WO2006115023A1 - 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池 - Google Patents

非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池 Download PDF

Info

Publication number
WO2006115023A1
WO2006115023A1 PCT/JP2006/307538 JP2006307538W WO2006115023A1 WO 2006115023 A1 WO2006115023 A1 WO 2006115023A1 JP 2006307538 W JP2006307538 W JP 2006307538W WO 2006115023 A1 WO2006115023 A1 WO 2006115023A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
aqueous electrolyte
aqueous
group
electrolytic solution
Prior art date
Application number
PCT/JP2006/307538
Other languages
English (en)
French (fr)
Inventor
Tooru Matsui
Masaki Deguchi
Hiroshi Yoshizawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/918,869 priority Critical patent/US20090023074A1/en
Priority to JP2007514538A priority patent/JPWO2006115023A1/ja
Priority to EP06731485A priority patent/EP1879252A4/en
Priority to CN2006800132061A priority patent/CN101164189B/zh
Publication of WO2006115023A1 publication Critical patent/WO2006115023A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a non-aqueous electrolyte used for an electric double layer capacitor, a secondary battery, etc., and an electrochemical energy storage device and a non-aqueous electrolyte secondary battery using the same.
  • An electric double layer capacitor in which polarizable electrodes are used for a positive electrode and a negative electrode accumulates electrochemical energy by adsorption of cations and anions in a non-aqueous electrolyte solution to the electrode surface during charging. For this reason, since the ion concentration in the non-aqueous electrolyte decreases in the charging process, the resistance inside the electric double layer capacitor increases. In addition, when the low ion concentration non-aqueous electrolyte is used, the number of ions that can be adsorbed decreases, so the electric capacity stored in the electric double layer capacitor decreases. Therefore, in order to increase the energy density of the electric double layer capacitor, it is necessary to increase the ion concentration in the non-aqueous electrolyte.
  • lithium ions pass through the non-aqueous electrolyte and move between the positive electrode and the negative electrode.
  • the ion concentration in the non-aqueous electrolyte does not change during discharge in the primary battery and during charging and discharging in the secondary battery. Therefore, in order to increase the energy density of the non-aqueous electrolyte battery, it is conceivable to increase the amounts of the positive electrode active material and the negative electrode active material and reduce the amount of non-aqueous electrolyte solution. Then, while it is necessary to maintain the amount of ions that can move between the positive and negative electrodes while reducing the amount of non-aqueous electrolyte, it is necessary to increase the ion concentration in the non-aqueous electrolyte.
  • the electric double layer capacitor as described above is used in non-aqueous electrolyte batteries, and is used in non-aqueous electrolytes.
  • Typical non-aqueous solvents to be used are cyclic carbonate ethylene carbonate (hereinafter abbreviated as EC), propylene carbonate (hereinafter abbreviated as PC), butylene carbonate (hereinafter abbreviated as BC), and cyclic ester.
  • Nonaqueous electrolytes contain lithium hexafluorophosphate (LiPF) in these nonaqueous solvents.
  • LiBF Lithium tetrafluorinated
  • LiCIO lithium parked lithium
  • LiTFSI lithium salt such as [trifluoromethanesulfonyl] imide
  • concentration of the lithium salt dissolved in the non-aqueous electrolyte is usually only about 0.8 mol / kg.
  • the molar ratio is 1: 4 (2.2 mono-liter / kg).
  • the concentration mixed with is the limit in terms of solubility.
  • 1, 2-dialkoxyethane as a non-aqueous solvent, such as 1, 2-dimethoxyethane (hereinafter abbreviated as DME).
  • DME 1, 2-dimethoxyethane
  • Patent Document 1 LiBF and DME
  • Liquid, and (DME + EME) / LiBF molar ratio is (0.5 + 0.5) / 1 non-aqueous electrolyte at normal temperature
  • LiBF or more is used as a lithium salt.
  • LiPF lithium trifluoromethanesulfonate
  • LiCF 2 SO 4 lithium trifluoromethanesulfonate
  • LiSbF 2 lithium hexafluoroarsenate
  • LiAsF 2 lithium hexafluoroarsenate
  • non-aqueous electrolyte solidifies at room temperature, its use as a non-aqueous electrolyte for electrochemical energy storage devices is difficult.
  • a non-aqueous electrolyte secondary battery in which a graphite material that absorbs and releases lithium ions is used as a negative electrode active material, DME or a kind of 1,2-dialkoxypetane is used.
  • DME graphite material that absorbs and releases lithium ions
  • 1,2-dialkoxypetane is used.
  • the mixed solvent when used as a non-aqueous solvent of the electrolyte, it contains about 1 M of LiCIO.
  • Non-patent Document 1 It has been conventionally confirmed that lithium ions can not be inserted into the graphite layer even in a non-aqueous electrolyte having a low ion concentration (Non-patent Document 1). This is considered to be because DME decomposes on graphite. For this reason, electrochemical insertion of lithium ions into the graphite material does not occur in the non-aqueous electrolyte containing DME, and therefore non-aqueous electrolytes for non-aqueous electrolyte secondary batteries using the graphite material as the negative electrode active material. It has been considered that 1, 2-dialkoxy ethane such as DME can not be used as an electrolyte. On the other hand, in the non-aqueous electrolyte secondary battery provided with the negative electrode of the present invention, which has the ability to use a graphite material, the high ion concentration of EME / LiBF is 1/1.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-107468
  • Patent Document 2 Japanese Patent Application Laid-Open No. 3-84871
  • Non-Patent Document 1 ⁇ ⁇ "," High-density Lithium Secondary Battery “, 1st Edition, Technosystem Co., Ltd., March 14, 1998, pl84-185
  • the present invention has been made in view of the above-described problems, and provides a high stability non-aqueous electrolyte having high ion concentration, and thus an electrochemical energy storage device of high energy density, and a non-aqueous electrolyte.
  • An object of the present invention is to provide an electrolyte secondary battery.
  • One aspect of the present invention is that (A) Formula R—O—CH 2 —CH—O—R (where R and R ′ are the same. Each of which is an unsubstituted or fluorine-substituted alkyl group having 3 or less carbon atoms) and (B) lithium bis [trifluoromethanesulfonyl] imide (LiTFSI) And a molar ratio [(A) / (B)] of not less than 0.75 and not more than 2, and which is a liquid at normal temperature.
  • FIG. 1 is a view showing charge characteristics of a graphite negative electrode in each non-aqueous electrolytic solution of Example 3 and Comparative Example 2 of the present invention.
  • the non-aqueous electrolyte solution of the present invention is represented by the formula (A):
  • lithium bis [trifluoromethanesulfonyl] imide which is represented by (1) or (2) which is an unsubstituted or fluorine-substituted alkyl group having 3 or less carbon atoms
  • LiTFSI lithium bis [trifluoromethanesulfonyl] imide
  • the non-aqueous electrolyte of the present invention maintains a liquid state even at high ion concentration at normal temperature, and is stable even at a high temperature of 60 ° C.
  • TFSI ion bis [trifluoromethanesulfonyl] imide ion
  • the BF ion contained in the non-aqueous electrolytic solution is a small amount of impurities having active hydrogen such as water.
  • the non-aqueous electrolyte When present in the non-aqueous electrolyte, they react to generate hydrogen fluoride (HF).
  • HF hydrogen fluoride
  • the generated HF decomposes 1, 2-dialkoxy ketane, causing discoloration of the electrolytic solution, and the decomposition is remarkable, and in this case, the decomposition product reacts with the electrode.
  • This decomposition will degrade the capacity and other properties of the electrochemical energy storage device.
  • TFSI ion is less likely to generate HF even in non-aqueous electrolytes in which impurities having active hydrogen such as water are present. Therefore, the non-aqueous electrolyte containing the TFSI ion of the present invention is approximately in the middle. In order to maintain the acidity of the reaction, it is considered that the decomposition of the 1, 2_ dialkoxy ketone is suppressed, and a stable non-aqueous electrolyte can be obtained.
  • a non-aqueous electrolyte battery provided with a negative electrode containing graphite as a negative electrode active material
  • a non-aqueous electrolyte battery using 1,2-dialkoxyethane as a non-aqueous solvent and containing only LiBF as a lithium salt in a non-aqueous electrolyte battery provided with a negative electrode containing graphite as a negative electrode active material
  • a non-aqueous electrolyte battery using 1,2-dialkoxyethane as a non-aqueous solvent and containing only LiBF as a lithium salt 1,2-dialkoxyethane
  • the graphite structure is destroyed regardless of the ion concentration, but in the case of a non-aqueous electrolyte containing LiTFSI as a lithium salt, the 1,2 dialkoxyethane of the present invention is used as a non-aqueous solvent. It was found that lithium ion occluding and releasing between the graphite layers occurred more smoothly at the ion concentration. The reason for this is not necessarily clear, but the non-aqueous electrolyte in which LiTFSI is dissolved at a high concentration is solvated to react with graphite, and the amount of free, free, 1,2-dialkoxyether is It is speculated to reduce the
  • the content ratio of 1,2-dialkoxypetane to be added and (B) lithium bis [trifluoromethanesulfonyl] imide is 0.75 or more and 2 or less in the molar ratio of [(A) / (B)]. .
  • this is a non-aqueous electrolyte in which the LiTFSI of the present invention and 1, 2-dialkoxyketane are combined, and when the molar ratio of (A) / (B) is 2 or less, to lithium ion graphite
  • the reasons for the stable introduction of H. can be considered as follows. That is, by using a high concentration non-aqueous electrolyte in which the molar ratio of (A) Z (B) is 2 or less, TFSI ions, rather than 1,2-dialkoxypetane, are preferentially reduced on the graphite. It becomes disassembled.
  • examples of the 1,2-dialkoxypetane used in the present invention include the following.
  • EME Ethoxy _2-Methoxyetan
  • MTFEE 1-Methoxy _ 2_ trifluoroethoxyethane
  • DEE 1, 2-Diethoxyethane
  • ETFEE 1-Ethoxy-1-trifluoroethoxyetane
  • BTFEE 2-Bis [trifluorofluoro] ethane
  • DPE 2-Dipropoxetane
  • 1, 2-dialkoxyketones may be used alone or in combination of two or more.
  • DEE it is preferable to use DEE as a 1,2-dialkoxyketane because it becomes a liquid at normal temperature in a wide range of compositions and a non-aqueous electrolyte having a high ion concentration can be obtained.
  • DEE it is preferable to use DEE in combination, when 1,2 dialcoquitane in which R and R 'are an unsubstituted alkyl group such as DME or EME is used as a non-aqueous solvent.
  • the content ratio of DEE to 1,2-dialkoxyethane having an unsubstituted alkyl group other than DEE has a molar ratio [1, 2-dianolecoxitane having an unsubstituted alkyl group other than DEE. / DEE], 1 or less is preferable.
  • the carbon number of R and R ′ of 1, 2-dialkoxyketane represented by the formula R — — CH — CH—0—R ′ is 3 or less, preferably 2 or less.
  • R and R ′ are preferably one group selected from the group consisting of CH group, CH group, CF group, and CH CF group, since an electrolyte having a higher concentration can be obtained as the molecular weight of the non-aqueous solvent decreases. Re ,.
  • a 1,2-dialkoxyacetan in which at least one of R and R ′ is a CH CF group for example, MTFEE, ETF having a CH CF group at the end
  • EE and BTFEE are due to the electron withdrawing effect of fluorine in the fluorine-substituted alkyl group. It is preferable because the oxidation resistance potential is increased and a high charging voltage can be used. Since non-aqueous electrolytes containing these 1,2-substituted alkoxy groups having a fluorine-substituted alkyl group tend to have reduced reduction resistance, R and R ′ each represent an unsubstituted alkyl group. It is preferable to use 1, 2- dialkoxykete in combination. At least one selected from DME, DEE, and EME is preferred as the 1,2-dialkoxy ketone having such an unsubstituted alkyl group.
  • the mixing ratio of the 1,2-dialkoxytane having at least one fluorine-substituted alkyl group to the 1,2-dialkoxyketane having an unsubstituted alkyl group has a molar ratio [having a fluorine-substituted alkyl group: 1,2 —Dialkoxyketane / 1,2-dialkoxyketane having an unsubstituted alkyl group], preferably at least 0 ⁇ 1, at most 1.
  • a cyclic carbonate such as EC may be added as a non-aqueous solvent to a single or a mixture of the above-mentioned 1, 2-dialkoxyketanes.
  • the addition ratio of these other non-aqueous solvents is preferably such that the molar ratio is preferably less than the total molar amount of 1, 2 -dialcoxitane in the non-aqueous electrolyte [carbonate compound / 1, 2-di alkoxy]], ⁇ ⁇ 05 or more, 0.1 or less is more preferable.
  • VC vinylene carbonate
  • Vec butyl ethylene carbonate
  • DVec divinylethylene carbonate
  • Pec phenyl ethylene carbonate
  • DPec diphenyl ethylene carbonate
  • Vec and Pec are preferable.
  • MVC methyl boule carbonate
  • EVC ethyl vinyl carbonate
  • DVC dibule carbonate
  • AM C aryl methyl carbonate
  • AEC arylethyl carbonate
  • DAC diallyl carbonate
  • Examples include APC and abbreviations, and diflic acid phosphonates (hereinafter referred to as DPC) and the like, with DAC, APC and DPC being particularly preferable.
  • the non-aqueous electrolytic solution of the present invention is a solution containing lithium bis [trifluoromethanesulfonyl] imide (LiTFSI) as a lithium salt, and further LiPF, LiBF, LiCIO, lithium bis [pentafluoroethan sulfonyl] imide (
  • LiBETI lithium [trifluoromethane sulfonyl] [nonafluorobutane sulfonyl] imide
  • LiMBSI lithium cyclohexafluoropropanone 1,3-bis [sulfonyl] imide
  • LiCHSI lithium bis [oxalate (2_)] borate
  • LiBOB lithium trifluoromethyl trifluoride
  • LiCF 6 lithium pentafluorotriflate
  • lithium salts such as F]
  • LiPF LiPF
  • LiBF LiBF
  • LiBETI LiPF
  • the combined use of at least one lithium salt selected from the group consisting of MBSI, LiCHSI, LiBOB, LiCFBF and LiCFBF is preferred.
  • the mixing ratio of the lithium salt is suitably determined such that the non-aqueous electrolyte is stably present as a liquid at normal temperature, and preferably 0.10 or more and 0.2 or less in molar ratio of the other lithium salt to LiTFSI. .
  • a non-aqueous electrolyte containing only LiTFSI as a lithium salt tends to corrode the aluminum of the positive electrode current collector.
  • they are used in combination to form a passive film and to suppress corrosion.
  • the electrochemical energy storage device of the present invention comprises a positive electrode, a negative electrode, and the non-aqueous electrolyte described above. Since the non-aqueous electrolyte solution of the present invention is stably present as a liquid even at high ion concentration as described above, it is used in electrochemical energy storage devices such as electric double layer capacitors and non-aqueous electrolyte batteries. Will yield high energy density electrochemical energy storage devices.
  • the non-aqueous electrolytic solution of the present invention is suitably used for a non-aqueous electrolytic solution secondary battery provided with a negative electrode having graphite as a negative electrode active material.
  • a non-aqueous electrolytic solution secondary battery provided with a negative electrode having graphite as a negative electrode active material.
  • Graphite used as the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention includes, in addition to natural graphite and artificial graphite, a highly crystalline carbon material close to graphite, such as mesophase pitch graphite Fibers, graphitized mesocarbon microbeads, vapor grown carbon fibers, graphite whiskers and the like can be used, and among these, graphite having a crystal structure with an interlayer distance of about 3.5 A or less at which high energy density can be expected is preferable.
  • the negative electrode of the non-aqueous electrolyte secondary battery is prepared by using a solvent such as N_methyl_2_ pyrrolidone (NMP) as described above, a negative electrode active material, a binder, and a thickener and, if necessary, a conductive agent.
  • NMP N_methyl_2_ pyrrolidone
  • the paste prepared by mixing and mixing is applied, for example, on a copper current collector to a predetermined thickness, dried, rolled, and cut.
  • a conventionally known material is used as a constituent material used for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention.
  • composite oxides such as lithium cobaltate, lithium nickel nitrate, lithium manganate, lithium iron phosphate and the like are used as the positive electrode active material.
  • the positive electrode of the non-aqueous electrolyte secondary battery is prepared by mixing a positive electrode active material as described above, a binder, and, if necessary, a thickener and a conductive agent, using a solvent such as NMP. For example, it is manufactured by applying an aluminum current collector so as to have a predetermined thickness, drying, rolling and cutting.
  • the non-aqueous electrolyte secondary battery of the present invention has an electrode assembly having a structure in which the electrode is wound or stacked after the positive electrode and the negative electrode produced as described above are disposed opposite to each other with the separator interposed therebetween.
  • the electrode body and the non-aqueous electrolytic solution are inserted into a battery can and manufactured through a sealing step.
  • Example 1 The effect of lithium salt species on the high temperature stability of non-aqueous electrolyte was investigated. DME, DEE and LiTFSI were mixed at a molar ratio of (DME + DEE) / LiTFSI at (0.5 + 0.5) / 1 to prepare a non-aqueous electrolyte. The obtained liquid was transparent at normal temperature.
  • the prepared non-aqueous electrolytic solution is placed in a container made of tetrafluoroethylene 'perfluoroalkyl methacrylate copolymer resin (hereinafter abbreviated as PFA), sealed, A container was stored in an aluminum laminate bag and sealed. After the container was stored at 60 ° C. for 10 days, the change in color tone of the non-aqueous electrolyte was examined. As a result, the non-aqueous electrolyte of Example 1 was maintained in a transparent state.
  • PFA tetrafluoroethylene 'perfluoroalkyl methacrylate copolymer resin
  • a solution was prepared.
  • the obtained liquid was transparent at normal temperature.
  • the prepared non-aqueous electrolyte is
  • Example 1 In the same manner as in Example 1, the container was placed in a PFA container and sealed, and the PFA container was placed in an aluminum laminate bag and sealed. After the container was stored at 60 ° C. for 10 days, the change in color tone of the non-aqueous electrolyte was examined. As a result, the non-aqueous electrolyte of Comparative Example 1 was discolored to deep orange.
  • Table 1 shows the results of these evaluations.
  • non-aqueous solvent of Example 1 a mixed solvent of DME and DEE was used, and the non-aqueous solvent of Comparative Example 1 was used.
  • Water solvent is the power used by EME's sole solvent. This is because the above-mentioned high ion concentration, LiT FSI, has not found a common solvent composition capable of dissolving LiBF.
  • Table 2 shows the composition of the non-aqueous electrolyte which is liquid at normal temperature. Each prepared non-aqueous electrolyte was stored at 60 ° C. for 10 days in the same manner as in Example 1, and the change in color tone after storage was examined.
  • the non-aqueous electrolytic solution of the present invention containing 1, 2-dialkoxyethane as a non-aqueous solvent and LiTFS I as a lithium salt is a total of 1, 2- dialkoxy to LiTFSI. Even in the high concentration range where the molar ratio of ethanol is 0.72, it can be seen that the non-aqueous electrolyte is a stable non-aqueous electrolyte which is liquid at normal temperature and shows no change in color tone.
  • the composition has a DEE / LiTFSI molar ratio of 0.5 / 1. In the case, all LiTFSI could not be dissolved.
  • non-aqueous electrolytes in which only DME or EME was used as 1,2-dialkoxyketane tended to become solid at normal temperature, but the molar ratio of DEE as non-aqueous solvent was 0.5
  • the non-aqueous electrolytic solution in which the mixed solvent of the above (the molar ratio of [DME or EMEZ DEE] is 1 or less) was a liquid. Therefore, in order to obtain an electrolytic solution which is liquid at normal temperature, it is preferable to use DEE in combination when only 1,2-dialkoxyketane having unsubstituted R and R 'is contained as a non-aqueous solvent.
  • the solubility of LiTFSI tends to decrease in a non-aqueous electrolyte solution in which only a 1,2-dialkoxypetane having a terminal alkyl group of 3 or more, such as DPE, is used as a non-aqueous solvent.
  • a 1,2-dialkoxypetane having a terminal alkyl group of 3 or more, such as DPE is used as a non-aqueous solvent.
  • the number of carbon atoms of the terminal alkyl group is 2, 2 or less. Use is preferred.
  • An artificial graphite powder (MAG-D, manufactured by Hitachi Chemical Co., Ltd.) was used as a negative electrode active material that occludes and releases lithium ions by charge and discharge.
  • the negative electrode plate was produced as follows. First, 75 parts by mass of artificial graphite powder, 20 parts by mass of acetylene black as a conductive agent, 5 parts by mass of polyvinylidene vinylidene resin as a binder, and dehydrated N-methyl_2_ pyrrolidone as a dispersion solvent are mixed. The Next, this mixture was applied to one side of a 20 zm thick copper foil current collector and dried to form an 80 z m thick active material layer. Then, the copper foil current collector on which the active material layer is formed is cut out to a size of 35 mm ⁇ 35 mm, and a 0.5 mm-thick copper current collector plate with a lead attached to the obtained copper foil current collector is ultrasonically welded. The negative electrode plate was manufactured.
  • the molar ratio of DME, DEE, LiTFSI, and force (DME + DEE) ZLiTFSI was mixed so as to be (0.5 + 0.5) / 1 to prepare a non-aqueous electrolyte.
  • FIG. 1 is a diagram showing a change in potential when a force Sword electric quantity of 60 mAh / g is applied to artificial graphite powder.
  • the potential after the completion of energization in the non-aqueous electrolyte of this example is about 0.2 V, and this potential indicates that lithium ions intrude into the graphite layer to form a third stage structure. It shows. That is, it is understood that lithium ions can be stably incorporated in a non-aqueous electrolytic solution containing 1,2-dialkoxyethane as a non-aqueous solvent and LiTFSI as a lithium salt at a high concentration.
  • Example 3 In the same manner as in Example 3, a negative electrode plate made of artificial graphite powder was produced.
  • the negative electrode plate manufactured as described above is used as a test electrode, and a lithium metal foil is used as a counter electrode and a reference electrode, and the lithium ion is electrolyzed into artificial graphite powder in a prepared non-aqueous electrolyte. Insertion was attempted. Insertion conditions were set to 20 ° C. and 0.03 mA / cm 2 .
  • FIG. 1 is a diagram showing a potential change when a force of 60 mAh / g force electric charge is applied to artificial graphite powder.
  • the potential after the end of energization in the non-aqueous electrolyte of this comparative example has not dropped to the potential indicating the formation of the third stage structure. That is, it is shown that lithium ion insertion did not occur. It is speculated that this is because lithium ion solvated in EME, which is not lithium ion alone, intercalates between the graphite layers and breaks the layered structure of the graphite.
  • the non-aqueous electrolytic solution of the present invention containing 1, 2-dialkoxyethane as the non-aqueous solvent and LiTFSI at a high ion concentration has a negative electrode made of a graphite material that absorbs and releases lithium ions. It can be applied to non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries.
  • the lithium ion battery having the non-aqueous electrolyte of the present invention was assembled, and the battery characteristics were evaluated as follows.
  • LiFePO was used as a positive electrode active material that absorbs and releases lithium ions by charge and discharge.
  • the positive electrode plate was produced as follows. First, LiFeP
  • a vinylidene fluoride resin was mixed, and this mixture was dispersed in dehydrated N_methyl_2-pyrrolidone to prepare a slurry-like positive electrode mixture.
  • the positive electrode mixture was applied onto a positive electrode current collector made of aluminum foil, dried, and rolled to form an active material layer.
  • the aluminum foil current collector on which the active material layer was formed was cut into a size of 35 mm ⁇ 35 mm.
  • a 0.5 mm thick aluminum current collector plate having a lead attached to the obtained aluminum foil current collector was ultrasonically welded to produce a positive electrode plate.
  • Example 3 a negative electrode plate having an artificial graphite powder power was produced.
  • the mixture was mixed to give (0.5 + 0.5) / 1 to prepare a non-aqueous electrolyte.
  • the positive electrode plate and the negative electrode plate were arranged to face each other with a non-woven fabric made of polypropylene interposed therebetween, the positive electrode plate and the negative electrode plate were fixed with a tape and integrated to produce an electrode body.
  • this electrode body was housed in a cylindrical aluminum laminate bag having openings at both ends, and the openings on the lead portion side of both electrodes were welded. Then, the non-aqueous electrolytic solution prepared from the other opening was dropped.
  • g represents per weight of LiFePO.
  • a lithium ion battery was assembled in the same manner as in Example 4 except that a non-aqueous electrolytic solution was used in which the molar ratio of DME, LiTFSI, and DMEZLiTFSI was 2/1.
  • a lithium ion battery was assembled in the same manner as in Example 4 except that a non-aqueous electrolytic solution was used in which the molar ratio of DME, LiTFSI, and DMEZLiTFSI was 3/1.
  • the battery was charged and discharged under the conditions of upper limit voltage 4.0V and lower limit voltage 2.8V.
  • the discharge capacity after 10 cycles was 65 mAh Zg.
  • the reason why the discharge capacity of the battery of this comparative example was about half that of the discharge capacity of the battery of Example 4 was that DME was solvated between layers of the artificial graphite powder which is a negative electrode active material. It is because lithium ion was inserted and the graphite structure was destroyed.
  • the ratio of 1,2-dialkoxyethane to LiTFSI which does not destroy the graphite structure is 2 or less in molar ratio of 1,2-dialkoxyketane / LiTFSI.
  • a lithium ion battery was assembled in the same manner as in Example 4 except that the solution was used.
  • the lithium ion battery power 20 ° C. assembled as described above It was charged and discharged under the conditions of upper limit voltage 4.0V and lower limit voltage 2.8V.
  • the discharge capacity after 10 cycles was 17 mAh Zg.
  • the reason why the discharge capacity of the battery of this comparative example was about 1/7 times the discharge capacity of the battery of Example 4 is that solvation was made between layers of artificial graphite powder which is a negative electrode active material. This is because the lithium ion is incorporated and the graphite structure is broken.
  • a lithium ion battery was assembled in the same manner as Example 4, except that three types of non-aqueous electrolytes having the following respective compositions were used. The first is a non-aqueous electrolyte mixed with DEE, LiTFSI, and a power DEE / LiTFSI molar ratio of 1/1, and this non-aqueous electrolyte was used in lithium ion battery power.
  • Battery of Example 6A I was told.
  • the second is a non-aqueous electrolyte mixed with DEE / EC / LiTF SI / force at a molar ratio of DEE / EC / LiTFSI of 0.9 Z 0.1 / 1, and this non-aqueous electrolyte is used for lithium ion
  • a battery was taken as the battery of Example 6B.
  • the third is a non-aqueous electrolyte mixed with DEE / EC / LiTFSI / Vec / force at a molar ratio of 0.9 / 0.09 / 1 / 0.01, and this non-aqueous electrolyte is used.
  • the lithium ion battery thus obtained was used as the battery of Example 6C.
  • the cycle retention rate is 0.83 for the lithium ion battery of Example 6A, 0. 6 for Example 6B.
  • Example 6C was 0.94. From the above results, it can be seen that the non-aqueous electrolytic solution of the present invention to which EC or Vec is added improves the cycle retention rate of the lithium ion battery.
  • the characteristics of a lithium ion battery having a non-aqueous electrolyte comprising a non-aqueous solvent and a non-aqueous solvent containing LiTFSI and another lithium salt with LiTFSI are used as the non-aqueous solvent. It was investigated as follows.
  • a lithium ion battery was assembled in the same manner as in Example 4 except that three types of non-aqueous electrolytes having the following compositions were used.
  • the first is a mixture of DME, ETFEE, LiTFSI, and force (DME + ETFEE) at a molar ratio of (0.5 + 0.5) Zl at a molar ratio of ZLiTFSI, and a lithium ion battery using this non-aqueous electrolyte was used.
  • the battery of Example 7A was used.
  • the second is DME, ETFEE, LiTFSI, LiPF and force (DME + ETFEE) / LiTFSl / Li
  • the lithium ion battery in which the electrolytic solution was used was regarded as the battery of Example 7B.
  • the third one is DM Non-aqueous electrolyte mixed with (0.5 + 0.5) Z 0.99 / 0.01 in molar ratio of E, ETFEE, LiTFSI, LiBOB and force (DME + ETFEE) ZLiTFSl ZLiBBB, and this non-aqueous electrolyte is used.
  • the lithium ion battery was regarded as the battery of Example 7C.
  • the cycle maintenance rate is 0.77 for the lithium ion battery of Example 7A, 0. 6 for Example 7B.
  • Example 7C was 0.88.
  • the storage characteristics of the lithium primary battery having the non-aqueous electrolyte solution of the present invention were evaluated as follows.
  • the lithium primary battery was assembled in the following procedure.
  • a positive electrode active material ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ phase and two phase coexist of three phases) were used. Then, in the same manner as in Example 4, the positive electrode
  • a board was made.
  • a lithium metal foil is used for the negative electrode plate, and after being cut into a size of 35 mm ⁇ 35 mm, a 0.5 mm-thick copper current collector plate with a lead attached thereto is crimped to the obtained lithium metal foil. It was done.
  • the positive electrode plate and the negative electrode plate were disposed to face each other with the porous film made of polyethylene interposed therebetween, the positive electrode plate and the negative electrode plate were fixed with a tape and integrated to produce an electrode body.
  • this electrode body was housed in a cylindrical aluminum laminate bag having openings at both ends, and the openings on the lead portion side of both electrodes were welded. Then, the non-aqueous electrolyte prepared from the other opening was dropped. [0089] After dropping, degassing was performed at 1300 Pa for 5 seconds. The opening on the injected side was sealed by welding to produce a lithium primary battery.
  • the lithium primary battery assembled as described above was subjected to preliminary discharge under the conditions of 20 ° C. and 0.03 mA / cm 2 until the LiZMn molar ratio reached 0.05 Z1. After predischarge, the cells were stored at 60 ° C. for 1 month, and changes in internal impedance before and after storage were examined. As a result of measuring the resistance at 10 kHz, the resistance before storage was 2.3 ⁇ and the resistance after storage was 2.8 ⁇ .
  • a lithium primary battery was assembled in the same manner as in Example 8 except that the solution was used.
  • the electric double layer capacitor having the non-aqueous electrolyte of the present invention was evaluated as follows.
  • the polarizable electrode was produced by the procedure shown below.
  • the mass ratio of activated carbon powder made of phenol resin having a specific surface area of 1700 m 2 / g, acetylene black as a conductive agent, ammonium salt of carboxymethyl cellulose as a binder, and water and methanol as a dispersion solvent 10: 2 1: 1: 100: 40 were mixed to achieve a blending ratio.
  • This mixture was applied and dried on one side of a 20 x m thick aluminum foil current collector, to form an 80 / m thick active material layer. And, the aluminum on which the active material layer is formed
  • the 2 mm foil current collector was cut into a size of 35 mm ⁇ 35 mm.
  • a 0.5 mm-thick aluminum current collector plate having a lead attached to the obtained aluminum foil current collector was ultrasonically welded to prepare a polarization electrode.
  • An electrode made of artificial graphite powder produced in the same manner as in Example 3 as the negative electrode prepared as described above as the positive electrode was used. After a non-woven polypropylene separator made of polypropylene was placed between the two electrodes, a non-aqueous electrolyte was injected and the whole was placed in an aluminum laminate tube to produce an electric double layer capacitor.
  • a non-aqueous electrolytic solution was used as the electrolytic solution, in which the molar ratio of DME, DEE, LiTFSI, and force (DME + DEE) / LiTFSI was (0.5 + 0.5) / 1.
  • the assembled electric double layer capacitor was repeatedly charged and discharged in a voltage range of 2.0 to 3.8 V at a constant current of 0.3 mA / cm 2 at 20 ° C., and a change in capacitance was examined.
  • the capacity retention ratio obtained by dividing the capacity after 1000 cycles by the capacity at 10th cycle was 0.96.
  • An electric double layer capacitor was assembled in the same manner as in Example 9 except that the solution was used.
  • the electric double layer capacitor assembled as described above was repeatedly charged and discharged in a voltage range of 2.0 to 3.8 V at a constant current of 0.3 mA / cm 2 at 20 ° C., after 54 cycles.
  • the capacitance of the capacitor was almost zero. This is presumably because the potential of the positive electrode, which is a polarizable electrode, is overcharged and the EME is oxidized and decomposed because the potential of the negative electrode does not become negative during charging.
  • one aspect of the present invention relates to (A) Formula R- 0-CH-CH _ _ _ R '
  • R and R ′ may be the same or different and each is an unsubstituted or fluorine-substituted alkyl group having 3 or less carbon atoms, which is represented by the following formula (1): It is a non-aqueous electrolytic solution containing mubis [trifluoromethanesulfonyl] imide in a molar ratio of (0.75) to (2) or less [(A) / (B)] and being liquid at ordinary temperature. According to the above configuration, A high-temperature stable, high ion concentration non-aqueous electrolyte can be obtained which can provide an energy density electrochemical energy storage device.
  • the above non-aqueous electrolyte has a carbon number of 2 or less in R and R '. According to the above configuration, since the concentration of LiTFSI can be set high, a non-aqueous electrolytic solution with high ion concentration can be obtained.
  • R and R ′ each represent a CH group, a CH group, a CF group, or a CH
  • One group selected from the group consisting of CF groups is preferred. According to the above configuration, since the low molecular weight 1,2-dialkoxy ketone is used as the non-aqueous solvent, the concentration of LiTFSI can be set high.
  • non-aqueous electrolyte it is preferable that, as the 1,2-dialkoxypetane, at least one selected from the group force of MTFEE, ETFEE, and BTFEE be contained. According to the above configuration, a non-aqueous electrolytic solution which is liquid at normal temperature can be obtained as soon as a non-aqueous electrolytic solution having excellent oxidation resistance is obtained. can get.
  • the present invention further relates to a non-aqueous electrolytic solution containing the above-described fluorine-substituted alkyl group-containing 1,2-dialkoxyethane as a non-aqueous solvent, further comprising DME, DEE, and EME. It is preferable to contain at least one selected from the group consisting of According to the above configuration, when the 1,2-dialkoxy ketone having a fluorine-substituted alkyl group is contained as the non-aqueous solvent, a non-aqueous electrolytic solution having a high ion concentration can be obtained.
  • the present invention preferably further comprises a carbonate complex as a non-aqueous solvent in the above-described non-aqueous electrolyte. According to the above configuration, a non-aqueous electrolyte battery having excellent cycle characteristics can be obtained.
  • the present invention is further directed to the above non-aqueous electrolytic solution further comprising, as a lithium salt, LiPF, LiBF, Li
  • another aspect of the present invention is an electrochemical energy storage device comprising a positive electrode, a negative electrode, and the above non-aqueous electrolyte. Since the non-aqueous electrolyte of the present invention has high ion concentration and excellent stability, according to the above configuration, a high energy density electrochemical energy storage device can be obtained.
  • Another aspect of the present invention is a non-aqueous electrolyte secondary battery including the positive electrode, a negative electrode having graphite as a negative electrode active material, and the above non-aqueous electrolyte.
  • the non-aqueous electrolyte solution of the present invention lithium ions smoothly intercalate and deintercalate into the graphite layer without causing destruction of the graphite structure even at high ion concentration.
  • a non-aqueous electrolytic solution secondary battery is obtained.
  • the present invention it is possible to obtain a non-aqueous electrolytic solution which is excellent in stability and maintains a liquid state at normal temperature even at a high ion concentration. Therefore, the energy density of the electrochemical energy storage device can be increased by being used as an electrolytic solution of an electric double layer capacitor, a non-aqueous electrolytic cell and the like.
  • lithium can be stably stored in a non-aqueous electrolytic solution containing 1,2-dialkoxyethane as a non-aqueous solvent. It can occlude and release ions, and can increase the energy density of lithium ion batteries.

Abstract

 (A)式R-O-CH2-CH2-O-R’(ただし、R,R’は同一でも異なっていてもよく、それぞれ炭素数が3以下の未置換またはフッ素置換アルキル基である)で示される1,2-ジアルコキシエタンと、(B)リチウムビス[トリフルオロメタンスルホニル]イミドとを、0.75以上、2以下のモル比[(A)/(B)]で含み、かつ、常温で液体である非水電解液。

Description

明 細 書
非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並 びに非水電解液二次電池
技術分野
[0001] 本発明は、電気二重層キャパシタゃ二次電池などに用いられる非水電解液、およ びそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池に関 する。
背景技術
[0002] 正極および負極に分極性電極が用いられる電気二重層キャパシタは、充電過程で 非水電解液中のカチオンおよびァニオンが電極表面に吸着することによって、電気 化学エネルギーを蓄積する。このため、充電過程では非水電解液中のイオン濃度が 低下することから、電気二重層キャパシタ内部の抵抗が増加する。また、低イオン濃 度の非水電解液が使用されると吸着できるイオン数が減少するため、電気二重層キ ャパシタに蓄えられる電気容量が低下する。従って、電気二重層キャパシタのェネル ギー密度を増やすためには、非水電解液中のイオン濃度を高くする必要がある。そ して、支持塩が溶解された電解液用溶媒に非水溶媒が用いられることで、電気二重 層キャパシタの高い充電電圧の設定が可能となり、その結果キャパシタのエネルギー 密度が一層高くなる。
[0003] また、リチウムを活物質とする一次電池あるいは二次電池の非水電解液電池にお いては、リチウムイオンは非水電解液中を通り、正極および負極の間を移動する。こ の種の非水電解液電池は、一次電池においては放電中、二次電池においては充放 電中、非水電解液中のイオン濃度は変化しない。従って、非水電解液電池のェネル ギー密度を増やすためには、正極活物質および負極活物質の量を増やし、非水電 解液の量を減らすことが考えられる。そして、非水電解液の量を減らす一方で、正負 極間で移動できるイオン量は保つ必要があるため、非水電解液中のイオン濃度を高 くする必要がある。
[0004] 上記のような電気二重層キャパシタゃ非水電解液電池にぉレ、て、非水電解液に使 用される代表的な非水溶媒は、環状カーボネートであるエチレンカーボネート(以下 、 ECと略記)、プロピレンカーボネート(以下、 PCと略記)、ブチレンカーボネート(以 下、 BCと略記)、環状エステルである γ _ブチロラタトン(以下、 Ί _BLと略記)、鎖 状カーボネートであるジメチルカーボネート(以下、 DMCと略記)、ェチルメチルカ一 ボネート(以下、 EMCと略記)、ジェチルカーボネート(以下、 DECと略記)などであ る。非水電解液は、これらの非水溶媒に、リチウムへキサフルォロホスフェート(LiPF
6
)、リチウムテトラフルォロボレート(LiBF )、リチウムパーク口レート(LiCIO )、リチウ
4 4 ムビス [トリフルォロメタンスルホニル]イミド(以下、 LiTFSIと略記)などのリチウム塩が 溶解されて調製される。し力しながら、非水電解液に溶解させるリチウム塩の濃度は、 通常、 0.8モル/ kg程度に過ぎない。また、高イオン濃度の非水電解液を調製する 場合でも、例えば、 LiBFと ECからなる電解液では、モル比で、 1 : 4 (2.2モノレ/ kg)
4
で混合される濃度が溶解度の点から限界である。
[0005] このため、非水電解液中のイオン濃度をさらに増加させることを目的として、非水溶 媒として 1, 2—ジメトキシェタン(以下、 DMEと略記)などの 1, 2—ジアルコキシエタ ンの使用が提案されている。具体的には、 LiBFと DMEからなる 6モル/ Lの非水電
4
解液([DME/LiBF ]のモル比で約 1/1) (特許文献 1)や、 LiBFと DMEと 1ーェ
4 4
トキシー 2—メトキシェタン(以下、 EMEと略記)からなる 6モル/ Lの非水電解液([ ( DME + EME) /LiBF ]のモル比で約(0·5 + 0.5) /ΐ) (特許文献 2)が提案されて
4
いる。
[0006] し力 ながら、本発明者等によるこれらの非水電解液についての詳細な研究によれ ば、リチウム塩に LiBFが使用される場合、 DME/LiBFのモル比が lZlの非水電
4 4
解液は常温では過飽和状態であった。そのため、この非水電解液を放置すると LiBF と推定される結晶物が析出した。また、 DMEZLiBFのモル比が lZlの非水電解
4 4
液や、(DME + EME) /LiBFのモル比が(0.5 + 0.5) /1の非水電解液は常温で
4
も不安定であり、放置すると 1, 2—ジアルコキシェタンの分解によって無色透明の溶 液から黄色乃至褐色の溶液に変化した。特許文献 2では、リチウム塩として LiBF以
4 外に、 LiPF、リチウムトリフルォロメタンスルフォネート(LiCF SO )、リチウムへキサ
6 3 3 フルォロアンチモネート(LiSbF )、リチウムへキサフルォロアーセネート(LiAsF )な ども開示されている。しかし、これらの塩を用いて、 1 , 2—ジアルコキシェタン Zリチウ ム塩のモル比力 Ziのような高イオン濃度の非水電解液を調製しょうとしても、リチウ ム塩が溶解しなレ、か、 LiBFと同様に調製した非水電解液が変色する力、あるいは
4
非水電解液が常温で固体になるため、電気化学エネルギー蓄積デバイス用の非水 電解液としての使用が困難であった。
[0007] 特に、リチウムイオンを吸蔵 ·放出する黒鉛材料が負極活物質として用レ、られる非 水電解液二次電池においては、 1 , 2—ジアルコキシェタンの 1種である DMEあるい はその混合溶媒が電解液の非水溶媒として用いられた場合、 LiCIOを 1M程度含
4
有する低イオン濃度の非水電解液中であってもリチウムイオンの黒鉛層間への挿入 ができないことが従来力 確認されている(非特許文献 1)。これは DMEが黒鉛上で 分解するためと考えられる。このため黒鉛材料へのリチウムイオンの電気化学的な挿 入は DMEを含有する非水電解液中では生じず、従って負極活物質に黒鉛材料を 用いた非水電解液二次電池用の非水電解液として DMEなどの 1 , 2—ジアルコキシ エタンは使用できないと考えられてきた。一方、本発明者等が黒鉛材料力 なる負極 を備えた非水電解液二次電池に、 EME/LiBFのモル比が 1/1の組成の高イオン
4
濃度の非水電解液を用いる検討を重ねたところ、充電初期に EMEで溶媒和されたリ チウムイオンが黒鉛層間に挿入し、黒鉛構造を破壊するため、負極の電位が卑にな らないという課題も明らかになった。なお、上記の充電初期とは、黒鉛層間にリチウム が存在しない状態でリチウムイオンが初めて電気化学的に挿入される段階である。 特許文献 1:特開平 1一 107468号公報
特許文献 2 :特開平 3— 84871号公報
非特許文献 1 :竹原善一郎監修, "高密度リチウム二次電池",第 1版,株式会社テク ノシステム, 1998年 3月 14日, pl84— 185
発明の開示
[0008] 本発明は上述した課題を鑑みてなされたものであり、安定性に優れた高イオン濃度 の非水電解液を提供し、もって高エネルギー密度の電気化学エネルギー蓄積デバィ ス、および非水電解液二次電池を提供することを目的とする。
[0009] 本発明の一局面は、(A)式 R—O— CH -CH—O— R,(ただし、 R, R'は同一で も異なっていてもよぐそれぞれ炭素数が 3以下の未置換またはフッ素置換アルキル 基である)で示される 1, 2—ジアルコキシェタンと、(B)リチウムビス [トリフルォロメタ ンスルホニル]イミド(LiTFSI)とを、 0. 75以上、 2以下のモル比 [ (A) / (B) ]で含み 、かつ、常温で液体である非水電解液である。
[0010] 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによつ て、より明白となる。
図面の簡単な説明
[0011] [図 1]図 1は、本発明の実施例 3および比較例 2の各非水電解液中での黒鉛負極の 充電特性を示す図である。
発明を実施するための最良の形態
[0012] 本発明の非水電解液は、(A)式 R—0— CH -CH _0_R,(ただし、 R, R'は同
2 2
一でも異なっていてもよぐそれぞれ炭素数が 3以下の未置換またはフッ素置換アル キル基である)で示される 1 , 2—ジアルコキシェタンと、(B)リチウムビス [トリフルォロ メタンスルホニル]イミド(LiTFSI)とを、 0. 75以上、 2以下のモル比 [ (A) / (B) ]で 含み、かつ、常温で液体の状態の電解液である。
[0013] 本発明の非水電解液は、高イオン濃度でも常温において液体の状態を維持し、か つ、 60°Cの高温でも安定である。その理由は、非水電解液中に含まれるビス [トリフ ルォロメタンスルホニル]イミドイオン(以下、 TFSIイオンと略記)が、官能基の回転運 動や変角運動という柔軟な分子運動をとり得る分子構造を有しており、その分子運動 によって結晶化しにくい非水電解液が得られるためと推測される。
[0014] これに対し、従来一般に使用されている LiBF力 Sリチウム塩として用いられた場合、
4
非水電解液中に含まれる BFイオンは水などの活性水素を有する不純物が微量でも
4
非水電解液中に存在すると、これらが反応してフッ化水素(HF)が発生する。発生し た HFは 1, 2—ジアルコキシェタンを分解し、電解液の変色を引き起こし、さらにその 分解が著しレ、場合には分解物が電極と反応する。この分解によって電気化学ェネル ギー蓄積デバイスの容量や他の特性が劣化することとなる。し力しながら、 TFSIィォ ンは、水などの活性水素を有する不純物が存在する非水電解液中でも HFを生成し にくいことが判明した。よって、本発明の TFSIイオンを含有する非水電解液は略中 性の酸性度を保っため、 1 , 2_ジアルコキシェタンの分解が抑制され、安定な非水 電解液が得られると考えられる。
[0015] また、黒鉛を負極活物質として含有する負極を備えた非水電解液電池において、 1 , 2—ジアルコキシエタンを非水溶媒とし、 LiBFのみをリチウム塩として含有する非
4
水電解液中では、イオン濃度にかかわらず黒鉛構造が破壊されるが、本発明の 1 , 2 —ジアルコキシエタンを非水溶媒とし、 LiTFSIをリチウム塩として含有する非水電解 液では、寧ろ高イオン濃度である方が黒鉛層間へのリチウムイオンの吸蔵 ·放出が円 滑に生じることが見出された。この理由は必ずしも明らかではなレ、が、 LiTFSIが高濃 度で溶解された非水電解液は黒鉛と反応する溶媒和されてレ、なレ、フリーな 1 , 2—ジ アルコキシェタンの量を減少させるためと推測される。
[0016] 本発明において、上記非水電解液中の(A)式 R— O— CH -CH一〇一 R'で示
2 2
される 1 , 2—ジアルコキシェタンと、 (B)リチウムビス [トリフルォロメタンスルホニル]ィ ミドの含有割合は、 [ (A) / (B) ]のモル比で 0.75以上、 2以下である。
[0017] 上記(A) / (B)のモル比が 2より大きくなると、 LiTFSIがリチウム塩として用いられ ても、黒鉛層間に非水溶媒によって溶媒和されたリチウムイオンの挿入が起き、黒鉛 構造が破壊され始めるとともに、非水電解液中のリチウムイオン濃度が低下し、高工 ネルギー密度の電気化学エネルギー蓄積デバイス用途としての効果が乏しくなる。 従来の LiBFなどのリチウム塩と 1 , 2—ジアルコキシェタンとが組み合わされた非水
4
電解液と異なり、本発明の LiTFSIと 1, 2—ジアルコキシェタンとが組み合わされた 非水電解液で、 (A) / (B)のモル比が 2以下の場合にリチウムイオンの黒鉛への揷 入が安定に起きる理由は以下のように考えられる。すなわち、(A)Z(B)のモル比が 2以下の高濃度の非水電解液が用いられることにより、 1 , 2—ジアルコキシェタンで はなく TFSIイオンが優先的に黒鉛上で還元分解されるようになる。その結果、リチウ ムイオン伝導性の皮膜が黒鉛上に形成され、充電過程で 1 , 2—ジアルコキシェタン の黒鉛層間への共揷入が防止されるためと推測される。一方、(A)Z(B)のモル比 力 S0.75未満の非水電解液は、 1, 2_ジアルコキシエタンを非水溶媒として含有して も常温で実質的に不溶物を含有しない溶液の状態を維持することが困難になる。こ のため、本発明では上記 (A) / (B)のモル比は、 0· 75以上、 2以下とする必要があ り、等モルに近づくほど好ましい。なお、本発明において常温とは 25〜30°Cの温度 範囲を意味する。
[0018] 本発明で使用される 1 , 2—ジアルコキシェタンとしては、具体的には、例えば、以 下のものが挙げられる。
[0019] 1 , 2—ジメトキシェタン(DME)
1 _エトキシ _ 2—メトキシェタン(以下、 EMEと略記)
1—メトキシ _ 2_トリフルォロエトキシェタン(以下、 MTFEEと略記)
1 , 2—ジエトキシェタン(以下 DEEと略記)
1—エトキシ一 2—トリフルォロエトキシェタン(以下、 ETFEEと略記) 1 , 2—ビス [トリフルォロエトキシ]ェタン(以下、 BTFEEと略記)
1 , 2—ジプロポキシェタン(以下、 DPEと略記)
[0020] これらの 1 , 2—ジアルコキシェタンは単独で用いられてもよレ、が、複数が混合され てもよい。特に、 1 , 2—ジアルコキシェタンとして DEEが使用されると広範囲の組成 において常温で液体となり、高イオン濃度の非水電解液が得られるため好ましい。例 えば、 DMEや EMEなどの上記 Rおよび R'が未置換のアルキル基である 1 , 2—ジァ ルコキシェタンが非水溶媒として使用される場合、 DEEを併用することが好ましい。こ の場合、 DEEと、 DEE以外の未置換のアルキル基を有する 1 , 2—ジアルコキシエタ ンとの含有割合は、モル比 [DEE以外の未置換のアルキル基を有する 1, 2—ジァノレ コキシェタン/ DEE]で、 1以下が好ましい。
[0021] 本発明において、式 R_〇_CH -CH—0—R'で示される 1, 2—ジアルコキシ ェタンの Rおよび R'の炭素数は 3以下であり、 2以下がより好ましい。炭素数が 3より 大きくなると、 LiTFSIの溶解度が下がり高濃度の電解液の調製が困難になる。また、 分子量の小さい非水溶媒ほどより高い濃度の電解液が得られる点から、 Rおよび R' は、 CH基、 C H基、 CF基、 CH CF基からなる群から選ばれる 1つの基が好まし レ、。
[0022] また、本発明において、上記 Rおよび R'の少なくともいずれか一方が CH CF基で ある 1 , 2—ジアルコキシェタン、例えば、末端に CH CF基を有する MTFEE、 ETF
EE、および BTFEEは、フッ素置換アルキル基中のフッ素の電子吸引効果によって 耐酸化電位が上昇し、高い充電電圧が利用できるため好ましい。なお、これらのフッ 素置換アルキル基を有する 1, 2—ジアルコキシェタンを含有する非水電解液は耐還 元性が低下する傾向にあるため、 Rおよび R'が未置換のアルキル基を有する 1, 2- ジアルコキシェタンを併用することが好ましレ、。このような未置換のアルキル基を有す る 1 , 2—ジアルコキシェタンとしては、 DME、 DEE、および EMEから選ばれる少な くとも 1種が好ましレ、。少なくとも 1つのフッ素置換アルキル基を有する 1 , 2—ジアルコ キシェタンと、未置換のアルキル基を有する 1 , 2—ジアルコキシェタンとの混合割合 は、モル比 [フッ素置換アルキル基を有する 1 , 2—ジアルコキシェタン/未置換のァ ルキル基を有する 1 , 2—ジアルコキシェタン]で、 0· 1以上、 1以下が好ましい。
[0023] 本発明の非水電解液は、非水溶媒として、上記の 1, 2—ジアルコキシェタンの単 独または混合物に、 ECなどの環状カーボネートが添加されてもよい。さらに、非水電 解液に、 C = C不飽和結合を有する環状または鎖状カーボネートが添加されてもよい 。これらのカーボネートの添加により、負極表面に良質な皮膜が形成されるため電気 化学エネルギー蓄積デバイスの充放電サイクル特性が向上する。高イオン濃度を維 持する観点から、これらの他の非水溶媒の添加割合は、非水電解液中の 1 , 2—ジァ ルコキシェタンの総モル量未満が好ましぐモル比 [カーボネート化合物 /1 , 2—ジ アルコキシェタン]で、 ο· 05以上、 0. 1以下がより好ましい。
[0024] C = C不飽和結合を有する環状カーボネートとしては、例えば、ビニレンカーボネー ト(以下、 VCと略記)、ビュルエチレンカーボネート(以下、 Vecと略記)、ジビュルェ チレンカーボネート(以下、 DVecと略記)、フエニルエチレンカーボネート(以下、 Pe cと略記)、ジフヱニルエチレンカーボネート(以下、 DPecと略記)などが挙げられ、特 に Vec、 Pecが好ましい。
[0025] また、 C = C不飽和結合を有する鎖状カーボネートとしては、例えば、メチルビュル カーボネート(以下、 MVCと略記)、ェチルビ二ルカーボネート(以下、 EVCと略記) 、ジビュルカーボネート(以下、 DVCと略記)、ァリルメチルカーボネート(以下、 AM Cと略記)、ァリルェチルカーボネート(以下、 AECと略記)、ジァリルカーボネート(以 下、 DACと略記)、ァリルフエ二ルカーボネート(以下、 APCと略記)、ジフヱ二ルカ一 ボネート(以下、 DPCと略記)などが挙げられ、特に DAC、 APC、 DPCが好ましい。 [0026] 本発明の非水電解液は、リチウム塩としてリチウムビス [トリフルォロメタンスルホニル ]ィミド(LiTFSI)を含有する力 さらに LiPF、 LiBF、 LiCIO、リチウムビス [ペンタ フルォロェタンスルホニル]イミド(以下、 LiBETIと略記)、リチウム [トリフルォロメタン スルホニル] [ノナフルォロブタンスルホニル]イミド(以下、 LiMBSIと略記)、リチウム シクロへキサフルォロプロパン一 1 , 3_ビス [スルホニル]イミド(以下、 LiCHSIと略 記)、リチウムビス [ォキサレート(2_) ]ボレート(以下、 LiBOBと略記)、リチウムトリフ ノレオロメチルトリフルォロボレート(LiCF BF )、リチウムペンタフルォロェチルトリフル ォロボレート(LiC F BF )、リチウムヘプタフルォロプロピルトリフルォロボレート(LiC
F BF )、リチウムトリス [ペンタフルォロェチル]トリフルォロホスフェート [Li (C F ) P
F ]などのリチウム塩を混合してもよぐこれらの中でも、 LiPF、 LiBF、 LiBETI, Li
MBSI、 LiCHSI, LiBOB, LiCF BF、 LiC F BFからなる群から選ばれる少なくと も 1種のリチウム塩の併用が好ましい。リチウム塩の混合割合は、非水電解液が常温 で安定に液体として存在するように適宜決定される力 好ましくは LiTFSIに対する他 のリチウム塩のモル比で 0. 01以上、 0. 2以下である。特に、非水電解液電池におい て、 LiTFSIのみをリチウム塩として含有する非水電解液は正極集電体のアルミニゥ ムを腐食する傾向にある力 LiPFなどのフッ素系リチウム塩はアルミニウム上に A1F などの不働態膜を形成し、腐食を抑制するため併用することが好ましい。また、正極
3
力 溶出したアルミニウムイオンによる劣化を抑制するため LiBOBの併用が好ましい
[0027] 本発明の電気化学エネルギー蓄積デバイスは、正極、負極、および上記の非水電 解液から構成される。本発明の非水電解液は、上述されたように、高イオン濃度でも 常温で液体として安定に存在するため、電気二重層キャパシタゃ非水電解液電池な どの電気化学エネルギー蓄積デバイスに用いられることにより高エネルギー密度の 電気化学エネルギー蓄積デバイスが得られる。
[0028] 特に、本発明の非水電解液は、負極活物質として黒鉛を有する負極を備えた非水 電解液二次電池に好適に用いられる。上述されたように、本発明の非水電解液中で は、充電初期における溶媒和されたリチウムイオンの黒鉛層間への揷入が抑制され るため、高エネルギー密度の非水電解液二次電池が得られる。 [0029] 本発明の非水電解液二次電池の負極活物質として用いられる黒鉛としては、天然 黒鉛、人造黒鉛の他に、黒鉛に近い高結晶性の炭素材料、例えば、メソフェーズピッ チ系黒鉛繊維、黒鉛化メソカーボンマイクロビーズ、気相成長炭素繊維や黒鉛ゥイス カーなどが使用でき、これらの中でも、高エネルギー密度が期待できる層間距離が約 3.5A以下の結晶構造を有する黒鉛が好ましい。
[0030] 非水電解液二次電池の負極は、上記のような負極活物質、結着剤、必要により増 粘剤および導電剤を N_メチル _ 2_ピロリドン (NMP)等の溶媒を用いて混合して 調製されたペーストを、例えば、銅製の集電体上に所定厚みとなるように塗布し、乾 燥、圧延後、裁断することにより作製される。
[0031] 本発明の非水電解液二次電池の正極に用いられる構成材料としては従来から公 知のものが使用される。正極活物質としては、具体的には、例えば、コバルト酸リチウ ム、ニッケノレ酸リチウム、マンガン酸リチウム、リン酸鉄リチウム等の複合酸化物が用 いられる。
[0032] 非水電解液二次電池の正極は、上記のような正極活物質、結着剤、必要により増 粘剤および導電剤を NMP等の溶媒を用いて混合して調製されたペーストを、例え ば、アルミニウム製の集電体上に所定の厚みとなるように塗布し、乾燥、圧延後、裁 断することにより作製される。
[0033] 本発明の非水電解液二次電池は、上記のようにして作製される正極および負極を セパレータを介して対向配置した後、電極が卷回あるいは積層された構造を有する 電極体を作製し、この電極体および非水電解液を電池缶内に挿入して、封口するェ 程を経て作製される。
[0034] 以上本発明は詳細に説明されたが、上記した説明は、全ての局面において、例示 であって、本発明がそれらに限定されるものではなレ、。例示されていない無数の変形 例が、この発明の範囲から外れることなく想定され得るものと解される。
[0035] 以下に、本発明に関する実施例が示されるが、本発明はこれら実施例に限定され るものでない。
実施例
[0036] (実施例 1) リチウム塩種による非水電解液の高温安定性への効果が調べられた。 DMEと DE Eと LiTFSIとが、 (DME + DEE) /LiTFSIのモル比で(0.5 + 0.5) /1で混合され 、非水電解液が調製された。得られた液体は常温で透明であった。
[0037] 調製された非水電解液は、テトラフルォロエチレン 'パーフルォロアルキルビュルェ 一テル共重合体樹脂(以下、 PFAと略記)製の容器に入れられ、密栓され、さらに PF A容器はアルミラミネートの袋に収納され、封止された。容器が 60°Cで 10日間保存さ れた後、非水電解液の色調の変化が調べられた。その結果、実施例 1の非水電解液 は、透明の状態を維持していた。
[0038] (比較例 1)
EMEと LiBFとが、 EME/LiBFのモル比で 1/1で混合され、比較例 1の非水電
4 4
解液が調製された。得られた液体は常温で透明であった。調製された非水電解液は
、実施例 1と同様にして PFA容器に入れられ、密栓され、さらに PFA容器はアルミラ ミネートの袋に収納され、封止された。容器が 60°Cで 10日間保存された後、非水電 解液の色調の変化が調べられた。その結果、比較例 1の非水電解液は、濃い橙色に 変色していた。
[0039] 表 1はこれらの評価結果である。
[0040] [表 1]
Figure imgf000012_0001
[0041] 表 1より、本発明の LiTFSIを用いた非水電解液は、高温で保存されても色調の変 化がなぐ安定であることがわかる。一方、比較例 1の非水電解液は濃い橙色に変色 していた。この変色は HFに起因する 1, 2—ジアルコキシェタンの分解によるものと推 測される。
[0042] 以上の結果から、リチウム塩として LiTFSIが用いられることによって、高温下でも 1 , 2—ジアルコキシェタンの分解を抑制する非水電解液が得られ、従って、高温保存 特性に優れた電気化学エネルギー蓄積デバイスが得られる。
[0043] なお、実施例 1の非水溶媒は DMEと DEEの混合溶媒が用いられ、比較例 1の非 水溶媒は EMEの単独溶媒が用いられた力 この理由は上記の高イオン濃度で LiT FSIあるレ、は LiBFを溶解できる共通の溶媒組成が見いだされなかったためである。
(実施例 2)
LiTFSIと各種の 1 , 2—ジアルコキシェタンが種々のモル比の割合で混合された。 表 2は、常温で液体である非水電解液の組成を示す。調製された各非水電解液は、 実施例 1と同様にして、 60°Cで 10日間保存され、保存後の色調の変化が調べられた
[0045] [表 2]
Figure imgf000013_0001
[0046] 表 2に示されるように、本発明の 1 , 2—ジアルコキシエタンを非水溶媒とし、 LiTFS Iをリチウム塩として含有する非水電解液は、 LiTFSIに対する全 1 , 2—ジアルコキシ ェタンのモル比が 0. 75 2の高濃度の範囲でも、常温で液体であり、色調の変化が なぐ安定な非水電解液であることが分かる。
[0047] 一方、表 2に示されていない組成の非水電解液において、非水溶媒として DEEが 用いられた非水電解液であっても DEE/LiTFSIのモル比が 0.5/1の組成の場合 は、 LiTFSIが全て溶解できなかった。
[0048] なお、 1 , 2—ジアルコキシェタン/ LiTFSIのモル比が 1/1の組成を有する非水 電解液において、 1 , 2—ジアルコキシェタンとして DMEあるいは EMEのみが用いら れた非水電解液は常温で固体になる傾向にあつたが、非水溶媒として DEEのモル 比が 0. 5以上([DMEまたは EMEZDEE]のモル比が 1以下)の混合溶媒が用いら れた非水電解液は液体であった。従って、常温で液体である電解液を得るため、未 置換の Rおよび R'を有する 1 , 2—ジアルコキシェタンのみを非水溶媒として含有す る場合、 DEEの併用が好ましい。
[0049] また、 DPEのように末端アルキル基の炭素数が 3以上の 1 , 2—ジアルコキシェタン のみを非水溶媒とする非水電解液では LiTFSIの溶解度が低下する傾向にあった。 このため、 LiTFSIに対する 1, 2—ジアルコキシェタンのモル比が 1以下の高濃度の 非水電解液の調製には末端のアルキル基の炭素数が 2以下の 1, 2—ジアルコキシ ェタンの使用が好ましい。
[0050] (実施例 3)
本発明の非水電解液中での黒鉛材料へのリチウムイオンの挿入の可否が以下のよ うにして調べられた。
[0051] 充放電によりリチウムイオンを吸蔵'放出する負極活物質として、人造黒鉛粉末(日 立化成製 MAG— D)が用いられた。
[0052] 負極板は以下のようにして作製された。まず、人造黒鉛粉末 75質量部と、導電剤と してアセチレンブラック 20質量部と、結着剤としてポリフツイ匕ビニリデン樹脂 5質量部 と、分散溶剤として脱水 N—メチル _ 2_ピロリドンとが混合された。次に、この混合物 が厚み 20 z mの銅箔集電体の片面に、塗布、乾燥されて、厚みが 80 z mの活物質 層が形成された。そして、活物質層が形成された銅箔集電体が 35mm X 35mmサイ ズに切り出され、得られた銅箔集電体にリードのついた厚み 0.5mmの銅集電板が超 音波溶接されて負極板が作製された。
[0053] 上記とは別に、 DMEと DEEと LiTFSIと力 (DME + DEE) ZLiTFSIのモル比で 、(0.5 + 0.5) /1となるように混合され、非水電解液が調製された。
[0054] 以上のようにして作製された負極板が試験極とされ、対極および参照極にリチウム 金属箔が用いられ、調製された非水電解液中で人造黒鉛粉末へのリチウムイオンの 電気化学的挿入が試みられた。挿入条件は、 20°C、 0.03mA/cm2とされた。 [0055] 図 1は、人造黒鉛粉末に対し 60mAh/gの力ソード電気量が流された場合の電位 変化を示す図である。図 1中、本実施例の非水電解液中での通電終了後の電位は 約 0.2Vであり、この電位はリチウムイオンが黒鉛層間に侵入し、第 3ステージ構造を 形成していることを示している。すなわち、 1, 2—ジアルコキシエタンを非水溶媒とし 、LiTFSIをリチウム塩として高濃度で含有する非水電解液中でリチウムイオンの安 定な揷入が可能なことがわかる。
[0056] (比較例 2)
実施例 3と同様にして、人造黒鉛粉末からなる負極板が作製された。
[0057] 上記とは別に、 EMEと LiBF力 EME/LiBFのモル比で 1/1となるように混合
4 4
され、非水電解液が調製された。
[0058] 以上のようにして作製された負極板が試験極とされ、対極および参照極にリチウム 金属箔が用いられ、調製された非水電解液中で人造黒鉛粉末へのリチウムイオンの 電気化学的挿入が試みられた。挿入条件は、 20°C、 0.03mA/cm2とされた。
[0059] 図 1は、人造黒鉛粉末に対し 60mAh/gの力ソード電気量を流した場合の電位変 化を示す図である。図 1中、本比較例の非水電解液中での通電終了後の電位は第 3 ステージ構造の形成を示す電位まで下がっていなレ、。すなわち、リチウムイオンの挿 入が起きなかったことが示されている。これは、リチウムイオン単独ではなぐ EMEに 溶媒和されたリチウムイオンが黒鉛層間に挿入し、黒鉛の層状構造を破壊しているた めと推測される。
[0060] 以上から、 1, 2—ジアルコキシエタンを非水溶媒とし、 LiTFSIを高イオン濃度で含 有する本発明の非水電解液は、リチウムイオンを吸蔵 ·放出する黒鉛材料からなる負 極を有するリチウムイオン二次電池などの非水電解液二次電池に適用することがで きる。
[0061] (実施例 4)
本発明の非水電解液を有するリチウムイオン電池が組み立てられ、電池特性が以 下のようにして評価された。充放電によりリチウムイオンを吸蔵 ·放出する正極活物質 として、 LiFePOが用いられた。正極板は以下のようにして作製された。まず、 LiFeP
4
〇粉末 85質量部と、導電剤としてアセチレンブラック 10質量部と、結着剤としてポリ
4 フッ化ビニリデン樹脂 5質量部とが混合され、この混合物が脱水 N_メチル _ 2—ピロ リドンに分散されてスラリー状の正極合剤が調製された。この正極合剤がアルミニウム 箔からなる正極集電体上に塗布され、乾燥後、圧延されて、活物質層が形成された 。次に、活物質層が形成されたアルミニウム箔集電体が 35mm X 35mmサイズに切 り出された。得られたアルミニウム箔製集電体にリードのついた厚み 0.5mmのアルミ ニゥム集電板が超音波溶接されて正極板が作製された。
[0062] また、実施例 3と同様にして、人造黒鉛粉末力もなる負極板が作製された。
[0063] 上記とは別に、 DMEと DEEと LiTFSIと力 (DME + DEE) /LiTFSIのモル比で
、 (0.5 + 0.5) /1となるように混合され、非水電解液が調製された。
[0064] ポリプロピレン製の不織布を間にして正極板および負極板が対向配置された後、正 極板および負極板がテープで固定され、一体化されて電極体が作製された。次に、 この電極体が両端に開口部を有する筒状のアルミラミネートの袋に収納され、両極の リード部分側の開口部が溶着された。そして、他方の開口部から調製された非水電 解液が滴下された。
[0065] 滴下後、 1300Paで 5秒間、脱気が行なわれた。注液された側の開口部が溶着によ り封止され、リチウムイオン電池が作製された。
[0066] 以上のようにして組み立てられたリチウムイオン電池力 20°C、
Figure imgf000016_0001
上 限電圧 4.0V、下限電圧 2.8Vの条件で充放電された。 10サイクル後の放電容量は、 122mAh/gであった。ここで、 gは LiFePOの重量当たりを示す。
[0067] (実施例 5)
DMEと LiTFSIと力 DMEZLiTFSIのモル比で 2/1となるように混合された非 水電解液が用いられた以外は、実施例 4と同様にして、リチウムイオン電池が組み立 てられた。
[0068] 以上のようにして組み立てられたリチウムイオン電池力 20°C、
Figure imgf000016_0002
上 限電圧 4.0V、下限電圧 2.8Vの条件で充放電された。 10サイクル後の放電容量は 、 115mAhZgであった。実施例 4の電池の放電容量と比較して本実施例の電池の 放電容量がやや低下した理由は、負極活物質である人造黒鉛粉末の層間に、 DM Eで溶媒和されたリチウムイオンが若干挿入したためである。 [0069] (比較例 3)
DMEと LiTFSIと力 DMEZLiTFSIのモル比で 3/1となるように混合された非 水電解液が用いられた以外は、実施例 4と同様にして、リチウムイオン電池が組み立 てられた。
[0070] 以上のようにして組み立てたられたリチウムイオン電池力 20°C、
Figure imgf000017_0001
上限電圧 4.0V、下限電圧 2.8Vの条件で充放電された。 10サイクル後の放電容量 は、 65mAhZgであった。実施例 4の電池の放電容量と比較して本比較例の電池の 放電容量が約 1/2倍となった理由は、負極活物質である人造黒鉛粉末の層間に、 DMEで溶媒和されたリチウムイオンが挿入し、黒鉛構造が破壊されたためである。
[0071] 以上の結果から、黒鉛構造を破壊しない LiTFSIに対する 1 , 2—ジアルコキシエタ ンの割合は、 1, 2—ジアルコキシェタン/ LiTFSIのモル比で 2以下であることが分 かる。
[0072] (比較例 4)
EMEと LiBFとが、 EME/LiBFのモル比で 1/1となるように混合された非水電
4 4
解液が用いられた以外は、実施例 4と同様にして、リチウムイオン電池が組み立てら れ /こ
[0073] 以上のようにして組み立てられたリチウムイオン電池力 20°C、
Figure imgf000017_0002
上 限電圧 4.0V、下限電圧 2.8Vの条件で充放電された。 10サイクル後の放電容量は 、 17mAhZgであった。実施例 4の電池の放電容量と比較して本比較例の電池の放 電容量が約 1/7倍となった理由は、負極活物質である人造黒鉛粉末の層間に、 E MEで溶媒和されたリチウムイオンが揷入し、黒鉛構造が破壊されたためである。
[0074] 以上の結果から、本発明の LiTFSIを 1 , 2—ジアルコキシェタン中に高濃度で含有 する非水電解液を用いることにより、黒鉛構造の破壊を招くことなく高エネルギー密 度のリチウムイオン電池が得られることがわかる。
[0075] (実施例 6)
1, 2—ジアルコキシェタンとともに、環状カーボネートイ匕合物または C = C不飽和力 ーボネート化合物を非水溶媒として含有する非水電解液を有するリチウムイオン二次 電池の特性が以下のようにして評価された。 [0076] 以下の各組成を有する 3種類の非水電解液が用いられた以外は、実施例 4と同様 にしてリチウムイオン電池が組み立てられた。 1つ目は、 DEEと LiTFSIと力 DEE/ LiTFSIのモル比で 1/1で混合された非水電解液であり、この非水電解液が使用さ れたリチウムイオン電池力 実施例 6Aの電池とされた。 2つ目は、 DEEと ECと LiTF SIと力 DEE/EC/LiTFSIのモル比で 0.9Z0.1/1で混合された非水電解液で あり、この非水電解液が使用されたリチウムイオン電池が、実施例 6Bの電池とされた 。 3つ目は、 DEEと ECと LiTFSIと Vecと力 DEE/EC/LiTFSl/Vecのモル比 で 0.9/0.09/1/0.01で混合された非水電解液であり、この非水電解液が使用さ れたリチウムイオン電池が、実施例 6Cの電池とされた。
[0077] 以上のようにして組み立てられた実施例 6A、 6Bおよび 6Cの各リチウムイオン電池 に対して、 20°C、
Figure imgf000018_0001
上限電圧 4.0V、下限電圧 2.8Vの条件で充放電 が繰り返された。そして、各電池において、 100サイクル目の放電容量を 10サイクノレ 目の放電容量で除した値がサイクル維持率として評価された。
[0078] サイクル維持率は、実施例 6Aのリチウムイオン電池が 0.83であり、実施例 6Bが 0.
92、実施例 6Cが、 0.94であった。以上の結果から、 ECや Vecが添加された本発明 の非水電解液は、リチウムイオン電池のサイクル維持率を向上させることがわかる。
[0079] (実施例 7)
片末端にフッ素置換アルキル基(_CH CF基)を有する 1, 2—ジアルコキシエタ
2 3
ン及び未置換のアルキル基を有する 1 , 2—ジアルコキシエタンを非水溶媒とし、この 非水溶媒と、 LiTFSIとともに他のリチウム塩が添加された非水電解液を有するリチウ ムイオン電池の特性が以下のようにして調べられた。
[0080] 以下の各組成を有する 3種類の非水電解液が用いられた以外は、実施例 4と同様 にしてリチウムイオン電池が組み立てられた。 1つ目は、 DMEと ETFEEと LiTFSIと 力 (DME + ETFEE) ZLiTFSIのモル比で(0.5 + 0.5) Zlで混合されたものであ り、この非水電解液が使用されたリチウムイオン電池が実施例 7Aの電池とされた。 2 つ目は、 DMEと ETFEEと LiTFSIと LiPFと力 (DME + ETFEE) /LiTFSl/Li
6
PFのモル比で (0.5 + 0.5)/0.99/0.01で混合された非水電解液であり、この非水
6
電解液が使用されたリチウムイオン電池が実施例 7Bの電池とされた。 3つ目は、 DM Eと ETFEEと LiTFSIと LiBOBと力 (DME + ETFEE)ZLiTFSlZLiB〇Bのモル 比で (0.5 + 0.5)Z0.99/0.01で混合された非水電解液であり、この非水電解液が 使用されたリチウムイオン電池が実施例 7Cの電池とされた。
[0081] 以上のようにして組み立てられた実施例 7A、 7Bおよび 7Cの各リチウムイオン電池 に対して、 20°C、
Figure imgf000019_0001
上限電圧 4.0V、下限電圧 2.8Vの条件で充放電 が繰り返された。そして、各電池において、 100サイクル目の放電容量を 10サイクノレ 目の放電容量で除した値がサイクル維持率として評価された。
[0082] サイクル維持率は、実施例 7Aのリチウムイオン電池が 0.77であり、実施例 7Bが 0.
85、実施例 7Cが 0.88であった。
[0083] 以上の結果から、フッ素置換アルキル基を有する 1 , 2—ジエトキシェタンを含有す る非水電解液に LiTFSIとともに他のリチウム塩が添加されることで、リチウムイオン電 池のサイクル維持率が向上することがわかる。
[0084] (実施例 8)
本発明の非水電解液を有するリチウム一次電池について、保存特性が以下のよう にして評価された。
[0085] リチウム一次電池は以下の手順で組み立てられた。正極活物質として、 γ Ζ β— ΜηΟ ( γ相と ;3相の二相共存物)が用いられた。そして、実施例 4と同様にして正極
2
板が作製された。
[0086] 負極板は、リチウム金属箔が用いられ、 35mm X 35mmサイズに切り出された後、 得られたリチウム金属箔にリードのついた厚み 0.5mmの銅集電板が圧着されて、作 製された。
[0087] また、 DEEと LiTFSIと力 DEE/LiTFSIのモル比で lZlとなるように混合された 非水電解液が用いられた。
[0088] ポリエチレン製の多孔性フィルムを間にして正極板および負極板が対向配置された 後、正極板および負極板がテープで固定され、一体化されて電極体が作製された。 次に、この電極体が両端に開口部を有する筒状のアルミラミネートの袋に収納され、 両極のリード部分側の開口部が溶着された。そして、他方の開口部から調製された 非水電解液が滴下された。 [0089] 滴下後、 1300Paで 5秒間、脱気が行なわれた。注液された側の開口部が溶着によ り封止され、リチウム一次電池が作製された。
[0090] 以上のようにして組み立てられたリチウム一次電池は、 20°C、 0.03mA/ cm2 の条件で、 LiZMnのモル比が 0.05Z1の組成になるまで、予備放電が行なわれた 。予備放電後、電池は 60°Cで 1ヶ月保存され、保存前後の内部インピーダンスの変 化が調べられた。 10kHzでの抵抗が測定された結果、保存前の抵抗は 2.3 Ωであり 、保存後の抵抗は 2.8 Ωであった。
[0091] (比較例 5)
EMEと LiBFとが、 EME/LiBFのモル比で 1/1となるように混合された非水電
4 4
解液が用いられた以外は、実施例 8と同様にして、リチウム一次電池が組み立てられ た。
[0092] 以上のようにして組み立てられたリチウム一次電池力 20°C、 0.03mA/ cm2の条 件で、 Li/Mnのモル比が 0.05/1の組成になるまで、予備放電が行なわれた。予 備放電後、電池は 60°Cで 1ヶ月保存され、保存前後の内部インピーダンスの変化が 調べられた。 10kHzでの抵抗が測定された結果、保存前の抵抗は 1.9 Ωであり、保 存後の抵抗は 4.1 Ωであった。保存後の内部インピーダンスが実施例 8のそれと比較 して約 1. 5倍高いが、この増加は MnO内に存在した微量の水分と LiBFが反応し
2 4 て HFが生成し、それによつて Mn〇が溶解したり、 EMEが分解したためと考えられ
2
る。
[0093] (実施例 9)
本発明の非水電解液を有する電気二重層キャパシタについて以下のようにして評 価された。
[0094] 分極性電極は以下に示す手順で作製された。
[0095] 比表面積 1700m2/gのフヱノール樹脂製活性炭粉末と、導電剤としてアセチレン ブラックと、結着剤としてカルボキシメチルセルロースのアンモニゥム塩と、分散溶剤と して水およびメタノールとが質量比 10 : 2 : 1: 100 : 40の配合比になるように混合され た。この混合物が厚み 20 x mのアルミニウム箔製集電体の片面に、塗布、乾燥され て、厚みが 80 / mの活物質層が形成された。そして、活物質層が形成されたアルミ 二ゥム箔製集電体が 35mm X 35mmサイズに切断された。得られたアルミニウム箔 製集電体にリードのついた厚み 0.5mmのアルミニウム集電板が超音波溶接され、分 極性電極が作製された。
[0096] 正極として上記のようにして作製された分極性電極力 負極として実施例 3と同様に して作製された人造黒鉛粉末からなる電極が用いられた。両極の間にポリプロピレン 製不織布セパレータが配置された後、非水電解液が注入され、全体がアルミニウムラ ミネートチューブ内に納められて電気二重層キャパシタが作製された。
[0097] 電解液として、 DMEと DEEと LiTFSIと力 (DME + DEE)/LiTFSIのモル比で( 0.5 + 0.5)/1となるように混合された非水電解液が使用された。
[0098] 組み立てられた電気二重層キャパシタは、 20°C、 0.3mA/ cm2の定電流で、 2.0 〜3.8Vの電圧範囲において充放電が繰り返され、容量の変化が調べられた。 1000 サイクル後の容量を 10サイクル目の容量で除した容量維持率は、 0.96であった。
[0099] (比較例 6)
EMEと LiBFとが、 EME/LiBFのモル比で 1/1となるように混合された非水電
4 4
解液が用いられた以外は、実施例 9と同様にして、電気二重層キャパシタが組み立 てられた。
[0100] 以上のようにして組み立てられた電気二重層キャパシタカ 20°C、 0.3mA/ cm2の 定電流で、 2.0〜3.8Vの電圧範囲において充放電が繰り返されたところ、 54サイク ノレ後には、キャパシタの容量は、略 0となった。これは、充電時に負極の電位が卑に ならないために、分極性電極である正極の電位が過充電状態になり、 EMEが酸化 分解されたためと推定される。
[0101] 以上の結果から、本発明の非水電解液を用いることにより、サイクル寿命に優れた 電気二重層キャパシタが得られる。
[0102] 以上説明されたように本発明の一局面は、(A)式 R— 0— CH -CH _〇_R' (た
2 2
だし、 R, R'は同一でも異なっていてもよぐそれぞれ炭素数が 3以下の未置換また はフッ素置換アルキル基である)で示される 1, 2—ジアルコキシェタンと、(B)リチウ ムビス [トリフルォロメタンスルホニル]イミドとを、 0. 75以上、 2以下のモル比 [ (A) / (B) ]で含み、かつ、常温で液体である非水電解液である。前記構成によれば、高工 ネルギー密度の電気化学エネルギー蓄積デバイスを提供可能な、高温でも安定で、 高イオン濃度の非水電解液が得られる。
[0103] また、上記非水電解液にぉレ、て、 Rおよび R'の炭素数は 2以下であることが好まし レ、。前記構成によれば、 LiTFSIの濃度を高く設定できるため、高イオン濃度の非水 電解液が得られる。
[0104] さらに、上記非水電解液において、 Rおよび R'は、 CH基、 C H基、 CF基、 CH
CF基からなる群から選ばれる 1つの基が好ましい。前記構成によれば、分子量の小 さい 1, 2—ジアルコキシェタンが非水溶媒として使用されるため、 LiTFSIの濃度を 高く設定できる。
[0105] またさらに、本発明は、上記非水電解液において、 1, 2—ジアルコキシェタンとして 、 MTFEE、 ETFEE、および BTFEE力 なる群力ら選ばれる少なくとも 1つを含有 することが好ましい。前記構成によれば、フッ素で置換されたアルキル基を有する 1, 2—ジアルコキシェタンは常温で液体の非水電解液が得られやすぐまた、耐酸化性 に優れた非水電解液が得られる。
[0106] また、本発明は、上記フッ素で置換されたアルキル基を有する 1 , 2—ジアルコキシ エタンを非水溶媒として含有する非水電解液において、さらに、 DME、 DEE、およ び EMEからなる群から選ばれる少なくとも 1つを非水溶媒として含有することが好ま しレ、。前記構成によれば、フッ素置換アルキル基を有する 1 , 2—ジアルコキシェタン を非水溶媒として含有する場合に、高イオン濃度の非水電解液が得られる。
[0107] 本発明は、上記非水電解液において、さらに、非水溶媒として、カーボネートイ匕合 物を含有することが好ましい。前記構成によれば、優れたサイクル特性を有する非水 電解液電池が得られる。
[0108] 本発明は、上記非水電解液において、さらに、リチウム塩として、 LiPF、 LiBF、 Li
CIO、リチウムビス [ペンタフルォロェタンスルホニル]イミド、リチウム [トリフルォロメタ ンスルホニル] [ノナフルォロブタンスルホ二ノレ]イミド、リチウムシクロへキサフルォロ プロパン一 1 , 3 _ビス [スルホニル]イミド、リチウムビス [ォキサレート(2_) ]ボレート 、リチウムトリフルォロメチルトリフルォロボレート、リチウムペンタフルォロェチルトリフ ルォロボレート、リチウムヘプタフルォロプロピルトリフルォロボレート、リチウムトリス[ ペンタフルォロェチル]トリフルォロホスフェートから選ばれる少なくとも 1種を含有す ることが好ましい。前記構成によれば、優れたサイクル特性を有する非水電解液電池 が得られる。
[0109] そして、本発明の他の一局面は、正極、負極、および上記非水電解液を備える電 気化学エネルギー蓄積デバイスである。本発明の非水電解液は高イオン濃度である ととともに、安定性に優れるため、前記構成によれば、高エネルギー密度の電気化学 エネルギー蓄積デバイスが得られる。
[0110] また、本発明の他の一局面は、正極と、負極活物質として黒鉛を有する負極と、上 記非水電解液を備える非水電解液二次電池である。本発明の非水電解液中では、 高イオン濃度であっても黒鉛構造の破壊を招くことなぐリチウムイオンの黒鉛層間へ の吸蔵,放出が円滑に生ずるため、前記構成によれば、高エネルギー密度の非水電 解液二次電池が得られる。
産業上の利用可能性
[0111] 本発明によれば、安定性に優れるとともに、高イオン濃度でも常温で液体の状態を 維持した非水電解液が得られる。従って、電気二重層キャパシタゃ非水電解液電池 などの電解液として使用されることにより、電気化学エネルギー蓄積デバイスのエネ ルギー密度を高めることができる。
[0112] また、黒鉛材料を負極活物質として含有する負極を備えたリチウムイオン電池であ つても、 1, 2—ジアルコキシエタンを非水溶媒として含有する非水電解液中で、安定 にリチウムイオンの吸蔵 ·放出が可能であり、リチウムイオン電池のエネルギー密度を 高めることができる。

Claims

請求の範囲
[1] (A)式 R— O— CH— CH -O-R' (ただし、 R, R'は同一でも異なっていてもよく
、それぞれ炭素数が 3以下の未置換またはフッ素置換アルキル基である)で示される 1, 2—ジアルコキシェタンと、(B)リチウムビス [トリフルォロメタンスルホニル]イミドと を、 0. 75以上、 2以下のモル比 [ (A) / (B) ]で含み、かつ、常温で液体である非水 電解液。
[2] 前記 Rおよび R'の炭素数が 2以下である請求項 1に記載の非水電解液。
[3] 前記 Rおよび R'は、 CH基、 C H基、 CF基、および CH CF基力 なる群力 選 ばれる 1つの基である請求項 1に記載の非水電解液。
[4] 前記 1, 2—ジアルコキシェタンは、 1—メトキシ一 2—トリフルォロエトキシェタン、 1
—エトキシ一 2_トリフルォロエトキシェタン、および 1, 2_ビス [トリフルォロエトキシ] ェタンからなる群から選ばれる少なくとも 1つである請求項 1に記載の非水電解液。
[5] さらに、 1 , 2—ジメトキシェタン、 1 , 2—ジエトキシェタン、および 1 _エトキシ一 2_ メトキシェタンからなる群から選ばれる少なくとも 1つを含有する請求項 4に記載の非 水電解液。
[6] さらに、非水溶媒として、カーボネート化合物を含有する請求項 1に記載の非水電 解液。
[7] さらに、リチウム塩として、 LiPF、 LiBF、 LiCIO、リチウムビス [ペンタフルォロエタ ンスルホニノレ]イミド、リチウム [トリフルォロメタンスルホニル] [ノナフルォロブタンスル ホニル]イミド、リチウムシクロへキサフルォロプロパン一 1 , 3 _ビス [スルホニル]イミド 、リチウムビス [ォキサレート(2— ) ]ボレート、リチウムトリフルォロメチルトリフルォロボ レート、リチウムペンタフルォロェチルトリフルォロボレート、リチウムヘプタフルォロプ 口ピルトリフルォロボレート、リチウムトリス [ペンタフルォロェチル]トリフルォロホスフヱ ートから選ばれる少なくとも 1種を含有する請求項 1に記載の非水電解液。
[8] 正極、負極、および請求項 1に記載の非水電解液を備える電気化学エネルギー蓄 積デバイス。
[9] 正極、負極活物質として黒鉛を有する負極、および請求項 1に記載の非水電解液 を備える非水電解液二次電池。
PCT/JP2006/307538 2005-04-19 2006-04-10 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池 WO2006115023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/918,869 US20090023074A1 (en) 2005-04-19 2006-04-10 Nonaqueous electrolyte solution, and electrochemical energy-storing device and nonaqueous-electrolyte- solution secondary battery using the same
JP2007514538A JPWO2006115023A1 (ja) 2005-04-19 2006-04-10 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池
EP06731485A EP1879252A4 (en) 2005-04-19 2006-04-10 WATER-FREE ELECTROLYTE SOLUTION, ELECTROCHEMICAL ENERGY STORAGE DEVICE THEREFOR AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
CN2006800132061A CN101164189B (zh) 2005-04-19 2006-04-10 非水电解液、使用该非水电解液的电化学能量储存装置以及非水电解液二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005120574 2005-04-19
JP2005-120574 2005-04-19

Publications (1)

Publication Number Publication Date
WO2006115023A1 true WO2006115023A1 (ja) 2006-11-02

Family

ID=37214648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307538 WO2006115023A1 (ja) 2005-04-19 2006-04-10 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池

Country Status (6)

Country Link
US (1) US20090023074A1 (ja)
EP (1) EP1879252A4 (ja)
JP (1) JPWO2006115023A1 (ja)
KR (1) KR20070121034A (ja)
CN (1) CN101164189B (ja)
WO (1) WO2006115023A1 (ja)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073489A (ja) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd 熱安定性に優れた電解液およびそれを用いた二次電池
JP2010277958A (ja) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd リチウムイオン二次電池
JP2011517042A (ja) * 2008-04-08 2011-05-26 エルジー・ケム・リミテッド リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2012104268A (ja) * 2010-11-08 2012-05-31 Central Res Inst Of Electric Power Ind リチウムイオン二次電池
CN103515648A (zh) * 2012-06-20 2014-01-15 万向电动汽车有限公司 一种锰酸锂电池电解液
WO2014065246A1 (ja) * 2012-10-22 2014-05-01 旭硝子株式会社 二次電池用非水電解液およびリチウムイオン二次電池
JP2014110235A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP2014520395A (ja) * 2011-06-09 2014-08-21 ブルー ソリューション 複合電気化学システムの組み立て方法
WO2015045393A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 非水電解質二次電池
WO2015045389A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
WO2015045392A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 非水電解質二次電池
WO2015045387A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 非水電解質二次電池
WO2015045390A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 蓄電装置
JP2015088475A (ja) * 2013-09-25 2015-05-07 国立大学法人 東京大学 非水電解質二次電池
JP2015088476A (ja) * 2013-09-25 2015-05-07 国立大学法人 東京大学 リチウムイオン二次電池
JP2015088741A (ja) * 2013-09-25 2015-05-07 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタ
JP2015133312A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP2015133314A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群
JP2015133313A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP2015195164A (ja) * 2013-09-25 2015-11-05 国立大学法人 東京大学 非水系二次電池
JP2015195163A (ja) * 2013-09-25 2015-11-05 国立大学法人 東京大学 非水系二次電池
JP2015195165A (ja) * 2013-09-25 2015-11-05 国立大学法人 東京大学 非水系二次電池
JP5817006B1 (ja) * 2013-09-25 2015-11-18 国立大学法人 東京大学 非水系二次電池
JP5817009B1 (ja) * 2013-09-25 2015-11-18 国立大学法人 東京大学 非水系二次電池
JP5817007B1 (ja) * 2013-09-25 2015-11-18 国立大学法人 東京大学 非水系二次電池
JP2016001586A (ja) * 2013-09-25 2016-01-07 国立大学法人 東京大学 非水電解質二次電池
JP2016085975A (ja) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 リチウムイオン蓄電池、及びその製造方法
WO2016079919A1 (ja) * 2014-11-18 2016-05-26 国立大学法人東京大学 電解液
US9478828B2 (en) 2012-12-04 2016-10-25 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2016189340A (ja) * 2013-09-25 2016-11-04 国立大学法人 東京大学 非水電解質二次電池
JP2019160617A (ja) * 2018-03-14 2019-09-19 Tdk株式会社 リチウムイオン二次電池
JP2021034620A (ja) * 2019-08-27 2021-03-01 株式会社豊田中央研究所 リチウムイオンキャパシタ
JP2021057520A (ja) * 2019-10-01 2021-04-08 株式会社豊田中央研究所 リチウムイオンキャパシタ
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery
US11367901B2 (en) 2018-06-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923153B2 (en) * 2008-04-29 2011-04-12 Eveready Battery Company, Inc. Linear ether electrolyte with asymmetric end groups for use in lithium batteries
CN102549819B (zh) * 2009-10-13 2014-09-24 丰田自动车株式会社 非水电解液型锂离子二次电池
US9263731B2 (en) * 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
US10128534B2 (en) * 2011-09-02 2018-11-13 Seeo, Inc. Microsphere composite electrolyte
CN103377835A (zh) * 2012-04-20 2013-10-30 海洋王照明科技股份有限公司 一种双电层电容器电解液
CN103384019A (zh) * 2012-05-04 2013-11-06 上海交通大学 一种磷酸铁锂锂离子电池用电解液
US9077046B2 (en) 2012-06-19 2015-07-07 A123 Systems Llc Electrolytes including fluorinated solvents for use in electrochemical cells
US9362593B2 (en) * 2012-12-19 2016-06-07 Toyota Motor Engineering & Manufacturing North America, Inc. Borohydride solvo-ionic liquid family for magnesium battery
WO2014133466A1 (en) * 2013-02-28 2014-09-04 Nanyang Technological University Ionic liquid electrolyte and fluorinated carbon electrode
JP5418714B1 (ja) * 2013-07-09 2014-02-19 宇部興産株式会社 非水電解液キット及び非水電解液の調製方法
CN105594053B (zh) * 2013-09-25 2019-03-12 国立大学法人东京大学 非水系二次电池
CN105580192B (zh) * 2013-09-25 2019-03-12 国立大学法人东京大学 非水电解质二次电池
KR20160060719A (ko) * 2013-09-25 2016-05-30 고쿠리츠다이가쿠호징 도쿄다이가쿠 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는, 전지, 커패시터 등의 축전 장치용 전해액 및, 그의 제조 방법, 그리고 당해 전해액을 구비하는 커패시터
DE102014219414A1 (de) * 2014-09-25 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische Zelle, Elektrolyt geeignet zum Befüllen einer elektrochemischen Zelle, Verfahren zum Herstellen einer elektrochemischen Zelle und Verfahren zum Betreiben einer elektrochemischen Zelle
US20180048040A1 (en) * 2015-03-25 2018-02-15 Haijing Liu Capacitor-battery hybrid formed by plasma powder electrode coating
JP6342837B2 (ja) 2015-04-03 2018-06-13 トヨタ自動車株式会社 フッ化物イオン電池用電解質およびフッ化物イオン電池
JP6459844B2 (ja) * 2015-08-11 2019-01-30 株式会社村田製作所 非水電解液、その非水電解液を用いた非水電解液二次電池、並びにその非水電解液二次電池を用いた電池パック及び電子機器
JP6521902B2 (ja) * 2016-06-02 2019-05-29 トヨタ自動車株式会社 フッ化物イオン電池用電解液およびフッ化物イオン電池
US10910672B2 (en) 2016-11-28 2021-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. High concentration electrolyte for magnesium battery having carboranyl magnesium salt in mixed ether solvent
US11201353B2 (en) 2016-12-20 2021-12-14 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
PL3565053T3 (pl) 2016-12-27 2023-10-30 Daikin Industries, Ltd. Roztwór elektrolityczny, urządzenie elektrochemiczne, litowo-jonowe ogniwo akumulatorowe oraz moduł
US10511049B2 (en) * 2017-08-15 2019-12-17 GM Global Technology Operations LLC Electrolyte system including alkali metal bis(fluorosulfonyl)imide and dimethyoxyethane for improving anodic stability of electrochemical cells
US10680280B2 (en) 2017-09-26 2020-06-09 Toyota Jidosha Kabushiki Kaisha 3D magnesium battery and method of making the same
US11063297B2 (en) 2017-12-21 2021-07-13 Viking Power Systems Pte, Ltd. Electrochemical cell and electrolyte for same
US11196088B2 (en) * 2019-04-11 2021-12-07 Ses Holdings Pte. Ltd. Localized high-salt-concentration electrolytes containing longer-sidechain glyme-based solvents and fluorinated diluents, and uses thereof
CN115051033A (zh) * 2022-06-09 2022-09-13 中国科学技术大学 一种氟代醚类溶剂与电解液在储能电池中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326018A (ja) * 1992-05-20 1993-12-10 Matsushita Electric Ind Co Ltd リチウム二次電池
WO2003075373A2 (en) * 2002-02-28 2003-09-12 The Gillette Company Non-aqueous electrochemical cell
JP2003317800A (ja) * 2002-04-25 2003-11-07 Mitsui Chemicals Inc 非水電解液二次電池の製造方法およびそれより得られる非水電解液二次電池
JP2004127943A (ja) * 2002-10-04 2004-04-22 Samsung Sdi Co Ltd 有機電解液及びこれを採用したリチウム電池
JP2005129481A (ja) * 2003-02-28 2005-05-19 Sanyo Electric Co Ltd 耐熱性リチウム電池
JP2005243321A (ja) * 2004-02-25 2005-09-08 Sanyo Electric Co Ltd 非水電解質二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555378B2 (ja) * 1987-10-30 1996-11-20 株式会社ネオス 合フッ素アルコキシエタン類
JPH0950823A (ja) * 1995-06-01 1997-02-18 Ricoh Co Ltd 二次電池
TW360987B (en) * 1995-07-25 1999-06-11 Sumitomo Chemical Co Non-aqueous electrolyte and lithium secondary battery
DE19619233A1 (de) * 1996-05-13 1997-11-20 Hoechst Ag Fluorhaltige Lösungsmittel für Lithiumbatterien mit erhöhter Sicherheit
CN1147959C (zh) * 1998-09-11 2004-04-28 三井化学株式会社 非水电解液和非水电解液二次电池
US6566015B1 (en) * 1998-10-09 2003-05-20 Denso Corporation Non-aqueous electrolytic salt and non-aqueous electrolytic secondary battery in which it is used
JP3825604B2 (ja) * 2000-03-01 2006-09-27 三洋電機株式会社 リチウム二次電池
US7316864B2 (en) * 2001-10-26 2008-01-08 Zeon Corporation Slurry composition, electrode and secondary cell
US20030113622A1 (en) * 2001-12-14 2003-06-19 Blasi Jane A. Electrolyte additive for non-aqueous electrochemical cells
US7229718B2 (en) * 2002-08-22 2007-06-12 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP3869775B2 (ja) * 2002-08-26 2007-01-17 三洋電機株式会社 リチウム二次電池
JP4204281B2 (ja) * 2002-09-04 2009-01-07 三洋電機株式会社 非水電解質二次電池
TWI270228B (en) * 2003-02-28 2007-01-01 Sanyo Electric Co Heat resistant lithium battery
JP4431941B2 (ja) * 2003-06-06 2010-03-17 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326018A (ja) * 1992-05-20 1993-12-10 Matsushita Electric Ind Co Ltd リチウム二次電池
WO2003075373A2 (en) * 2002-02-28 2003-09-12 The Gillette Company Non-aqueous electrochemical cell
JP2003317800A (ja) * 2002-04-25 2003-11-07 Mitsui Chemicals Inc 非水電解液二次電池の製造方法およびそれより得られる非水電解液二次電池
JP2004127943A (ja) * 2002-10-04 2004-04-22 Samsung Sdi Co Ltd 有機電解液及びこれを採用したリチウム電池
JP2005129481A (ja) * 2003-02-28 2005-05-19 Sanyo Electric Co Ltd 耐熱性リチウム電池
JP2005243321A (ja) * 2004-02-25 2005-09-08 Sanyo Electric Co Ltd 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1879252A4 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517042A (ja) * 2008-04-08 2011-05-26 エルジー・ケム・リミテッド リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2013243148A (ja) * 2008-04-08 2013-12-05 Lg Chem Ltd リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2010073489A (ja) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd 熱安定性に優れた電解液およびそれを用いた二次電池
JP2010277958A (ja) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd リチウムイオン二次電池
JP2012104268A (ja) * 2010-11-08 2012-05-31 Central Res Inst Of Electric Power Ind リチウムイオン二次電池
JP2014520395A (ja) * 2011-06-09 2014-08-21 ブルー ソリューション 複合電気化学システムの組み立て方法
CN103515648A (zh) * 2012-06-20 2014-01-15 万向电动汽车有限公司 一种锰酸锂电池电解液
WO2014065246A1 (ja) * 2012-10-22 2014-05-01 旭硝子株式会社 二次電池用非水電解液およびリチウムイオン二次電池
JPWO2014065246A1 (ja) * 2012-10-22 2016-09-08 旭硝子株式会社 二次電池用非水電解液およびリチウムイオン二次電池
JP2014110235A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びリチウムイオン二次電池
US9478828B2 (en) 2012-12-04 2016-10-25 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2015195166A (ja) * 2013-09-25 2015-11-05 国立大学法人 東京大学 蓄電装置
JP2015216131A (ja) * 2013-09-25 2015-12-03 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
WO2015045390A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 蓄電装置
JP2015088475A (ja) * 2013-09-25 2015-05-07 国立大学法人 東京大学 非水電解質二次電池
JP2015088476A (ja) * 2013-09-25 2015-05-07 国立大学法人 東京大学 リチウムイオン二次電池
JP2015088741A (ja) * 2013-09-25 2015-05-07 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタ
JP2015133312A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP2015133315A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 非水電解質二次電池
JP2015133314A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液群
JP2015133313A (ja) * 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP2015195164A (ja) * 2013-09-25 2015-11-05 国立大学法人 東京大学 非水系二次電池
WO2015045392A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 非水電解質二次電池
JP2015195163A (ja) * 2013-09-25 2015-11-05 国立大学法人 東京大学 非水系二次電池
JP2015195165A (ja) * 2013-09-25 2015-11-05 国立大学法人 東京大学 非水系二次電池
JP5817006B1 (ja) * 2013-09-25 2015-11-18 国立大学法人 東京大学 非水系二次電池
JP5817009B1 (ja) * 2013-09-25 2015-11-18 国立大学法人 東京大学 非水系二次電池
JP5817007B1 (ja) * 2013-09-25 2015-11-18 国立大学法人 東京大学 非水系二次電池
WO2015045387A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 非水電解質二次電池
JP2016001586A (ja) * 2013-09-25 2016-01-07 国立大学法人 東京大学 非水電解質二次電池
JP2016006790A (ja) * 2013-09-25 2016-01-14 国立大学法人 東京大学 非水系二次電池
JP2016058384A (ja) * 2013-09-25 2016-04-21 国立大学法人 東京大学 非水系二次電池
JP2016058365A (ja) * 2013-09-25 2016-04-21 国立大学法人 東京大学 非水系二次電池
US11011781B2 (en) 2013-09-25 2021-05-18 The University Of Tokyo Nonaqueous electrolyte secondary battery
US10686223B2 (en) 2013-09-25 2020-06-16 Kabushiki Kaisha Toyota Jidoshokki Nonaqueous electrolyte secondary battery
WO2015045389A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
WO2015045393A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 非水電解質二次電池
JP2016189340A (ja) * 2013-09-25 2016-11-04 国立大学法人 東京大学 非水電解質二次電池
JP2016189341A (ja) * 2013-09-25 2016-11-04 国立大学法人 東京大学 非水電解質二次電池
JP2016085975A (ja) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 リチウムイオン蓄電池、及びその製造方法
WO2016079919A1 (ja) * 2014-11-18 2016-05-26 国立大学法人東京大学 電解液
JP2019160617A (ja) * 2018-03-14 2019-09-19 Tdk株式会社 リチウムイオン二次電池
US11367901B2 (en) 2018-06-01 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
JP2021034620A (ja) * 2019-08-27 2021-03-01 株式会社豊田中央研究所 リチウムイオンキャパシタ
JP7147719B2 (ja) 2019-08-27 2022-10-05 株式会社豊田中央研究所 リチウムイオンキャパシタ
JP2021057520A (ja) * 2019-10-01 2021-04-08 株式会社豊田中央研究所 リチウムイオンキャパシタ
JP7147725B2 (ja) 2019-10-01 2022-10-05 株式会社豊田中央研究所 リチウムイオンキャパシタ

Also Published As

Publication number Publication date
KR20070121034A (ko) 2007-12-26
EP1879252A4 (en) 2010-06-23
EP1879252A1 (en) 2008-01-16
CN101164189A (zh) 2008-04-16
JPWO2006115023A1 (ja) 2008-12-18
CN101164189B (zh) 2011-05-04
US20090023074A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
WO2006115023A1 (ja) 非水電解液、およびそれを用いた電気化学エネルギー蓄積デバイス並びに非水電解液二次電池
US8679684B2 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US9012071B2 (en) Electrolyte solution for a secondary battery
JP4151060B2 (ja) 非水系二次電池
US7341807B2 (en) Non-flammable nonaqueous electrolyte solution and lithium ion cell using same
KR100838932B1 (ko) 비수전해질 이차전지
US8148017B2 (en) Electrochemical energy storage device
US8338030B2 (en) Non-aqueous electrolyte secondary battery
JP5217200B2 (ja) 非水系電解液および非水系電解液電池
EP3076473B1 (en) Non-aqueous electrolyte and lithium secondary battery comprising the same
EP1906481A1 (en) Nonaqueous electrolyte solution and electrochemical energy storage device using same
WO2006059085A1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
EP2490292B1 (en) Electrolyte for a rechargeable lithium battery, and rechargeable lithium battery including the same
WO2006030624A1 (ja) 非水電解質二次電池
WO2008138132A1 (en) Dinitrile-based liquid electrolytes
JP2008522376A5 (ja)
JP5012767B2 (ja) 二次電池
JP5165862B2 (ja) 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス
JP2008097954A (ja) 電解液および電池
JP4493197B2 (ja) リチウム二次電池用電解液
JP2004273448A (ja) 非水系電解液およびリチウム二次電池
KR20010098486A (ko) 비수전해질 이차전지 및 그 제조방법
US11658342B2 (en) Non-aqueous electrolyte solution and lithium secondary battery including the same
JP4355947B2 (ja) 二次電池
JP3730861B2 (ja) 電気化学ディバイス用電解質、その電解液または固体電解質並びに電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680013206.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514538

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11918869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006731485

Country of ref document: EP

Ref document number: 1020077025244

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731485

Country of ref document: EP