를 도 57에 나타냈다. 500사이클째에 있어서의 방전 용량 유지율을 표 13에 나타냈다. 방전 용량 유지율은, 각 사이클의 방전 용량을 초회의 방전 용량으로 나눈 값의 백분율((각 사이클의 방전 용량)/(초회의 방전 용량)×100)로 구해지는 값이다.
표 13 및 도 57에 나타내는 바와 같이, 실시예 11의 리튬 이온 2차 전지는 비교예 1의 리튬 이온 2차 전지에 비하여, 사이클 수명이 향상되었다.
Figure pct00014
(평가예 20: Ni, Mn, Co의 용출 확인)
평가예 20에서 용량 유지율을 측정한 사이클 시험 후의 실시예 11 및 비교예 1의 리튬 이온 2차 전지를 해체하고, 부극을 취출했다. 부극의 표면으로 침착한 Ni, Mn, Co의 양을 ICP(고주파 유도 결합 플라즈마) 발광 분광 분석 장치로 측정했다. 측정 결과를 표 14에 나타낸다. 표 17의 Ni, Mn, Co량(%)은 부극 활물질층 1g당의 Ni, Mn, Co의 질량을 %로 나타낸 것이며, Ni, Mn, Co량(μg/매)은, 부극 활물질층 1매당의 Ni, Mn, Co의 질량(μg)을 나타내고, Ni, Mn, Co량(%)÷100×각 부극 활물질층 1매의 질량=Ni, Mn, Co량(μg/매)의 계산식에 의해 산출했다.
Figure pct00015
표 14에 있어서, 「<」은 정량 하한값 이하인 것을 나타낸다.
부극의 표면에 침착한 Ni, Co, Mn은, 정극으로부터 전해액에 용출하여, 부극에 침착한 것으로 추측된다. 표 14의 결과로부터, 실시예 11의 리튬 이온 2차 전지에 있어서는 500회의 사이클 시험 후에 있어서도 금속 용출이 적은 것을 알 수 있었다.
(평가예 21: 저온에서의 레이트 특성)
(참고예 3)
활물질인 평균 입경 10㎛의 흑연 90질량부 및, 결착제인 폴리불화 비닐리덴 10질량부를 혼합했다. 이 혼합물을 적량의 N-메틸-2-피롤리돈에 분산시켜, 슬러리를 제작했다. 집전체로서 두께 20㎛의 구리박을 준비했다. 이 구리박의 표면에, 닥터 블레이드를 이용하여, 상기 슬러리를 막 형상으로 도포했다. 슬러리가 도포된 구리박을 건조하여 N-메틸-2-피롤리돈을 제거하고, 그 후, 구리박을 프레스하여, 접합물을 얻었다. 얻어진 접합물을 진공 건조기로 120℃, 6시간 가열 건조하여, 활물질층이 형성된 구리박을 얻었다. 이것을 작용극으로 했다.
대극은 금속 Li로 했다.
작용극, 대극, 양자의 사이에 끼워 장착한 두께 400㎛의 세퍼레이터(GE 헬스케어·재팬 주식회사 제조 Whatman 유리 섬유 여과지) 및 전해액 E21을 전지 케이스(호센 주식회사 제조 CR2032형 코인 셀 케이스)에 수용하여, 하프 셀을 구성했다. 이것을 참고예 3의 하프 셀로 했다.
(참고예 4)
전해액으로서 전해액 C5를 이용한 이외는, 참고예 3의 하프 셀과 동일한 방법으로, 참고예 4의 하프 셀을 얻었다.
참고예 3과 참고예 4의 하프 셀을 이용하여, -20℃에서의 레이트 특성을 이하와 같이 평가했다. 결과를 도 58 및 도 59에 나타낸다.
(1) 부극(평가극)으로의 리튬 흡장이 진행되는 방향으로 전류를 흘린다.
(2) 전압 범위: 2V→0.01V(v.s.Li/Li+)
(3) 레이트: 0.02C, 0.05C, 0.1C, 0.2C, 0.5C(0.01V 도달 후에 전류를 정지)
또한, 1C는, 일정 전류에 있어서 1시간으로 전지를 완전 충전, 또는 방전시키기 위해 필요로 하는 전류값을 나타낸다.
도 58 및 도 59로부터, 각 전류 레이트에 있어서의 참고예 3의 하프 셀의 전압 커브는, 참고예 4의 하프 셀의 전압 커브와 비교하여, 높은 전압을 나타내고 있는 것을 알 수 있다. 본 발명의 전해액을 이용한 리튬 이온 2차 전지는, 저온 환경에 있어서도 우수한 레이트 특성을 나타내는 것이 뒷받침되었다.
(평가예 22: 전지의 내부 저항)
(실시예 13)
전해액 E8을 이용한 실시예 13의 리튬 이온 2차 전지를 이하와 같이 제조했다.
정극 활물질인 LiNi5 /10Co2 /10Mn3 /10O2로 나타나는 층상 암염 구조의 리튬 함유 금속 산화물 90질량부, 도전조제인 아세틸렌 블랙 8질량부 및, 결착제인 폴리불화 비닐리덴 2질량부를 혼합했다. 이 혼합물을 적량의 N-메틸-2-피롤리돈에 분산시켜, 슬러리를 제작했다. 정극 집전체로서 두께 20㎛의 알루미늄박을 준비했다. 이 알루미늄박의 표면에, 닥터 블레이드를 이용하여 상기 슬러리가 막 형상이 되도록 도포했다. 슬러리가 도포된 알루미늄박을 80℃에서 20분간 건조함으로써 N-메틸-2-피롤리돈을 휘발에 의해 제거했다. 그 후, 이 알루미늄박을 프레스하여 접합물을 얻었다. 얻어진 접합물을 진공 건조기로 120℃, 6시간 가열 건조하여, 정극 활물질층이 형성된 알루미늄박을 얻었다. 이것을 정극으로 했다.
부극 활물질인 천연 흑연 98질량부, 그리고 결착제인 스티렌부타디엔 고무 1질량부 및 카복시메틸셀룰로오스 1질량부를 혼합했다. 이 혼합물을 적량의 이온 교환수에 분산시켜, 슬러리를 제작했다. 부극 집전체로서 두께 20㎛의 구리박을 준비했다. 이 구리박의 표면에, 닥터 블레이드를 이용하여, 상기 슬러리를 막 형상으로 도포했다. 슬러리가 도포된 구리박을 건조하여 물을 제거하고, 그 후, 구리박을 프레스하여, 접합물을 얻었다. 얻어진 접합물을 진공 건조기로 100℃, 6시간 가열 건조하여, 부극 활물질층이 형성된 구리박을 얻었다. 이것을 부극으로 했다.
세퍼레이터로서, 두께 20㎛의 셀룰로오스제 부직포를 준비했다.
