JP5817002B2 - 非水系二次電池 - Google Patents
非水系二次電池 Download PDFInfo
- Publication number
- JP5817002B2 JP5817002B2 JP2014186339A JP2014186339A JP5817002B2 JP 5817002 B2 JP5817002 B2 JP 5817002B2 JP 2014186339 A JP2014186339 A JP 2014186339A JP 2014186339 A JP2014186339 A JP 2014186339A JP 5817002 B2 JP5817002 B2 JP 5817002B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic solution
- nli
- organic solvent
- electrolyte
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明の電解液は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩(以下、「金属塩」又は単に「塩」ということがある。)とヘテロ原子を有する有機溶媒とを含、振動分光スペクトルにおける有機溶媒由来のピーク強度につき、有機溶媒本来のピークの強度をIoとし、有機溶媒本来のピークが波数シフトしたピークの強度をIsとした場合、Is>Ioである。
金属塩は、通常、電池の電解液に含まれるLiClO4、LiAsF6、LiPF6、LiBF4、LiAlCl4、などの電解質として用いられる化合物であれば良い。金属塩のカチオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、及びアルミニウムを挙げることができる。金属塩のカチオンは、電解液を使用する電池の電荷担体と同一の金属イオンであるのが好ましい。例えば、本発明の電解液をリチウムイオン二次電池用の電解液として使用するのであれば、金属塩のカチオンはリチウムが好ましい。
(R1は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
R2は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNからから選択される。
また、R1とR2は、互いに結合して環を形成しても良い。
X1は、SO2、C=O、C=S、RaP=O、RbP=S、S=O、Si=Oから選択される。
X2は、SO2、C=O、C=S、RcP=O、RdP=S、S=O、Si=Oから選択される。
Ra、Rb、Rc、Rdは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Ra、Rb、Rc、Rdは、R1又はR2と結合して環を形成しても良い。)
(R3は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
X3は、SO2、C=O、C=S、ReP=O、RfP=S、S=O、Si=Oから選択される。
Re、Rfは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Re、Rfは、R3と結合して環を形成しても良い。
Yは、O、Sから選択される。)
(R4は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
R5は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
R6は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、R4、R5、R6のうち、いずれか二つ又は三つが結合して環を形成しても良い。
X4は、SO2、C=O、C=S、RgP=O、RhP=S、S=O、Si=Oから選択される。
X5は、SO2、C=O、C=S、RiP=O、RjP=S、S=O、Si=Oから選択される。
X6は、SO2、C=O、C=S、RkP=O、RlP=S、S=O、Si=Oから選択される。
Rg、Rh、Ri、Rj、Rk、Rlは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rg、Rh、Ri、Rj、Rk、Rlは、R4、R5又はR6と結合して環を形成しても良い。)
(R7、R8は、それぞれ独立に、CnHaFbClcBrdIe(CN)f(SCN)g(OCN)hである。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
また、R7とR8は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
X7は、SO2、C=O、C=S、RmP=O、RnP=S、S=O、Si=Oから選択される。
X8は、SO2、C=O、C=S、RoP=O、RpP=S、S=O、Si=Oから選択される。
Rm、Rn、Ro、Rpは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rm、Rn、Ro、Rpは、R7又はR8と結合して環を形成しても良い。)
(R9は、CnHaFbClcBrdIe(CN)f(SCN)g(OCN)hである。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
X9は、SO2、C=O、C=S、RqP=O、RrP=S、S=O、Si=Oから選択される。
Rq、Rrは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rq、Rrは、R9と結合して環を形成しても良い。
Yは、O、Sから選択される。)
