KR101416112B1 - 재료를 서로 접착하는 방법 및 조성물 - Google Patents
재료를 서로 접착하는 방법 및 조성물 Download PDFInfo
- Publication number
- KR101416112B1 KR101416112B1 KR1020087003583A KR20087003583A KR101416112B1 KR 101416112 B1 KR101416112 B1 KR 101416112B1 KR 1020087003583 A KR1020087003583 A KR 1020087003583A KR 20087003583 A KR20087003583 A KR 20087003583A KR 101416112 B1 KR101416112 B1 KR 101416112B1
- Authority
- KR
- South Korea
- Prior art keywords
- composition
- functional group
- layer
- group
- substrate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/06—Embossing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00444—Surface micromachining, i.e. structuring layers on the substrate
- B81C1/0046—Surface micromachining, i.e. structuring layers on the substrate using stamping, e.g. imprinting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L59/00—Compositions of polyacetals; Compositions of derivatives of polyacetals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0147—Film patterning
- B81C2201/015—Imprinting
- B81C2201/0153—Imprinting techniques not provided for in B81C2201/0152
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/416—Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2451/00—Presence of graft polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Theoretical Computer Science (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 층과 공유 결합을 형성하고, 공유 결합, 이온 결합, 및 반데르 발스 힘 중 하나 이상을 채용하여 기판과 접착하는, 층과 기판 사이에 존재하는 조성물을 가짐으로써, 제1 및 제2 경계면을 형성하는 단계를 특징으로 하는 기판에 층을 접착시키는 방법을 개시한다. 이러한 방법으로, 층과 조성물의 접착력의 강도는 소정의 접착 메카니즘, 즉 공유 결합을 포함하지 않는 접착 메카니즘으로 형성된 층과 조성물의 접착력보다 강한 것이 보장된다. 따라서, 본 발명은 제1 및 제2 재료를 서로 접착시키는 조성물에 관한 것이다. 이 조성물은 백본 그룹 및 제1 및 제2 작용기를 갖춘 다중-작용기 반응성 화합물; 가교제; 및 촉매를 특징으로 한다. 제1 작용기는 제1 화학선 에너지와 반응하여 가교된 분자를 형성하고, 제1 재료의 서브셋에 접착된다. 제2 작용기는, 제1 화학선 에너지와 상이한, 제2 화학선 에너지와 반응하여 제2 재료에 접착된다.
기판, 층, 조성물, 경계면, 공유 결합, 이온 결합, 반데르 발스 힘, 백본 그룹, 제1 및 제2 작용기, 다중-작용기 반응성 화합물, 촉매, 가교제.
Description
미국 정부는 본 발명에서 페이드-업 라이센스, 및 미국표준 기술연구소(NIST) ATP 어워드에 의해 수여된 70NANB4H3012의 조항에 의해 제공된 바와 같은 합리적인 조항에 따라 특허 소유자에게 다른 사람에게 라이센스를 부여할 것을 요청할 수 있는 제한된 환경에서의 권리를 가진다.
본 발명은 일반적으로, 구조의 나노-제조에 관한 것이다. 더욱 상세하게, 본 발명은 임프린트 리소그라피 프로세스에 사용하기 적합한, 상이한 재료를 서로 접착하는 방법에 관한 것이다.
나노-단위의 제조는, 예컨대, 수 나노미터 단위의 피처를 포함하는 매우 작은 구조를 제조하는 것을 포함한다. 나노-단위의 제조에 사용하기 위한 유망한 프로세스는 임프린트 리소그라피로 공지되어 있다. 예시적인 임프린트 리소그라피 프로세스는 모두 본 발명의 양수인에게 양도된, "Method and a Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensional Variability"란 제목의, 미국특허 출원번호 10/264,960으로 출원된, 미국공개 특허출원 제2004-0065976호; "Method of Forming a Layer on a Substrate to Facilitate Fabrication of Metrology Standards"란 제목의, 미국특허 출원번호 10/264,926으로 출원된, 미국공개 특허출원 제2004-0065252호; 및 "Method and A Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensions Variability"란 제목의, 미국특허 출원번호 10/235,314로 출원된, 미국공개 특허출원 제2004-0046271호와 같은, 다수의 공개 팜플렛에 상세하게 서술되어 있다.
도 1을 참조하면, 임프린트 리소그라피의 기본 개념은 부조(relief) 패턴에 대응하는 기판에 패턴이 형성될 수 있도록, 특히, 에칭 마스크로써 기능할 수 있는 기판 상에 부조 패턴을 형성하는 것이다. 부조 패턴을 형성하기 위해 채용된 시스템(10)은 기판(12)을 지지하는 스테이지(11), 및 그 위에 패터닝 표면(18)과 함께 몰드(16)를 가진 템플릿(14)을 포함한다. 패터닝 표면(18)은 실질적으로 매끈하고 그리고/또는 평면일 수 있고, 또는 그 내에 하나 이상의 오목부가 형성되도록 패터닝될 수 있다. 템플릿(14)은 템플릿(14)의 이동을 용이하게 하기 위해 임프린트 헤드(20)에 연결된다. 유체 디스펜스 시스템(22)은 그 위에 중합가능한 재료(24)를 증착시키기 위해 기판(12)과 유체교류하여 선택적으로 배치되도록 연결된다. 에너지(28)의 소스(26)는 경로(30)를 따라 에너지(28)가 향하게 하기 위해 연결된다. 임프린트 헤드(20) 및 스테이지(11)는 몰드(16) 및 기판(12)이, 각각, 경로(30) 내에 배치되고, 슈퍼임포지션(superimposition)되도록 배열하도록 구성된다. 임프린트 헤드(20), 스테이지(11) 중 하나, 또는 모두는 중합가능한 재료(24)로 채워지는, 그 사이에 소정의 부피를 형성하기 위해, 몰드(16)와 기판(12) 사이의 거리를 변화시킨다.
전형적으로, 중합가능한 재료(24)는 소정의 부피가 몰드(16)와 기판(12) 사이에 형성되기 전에 기판(12) 상에 배치된다. 그러나, 중합가능한 재료(24)는 소정의 부피가 획득된 후 그 부피를 채울 수도 있다. 소정의 부피가 중합가능한 재료(24)로 채워진 후, 소스(26)는 중합가능한 재료(24)를 고체화 및/또는 가교(cross-link)시키는 에너지(28)를 산출하고, 기판 표면(25)과 몰드 표면(18)의 형상과 일치하는 중합 재료를 형성한다. 이러한 프로세스의 컨트롤은 스테이지(11), 임프린트 헤드(20), 유체 디스펜스 시스템(22), 및 소스(26)와 데이터 통신하고, 메모리(34) 내에 저장된 컴퓨터-판독가능한 프로그램에서 동작하는 프로세서(32)에 의해 통제된다.
중합가능한 재료로 패턴을 정밀하게 형성하는 것과 함께 중요한 특성은 기판에 적합한 접착을 보장하면서, 중합 재료의 몰드에의 접착을, 방지하지 않는다면, 감소시키는 것이다. 이것을 바람직한 이형(release) 및 접착 특성이라 한다. 이러한 방법으로, 중합 재료에 기록된 패턴은 몰드의 분리 동안 왜곡되지 않는다. 이형 특성을 개선하고자 한 종래 기술은 몰드 표면에 이형층을 채용하는 것이다. 이형층은 전형적으로 소수성(hydrophobic)이고, 그리고/또는 낮은 표면 에너지를 가진다. 이 이형층은 몰드에 접착된다. 이형층을 제공하는 것은 이형 특성을 향상시킨다. 이것은 몰드 분리로 인한 중합 재료에 기록된 패턴의 왜곡을 최소화하는 것으로 나타난다. 이러한 타입의 이형층은 본 설명의 목적을 위해, 프리오리 이형층, 즉 몰드에 고체화된 이형층이라 한다.
이형 특성을 향상하고자 한 다른 종래 기술은 "Multiple Imprinting in UV-based Nanoimprint Lithography: Related Material Issues", Microeletronic Engineering 61-62 (2002), pp. 407-413에 'Bender' 등에 의해 서술되어 있다. 더욱 상세하게, 'Bender'는 불소-처리된 UV 경화 재료와 결합하는 프리오리 이형층을 가진 몰드를 채용한다. 이 때문에, UV 경화층은 UV 경화층을 형성하기 위한 200cPs UV 경화 유체를 스핀-코팅함으로써 기판상에 코팅된다. UV 경화층은 이형 특성을 향상시키기 위해 불소기를 풍부하게 함유한다.
그러므로, 임프린트 리소그라피 프로세스에서 채용되는 몰드의 바람직한 이형 및 접착 특성을 향상시킬 필요성이 존재한다.
본 발명은 층과 공유 결합을 형성하고, 공유 결합, 이온 결합, 및 반데르 발스 힘 중 하나 이상을 채용하여 기판과 접착하는, 층과 기판 사이에 존재하는 조성물을 가짐으로써 제1 및 제2 경계면을 형성하는 단계를 특징으로 하는 기판에 층을 접착하는 방법을 제공한다. 이러한 방법으로, 조성물과 층의 접착력의 강도는 소정의 접착 메카니즘, 즉, 공유 결합을 포함하지 않는 접착 메카니즘을 가진 조성물과 층의 접착력보다 더 강함이 보장된다. 또한, 본 발명은, 제1 및 제2 재료를 서로 접착하는 조성물에 관한 것이다. 이 조성물은 백본 그룹 및 제1 및 제2 작용기를 포함하는 다중-작용기 반응성 화합물; 가교제(cross-linker), 및 촉매를 특징으로 한다. 제1 작용기는 가교된 분자를 형성하고, 제1 재료에 가교된 분자의 서브셋을 접착하기 위해 제1 화학선 에너지와 반응한다. 제2 작용기는 제2 재료에 접착하기 위해 제1 화학선 에너지와 상이한 제2 화학선 에너지와 반응한다. 이들 및 다른 실시예가 본 발명에 서술되어 있다.
도 1은 종래 기술에 따른 리소그라피 시스템의 개략적인 평면도이고,
도 2는 본 발명에 따른 기판에 배치된 템플릿 및 임프린팅 재료의 개략적인 입면도이고,
도 3은 층상에 패터닝되고 고체화되는 것으로 도시되어 있는 임프린팅 재료를 가진, 도 2에 도시된, 템플릿 및 기판의 개략적인 입면도이고,
도 4는 고체화된 임플린팅 재료와 템플릿 사이의 약한 경계 라멜라의 형성을 설명하는 임프린팅 재료와 접촉한 템플릿의 단면도이고,
도 5는 계면활성제-풍부 영역 및 계면활성제-고갈 영역으로의 방울의 분기를 도시하는, 도 2에 도시된, 임프린트 재료의 방울의 상세한 도면이고,
도 6은 계면활성제-풍부 영역 및 계면활성제-고갈 영역으로의 층의 분기를 도시하는, 스핀-온 기술을 채용하여 증착된, 임프린팅 재료 층의 상세한 도면이고,
도 7은 프라이머 층을 포함하여 기판 상에 형성된, 도 5 또는 도 6에 도시된 바와 같이 증착된, 고체화된 임프린팅 재료와 접촉한 템플릿의 단면도이고,
도 8은 본 발명의 일 실시예에 따른, 도 2, 3, 및 7에 도시된 프라이머 층을 형성하기 위해 채용될 수 있는 조성물의 한 성분의 화학적 구조를 도시하는 평면도이고,
도 9는 본 발명의 제2실시예에 따른, 도 2, 3, 및 7에 도시된 프라이머 층을 형성하기 위해 채용될 수 있는 조성물의 한 성분의 화학적 구조를 도시하는 평면도이고,
도 10은 본 발명의 제3실시예에 따른, 도 2, 3, 및 7에 도시된 프라이머 층을 형성하기 위해 채용될 수 있는 조성물의 한 성분의 화학적 구조를 도시하는 평면도이고, 그리고
도 11은 본 발명의 제4실시예에 따른, 도 2, 3, 및 7에 도시된 프라이머 층을 형성하기 위해 채용될 수 있는 조성물의 한 성분의 화학적 구조를 도시하는 평면도이다.
도 1 및 2를 참조하면, 본 발명에 따른 몰드(36)가 시스템(10)에 채용될 수 있고, (도시되지 않은) 실질적으로 매끈하거나 평평한 프로파일을 가진 표면을 형성할 수 있다. 대안으로써, 몰드(36)는 복수의 공간적으로-떨어진 오목부(38) 및 볼록부(40)에 의해 형성된 특징부를 포함할 수 있다. 복수의 특징부는 기판(42)에 형성될 기본 패턴을 형성하는 오리지널 패턴을 형성한다. 기판(42)은 순수 웨이퍼, 또는 그 중 하나가 프라이머 층(45)으로 도시되어 있는, 그 위에 증착된 하나 이상의 층을 가진 웨이퍼를 포함할 수 있다. 이를 위해, 거리(d)가 몰드(36)와 기판(42)사이에서 감소되어 있다. 이러한 방법으로, 몰드(36) 상의 특징부는 기판(42)의 상응한 영역으로 임프린팅될 수 있고, 임프린팅 재료는 실질적으로 평면 프로파일을 가진 표면(44)의 일부분 상에 배열된다. 임프린팅 재료는 임의의 주지된 기술, 예컨대, 스핀-코팅, 딥 코팅 등을 사용하여 배치될 수 있음을 이해해야 한다. 그러나, 본 예에서, 임프린팅 재료는 기판(42) 상에 공간적으로-떨어진 복수의 불연속 방울(46)로서 배치된다. 임프린팅 재료는 그 내에 오리지널 패턴을 기록하기 위해, 선택적으로 중합되고 가교될 수 있는 조성물으로부터 형성되고, 기록된 패턴을 형성한다.
더욱 상세하게, 임프린팅 재료 내에 기록된 패턴은 몰드(36)와 상호작용, 예컨대, 전기적 상호작용, 자기적 상호작용, 열적 상호작용, 기계적 상호작용 등에 의해, 부분적으로, 생성된다. 본 예에서, 몰드(36)는 표면(44)에 임프린팅 재료의 접촉 형성물(50)을 생성하기 위해, 임프린팅 재료와 기계적으로 접촉하고, 방울(46)을 퍼트린다. 한 실시예에서, 거리 "d"는 임프린팅 재료의 서브-부(52)가 오목부(38)로 들어가 채우도록 하기 위해 감소된다. 오목부(38)를 채우는 것이 용이하도록, 몰드(36)와 방울(46) 사이의 접촉 전에, 몰드(36)와 방울(46) 사이의 대기는 헬륨으로 채워지거나, 완전한 진공이거나, 또는 부분적으로 배기된 헬륨 대기이다.
임프린팅 재료는 임프린팅 재료의 접촉 형성물로 표면(44)을 커버하면서 오목부(38)를 완전히 채우기 위한 필수 특성과 함께 제공된다. 본 실시예에서, 볼록부(40)와 슈퍼임포지션된 임프린팅 재료의 서브-부(54)는 원하는, 일반적으로 최소의, 거리 'd'에 도달된 후 유지된다. 이러한 동작은 서브-부(52)가 두께 't1'을 가지고, 서브-부(54)가 두께 't2'를 가진 형성물(50)을 제공한다. 두께 "t1", 및 "t2"는 어플리케이션에 따라, 원하는 임의의 두께일 수 있다. 그 다음, 형성물(50)은 임프린팅 재료에 따라, 광대역 자외선 에너지, 열 에너지 등과 같은, 예컨대, 화학선 에너지를 적합한 경화제에 동시에 노출함으로써, 고체화된다. 이것은 임프린팅 재료가 중합 및 가교되게 한다. 전체 프로세스는 상온 및 상압에서, 또는, 원하는 온도 및 압력으로 환경적으로-컨트롤된 챔버 내에서 발생할 수 있다. 이러한 방법으로, 형성물(50)은 몰드(36)의 표면(58)의 형상과 일치하는 형상을 가진 사이드(56)를 제공하기 위해 고체화된다.
도 1, 2, 및 3을 참조하여, 임프린팅 재료의 특징은 채용된 고유한 패터닝 프로세스를 고려하여 기판(42)을 효율적으로 패터닝하기 위해 중요하다. 예를 들어, 임프린팅 재료는 모든 두께 t1이 실질적으로 일정하고, 모든 두께 t2가 실질적으로 일정하도록, 몰드(36)의 특징부의 신속하고 균일한 채움을 용이하게 하기 위해, 임프린팅 재료가 특정 특성을 가지는 것이 바람직하다. 이 때문에, 임프린팅 재료의 점성(viscosity)이, 상술된 특성을 달성하기 위해, 채용된 증착 프로세스를 기초로, 정해지는 것이 바람직하다. 상술된 바와 같이, 임프린팅 재료는 다양한 기술을 채용하여 기판(42)에 배치될 수 있다. 임프린팅 재료가 복수의, 불연속적이고 공간적으로-떨어진 방울(46)로 배치되었다면, 임프린팅 재료를 형성하는 조성물은 비교적 낮은, 예컨대, 0.5 내지 20 센티푸아즈(cPs) 범위의 점성을 가지는 것이 바람직할 것이다. 임프린팅 재료가 퍼짐과 동시에 패터닝되고, 후속하여 이 패턴이 방사선에 노출됨으로써 형성물(50)로 고체화되는 것을 고려하면, 몰드(36) 및/또는 기판(42)의 조성물 젖은 표면을 가지고, 중합 후 후속 핏(pit) 또는 홀 형성을 피하는 것이 바람직할 것이다. 임프린팅 재료가 스핀-코팅 기술을 채용하여 배치되었다면, 예컨대, 10cPs 이상, 전형적으로 수백 내지 수천cPs의 점성을 가진, 더 높은 점성의 재료를 사용하는 것이 바람직하고, 점성 측정은 용매없이 결정된다.
액상 특성이라 불리는, 상술된 특성과 함께, 이 조성물은 특정한 고체상 특성을 가진 임프린팅 재료를 제공하는 것이 바람직하다. 예를 들어, 형성물(50)의 고체화 후, 바람직한 접착 및 이형 특성이 임프린팅 재료에 의해 나타나는 것이 바람직하다. 더욱 상세하게, 임프린팅 재료가 형성물(50)에 기판(42)과의 바람직한 접착, 및 몰드(36)와의 바람직한 이형을 제공하도록 제조된 조성물이 유리하다. 이러한 방식으로, 특히, 찢어짐, 스트레칭, 또는 형성물(50)의 다른 구조적 열화로 인한, 그로부터 몰드(36)를 분리함으로써 기록된 패턴의 왜곡 가능성이 감소된다.
임프린팅 재료를 상술한 특성을 가지도록 형성하는 조성물의 구성 성분은 상이할 수 있다. 이것은 기판(42)이 다수의 상이한 재료로 형성되기 때문이다. 결국, 표면(44)의 화학적 조성은 기판(42)을 형성하는 재료에 따라 변한다. 예를 들어, 기판(42)은 실리콘, 플라스틱, 비소화 갈륨, 수은 텔루이드, 및 이들의 조합으로 형성될 수 있다. 상술한 바와 같이, 기판(42)은 그 위에 형성물(50)이 생성되는 프라이머 층(45)으로 도시된 하나 이상의 층, 예컨대, 유전체 층, 금속 층, 반도체 층, 평탄화 층 등을 포함할 수 있다. 이 때문에, 프라이머 층(45)은 화학적 증기 증착, 스핀-코팅 등과 같은 임의의 적합한 기술을 채용하여 웨이퍼(47)에 증착될 수 있다. 부가적으로, 프라이머 층(45)은 실리콘, 게르마늄 등과 같은 임의의 적합한 재료로 형성될 수 있다. 부가적으로, 몰드(36)는 몇 가지 재료, 예컨대, 용융실리카(fused Silica), 석영(quartz), ITO(indium tin oxide) 다이아몬드상 카본, MoSi, 및 졸-겔 등으로 형성될 수 있다.
형성물(50)을 생성하는 조성물은 몇 가지 상이한 벌크 재료의 집합으로 제조될 수 있음을 이해해야 하다. 예를 들어, 조성물은, 몇 가지 나열하자면, 비닐 에테르(vinyl ether), 메타크릴레이트(methacrylates), 에폭시(epoxies), 티오렌(thiol-ene), 및 아크릴레이트(arcrilates)로부터 제조될 수 있다.
형성물(50)을 형성하기 위한 예시적인 벌크 재료는 다음과 같다:
벌크
임프린팅
재료
이소보르닐 아크릴레이트
n-헥실 아크릴레이트
에틸렌 그리콜 디아크릴레이트
2-히드록실-2-메틸-1-페닐-프로판-1-온
아크릴레이트 성분, 이소보르닐 아크릴레이트(IBOA)는 다음의 구조를 가지고:
중량 대비 벌크 재료의 대략 47%를 구성하지만, 포괄적으로 20% 내지 80% 범위로 존재할 수 있다. 결국, 형성물(50)의 기계적 특성은 주로 IBOA로 인한 것이다. IBOA의 예시적인 공급자는 품명 'SR 506'으로 사용가능한, 펜실베니아주 엑스톤 소재의 'Sartomer Company'이다.
성분 n-헥실 아크릴레이트(n-HA)는 다음의 구조를 가지고:
중량 대비 벌크 재료의 대략 25%를 구성하지만, 포괄적으로, 0% 내지 50% 범위로 존재할 수 있다. 또한, 형성물(50)에 유연성(flexibility)을 제공하기 위해, 액상의, 벌크 재료가 포괄적으로 2-9센티푸오즈 범위의 점도를 가지도록 종래의 벌크 재료의 점도를 감소시키기 위해 n-HA가 채용된다. 한 예시적인 n-HA 성분의 예시적인 공급자는 위스콘신주 밀워키 소재의 'Aldrich Chemical Company'이다.
가교 성분, 에틸렌 글리콜 디아크릴레이트는 다음의 구조를 가지고:
중량 대비 벌크 재료의 대략 25%를 구성하고, 포괄적으로 10% 내지 50%의 범위로 존재할 수 있다. 또한, EGDA는 모듈러스 및 단단함 증가에 기여함은 물론, 벌크 재료의 중합 동안 n-HA 및 IBOA의 가교를 용이하게 한다.
기폭제(initiator) 성분, 2-히드록시-2-메틸-1-페닐-프로판-1-온은 품명 'DAROCUR 1173'으로 뉴욕 테리타운 소재의 'Ciba Specialty Chemicals'로부터 사용가능하며, 다음의 구조를 가지고:
중량 대비 벌크 재료의 대략 3%를 구성하고, 포괄적으로, 1% 내지 5% 범위로 존재할 수 있다. 기폭제가 반응하는 화학선 에너지는 중간-압력 수은 램프에 의해 생성된 광대역 자외선 에너지이다. 이러한 방법으로, 기폭제는 벌크 재료의 성분의 가교 및 중합을 용이하게 한다.
그러나, 상술된 바와 같은, 원하는 바람직한 접착 및 이형 특성이 도 3 및 4에 도시된, 몰드(36), 표면(58), 및 형성물(50) 사이에, 약한 경계층, 라멜라(60, lamella)를 생성함으로써 이루어질 수 있음이, 발명자 'Frank Xu' 및 'Michael N. Miller'의, "Composition to Reduce Adhesion Between a Conformable Region and a Mold"란 제목의, 2005년 2월 28일 출원된 동시계류중인 미국특허 출원번호 11/068,171에 개시되어 있다. 라멜라(60)는 임프린팅 재료의 고체화 후 유지된다. 결국, 몰드(36)와 형성물(50) 사이의 접착력은 최소화된다. 이 때문에, 계면활성제 성분이라 불리는, 낮은 표면 에너지 그룹을 포함하는 성분과 함께, 상술된 '벌크 임프린팅 재료"와 같은, 몇 가지 조성물 중 하나를 포함하는 임프린팅 재료를 위한 조성물을 채용하는 것이 유리함을 알 수 있고, 본 명세서에 참조로써 합치된, 발명자 'Frank Xu' 및 'Michael N. Miller'의, "Composition to Reduce Adhesion Between a Conformable Region and a Mold"란 제목의, 2005년 2월 28일 출원된, 동시계류중인 미국특허 출원번호 11/068,171에 완전하게 서술되어 있다.
도 5를 참조하면, 임프린팅 재료의 증착 후, 계면 활성제 성분은, 소정 시간 후, 두 갈래의 농도의 재료로 임프린팅 재료의 방울(146)을 제공하는, 기체 액체 경계면으로 상승한다. 계면활성제-성분-풍부(SCR) 서브-부(136)라 불리는 제1 부분에서, 방울(146)은 계면활성제-성분-고갈(SCD) 서브-부(137)라 불리는 제2 부분보다 더 높은 밀도의 계면활성제 성분를 포함한다. SCD 서브-부(137)는 표면(44)과 SCR 서브-부(136) 사이에 위치한다. SCR 서브-부(136)는 임프린팅 재료가 고체화된 후, 몰드(36)와 임프린팅 재료 사이의 접착력을 감쇄시킨다. 더욱 상세하게는 계면활성제 성분은 마주하는 단부를 가진다. 임프린팅 재료가 액상일 때, 즉, 중합가능일 때, 마주하는 단부 중 하나는 임프린팅 재료에 포함된 벌크 재료에 대한 친화력(affinity)을 가진다. 나머지 단부는 불소 성분을 가진다.
도 4 및 5를 참조하면, 벌크 재료에 대한 친화력으로 인해, 계면활성제 성분은 불소 성분이 임프린팅 재료 및 주변 환경(ambient)에 의해 형성된 기체-액체 경계면으로부터 뻗도록 방향이 정해져 있다.
임프린팅 재료의 고체화 시, 임프린팅 재료의 제1 부분은 라멜라(60)를 생성하고, 임프린팅 재료의 제2 부분은 고체화되는데, 즉 형성물(50)로 도시된 중합 재료이다. 라멜라(60)는 형성물(50)과 몰드(36) 사이에 위치된다. 라멜라(60)는 SCR 서브-부(136) 내의 불소 성분의 존재 및 위치로부터 야기된 것이다. 라멜라(60)는 몰드(36)와 형성물(50) 사이에 강한 접착력이 생성되는 것을 방지한다. 더욱 상세하게, 형성물(50)은 마주한 제1 및 제2 사이드(62 및 64)를 가진다. 사이드(62)는 몰드(36)와 제1 접착력으로 접착된다. 사이드(64)는 기판(42)과 제2 접착력으로 접착된다. 라멜라(60)는 제2 접착력보다 작은 제1 접착력을 야기한다. 결국, 몰드(36)는 몰드(36)를 분리하는데 필요한 힘 및/또는 왜곡을 최소화하면서, 형성물(50)로부터 쉽게 제거될 수 있다. 형성물(50)이 패터닝된 사이드(62)를 가진 것으로 도시되었으나, 사이드(62)는, 평평하지 않다면, 매끈할 수도 있음을 이해해야 한다.
또한, 원한다면, 형성물(50)과 기판(42) 사이에 배치되도록 라멜라(60)를 생성하는 것이 가능하다. 이것은, 예컨대, 몰드(36)에 임프린팅 재료를 적용하고, 후속하여 몰드(36) 상의 임프린팅 재료와 기판(42)을 접촉시킴으로써 달성될 수 있다. 이러한 방법으로, 형성물(50)은 라멜라(60)와 중합가능한 재료가 배치되어 있는 보디, 예컨대, 몰드(36) 또는 기판(42) 사이에 배치될 것이다.
SCR 서브-부(236) 및 SCD 서브-부(237)에 관하여 도 6에 도시된 바와 같이, 재료의 분기된 농도가 발생하는 것과 유사하게, 스핀-코팅 기술을 채용하여 임프린팅 재료가 증착됨을 이해해야 한다. 분기(bifurcation)를 위해 요구되는 시간은, 조성물 내의 분자 크기, 및 조성물의 점성을 포함하는, 몇 가지 요소에 따른다. 20cPs 이하의 점성을 가진 조성물의 상술한 분기를 달성하기 위해서는 단지 수 초만 필요하다. 그러나, 수 백 cPs의 점성을 가진 재료는 수 초 내지 수 분의 시간을 요구할 것이다.
그러나, 라멜라(60)는 일정하지 않을 수도 있음을 발견하였다. 라멜라(60)의 몇몇 영역은 다른 부분보다 더 얇을 수도 있고, 몇몇 심한 경우에, 라멜라(60)는 템플릿(36)이 형성물(50)과 접촉할 만큼 템플릿 표면의 매우 작은 퍼센트에서 존재하지 않을 수도 있다. 라멜라(60)의 더 얇은 부분 및 라멜라(60)의 부재의 결과로, 기판(42)으로부터 형성물(50)의 왜곡 및/또는 탈층(delamination)이 발생할 수 있다. 더욱 상세하게, 몰드(36)의 분리시, 형성물(50)은 분리력 FS를 받는다. 분리력 FS는 몰드(36)상의 당김력 FP, 및 라멜라(60)에 의해 감소된, 형성물(50)과 몰드(36) 사이의 접착력, 예컨대, 반데르 발스 힘에 의한 것이다. 라멜라(60)가 존재함으로써, 분리력 FS은 전형적으로 형성물(50)과 기판(42) 사이의 접착력 FA의 크기보다 작은 크기를 가진다. 그러나, 감소된 라멜라(60)를 가지거나, 또는 라멜라(60) 없이 국소 분리력 FS는 국소 접착력 FA의 크기에 근접할 수 있다. 국소력은 라멜라 층(60)의 주어진 영역에 존재하는 힘을 의미하고, 본 예에서는, 국소력은 라멜라 층(60)의 얇은 영역 또는 라멜라 층(60)이 실질적으로 존재하지 않는 영역에 근접한다. 이것은 기판(42)으로부터 형성물(50)의 왜곡 및/또는 탈층을 일으킨다.
도 7을 참조하면, 프라이머 층(45)이 존재하는, 두 경계면(66 및 68)의 존재로 인한 더욱 복잡한 상황이 존재한다. 제1 경계면(66)에서, 제1 접착력 F1은 프라이머 층(45)와 형성물(50) 사이에 존재한다. 제2 경계면(68)에서, 제2 접착력 F2는 프라이머 층(45)과 웨이퍼(47) 사이에 존재한다. 분리력 FS는 두 접착력 F1 및 F2보다 더 작은 것이 바람직하다. 그러나, 상술한 바와 같은, 라멜라(60)의 부재, 또는 그 두께의 변화로 인해, 분리력 FS는 접착력 F1 및 F2 중 하나 또는 모두의 크기와 유사하거나 근접할 수 있다. 이것은 프라이머 층(45)으로부터 형성물(50)의 탈층, 또는 웨이퍼(47)로부터 프라이머 층(45)의 탈층, 또는 이 둘 모두를 일으킬 수 있다.
본 발명은 제1 및 제2 경계면의 제1 및 제2 접착력 F1 및 F2이 라멜라 층 변동(fluctuation)을 고려한 분리력 FS 보다 클 가능성을 증가시키는 재료로 프라이머 층(45)을 형성함으로써, 상술된 탈층 문제를, 피할 수 없다면, 줄일 수 있다. 이 때문에, 프라이머 층(45)은 경계면(66)에서, 즉, 프라이머 층(45)과 형성물(50) 사이는 물론, 경계면(66), 프라이머 층(45)와 웨이퍼(47) 사이에 강한 결합을 형성하는 조성물으로 형성된다. 본 예에서, 프라이머 층(45)와 형성물(50) 사이 제1 경계면(66)에서의 접착은 공유 결합의 결과인데, 즉, 프라이머 층(45)을 형성하는 조성물과 형성물(50)을 형성하는 조성물 사이에 공유 결합이 존재한다. 프라이머 층(45)과 웨이퍼(47) 사이의 접착은 다양한 메카니즘 중 임의의 하나를 통해 달성된다. 이러한 메카니즘은 프라이머 층(45)을 형성하는 조성물과 웨이퍼(47)를 형성하는 재료 사이에 형성된 공유 결합을 포함한다. 대안으로써 또는 부가적으로, 공유 결합, 이온 결합이 프라이머 층(45)을 형성하는 조성물과 웨이퍼(47)를 형성하는 재료 사이에 형성될 수 있다. 대안으로써 또는 부가적으로, 프라이머 층(45)을 형성하는 조성물과 웨이퍼(47)를 형성하는 재료 사이의 공유 결합 접착, 및/또는 이온 결합 접착, 또는 이 둘 모두는, 마주 향하는(vis-a-vis) 반데르 발스 힘으로 달성될 수 있다.
이것은 다중-작용기 반응성 화합물, 즉, 일반적으로 다음과 같이 표현되는 둘 이상의 작용기가 포함된 화합물을 포함하는 조성물로 프라이머 층(45)을 형성함으로써 달성된다:
여기서, R, R', R'', 및 R'''는 연결기이고, x, y, z는 그것과 연관된 그룹의 평균 반복 수이다. 이들 반복 유닛은 랜덤하게 분포될 수 있다. 그룹 X 및 X'는 작용기를 나타내고, 전형적으로, 작용기 X는 작용기 X'과 상이한 것으로 인식된다. 작용기 X 및 X' 중 하나, 예컨대, X'는 기판(42)이 그것과 공유결합, 이온 결합, 및/또는 반데르 발스 힘을 형성함으로써, 그것에 접착되기 위해 형성된 재료와 가교-반응(cross-reaction)을 달성하도록 선택된다.
나머지 작용기 X 및 X' 중 하나, 예컨대, X는 형성물(50)이 그것 사이에 공유 결합을 형성하기 위해 형성된 재료와 가교-반응을 달성하도록 선택된다. X 작용기는 교차-반응이 형성물(50)의 중합 시 발생하도록 구성된다. 결국, 작용기 X의 선택은 형성물(50)을 형성하는 재료의 특성에 따르고, 작용기 X는 형성물(50)을 형성하는 조성물의 작용기와 반응하는 것이 바람직하다. 예를 들어, 형성물(50)이 아크릴레이트 단량체로 형성되었다면, X는 아크릴, 비닐 에테르, 및/또는 알콕실 작용기, 및/또는 형성물(50) 내의 아크릴기와 공중합(copolymerize)할 수 있는 작용기로 이루어질 수 있다. 결국, X 작용기는 자외선 화학선 에너지에 반응하여 가교-반응한다.
또한, 작용기 X'는 가교-연결, 및 프라이머 층(45)의 중합 반응에 참여할 수 있다. 전형적으로, X' 작용기는 X 작용기가 가교-반응에 응답한 화학선 에너지와 상이한 화학선 에너지에 반응하여 중합 및 가교 연결을 용이하게 한다. 본 예의 X' 작용기는 열 에너지 노출에 반응하여 프라이머 층(45) 내의 분자의 가교-연결을 용이하게 한다. 전형적으로, 작용기 X'는 다음 세 메카니즘을 통해 기판(42)과 가교-반응을 용이하게 하도록 선택되는데: 1) 기판(42)을 형성하는 재료와 직접 반응; 2) 기판(42)과 반응하는 가교제의 연결기과 가교제 분자와 반응; 그리고 3) 충분한 길이의 분자 체인이 형성물(50)과 기판(42) 사이에 연결되도록 성장되도록 프라이머 층(45)의 중합 및 가교-연결이다.
도 7 및 8을 참조하면, 벌크 재료로 형성된 형성물(50)의 존재 내의 프라이머 층(45)을 형성하기 위해 채용될 수 있는, 한 예시적인 다중-작용기 반응성 화합물은 품명 'β-CEA'으로 조지아주 스미르나 소재의 'UCB Chemicals'로부터 사용가능한, β-카르복시에틸 아크릴레이트를 포함한다. β-CEA는 다음 구조를 가진 지방족 화합물(aliphatic compound)이다:
X' 작용기(70)는 카르복시 작용기를 제공한다. X 작용기(72)는 아크릴레이트 작용기를 제공한다. 작용기(70 및 72)는 백본 성분(74)의 마주한 끝에 연결된다.
도 7 및 9를 참조하면, 벌크 재료로 형성된 형성물(50)의 존재 내의 프라이머 층(45)을 형성하기 위해 채용될 수 있는, 다른 다중-작용기 반응성 화합물은 다음 구조를 가진 품명 'Ebecryl 3605'로 조지아주 스미르나 소재의 'UCB Chemicals'로부터 사용가능한, 방향족 비스-페닐 화합물(aromatic bis-phenyl compound)을 포함한다:
X' 작용기(76)는 에폭시 작용기를 제공한다. X 작용기(78)는 아크릴레이트 작용기를 제공한다. 작용기(76 및 78)는 백본 성분(80)의 마주한 끝에 연결된다.
도 7 및 10을 참조하면, 벌크 재료로 형성된 형성물(50)의 존재 내의 프라이머 층(45)을 형성하기 위해 채용될 수 있는, 또 다른 다중-작용기 반응성 화합물은 다음 구조를 가진 품명 'Isorad 501'로 뉴욕 스키넥터디 소재의 'Schenectady International'로부터 사용가능한, 방향족 화합물을 포함한다:
여기서, x 및 y는 랜덤하게 분포되는 반복 유닛을 나타내는 정수이다. X' 작용기(82)는 카르복시 작용기를 제공한다. X 작용기(84)는 아크릴레이트 작용기를 제공한다. 작용기(82 및 84)는 백본 성분(86)의 마주한 끝에 연결된다.
도 7 및 11을 참조하면, 형성물(50)과의 가교-반응과 함께, 형성물(50)이 동일의 고체화 동안 형성된 조성물의 중합을 용이하게 하기 위한 기능을 하는 라디칼을 작용기 X는 생성할 수 있다. 결국, 작용기 X는 화학선 에너지, 예컨대, 광대역 자외선 에너지에 노출 시에, 형성물(50)의 중합을 용이하게 할 것이다. 이러한 특성을 포함하는 한 예시적인 다중-작용기 반응성 화합물은 뉴욕 테리타운 소재의 'Ciba Specialty Chemicals'로부터 사용가능한 품명 'Irgacure 2959'인 광-기폭제이고, 이는 다음의 구조를 가진다:
X' 작용기(90)는 히드록실 작용기를 제공한다. X 작용기(92)는 기폭제-타입 작용기를 제공한다. 더욱 상세하게, 광대역 자외선 에너지에 노출에 반응하여, 작용기 X는 벤조일 타입의 라디칼을 생성하기 위해 알파-분할(alpha-cleavage)을 겪는다. 이 라디칼은 형성물(50)을 형성하는 조성물의 라디칼 중합을 용이하게 한다. 작용기(90 및 92)는 백본 성분(94)의 마주한 끝에 연결된다.
몇 가지 조성물은 경계면(66 및 68)의 접착 강도를 결정하기 위해 상술된 다중-작용기 반응성 화합물의 몇몇을 포함하여 형성된다. 다중-작용기 반응성 화합물을 포함하는 예시적인 조성물은 다음과 같다:
조성물 1
β-CEA
DUV30J-16
여기서, DUV30J-16은 대략 조성물 1의 100그램을 차지하고, β-CEA는 대략 0.219그램을 차지한다. DUV30J-16는 93% 용매, 및 7%의 비-용매 반응 성분을 포함하는, 미주리주 롤라 소재의 'Brewer Science'로부터 사용가능한 바닥 반사방지 코팅(bottom anti-reflective coating, BARC)이다. DUV30J-16은 페놀 수지를 포함하고, 그것의 가교제는 카르복실 작용기와 반응할 수 있다. DUV30J-16는 형성물(50)과 공유 결합을 형성할 수 없을 것이다. 다른 조성물에서, β-CEA는 가교제, 촉매, 및 IsoRad 501로 대체된다. 가교제, 및 촉매는 뉴저지 웨스트 패터슨 소재의 'Cytec Industries, Inc.'에 의해 판매된다. 가교제는 품명 'Cymel 303ULF'로 판매된다. 'Cymel 303ULF'의 메인 성분 중 하나는 헥사메톡시메틸-멜라민(HMMM)이다. HMMM의 메톡실 작용기는 많은 응축 반응에 참여할 수 있다. 촉매는 품명 'Cycat 4040'으로 판매되고, 다음의 조성물을 제공한다.
조성물 2
DUV30J-16
IsoRad 501
Cymel 303ULF
Cycat 4040
DUV30J-16는 대략 조성물 2의 100그램을 차지하고, IsoRad 501는 조성물 2의 0.611 그램을 차지하고, Cymel 303ULF는 조성물 2의 0.175 그램을 차지하고, Cycat 4040은 조성물 2의 0.008 그램을 차지한다.
다중-기능 반응 성분으로서 채용될 수 있는 다른 조성물은 DUV30J-16을 생략한다. 이 조성물은 다음과 같다:
조성물 3
IsoRad 501
Cymel 303ULF
Cycat
PM Acetate
조성물 3의 대략 77그램은 IsoRad 501이 차지하고, 22그램은 Cymel 303ULF이, 그리고 1그램은 Cycat 4040이 차지한다. IsoRad 501, Cymel 303ULF 및 Cycat은 결합된다. 그 다음, IsoRad 501, Cymel 303ULF, 및 Cycat의 결합은 대략 1900그램의 PM Acetate내로 도입된다. PM Acetate는 테네시주 킹스포츠 소재의 'Eastman Chemical Company'에 의해 판매되는 2-(1-메톡시)프로필 아세테이트를 포함하는 용매의 품명이다.
조성물 4는 포함된 구성 성분의 양을 제외하고, 조성물 3과 동일하다. 예를 들어, 조성물 4는 대략 85.2그램의 IsoRad 501, 13.8그램의 Cymel 303ULF, 및 1그램의 Cycat 4040을 포함한다. IsoRad 501, Cymel 303ULF 및 Cycat은 결합된다. 그 다음, IsoRad 501, Cymel 303ULF, 및 Cycat의 결합은 대략 1900그램의 PM Acetate내로 도입된다.
조성물 5는 포함된 구성 성분의 양을 제외하고, 조성물 3과 동일하다. 예를 들어, 조성물 5는 대략 81그램의 IsoRad 501, 18그램의 Cymel 303ULF, 및 1그램의 Cycat 4040을 포함한다. IsoRad 501, Cymel 303ULF 및 Cycat은 결합된다. 그 다음, IsoRad 501, Cymel 303ULF, 및 Cycat의 결합은 대략 1900그램의 PM Acetate내로 도입된다.
프라이머 층(45)에 관하여 상술된 각각의 다섯 조성물, 조성물 1-5는 기판이 일정한 두께를 가진 평면이 아니라면, 실질적으로 매끈한 층을 제공하기 위해 기판이 분당 500 내지 4,000회전 사이의 속도로 회전되는 스핀-코팅 기술을 채용하여 기판(42) 상에 증착된다. 이에 이어 대략 2분 동안 180℃의 열 화학선 에너지에 조성물을 노출시킨다.
상술된 다섯 조성물, 조성물 1-5는 임프린팅 재료로 형성된 형성물(50)과 공유 결합을 형성하기 위해 공지되지 않은, DUV30J-16으로 완전히 형성된, 프라이머 층(45)의 베이스라인 측정과 비교되는, 경계면(66 및 68)의 접착력의 강도의 비교 데이터를 생성하기 위해, 임프린팅 재료와 함께, 채용된다. 이 때문에, 벌크 임프린팅 재료로 형성된, 형성물(50), 및 조성물 1-5 및 기준 조성물으로 형성된 프라이머 층(45)은 (도시되지 않은) 두 유리 슬라이드 사이에 증착되고 그 다음 고체화된다. (도시되지 않은) 각각의 유리 슬라이드는 대략 1mm 두께이고, 75×25mm 측면 치수이다.
프라이머 층(45) 및 형성물(50)의 증착 전에 (도시되지 않은) 유리 슬라이드는 세척된다. 더욱 상세하게, (도시되지 않은) 각각의 유리 슬라이드는 피라냐 용액(부피비 H2SO4:H2O2 = 2.5:1)에 노출된다. (도시되지 않은) 유리 슬라이드는 순차적으로 초순수(deionized water)에 헹궈지고, 이소프로필 알콜로 스프레이되고, 건조를 위한 유체 스트림, 예컨대, 질소 가스 스트림에 노출된다. 그 후, (도시되지 않은) 유리 슬라이드는 120℃에서 2시간 동안 가열된다.
프라이머 층(45)은 3000rpm 까지의 스핀 속도를 가진 스핀-온 기술을 채용하여, (도시되지 않은) 두 유리 슬라이드 각각에 증착된다. 프라이머 층(45)은 180℃에서 2분 동안 핫 플레이트 상에 (도시되지 않은) 유리 슬라이드 상에 놓여진다. 즉, 각각의 조성물 1-5는 물론 베이스라인 조성물은 고체화되는데, 즉, 열 에너지에 노출됨으로써, 중합되고 가교-연결된다. 형성물은 상술된 방울 디스펜스 기술을 채용하여 형성된다. 더욱 상세하게, 벌크 임프린팅 재료가 두 유리 슬라이드 중 하나 상에 프라이머 층(45)에 복수의 방울로 배치된다. 그 다음, 벌크 임프린팅 재료는 서로 마주하고, 벌크 임프린팅 재료와 접촉하는 (도시되지 않은) 두 유리 슬라이드 상에 플라이머 층을 가짐으로써, 두 프라이머 층(45) 사이에 샌드위치된다. 전형적으로, (도시되지 않은) 두 유리 슬라이드 중 하나의 세로축은 (도시되지 않은) 나머지 유리 슬라이드의 세로축과 수직으로 뻗어있다. 벌크 임프린팅 재료는 고체화되는데, 즉 20mW/㎠ 강도에서 40초 동안 중 기압 수은 UV 램프를 사용하여 광대역 자외선 파장과 같은 화학선 에너지에 (도시되지 않은) 두 유리 슬라이드를 노출함으로써 중합되고 가교-연결된다.
접착 강도를 측정하기 위해, (도시되지 않은) 4-포인트 벤딩 픽스처가 "Measurement of Adhesive Force Between Mold and Photocurable Resin in Imprint Technology" Japanese Journal of Applied Physics, Vol.41 (2002) pp. 4194-4197에 서술된 것과 유사한, 접착 테스트 및 기술을 위해 채택된다. 최대 힘/하중은 접착 값으로서 획득된다. 위 아래 두 포인트의 빔 거리는 60mm이다. 하중은 분 당 0.5mm의 속도로 적용된다. 이 테스트를 채용하여, 프라이머 층(45)이 베이스라인 조성물으로 형성된 때 탈층이 6.1파운드의 힘에서 발생되는 것으로 판정된다. 대략 6.5 파운드의 분리력이 조성물 1로 형성된 프라이머 층(45)에 탈층이 발생되기 전에 도달된다. 대략 9.1 파운드의 분리력이 조성물 2로 형성된 프라이머 층(45)에 탈층이 발생되기 전에 도달된다. 프라이머 층(45)이 각각 조성물 3, 4, 또는 5로 형성되었을 때, (도시되지 않은) 두 유리 슬라이드 중 하나 또는 모두는 탈층이 발생하기 전에 실패된다(깨진다). 결국, 11파운드까지의 힘이 탈층 관측없이 측정되었다. 결국, 조성물 3, 4, 및 5는 프라이머 층(45)에 라멜라 층(60)이 바람직하지 않은 얇은 영역 또는 없는 영역에 탈층을 효과적으로 방지할 수 있는 우수한 동작 특성을 제공한다.
상술된 본 발명의 실시예는 예시이다. 다양한 수정 및 변형이 본 발명의 범위를 벗어나지 않고, 상술된 개시물에 이루어질 수 있다. 예를 들어, 용매 PM 아세테이트는 조성물 3, 4, 및 5의 다른 구성 성분을 용해시키기 위해 주로 사용된다. 결국, 디에틸렌 글리콜 모노에틸 에테르 아세테이트, 메틸 아밀 케톤 등과 같은 많은 일반적인 포토-레지스트 용매가 PM Acetate를 대신하여 사용될 수 있다. 또한, 성분 3, 4, 및 5의 고체 컨텐츠, 즉 IsoRad 501, Cymel 303ULF, 및 Cycat는 중량 대비 0.1% 내지 70%의 조성물, 및 더욱 바람직하게는 중량대비 0.5% 내지 70% 범위로 포함할 수 있고, 나머지 양은 용매로 구성된다. 조성물 3, 4, 및 5 각각의 고체 성분은 중량비 50% 내지 99%의 IsoRad 501, 중량비 1% 내지 50%의 Cymel 303ULF, 및 중량비 0% 내지 10%의 Cycat 4040을 포함할 수 있다. 그러므로, 본 발명의 범위는 상술한 설명에 의해 한정되어서는 안되며, 첨부된 청구항과 그 동등물의 전 범위를 함께 참조하여 결정되어야 한다.
Claims (20)
- 제1 재료 및 제2 재료를 서로 접착하기 위한 조성물로서,백본 그룹과 제1 및 제2 작용기를 갖는 다중-작용기 반응성 화합물로서, 상기 제1 작용기가 카르복실기 또는 에폭시기이면 상기 제2 작용기는 아크릴레이트이고, 또는, 상기 제1 작용기가 하이드록실기이면 상기 제2 작용기는 광대역 자외선 에너지 노출에 대하여 벤조일 타입의 라디칼을 생성하기 위해 알파-분할(alpha-cleavage)되는 작용기인 다중-작용기 반응성 화합물;촉매; 및가교제를 포함하고,이때, 상기 제1 작용기는 열 에너지와 반응하여 가교된 분자를 형성하고 상기 제1 재료에 상기 가교된 분자의 하위 집합을 접착하며, 상기 제2 작용기는 광대역 자외선 에너지와 반응하여 상기 제2 재료에 접착하는 것을 특징으로 하는 제1 및 제2 재료를 서로 접착하기 위한 조성물.
- 제3항에 있어서, 상기 연결기 R', R'', R'''은 상기 조성물 전체에 임의로 분포하는 것을 특징으로 하는 조성물.
- 제1항에 있어서, 상기 제1 작용기는 공유 결합, 이온 결합, 또는 반데르 발스 힘에 의해, 상기 제1 재료에 접착하는 것을 특징으로 하는 조성물.
- 제1항에 있어서, 상기 가교제는 연결기를 포함하고, 상기 제1 작용기는 상기 연결기를 통해 연결됨으로써 상기 제1 재료에 접착되는 것을 특징으로 하는 조성물.
- 제1항에 있어서, 상기 제2 작용기는 상기 제2 재료와 공유 결합을 형성함으로써 제2 재료에 접착하는 것을 특징으로 조성물.
- 기판에 층을 접착하는 방법으로서,상기 방법은 상기 층과 상기 기판 사이에 제1항 내지 제8항 중 어느 한 항에 따른 조성물이 존재하게 함으로써, 제1 경계면 및 제2 경계면을 형성하는 단계를 포함하고,이때, 상기 제1 경계면은 상기 층과 상기 조성물 사이에 형성되고 상기 제2경계면은 상기 기판과 상기 조성물 사이에 형성되며, 상기 제1 경계면은 공유 결합을 포함하고, 상기 제2 경계면은 상기 기판에 상기 조성물을 접착시키는 공유 결합, 이온 결합 또는 반데르 발스 힘을 포함하는 것인 기판에 층을 접착시키는 방법.
- 제8항에 있어서, 상기 제2 경계면은 상기 조성물을 열 경화함으로써 형성되고, 상기 제1 경계면은 상기 층과 상기 조성물을 화학선 에너지에 노출함으로써 형성되는 것을 특징으로 하는 기판에 층을 접착시키는 방법.
- 제8항에 있어서, 상기 경계면을 형성하는 단계는 상기 조성물을 고체화하는 단계, 고체화된 조성물을 형성하는 단계, 및 상기 고체화된 조성물 상에 상기 층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 기판에 층을 접착시키는 방법.
- 제8항에 있어서, 상기 경계면을 형성하는 단계는 상기 층과 상기 기판 사이에 복수의 분자를 배치하는 단계를 더 포함하고 상기 복수의 분자의 하위 집합은 유기 백본 그룹과 제1 및 제2 작용기를 포함하며, 이때, 상기 제2 작용기는 상기 층과 반응하여 공유 결합을 형성하고 상기 제1 작용기는 상기 기판과 반응하는 것을 특징으로 하는 기판에 층을 접착시키는 방법.
- 제8항에 있어서, 상기 경계면을 형성하는 단계는 상기 층과 상기 기판 사이에 복수의 분자를 배치하는 단계를 더 포함하고, 상기 복수의 분자의 제1 하위 집합은 가교제이고, 상기 복수의 분자의 제2 하위 집합은 백본 그룹과 제1 및 제2 작용기를 포함하며, 이때, 상기 제2 작용기는 상기 층과 결합하여 상기 공유 결합을 형성하고, 상기 제1 작용기는 상기 기판 및 상기 가교제 중 하나와 반응하는 것을 특징으로 하는 기판에 층을 접착시키는 방법.
- 제12항에 있어서, 상기 백본 그룹은 방향족 구조를 포함하는 것을 특징으로 하는 기판에 층을 접착시키는 방법.
- 제8항에 있어서, 상기 경계면을 형성하는 단계는 상기 층과 상기 기판 사이에 복수의 분자를 배치하는 단계를 더 포함하고, 상기 복수의 분자의 하위 집합은 백본 그룹과 제1 및 제2 작용기를 포함하며, 이때, 상기 제2 작용기는 상기 층과 반응하여 상기 공유 결합을 형성하는 아크릴레이트 작용기로 이루어진 것을 특징으로 하는 기판에 층을 접착시키는 방법.
- 제14항에 있어서, 상기 백본 그룹은 지방족 및 방향족으로 이루어진 작용기의 군으로부터 선택되는 것을 특징으로 하는 기판에 층을 접착시키는 방법.
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/187,407 US8557351B2 (en) | 2005-07-22 | 2005-07-22 | Method for adhering materials together |
US11/187,406 US7759407B2 (en) | 2005-07-22 | 2005-07-22 | Composition for adhering materials together |
US11/187,406 | 2005-07-22 | ||
US11/187,407 | 2005-07-22 | ||
PCT/US2006/021948 WO2007050133A2 (en) | 2005-07-22 | 2006-06-05 | Method and composition for adhering materials together |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080038338A KR20080038338A (ko) | 2008-05-06 |
KR101416112B1 true KR101416112B1 (ko) | 2014-07-08 |
Family
ID=37968270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020087003583A KR101416112B1 (ko) | 2005-07-22 | 2006-06-05 | 재료를 서로 접착하는 방법 및 조성물 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8557351B2 (ko) |
EP (1) | EP1915888B1 (ko) |
JP (1) | JP5084728B2 (ko) |
KR (1) | KR101416112B1 (ko) |
SG (1) | SG163605A1 (ko) |
TW (1) | TWI329239B (ko) |
WO (1) | WO2007050133A2 (ko) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050160934A1 (en) | 2004-01-23 | 2005-07-28 | Molecular Imprints, Inc. | Materials and methods for imprint lithography |
US7307118B2 (en) * | 2004-11-24 | 2007-12-11 | Molecular Imprints, Inc. | Composition to reduce adhesion between a conformable region and a mold |
US20060108710A1 (en) * | 2004-11-24 | 2006-05-25 | Molecular Imprints, Inc. | Method to reduce adhesion between a conformable region and a mold |
US7939131B2 (en) * | 2004-08-16 | 2011-05-10 | Molecular Imprints, Inc. | Method to provide a layer with uniform etch characteristics |
US20060062922A1 (en) * | 2004-09-23 | 2006-03-23 | Molecular Imprints, Inc. | Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor |
US8808808B2 (en) * | 2005-07-22 | 2014-08-19 | Molecular Imprints, Inc. | Method for imprint lithography utilizing an adhesion primer layer |
US7759407B2 (en) * | 2005-07-22 | 2010-07-20 | Molecular Imprints, Inc. | Composition for adhering materials together |
US8846195B2 (en) * | 2005-07-22 | 2014-09-30 | Canon Nanotechnologies, Inc. | Ultra-thin polymeric adhesion layer |
US8142703B2 (en) * | 2005-10-05 | 2012-03-27 | Molecular Imprints, Inc. | Imprint lithography method |
US20080110557A1 (en) * | 2006-11-15 | 2008-05-15 | Molecular Imprints, Inc. | Methods and Compositions for Providing Preferential Adhesion and Release of Adjacent Surfaces |
GB0701909D0 (en) * | 2007-01-31 | 2007-03-14 | Imp Innovations Ltd | Deposition Of Organic Layers |
GB2453766A (en) * | 2007-10-18 | 2009-04-22 | Novalia Ltd | Method of fabricating an electronic device |
TWI495951B (zh) * | 2007-12-04 | 2015-08-11 | Molecular Imprints Inc | 超薄聚合性黏著層 |
US9323143B2 (en) * | 2008-02-05 | 2016-04-26 | Canon Nanotechnologies, Inc. | Controlling template surface composition in nano-imprint lithography |
JP2010080680A (ja) * | 2008-09-26 | 2010-04-08 | Bridgestone Corp | 凹凸パターンの形成方法及び凹凸パターンの製造装置 |
US8361546B2 (en) * | 2008-10-30 | 2013-01-29 | Molecular Imprints, Inc. | Facilitating adhesion between substrate and patterned layer |
US20100109195A1 (en) * | 2008-11-05 | 2010-05-06 | Molecular Imprints, Inc. | Release agent partition control in imprint lithography |
US8529778B2 (en) * | 2008-11-13 | 2013-09-10 | Molecular Imprints, Inc. | Large area patterning of nano-sized shapes |
WO2011066450A2 (en) | 2009-11-24 | 2011-06-03 | Molecular Imprints, Inc. | Adhesion layers in nanoimprint lithography |
KR20130105648A (ko) * | 2010-09-08 | 2013-09-25 | 몰레큘러 임프린츠 인코퍼레이티드 | 임프린트 리소그래피에 사용하는 증기 전달 시스템 |
JP5218521B2 (ja) | 2010-10-21 | 2013-06-26 | 大日本印刷株式会社 | インプリント方法とこれに用いる転写基材および密着剤 |
WO2013051735A1 (en) * | 2011-10-07 | 2013-04-11 | Fujifilm Corporation | Underlay film composition for imprints and method of forming pattern and pattern formation method using the same |
JP5767615B2 (ja) | 2011-10-07 | 2015-08-19 | 富士フイルム株式会社 | インプリント用下層膜組成物およびこれを用いたパターン形成方法 |
DE102011086889A1 (de) * | 2011-11-22 | 2013-05-23 | Mtu Aero Engines Gmbh | Generatives Herstellen eines Bauteils |
JP5827180B2 (ja) | 2012-06-18 | 2015-12-02 | 富士フイルム株式会社 | インプリント用硬化性組成物と基板の密着用組成物およびこれを用いた半導体デバイス |
JP5899145B2 (ja) | 2012-06-18 | 2016-04-06 | 富士フイルム株式会社 | インプリント用下層膜形成組成物およびパターン形成方法 |
JP6029506B2 (ja) | 2013-03-26 | 2016-11-24 | 富士フイルム株式会社 | インプリント用下層膜形成組成物およびパターン形成方法 |
JP6047049B2 (ja) * | 2013-03-27 | 2016-12-21 | 富士フイルム株式会社 | 組成物、硬化物、積層体、下層膜の製造方法、パターン形成方法、パターンおよび半導体レジストの製造方法 |
TWI656162B (zh) | 2014-06-20 | 2019-04-11 | 日商富士軟片股份有限公司 | 下層膜形成用樹脂組成物、積層體、圖案形成方法及元件的製造方法 |
TWI635365B (zh) | 2014-08-21 | 2018-09-11 | 日商富士軟片股份有限公司 | Sublayer film forming composition, laminate, pattern forming method, imprint forming kit, and device manufacturing method |
TWI632188B (zh) | 2014-08-27 | 2018-08-11 | 日商富士軟片股份有限公司 | 底層膜形成用樹脂組成物、積層體、圖案形成方法、壓印形成用套組及元件的製造方法 |
US10527494B2 (en) * | 2014-09-26 | 2020-01-07 | Korea Intitute of Machinery & Materials | Substrate on which multiple nanogaps are formed, and manufacturing method therefor |
US9873180B2 (en) | 2014-10-17 | 2018-01-23 | Applied Materials, Inc. | CMP pad construction with composite material properties using additive manufacturing processes |
US11745302B2 (en) | 2014-10-17 | 2023-09-05 | Applied Materials, Inc. | Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process |
US9776361B2 (en) | 2014-10-17 | 2017-10-03 | Applied Materials, Inc. | Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles |
KR102436416B1 (ko) | 2014-10-17 | 2022-08-26 | 어플라이드 머티어리얼스, 인코포레이티드 | 애디티브 제조 프로세스들을 이용한 복합 재료 특성들을 갖는 cmp 패드 구성 |
US10875153B2 (en) | 2014-10-17 | 2020-12-29 | Applied Materials, Inc. | Advanced polishing pad materials and formulations |
JP6141500B2 (ja) * | 2015-09-08 | 2017-06-07 | キヤノン株式会社 | ナノインプリントリソグラフィーにおける充填時間を短縮するための基板の前処理 |
US10488753B2 (en) | 2015-09-08 | 2019-11-26 | Canon Kabushiki Kaisha | Substrate pretreatment and etch uniformity in nanoimprint lithography |
US20170068159A1 (en) * | 2015-09-08 | 2017-03-09 | Canon Kabushiki Kaisha | Substrate pretreatment for reducing fill time in nanoimprint lithography |
US20170066208A1 (en) | 2015-09-08 | 2017-03-09 | Canon Kabushiki Kaisha | Substrate pretreatment for reducing fill time in nanoimprint lithography |
CN113103145B (zh) | 2015-10-30 | 2023-04-11 | 应用材料公司 | 形成具有期望ζ电位的抛光制品的设备与方法 |
US10593574B2 (en) | 2015-11-06 | 2020-03-17 | Applied Materials, Inc. | Techniques for combining CMP process tracking data with 3D printed CMP consumables |
US10211051B2 (en) | 2015-11-13 | 2019-02-19 | Canon Kabushiki Kaisha | Method of reverse tone patterning |
US10391605B2 (en) | 2016-01-19 | 2019-08-27 | Applied Materials, Inc. | Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process |
US10883006B2 (en) * | 2016-03-31 | 2021-01-05 | Canon Kabushiki Kaisha | Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold |
US10829644B2 (en) | 2016-03-31 | 2020-11-10 | Canon Kabushiki Kaisha | Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold |
US10134588B2 (en) | 2016-03-31 | 2018-11-20 | Canon Kabushiki Kaisha | Imprint resist and substrate pretreatment for reducing fill time in nanoimprint lithography |
US10620539B2 (en) | 2016-03-31 | 2020-04-14 | Canon Kabushiki Kaisha | Curing substrate pretreatment compositions in nanoimprint lithography |
US10754244B2 (en) | 2016-03-31 | 2020-08-25 | Canon Kabushiki Kaisha | Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold |
US10845700B2 (en) * | 2016-03-31 | 2020-11-24 | Canon Kabushiki Kaisha | Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold |
US10578965B2 (en) * | 2016-03-31 | 2020-03-03 | Canon Kabushiki Kaisha | Pattern forming method |
US10095106B2 (en) | 2016-03-31 | 2018-10-09 | Canon Kabushiki Kaisha | Removing substrate pretreatment compositions in nanoimprint lithography |
US10189188B2 (en) | 2016-05-20 | 2019-01-29 | Canon Kabushiki Kaisha | Nanoimprint lithography adhesion layer |
US10509313B2 (en) | 2016-06-28 | 2019-12-17 | Canon Kabushiki Kaisha | Imprint resist with fluorinated photoinitiator and substrate pretreatment for reducing fill time in nanoimprint lithography |
TW201825617A (zh) | 2016-09-16 | 2018-07-16 | 日商富士軟片股份有限公司 | 壓印用底漆層形成用組成物、壓印用底漆層及積層體 |
TW201817582A (zh) | 2016-09-16 | 2018-05-16 | 日商富士軟片股份有限公司 | 圖案形成方法及半導體元件的製造方法 |
WO2018159575A1 (ja) * | 2017-02-28 | 2018-09-07 | 富士フイルム株式会社 | インプリント用密着膜形成用組成物、密着膜、積層体、硬化物パターンの製造方法および回路基板の製造方法 |
JP6741855B2 (ja) * | 2017-02-28 | 2020-08-19 | 富士フイルム株式会社 | プライマ層形成用組成物、キット、プライマ層および積層体 |
US10317793B2 (en) * | 2017-03-03 | 2019-06-11 | Canon Kabushiki Kaisha | Substrate pretreatment compositions for nanoimprint lithography |
TWI796337B (zh) * | 2017-06-16 | 2023-03-21 | 美商富士軟片電子材料美國股份有限公司 | 多層結構 |
US11471999B2 (en) | 2017-07-26 | 2022-10-18 | Applied Materials, Inc. | Integrated abrasive polishing pads and manufacturing methods |
WO2019032286A1 (en) | 2017-08-07 | 2019-02-14 | Applied Materials, Inc. | ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME |
WO2019172156A1 (ja) * | 2018-03-07 | 2019-09-12 | 富士フイルム株式会社 | インプリント用下層膜形成組成物、インプリント用硬化性組成物、キット |
KR20210042171A (ko) | 2018-09-04 | 2021-04-16 | 어플라이드 머티어리얼스, 인코포레이티드 | 진보한 폴리싱 패드들을 위한 제형들 |
WO2020059603A1 (ja) * | 2018-09-18 | 2020-03-26 | 富士フイルム株式会社 | インプリント用積層体、インプリント用積層体の製造方法、パターン形成方法およびキット |
US10780682B2 (en) | 2018-12-20 | 2020-09-22 | Canon Kabushiki Kaisha | Liquid adhesion composition, multi-layer structure and method of making said structure |
JP7222811B2 (ja) * | 2019-06-04 | 2023-02-15 | キオクシア株式会社 | インプリント装置、インプリント方法、及び半導体装置の製造方法 |
KR20230113640A (ko) | 2020-12-22 | 2023-07-31 | 캐논 가부시끼가이샤 | 막 형성 방법 및 물품 제조 방법 |
US11878389B2 (en) | 2021-02-10 | 2024-01-23 | Applied Materials, Inc. | Structures formed using an additive manufacturing process for regenerating surface texture in situ |
KR20240005022A (ko) | 2021-06-09 | 2024-01-11 | 캐논 가부시끼가이샤 | 경화성 조성물, 막 형성 방법 및 물품의 제조 방법 |
JP2023090491A (ja) | 2021-12-17 | 2023-06-29 | キヤノン株式会社 | 膜形成方法、および物品の製造方法 |
JP2023116190A (ja) | 2022-02-09 | 2023-08-22 | キヤノン株式会社 | 膜形成方法および物品製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0153746B1 (ko) * | 1989-09-14 | 1998-11-16 | 에드윈 씨.섬머스 | 점착성이 부여된 이중 경화성 압감성 접착제 |
Family Cites Families (229)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3810874A (en) | 1969-03-10 | 1974-05-14 | Minnesota Mining & Mfg | Polymers prepared from poly(perfluoro-alkylene oxide) compounds |
US3919351A (en) | 1973-08-29 | 1975-11-11 | Ppg Industries Inc | Composition useful in making extensible films |
US4251277A (en) | 1978-04-24 | 1981-02-17 | Sws Silicones Corporation | Compositions containing thiofunctional polysiloxanes |
JPS573875A (en) | 1980-06-11 | 1982-01-09 | Tamura Kaken Kk | Photopolymerizable ink composition |
DE3023201A1 (de) | 1980-06-21 | 1982-01-07 | Hoechst Ag, 6000 Frankfurt | Positiv arbeitendes strahlungsempfindliches gemisch |
US4617238A (en) | 1982-04-01 | 1986-10-14 | General Electric Company | Vinyloxy-functional organopolysiloxane compositions |
US4544572A (en) | 1982-09-07 | 1985-10-01 | Minnesota Mining And Manufacturing Company | Coated ophthalmic lenses and method for coating the same |
US4514439A (en) | 1983-09-16 | 1985-04-30 | Rohm And Haas Company | Dust cover |
US4512848A (en) | 1984-02-06 | 1985-04-23 | Exxon Research And Engineering Co. | Procedure for fabrication of microstructures over large areas using physical replication |
US4517337A (en) | 1984-02-24 | 1985-05-14 | General Electric Company | Room temperature vulcanizable organopolysiloxane compositions and method for making |
US4552833A (en) | 1984-05-14 | 1985-11-12 | International Business Machines Corporation | Radiation sensitive and oxygen plasma developable resist |
US4614667A (en) | 1984-05-21 | 1986-09-30 | Minnesota Mining And Manufacturing Company | Composite low surface energy liner of perfluoropolyether |
EP0166363B1 (en) | 1984-06-26 | 1991-08-07 | Asahi Glass Company Ltd. | Low reflectance transparent material having antisoiling properties |
JPS61116358A (ja) | 1984-11-09 | 1986-06-03 | Mitsubishi Electric Corp | フオトマスク材料 |
DE3760773D1 (en) | 1986-07-25 | 1989-11-16 | Oki Electric Ind Co Ltd | Negative resist material, method for its manufacture and method for using it |
FR2604553A1 (fr) | 1986-09-29 | 1988-04-01 | Rhone Poulenc Chimie | Substrat polymere rigide pour disque optique et les disques optiques obtenus a partir dudit substrat |
US4931351A (en) | 1987-01-12 | 1990-06-05 | Eastman Kodak Company | Bilayer lithographic process |
US4731155A (en) | 1987-04-15 | 1988-03-15 | General Electric Company | Process for forming a lithographic mask |
US4808511A (en) | 1987-05-19 | 1989-02-28 | International Business Machines Corporation | Vapor phase photoresist silylation process |
JPH01163027A (ja) | 1987-12-21 | 1989-06-27 | Matsushita Electric Ind Co Ltd | 光学素子の成形方法およびその装置 |
US5028366A (en) | 1988-01-12 | 1991-07-02 | Air Products And Chemicals, Inc. | Water based mold release compositions for making molded polyurethane foam |
US5108875A (en) | 1988-07-29 | 1992-04-28 | Shipley Company Inc. | Photoresist pattern fabrication employing chemically amplified metalized material |
US5439766A (en) | 1988-12-30 | 1995-08-08 | International Business Machines Corporation | Composition for photo imaging |
US5169494A (en) | 1989-03-27 | 1992-12-08 | Matsushita Electric Industrial Co., Ltd. | Fine pattern forming method |
JP3001607B2 (ja) | 1989-04-24 | 2000-01-24 | シーメンス、アクチエンゲゼルシヤフト | 二層法における寸法安定な構造転写方法 |
US5028511A (en) | 1989-05-30 | 1991-07-02 | E. I. Du Pont De Nemours And Company | Process for preparing a precolored image using photosensitive reproduction element containing a photorelease layer |
US5139925A (en) | 1989-10-18 | 1992-08-18 | Massachusetts Institute Of Technology | Surface barrier silylation of novolak film without photoactive additive patterned with 193 nm excimer laser |
US5204381A (en) | 1990-02-13 | 1993-04-20 | The United States Of America As Represented By The United States Department Of Energy | Hybrid sol-gel optical materials |
US5149592A (en) | 1990-05-09 | 1992-09-22 | Avery Dennison Corporation | Ultraviolet radiation curable clearcoat |
JP2586692B2 (ja) | 1990-05-24 | 1997-03-05 | 松下電器産業株式会社 | パターン形成材料およびパターン形成方法 |
JP2524436B2 (ja) | 1990-09-18 | 1996-08-14 | インターナショナル・ビジネス・マシーンズ・コーポレイション | 表面処理方法 |
US6174931B1 (en) | 1991-02-28 | 2001-01-16 | 3M Innovative Properties Company | Multi-stage irradiation process for production of acrylic based compositions and compositions made thereby |
DE69229924T2 (de) | 1991-05-17 | 1999-12-23 | Asahi Glass Co. Ltd., Tokio/Tokyo | Oberflächenbehandeltes Substrat |
US5206983A (en) | 1991-06-24 | 1993-05-04 | Wisconsin Alumni Research Foundation | Method of manufacturing micromechanical devices |
US5242711A (en) | 1991-08-16 | 1993-09-07 | Rockwell International Corp. | Nucleation control of diamond films by microlithographic patterning |
US5458953A (en) * | 1991-09-12 | 1995-10-17 | Mannington Mills, Inc. | Resilient floor covering and method of making same |
DE4228853C2 (de) | 1991-09-18 | 1993-10-21 | Schott Glaswerke | Optischer Wellenleiter mit einem planaren oder nur geringfügig gewölbten Substrat und Verfahren zu dessen Herstellung sowie Verwendung eines solchen |
JPH0580530A (ja) | 1991-09-24 | 1993-04-02 | Hitachi Ltd | 薄膜パターン製造方法 |
US5331020A (en) | 1991-11-14 | 1994-07-19 | Dow Corning Limited | Organosilicon compounds and compositions containing them |
US5545367A (en) | 1992-04-15 | 1996-08-13 | Soane Technologies, Inc. | Rapid prototype three dimensional stereolithography |
FR2693727B1 (fr) | 1992-07-20 | 1994-08-19 | Ceramiques Tech Soc D | Polycondensat organo-minéral et procédé d'obtention. |
US5601641A (en) | 1992-07-21 | 1997-02-11 | Tse Industries, Inc. | Mold release composition with polybutadiene and method of coating a mold core |
US5298556A (en) | 1992-07-21 | 1994-03-29 | Tse Industries, Inc. | Mold release composition and method coating a mold core |
GB9220986D0 (en) | 1992-10-06 | 1992-11-18 | Ciba Geigy Ag | Chemical composition |
DE4234423C2 (de) | 1992-10-13 | 1996-10-10 | Inst Mikrotechnik Mainz Gmbh | Mit einem Resist beschichtete Metall- oder Halbleitersubstrate und Verfahren zur Erzielung einer stabilen Resist-Substrat-Haftung |
US5432700A (en) * | 1992-12-21 | 1995-07-11 | Ford Motor Company | Adaptive active vehicle suspension system |
US5368942A (en) * | 1993-01-15 | 1994-11-29 | The United States Of America As Represented By The Secreatary Of Commerce | Method of adhering substrates |
DE69405451T2 (de) | 1993-03-16 | 1998-03-12 | Koninkl Philips Electronics Nv | Verfahren und Vorrichtung zur Herstellung eines strukturierten Reliefbildes aus vernetztem Photoresist auf einer flachen Substratoberfläche |
US5482768A (en) | 1993-05-14 | 1996-01-09 | Asahi Glass Company Ltd. | Surface-treated substrate and process for its production |
US5594042A (en) | 1993-05-18 | 1997-01-14 | Dow Corning Corporation | Radiation curable compositions containing vinyl ether functional polyorganosiloxanes |
US5861467A (en) | 1993-05-18 | 1999-01-19 | Dow Corning Corporation | Radiation curable siloxane compositions containing vinyl ether functionality and methods for their preparation |
US5380474A (en) | 1993-05-20 | 1995-01-10 | Sandia Corporation | Methods for patterned deposition on a substrate |
US5389696A (en) | 1993-09-17 | 1995-02-14 | Miles Inc. | Process for the production of molded products using internal mold release agents |
US6776094B1 (en) | 1993-10-04 | 2004-08-17 | President & Fellows Of Harvard College | Kit For Microcontact Printing |
US5776748A (en) | 1993-10-04 | 1998-07-07 | President And Fellows Of Harvard College | Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor |
US5512131A (en) | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US5462700A (en) | 1993-11-08 | 1995-10-31 | Alliedsignal Inc. | Process for making an array of tapered photopolymerized waveguides |
US5417802A (en) | 1994-03-18 | 1995-05-23 | At&T Corp. | Integrated circuit manufacturing |
US5542978A (en) | 1994-06-10 | 1996-08-06 | Johnson & Johnson Vision Products, Inc. | Apparatus for applying a surfactant to mold surfaces |
US5837314A (en) | 1994-06-10 | 1998-11-17 | Johnson & Johnson Vision Products, Inc. | Method and apparatus for applying a surfactant to mold surfaces |
US5578683A (en) * | 1994-06-27 | 1996-11-26 | Avery Dennison Corporation | Crosslinkable graft pressure-sensitive adhesives |
US5523878A (en) | 1994-06-30 | 1996-06-04 | Texas Instruments Incorporated | Self-assembled monolayer coating for micro-mechanical devices |
FR2721939B1 (fr) | 1994-06-30 | 1997-01-03 | Atochem Elf Sa | Materieau d'emballage comprenant une couche d'oxyde de silicum et une couche de polyolefine |
US5459198A (en) | 1994-07-29 | 1995-10-17 | E. I. Du Pont De Nemours And Company | Fluoroinfused composites, articles of manufacture formed therefrom, and processes for the preparation thereof |
JP3278306B2 (ja) | 1994-10-31 | 2002-04-30 | 富士写真フイルム株式会社 | ポジ型フォトレジスト組成物 |
US5550196A (en) | 1994-11-09 | 1996-08-27 | Shell Oil Company | Low viscosity adhesive compositions containing asymmetric radial polymers |
US5868966A (en) | 1995-03-30 | 1999-02-09 | Drexel University | Electroactive inorganic organic hybrid materials |
US5849209A (en) | 1995-03-31 | 1998-12-15 | Johnson & Johnson Vision Products, Inc. | Mold material made with additives |
US5820769A (en) | 1995-05-24 | 1998-10-13 | Regents Of The University Of Minnesota | Method for making magnetic storage having discrete elements with quantized magnetic moments |
AU6774996A (en) | 1995-08-18 | 1997-03-12 | President And Fellows Of Harvard College | Self-assembled monolayer directed patterning of surfaces |
US5849222A (en) | 1995-09-29 | 1998-12-15 | Johnson & Johnson Vision Products, Inc. | Method for reducing lens hole defects in production of contact lens blanks |
US6468642B1 (en) | 1995-10-03 | 2002-10-22 | N.V. Bekaert S.A. | Fluorine-doped diamond-like coatings |
US6518189B1 (en) | 1995-11-15 | 2003-02-11 | Regents Of The University Of Minnesota | Method and apparatus for high density nanostructures |
US6482742B1 (en) | 2000-07-18 | 2002-11-19 | Stephen Y. Chou | Fluid pressure imprint lithography |
US6309580B1 (en) | 1995-11-15 | 2001-10-30 | Regents Of The University Of Minnesota | Release surfaces, particularly for use in nanoimprint lithography |
US20040036201A1 (en) | 2000-07-18 | 2004-02-26 | Princeton University | Methods and apparatus of field-induced pressure imprint lithography |
US20040137734A1 (en) | 1995-11-15 | 2004-07-15 | Princeton University | Compositions and processes for nanoimprinting |
US7758794B2 (en) | 2001-10-29 | 2010-07-20 | Princeton University | Method of making an article comprising nanoscale patterns with reduced edge roughness |
US5772905A (en) | 1995-11-15 | 1998-06-30 | Regents Of The University Of Minnesota | Nanoimprint lithography |
US5684066A (en) | 1995-12-04 | 1997-11-04 | H.B. Fuller Licensing & Financing, Inc. | Protective coatings having enhanced properties |
JP2978435B2 (ja) | 1996-01-24 | 1999-11-15 | チッソ株式会社 | アクリロキシプロピルシランの製造方法 |
US5942302A (en) | 1996-02-23 | 1999-08-24 | Imation Corp. | Polymer layer for optical media |
US5725788A (en) | 1996-03-04 | 1998-03-10 | Motorola | Apparatus and method for patterning a surface |
US5669303A (en) | 1996-03-04 | 1997-09-23 | Motorola | Apparatus and method for stamping a surface |
US6355198B1 (en) | 1996-03-15 | 2002-03-12 | President And Fellows Of Harvard College | Method of forming articles including waveguides via capillary micromolding and microtransfer molding |
JP2000508682A (ja) | 1996-03-27 | 2000-07-11 | ノバルティス アクチエンゲゼルシヤフト | 高含水量多孔性ポリマー |
NZ331734A (en) | 1996-03-27 | 2000-01-28 | Novartis Ag | Process for manufacture of a porous polymer comprising dispersing a porogen in a monomer phase where the monomer has at least one perfluoropolyether unit and the porogen is a substituted polyalkleneglycol |
NZ332034A (en) | 1996-03-27 | 2000-02-28 | Commw Scient Ind Res Org | Process for manufacture of a porous polymer and its use as an ophthalmic device or lens |
JP2000508084A (ja) | 1996-03-28 | 2000-06-27 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | 有機光受容体のためのペルフルオロエーテル剥離塗料 |
JP3715021B2 (ja) | 1996-04-09 | 2005-11-09 | Jsr株式会社 | 液状硬化性樹脂組成物 |
US5888650A (en) | 1996-06-03 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Temperature-responsive adhesive article |
US6204343B1 (en) | 1996-12-11 | 2001-03-20 | 3M Innovative Properties Company | Room temperature curable resin |
US5895263A (en) | 1996-12-19 | 1999-04-20 | International Business Machines Corporation | Process for manufacture of integrated circuit device |
US5792821A (en) | 1997-01-06 | 1998-08-11 | American Dental Association Health Foundation | Polymerizable cyclodextrin derivatives |
US6667082B2 (en) | 1997-01-21 | 2003-12-23 | Cryovac, Inc. | Additive transfer film suitable for cook-in end use |
US6156389A (en) | 1997-02-03 | 2000-12-05 | Cytonix Corporation | Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same |
US6495624B1 (en) | 1997-02-03 | 2002-12-17 | Cytonix Corporation | Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same |
US6335149B1 (en) | 1997-04-08 | 2002-01-01 | Corning Incorporated | High performance acrylate materials for optical interconnects |
US5948470A (en) | 1997-04-28 | 1999-09-07 | Harrison; Christopher | Method of nanoscale patterning and products made thereby |
US6174932B1 (en) | 1998-05-20 | 2001-01-16 | Denovus Llc | Curable sealant composition |
US6132632A (en) | 1997-09-11 | 2000-10-17 | International Business Machines Corporation | Method and apparatus for achieving etch rate uniformity in a reactive ion etcher |
US6475704B1 (en) | 1997-09-12 | 2002-11-05 | Canon Kabushiki Kaisha | Method for forming fine structure |
US6117708A (en) | 1998-02-05 | 2000-09-12 | Micron Technology, Inc. | Use of residual organic compounds to facilitate gate break on a carrier substrate for a semiconductor device |
US6114404A (en) | 1998-03-23 | 2000-09-05 | Corning Incorporated | Radiation curable ink compositions and flat panel color filters made using same |
KR20010013818A (ko) | 1998-04-15 | 2001-02-26 | 게스레이 마크 | 포토레지스트 현상액 및 현상 방법 |
JP3780700B2 (ja) | 1998-05-26 | 2006-05-31 | セイコーエプソン株式会社 | パターン形成方法、パターン形成装置、パターン形成用版、パターン形成用版の製造方法、カラーフィルタの製造方法、導電膜の製造方法及び液晶パネルの製造方法 |
DE19828969A1 (de) | 1998-06-29 | 1999-12-30 | Siemens Ag | Verfahren zur Herstellung von Halbleiterbauelementen |
KR100273172B1 (ko) | 1998-08-01 | 2001-03-02 | 윤덕용 | 아크릴 측쇄에 디옥사스피로환기 유도체를 갖는 화합물을 이용한 포토레지스트 |
US6523803B1 (en) | 1998-09-03 | 2003-02-25 | Micron Technology, Inc. | Mold apparatus used during semiconductor device fabrication |
TWI230712B (en) | 1998-09-15 | 2005-04-11 | Novartis Ag | Polymers |
US6713238B1 (en) | 1998-10-09 | 2004-03-30 | Stephen Y. Chou | Microscale patterning and articles formed thereby |
US6261469B1 (en) | 1998-10-13 | 2001-07-17 | Honeywell International Inc. | Three dimensionally periodic structural assemblies on nanometer and longer scales |
US6218316B1 (en) | 1998-10-22 | 2001-04-17 | Micron Technology, Inc. | Planarization of non-planar surfaces in device fabrication |
US6238798B1 (en) | 1999-02-22 | 2001-05-29 | 3M Innovative Properties Company | Ceramer composition and composite comprising free radically curable fluorochemical component |
US6334960B1 (en) | 1999-03-11 | 2002-01-01 | Board Of Regents, The University Of Texas System | Step and flash imprint lithography |
US6342097B1 (en) | 1999-04-23 | 2002-01-29 | Sdc Coatings, Inc. | Composition for providing an abrasion resistant coating on a substrate with a matched refractive index and controlled tintability |
AU761789B2 (en) | 1999-06-11 | 2003-06-12 | Bausch & Lomb Incorporated | Lens molds with protective coatings for production of contact lenses and other ophthalmic products |
US6344105B1 (en) | 1999-06-30 | 2002-02-05 | Lam Research Corporation | Techniques for improving etch rate uniformity |
US6190929B1 (en) | 1999-07-23 | 2001-02-20 | Micron Technology, Inc. | Methods of forming semiconductor devices and methods of forming field emission displays |
US6723396B1 (en) | 1999-08-17 | 2004-04-20 | Western Washington University | Liquid crystal imprinting |
WO2001018305A1 (en) | 1999-09-10 | 2001-03-15 | Nano-Tex, Llc | Water-repellent and soil-resistant finish for textiles |
US6517995B1 (en) | 1999-09-14 | 2003-02-11 | Massachusetts Institute Of Technology | Fabrication of finely featured devices by liquid embossing |
US6873087B1 (en) | 1999-10-29 | 2005-03-29 | Board Of Regents, The University Of Texas System | High precision orientation alignment and gap control stages for imprint lithography processes |
ATE294648T1 (de) | 1999-12-23 | 2005-05-15 | Univ Massachusetts | Verfahren zur herstellung von submikron mustern auf filmen |
DE10008109A1 (de) | 2000-02-22 | 2001-08-23 | Krauss Maffei Kunststofftech | Verfahren und Vorrichtung zum Herstellen einer DVD |
US6696157B1 (en) | 2000-03-05 | 2004-02-24 | 3M Innovative Properties Company | Diamond-like glass thin films |
EP1150165A1 (en) | 2000-04-25 | 2001-10-31 | JSR Corporation | Radiation sensitive resin composition for forming barrier ribs for an el display element, barrier ribs and el display element |
US6774183B1 (en) | 2000-04-27 | 2004-08-10 | Bostik, Inc. | Copolyesters having improved retained adhesion |
US6262464B1 (en) | 2000-06-19 | 2001-07-17 | International Business Machines Corporation | Encapsulated MEMS brand-pass filter for integrated circuits |
US6696220B2 (en) | 2000-10-12 | 2004-02-24 | Board Of Regents, The University Of Texas System | Template for room temperature, low pressure micro-and nano-imprint lithography |
WO2002006902A2 (en) * | 2000-07-17 | 2002-01-24 | Board Of Regents, The University Of Texas System | Method and system of automatic fluid dispensing for imprint lithography processes |
US20050037143A1 (en) | 2000-07-18 | 2005-02-17 | Chou Stephen Y. | Imprint lithography with improved monitoring and control and apparatus therefor |
US7211214B2 (en) | 2000-07-18 | 2007-05-01 | Princeton University | Laser assisted direct imprint lithography |
US7635262B2 (en) | 2000-07-18 | 2009-12-22 | Princeton University | Lithographic apparatus for fluid pressure imprint lithography |
US6531407B1 (en) | 2000-08-31 | 2003-03-11 | Micron Technology, Inc. | Method, structure and process flow to reduce line-line capacitance with low-K material |
US6448301B1 (en) | 2000-09-08 | 2002-09-10 | 3M Innovative Properties Company | Crosslinkable polymeric compositions and use thereof |
US6503914B1 (en) | 2000-10-23 | 2003-01-07 | Board Of Regents, The University Of Texas System | Thienopyrimidine-based inhibitors of the Src family |
KR20020047490A (ko) | 2000-12-13 | 2002-06-22 | 윤종용 | 실리콘을 함유하는 감광성 폴리머 및 이를 포함하는레지스트 조성물 |
US6783719B2 (en) | 2001-01-19 | 2004-08-31 | Korry Electronics, Co. | Mold with metal oxide surface compatible with ionic release agents |
DE60213768T2 (de) | 2001-01-25 | 2007-08-16 | Sekisui Chemical Co., Ltd. | Polyvinylacetal, polyvinylacetalzusammensetzung, tinte oder druckfarbe, beschichtungsmaterial, dispergiermittel, wärmeentwickelbares lichtempfindliches material, keramik-grünfolie, primer für kunststofflinse, aufzeichnungsmittel für wasserbasistinte oder druckfarbe und klebstoff für metallfolie |
JP4176998B2 (ja) | 2001-01-25 | 2008-11-05 | 積水化学工業株式会社 | 熱現像性感光材料、セラミックグリーンシート用スラリー及びセラミックグリーンシート |
DE10103586A1 (de) | 2001-01-26 | 2002-08-01 | Roland Goebel | Primer zur Bildung einer haftfesten und feuchtestabilen Legierungs-Kunststoff-Verbundschicht und Verfahren zu seiner Herstellung |
KR100970661B1 (ko) | 2001-02-27 | 2010-07-15 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 | 신규 폴리머, 폴리머 합성 방법 및 포토레지스트 조성물 |
US6387787B1 (en) | 2001-03-02 | 2002-05-14 | Motorola, Inc. | Lithographic template and method of formation and use |
US20020123592A1 (en) * | 2001-03-02 | 2002-09-05 | Zenastra Photonics Inc. | Organic-inorganic hybrids surface adhesion promoter |
US6664026B2 (en) | 2001-03-22 | 2003-12-16 | International Business Machines Corporation | Method of manufacturing high aspect ratio photolithographic features |
JP5201379B2 (ja) * | 2001-03-26 | 2013-06-05 | リケンテクノス株式会社 | アンカーコート剤、易接着性基材フィルム及び積層フィルム |
KR100442859B1 (ko) | 2001-04-04 | 2004-08-02 | 삼성전자주식회사 | 실리콘을 함유하는 알킬 비닐 에테르의 중합체로이루어지는 감광성 폴리머 및 이를 포함하는 레지스트조성물 |
CN1257435C (zh) * | 2001-04-10 | 2006-05-24 | 日产化学工业株式会社 | 形成光刻用防反射膜的组合物 |
US7011932B2 (en) | 2001-05-01 | 2006-03-14 | E. I. Du Pont De Nemours And Company | Polymer waveguide fabrication process |
US6541356B2 (en) | 2001-05-21 | 2003-04-01 | International Business Machines Corporation | Ultimate SIMOX |
US6737489B2 (en) | 2001-05-21 | 2004-05-18 | 3M Innovative Properties Company | Polymers containing perfluorovinyl ethers and applications for such polymers |
US6736857B2 (en) | 2001-05-25 | 2004-05-18 | 3M Innovative Properties Company | Method for imparting soil and stain resistance to carpet |
US7141188B2 (en) | 2001-05-30 | 2006-11-28 | Honeywell International Inc. | Organic compositions |
US6610458B2 (en) * | 2001-07-23 | 2003-08-26 | Kodak Polychrome Graphics Llc | Method and system for direct-to-press imaging |
US7670770B2 (en) | 2001-07-25 | 2010-03-02 | The Trustees Of Princeton University | Nanochannel arrays and their preparation and use for high throughput macromolecular analysis |
US20030054115A1 (en) | 2001-09-14 | 2003-03-20 | Ralph Albano | Ultraviolet curing process for porous low-K materials |
US6721529B2 (en) | 2001-09-21 | 2004-04-13 | Nexpress Solutions Llc | Release agent donor member having fluorocarbon thermoplastic random copolymer overcoat |
WO2003035932A1 (en) | 2001-09-25 | 2003-05-01 | Minuta Technology Co., Ltd. | Method for forming a micro-pattern on a substrate by using capillary force |
US6790905B2 (en) | 2001-10-09 | 2004-09-14 | E. I. Du Pont De Nemours And Company | Highly repellent carpet protectants |
US20030080472A1 (en) | 2001-10-29 | 2003-05-01 | Chou Stephen Y. | Lithographic method with bonded release layer for molding small patterns |
US6716767B2 (en) | 2001-10-31 | 2004-04-06 | Brewer Science, Inc. | Contact planarization materials that generate no volatile byproducts or residue during curing |
EP1444284B1 (en) | 2001-11-07 | 2006-10-18 | Dow Global Technologies Inc. | Planarized microelectronic substrates |
US6649272B2 (en) | 2001-11-08 | 2003-11-18 | 3M Innovative Properties Company | Coating composition comprising fluorochemical polyether silane polycondensate and use thereof |
US6605849B1 (en) | 2002-02-14 | 2003-08-12 | Symmetricom, Inc. | MEMS analog frequency divider |
TWI339680B (en) | 2002-02-19 | 2011-04-01 | Kanto Kagaku | Washing liquid composition for semiconductor substrate |
KR100949343B1 (ko) | 2002-02-19 | 2010-03-26 | 닛산 가가쿠 고교 가부시키 가이샤 | 반사방지막 형성 조성물 |
US7455955B2 (en) | 2002-02-27 | 2008-11-25 | Brewer Science Inc. | Planarization method for multi-layer lithography processing |
JP2004002702A (ja) | 2002-02-28 | 2004-01-08 | Merck Patent Gmbh | プレポリマー材料、ポリマー材料、インプリンティングプロセスおよびその使用 |
EP1342736B1 (en) | 2002-02-28 | 2013-05-08 | Merck Patent GmbH | Prepolymer material, polymer material, imprinting process and their Use |
DE10217151A1 (de) | 2002-04-17 | 2003-10-30 | Clariant Gmbh | Nanoimprint-Resist |
US7037639B2 (en) | 2002-05-01 | 2006-05-02 | Molecular Imprints, Inc. | Methods of manufacturing a lithography template |
US6849558B2 (en) | 2002-05-22 | 2005-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Replication and transfer of microstructures and nanostructures |
US6720076B2 (en) * | 2002-05-31 | 2004-04-13 | Omnova Solutions Inc. | In-mold primer coating for thermoplastic substrates |
US20030235787A1 (en) | 2002-06-24 | 2003-12-25 | Watts Michael P.C. | Low viscosity high resolution patterning material |
US6932934B2 (en) | 2002-07-11 | 2005-08-23 | Molecular Imprints, Inc. | Formation of discontinuous films during an imprint lithography process |
US6908861B2 (en) | 2002-07-11 | 2005-06-21 | Molecular Imprints, Inc. | Method for imprint lithography using an electric field |
US6900881B2 (en) | 2002-07-11 | 2005-05-31 | Molecular Imprints, Inc. | Step and repeat imprint lithography systems |
US7077992B2 (en) | 2002-07-11 | 2006-07-18 | Molecular Imprints, Inc. | Step and repeat imprint lithography processes |
JP2006502837A (ja) | 2002-07-23 | 2006-01-26 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 疎水性表面処理組成物、並びにその製造法及び使用法 |
US6916584B2 (en) | 2002-08-01 | 2005-07-12 | Molecular Imprints, Inc. | Alignment methods for imprint lithography |
US6957608B1 (en) | 2002-08-02 | 2005-10-25 | Kovio, Inc. | Contact print methods |
DE10237280A1 (de) | 2002-08-14 | 2004-03-11 | Micronas Holding Gmbh | Verfahren zum Verbinden von Oberflächen, Halbleiter mit verbundenen Oberflächen sowie Bio-Chip und Bio-Sensor |
US6808745B2 (en) | 2002-08-22 | 2004-10-26 | Eastman Kodak Company | Method of coating micro-electromechanical devices |
EP1546804A1 (en) | 2002-08-27 | 2005-06-29 | Obducat AB | Device for transferring a pattern to an object |
US6936194B2 (en) | 2002-09-05 | 2005-08-30 | Molecular Imprints, Inc. | Functional patterning material for imprint lithography processes |
US8349241B2 (en) | 2002-10-04 | 2013-01-08 | Molecular Imprints, Inc. | Method to arrange features on a substrate to replicate features having minimal dimensional variability |
US20040065252A1 (en) | 2002-10-04 | 2004-04-08 | Sreenivasan Sidlgata V. | Method of forming a layer on a substrate to facilitate fabrication of metrology standards |
JP2006504136A (ja) | 2002-10-21 | 2006-02-02 | ナノインク インコーポレーティッド | ナノメートル・スケール設計構造、その製造方法および装置、マスク修復、強化、および製造への適用 |
US7750059B2 (en) | 2002-12-04 | 2010-07-06 | Hewlett-Packard Development Company, L.P. | Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure |
US7241823B2 (en) | 2002-12-11 | 2007-07-10 | Shin-Etsu Chemical Co., Ltd. | Radiation curing silicone rubber composition, adhesive silicone elastomer film formed from same, semiconductor device using same, and method of producing semiconductor device |
US7365103B2 (en) | 2002-12-12 | 2008-04-29 | Board Of Regents, The University Of Texas System | Compositions for dark-field polymerization and method of using the same for imprint lithography processes |
US20040112862A1 (en) | 2002-12-12 | 2004-06-17 | Molecular Imprints, Inc. | Planarization composition and method of patterning a substrate using the same |
US20040168613A1 (en) | 2003-02-27 | 2004-09-02 | Molecular Imprints, Inc. | Composition and method to form a release layer |
US7452574B2 (en) | 2003-02-27 | 2008-11-18 | Molecular Imprints, Inc. | Method to reduce adhesion between a polymerizable layer and a substrate employing a fluorine-containing layer |
US6830819B2 (en) | 2003-03-18 | 2004-12-14 | Xerox Corporation | Fluorosilicone release agent for fluoroelastomer fuser members |
US7179396B2 (en) | 2003-03-25 | 2007-02-20 | Molecular Imprints, Inc. | Positive tone bi-layer imprint lithography method |
US6943117B2 (en) | 2003-03-27 | 2005-09-13 | Korea Institute Of Machinery & Materials | UV nanoimprint lithography process using elementwise embossed stamp and selectively additive pressurization |
US20040202865A1 (en) | 2003-04-08 | 2004-10-14 | Andrew Homola | Release coating for stamper |
US7396475B2 (en) | 2003-04-25 | 2008-07-08 | Molecular Imprints, Inc. | Method of forming stepped structures employing imprint lithography |
TWI228638B (en) | 2003-06-10 | 2005-03-01 | Ind Tech Res Inst | Method for and apparatus for bonding patterned imprint to a substrate by adhering means |
US20060108710A1 (en) | 2004-11-24 | 2006-05-25 | Molecular Imprints, Inc. | Method to reduce adhesion between a conformable region and a mold |
US20050160934A1 (en) | 2004-01-23 | 2005-07-28 | Molecular Imprints, Inc. | Materials and methods for imprint lithography |
US7307118B2 (en) | 2004-11-24 | 2007-12-11 | Molecular Imprints, Inc. | Composition to reduce adhesion between a conformable region and a mold |
US7157036B2 (en) | 2003-06-17 | 2007-01-02 | Molecular Imprints, Inc | Method to reduce adhesion between a conformable region and a pattern of a mold |
JP2005014348A (ja) | 2003-06-25 | 2005-01-20 | Fuji Photo Film Co Ltd | 平版印刷版原版及び平版印刷方法 |
US20050084804A1 (en) | 2003-10-16 | 2005-04-21 | Molecular Imprints, Inc. | Low surface energy templates |
US7122482B2 (en) | 2003-10-27 | 2006-10-17 | Molecular Imprints, Inc. | Methods for fabricating patterned features utilizing imprint lithography |
US20050098534A1 (en) | 2003-11-12 | 2005-05-12 | Molecular Imprints, Inc. | Formation of conductive templates employing indium tin oxide |
US6958531B2 (en) | 2003-11-14 | 2005-10-25 | The Regents Of The University Of Michigan | Multi-substrate package and method for assembling same |
DE60336322D1 (de) | 2003-11-21 | 2011-04-21 | Obducat Ab | Nanoimprint Lithographie in Mehrschichtsystemem |
US8076386B2 (en) | 2004-02-23 | 2011-12-13 | Molecular Imprints, Inc. | Materials for imprint lithography |
US7229732B2 (en) | 2004-08-04 | 2007-06-12 | Xerox Corporation | Imaging members with crosslinked polycarbonate in charge transport layer |
JP4130668B2 (ja) | 2004-08-05 | 2008-08-06 | 富士通株式会社 | 基体の加工方法 |
SG119379A1 (en) | 2004-08-06 | 2006-02-28 | Nippon Catalytic Chem Ind | Resin composition method of its composition and cured formulation |
US7309225B2 (en) | 2004-08-13 | 2007-12-18 | Molecular Imprints, Inc. | Moat system for an imprint lithography template |
US7939131B2 (en) | 2004-08-16 | 2011-05-10 | Molecular Imprints, Inc. | Method to provide a layer with uniform etch characteristics |
US7252862B2 (en) | 2004-08-30 | 2007-08-07 | Hewlett-Packard Development Company, L.P. | Increasing adhesion in an imprinting procedure |
US20060062922A1 (en) | 2004-09-23 | 2006-03-23 | Molecular Imprints, Inc. | Polymerization technique to attenuate oxygen inhibition of solidification of liquids and composition therefor |
US20060081557A1 (en) | 2004-10-18 | 2006-04-20 | Molecular Imprints, Inc. | Low-k dielectric functional imprinting materials |
US7163888B2 (en) | 2004-11-22 | 2007-01-16 | Motorola, Inc. | Direct imprinting of etch barriers using step and flash imprint lithography |
US20060145398A1 (en) | 2004-12-30 | 2006-07-06 | Board Of Regents, The University Of Texas System | Release layer comprising diamond-like carbon (DLC) or doped DLC with tunable composition for imprint lithography templates and contact masks |
US20070059211A1 (en) | 2005-03-11 | 2007-03-15 | The College Of Wooster | TNT sensor containing molecularly imprinted sol gel-derived films |
US8846195B2 (en) | 2005-07-22 | 2014-09-30 | Canon Nanotechnologies, Inc. | Ultra-thin polymeric adhesion layer |
US8808808B2 (en) | 2005-07-22 | 2014-08-19 | Molecular Imprints, Inc. | Method for imprint lithography utilizing an adhesion primer layer |
US7759407B2 (en) | 2005-07-22 | 2010-07-20 | Molecular Imprints, Inc. | Composition for adhering materials together |
US20070042173A1 (en) | 2005-08-22 | 2007-02-22 | Fuji Photo Film Co., Ltd. | Antireflection film, manufacturing method thereof, and polarizing plate using the same, and image display device |
US7419611B2 (en) | 2005-09-02 | 2008-09-02 | International Business Machines Corporation | Processes and materials for step and flash imprint lithography |
US20080110557A1 (en) | 2006-11-15 | 2008-05-15 | Molecular Imprints, Inc. | Methods and Compositions for Providing Preferential Adhesion and Release of Adjacent Surfaces |
-
2005
- 2005-07-22 US US11/187,407 patent/US8557351B2/en active Active
-
2006
- 2006-06-05 EP EP06844135.1A patent/EP1915888B1/en active Active
- 2006-06-05 WO PCT/US2006/021948 patent/WO2007050133A2/en active Application Filing
- 2006-06-05 SG SG201005033-4A patent/SG163605A1/en unknown
- 2006-06-05 KR KR1020087003583A patent/KR101416112B1/ko active IP Right Grant
- 2006-06-05 JP JP2008522785A patent/JP5084728B2/ja active Active
- 2006-06-13 TW TW095121031A patent/TWI329239B/zh active
-
2013
- 2013-10-08 US US14/048,745 patent/US20140034229A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0153746B1 (ko) * | 1989-09-14 | 1998-11-16 | 에드윈 씨.섬머스 | 점착성이 부여된 이중 경화성 압감성 접착제 |
Also Published As
Publication number | Publication date |
---|---|
WO2007050133A2 (en) | 2007-05-03 |
EP1915888A4 (en) | 2013-05-22 |
US20140034229A1 (en) | 2014-02-06 |
KR20080038338A (ko) | 2008-05-06 |
US20070017631A1 (en) | 2007-01-25 |
JP5084728B2 (ja) | 2012-11-28 |
SG163605A1 (en) | 2010-08-30 |
JP2009503139A (ja) | 2009-01-29 |
WO2007050133A3 (en) | 2007-12-13 |
TW200710566A (en) | 2007-03-16 |
TWI329239B (en) | 2010-08-21 |
EP1915888B1 (en) | 2018-12-19 |
EP1915888A2 (en) | 2008-04-30 |
US8557351B2 (en) | 2013-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101416112B1 (ko) | 재료를 서로 접착하는 방법 및 조성물 | |
US7759407B2 (en) | Composition for adhering materials together | |
KR101610185B1 (ko) | 초박형 중합체 접착 층 | |
US8808808B2 (en) | Method for imprint lithography utilizing an adhesion primer layer | |
US7157036B2 (en) | Method to reduce adhesion between a conformable region and a pattern of a mold | |
US8415010B2 (en) | Nano-imprint lithography stack with enhanced adhesion between silicon-containing and non-silicon containing layers | |
US20080110557A1 (en) | Methods and Compositions for Providing Preferential Adhesion and Release of Adjacent Surfaces | |
EP1718697A1 (en) | Materials for imprint lithography | |
KR101538359B1 (ko) | 에칭된 다층 스택에서의 잔류물의 감소 | |
TWI495951B (zh) | 超薄聚合性黏著層 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170627 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180626 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190625 Year of fee payment: 6 |