정극과 부극으로 세퍼레이터를 끼워 지지하여, 극판군으로 했다. 이 극판군을 2매 1조의 라미네이트 필름으로 덮고, 세 변을 시일한 후, 주머니 형상이 된 라미네이트 필름에 전해액 E8을 주입했다. 그 후, 남은 한 변을 시일함으로써, 네 변이 기밀하게 시일되어, 극판군 및 전해액이 밀폐된 리튬 이온 2차 전지를 얻었다. 이 전지를 실시예 13의 리튬 이온 2차 전지로 했다.
(실시예 14)
전해액으로서 전해액 E10을 이용한 이외는, 실시예 13과 동일한 방법으로, 실시예 14의 리튬 이온 2차 전지를 얻었다.
(실시예 15)
전해액으로서 전해액 E12를 이용한 이외는, 실시예 13과 동일한 방법으로, 실시예 15의 리튬 이온 2차 전지를 얻었다.
(비교예 8)
전해액으로서 전해액 C5를 이용한 이외는, 실시예 13과 동일한 방법으로, 비교예 8의 리튬 이온 2차 전지를 얻었다.
실시예 13∼15 및 비교예 8의 리튬 이온 2차 전지를 준비하여, 전지의 내부 저항을 평가했다.
각 리튬 이온 2차 전지에 대해서, 실온, 3.0V∼4.1V(vs.Li 기준)의 범위에서 CC 충방전, 즉 정전류 충방전을 반복했다. 그리고, 초회 충방전 후의 교류 임피던스 및, 100사이클 경과 후의 교류 임피던스를 측정했다. 얻어진 복소 임피던스 평면 플롯을 기초로, 전해액, 부극 및 정극의 반응 저항을 각각 해석했다. 도 60에 나타내는 바와 같이, 복소 임피던스 평면 플롯에는, 2개의 원호가 보였다. 도면 중 좌측(즉 복소 임피던스의 실부가 작은 측)의 원호를 제1 원호라고 부른다. 도면 중 우측의 원호를 제2 원호라고 부른다. 제1 원호의 크기를 기초로 부극의 반응 저항을 해석하고, 제2 원호의 크기를 기초로 정극의 반응 저항을 해석했다. 제1 원호에 연속되는 도 60 중 최좌측의 플롯을 기초로 전해액의 저항을 해석했다. 해석 결과를 표 15 및 표 16에 나타낸다. 또한, 표 15는, 초회 충방전 후의 전해액의 저항(소위 용액 저항), 부극의 반응 저항, 정극의 반응 저항을 나타내고, 표 16은 100사이클 경과 후의 각 저항을 나타낸다.
Figure pct00016
Figure pct00017
표 15 및 표 16에 나타내는 바와 같이, 각 리튬 이온 2차 전지에 있어서, 100사이클 경과 후의 부극 반응 저항 및 정극 반응 저항은, 초회 충방전 후의 각 저항에 비하여 저하되는 경향이 있었다. 그리고, 표 16에 나타내는 100사이클 경과후에서는, 실시예 13∼15의 리튬 이온 2차 전지의 부극 반응 저항 및 정극 반응 저항은, 비교예 8의 리튬 이온 2차 전지의 부극 반응 저항 및 정극 반응 저항에 비하여 낮았다.
또한, 실시예 13, 15 및 비교예 8의 리튬 이온 2차 전지에 있어서의 전해액의 용액 저항은 거의 동일하고, 실시예 14의 리튬 이온 2차 전지에 있어서의 전해액의 용액 저항은, 실시예 13, 15 및 비교예 8에 비하여 높았다. 또한, 각 리튬 이온 2차 전지에 있어서의 각 전해액의 용액 저항은 초회 충방전 후도 100사이클 경과 후도 동등했다. 이 때문에, 각 전해액의 내구 열화는 발생하고 있지 않다고 생각된다. 상기한 비교예 및 실시예에 있어서 발생한 부극 반응 저항 및 정극 반응 저항의 차이는, 전해액의 내구 열화에 관계되는 것이 아니며 전극 자체에 발생하고 있는 것으로 생각된다.
리튬 이온 2차 전지의 내부 저항은, 전해액의 용액 저항, 부극의 반응 저항 및 정극의 반응 저항으로부터 종합적으로 판단할 수 있다. 표 15 및 표 16의 결과를 기초로 하면, 리튬 이온 2차 전지의 내부 저항 증대를 억제하는 관점에서는, 실시예 14, 15의 리튬 이온 2차 전지가 가장 내구성이 우수하고, 이어서 실시예 13의 리튬 이온 2차 전지가 내구성이 우수하다고 말할 수 있다.
(평가예 23: 전지의 사이클 내구성)
실시예 13∼15 및 비교예 8의 리튬 이온 2차 전지에 대해서, 실온, 3.0V∼4.1V(vs.Li 기준)의 범위에서 CC 충방전을 반복하고, 초회 충방전시의 방전 용량, 100사이클시의 방전 용량 및, 500사이클시의 방전 용량을 측정했다. 그리고, 초회 충방전시의 각 리튬 이온 2차 전지의 용량을 100%로 하고, 100사이클시 및 500사이클시의 각 리튬 이온 2차 전지의 용량 유지율(%)을 산출했다. 결과를 표 17에 나타낸다.
Figure pct00018
표 17에 나타내는 바와 같이, 실시예 13∼15의 리튬 이온 2차 전지는, SEI의 재료가 되는 EC를 포함하지 않음에도 불구하고, EC를 포함하는 비교예 8의 리튬 이온 2차 전지와 동등한 100사이클시의 용량 유지율을 나타냈다. 이것은, 실시예 13∼15의 리튬 이온 2차 전지에 있어서의 정극 및 부극에는, 본 발명의 전해액에 유래하는 피막이 존재하기 때문이라고 생각된다. 그리고, 실시예 14의 리튬 이온 2차 전지에 대해서는, 500사이클 경과시에도 매우 높은 용량 유지율을 나타내고, 특히 내구성이 우수했다. 이 결과로부터, 전해액의 유기 용매로서 DMC를 선택하는 경우에는, AN을 선택하는 경우에 비하여, 보다 내구성이 향상된다고 말할 수 있다.
본 발명의 전해액으로서, 이하의 전해액을 구체적으로 들 수 있다. 또한, 이하의 전해액에는, 기술한 것도 포함되어 있다.
(전해액 A)
본 발명의 전해액을 이하와 같이 제조했다.