(R10、R11、R12は、それぞれ独立に、CnHaFbClcBrdIe(CN)f(SCN)g(OCN)hである。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
R10、R11、R12のうちいずれか二つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の三つが結合して環を形成しても良く、その場合、三つのうち二つの基が2n=a+b+c+d+e+f+g+hを満たし、一つの基が2n-1=a+b+c+d+e+f+g+hを満たす。
X10は、SO2、C=O、C=S、RsP=O、RtP=S、S=O、Si=Oから選択される。
X11は、SO2、C=O、C=S、RuP=O、RvP=S、S=O、Si=Oから選択される。
X12は、SO2、C=O、C=S、RwP=O、RxP=S、S=O、Si=Oから選択される。
Rs、Rt、Ru、Rv、Rw、Rxは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、Rs、Rt、Ru、Rv、Rw、Rxは、R10、R11又はR12と結合して環を形成しても良い。)
(R13、R14は、それぞれ独立に、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
(R15は、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
(R16、R17、R18は、それぞれ独立に、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
R16、R17、R18のうちいずれか二つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の三つが結合して環を形成しても良く、その場合、三つのうち二つの基が2n=a+b+c+d+eを満たし、一つの基が2n-1=a+b+c+d+eを満たす。)
ヘテロ元素を有する有機溶媒としては、ヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである有機溶媒が好ましく、ヘテロ元素が窒素又は酸素から選択される少なくとも1つである有機溶媒がより好ましい。また、ヘテロ元素を有する有機溶媒としては、NH基、NH2基、OH基、SH基などのプロトン供与基を有さない、非プロトン性溶媒が好ましい。
R19OCOOR20 一般式(10)
(R19、R20は、それぞれ独立に、鎖状アルキルであるCnHaFbClcBrdIe、又は、環状アルキルを化学構造に含むCmHfFgClhBriIjのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
上記一般式(10)で表される鎖状カーボネートにおいて、nは1〜6の整数が好ましく、1〜4の整数がより好ましく、1〜2の整数が特に好ましい。mは3〜8の整数が好ましく、4〜7の整数がより好ましく、5〜6の整数が特に好ましい。また、上記一般式(10)で表される鎖状カーボネートのうち、ジメチルカーボネート(以下、「DMC」ということがある。)、ジエチルカーボネート(以下、「DEC」ということがある。)、エチルメチルカーボネート(以下、「EMC」ということがある。)が特に好ましい。
これらの有機溶媒は単独で電解液に用いても良いし、複数を併用しても良い。
非水系二次電池は、リチウムイオン等の電荷担体を吸蔵及び放出し得る負極活物質を有する負極と、当該電荷担体を吸蔵及び放出し得る正極活物質を有する正極と、本発明の電解液とを備える。本発明の電解液は、金属塩としてリチウム塩を採用したため、リチウムイオン二次電池の電解液として特に好適である。
<負極>
負極は、集電体と、集電体表面に結着させた負極活物質層とを有する。
集電体は、非水系二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。
負極活物質層は負極活物質と一般にバインダを含む。さらに必要に応じて導電助剤を含んでもよい。
L:結晶子の大きさ
λ:入射X線波長(1.54Å)
β:ピークの半値幅(ラジアン)
θ:回折角
非水系二次電池に用いられる正極は、電荷担体を吸蔵及び放出し得る正極活物質を有する。正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。正極活物質層は正極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。正極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。
集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
<本発明の電解液の作製>
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(FSO2)2NLi(以下、LiFSAという)を徐々に加え、溶解させた。LiFSAを全量で16.83g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。得られた本発明の電解液におけるLiFSAの濃度は4.5mol/Lであり、LiFSAの1分子に対しアセトニトリル2.4分子が含まれている。
<IR測定条件>
装置:FT-IR(ブルカーオプティクス社製)
測定条件:ATR法(ダイヤモンド使用)
測定雰囲気:不活性ガス雰囲気下
3.74gのLiFSAを用い、実施例1と同様の方法で、LiFSAの濃度が1.0mol/Lである比較例1の電解液を製造した。比較例1の電解液においては、LiFSAの1分子に対しアセトニトリル17分子が含まれている。
落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000 M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。結果を表3に示す。
Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
実施例1に係る本発明の電解液と、比較例1に係る電解液の揮発性を以下の方法で測定した。
実施例1及び比較例1の電解液のLi輸率を以下の条件で測定した。結果を表5に示す。
Li輸率=(Liイオン拡散係数)/(Liイオン拡散係数+アニオン拡散係数)
結晶子サイズ(L)が1.1nmのハードカーボンと、ポリフッ化ビニリデン(PVdF)と、N-メチル-2-ピロリドン(NMP)を添加混合し、スラリー状の負極合材を調製した。スラリー中の各成分(固形分)の組成比は、ハードカーボン:PVdF=9:1(質量比)である。
本発明の電解液に代えてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7(体積比)で混合した混合溶媒にLiPF6を1Mの濃度で溶解した電解液を用いたこと以外は実施例1と同様にしてリチウム二次電池を得た。
(評価例6:充放電の可逆性)
実施例1及び比較例2に係るリチウム二次電池について、下記の条件のもと、レート容量特性をそれぞれ評価した。初回の充放電曲線を図5に、レート容量試験結果を図6に示す。
(1) 負極へのリチウム吸蔵が進行する向きに電流を流す。
(2) 電圧範囲:2V→0.01V(v.s.Li/Li+)
(3) レート:0.1C、0.2C、0.5C、1C、2C、5C、10C、0.1C (0.01V到達後に電流を停止)
(4) 各レート3回ずつ(合計24サイクル)測定
なお、1Cは、一定電流において1時間で電池を完全充電、又は放電させるために要する電流値を示す。
結晶子サイズ(L)が4.2nmのソフトカーボンを選び、このソフトカーボンを用いたこと以外は実施例1と同様にして負極を作製した。この負極を用いたこと以外は実施例1と同様にしてリチウム二次電池(ハーフセル)を得た。
有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えて実施例3の電解液を得た。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。実施例3の電解液における(FSO2)2NLiの濃度は3.9mol/Lであった。また、実施例3の電解液においては、(FSO2)2NLi1分子に対しジメチルカーボネート2分子が含まれている。
実施例3の電解液を用いた事以外は、実施例1と同様にして実施例3のリチウム二次電池(ハーフセル)を得た。
実施例3と同じ電解液を用いた事以外は、実施例2と同様にして実施例4のリチウム二次電池(ハーフセル)を得た。
結晶子サイズ(L)が28nmの黒鉛を選び、この黒鉛を用いたこと以外は実施例1と同様にして負極を作製した。この負極を用いたこと以外は実施例1と同様にしてリチウム二次電池(ハーフセル)を得た。
結晶子サイズ(L)が42nmの黒鉛を選び、この黒鉛を用いたこと以外は実施例1と同様にして負極を作製した。この負極を用いたこと以外は実施例1と同様にしてリチウム二次電池(ハーフセル)を得た。
実施例1と同様のハードカーボンを用い、実施例1と同様にして負極を作製した。この負極を用い、本発明の電解液に代えてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7(体積比)で混合した混合溶媒にLiPF6を1Mの濃度で溶解した電解液を用いたこと以外は実施例1と同様にしてリチウム二次電池(ハーフセル)を得た。
実施例2と同様のソフトカーボンを用い、実施例1と同様にして負極を作製した。この負極を用い、本発明の電解液に代えてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7(体積比)で混合した混合溶媒にLiPF6を1Mの濃度で溶解した電解液を用いたこと以外は実施例1と同様にしてリチウム二次電池(ハーフセル)を得た。
比較例3と同様にして負極を作製した。この負極を用い、本発明の電解液に代えてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7(体積比)で混合した混合溶媒にLiPF6を1Mの濃度で溶解した電解液を用いたこと以外は実施例1と同様にしてリチウム二次電池(ハーフセル)を得た。
比較例4と同様にして負極を作製した。この負極を用い、本発明の電解液に代えてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7(体積比)で混合した混合溶媒にLiPF6を1Mの濃度で溶解した電解液を用いたこと以外は実施例1と同様にしてリチウム二次電池(ハーフセル)を得た。
実施例1,2及び比較例3〜8に係るリチウムイオン二次電池について、上記の(評価例6:充放電の可逆性)と同一条件のもと、レート容量特性をそれぞれ評価した。0.1Cレートの電流容量に対する5Cレートの電流容量の比をレート容量特性とした。結果を表6に示す。
また実施例3,4のように、電解液用の有機溶媒として鎖状カーボネートであるDMCを用いる場合にも同様に、比較例3,4に比べて優れたレート容量特性が発現される。
本発明の電解液を以下のとおり製造した。
電解液Aと同様の方法で、(CF3SO2)2NLiの濃度が2.8mol/Lであり、密度が1.36g/cm3である、電解液Bを製造した。
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CF3SO2)2NLiを徐々に加え、溶解させた。所定の(CF3SO2)2NLiを加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液Cとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Cと同様の方法で、(CF3SO2)2NLiの濃度が3.0mol/Lであり、密度が1.31g/cm3である、電解液Dを製造した。
有機溶媒としてスルホランを用いた以外は、電解液Cと同様の方法で、(CF3SO2)2NLiの濃度が3.0mol/Lであり、密度が1.57g/cm3である、電解液Eを製造した。
有機溶媒としてジメチルスルホキシドを用いた以外は、電解液Cと同様の方法で、(CF3SO2)2NLiの濃度が3.2mol/Lであり、密度が1.49g/cm3である、電解液Fを製造した。
リチウム塩として(FSO2)2NLiを用い、有機溶媒として1,2-ジメトキシエタンを用いた以外は、電解液Cと同様の方法で、(FSO2)2NLiの濃度が4.0mol/Lであり、密度が1.33g/cm3である、電解液Gを製造した。
電解液Gと同様の方法で、(FSO2)2NLiの濃度が3.6mol/Lであり、密度が1.29g/cm3である、電解液Hを製造した。
電解液Gと同様の方法で、(FSO2)2NLiの濃度が2.4mol/Lであり、密度が1.18g/cm3である、電解液Iを製造した。
有機溶媒としてアセトニトリルを用いた以外は、電解液Gと同様の方法で、(FSO2)2NLiの濃度が5.0mol/Lであり、密度が1.40g/cm3である、電解液Jを製造した。
電解液Jと同様の方法で、(FSO2)2NLiの濃度が4.5mol/Lであり、密度が1.34g/cm3である、電解液Kを製造した。
有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液Lとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Lにおける(FSO2)2NLiの濃度は3.9mol/Lであり、電解液Lの密度は1.44g/cm3であった。
電解液Lと同様の方法で、(FSO2)2NLiの濃度が2.9mol/Lであり、密度が1.36g/cm3である、電解液Mを製造した。
有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液Nとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Nにおける(FSO2)2NLiの濃度は3.4mol/Lであり、電解液Nの密度は1.35g/cm3であった。
有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液Oとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Oにおける(FSO2)2NLiの濃度は3.0mol/Lであり、電解液Oの密度は1.29g/cm3であった。
表7に上記電解液の一覧を示す。
本発明の電解液を以下のとおり製造した。
なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
16.08gの(CF3SO2)2NLiを用い、電解液E1と同様の方法で、(CF3SO2)2NLiの濃度が2.8mol/Lである電解液E2の電解液を製造した。電解液E2においては、(CF3SO2)2NLi1分子に対し1,2-ジメトキシエタン2.1分子が含まれている。
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CF3SO2)2NLiを徐々に加え、溶解させた。(CF3SO2)2NLiを全量で19.52g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液E3とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E3における(CF3SO2)2NLiの濃度は3.4mol/Lであった。電解液E3においては、(CF3SO2)2NLi1分子に対しアセトニトリル3分子が含まれている。
24.11gの(CF3SO2)2NLiを用い、電解液E3と同様の方法で、(CF3SO2)2NLiの濃度が4.2mol/Lである電解液E4を製造した。電解液E4においては、(CF3SO2)2NLi1分子に対しアセトニトリル1.9分子が含まれている。
リチウム塩として13.47gの(FSO2)2NLiを用い、有機溶媒として1,2-ジメトキシエタンを用いた以外は、電解液E3と同様の方法で、(FSO2)2NLiの濃度が3.6mol/Lである電解液E5を製造した。電解液E5においては、(FSO2)2NLi1分子に対し1,2-ジメトキシエタン1.9分子が含まれている。
14.97gの(FSO2)2NLiを用い、電解液E5と同様の方法で、(FSO2)2NLiの濃度が4.0mol/Lである電解液E6を製造した。電解液E6においては、(FSO2)2NLi1分子に対し1,2-ジメトキシエタン1.5分子が含まれている。
リチウム塩として15.72gの(FSO2)2NLiを用いた以外は、電解液E3と同様の方法で、(FSO2)2NLiの濃度が4.2mol/Lである電解液E7を製造した。電解液E7においては、(FSO2)2NLi1分子に対しアセトニトリル3分子が含まれている。
16.83gの(FSO2)2NLiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が4.5mol/Lである電解液E8を製造した。電解液E8においては、(FSO2)2NLi1分子に対しアセトニトリル2.4分子が含まれている。
18.71gの(FSO2)2NLiiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が5.0mol/Lである電解液E9を製造した。電解液E9においては、(FSO2)2NLi1分子に対しアセトニトリル2.1分子が含まれている。
20.21gの(FSO2)2NLiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が5.4mol/Lである電解液E10を製造した。電解液E10においては、(FSO2)2NLi1分子に対しアセトニトリル2分子が含まれている。
有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液E11とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E11における(FSO2)2NLiの濃度は3.9mol/Lであった。電解液E11においては、(FSO2)2NLi1分子に対しジメチルカーボネート2分子が含まれている。
電解液E11にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が3.4mol/Lの電解液E12とした。電解液E12においては、(FSO2)2NLi1分子に対しジメチルカーボネート2.5分子が含まれている。
電解液E11にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.9mol/Lの電解液E13とした。電解液E13においては、(FSO2)2NLi1分子に対しジメチルカーボネート3分子が含まれている。
電解液E11にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.6mol/Lの電解液E14とした。電解液E14においては、(FSO2)2NLi1分子に対しジメチルカーボネート3.5分子が含まれている。
電解液E11にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.0mol/Lの電解液E15とした。電解液E15においては、(FSO2)2NLi1分子に対しジメチルカーボネート5分子が含まれている。
有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液E16とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E16における(FSO2)2NLiの濃度は3.4mol/Lであった。電解液E16においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート2分子が含まれている。
電解液E16にエチルメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.9mol/Lの電解液E17とした。電解液E17においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート2.5分子が含まれている。
電解液E16にエチルメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.2mol/Lの電解液E18とした。電解液E18においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート3.5分子が含まれている。
有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSO2)2NLiを徐々に加え、溶解させた。(FSO2)2NLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液E19とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E19における(FSO2)2NLiの濃度は3.0mol/Lであった。電解液E19においては、(FSO2)2NLi1分子に対しジエチルカーボネート2分子が含まれている。
電解液E19にジエチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.6mol/Lの電解液E20とした。電解液E20においては、(FSO2)2NLi1分子に対しジエチルカーボネート2.5分子が含まれている。
電解液E19にジエチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が2.0mol/Lの電解液E21とした。電解液E21においては、(FSO2)2NLi1分子に対しジエチルカーボネート3.5分子が含まれている。
5.74gの(CF3SO2)2NLiを用い、有機溶媒として1,2-ジメトキシエタンを用いた以外は、電解液E3と同様の方法で、(CF3SO2)2NLiの濃度が1.0mol/Lである電解液C1を製造した。電解液C1においては、(CF3SO2)2NLi1分子に対し1,2-ジメトキシエタン8.3分子が含まれている。
5.74gの(CF3SO2)2NLiを用い、電解液E3と同様の方法で、(CF3SO2)2NLiの濃度が1.0mol/Lである電解液C2を製造した。電解液C2においては、(CF3SO2)2NLi1分子に対しアセトニトリル16分子が含まれている。
3.74gの(FSO2)2NLiを用い、電解液E5と同様の方法で、(FSO2)2NLiの濃度が1.0mol/Lである電解液C3を製造した。電解液C3においては、(FSO2)2NLi1分子に対し1,2-ジメトキシエタン8.8分子が含まれている。
3.74gの(FSO2)2NLiを用い、電解液E7と同様の方法で、(FSO2)2NLiの濃度が1.0mol/Lである電解液C4を製造した。電解液C4においては、(FSO2)2NLi1分子に対しアセトニトリル17分子が含まれている。
有機溶媒としてエチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比3:7、以下、「EC/DEC」ということがある。)を用い、リチウム塩として3.04gのLiPF6を用いた以外は、電解液E3と同様の方法で、LiPF6の濃度が1.0mol/Lである電解液C5を製造した。
電解液E11にジメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が1.1mol/Lの電解液C6とした。電解液C6においては、(FSO2)2NLi1分子に対しジメチルカーボネート10分子が含まれている。
電解液E16にエチルメチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が1.1mol/Lの電解液C7とした。電解液C7においては、(FSO2)2NLi1分子に対しエチルメチルカーボネート8分子が含まれている。
電解液E19にジエチルカーボネートを加えて希釈し、(FSO2)2NLiの濃度が1.1mol/Lの電解液C8とした。電解液C8においては、(FSO2)2NLi1分子に対しジエチルカーボネート7分子が含まれている。
表8に電解液E1〜E21及び電解液C1〜C8の一覧を示す。
電解液E3、電解液E4、電解液E7、電解液E8、電解液E10、電解液C2、電解液C4、並びに、アセトニトリル、(CF3SO2)2NLi、(FSO2)2NLiにつき、以下の条件でIR測定を行った。2100〜2400cm-1の範囲のIRスペクトルをそれぞれ図7〜図16に示す。さらに、電解液E11〜E21、電解液C6〜C8、並びに、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートにつき、下記の条件でIR測定を行った。1900〜1600cm-1の範囲のIRスペクトルをそれぞれ図17〜図33に示す。また、(FSO2)2NLiにつき、1900〜1600cm-1の範囲のIRスペクトルを図34に示す。図の横軸は波数(cm-1)であり、縦軸は吸光度(反射吸光度)である。
IR測定条件
装置:FT-IR(ブルカーオプティクス社製)
測定条件:ATR法(ダイヤモンド使用)
測定雰囲気:不活性ガス雰囲気下
電解液E1、E2、電解液E4〜E6、E8、E11、E16およびE19のイオン伝導度を以下の条件で測定した。結果を表9に示す。
イオン伝導度測定条件
Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
電解液E1、E2、電解液E4〜E6、E8、E11、E16およびE19並びに電解液C1〜C4、電解液C6〜C8の粘度を以下の条件で測定した。結果を表10に示す。
粘度測定条件
落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000 M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。
電解液E2、E4、E8、E11、E13、C1、C2、C4およびC6の揮発性を以下の方法で測定した。
約10mgの電解液をアルミニウム製のパンに入れ、熱重量測定装置(TAインスツルメント社製、SDT600)に配置し、室温での電解液の重量変化を測定した。重量変化(質量%)を時間で微分することで揮発速度を算出した。揮発速度のうち最大のものを選択し、表11に示した。
電解液E4、電解液C2の燃焼性を以下の方法で試験した。
電解液をガラスフィルターにピペットで3滴滴下し、電解液をガラスフィルターに保持させた。当該ガラスフィルターをピンセットで把持し、そして、当該ガラスフィルターに接炎させた。
電解液E4は15秒間接炎させても引火しなかった。他方、電解液C2は5秒余りで燃え尽きた。本発明の電解液は燃焼しにくいことが裏付けられた。
電解液E11、E13、E16、E19をそれぞれ容器に入れ、不活性ガスを充填して密閉した。これらを-30℃の冷凍庫に2日間保管した。保管後に各電解液を観察した。いずれの電解液も固化せず液体状態を維持しており、塩の析出も観察されなかった。
(評価例14:ラマンスペクトル測定)
電解液E8、E9、C4、並びに、E11、E13、E15、C6につき、以下の条件でラマンスペクトル測定を行った。各電解液の金属塩のアニオン部分に由来するピークが観察されたラマンスペクトルをそれぞれ図35〜図41に示す。図の横軸は波数(cm−1)であり、縦軸は散乱強度である。
ラマンスペクトル測定条件
装置:レーザーラマン分光光度計(日本分光株式会社NRSシリーズ)
レーザー波長:532nm
不活性ガス雰囲気下で電解液を石英セルに密閉し、測定に供した。
電解液E2およびC5のLi輸率を以下の条件で測定した。結果を表12に示す。なお、表12には実施例1で用いた電解液(E8)および比較例1で用いた電解液(C4)の結果も併記した。Li輸率測定条件は上記実施例1および比較例1の電解液のLi輸率を測定したときと同じである。
また、電解液E8につき、温度を変化させた場合のLi輸率を、上記Li輸率測定条件に準じて測定した。結果を表13に示す。
Claims (13)
- 負極と電解液とを含み、
前記電解液は、リチウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
前記塩のアニオンの化学構造が下記一般式(7)で表され、
(R13SO2)(R14SO2)N………一般式(7)
(R13、R14は、それぞれ独立に、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。
nは0〜6の整数。上記R13とR14が結合して環を形成している場合には、nは1〜8の整数。)
前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
前記負極は、X線回折法で測定されるX線回折プロファイルにおいて2θ=20度〜30度に現れるピークの半値幅から算出された結晶子サイズが20nm以下の炭素材料を含む負極活物質層をもつことを特徴とする非水系二次電池(ただし、前記電解液が前記塩としてLiN(SO 2 CF 3 ) 2 および前記有機溶媒として1,2-ジアルコキシエタンを含むものを除く。)。 - 前記Isと前記Ioとの関係がIs>2×Ioである請求項1に記載の非水系二次電池。
- 負極と電解液とを含み、
前記電解液は、リチウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
前記塩のアニオンの化学構造が下記一般式(7)で表され、
(R13SO2)(R14SO2)N………一般式(7)
(R13、R14は、それぞれ独立に、CnHaFbClcBrdIeである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。
nは0〜6の整数。上記R13とR14が結合して環を形成している場合には、nは1〜8の整数。)
前記電解液の密度d(g/cm 3 )は1.2≦d≦2.2であり、
前記電解液の密度d(g/cm3)を前記電解液の塩濃度c(mol/L)で除したd/cは、0.15≦d/c≦0.71の範囲内であり、
前記負極は、X線回折法で測定されるX線回折プロファイルにおいて2θ=20度〜30度に現れるピークの半値幅から算出された結晶子サイズが20nm以下の炭素材料を含む負極活物質層をもつことを特徴とする非水系二次電池(ただし、前記電解液が前記塩としてLiN(SO 2 CF 3 ) 2 および前記有機溶媒として1,2-ジアルコキシエタンを含むものを除く。)。 - 前記電解液は、前記有機溶媒がニトリル類、カーボネート類、アミド類、イソシアネート類、エステル類、エポキシ類、オキサゾール類、ケトン類、酸無水物、スルホン類、スルホキシド類、ニトロ類、フラン類、環状エステル類、芳香族複素環類、複素環類、又は、リン酸エステル類である請求項1〜3のいずれかに記載の非水系二次電池。
- 前記結晶子サイズは5nm以下である請求項1〜4のいずれかに記載の非水系二次電池。
- 前記電解液は、前記c、d、eが0である請求項1〜5のいずれかに記載の非水系二次電池。
- 前記電解液は、前記nが0〜4の整数。上記R13とR14が結合して環を形成している場合には、nは1〜7の整数。
である請求項1〜6のいずれかに記載の非水系二次電池。 - 前記電解液は、前記nが0〜2の整数。上記R13とR14が結合して環を形成している場合には、nは1〜3の整数。
である請求項1〜7のいずれかに記載の非水系二次電池。 - 前記電解液は、前記塩が(CF3SO2)2NLi、(FSO2)2NLi、(C2F5SO2)2NLi、FSO2(CF3SO2)NLi、(SO2CF2CF2SO2)NLi、(SO2CF2CF2CF2SO2)NLi、FSO2(CH3SO2)NLi、FSO2(C2F5SO2)NLi、またはFSO2(C2H5SO2)NLiである請求項1〜8のいずれかに記載の非水系二次電池。
- 前記電解液は、前記塩が(CF3SO2)2NLi、(FSO2)2NLi、(C2F5SO2)2NLi、FSO2(CF3SO2)NLi、(SO2CF2CF2SO2)NLi、または(SO2CF2CF2CF2SO2)NLiである請求項1〜9のいずれかに記載の非水系二次電池。
- 前記有機溶媒がアセトニトリルである請求項1〜10の何れか一項に記載の非水系二次電池。
- 前記電解液は、前記有機溶媒が下記一般式(10)で示される鎖状カーボネートから選択される請求項1〜10のいずれかに記載の非水系二次電池。
R19OCOOR20 一般式(10)
(R19、R20は、それぞれ独立に、鎖状アルキルであるCnHaFbClcBrdIe、又は、環状アルキルを化学構造に含むCmHfFgClhBriIjのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。) - 前記有機溶媒がジメチルカーボネート、エチルメチルカーボネート又はジエチルカーボネートから選択される請求項1〜10、請求項12のいずれかに記載の非水系二次電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014186339A JP5817002B2 (ja) | 2013-09-25 | 2014-09-12 | 非水系二次電池 |
CN201480053195.4A CN105580184B (zh) | 2013-09-25 | 2014-09-25 | 非水电解质二次电池 |
PCT/JP2014/004911 WO2015045387A1 (ja) | 2013-09-25 | 2014-09-25 | 非水電解質二次電池 |
KR1020167010615A KR101901675B1 (ko) | 2013-09-25 | 2014-09-25 | 비수 전해질 2차 전지 |
DE112014004442.3T DE112014004442T5 (de) | 2013-09-25 | 2014-09-25 | Nichtwässrige Elektrolytsekundärbatterie |
US15/024,415 US11011781B2 (en) | 2013-09-25 | 2014-09-25 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013198283 | 2013-09-25 | ||
JP2013198283 | 2013-09-25 | ||
JP2014186339A JP5817002B2 (ja) | 2013-09-25 | 2014-09-12 | 非水系二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015088474A JP2015088474A (ja) | 2015-05-07 |
JP5817002B2 true JP5817002B2 (ja) | 2015-11-18 |
Family
ID=53051002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014186339A Active JP5817002B2 (ja) | 2013-09-25 | 2014-09-12 | 非水系二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5817002B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7131923B2 (ja) * | 2018-02-20 | 2022-09-06 | 三星エスディアイ株式会社 | 非水電解質二次電池用電解液及び非水電解質二次電池 |
US11444328B2 (en) | 2018-02-20 | 2022-09-13 | Samsung Sdi Co., Ltd. | Non-aqueous electrolyte for secondary battery, secondary battery having the same and method of manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2709864B2 (ja) * | 1991-01-25 | 1998-02-04 | 日本電池株式会社 | 非水電解質二次電池 |
DE69818627T2 (de) * | 1997-07-25 | 2004-08-12 | Institute Of Organic Chemistry | Ionische verbindungen mit delokalisierter anionischer ladung, ihrer verwendung als komponenten von ionenleitern oder von katalysatoren |
AU2002211378A1 (en) * | 2000-10-06 | 2002-04-22 | E.I. Du Pont De Nemours And Company | High performance lithium or lithium ion cell |
US20070236413A1 (en) * | 2006-03-29 | 2007-10-11 | 3M Innovative Properties Company | Fluted optical plate with internal light sources and systems using same |
-
2014
- 2014-09-12 JP JP2014186339A patent/JP5817002B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015088474A (ja) | 2015-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101940151B1 (ko) | 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는, 전지, 커패시터 등의 축전 장치용 전해액 및, 그의 제조 방법, 그리고 당해 전해액을 구비하는 커패시터 | |
JP5965445B2 (ja) | 非水電解質二次電池 | |
JP6575023B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタ | |
JP5816997B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液 | |
JPWO2016143294A1 (ja) | 電解液 | |
JP5817009B1 (ja) | 非水系二次電池 | |
WO2015045389A1 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ | |
WO2015045387A1 (ja) | 非水電解質二次電池 | |
JP6575022B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液 | |
JP5965444B2 (ja) | 非水系二次電池 | |
JP5817002B2 (ja) | 非水系二次電池 | |
JP5817001B2 (ja) | 非水系二次電池 | |
JP5817004B2 (ja) | リチウムイオン二次電池 | |
JP5816999B2 (ja) | アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法 | |
JP6437399B2 (ja) | 非水系二次電池 | |
JP5817003B2 (ja) | 非水電解質二次電池 | |
JP5965446B2 (ja) | 蓄電装置 | |
JP5817007B1 (ja) | 非水系二次電池 | |
JP5817008B1 (ja) | 非水系二次電池 | |
JP2016189340A (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5817002 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |