JP5817003B2 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP5817003B2
JP5817003B2 JP2014186340A JP2014186340A JP5817003B2 JP 5817003 B2 JP5817003 B2 JP 5817003B2 JP 2014186340 A JP2014186340 A JP 2014186340A JP 2014186340 A JP2014186340 A JP 2014186340A JP 5817003 B2 JP5817003 B2 JP 5817003B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
secondary battery
nli
negative electrode
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014186340A
Other languages
English (en)
Other versions
JP2015088475A (ja
Inventor
山田 淳夫
淳夫 山田
裕貴 山田
裕貴 山田
佳浩 中垣
佳浩 中垣
智之 河合
智之 河合
雄紀 長谷川
雄紀 長谷川
浩平 間瀬
浩平 間瀬
合田 信弘
信弘 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2014186340A priority Critical patent/JP5817003B2/ja
Priority to CN201480053195.4A priority patent/CN105580184B/zh
Priority to DE112014004442.3T priority patent/DE112014004442T5/de
Priority to US15/024,415 priority patent/US11011781B2/en
Priority to PCT/JP2014/004911 priority patent/WO2015045387A1/ja
Priority to KR1020167010615A priority patent/KR101901675B1/ko
Publication of JP2015088475A publication Critical patent/JP2015088475A/ja
Application granted granted Critical
Publication of JP5817003B2 publication Critical patent/JP5817003B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は負極と正極と電解液とを含む非水電解質二次電池に関する。
非水電解質二次電池用の負極活物質として、ケイ素(Si)やスズ(Sn)を用いる技術が知られている(例えば、特許文献1参照)。この種の負極活物質を用いた非水電解質二次電池は高容量である。しかし近年、非水電解質二次電池には非常に多彩な用途に対応することが求められている。したがって、非水電解質二次電池の電池特性をより高め得る技術の開発が望まれている。
特開2006−164960号公報
本発明は上記事情を考慮してなされたものであり、電池特性に優れる非水電解質二次電池を提供することを目的とする。
本発明の発明者等は、鋭意研究の結果、ケイ素及び/又はスズと炭素とを含む負極活物質を特殊な電解液と併用することで、非水電解質二次電池に優れた電池特性を付与できることを見出した。すなわち、上記課題を解決する本発明の非水電解質二次電池は、
負極と電解液と正極とを含み、
前記電解液は、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
前記負極は、負極活物質にケイ素元素及び/又はスズ元素を含むものである。
本発明の非水電解質二次電池は、負極活物質に由来する効果と電解液に由来する効果との協働により、優れた電池特性を発揮する。
電解液E3のIRスペクトルである。 電解液E4のIRスペクトルである。 電解液E7のIRスペクトルである。 電解液E8のIRスペクトルである。 電解液E10のIRスペクトルである。 電解液C2のIRスペクトルである。 電解液C4のIRスペクトルである。 アセトニトリルのIRスペクトルである。 (CFSONLiのIRスペクトルである。 (FSONLiのIRスペクトルである。 電解液E11のIRスペクトルである。 電解液E12のIRスペクトルである。 電解液E13のIRスペクトルである。 電解液E14のIRスペクトルである。 電解液E15のIRスペクトルである。 電解液C6のIRスペクトルである。 ジメチルカーボネートのIRスペクトルである。 電解液E16のIRスペクトルである。 電解液E17のIRスペクトルである。 電解液E18のIRスペクトルである。 電解液C7のIRスペクトルである。 エチルメチルカーボネートのIRスペクトルである。 電解液E19のIRスペクトルである。 電解液E20のIRスペクトルである。 電解液E21のIRスペクトルである。 電解液C8のIRスペクトルである。 ジエチルカーボネートのIRスペクトルである。 (FSONLiのIRスペクトルである(1900〜1600cm−1)。 評価例8の急速充放電の繰り返しに対する応答性の結果である。 電解液E8のラマンスペクトルである。 電解液E9のラマンスペクトルである。 電解液C4のラマンスペクトルである。 電解液E11のラマンスペクトルである。 電解液E13のラマンスペクトルである。 電解液E15のラマンスペクトルである。 電解液C6のラマンスペクトルである。 評価例12における、電池の複素インピーダンス平面プロットである。 評価例15における、リチウムイオン二次電池EB7のDSCチャートである。 評価例15における、リチウムイオン二次電池CB5のDSCチャートである。 実施例2および比較例2のリチウム二次電池の充放電曲線である。 実施例3のリチウムイオン二次電池の充放電曲線である。
以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
本発明の非水電解質二次電池は、負極と、正極と、電解液とを含む。後述するように、電解液としては特殊なものを用い、かつ、負極活物質としてはケイ素及び/又はスズと炭素とを含むものを用いているが、正極は特に限定しない。本発明の非水電解質二次電池における電荷担体もまた特に限定しない。例えば、本発明の非水電解質二次電池はリチウムを電荷担体とする非水電解質二次電池(例えば、リチウム二次電池、リチウムイオン二次電池)であっても良いし、ナトリウムを電荷担体とする非水電解質二次電池(例えば、ナトリウム二次電池、ナトリウムイオン二次電池)であっても良い。
以下、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioである電解液である電解液のことを、「本発明の電解液」ということがある。
なお、従来の電解液は、IsとIoとの関係がIs<Ioである。更に、本発明の電解液に含まれる塩、すなわち、アルカリ金属、アルカリ土類金属またはアルミニウムをカチオンとするとともにアニオンの化学構造に硫黄元素を含む塩(支持塩、支持電解質ともいう)を、以下、必要に応じて「金属塩」または単に「塩」ということもある。
金属塩は、通常、電池の電解液に含まれるLiClO、LiAsF、LiPF、LiBF、LiAlCl、など、支持電解質として用いられる化合物であれば良い。金属塩のカチオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、およびアルミニウムを挙げることができる。金属塩のカチオンは、電解液を使用する電池の電荷担体と同一の金属イオンであるのが好ましい。例えば、本発明の電解液をリチウムイオン二次電池用の電解液として使用するのであれば、金属塩のカチオンはリチウムが好ましい。
塩のアニオンの化学構造は、ハロゲン、ホウ素、窒素、酸素、硫黄または炭素から選択される少なくとも1つの元素を含むと良い。ハロゲンまたはホウ素を含むアニオンの化学構造を具体的に例示すると、ClO、PF、AsF、SbF、TaF、BF、SiF、B(C、B(oxalate)、Cl、Br、Iを挙げることができる。
窒素、酸素、硫黄または炭素を含むアニオンの化学構造について、以下、具体的に説明する。
塩のアニオンの化学構造は、下記一般式(1)、一般式(2)または一般式(3)で表される化学構造が好ましい。
(R)(R)N 一般式(1)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、RとRは、互いに結合して環を形成しても良い。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、Rは、RまたはRと結合して環を形成しても良い。)
Y 一般式(2)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、Rは、Rと結合して環を形成しても良い。
Yは、O、Sから選択される。)
(R)(R)(R)C 一般式(3)
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、R、R、Rのうち、いずれか2つまたは3つが結合して環を形成しても良い。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、R、R、Rは、R、RまたはRと結合して環を形成しても良い。)
上記一般式(1)〜(3)で表される化学構造における、「置換基で置換されていても良い」との文言について説明する。例えば「置換基で置換されていても良いアルキル基」であれば、アルキル基の水素の一つ若しくは複数が置換基で置換されているアルキル基、または、特段の置換基を有さないアルキル基を意味する。
「置換基で置換されていても良い」との文言における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、SCN、OCN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、スルホ基、カルボキシル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基等が挙げられる。これらの置換基はさらに置換されてもよい。また置換基が2つ以上ある場合、置換基は同一でも異なっていてもよい。
塩のアニオンの化学構造は、下記一般式(4)、一般式(5)または一般式(6)で表される化学構造がより好ましい。
(R)(R)N 一般式(4)
(R、Rは、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
また、RとRは、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、Rは、RまたはRと結合して環を形成しても良い。)
Y 一般式(5)
(Rは、CClBr(CN)(SCN)(OCN)である。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、Rは、Rと結合して環を形成しても良い。
Yは、O、Sから選択される。)
(R1010)(R1111)(R1212)C 一般式(6)
(R10、R11、R12は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
10、R11、R12のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+e+f+g+hを満たし、1つの基が2n−1=a+b+c+d+e+f+g+hを満たす。
10は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
11は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
12は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、R、R、Rは、R10、R11またはR12と結合して環を形成しても良い。)
上記一般式(4)〜(6)で表される化学構造における、「置換基で置換されていても良い」との文言の意味は、上記一般式(1)〜(3)で説明したのと同義である。
上記一般式(4)〜(6)で表される化学構造において、nは0〜6の整数が好ましく、0〜4の整数がより好ましく、0〜2の整数が特に好ましい。なお、上記一般式(4)〜(6)で表される化学構造の、RとRが結合、または、R10、R11、R12が結合して環を形成している場合には、nは1〜8の整数が好ましく、1〜7の整数がより好ましく、1〜3の整数が特に好ましい。
塩のアニオンの化学構造は、下記一般式(7)、一般式(8)または一般式(9)で表されるものがさらに好ましい。
(R13SO)(R14SO)N 一般式(7)
(R13、R14は、それぞれ独立に、CClBrである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
15SO 一般式(8)
(R15は、CClBrである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
(R16SO)(R17SO)(R18SO)C 一般式(9)
(R16、R17、R18は、それぞれ独立に、CClBrである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
16、R17、R18のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+eを満たし、1つの基が2n−1=a+b+c+d+eを満たす。)
上記一般式(7)〜(9)で表される化学構造において、nは0〜6の整数が好ましく、0〜4の整数がより好ましく、0〜2の整数が特に好ましい。なお、上記一般式(7)〜(9)で表される化学構造の、R13とR14が結合、または、R16、R17、R18が結合して環を形成している場合には、nは1〜8の整数が好ましく、1〜7の整数がより好ましく、1〜3の整数が特に好ましい。また、上記一般式(7)〜(9)で表される化学構造において、a、c、d、eが0のものが好ましい。
金属塩は、(CFSONLi(以下、「LiTFSA」ということがある。)、(FSONLi(以下、「LiFSA」ということがある。)、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、(SOCFCFCFSO)NLi、FSO(CHSO)NLi、FSO(CSO)NLi、またはFSO(CSO)NLiが特に好ましい。
本発明の非水電解質二次電池における金属塩は、以上に説明したカチオンとアニオンをそれぞれ適切な数で組み合わせたものを採用すれば良い。本発明の電解液における金属塩は1種類を採用しても良いし、複数種を併用しても良い。
ヘテロ元素を有する有機溶媒としては、ヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである有機溶媒が好ましく、ヘテロ元素が窒素または酸素から選択される少なくとも1つである有機溶媒がより好ましい。また、ヘテロ元素を有する有機溶媒としては、NH基、NH基、OH基、SH基などのプロトン供与基を有さない、非プロトン性溶媒が好ましい。
ヘテロ元素を有する有機溶媒(以下、単に「有機溶媒」ということがある。)を具体的に例示すると、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、2,2−ジメチル−1,3−ジオキソラン、2−メチルテトラヒドロピラン、2−メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類、イソプロピルイソシアネート、n−プロピルイソシアネート、クロロメチルイソシアネート等のイソシアネート類、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、蟻酸メチル、蟻酸エチル、酢酸ビニル、メチルアクリレート、メチルメタクリレート等のエステル類、グリシジルメチルエーテル、エポキシブタン、2−エチルオキシラン等のエポキシ類、オキサゾール、2−エチルオキサゾール、オキサゾリン、2−メチル−2−オキサゾリン等のオキサゾール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、無水酢酸、無水プロピオン酸等の酸無水物、ジメチルスルホン、スルホラン等のスルホン類、ジメチルスルホキシド等のスルホキシド類、1−ニトロプロパン、2−ニトロプロパン等のニトロ類、フラン、フルフラール等のフラン類、γ―ブチロラクトン、γ―バレロラクトン、δ―バレロラクトン等の環状エステル類、チオフェン、ピリジン等の芳香族複素環類、テトラヒドロ−4−ピロン、1−メチルピロリジン、N−メチルモルフォリン等の複素環類、リン酸トリメチル、リン酸トリエチル等のリン酸エステル類を挙げることができる。
さらにヘテロ元素を有する有機溶媒として、下記一般式(10)で表される鎖状カーボネートを挙げることもできる。
19OCOOR20 一般式(10)
(R19、R20は、それぞれ独立に、鎖状アルキルであるCClBr、又は、環状アルキルを化学構造に含むCClBrのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
上記一般式(10)で表される鎖状カーボネートにおいて、nは1〜6の整数が好ましく、1〜4の整数がより好ましく、1〜2の整数が特に好ましい。mは3〜8の整数が好ましく、4〜7の整数がより好ましく、5〜6の整数が特に好ましい。また、上記一般式
(10)で表される鎖状カーボネートのうち、ジメチルカーボネート(以下、「DMC」ということがある。)、ジエチルカーボネート(以下、「DEC」ということがある。)、エチルメチルカーボネート(以下、「EMC」ということがある。)が特に好ましい。
ヘテロ元素を有する有機溶媒としては、比誘電率が20以上またはドナー性のエーテル酸素を有する溶媒が好ましく、そのような有機溶媒として、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、2,2−ジメチル−1,3−ジオキソラン、2−メチルテトラヒドロピラン、2−メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、N,N−ジメチルホルムアミド、アセトン、ジメチルスルホキシド、スルホランを挙げることができ、特に、アセトニトリル(以下、「AN」ということがある。)、1,2−ジメトキシエタン(以下、「DME」ということがある。)が好ましい。
これらの有機溶媒は単独で電解液に用いても良いし、複数を併用しても良い。
本発明の電解液は、その振動分光スペクトルにおいて、電解液に含まれる有機溶媒由来のピーク強度につき、有機溶媒本来のピークの強度をIoとし、有機溶媒本来のピークがシフトしたピーク(以下、「シフトピーク」ということがある。)の強度をIsとした場合、Is>Ioであることを特徴とする。すなわち、本発明の電解液を振動分光測定に供し得られる振動分光スペクトルチャートにおいて、上記2つのピーク強度の関係はIs>Ioとなる。
ここで、「有機溶媒本来のピーク」とは、有機溶媒のみを振動分光測定した場合のピーク位置(波数)に、観察されるピークを意味する。有機溶媒本来のピークの強度Ioの値と、シフトピークの強度Isの値は、振動分光スペクトルにおける各ピークのベースラインからの高さまたは面積である。
本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークがシフトしたピークが複数存在する場合には、最もIsとIoの関係を判断しやすいピークに基づいて当該関係を判断すればよい。また、本発明の電解液にヘテロ元素を有する有機溶媒を複数種用いた場合には、最もIsとIoの関係を判断しやすい(最もIsとIoの差が顕著な)有機溶媒を選択し、そのピーク強度に基づいてIsとIoの関係を判断すればよい。また、ピークのシフト量が小さく、シフト前後のピークが重なってなだらかな山のように見える場合は、既知の手段を用いてピーク分離を行い、IsとIoの関係を判断してもよい。
なお、ヘテロ元素を有する有機溶媒を複数種用いた電解液の振動分光スペクトルにおいては、カチオンと最も配位し易い有機溶媒(以下、「優先配位溶媒」ということがある。)のピークが他に優先してシフトする。ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の質量%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。また、ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の体積%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。
本発明の電解液の振動分光スペクトルにおける上記2つのピーク強度の関係は、Is>2×Ioの条件を満たすことが好ましく、Is>3×Ioの条件を満たすことがより好ましく、Is>5×Ioの条件を満たすことがさらに好ましく、Is>7×Ioの条件を満たすことが特に好ましい。最も好ましいのは、本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークの強度Ioが観察されず、シフトピークの強度Isが観察される電解液である。当該電解液においては、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和していることを意味する。本発明の電解液は、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和している状態(Io=0の状態)が最も好ましい。
本発明の電解液においては、金属塩と、ヘテロ元素を有する有機溶媒(または優先配位溶媒)が、相互作用を及ぼしていると推定される。具体的には、金属塩と、ヘテロ元素を有する有機溶媒(または優先配位溶媒)のヘテロ元素とが、配位結合を形成し、金属塩とヘテロ元素を有する有機溶媒(または優先配位溶媒)からなる安定なクラスターを形成していると推定される。このクラスターは、後述する実施例の結果からみて、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(または優先配位溶媒)2分子が配位することにより形成されていると推定される。この点を考慮すると、本発明の電解液における、金属塩1モルに対するヘテロ元素を有する有機溶媒(または優先配位溶媒)のモル範囲は、1.4モル以上3.5モル未満が好ましく、1.5モル以上3.1モル以下がより好ましく、1.6モル以上3モル以下がさらに好ましい。
本発明の電解液においては、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(または優先配位溶媒)2分子が配位することによりクラスター形成されていると推定されるため、本発明の電解液の濃度(mol/L)は、金属塩および有機溶媒それぞれの分子量と、溶液にした場合の密度に依存する。そのため、本発明の電解液の濃度を一概に規定することは適当でない。
本発明の電解液の濃度(mol/L)を表1に個別に例示する。
クラスターを形成している有機溶媒と、クラスターの形成に関与していない有機溶媒とは、それぞれの存在環境が異なる。そのため、振動分光測定において、クラスターを形成している有機溶媒由来のピークは、クラスターの形成に関与していない有機溶媒由来のピーク(有機溶媒本来のピーク)の観察される波数から、高波数側または低波数側にシフトして観察される。すなわち、シフトピークは、クラスターを形成している有機溶媒のピークに相当する。
振動分光スペクトルとしては、IRスペクトルまたはラマンスペクトルを挙げることができる。IR測定の測定方法としては、ヌジョール法、液膜法などの透過測定方法、ATR法などの反射測定方法を挙げることができる。IRスペクトルまたはラマンスペクトルのいずれを選択するかについては、本発明の電解液の振動分光スペクトルにおいて、IsとIoの関係を判断しやすいスペクトルの方を選択すれば良い。なお、振動分光測定は、大気中の水分の影響を軽減または無視できる条件で行うのがよい。例えば、ドライルーム、グローブボックスなどの低湿度または無湿度条件下でIR測定を行うこと、または、電解液を密閉容器に入れたままの状態でラマン測定を行うのがよい。
ここで、金属塩としてLiTFSA、有機溶媒としてアセトニトリルを含む本発明の電解液におけるピークにつき、具体的に説明する。
アセトニトリルのみをIR測定した場合、CおよびN間の三重結合の伸縮振動に由来するピークが通常2100〜2400cm−1付近に観察される。
ここで、従来の技術常識に従い、アセトニトリル溶媒に対しLiTFSAを1mol/Lの濃度で溶解して電解液とした場合を想定する。アセトニトリル1Lは約19molに該当するので、従来の電解液1Lには、1molのLiTFSAと19molのアセトニトリルが存在する。そうすると、従来の電解液においては、LiTFSAと溶媒和している(Liに配位している)アセトニトリルと同時に、LiTFSAと溶媒和していない(Liに配位していない)アセトニトリルが多数存在する。さて、LiTFSAと溶媒和しているアセトニトリル分子と、LiTFSAと溶媒和していないアセトニトリル分子とは、アセトニトリル分子の置かれている環境が異なるので、IRスペクトルにおいては、両者のアセトニトリルピークが区別して観察される。より具体的には、LiTFSAと溶媒和していないアセトニトリルのピークは、アセトニトリルのみをIR測定した場合と同様の位置(波数)に観察されるが、他方、LiTFSAと溶媒和しているアセトニトリルのピークは、ピーク位置(波数)が高波数側にシフトして観察される。
そして、従来の電解液の濃度においては、LiTFSAと溶媒和していないアセトニトリルが多数存在するのであるから、従来の電解液の振動分光スペクトルにおいて、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is<Ioとなる。
他方、本発明の電解液は従来の電解液と比較してLiTFSAの濃度が高く、かつ、電解液においてLiTFSAと溶媒和している(クラスターを形成している)アセトニトリル分子の数が、LiTFSAと溶媒和していないアセトニトリル分子の数よりも多い。そうすると、本発明の電解液の振動分光スペクトルにおける、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is>Ioとなる。
表2に、本発明の電解液の振動分光スペクトルにおいて、IoおよびIsの算出に有用と考えられる有機溶媒の波数と、その帰属を例示する。なお、振動分光スペクトルの測定装置、測定環境、測定条件に因って、観察されるピークの波数が以下の波数と異なる場合があることを付け加えておく。
有機溶媒の波数とその帰属につき、公知のデータを参考としてもよい。参考文献として、日本分光学会測定法シリーズ17 ラマン分光法、濱口宏夫、平川暁子、学会出版センター、231〜249頁を挙げる。また、コンピュータを用いた計算でも、IoおよびIsの算出に有用と考えられる有機溶媒の波数と、有機溶媒と金属塩が配位した場合の波数シフトを予測することができる。例えば、Gaussian09(登録商標、ガウシアン社)を用い、密度汎関数をB3LYP、基底関数を6−311G++(d,p)として計算すればよい。当業者は、表2の記載、公知のデータ、コンピュータでの計算結果を参考にして、有機溶媒のピークを選定し、IoおよびIsを算出することができる。
本発明の電解液は、従来の電解液と比較して、金属塩と有機溶媒の存在環境が異なり、かつ、金属塩濃度が高いため、電解液中の金属イオン輸送速度の向上(特に、金属がリチウムの場合、リチウム輸率の向上)、電極と電解液界面の反応速度の向上、電池のハイレート充放電時に起こる電解液の塩濃度の偏在の緩和、電気二重層容量の増大などが期待できる。さらに、本発明の電解液においては、ヘテロ元素を有する有機溶媒の大半が金属塩とクラスターを形成していることから、電解液に含まれる有機溶媒の蒸気圧が低くなる。その結果として、本発明の電解液からの有機溶媒の揮発が低減できる。
本発明の電解液の製造方法を説明する。本発明の電解液は従来の電解液と比較して金属塩の含有量が多いため、固体(粉体)の金属塩に有機溶媒を加える製造方法では凝集体が得られてしまい、溶液状態の電解液を製造するのが困難である。よって、本発明の電解液の製造方法においては、有機溶媒に対し金属塩を徐々に加え、かつ、電解液の溶液状態を維持しながら製造することが好ましい。
金属塩と有機溶媒の種類に因り、本発明の電解液は、従来考えられてきた飽和溶解度を超えて金属塩が有機溶媒に溶解している液体を包含する。そのような本発明の電解液の製造方法は、ヘテロ元素を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する第1溶解工程と、撹拌及び/又は加温条件下、前記第1電解液に前記金属塩を加え、前記金属塩を溶解し、過飽和状態の第2電解液を調製する第2溶解工程と、撹拌及び/又は加温条件下、前記第2電解液に前記金属塩を加え、前記金属塩を溶解し、第3電解液を調製する第3溶解工程を含む。
ここで、上記「過飽和状態」とは、撹拌及び/又は加温条件を解除した場合、または、振動等の結晶核生成エネルギーを与えた場合に、電解液から金属塩結晶が析出する状態のことを意味する。第2電解液は「過飽和状態」であり、第1電解液および第3電解液は「過飽和状態」でない。
換言すると、本発明の電解液の上記製造方法は、熱力学的に安定な液体状態であり従来の金属塩濃度を包含する第1電解液を経て、熱力学的に不安定な液体状態の第2電解液を経由し、そして、熱力学的に安定な新たな液体状態の第3電解液、すなわち本発明の電解液となる。
安定な液体状態の第3電解液は通常の条件で液体状態を保つことから、第3電解液においては、例えば、リチウム塩1分子に対し有機溶媒2分子で構成されこれらの分子間の強い配位結合によって安定化されたクラスターがリチウム塩の結晶化を阻害していると推定される。
第1溶解工程は、ヘテロ原子を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する工程である。
ヘテロ原子を有する有機溶媒と金属塩とを混合するためには、ヘテロ原子を有する有機溶媒に対し金属塩を加えても良いし、金属塩に対しヘテロ原子を有する有機溶媒を加えても良い。
第1溶解工程は、撹拌及び/又は加温条件下で行われるのが好ましい。撹拌速度については適宜設定すればよい。加温条件については、ウォーターバスまたはオイルバスなどの恒温槽で適宜制御するのが好ましい。金属塩の溶解時には溶解熱が発生するので、熱に不安定な金属塩を用いる場合には、温度条件を厳密に制御することが好ましい。また、あらかじめ、有機溶媒を冷却しておいても良いし、第1溶解工程を冷却条件下で行ってもよい。
第1溶解工程と第2溶解工程は連続して実施しても良いし、第1溶解工程で得た第1電解液を一旦保管(静置)しておき、一定時間経過した後に、第2溶解工程を実施しても良い。
第2溶解工程は、撹拌及び/又は加温条件下、第1電解液に金属塩を加え、金属塩を溶解し、過飽和状態の第2電解液を調製する工程である。
第2溶解工程は、熱力学的に不安定な過飽和状態の第2電解液を調製するため、撹拌及び/又は加温条件下で行うことが必須である。ミキサー等の撹拌器を伴った撹拌装置で第2溶解工程を行うことにより、撹拌条件下としても良いし、撹拌子と撹拌子を動作させる装置(スターラー)を用いて第2溶解工程を行うことにより、撹拌条件下としても良い。加温条件については、ウォーターバスまたはオイルバスなどの恒温槽で適宜制御するのが好ましい。もちろん、撹拌機能と加温機能を併せ持つ装置またはシステムを用いて第2溶解工程を行うことが特に好ましい。なお、ここでいう加温とは、対象物を常温(25℃)以上の温度に温めることを指す。加温温度は30℃以上であるのがより好ましく、35℃以上であるのがさらに好ましい。また、加温温度は、有機溶媒の沸点よりも低い温度であるのが良い。
第2溶解工程において、加えた金属塩が十分に溶解しない場合には、撹拌速度の増加及び/又はさらなる加温を実施する。この場合には、第2溶解工程の電解液にヘテロ原子を有する有機溶媒を少量加えてもよい。
第2溶解工程で得た第2電解液を一旦静置すると金属塩の結晶が析出してしまうので、第2溶解工程と第3溶解工程は連続して実施するのが好ましい。
第3溶解工程は、撹拌及び/又は加温条件下、第2電解液に金属塩を加え、金属塩を溶解し、第3電解液を調製する工程である。第3溶解工程では、過飽和状態の第2電解液に金属塩を加え、溶解する必要があるので、第2溶解工程と同様に撹拌及び/又は加温条件下で行うことが必須である。具体的な撹拌及び/又は加温条件は、第2溶解工程の条件と同様である。
第1溶解工程、第2溶解工程および第3溶解工程を通じて加えた有機溶媒と金属塩とのモル比が概ね2:1程度となれば、第3電解液(本発明の電解液)の製造が終了する。撹拌及び/又は加温条件を解除しても、本発明の電解液から金属塩結晶は析出しない。これらの事情からみて、本発明の電解液は、例えば、リチウム塩1分子に対し有機溶媒2分子からなり、これらの分子間の強い配位結合によって安定化されたクラスターを形成していると推定される。
なお、本発明の電解液を製造するにあたり、金属塩と有機溶媒の種類に因り、各溶解工程での処理温度において、上記過飽和状態を経由しない場合であっても、上記第1〜3溶解工程で述べた具体的な溶解手段を用いて本発明の電解液を適宜製造することができる。
また、本発明の電解液の製造方法においては、製造途中の電解液を振動分光測定する振動分光測定工程を有するのが好ましい。具体的な振動分光測定工程としては、例えば、製造途中の各電解液を一部サンプリングして振動分光測定に供する方法でも良いし、各電解液をin situ(その場)で振動分光測定する方法でも良い。電解液をin situで振動分光測定する方法としては、透明なフローセルに製造途中の電解液を導入して振動分光測定する方法、または、透明な製造容器を用いて該容器外からラマン測定する方法を挙げることができる。
本発明の電解液の製造方法に振動分光測定工程を含めることにより、電解液におけるIsとIoとの関係を製造途中で確認できるため、製造途中の電解液が本発明の電解液に達したのか否かを判断することができるし、また、製造途中の電解液が本発明の電解液に達していない場合にどの程度の量の金属塩を追加すれば本発明の電解液に達するのかを把握することができる。
本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、低極性(低誘電率)または低ドナー数であって、金属塩と特段の相互作用を示さない溶媒、すなわち、本発明の電解液における上記クラスターの形成および維持に影響を与えない溶媒を加えることができる。このような溶媒を本発明の電解液に加えることにより、本発明の電解液の上記クラスターの形成を保持したままで、電解液の粘度を低くする効果が期待できる。
金属塩と特段の相互作用を示さない溶媒としては、具体的にベンゼン、トルエン、エチルベンゼン、o−キシレン、m−キシレン、p−キシレン、1−メチルナフタレン、ヘキサン、ヘプタン、シクロヘキサンを例示することができる。
また、本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、難燃性の溶媒を加えることができる。難燃性の溶媒を本発明の電解液に加えることにより、本発明の電解液の安全度をさらに高めることができる。難燃性の溶媒としては、四塩化炭素、テトラクロロエタン、ハイドロフルオロエーテルなどのハロゲン系溶媒、リン酸トリメチル、リン酸トリエチルなどのリン酸誘導体を例示することができる。
さらに、本発明の電解液をポリマーや無機フィラーと混合し混合物とすると、当該混合物が電解液を封じ込め、擬似固体電解質となる。擬似固体電解質を電池の電解液として用いることで、電池における電解液の液漏れを抑制することができる。
上記ポリマーとしては、リチウムイオン二次電池などの電池に使用されるポリマーや一般的な化学架橋したポリマーを採用することができる。特に、ポリフッ化ビニリデンやポリヘキサフルオロプロピレンなど電解液を吸収しゲル化し得るポリマーや、ポリエチレンオキシドなどのポリマーにイオン導電性基を導入したものが好適である。
具体的なポリマーとしては、ポリメチルアクリレート、ポリメチルメタクリレート、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリエチレングリコールジメタクリレート、ポリエチレングリコールアクリレート、ポリグリシドール、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリフマル酸、ポリクロトン酸、ポリアンゲリカ酸、カルボキシメチルセルロースなどのポリカルボン酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、ポリカーボネート、無水マレイン酸とグリコール類を共重合した不飽和ポリエステル、置換基を有するポリエチレンオキシド誘導体、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を例示できる。また、上記ポリマーとして、上記具体的なポリマーを構成する二種類以上のモノマーを共重合させた共重合体を選択しても良い。
上記ポリマーとして、多糖類も好適である。具体的な多糖類として、グリコーゲン、セルロース、キチン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、ペクチン、アミロペクチン、キシログルカン、アミロースを例示できる。また、これら多糖類を含む材料を上記ポリマーとして採用してもよく、当該材料として、アガロースなどの多糖類を含む寒天を例示することができる。
上記無機フィラーとしては、酸化物や窒化物などの無機セラミックスが好ましい。
無機セラミックスはその表面に親水性および疎水性の官能基を有している。そのため、当該官能基が電解液を引き付けることにより、無機セラミックス内に導電性通路が形成され得る。さらに、電解液で分散した無機セラミックスは前記官能基により無機セラミックス同士のネットワークを形成し、電解液を封じ込める役割を果たし得る。無機セラミックスのこのような機能により、電池における電解液の液漏れをさらに好適に抑制することができる。無機セラミックスの上記機能を好適に発揮するために、無機セラミックスは粒子形状のものが好ましく、特にその粒子径がナノ水準のものが好ましい。
無機セラミックスの種類としては、一般的なアルミナ、シリカ、チタニア、ジルコニア、リチウムリン酸塩などを挙げることができる。また、無機セラミックス自体にリチウム伝導性があるものでも良く、具体的には、LiN、LiI、LiI−LiN−LiOH、LiI−LiS−P、LiI−LiS−P、LiI−LiS−B、LiO−B、LiO−V−SiO、LiO−B−P、LiO−B−ZnO、LiO−Al−TiO−SiO−P、LiTi(PO、Li−βAl、LiTaOを例示することができる。
無機フィラーとしてガラスセラミックスを採用してもよい。ガラスセラミックスはイオン性液体を封じ込めることができるので、本発明の電解液に対しても同様の効果を期待できる。ガラスセラミックスとしては、xLiS−(1−x)Pで表される化合物、ならびに、当該化合物のSの一部を他の元素で置換したもの、および、当該化合物のPの一部をゲルマニウムに置換したものを例示できる。
本発明の電解液における密度d(g/cm)は、好ましくはd≧1.2またはd≦2.2であり、1.2≦d≦2.2の範囲内がより好ましく、1.25≦d≦2.0の範囲内がより好ましく、1.3≦d≦1.8の範囲内がさらに好ましく、1.3≦d≦1.6の範囲内が特に好ましい。なお、本発明の電解液における密度d(g/cm)は、20℃での密度を意味する。以下に説明するd/cは上記dを塩濃度c(mol/L)で除した値である。
本発明の電解液におけるd/cは0.15≦d/c≦0.71であり、0.15≦d/c≦0.56の範囲内が好ましく、0.25≦d/c≦0.56の範囲内がより好ましく、0.26≦d/c≦0.50の範囲内がさらに好ましく、0.27≦d/c≦0.47の範囲内が特に好ましい。
本発明の電解液におけるd/cは、金属塩と有機溶媒を特定した場合でも規定することができる。例えば、金属塩としてLiTFSA、有機溶媒としてDMEを選択した場合には、d/cは0.42≦d/c≦0.56の範囲内が好ましく、0.44≦d/c≦0.52の範囲内がより好ましい。金属塩としてLiTFSA、有機溶媒としてANを選択した場合には、d/cは0.35≦d/c≦0.41の範囲内が好ましく、0.36≦d/c≦0.39の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてDMEを選択した場合には、d/cは0.32≦d/c≦0.46の範囲内が好ましく、0.34≦d/c≦0.42の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてANを選択した場合には、d/cは0.25≦d/c≦0.48の範囲内が好ましく、0.25≦d/c≦0.38の範囲がより好ましく、0.25≦d/c≦0.31の範囲内がさらに好ましく、0.26≦d/c≦0.29の範囲内がなお好ましい。金属塩としてLiFSA、有機溶媒としてDMCを選択した場合には、d/cは0.32≦d/c≦0.46の範囲内が好ましく、0.34≦d/c≦0.42の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてEMCを選択した場合には、d/cは0.34≦d/c≦0.50の範囲内が好ましく、0.37≦d/c≦0.45の範囲内がより好ましい。金属塩としてLiFSA、有機溶媒としてDECを選択した場合には、d/cは0.36≦d/c≦0.54の範囲内が好ましく、0.39≦d/c≦0.48の範囲内がより好ましい。
本発明の電解液は、従来の電解液と比較して、金属塩と有機溶媒の存在環境が異なり、密度が高いため、電解液中の金属イオン輸送速度の向上(特に、金属がリチウムの場合、リチウム輸率の向上)、電極と電解液界面の反応速度の向上、電池のハイレート充放電時に起こる電解液の塩濃度の偏在の緩和、電気二重層容量増大などが期待できる。さらに、本発明の電解液においては、密度が高いことから、電解液に含まれる有機溶媒の蒸気圧が低くなる。その結果として、本発明の電解液からの有機溶媒の揮発が低減できる。
また、このような本発明の電解液の粘度は、従来の電解液の粘度と比較して高い。このため、本発明の電解液を用いた本発明の非水電解質二次電池であれば、仮に電池が破損したとしても、電解液漏れが抑制される。また、従来の電解液を用いた非水電解質二次電池は、高速充放電サイクル時に容量減少が顕著であった。その理由の一つとして、急速に充放電を繰り返した際の電解液中に生じたLi濃度ムラに因り、電極との反応界面に十分な量のLiを電解液が供給できなくなったこと、つまり、電解液のLi濃度の偏在が考えられる。しかしながら、本発明の電解液の金属濃度は、従来の電解液に対して高い。例えば本発明の電解液の好ましいLi濃度は、一般的な電解液のLi濃度の2〜5倍程度である。このようにLiを高濃度で含む本発明の電解液においては、Liの偏在が軽減されると考えられ、その結果、高速充放電サイクル時の容量低下が抑制されると考えられる。また、本発明の電解液が高粘度であることにより、電極界面における電解液の保液性が向上し、電極界面で電解液が不足する状態(いわゆる液枯れ状態)を抑制することも、高速充放電サイクル時の容量低下が抑制された一因と考えられる。
ところで、本発明の電解液は金属塩のカチオンを高濃度で含有する。このため、本発明の電解液中において、隣り合うカチオン間の距離は極めて近い。そして、非水系二次電池の充放電時にリチウムイオン等のカチオンが正極と負極との間を移動する際には、移動先の電極に直近のカチオンが先ず当該電極に供給される。そして、供給された当該カチオンがあった場所には、当該カチオンに隣り合う他のカチオンが移動する。つまり、本発明の電解液中においては、隣り合うカチオンが供給対象となる電極に向けて順番に一つずつ位置を変えるという、ドミノ倒し様の現象が生じていると予想される。このため、充放電時のカチオンの移動距離は短く、その分だけカチオンの移動速度が高いと考えられる。そして、このことに起因して、本発明の電解液を有する本発明の非水系二次電池の反応速度は高いと考えられる。
本発明の電解液の粘度η(mPa・s)について述べると、10<η<500の範囲が好ましく、12<η<400の範囲がより好ましく、15<η<300の範囲がさらに好ましく、18<η<150の範囲が特に好ましく、20<η<140の範囲が最も好ましい。
また、電解液のイオン伝導度σ(mS/cm)は高ければ高いほど、好適にイオンを移動することができ、優れた電池の電解液となり得る。本発明の電解液のイオン伝導度σ(mS/cm)につき、あえて、上限を含めた好適な範囲を示すと、2<σ<200の範囲が好ましく、3<σ<100の範囲がより好ましく、4<σ<50の範囲がさらに好ましく、5<σ<35の範囲が特に好ましい。
本発明の非水電解質二次電池における負極は、負極活物質に、ケイ素元素及び/又はスズ元素を含む。上述したように、ケイ素およびスズは、非水電解質二次電池の容量を大きく向上させ得る負極活物質であることが知られている。ケイ素およびスズは14族元素に属する。これらの単体は単位体積(質量)あたり多数の電荷担体(リチウムイオン等)を吸蔵および放出し得るため、高容量の負極活物質となる。しかしその一方で、これらを負極活物質として用いた非水電解質二次電池は比較的レート特性に劣る。これに対して炭素を負極活物質として用いた非水電解質二次電池はレート特性に優れる。したがって、両者を負極活物質として併用することで、非水電解質二次電池を高容量にでき、かつ非水電解質二次電池に優れたレート特性を付与できる。
ケイ素は負極活物質として用いた場合の理論容量が大きい反面、充放電時の体積変化が大きい。したがって、ケイ素元素を含む負極活物質としては、Si相とケイ素酸化物相との2相に不均化されたSiO(0.3≦x≦1.6)を用いるのが特に好ましい。SiOにおけるSi相は、リチウムイオンを吸蔵および放出し得る。このSi相は、リチウムイオンの吸蔵および放出に伴って体積変化(すなわち膨張および収縮)する。ケイ素酸化物相は、SiO等からなり、Si相に比べて充放電に伴う体積変化が少ない。つまり、負極活物質としてのSiOは、Si相により高容量を実現するとともに、ケイ素酸化物相を有することにより負極活物質(或いは負極)全体の体積変化を抑制する。なお、xが下限値未満であると、Siの比率が過大になるため、充放電時の体積変化が大きくなりすぎてサイクル特性が低下する。一方、xが上限値を超えると、Si比率が過小になってエネルギー密度が低下する。xの範囲は0.5≦x≦1.5であるのがより好ましく、0.7≦x≦1.2であるのがさらに好ましい。なお、上記したSiOにおいては、非水電解質二次電池の充放電時にリチウム元素とSi相に含まれるケイ素元素とによる合金化反応が生じると考えられている。そして、この合金化反応が非水電解質二次電池(リチウムイオン二次電池)の充放電に寄与すると考えられている。後述するスズ元素を含む負極活物質についても、同様に、スズ元素とリチウム元素との合金化反応によって充放電できると考えられている。
スズ元素を含む負極活物質としては、Sn単体、スズ合金(Cu−Sn合金、Co−Sn合金)、アモルファススズ酸化物、スズケイ素酸化物等が挙げられる。このうち、アモルファススズ酸化物としてはSnB0.40.63.1が例示される。スズケイ素酸化物としてはSnSiOが例示される。
上記したケイ素元素を含む負極活物質、および、スズ元素を含む負極活物質は、炭素元素を含む材料(炭素材料)と複合化して用いることも可能である。これらを各々単独で用いるのではなく複合化して用いることで、特にケイ素及び/又はスズの構造が安定化し、負極の耐久性が向上する。具体的には、黒鉛等の炭素材料は、ケイ素単体やスズ単体と比べて充放電時における体積変化の少ない材料である。したがって、ケイ素元素を含む負極活物質やスズ元素を含む負極活物質を、このような炭素材料と複合化することで、充放電時における体積変化に起因する負極の破損等を抑制でき、負極の耐久性が向上する。そしてその結果、非水電解質二次電池のサイクル特性が向上する。ケイ素元素を含む負極活物質及び/又はスズ元素を含む負極活物質と、炭素材料との複合化は、既知の方法で行なえば良い。
炭素材料としては、黒鉛、ハードカーボン(難黒鉛化性炭素)、ソフトカーボン(易黒鉛化性炭素)等を好ましく使用できる。黒鉛は、天然、人造を問わず、その粒径もまた特に限定しない。
さらに、上記した負極活物質は、非水電解質二次電池用の負極活物質の少なくとも一部を構成すれば良く、一般的な負極活物質を併用することも可能である。
上記したケイ素元素を含む負極活物質、および、スズ元素を含む負極活物質に併用可能な一般的な負極活物質としては、リチウム等の電荷担体を吸蔵および放出し得る一般的なものを使用可能である。例えば、非水電解質二次電池がリチウムイオン二次電池である場合には、負極活物質として、リチウムイオンを吸蔵および放出し得る材料を選択すれば良い。より詳しくは、Li等の電荷担体と合金化可能な元素(単体)、当該元素を含む合金、または当該元素を含む化合物であれば良い。具体的には、負極活物質として、Liや、炭素、ケイ素、ゲルマニウムなどの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵および放出に伴う体積の膨張および収縮が顕著となるとの問題が生じる恐れがあるため、当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金または化合物を負極活物質として採用するのも好適である。合金または化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質として、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、または、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。
上記した各種の負極活物質を、ケイ素元素及び/又はスズ元素を含む負極活物質と併用する場合にも、負極活物質の主たる構成要素はケイ素元素を含む負極活物質及び/又はスズ元素を含む負極活物質であるのが良い。具体的には、負極活物質全体の50質量%以上をケイ素元素を含む負極活物質及び/又はスズ元素を含む負極活物質が占めるのが好ましく、80質量%以上をケイ素元素を含む負極活物質及び/又はスズ元素を含む負極活物質が占めるのがより好ましい。
負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。負極活物質に関しては既述した。
集電体は、非水電解質二次電池の放電または充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、ならびにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。
負極活物質層は負極活物質、ならびに必要に応じて結着剤及び/又は導電助剤を含む。
結着剤は活物質および導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。
また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基などリン酸系の基などが例示される。中でも、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ポリメタクリル酸など、分子中にカルボキシル基を含むポリマー、またはポリ(p−スチレンスルホン酸)などのスルホ基を含むポリマーが好ましい。
ポリアクリル酸、あるいはアクリル酸とビニルスルホン酸との共重合体など、カルボキシル基及び/又はスルホ基を多く含むポリマーは水溶性となる。したがって親水基を有するポリマーは、水溶性ポリマーであることが好ましく、一分子中に複数のカルボキシル基及び/又はスルホ基を含むポリマーが好ましい。
分子中にカルボキシル基を含むポリマーは、例えば、酸モノマーを重合する、あるいはポリマーにカルボキシル基を付与する、などの方法で製造することができる。酸モノマーとしては、アクリル酸、メタクリル酸、ビニル安息香酸、クロトン酸、ペンテン酸、アンジェリカ酸、チグリン酸など分子中に一つのカルボキシル基をもつ酸モノマー、イタコン酸、メサコン酸、シトラコン酸、フマル酸、マレイン酸、2−ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4−ヘキサジエン二酸、アセチレンジカルボン酸など分子内に二つ以上のカルボキシル基をもつ酸モノマーなどが例示される。これらから選ばれる二種以上のモノマーを重合してなる共重合ポリマーを用いてもよい。
例えば特開2013−065493号公報に記載されたような、アクリル酸とイタコン酸との共重合体からなり、カルボキシル基どうしが縮合して形成された酸無水物基を分子中に含んでいるポリマーを結着剤として用いることも好ましい。一分子中にカルボキシル基を二つ以上有する酸性度の高いモノマー由来の構造があることにより、充電時に電解液分解反応が起こる前にリチウムイオンなどをトラップし易くなると考えられている。さらに、ポリアクリル酸やポリメタクリル酸に比べてカルボキシル基が多く酸性度が高まると共に、所定量のカルボキシル基が酸無水物基に変化しているため、酸性度が高まりすぎることもない。そのため、この結着剤を用いて形成された負極をもつ二次電池は、初期効率が向上し、入出力特性が向上する。
負極活物質層中の結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.005〜1:0.3であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。負極活物質層中の導電助剤の配合割合は、質量比で、負極活物質:導電助剤=1:0.01〜1:0.5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると負極活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
非水電解質二次電池に用いられる正極は、リチウムイオンを吸蔵および放出し得る正極活物質を有する。正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。正極活物質層は正極活物質、ならびに必要に応じて結着剤及び/又は導電助剤を含む。正極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、ならびにステンレス鋼などの金属材料を例示することができる。正極の電位をリチウム基準で4V以上とする場合には、集電体としてアルミニウムを採用するのが好ましい。
具体的には、正極用集電体として、アルミニウムまたはアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al−Cu系、Al−Mn系、Al−Fe系、Al−Si系、Al−Mg系、AL−Mg−Si系、Al−Zn−Mg系が挙げられる。
また、アルミニウムまたはアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al−Mn系)、JIS A8079、A8021等のA8000系合金(Al−Fe系)が挙げられる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。
正極の結着剤および導電助剤は負極で説明したものと同様である。
正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル、およびスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVOまたはLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリンおよびアントラキノンならびにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極及び/又は負極に貼り付けるなどして一体化しても良い。正極は、負極と同様に、導電助剤および結着剤等を含有しても良い。導電助剤および結着剤は特に限定されず、上記した負極同様に、非水電解質二次電池に使用可能なものであれば良い。
集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、ならびに必要に応じて結着剤および導電助剤を含む活物質層形成用組成物(所謂負極合材、正極合材)を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
非水電解質二次電池には必要に応じてセパレータが用いられる。セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。本発明の電解液は粘度がやや高く極性が高いため、水などの極性溶媒が浸み込みやすい膜が好ましい。具体的には、存在する空隙の90%以上に水などの極性溶媒が浸み込む膜がさらに好ましい。
正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータおよび負極を重ねた積層型、または、正極、セパレータおよび負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に本発明の電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。
本発明の非水電解質二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
本発明の非水電解質二次電池は、上述したように、電荷担体の種類を問わない。したがって、本発明の非水電解質二次電池は例えばリチウムイオン二次電池であっても良いし、リチウム二次電池であっても良い。或いは、リチウム以外の電荷担体(例えばナトリウム)を用いたものであっても良い。本発明の非水電解質二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部に非水電解質二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両に非水電解質二次電池を搭載する場合には、非水電解質二次電池を複数直列に接続して組電池とするとよい。非水電解質二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置および電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
以上、本発明の電解液の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
以下に、実施例および比較例を示し、本発明を具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。
〔電解液〕
(電解液E1)
本発明の電解液を以下のとおり製造した。
有機溶媒である1,2−ジメトキシエタン約5mLを、撹拌子および温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2−ジメトキシエタンに対し、リチウム塩である(CFSONLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CFSONLiを加えた時点で(CFSONLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CFSONLiを溶解させた。約15gの(CFSONLiを加えた時点で(CFSONLiの溶解が再び停滞したので、1,2−ジメトキシエタンをピペットで1滴加えたところ、(CFSONLiは溶解した。さらに(CFSONLiを徐々に加え、所定の(CFSONLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2−ジメトキシエタンを加えた。これを電解液E1とした。得られた電解液は容積20mLであり、この電解液に含まれる(CFSONLiは18.38gであった。電解液E1における(CFSONLiの濃度は3.2mol/Lであった。電解液E1においては、(CFSONLi1分子に対し1,2−ジメトキシエタン1.6分子が含まれている。
なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
(電解液E2)
16.08gの(CFSONLiを用い、E1と同様の方法で、(CFSONLiの濃度が2.8mol/Lである電解液E2を製造した。電解液E2においては、(CFSONLi1分子に対し1,2−ジメトキシエタン2.1分子が含まれている。
(電解液E3)
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CFSONLiを徐々に加え、溶解させた。(CFSONLiを全量で19.52g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液E3とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E3における(CFSONLiの濃度は3.4mol/Lであった。電解液E3においては、(CFSONLi1分子に対しアセトニトリル3分子が含まれている。
(電解液E4)
24.11gの(CFSONLiを用い、E3と同様の方法で、(CFSONLiの濃度が4.2mol/Lである電解液E4を製造した。電解液E4においては、(CFSONLi1分子に対しアセトニトリル1.9分子が含まれている。
(電解液E5)
リチウム塩として13.47gの(FSONLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、E3と同様の方法で、(FSONLiの濃度が3.6mol/Lである電解液E5を製造した。電解液E5においては、(FSONLi1分子に対し1,2−ジメトキシエタン1.9分子が含まれている。
(電解液E6)
14.97gの(FSONLiを用い、E5と同様の方法で、(FSONLiの濃度が4.0mol/Lである電解液E6を製造した。電解液E6においては、(FSONLi1分子に対し1,2−ジメトキシエタン1.5分子が含まれている。
(電解液E7)
リチウム塩として15.72gの(FSONLiを用いた以外は、E3と同様の方法で、(FSONLiの濃度が4.2mol/Lである電解液E7を製造した。電解液E7においては、(FSONLi1分子に対しアセトニトリル3分子が含まれている。
(電解液E8)
16.83gの(FSONLiを用い、E7と同様の方法で、(FSONLiの濃度が4.5mol/Lである電解液E8を製造した。電解液E8においては、(FSONLi1分子に対しアセトニトリル2.4分子が含まれている。
(電解液E9)
18.71gの(FSONLiを用い、E7と同様の方法で、(FSONLiの濃度が5.0mol/Lである電解液E9を製造した。電解液E9においては、(FSONLi1分子に対しアセトニトリル2.1分子が含まれている。
(電解液E10)
20.21gの(FSONLiを用い、E7と同様の方法で、(FSONLiの濃度が5.4mol/Lである電解液E10を製造した。電解液E10においては、(FSONLi1分子に対しアセトニトリル2分子が含まれている。
(電解液E11)
有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液E11とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E11における(FSONLiの濃度は3.9mol/Lであった。電解液E11においては、(FSONLi1分子に対しジメチルカーボネート2分子が含まれている。
(電解液E12)
電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が3.4mol/Lの電解液E12とした。電解液E12においては、(FSONLi1分子に対しジメチルカーボネート2.5分子が含まれている。
(電解液E13)
電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.9mol/Lの電解液E13とした。電解液E13においては、(FSONLi1分子に対しジメチルカーボネート3分子が含まれている。
(電解液E14)
電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.6mol/Lの電解液E14とした。電解液E14においては、(FSONLi1分子に対しジメチルカーボネート3.5分子が含まれている。
(電解液E15)
電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.0mol/Lの電解液E15とした。電解液E15においては、(FSONLi1分子に対しジメチルカーボネート5分子が含まれている。
(電解液E16)
有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で1
2.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液E16とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E16における(FSONLiの濃度は3.4mol/Lであった。電解液E16においては、(FSONLi1分子に対しエチルメチルカーボネート2分子が含まれている。
(電解液E17)
電解液E16にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.9mol/Lの電解液E17とした。電解液E17においては、(FSONLi1分子に対しエチルメチルカーボネート2.5分子が含まれている。
(電解液E18)
電解液E16にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が2.2mol/Lの電解液E18とした。電解液E18においては、(FSONLi1分子に対しエチルメチルカーボネート3.5分子が含まれている。
(電解液E19)
有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液E19とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液E19における(FSONLiの濃度は3.0mol/Lであった。電解液E19においては、(FSONLi1分子に対しジエチルカーボネート2分子が含まれている。
(電解液E20)
電解液E19にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が2.6mol/Lの電解液E20とした。電解液E20においては、(FSONLi1分子に対しジエチルカーボネート2.5分子が含まれている。
(電解液E21)
電解液E19にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が2.0mol/Lの電解液E21とした。電解液E21においては、(FSONLi1分子に対しジエチルカーボネート3.5分子が含まれている。
(電解液C1)
5.74gの(CFSONLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、E3と同様の方法で、(CFSONLiの濃度が1.0mol/Lである電解液C1を製造した。電解液C1においては、(CFSONLi1分子に対し1,2−ジメトキシエタン8.3分子が含まれている。
(電解液C2)
5.74gの(CFSONLiを用い、E3と同様の方法で、(CFSONLiの濃度が1.0mol/Lである電解液C2を製造した。電解液C2においては、(CFSONLi1分子に対しアセトニトリル16分子が含まれている。
(電解液C3)
3.74gの(FSONLiを用い、E5と同様の方法で、(FSONLiの濃度が1.0mol/Lである電解液C3を製造した。電解液C3においては、(FSONLi1分子に対し1,2−ジメトキシエタン8.8分子が含まれている。
(電解液C4)
3.74gの(FSONLiを用い、E7と同様の方法で、(FSONLiの濃度が1.0mol/Lである電解液C4を製造した。電解液C4においては、(FSONLi1分子に対しアセトニトリル17分子が含まれている。
(電解液C5)
有機溶媒としてエチレンカーボネートおよびジエチルカーボネートの混合溶媒(体積比3:7、以下、「EC/DEC」ということがある。)を用い、リチウム塩として3.04gのLiPFを用いた以外は、E3と同様の方法で、LiPFの濃度が1.0mol/Lである電解液C5を製造した。
(電解液C6)
電解液E11にジメチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lの電解液C6とした。電解液C6においては、(FSONLi1分子に対しジメチルカーボネート10分子が含まれている。
(電解液C7)
電解液E16にエチルメチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lの電解液C7とした。電解液C7においては、(FSONLi1分子に対しエチルメチルカーボネート8分子が含まれている。
(電解液C8)
電解液E19にジエチルカーボネートを加えて希釈し、(FSONLiの濃度が1.1mol/Lの電解液C8とした。電解液C8においては、(FSONLi1分子に対しジエチルカーボネート7分子が含まれている。
表3に電解液の一覧を示す。
(評価例1:IR測定)
電解液E3、E4、E7、E8、E10、C2、C4、ならびに、アセトニトリル、(CFSONLi、(FSONLiにつき、以下の条件でIR測定を行った。2100〜2400cm−1の範囲のIRスペクトルをそれぞれ図1〜図10に示す。図の横軸は波数(cm−1)であり、縦軸は吸光度(反射吸光度)である。さらに、電解液E11〜E21、電解液C6〜C8、ならびに、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートにつき、以下の条件でIR測定を行った。1900〜1600cm−1の範囲のIRスペクトルをそれぞれ図11〜図27に示す。また、(FSONLiにつき、1900〜1600cm−1の範囲のIRスペクトルを図28に示す。図の横軸は波数(cm−1)であり、縦軸は吸光度(反射吸光度)である。
IR測定条件
装置:FT−IR(ブルカーオプティクス社製)
測定条件:ATR法(ダイヤモンド使用)
測定雰囲気:不活性ガス雰囲気下
図8で示されるアセトニトリルのIRスペクトルの2250cm−1付近には、アセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークが観察された。なお、図9で示される(CFSONLiのIRスペクトルおよび図10で示される(FSONLiのIRスペクトルの2250cm−1付近には、特段のピークが観察されなかった。
図1で示される電解液E3のIRスペクトルには、2250cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00699)観察された。さらに図1のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05828で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。
図2で示される電解液E4のIRスペクトルには、2250cm−1付近にアセトニトリル由来のピークが観察されず、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05234で観察された。IsとIoのピーク強度の関係はIs>Ioであった。
図3で示される電解液E7のIRスペクトルには、2250cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00997)観察された。さらに図3のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.08288で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。図4で示される電解液E8のIRスペクトルについても、図3のIRチャートと同様の強度のピークが同様の波数に観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=11×Ioであった。
図5で示される電解液E10のIRスペクトルには、2250cm−1付近にアセトニトリル由来のピークが観察されず、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.07350で観察された。IsとIoのピーク強度の関係はIs>Ioであった。
図6で示される電解液C2のIRスペクトルには、図8と同じく、2250cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04441で観察された。さらに図6のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03018で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
図7で示される電解液C4のIRスペクトルには、図8と同じく、2250cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04975で観察された。さらに図7のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのCおよびN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03804で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
図17で示されるジメチルカーボネートのIRスペクトルの1750cm−1付近には、ジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。なお、図28で示される(FSONLiのIRスペクトルの1750cm−1付近には、特段のピークが観察されなかった。
図11で示される電解液E11のIRスペクトルには、1750cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.16628)観察された。さらに図11のIRスペクトルには、1750cm−1付近から低波数側にシフトした1717cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48032で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.89×Ioであった。
図12で示される電解液E12のIRスペクトルには、1750cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.18129)観察された。さらに図12のIRスペクトルには、1750cm−1付近から低波数側にシフトした1717cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.52005で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.87×Ioであった。
図13で示される電解液E13のIRスペクトルには、1750cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20293)観察された。さらに図13のIRスペクトルには、1750cm−1付近から低波数側にシフトした1717cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.53091で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.62×Ioであった。
図14で示される電解液E14のIRスペクトルには、1750cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.23891)観察された。さらに図14のIRスペクトルには、1750cm−1付近から低波数側にシフトした1717cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.53098で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.22×Ioであった。
図15で示される電解液E15のIRスペクトルには、1750cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.30514)観察された。さらに図15のIRスペクトルには、1750cm−1付近から低波数側にシフトした1717cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.50223で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=1.65×Ioであった。
図16で示される電解液C6のIRスペクトルには、1750cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.48204)観察された。さらに図16のIRスペクトルには、1750cm−1付近から低波数側にシフトした1717cm−1付近にジメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.39244で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
図22で示されるエチルメチルカーボネートのIRスペクトルの1745cm−1付近には、エチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。
図18で示される電解液E16のIRスペクトルには、1745cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.13582)観察された。さらに図18のIRスペクトルには、1745cm−1付近から低波数側にシフトした1711cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.45888で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.38×Ioであった。
図19で示される電解液E17のIRスペクトルには、1745cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.15151)観察された。さらに図19のIRスペクトルには、1745cm−1付近から低波数側にシフトした1711cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48779で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.22×Ioであった。
図20で示される電解液E18のIRスペクトルには、1745cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20191)観察された。さらに図20のIRスペクトルには、1745cm−1付近から低波数側にシフトした1711cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.48407で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.40×Ioであった。
図21で示される電解液C7のIRスペクトルには、1745cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.41907)観察された。さらに図21のIRスペクトルには、1745cm−1付近から低波数側にシフトした1711cm−1付近にエチルメチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.33929で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
図27で示されるジエチルカーボネートのIRスペクトルの1742cm−1付近には、ジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが観察された。
図23で示される電解液E19のIRスペクトルには、1742cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.11202)観察された。さらに図23のIRスペクトルには、1742cm−1付近から低波数側にシフトした1706cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.42925で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.83×Ioであった。
図24で示される電解液E20のIRスペクトルには、1742cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.15231)観察された。さらに図24のIRスペクトルには、1742cm−1付近から低波数側にシフトした1706cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.45679で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=3.00×Ioであった。
図25で示される電解液E21のIRスペクトルには、1742cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.20337)観察された。さらに図25のIRスペクトルには、1742cm−1付近から低波数側にシフトした1706cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.43841で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=2.16×Ioであった。
図26で示される電解液C8のIRスペクトルには、1742cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークが(Io=0.39636)観察された。さらに図26のIRスペクトルには、1742cm−1付近から低波数側にシフトした1709cm−1付近にジエチルカーボネートのCおよびO間の二重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.31129で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
(評価例2:イオン伝導度)
電解液E1、E2、E4〜E6、E8、E11、E16、E19のイオン伝導度を以下の条件で測定した。結果を表4に示す。
イオン伝導度測定条件
Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
電解液E1、E2、E4〜E6、E8、E11、E16およびE19は、いずれもイオン伝導性を示した。よって、本発明の電解液は、いずれも各種の電池の電解液として機能し得ると理解できる。
(評価例3:粘度)
電解液E1、E2、E4〜6、E8、E11、E16、E19、ならびにC1〜C4、C6〜C8の粘度を以下の条件で測定した。結果を表5に示す。
粘度測定条件
落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。
電解液E1、E2、E4〜6、E8、E11、E16、E19の粘度は、電解液C1〜C4、C6〜C8の粘度と比較して、著しく高かった。よって、本発明の電解液を用いた電池であれば、仮に電池が破損したとしても、電解液漏れが抑制される。
(評価例4:揮発性)
電解液E2、E4、E8、E11、E13、C1、C2、C4およびC6の揮発性を以下の方法で測定した。
約10mgの電解液をアルミニウム製のパンに入れ、熱重量測定装置(TAインスツルメント社製、SDT600)に配置し、室温での電解液の重量変化を測定した。重量変化(質量%)を時間で微分することで揮発速度を算出した。揮発速度のうち最大のものを選択し、表6に示した。
電解液E2、E4、E8、E11、E13の最大揮発速度は、電解液C1、C2、C4、C6の最大揮発速度と比較して、著しく小さかった。よって、本発明の電解液を用いた電池は、仮に損傷したとしても、電解液の揮発速度が小さいため、電池外への有機溶媒の急速な揮発が抑制される。
(評価例5:燃焼性)
電解液E4、C2の燃焼性を以下の方法で試験した。
電解液をガラスフィルターにピペットで3滴滴下し、電解液をガラスフィルターに保持させた。当該ガラスフィルターをピンセットで把持し、そして、当該ガラスフィルターに接炎させた。
電解液E4は15秒間接炎させても引火しなかった。他方、電解液C2は5秒余りで燃え尽きた。
本発明の電解液は燃焼しにくいことが裏付けられた。
(評価例6:Li輸率)
電解液E2、E8、C4およびC5のLi輸率を以下の条件で測定した。結果を表7に示す。
(Li輸率測定条件)
電解液を入れたNMR管をPFG−NMR装置(ECA−500、日本電子)に供し、Li、19Fを対象として、スピンエコー法を用い、磁場パルス幅を変化させながら、各電解液中のLiイオンおよびアニオンの拡散係数を測定した。Li輸率は以下の式で算出した。
Li輸率=(Liイオン拡散係数)/(Liイオン拡散係数+アニオン拡散係数)
電解液E2、E8のLi輸率は、電解液C4、C5のLi輸率と比較して、著しく高かった。ここで、電解液のLiイオン伝導度は、電解液に含まれるイオン伝導度(全イオン電導度)にLi輸率を乗じて算出することができる。そうすると、本発明の電解液は、同程度のイオン伝導度を示す従来の電解液と比較して、リチウムイオン(カチオン)の輸送速度が高いといえる。
また、電解液E8につき、温度を変化させた場合のLi輸率を、上記Li輸率測定条件に準じて測定した。結果を表8に示す。
表8の結果から、本発明の電解液は、温度に因らず、好適なLi輸率を保つことがわかる。本発明の電解液は、低温でも液体状態を保っているといえる。
〔非水電解質二次電池〕
(ハーフセルEB1)
電解液E8を用いたハーフセルを以下のとおり製造した。
活物質である平均粒径10μmの黒鉛90質量部、および結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥してN−メチル−2−ピロリドンを除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、活物質層が形成された銅箔を得た。これを作用極とした。
対極は金属Liとした。
作用極、対極、両者の間に挟装したセパレータとしての厚さ400μmのWhatmanガラス繊維濾紙および電解液E8を電池ケース(宝泉株式会社製 CR2032型コインセルケース)に収容しハーフセルを構成した。これをハーフセルEB1とした。ハーフセルEB1、および、以下の各非水電解質二次電池の詳細を、実施例の欄の文末の表17に示す。
(ハーフセルCB1)
電解液C5を用いた以外は、EB1と同様の方法で、ハーフセルCB1を製造した。
(評価例7:レート特性)
ハーフセルEB1、CB1のレート特性を以下の方法で試験した。
ハーフセルに対し、0.1C、0.2C、0.5C、1C、2Cレート(1Cとは一定電流において1時間で電池を完全充電または放電させるために要する電流値を意味する。)で充電を行った後に放電を行い、それぞれの速度における作用極の容量(放電容量)を測定した。なお、ここでの記述は、対極を負極、作用極を正極とみなしている。0.1Cレートでの作用極の容量に対する他のレートにおける容量の割合(レート特性)を算出した。結果を表9に示す。
ハーフセルEB1は、0.2C、0.5C、1C、2Cのいずれのレートにおいても、ハーフセルCB1と比較して、容量の低下が抑制されており、優れたレート特性を示した。本発明の電解液を使用した二次電池は、優れたレート特性を示すことが裏付けられた。
(評価例8:急速充放電の繰り返しに対する応答性)
ハーフセルEB1、CB1に対し、1Cレートで充放電を3回繰り返した際の、容量と電圧の変化を観察した。結果を図29に示す。
ハーフセルCB1は充放電を繰り返すに伴い、1Cレートで電流を流した場合の分極が大きくなる傾向があり、2Vから0.01Vに到達するまでに得られる容量が急速に低下した。他方、ハーフセルEB1は充放電を繰り返しても、図29において3本の曲線が重なっている様からも確認できるように分極の増減がほとんどなく、好適に容量を維持した。CB1において分極が増加した理由として、急速に充放電を繰り返した際の電解液中に生じたLi濃度ムラに因り、電極との反応界面に十分な量のLiを電解液が供給できなくなったこと、つまり、電解液のLi濃度の偏在が考えられる。EB1では、Li濃度が高い本発明の電解液を用いたことで、電解液のLi濃度の偏在を抑制できたものと考えられる。本発明の電解液を使用した二次電池は、急速充放電に対し、優れた応答性を示すことが裏付けられた。
(リチウムイオン二次電池EB2)
電解液E8を用いたリチウムイオン二次電池EB2を以下のとおり製造した。
正極活物質であるLiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物94質量部、導電助剤であるアセチレンブラック3質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔(JIS A1000番系)を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN−メチル−2−ピロリドンを揮発により除去した。その後、このアルミニウム箔をプレスし接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、正極活物質層が形成されたアルミニウム箔を得た。これを正極とした。以下、必要に応じて、LiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物をNCM523と略し、アセチレンブラックをABと略し、ポリフッ化ビニリデンをPVdFと略する。
負極活物質である天然黒鉛98質量部、ならびに結着剤であるスチレンブタジエンゴム1質量部およびカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。以下、必要に応じて、スチレンブタジエンゴムをSBRと略し、カルボキシメチルセルロースをCMCと略する。
セパレータとして、厚さ20μmのセルロース製不織布を準備した。
正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液E8を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池をリチウムイオン二次電池EB2とした。
(リチウムイオン二次電池EB3)
電解液E8を用いたリチウムイオン二次電池EB3を以下のとおり製造した。
正極は、リチウムイオン二次電池EB2の正極と同様に製造した。
負極活物質である天然黒鉛90質量部、および結着剤であるポリフッ化ビニリデン10質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
セパレータとして、厚さ20μmのセルロース製不織布を準備した。
正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムにE8の電解液を注入した。その後、残りの一辺をシールすることで、ラミネートフィルムの四辺がシールされ、極板群および電解液が当該ラミネートフィルム内に密閉されたリチウムイオン二次電池を得た。この電池をリチウムイオン二次電池EB3とした。
(リチウムイオン二次電池CB2)
電解液C5を用いた以外は、EB2と同様に、リチウムイオン二次電池CB2を製造した。
(リチウムイオン二次電池CB3)
電解液C5を用いた以外は、EB3と同様に、リチウムイオン二次電池CB3を製造した。
(評価例9:リチウムイオン二次電池の入出力特性)
リチウムイオン二次電池EB2、EB3、CB2、CB3の出力特性を以下の条件で評価した。
(1)0℃または25℃、SOC80%での入力特性評価
評価条件は、充電状態(SOC)80%、0℃または25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。入力特性の評価は、2秒入力と5秒入力について電池毎にそれぞれ3回行った。
また、各電池の体積に基づき、25℃、2秒入力における電池出力密度(W/L)を算出した。
入力特性の評価結果を表10に示す。表10の中の「2秒入力」は、充電開始から2秒後での入力を意味し、「5秒入力」は充電開始から5秒後での入力を意味している。
表10に示すように、温度の違いに関わらず、リチウムイオン二次電池EB2の入力は、リチウムイオン二次電池CB2の入力に比べて、著しく高かった。同様に、リチウムイオン二次電池EB3の入力は、リチウムイオン二次電池CB3の入力に比べて、著しく高かった。
また、リチウムイオン二次電池EB2の電池入力密度は、リチウムイオン二次電池CB2の電池入力密度に比べて、著しく高かった。同様に、リチウムイオン二次電池EB3の電池入力密度は、リチウムイオン二次電池CB3の電池入力密度に比べて、著しく高かった。
(2)0℃または25℃、SOC20%での出力特性評価
評価条件は、充電状態(SOC)20%、0℃または25℃、使用電圧範囲3V―4.2V、容量13.5mAhとした。SOC20%、0℃は、例えば、冷蔵室などで使用する場合のように出力特性が出にくい領域である。出力特性の評価は、2秒出力と5秒出力について電池毎にそれぞれ3回行った。
また、各電池の体積に基づき、25℃、2秒出力における電池出力密度(W/L)を算出した。
出力特性の評価結果を表10に示す。表10の中の「2秒出力」は、放電開始から2秒後での出力を意味し、「5秒出力」は放電開始から5秒後での出力を意味している。
表10に示すように、温度の違いに関わらず、リチウムイオン二次電池EB2の出力は、リチウムイオン二次電池CB2の出力に比べて、著しく高かった。同様に、リチウムイオン二次電池EB3の出力は、リチウムイオン二次電池CB3の出力に比べて、著しく高かった。
また、リチウムイオン二次電池EB2の電池出力密度は、リチウムイオン二次電池CB2の電池出力密度に比べて、著しく高かった。同様に、リチウムイオン二次電池EB3の電池出力密度は、リチウムイオン二次電池CB3の電池出力密度に比べて、著しく高かった。
電解液E11、E13、E16、E19をそれぞれ容器に入れ、不活性ガスを充填して密閉した。これらを−30℃の冷凍庫に2日間保管した。保管後に各電解液を観察した。いずれの電解液も固化せず液体状態を維持しており、塩の析出も観察されなかった。
(評価例11:ラマンスペクトル測定)
電解液E8、E9、C4、並びに、E11、E13、E15、C6につき、以下の条件でラマンスペクトル測定を行った。各電解液の金属塩のアニオン部分に由来するピークが観察されたラマンスペクトルをそれぞれ図30〜図36に示す。図の横軸は波数(cm−1)であり、縦軸は散乱強度である。
ラマンスペクトル測定条件
装置:レーザーラマン分光光度計(日本分光株式会社NRSシリーズ)
レーザー波長:532nm
不活性ガス雰囲気下で電解液を石英セルに密閉し、測定に供した。
図30〜図32で示される電解液E8、E9、C4のラマンスペクトルの700〜800cm−1には、アセトニトリルに溶解したLiFSAの(FSONに由来する特徴的なピークが観察された。ここで、図30〜図32から、LiFSAの濃度の増加に伴い、上記ピークが高波数側にシフトするのがわかる。電解液が高濃度化するに従い、塩のアニオンに該当する(FSONがLiと相互作用する状態になる、換言すると、濃度が低い場合はLiとアニオンはSSIP(Solvent−separated ion pairs)状態を主に形成しており、高濃度化に伴いCIP(Contact ion pairs)状態やAGG(aggregate)状態を主に形成していると推察される。そして、かかる状態がラマンスペクトルのピークシフトとして観察されたと考察できる。
図33〜図36で示される電解液E11、E13、E15、C6のラマンスペクトルの700〜800cm−1には、ジメチルカーボネートに溶解したLiFSAの(FSONに由来する特徴的なピークが観察された。ここで、図33〜図36から、LiFSAの濃度の増加に伴い、上記ピークが高波数側にシフトするのがわかる。この現象は、前段落で考察したのと同様に、電解液が高濃度化することで、塩のアニオンに該当する(FSONが複数のLiと相互作用している状態がスペクトルに反映された結果であると推察される。
(リチウムイオン二次電池EB4)
リチウムイオン二次電池EB4は、電解液E11を用いたものであり、負極合材の組成、負極活物質と導電助剤の混合比、セパレータおよび電解液以外はEB2と同様である。正極については、NCM523:AB:PVdF=90:8:2とした。負極については、天然黒鉛:SBR:CMC=98:1:1とした。セパレータとしてはセルロース不織布(厚み20μm)を用いた。
(リチウムイオン二次電池EB5)
リチウムイオン二次電池EB5は電解液E13を用いたこと以外はEB4と同様である。
(リチウムイオン二次電池EB6)
リチウムイオン二次電池EB6は電解液E8を用いたこと以外はEB4と同様である。
(リチウムイオン二次電池CB4)
リチウムイオン二次電池CB4は電解液C5を用いた事以外はEB4と同様である。
(評価例12:電池の内部抵抗)
リチウムイオン二次電池EB4、EB5、EB6およびCB4を用い、電池の内部抵抗を評価した。
各リチウムイオン二次電池について、室温、3.0V〜4.1V(Li基準)の範囲でCC充放電(つまり定電流充放電)を繰り返した。そして、初回充放電後の交流インピーダンス、および、100サイクル経過後の交流インピーダンスを測定した。得られた複素インピーダンス平面プロットを基に、電解液、負極および正極の反応抵抗を各々解析した。図37に示すように、複素インピーダンス平面プロットには、二つの円弧がみられた。図中左側(つまり複素インピーダンスの実部が小さい側)の円弧を第1円弧と呼ぶ。図中右側の円弧を第2円弧と呼ぶ。第1円弧の大きさを基に負極の反応抵抗を解析し、第2円弧の大きさを基に正極の反応抵抗を解析した。第1円弧に連続する図37中最左側のプロットを基に電解液の抵抗を解析した。解析結果を表11および表12に示す。なお、表11は、初回充放電後の電解液の抵抗(所謂溶液抵抗)、負極の反応抵抗、正極の反応抵抗を示し、表12は100サイクル経過後の各抵抗を示す。
表11および表12に示すように、各リチウムイオン二次電池において、100サイクル経過後の負極反応抵抗および正極反応抵抗は、初回充放電後の各抵抗に比べて低下する傾向にある。
また、各リチウムイオン二次電池は、負極用のバインダとして親水基を有する同じポリマー(CMC−SBR)を用いているにもかかわらず、その耐久性には違いがある。つまり、表12に示す100サイクル経過後では、リチウムイオン二次電池EB4〜EB6の負極反応抵抗および正極反応抵抗は、リチウムイオン二次電池CB4の負極反応抵抗および正極反応抵抗に比べて低い。これは、リチウムイオン二次電池CB4では本発明の電解液を用いていなかったのに対して、リチウムイオン二次電池EB4〜EB6では本発明の電解液を用いていたことに起因すると考えられる。つまり、本発明の電解液を用いた本発明の非水系二次電池は、サイクル経過後に反応抵抗が低減するために、耐久性に優れるといえる。
なお、リチウムイオン二次電池EB6およびリチウムイオン二次電池CB4における電解液の溶液抵抗はほぼ同じであり、リチウムイオン二次電池EB4およびEB5における電解液の溶液抵抗は、リチウムイオン二次電池EB6およびCB4に比べて高い。また、各リチウムイオン二次電池における各電解液の溶液抵抗は初回充放電後も100サイクル経過後もほぼ同じである。このため、各電解液の耐久劣化は生じていないと考えられ、上記した各リチウムイオン二次電池において生じた負極反応抵抗および正極反応抵抗の差は、電解液の耐久劣化に関係するものでなく電極自体に生じているものであると考えられる。
リチウムイオン二次電池の内部抵抗は、電解液の溶液抵抗、負極の反応抵抗および正極の反応抵抗から総合的に判断できる。表11および表12の結果を基にすると、リチウムイオン二次電池の内部抵抗増大を抑制する観点からは、リチウムイオン二次電池EB4およびEB5が特に耐久性に優れ、次いでリチウムイオン二次電池EB6が耐久性に優れていると言える。
(評価例13:電池のサイクル耐久性)
リチウムイオン二次電池EB4〜EB6およびCB4について、室温、3.0V〜4.1V(Li基準)の範囲でCC充放電を繰り返し、初回充放電時の放電容量、100サイクル時の放電容量、および500サイクル時の放電容量を測定した。そして、初回充放電時の各リチウムイオン二次電池の容量を100%とし、100サイクル時および500サイクル時の各リチウムイオン二次電池の容量維持率(%)を算出した。結果を表13に示す。
表13に示すように、リチウムイオン二次電池EB4〜EB6は、100サイクル経過後にも、リチウムイオン二次電池CB4と同等の容量維持率を示した。つまり、リチウムイオン二次電池EB4〜EB6は、リチウムイオン二次電池CB4と同様にサイクル耐久性に優れていた。
リチウムイオン二次電池EB4については、特に500サイクル経過時にも極めて高い容量維持率を示し、特に耐久性に優れていたため、有機溶媒としてDMCを選択する場合には、ANを選択する場合に比べて、より耐久性が向上するといえる。
(評価例14:電池の高温貯蔵耐性)
リチウムイオン二次電池EB4、EB6およびCB4について、60℃で1週間貯蔵する高温貯蔵試験を行った。高温貯蔵試験開始前に、3.0Vから4.1VにまでCC−CV(定電流定電圧)充電した。このときの充電容量を基準(SOC100)とし、当該基準に対して20%分をCC放電してSOC80に調整した後、高温貯蔵試験を開始した。高温貯蔵試験後に1Cで3.0VまでCC−CV放電した。このときの放電容量と貯蔵前のSOC80容量との比から、次式のように残存容量を算出した。結果を表14に示す。
残存容量=100×(貯蔵後のCC−CV放電容量)/(貯蔵前のSOC80容量)
リチウムイオン二次電池EB4およびEB6の残存容量は、リチウムイオン二次電池CB4の非水系二次電池の残存容量に比べて大きい。この結果から、有機溶媒としてはDMC、ANが特に好ましく使用できるといえる。
(リチウムイオン二次電池EB7)
電解液E8を用いたリチウムイオン二次電池EB7を以下のとおり製造した。正極は、リチウムイオン二次電池EB2の正極と同様に製造した。
負極活物質である天然黒鉛98質量部、ならびに結着剤であるSBR1質量部およびCMC1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で100℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。これを負極とした。
セパレータとして、実験用濾紙(東洋濾紙株式会社、セルロース製、厚み260μm)を準備した。
正極と負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液E8を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池をリチウムイオン二次電池EB7とした。
(リチウムイオン二次電池CB5)
電解液C5を用いたこと以外は、EB7と同様にしてリチウムイオン二次電池CB5を得た。
(評価例15:電池の熱安定性)
リチウムイオン二次電池EB7およびCB5の充電状態の正極に対する電解液の熱安定性を以下の方法で評価した。
リチウムイオン二次電池に対し、充電終止電圧4.2V、定電流定電圧条件で満充電した。満充電後のリチウムイオン二次電池を解体し、正極を取り出した。当該正極から得られた正極活物質層3mgおよび電解液1.8μLをステンレス製のパンに入れ、該パンを密閉した。密閉パンを用いて、窒素雰囲気下、昇温速度20℃/min.の条件で示差走査熱量分析を行い、DSC曲線を観察した。示差走査熱量測定装置としてRigaku DSC8230を使用した。リチウムイオン二次電池EB7の充電状態の正極活物質層と電解液を共存させた場合のDSCチャートを図38に示す。また、リチウムイオン二次電池CB5の充電状態の正極活物質層と電解液を共存させた場合のDSCチャートを図39にそれぞれ示す。
図38及び図39の結果から明らかなように、リチウムイオン二次電池EB7における充電状態の正極と電解液を共存させた場合のDSC曲線はほとんど吸発熱ピークが観察されなかったのに対し、リチウムイオン二次電池CB5の充電状態の正極と電解液を共存させた場合のDSC曲線においては300℃付近に発熱ピークが観察された。この発熱ピークは、正極活物質と電解液とが反応した結果、生じたものと推定される。
これらの結果から、本発明の電解液を用いたリチウムイオン二次電池は、従来の電解液を用いたリチウムイオン二次電池と比較して、正極活物質と電解液との反応性が低く、熱安定性に優れていることがわかる。
(実施例1)
上記した電解液E8と、シリコン−炭素複合体粉末からなる負極活物質と、を用いて、実施例1の非水電解質二次電池を製造した。
シリコン−炭素複合体粉末は、粒子径50nmのSi粉末とアセチレンブラックとを質量比6:4で混合し、遊星ボールミルを用いて複合化することで得られたものである。
実施例1の非水電解質二次電池における負極は、負極活物質および結着剤を含む。負極活物質としてのシリコン−炭素複合体粉末90質量部と、結着剤としてのポリアミドイミド(PAI)10質量部とを混合した。この混合物を適量のNMPに分散させてスラリー状の負極合材を調製した。ドクターブレードを用いて、このスラリーを負極集電体に膜状に塗布した。負極集電体としては、厚さ20μmの銅箔を用いた。スラリー状の負極合材を塗布した負極集電体を80℃で20分間乾燥後、ローラープレス機を用いてプレスした。プレス後の集電体−負極合材積層体を、真空乾燥機内で200℃、2時間加熱し、所定の形状に裁断して負極を得た。
実施例1の非水電解質二次電池における対極としてはリチウム箔(金属リチウム)を用いた。
電解液としては、電解液E8を用いた。具体的には、電解液は、溶媒としてのアセトニトリルに、支持塩としての(SOF)NLi(LiFSA)を溶解してなる。電解液1リットルに含まれるリチウム塩の濃度は、4.5mol/Lである。電解液は、リチウム塩1分子に対して、2.4分子のアセトニトリルを含む。
上記の負極、正極および電解液を用いて非水電解質二次電池を製作した。詳しくは、正極および負極の間に、セパレータとして厚さ400μmのWhatmanガラス繊維濾紙を挟装して極板群とした。この極板群を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。電池ケースには、さらに、電解液を注入した。電解液を注入した後に電池ケースを密閉して、実施例1の非水電解質二次電池を得た。
(実施例2)
実施例2の非水電解質二次電池は、負極合材の組成以外は実施例1の非水電解質二次電池と同じものである。実施例2の非水電解質二次電池における負極合材は、負極活物質としてのシリコン−炭素複合体粉末75質量部と、同じく負極活物質としての黒鉛15質量部と、結着剤としてのポリアミドイミド(PAI)10質量部とを含む。
(実施例3)
実施例3の非水電解質二次電池は電解液E11を用いた以外は実施例2の非水電解質二次電池と同じものである。
(比較例1)
比較例1の非水電解質二次電池は、電解液の有機溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:1で混合したものを用いた。また、この電解液には支持塩として1mol/LのLiPFが溶解されている。その他は実施例1の非水電解質二次電池と同じものである。
(比較例2)
比較例2の非水電解質二次電池は、比較例1と同じ電解液(EC:DEC=1:1、1mol/LのLiPF)を用いたこと以外は実施例2の非水電解質二次電池と同じものである。
(評価例16:充放電特性)
実施例1〜実施例3、比較例1および比較例2の非水電解質二次電池の充放電特性を以下の方法で評価した。
実施例および比較例の各非水電解質二次電池に対し、定電流(CC)充放電を行なった。電圧範囲は2V〜0.01Vであり、Cレートは0.1Cであった。実施例1、実施例2、実施例3、比較例1および比較例2の非水電解質二次電池の放電容量を表15に示す。実施例2および比較例2の非水電解質二次電池の充放電曲線を図40に示す。実施例3の非水電解質二次電池の充放電曲線を図41に示す。
表15に示すように、実施例1と比較例1とは同じ負極合材を用いており、実施例2と比較例2とは同じ負極合材を用いている。同じ負極合材を用いた実施例1の非水電解質二次電池と比較例1の非水電解質二次電池とを比較するとともに、同じ負極合剤を用いた実施例2の非水電解質二次電池と比較例2の非水電解質二次電池とを比較すると、電解液として本発明の電解液を併用することで、非水電解質二次電池の放電容量が向上することがわかる。この結果から、ケイ素と炭素との複合材料と本発明の電解液とを組み合わせることで、非水電解質二次電池の放電容量を向上させ得ることがわかる。その理由は定かではないが、本発明の電解液においては溶媒およびアニオンの配位環境が一般的な電解液とは異なることから、電気二重層構造が変化すること等が理由の一つと推測される。
さらに、実施例3の非水電解質二次電池のように、電解液用の有機溶媒としてDMCを用いた非水電解質二次電池においても、実施例の非水電解質二次電池と同様に充分に充放電することがわかる。そしてこの結果から、有機溶媒に鎖状カーボネートを用いた本発明の電解液もまた、ケイ素と炭素との複合材料に組み合わせるのに有用であることがわかる。
(その他の態様)
本発明の電解液として、以下の電解液を具体的に挙げる。なお、以下の電解液には、既述のものも含まれている。
(電解液A)
本発明の電解液を以下のとおり製造した。
有機溶媒である1,2−ジメトキシエタン約5mLを、撹拌子および温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2−ジメトキシエタンに対し、リチウム塩である(CFSONLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CFSONLiを加えた時点で(CFSONLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CFSONLiを溶解させた。約15gの(CFSONLiを加えた時点で(CFSONLiの溶解が再び停滞したので、1,2−ジメトキシエタンをピペットで1滴加えたところ、(CFSONLiは溶解した。さらに(CFSONLiを徐々に加え、所定の(CFSONLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2−ジメトキシエタンを加えた。得られた電解液は容積20mLであり、この電解液に含まれる(CFSONLiは18.38gであった。これを電解液Aとした。電解液Aにおける(CFSONLiの濃度は3.2mol/Lであり、密度は1.39g/cmであった。密度は20℃で測定した。
なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
(電解液B)
電解液Aと同様の方法で、(CFSONLiの濃度が2.8mol/Lであり、密度が1.36g/cmである、電解液Bを製造した。
(電解液C)
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CFSONLiを徐々に加え、溶解させた。所定の(CFSONLiを加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液Cとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Cは、(CFSONLiの濃度が4.2mol/Lであり、密度が1.52g/cmであった。
(電解液D)
電解液Cと同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.31g/cmである、電解液Dを製造した。
(電解液E)
有機溶媒としてスルホランを用いた以外は、電解液Cと同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.57g/cmである、電解液Eを製造した。
(電解液F)
有機溶媒としてジメチルスルホキシドを用いた以外は、電解液Cと同様の方法で、(CFSONLiの濃度が3.2mol/Lであり、密度が1.49g/cmである、電解液Fを製造した。
(電解液G)
リチウム塩として(FSONLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、電解液Cと同様の方法で、(FSONLiの濃度が4.0mol/Lであり、密度が1.33g/cmである、電解液Gを製造した。
(電解液H)
電解液Gと同様の方法で、(FSONLiの濃度が3.6mol/Lであり、密度が1.29g/cmである、電解液Hを製造した。
(電解液I)
電解液Gと同様の方法で、(FSONLiの濃度が2.4mol/Lであり、密度が1.18g/cmである、電解液Iを製造した。
(電解液J)
有機溶媒としてアセトニトリルを用いた以外は、電解液Gと同様の方法で、(FSONLiの濃度が5.0mol/Lであり、密度が1.40g/cmである、電解液Jを製造した。
(電解液K)
電解液Jと同様の方法で、(FSONLiの濃度が4.5mol/Lであり、密度が1.34g/cmである、電解液Kを製造した。
(電解液L)
有機溶媒であるジメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で14.64g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジメチルカーボネートを加えた。これを電解液Lとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Lにおける(FSONLiの濃度は3.9mol/Lであり、電解液Lの密度は1.44g/cmであった。
(電解液M)
電解液Lと同様の方法で、(FSONLiの濃度が2.9mol/Lであり、密度が1.36g/cmである、電解液Mを製造した。
(電解液N)
有機溶媒であるエチルメチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のエチルメチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で12.81g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでエチルメチルカーボネートを加えた。これを電解液Nとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Nにおける(FSONLiの濃度は3.4mol/Lであり、電解液Nの密度は1.35g/cmであった。
(電解液O)
有機溶媒であるジエチルカーボネート約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のジエチルカーボネートに対し、リチウム塩である(FSONLiを徐々に加え、溶解させた。(FSONLiを全量で11.37g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでジエチルカーボネートを加えた。これを電解液Oとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Oにおける(FSONLiの濃度は3.0mol/Lであり、電解液Oの密度は1.29g/cmであった。
表16に上記電解液の一覧を示す。

Claims (14)

  1. 負極と電解液と正極とを含み、
    前記電解液は、リチウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
    前記塩のアニオンの化学構造が下記一般式(7)で表され、
    (R13SO)(R14SO)N………一般式(7)
    (R13、R14は、それぞれ独立に、CClBrである。
    n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
    また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。
    nは0〜6の整数。上記R13とR14が結合して環を形成している場合には、nは1〜8の整数。)
    前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであり、
    前記負極は、負極活物質にケイ素元素及び/又はスズ元素を含む非水電解質二次電池。
  2. 前記Isと前記Ioとの関係がIs>2×Ioである請求項1に記載の非水電解質二次電池。
  3. 負極と電解液とを含み、
    前記電解液は、リチウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含み、
    前記塩のアニオンの化学構造が下記一般式(7)で表され、
    (R13SO)(R14SO)N………一般式(7)
    (R13、R14は、それぞれ独立に、CClBrである。
    n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
    また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。
    nは0〜6の整数。上記R13とR14が結合して環を形成している場合には、nは1〜8の整数。)
    前記電解液の密度d(g/cm )は1.2≦d≦2.2であり、
    前記電解液の密度d(g/cm)を前記電解液の塩濃度c(mol/L)で除したd/cは、0.15≦d/c≦0.71の範囲内であり、
    前記負極は、負極活物質にケイ素元素及び/又はスズ元素を含む非水電解質二次電池。
  4. 前記負極活物質は、ケイ素元素を含む請求項1〜請求項の何れか一項に記載の非水電解質二次電池。
  5. 前記負極活物質は、ケイ素元素と、酸素元素及び/又は炭素元素とを含む請求項1〜請求項の何れか一項に記載の非水電解質二次電池。
  6. 前記c、d、eが0である請求項1〜請求項の何れか一項に記載の非水電解質二次電池。
  7. 前記nが0〜4の整数。上記R13とR14が結合して環を形成している場合には、nは1〜7の整数。
    である請求項1〜請求項の何れか一項に記載の非水電解質二次電池。
  8. 前記nが0〜2の整数。上記R13とR14が結合して環を形成している場合には、nは1〜3の整数。
    である請求項1〜請求項の何れか一項に記載の非水電解質二次電池。
  9. 前記塩が、(CFSONLi、(FSONLi、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、(SOCFCFCFSO)NLi、FSO(CHSO)NLi、FSO(CSO)NLi、またはFSO(CSO)NLiである請求項1〜の何れか一項に記載の非水電解質二次電池。
  10. 前記塩が(CFSONLi、(FSONLi、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、または(SOCFCFCFSO)NLiである請求項1〜請求項の何れか一項に記載の非水電解質二次電池。
  11. 前記有機溶媒がニトリル類、カーボネート類、アミド類、イソシアネート類、エステル類、エポキシ類、オキサゾール類、ケトン類、酸無水物、スルホン類、スルホキシド類、ニトロ類、フラン類、環状エステル類、芳香族複素環類、複素環類、又は、リン酸エステル類である請求項1〜10の何れか一項に記載の非水電解質二次電池。
  12. 前記有機溶媒がアセトニトリルである請求項1〜請求項11の何れか一項に記載の非水電解質二次電池
  13. 前記有機溶媒が下記一般式(10)で示される鎖状カーボネートから選択される請求項1〜請求項11の何れか一項に記載の非水電解質二次電池。
    19OCOOR20 一般式(10)
    (R19、R20は、それぞれ独立に、鎖状アルキルであるCClBr、又は、環状アルキルを化学構造に含むCClBrのいずれかから選択される。n、a、b、c、d、e、m、f、g、h、i、jはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e、2m=f+g+h+i+jを満たす。)
  14. 前記有機溶媒がジメチルカーボネート、エチルメチルカーボネート又はジエチルカーボネートから選択される請求項1〜請求項11、請求項13の何れか一項に記載の非水電解質二次電池。
JP2014186340A 2013-09-25 2014-09-12 非水電解質二次電池 Active JP5817003B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014186340A JP5817003B2 (ja) 2013-09-25 2014-09-12 非水電解質二次電池
CN201480053195.4A CN105580184B (zh) 2013-09-25 2014-09-25 非水电解质二次电池
DE112014004442.3T DE112014004442T5 (de) 2013-09-25 2014-09-25 Nichtwässrige Elektrolytsekundärbatterie
US15/024,415 US11011781B2 (en) 2013-09-25 2014-09-25 Nonaqueous electrolyte secondary battery
PCT/JP2014/004911 WO2015045387A1 (ja) 2013-09-25 2014-09-25 非水電解質二次電池
KR1020167010615A KR101901675B1 (ko) 2013-09-25 2014-09-25 비수 전해질 2차 전지

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013198284 2013-09-25
JP2013198284 2013-09-25
JP2014186340A JP5817003B2 (ja) 2013-09-25 2014-09-12 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2015088475A JP2015088475A (ja) 2015-05-07
JP5817003B2 true JP5817003B2 (ja) 2015-11-18

Family

ID=53051003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186340A Active JP5817003B2 (ja) 2013-09-25 2014-09-12 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP5817003B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776682B2 (ja) * 2016-07-20 2020-10-28 株式会社豊田自動織機 リチウムイオン二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388546B1 (fr) * 1997-07-25 2010-09-08 ACEP Inc. Utilisation des composés ioniques ayant une charge anionique délocalisée comme composants de catalyseur
JP2001266878A (ja) * 2000-03-21 2001-09-28 Nippon Steel Corp リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池
WO2006115023A1 (ja) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池
JP4862555B2 (ja) * 2006-08-21 2012-01-25 パナソニック株式会社 非水電解液およびそれを具備した電気化学エネルギー蓄積デバイス
JP2013179067A (ja) * 2013-04-26 2013-09-09 Sony Corp 二次電池および二次電池用セパレータ

Also Published As

Publication number Publication date
JP2015088475A (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5965445B2 (ja) 非水電解質二次電池
JP5816997B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP5967781B2 (ja) 非水電解質二次電池
JP5817009B1 (ja) 非水系二次電池
WO2015045389A1 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
JP6575022B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP5965444B2 (ja) 非水系二次電池
JP5817004B2 (ja) リチウムイオン二次電池
JP6437399B2 (ja) 非水系二次電池
JP5817002B2 (ja) 非水系二次電池
JP5817001B2 (ja) 非水系二次電池
JP5817003B2 (ja) 非水電解質二次電池
JP5816999B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法
JP5965446B2 (ja) 蓄電装置
JP6423330B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群
JP5817006B1 (ja) 非水系二次電池
JP2016189340A (ja) 非水電解質二次電池
WO2015045393A1 (ja) 非水電解質二次電池
JP5817008B1 (ja) 非水系二次電池
JP5817007B1 (ja) 非水系二次電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5817003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250