유기 용매인 1,2-디메톡시에탄 약 5mL를, 교반자 및 온도계를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 1,2-디메톡시에탄에 대하여, 리튬염인 (CF3SO2)2NLi를 용액 온도가 40℃ 이하를 유지하도록 서서히 더하여, 용해시켰다. 약 13g의 (CF3SO2)2NLi를 더한 시점에서 (CF3SO2)2NLi의 용해가 일시 정체했기 때문에, 상기 플라스크를 항온조에 투입하고, 플라스크 내의 용액 온도가 50℃가 되도록 가온하여, (CF3SO2)2NLi를 용해시켰다. 약 15g의 (CF3SO2)2NLi를 더한 시점에서 (CF3SO2)2NLi의 용해가 재차 정체했기 때문에, 1,2-디메톡시에탄을 피펫으로 1물방울 더한 결과, (CF3SO2)2NLi는 용해했다. 또한 (CF3SO2)2NLi를 서서히 더하고, 소정의 (CF3SO2)2NLi를 전량 더했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 1,2-디메톡시에탄을 더했다. 얻어진 전해액은 용적 20mL이며, 이 전해액에 포함되는 (CF3SO2)2NLi는 18.38g이었다. 이것을 전해액 A로 했다. 전해액 A에 있어서의 (CF3SO2)2NLi의 농도는 3.2㏖/L이며, 밀도는 1.39g/㎤였다. 밀도는 20℃에서 측정했다.
또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
(전해액 B)
전해액 A와 동일한 방법으로, (CF3SO2)2NLi의 농도가 2.8㏖/L이며, 밀도가 1.36g/㎤인, 전해액 B를 제조했다.
(전해액 C)
유기 용매인 아세토니트릴 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 아세토니트릴에 대하여, 리튬염인 (CF3SO2)2NLi를 서서히 더하여, 용해시켰다. 소정의 (CF3SO2)2NLi를 더한 후에 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 아세토니트릴을 더했다. 이것을 전해액 C로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 C는, (CF3SO2)2NLi의 농도가 4.2㏖/L이며, 밀도가 1.52g/㎤였다.
(전해액 D)
전해액 C와 동일한 방법으로, (CF3SO2)2NLi의 농도가 3.0㏖/L이며, 밀도가 1.31g/㎤인, 전해액 D를 제조했다.
(전해액 E)
유기 용매로서 술포란을 이용한 이외는, 전해액 C와 동일한 방법으로, (CF3SO2)2NLi의 농도가 3.0㏖/L이며, 밀도가 1.57g/㎤인, 전해액 E를 제조했다.
(전해액 F)
유기 용매로서 디메틸술폭사이드를 이용한 이외는, 전해액 C와 동일한 방법으로, (CF3SO2)2NLi의 농도가 3.2㏖/L이며, 밀도가 1.49g/㎤인, 전해액 F를 제조했다.
(전해액 G)
리튬염으로서 (FSO2)2NLi를 이용하고, 유기 용매로서 1,2-디메톡시에탄을 이용한 이외는, 전해액 C와 동일한 방법으로, (FSO2)2NLi의 농도가 4.0㏖/L이며, 밀도가 1.33g/㎤인, 전해액 G를 제조했다.
(전해액 H)
전해액 G와 동일한 방법으로, (FSO2)2NLi의 농도가 3.6㏖/L이며, 밀도가 1.29g/㎤인, 전해액 H를 제조했다.
(전해액 I)
전해액 G와 동일한 방법으로, (FSO2)2NLi의 농도가 2.4㏖/L이며, 밀도가 1.18g/㎤인, 전해액 I를 제조했다.
(전해액 J)
유기 용매로서 아세토니트릴을 이용한 이외는, 전해액 G와 동일한 방법으로, (FSO2)2NLi의 농도가 5.0㏖/L이며, 밀도가 1.40g/㎤인, 전해액 J를 제조했다.
(전해액 K)
전해액 J와 동일한 방법으로, (FSO2)2NLi의 농도가 4.5㏖/L이며, 밀도가 1.34g/㎤인, 전해액 K를 제조했다.
(전해액 L)
유기 용매인 디메틸카보네이트 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 디메틸카보네이트에 대하여, 리튬염인 (FSO2)2NLi를 서서히 더하여, 용해시켰다. (FSO2)2NLi를 전량으로 14.64g 더한 후에 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 디메틸카보네이트를 더했다. 이것을 전해액 L로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 L에 있어서의 (FSO2)2NLi의 농도는 3.9㏖/L이며, 전해액 L의 밀도는 1.44g/㎤였다.
(전해액 M)
전해액 L과 동일한 방법으로, (FSO2)2NLi의 농도가 2.9㏖/L이며, 밀도가 1.36g/㎤인, 전해액 M을 제조했다.
(전해액 N)
유기 용매인 에틸메틸카보네이트 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 에틸메틸카보네이트에 대하여, 리튬염인 (FSO2)2NLi를 서서히 더하여, 용해시켰다. (FSO2)2NLi를 전량으로 12.81g 더한 후에 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 에틸메틸카보네이트를 더했다. 이것을 전해액 N으로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 N에 있어서의 (FSO2)2NLi의 농도는 3.4㏖/L이며, 전해액 N의 밀도는 1.35g/㎤였다.
(전해액 O)
유기 용매인 디에틸카보네이트 약 5mL를, 교반자를 구비한 플라스크에 넣었다. 교반 조건하에서, 상기 플라스크 중의 디에틸카보네이트에 대하여, 리튬염인 (FSO2)2NLi를 서서히 더하여, 용해시켰다. (FSO2)2NLi를 전량으로 11.37g 더한 후에 하룻밤 교반했다. 얻어진 전해액을 20mL 메스 플라스크로 옮기고, 용적이 20mL가 될 때까지 디에틸카보네이트를 더했다. 이것을 전해액 O로 했다. 또한, 상기 제조는 불활성 가스 분위기하의 글로브 박스 내에서 행했다.
전해액 O에 있어서의 (FSO2)2NLi의 농도는 3.0㏖/L이며, 전해액 O의 밀도는 1.29g/㎤였다.
표 18에 상기 전해액의 일람을 나타낸다.
Figure pct00019

Claims (13)

  1. 정극과, 부극과, 전해액을 갖는 비수 전해질 2차 전지로서,
    상기 정극은, 알루미늄 또는 알루미늄 합금으로 이루어지는 정극용 집전체를 갖고,
    상기 전해액은, 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하고,
    상기 전해액의 진동 분광 스펙트럼에 있어서의 상기 유기 용매 유래의 피크 강도에 대해, 상기 유기 용매 본래의 피크의 강도를 Io로 하고, 상기 피크가 시프트한 피크의 강도를 Is로 한 경우, Is>Io인 것을 특징으로 하는 비수 전해질 2차 전지.
  2. 제1항에 있어서, 
    상기 염의 양이온이 리튬인 비수 전해질 2차 전지.
  3. 제1항 또는 제2항에 있어서,
    상기 염의 음이온의 화학 구조가, 할로겐, 붕소, 질소, 산소, 황 또는 탄소로부터 선택되는 적어도 1개의 원소를 포함하는 비수 전해질 2차 전지.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 염의 음이온의 화학 구조가 하기 일반식 (1), 일반식 (2) 또는 일반식 (3)으로 나타나는 비수 전해질 2차 전지.
    (R1X1)(R2X2)N             일반식 (1)
    (R1은, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
    R2는, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
    또한, R1과 R2는, 서로 결합하여 환을 형성해도 좋다.
    X1은, SO2, C=O, C=S, RaP=O, RbP=S, S=O, Si=O로부터 선택된다.
    X2는, SO2, C=O, C=S, RcP=O, RdP=S, S=O, Si=O로부터 선택된다.
    Ra, Rb, Rc, Rd는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
    또한, Ra, Rb, Rc, Rd는, R1 또는 R2와 결합하여 환을 형성해도 좋다.)
    R3X3Y             일반식 (2)
    (R3은, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
    X3은, SO2, C=O, C=S, ReP=O, RfP=S, S=O, Si=O로부터 선택된다.
    Re, Rf는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
    또한, Re, Rf는, R3과 결합하여 환을 형성해도 좋다.
    Y는, O, S로부터 선택된다.)
    (R4X4)(R5X5)(R6X6)C             일반식 (3)
    (R4는, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
    R5는, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
    R6은, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, CN, SCN, OCN으로부터 선택된다.
    또한, R4, R5, R6 중, 어느 2개 또는 3개가 결합하여 환을 형성해도 좋다.
    X4는, SO2, C=O, C=S, RgP=O, RhP=S, S=O, Si=O로부터 선택된다.
    X5는, SO2, C=O, C=S, RiP=O, RjP=S, S=O, Si=O로부터 선택된다.
    X6은, SO2, C=O, C=S, RkP=O, RlP=S, S=O, Si=O로부터 선택된다.
    Rg, Rh, Ri, Rj, Rk, Rl은, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
    또한, Rg, Rh, Ri, Rj, Rk, Rl은, R4, R5 또는 R6과 결합하여 환을 형성해도 좋다.)
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 염의 음이온의 화학 구조가 하기 일반식 (4), 일반식 (5) 또는 일반식 (6)으로 나타나는 비수 전해질 2차 전지.
    (R7X7)(R8X8)N      일반식 (4)
    (R7, R8은, 각각 독립적으로, CnHaFbClcBrdIe(CN)f(SCN)g(OCN)h이다.
    n, a, b, c, d, e, f, g, h는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e+f+g+h를 충족한다.
    또한, R7과 R8은, 서로 결합하여 환을 형성해도 좋고, 그 경우는, 2n=a+b+c+d+e+f+g+h를 충족한다.
    X7은, SO2, C=O, C=S, RmP=O, RnP=S, S=O, Si=O로부터 선택된다.
    X8은, SO2, C=O, C=S, RoP=O, RpP=S, S=O, Si=O로부터 선택된다.
    Rm, Rn, Ro, Rp는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
    또한, Rm, Rn, Ro, Rp는, R7 또는 R8과 결합하여 환을 형성해도 좋다.)
    R9X9Y             일반식 (5)
    (R9는, CnHaFbClcBrdIe(CN)f(SCN)g(OCN)h이다.
    n, a, b, c, d, e, f, g, h는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e+f+g+h를 충족한다.
    X9는, SO2, C=O, C=S, RqP=O, RrP=S, S=O, Si=O로부터 선택된다.
    Rq, Rr은, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
    또한, Rq, Rr은, R9와 결합하여 환을 형성해도 좋다.
    Y는, O, S로부터 선택된다.)
    (R10X10)(R11X11)(R12X12)C         일반식 (6)
    (R10, R11, R12는, 각각 독립적으로, CnHaFbClcBrdIe(CN)f(SCN)g(OCN)h이다.
    n, a, b, c, d, e, f, g, h는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e+f+g+h를 충족한다.
    R10, R11, R12 중 어느 2개가 결합하여 환을 형성해도 좋고, 그 경우, 환을 형성하는 기는 2n=a+b+c+d+e+f+g+h를 충족한다. 또한, R10, R11, R12의 3개가 결합하여 환을 형성해도 좋고, 그 경우, 3개 중 2개의 기가 2n=a+b+c+d+e+f+g+h를 충족하고, 1개의 기가 2n-1=a+b+c+d+e+f+g+h를 충족한다.
    X10은, SO2, C=O, C=S, RsP=O, RtP=S, S=O, Si=O로부터 선택된다.
    X11은, SO2, C=O, C=S, RuP=O, RvP=S, S=O, Si=O로부터 선택된다.
    X12는, SO2, C=O, C=S, RwP=O, RxP=S, S=O, Si=O로부터 선택된다.
    Rs, Rt, Ru, Rv, Rw, Rx는, 각각 독립적으로, 수소, 할로겐, 치환기로 치환되어 있어도 좋은 알킬기, 치환기로 치환되어 있어도 좋은 사이클로알킬기, 치환기로 치환되어 있어도 좋은 불포화 알킬기, 치환기로 치환되어 있어도 좋은 불포화 사이클로알킬기, 치환기로 치환되어 있어도 좋은 방향족기, 치환기로 치환되어 있어도 좋은 복소환기, 치환기로 치환되어 있어도 좋은 알콕시기, 치환기로 치환되어 있어도 좋은 불포화 알콕시기, 치환기로 치환되어 있어도 좋은 티오알콕시기, 치환기로 치환되어 있어도 좋은 불포화 티오알콕시기, OH, SH, CN, SCN, OCN으로부터 선택된다.
    또한, Rs, Rt, Ru, Rv, Rw, Rx는, R10, R11 또는 R12와 결합하여 환을 형성해도 좋다.)
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 염의 음이온의 화학 구조가 하기 일반식 (7), 일반식 (8) 또는 일반식 (9)로 나타나는 비수 전해질 2차 전지.
    (R13SO2)(R14SO2)N          일반식 (7)
    (R13, R14는, 각각 독립적으로, CnHaFbClcBrdIe이다.
    n, a, b, c, d, e는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e를 충족한다.
    또한, R13과 R14는, 서로 결합하여 환을 형성해도 좋고, 그 경우는, 2n=a+b+c+d+e를 충족한다.)
    R15SO3             일반식 (8)
    (R15는, CnHaFbClcBrdIe이다.
     n, a, b, c, d, e는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e를 충족한다.)
    (R16SO2)(R17SO2)(R18SO2)C        일반식 (9)
    (R16, R17, R18은, 각각 독립적으로, CnHaFbClcBrdIe이다.
    n, a, b, c, d, e는 각각 독립적으로 0 이상의 정수이고, 2n+1=a+b+c+d+e를 충족한다.
    R16, R17, R18 중 어느 2개가 결합하여 환을 형성해도 좋고, 그 경우, 환을 형성하는 기는 2n=a+b+c+d+e를 충족한다. 또한, R16, R17, R18의 3개가 결합하여 환을 형성해도 좋고, 그 경우, 3개 중 2개의 기가 2n=a+b+c+d+e를 충족하고, 1개의 기가 2n-1=a+b+c+d+e를 충족한다.)
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 염이 (CF3SO2)2NLi, (FSO2)2NLi, (C2F5SO2)2NLi, FSO2(CF3SO2)NLi, (SO2CF2CF2SO2)NLi, 또는 (SO2CF2CF2CF2SO2)NLi인 비수 전해질 2차 전지.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 유기 용매의 헤테로 원소가 질소, 산소, 황, 할로겐으로부터 선택되는 적어도 1개인 비수 전해질 2차 전지.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 유기 용매가 비프로톤성 용매인 비수 전해질 2차 전지.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 유기 용매가 아세토니트릴 또는 1,2-디메톡시에탄으로부터 선택되는 비수 전해질 2차 전지.
  11. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 유기 용매가 하기 일반식 (10)으로 나타나는 쇄상 카보네이트로부터 선택되는 비수 전해질 2차 전지.
    R19OCOOR20                일반식 (10)
    (R19, R20은, 각각 독립적으로, 쇄상 알킬인 CnHaFbClcBrdIe, 또는, 환상 알킬을 화학 구조에 포함하는 CmHfFgClhBriIj 중 어느 것으로부터 선택된다. n, a, b, c, d, e, m, f, g, h, i, j는 각각 독립적으로 0 이상의 정수이며, 2n+1=a+b+c+d+e, 2m=f+g+h+i+j를 충족한다.)
  12. 제1항 내지 제9항, 제11항 중 어느 한 항에 있어서,
    상기 유기 용매가 디메틸카보네이트, 에틸메틸카보네이트 또는 디에틸카보네이트로부터 선택되는 비수 전해질 2차 전지.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 비수 전해질 2차 전지는 리튬 이온 2차 전지인 비수 전해질 2차 전지.
KR1020167010617A 2013-09-25 2014-09-25 비수 전해질 2차 전지 KR20160060717A (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JPJP-P-2013-198593 2013-09-25
JP2013198593 2013-09-25
JPJP-P-2013-255080 2013-12-10
JP2013255080 2013-12-10
JP2014186386A JP5965445B2 (ja) 2013-09-25 2014-09-12 非水電解質二次電池
JPJP-P-2014-186386 2014-09-12
PCT/JP2014/004916 WO2015045392A1 (ja) 2013-09-25 2014-09-25 非水電解質二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020187026146A Division KR101940152B1 (ko) 2013-09-25 2014-09-25 비수 전해질 2차 전지

Publications (1)

Publication Number Publication Date
KR20160060717A true KR20160060717A (ko) 2016-05-30

Family

ID=52742561

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187026146A KR101940152B1 (ko) 2013-09-25 2014-09-25 비수 전해질 2차 전지
KR1020167010617A KR20160060717A (ko) 2013-09-25 2014-09-25 비수 전해질 2차 전지

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020187026146A KR101940152B1 (ko) 2013-09-25 2014-09-25 비수 전해질 2차 전지

Country Status (6)

Country Link
US (1) US10686223B2 (ko)
JP (1) JP5965445B2 (ko)
KR (2) KR101940152B1 (ko)
CN (1) CN105580191B (ko)
DE (1) DE112014004410T5 (ko)
WO (1) WO2015045392A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063468A1 (ja) 2014-10-23 2016-04-28 国立大学法人東京大学 電解液
JP6666679B2 (ja) * 2015-10-06 2020-03-18 株式会社日本触媒 リチウムイオン二次電池
JP2017191740A (ja) * 2016-04-15 2017-10-19 国立大学法人 東京大学 リチウムイオン二次電池
JP6770701B2 (ja) * 2016-05-02 2020-10-21 株式会社Gsユアサ 蓄電素子
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10804562B2 (en) * 2017-12-06 2020-10-13 Tesla Motors Canada ULC Method and system for determining concentration of electrolyte components for lithium-ion cells
US11482696B2 (en) * 2020-02-26 2022-10-25 Ppg Industries Ohio, Inc. Method of coating an electrical current collector and electrodes resulting therefrom
WO2021230661A1 (ko) * 2020-05-12 2021-11-18 주식회사 엘지에너지솔루션 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
CN116217355A (zh) * 2023-05-08 2023-06-06 宁德时代新能源科技股份有限公司 氟代缩醛类化合物的制备方法
CN116666647B (zh) * 2023-08-01 2024-04-12 宁德时代新能源科技股份有限公司 正极集流体及制备方法、正极极片、二次电池和用电装置

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315B2 (ja) 1977-11-14 1985-08-20 株式会社東芝 洗濯機の運転方式
JPH01131637A (ja) 1987-11-18 1989-05-24 Sanyo Electric Co Ltd パン製造機
JP2709864B2 (ja) 1991-01-25 1998-02-04 日本電池株式会社 非水電解質二次電池
US5418091A (en) * 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
JPH1027733A (ja) 1996-07-12 1998-01-27 Matsushita Electric Ind Co Ltd 電気二重層キャパシタおよびその製造方法
JP3269396B2 (ja) 1996-08-27 2002-03-25 松下電器産業株式会社 非水電解質リチウム二次電池
JP4939679B2 (ja) 1997-07-25 2012-05-30 アセップ・インク 非局在化アニオン電荷を有するイオン化合物、及びそれらのイオン伝導性成分又は触媒としての使用
JP4168492B2 (ja) 1997-09-19 2008-10-22 松下電器産業株式会社 非水電解質二次電池用負極およびそれを用いた電池
DE69812017T2 (de) 1997-09-19 2003-12-11 Matsushita Electric Ind Co Ltd Nichtwässrige Sekundär Batterie und ihre Anode
JP2000077100A (ja) 1998-08-28 2000-03-14 Sanyo Electric Co Ltd 非水電解液二次電池
JP2001266878A (ja) 2000-03-21 2001-09-28 Nippon Steel Corp リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池
JP2004511887A (ja) 2000-10-06 2004-04-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高性能リチウムまたはリチウムイオン電池
JP2002203562A (ja) 2000-12-28 2002-07-19 Toshiba Corp 非水電解質二次電池
CA2441981C (en) 2001-03-26 2012-05-15 Nisshinbo Industries, Inc. Ionic liquids, electrolyte salts for electrical storage devices, liquid electrolytes for electrical storage devices, electrical double-layer capacitors, and secondary batteries
WO2003044882A1 (fr) 2001-11-20 2003-05-30 Tdk Corporation Materiau actif d'electrode, electrode, element d'accumulateur au lithium-ion, procede de production de materiau actif d'electrode et procede de production d'element d'accumulateur au lithium-ion
JP2003268053A (ja) 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
AU2003262276A1 (en) 2002-08-23 2004-03-11 Nisshinbo Industries, Inc. Electric double-layer capacitor
JP4298246B2 (ja) 2002-09-20 2009-07-15 日清紡ホールディングス株式会社 非水電解質、電気二重層キャパシタおよび非水電解質二次電池
EP1548751B1 (en) 2002-09-20 2007-06-13 Nisshinbo Industries, Inc. Composition for polyelectrolytes, polyelectrolytes, electrical double layer capacitors and nonaqueous electrolyte secondary cells
US7709157B2 (en) 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same
KR100491026B1 (ko) 2003-03-05 2005-05-24 주식회사 엘지화학 전지특성, 접착성, 코팅특성이 조절된 2상 이상의 구조를가지는 리튬 2차 전지용 바인더
WO2005076299A1 (ja) 2004-02-03 2005-08-18 Nisshinbo Industries, Inc. 電気二重層キャパシタ
JP2005243321A (ja) 2004-02-25 2005-09-08 Sanyo Electric Co Ltd 非水電解質二次電池
JP4667071B2 (ja) 2004-03-30 2011-04-06 三洋電機株式会社 非水電解質二次電池
WO2005117195A1 (en) 2004-05-28 2005-12-08 Lg Chem, Ltd. Lithium secondary batteries with charge-cutoff voltages over 4.35
JP4573098B2 (ja) 2004-09-03 2010-11-04 株式会社Gsユアサ 非水電解質二次電池
KR100814560B1 (ko) 2004-11-04 2008-03-17 마쯔시다덴기산교 가부시키가이샤 표면 실장용 단자부착 2차전지
JP5030414B2 (ja) 2004-11-15 2012-09-19 パナソニック株式会社 非水電解質二次電池
JP5390736B2 (ja) 2004-12-07 2014-01-15 富山薬品工業株式会社 電気化学デバイス用非水電解液
US20060127764A1 (en) 2004-12-10 2006-06-15 Muguo Chen Electrochemical cells electrodes and binder materials for electrochemical cells electrodes
EP1879252A4 (en) * 2005-04-19 2010-06-23 Panasonic Corp WATER-FREE ELECTROLYTE SOLUTION, ELECTROCHEMICAL ENERGY STORAGE DEVICE THEREFOR AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
JP4889240B2 (ja) 2005-05-20 2012-03-07 旭化成株式会社 非対称有機スルホニルイミド塩電解質とそれを用いた電解液および電気化学素子
JP2007091573A (ja) 2005-06-10 2007-04-12 Tosoh Corp リチウム−ニッケル−マンガン−コバルト複合酸化物及びその製造方法並びにその用途
KR100684733B1 (ko) 2005-07-07 2007-02-20 삼성에스디아이 주식회사 리튬 이차 전지
WO2007010833A1 (ja) 2005-07-19 2007-01-25 Matsushita Electric Industrial Co., Ltd. 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス
JP2007115671A (ja) 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極およびそれを用いたリチウムイオン二次電池
CN105186038B (zh) 2005-10-20 2017-07-28 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
CN113394458A (zh) 2005-10-20 2021-09-14 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
CA2535064A1 (fr) 2006-02-01 2007-08-01 Hydro Quebec Materiau multi-couches, procede de fabrication et utilisation comme electrode
JP4929766B2 (ja) 2006-03-13 2012-05-09 ダイキン工業株式会社 電解液
JP5241119B2 (ja) 2006-03-17 2013-07-17 三洋電機株式会社 非水電解質電池
JP2007299569A (ja) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 電気化学エネルギー蓄積デバイス
JP2008010613A (ja) 2006-06-29 2008-01-17 Nisshinbo Ind Inc 電気二重層キャパシタ
JP4862555B2 (ja) * 2006-08-21 2012-01-25 パナソニック株式会社 非水電解液およびそれを具備した電気化学エネルギー蓄積デバイス
JP2009026514A (ja) 2007-07-18 2009-02-05 Panasonic Corp 非水電解質二次電池
JP5731732B2 (ja) 2007-10-17 2015-06-10 日立化成株式会社 リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2009123474A (ja) 2007-11-14 2009-06-04 Sony Corp 非水電解質電池
CA2625271A1 (en) 2008-03-11 2009-09-11 Hydro-Quebec Method for preparing an electrochemical cell having a gel electrolyte
WO2010030008A1 (ja) * 2008-09-11 2010-03-18 日本電気株式会社 二次電池
JP2010073489A (ja) 2008-09-18 2010-04-02 Nissan Motor Co Ltd 熱安定性に優れた電解液およびそれを用いた二次電池
JP2010097802A (ja) 2008-10-16 2010-04-30 Daikin Ind Ltd 電解液
JP2012033268A (ja) 2008-11-06 2012-02-16 Hitachi Maxell Ltd 電気化学素子
EP2405518B1 (en) 2009-03-04 2014-10-01 Lg Chem, Ltd. Electrolyte comprising an amide compound, and an electrochemical element comprising the same
JP2010225539A (ja) 2009-03-25 2010-10-07 Tdk Corp リチウムイオン二次電池用電極及びリチウムイオン二次電池
CN101882696B (zh) 2009-05-05 2014-11-26 中国科学院物理研究所 一种含氟磺酰亚胺基锂盐的非水电解质材料及其应用
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
JP2011054298A (ja) 2009-08-31 2011-03-17 Hitachi Maxell Ltd 電気化学素子
CN102576905B (zh) 2009-09-18 2015-04-15 旭硝子株式会社 二次电池用非水电解液
JP2011119053A (ja) 2009-12-01 2011-06-16 Konica Minolta Holdings Inc 電解質組成物及びそれを用いた二次電池
JP2011146359A (ja) 2009-12-15 2011-07-28 Toyota Central R&D Labs Inc アルカリ金属硫黄二次電池
JP2011150958A (ja) 2010-01-25 2011-08-04 Sony Corp 非水電解質および非水電解質電池
US8076026B2 (en) 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
US8877381B2 (en) 2010-03-09 2014-11-04 Kabushiki Kaisha Toyota Jidoshokki Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery and lithium-ion secondary battery
JP5723186B2 (ja) 2010-03-19 2015-05-27 株式会社半導体エネルギー研究所 非水電解液、およびリチウムイオン二次電池
JP5177211B2 (ja) 2010-12-09 2013-04-03 ソニー株式会社 負極活物質、負極および電池
JP2012160345A (ja) 2011-01-31 2012-08-23 Toshiba Corp 非水電解質二次電池
JP6065367B2 (ja) 2011-06-07 2017-01-25 ソニー株式会社 非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013065493A (ja) 2011-09-20 2013-04-11 Toyota Industries Corp リチウムイオン二次電池の負極用バインダ及びその負極用バインダを用いたリチウムイオン二次電池
JP5803539B2 (ja) 2011-10-11 2015-11-04 株式会社豊田自動織機 リチウム含有複合酸化物粉末の製造方法
JP5834771B2 (ja) 2011-10-26 2015-12-24 三菱化学株式会社 非水系電解液、それを用いた電池
WO2013098962A1 (ja) 2011-12-27 2013-07-04 株式会社日立製作所 非水二次電池
JP2013134922A (ja) 2011-12-27 2013-07-08 Panasonic Corp 非水電解液二次電池
JP2013137873A (ja) 2011-12-28 2013-07-11 Toyota Industries Corp リチウムイオン二次電池
JP6047881B2 (ja) 2012-01-16 2016-12-21 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2013149477A (ja) 2012-01-19 2013-08-01 Hitachi Maxell Ltd 非水二次電池の製造方法
JP5950389B2 (ja) 2012-02-28 2016-07-13 株式会社豊田自動織機 リチウムシリケート系化合物、正極活物質、正極活物質の製造方法、非水電解質二次電池およびそれを搭載した車両
US9614252B2 (en) 2012-03-26 2017-04-04 The University Of Tokyo Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution
JP6227864B2 (ja) 2012-11-12 2017-11-08 株式会社リコー 非水電解液蓄電素子
JP5586116B2 (ja) 2012-12-27 2014-09-10 トヨタ自動車株式会社 リチウム二次電池用の正極合材およびその使用
JP6036315B2 (ja) 2013-01-11 2016-11-30 株式会社豊田自動織機 ロック構造
JP5817754B2 (ja) 2013-02-25 2015-11-18 株式会社豊田自動織機 非水系二次電池用負極とその製造方法及び非水系二次電池
JP2013179067A (ja) 2013-04-26 2013-09-09 Sony Corp 二次電池および二次電池用セパレータ

Also Published As

Publication number Publication date
WO2015045392A1 (ja) 2015-04-02
JP2015133315A (ja) 2015-07-23
CN105580191B (zh) 2019-07-09
US20160233548A1 (en) 2016-08-11
KR101940152B1 (ko) 2019-01-18
US10686223B2 (en) 2020-06-16
DE112014004410T5 (de) 2016-07-21
CN105580191A (zh) 2016-05-11
JP5965445B2 (ja) 2016-08-03
KR20180104178A (ko) 2018-09-19

Similar Documents

Publication Publication Date Title
KR101940152B1 (ko) 비수 전해질 2차 전지
KR101901676B1 (ko) 비수 전해질 2차 전지
KR101901675B1 (ko) 비수 전해질 2차 전지
KR101940151B1 (ko) 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는, 전지, 커패시터 등의 축전 장치용 전해액 및, 그의 제조 방법, 그리고 당해 전해액을 구비하는 커패시터
KR101967677B1 (ko) 비수계 2차 전지
JP5816997B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP5817009B1 (ja) 非水系二次電池
WO2015045389A1 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
JP6575022B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP5965444B2 (ja) 非水系二次電池
WO2015045386A1 (ja) 非水系二次電池
JP5817004B2 (ja) リチウムイオン二次電池
JP5817001B2 (ja) 非水系二次電池
JP5817002B2 (ja) 非水系二次電池
JP5965446B2 (ja) 蓄電装置
JP5816999B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法
JP5817003B2 (ja) 非水電解質二次電池
JP2016189340A (ja) 非水電解質二次電池
KR20180087386A (ko) 전해액
WO2015045393A1 (ja) 非水電解質二次電池
JP5817008B1 (ja) 非水系二次電池
JP5817007B1 (ja) 非水系二次電池

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent