KR100665484B1 - 프로그래밍 가능한 지연 회로를 포함하는 메모리 - Google Patents

프로그래밍 가능한 지연 회로를 포함하는 메모리 Download PDF

Info

Publication number
KR100665484B1
KR100665484B1 KR1019990041318A KR19990041318A KR100665484B1 KR 100665484 B1 KR100665484 B1 KR 100665484B1 KR 1019990041318 A KR1019990041318 A KR 1019990041318A KR 19990041318 A KR19990041318 A KR 19990041318A KR 100665484 B1 KR100665484 B1 KR 100665484B1
Authority
KR
South Korea
Prior art keywords
circuit
delay
output
block
memory
Prior art date
Application number
KR1019990041318A
Other languages
English (en)
Other versions
KR20000062133A (ko
Inventor
창레이
위어윌리암알.
웡리차드와이.
Original Assignee
프리스케일 세미컨덕터, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프리스케일 세미컨덕터, 인크. filed Critical 프리스케일 세미컨덕터, 인크.
Publication of KR20000062133A publication Critical patent/KR20000062133A/ko
Application granted granted Critical
Publication of KR100665484B1 publication Critical patent/KR100665484B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/023Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/026Detection or location of defective auxiliary circuits, e.g. defective refresh counters in sense amplifiers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Dram (AREA)

Abstract

메모리는, 2차 증폭기들에 의해 수신되는 데이터를 글로벌 데이터 라인들 상에 제공하는 감지 증폭기들을 갖는다. 감지 증폭기들 및 2차 증폭기들은 프로그래밍 가능한 지연 회로들에 의해 타이밍이 정해지는 클럭들에 의해 인에이블된다. 프로그래밍 가능한 지연들은, 연속하는 출력을 프로그래밍 가능한 지연 회로들에 제공하는 지연 선택 회로들에 의해 프로그래밍된다. 2개의 지연 선택 회로들이 있다. 하나는 감지 증폭기들을 인에이블하는 모든 프로그래밍 가능한 지연 회로들에 의해 공유되고, 다른 하나는 2차 증폭기들을 인에이블하는 모든 프로그래밍 가능한 지연 회로들에 의해 공유된다. 이 2개의 지연 선택 회로들의 출력들은 메모리의 액세스 시간이 최악인 경우를 최적화하기 위하여 프로그래밍 가능한 지연 회로들을 프로그래밍하는 출력을 제공하도록 선택된다.
프로그래밍 가능한 지연 회로, 메모리, 2차 증폭기, 글로벌 데이터 라인, 감지 증폭기

Description

프로그래밍 가능한 지연 회로를 포함하는 메모리{Programmable delay control in a memory}
도 1은 본 발명의 실시예에 따른 메모리의 블록도.
도 2는 도 1의 메모리의 선택된 부분의 블록도.
도 3은 도 2에 도시된 선택된 부분의 일부의 논리도.
도 4는 본 발명의 실시예에 따른 감지 증폭기의 회로도.
*도면의 주요 부분에 대한 부호의 간단한 설명*
10: 집적 회로 11: 래치
13: 어레이 21: 블록 제어 회로의 부분
22: 블록 제어 회로 26: 등화 회로
30: 2차 증폭기 32: 지연 조정 회로
34: 퓨즈 회로 42: 감지 증폭 제어 신호 발생 회로
36: 출력 회로 46: 감지 증폭기
50: 2차 증폭 제어 신호
본 발명은 메모리에서의 지연들을 제어하는 것에 관한 것으로, 특히, 지연들을 제어하기 위하여 프로그래밍 가능한 지연들을 사용하는 것에 관한 것이다.
메모리 회로를 설계하는데 있어서의 어려움들 중 하나는 메모리 회로에서 다양한 기능들을 인에이블하는 클럭 신호들의 타이밍을 최적화하는 것이다. 클럭 신호를 전송하는 회로로부터 그 클럭 신호를 수신하는 회로까지의 전파 지연은 클럭 신호에서 비롯한 것이다. 클럭 신호가 발생될 때, 일반적으로 몇몇의 기능들을 인에이블하기 위한 것이고, 보다 구체적으로, 인에이블되는 기능의 역할을 하는 몇몇의 다른 회로를 인에이블하기 위한 것이다. 클럭 신호는 필요한 지연을 최적화하기 위하여 타이밍용으로 제공된다. 이 타이밍을 지원하기 위해 행해지는 한가지는 그 지연을 프로그래밍하는 것이다. 그러한 방법의 특징들 중 하나는, 그러한 프로그래밍된 지연을 구현하기 위해 프로그래밍되는, 퓨즈(fuse)들과 같은 몇몇의 특징들이 있어야 한다는 것이다. 그러한 퓨즈들은 집적 회로 상에 공간을 필요로 한다. 또한, 발생되는 클럭 신호는 그것이 인에이블하는 하나의 회로에 대해 최적화될 수 있지만, 수신 회로의 위치에 기초한 지연에서의 차이들 때문에, 다른 회로는 시간 내에 최적의 지점이 아닌 곳에서 클럭킹될 수도 있다. 최적화하는 몇몇의 레벨이 제공되지만, 지연을 프로그래밍하기 위해서 퓨즈들을 사용하는 것은 지연의 최적 제어와 관련된 모든 문제를 해결할 수는 없다. 그러나, 퓨즈들은 공간을 차지하여, 각각의 프로그래밍 가능한 지연 소자는 그 자체로서 부가적인 공간을 필요로 할 뿐만 아니라, 하나 이상의 지연을 포함해야 한다. 따라서, 하나의 글로벌 지연 회로보다 더 많은 회로를 필요로 한다. 거기에 덧붙여, 그 프로그래밍을 실행시키기 위해 필요한 가용성의 링크들 또는 메커니즘들이 있다.
메모리 설계에 있어서의 동적 증폭기들의 이점들은 공지되어 있다. 정적 증폭기보다 뛰어난 동적 증폭기의 이점은 주로 전력 절약이다. 정적 증폭기의 이점은, 어떤 신호라도 언제든지 증폭할 것이고, 데이터를 래치하지 않는다는 것이다. 데이터가 도착하자마자 증폭을 시작할 것이고, 데이터가 그 자체를 반전해야 하거나, 초기 데이터에 잡음이 있을 경우, 잘못된 방향으로 래치되지 않기 때문에 출력이 잘못된 데이터를 제공하는 위험은 없다. 잘못된 방향에서 시작된다면 그것은 그 자체를 반전시킬 것이며, 최종적으로는 정확한 데이터를 제공할 것이다. 동적 증폭기에서, 데이터는 증폭기가 인에이블되자마자 래치된다. 그 시점에 잘못되거나 또는 부적절한 데이터가 있다면, 잘못된 방향으로 래치될 수 있다. 따라서, 동적 증폭기의 저전력 측면의 이점을 이용하기 위하여, 인에이블되는 타이밍을 최적화하는 것이 매우 중요하다. 필요 이상으로 늦게 인에이블되면 속도상 불리하다. 너무 빨리 인에이블되면, 신뢰성에 문제가 있다. 또한, 적절한 타이밍에 의해, 정적 증폭기보다 동적 증폭기에서 속도 또한 더 빠를 수도 있다.
통상, 메모리는, 전력 소비 및 데이터 액세스 속도에 있어서의 효율을 개선하기 위하여 메모리를 분할하는 많은 서브어레이들이 있다. 입력들로의 및 입력들로부터의 데이터를 메모리 셀 위치들로 전달하는 긴 라인들이 있다. 또한, 전체 칩에 걸쳐 발산(spread)할 수도 있는 클럭 신호들이 있다. 그러한 클럭들의 개시로부터 그 클럭들을 수신하는 회로까지의 거리는 크게 변동될 수 있고, 따라서, 하나의 회로가 다른 회로로부터 클럭을 수신할 때 지연들이 불일치할 수 있다. 이 문제는 동적 증폭기들에도 적용되며, 이는 동적 증폭기들이 인에이블되기 위하여 클럭을 필요로 하기 때문이다. 또한, 동적 증폭기들은, 그러한 증폭기들이 어떻게 클럭킹되는지에 대해 영향을 미치는 프로세싱, 전원 전압 및 다른 2차 효과들을 받는다. 그러한 2차 효과들은 집적 회로의 다른 부분들에 의해 발생되는 잡음을 포함할 수도 있고, 그러한 잡음은 집적 회로 내의 위치에 기초하여 변할 수도 있다. 이러한 종류의 변동들은 메모리에서 동적 증폭기들을 실시하는데 곤란하게 한다. 따라서, 클럭들을 수신하고 있는 회로가 적절한 시간에 클럭을 수신하도록, 클럭들을 최적화하기 위한 시스템을 필요로 한다.
도 1은 집적 회로(10)의 일 실시예를 예시한다. 집적 회로(10)의 적어도 한 부분은 메모리 회로를 포함한다. 어레이들(13, 14)은 이 메모리 회로의 일부이다. 각각의 어레이는 복수의 블록들로 분할된다. 예를 들어, 어레이(13)는 블록들(17, 18)을 포함한다. 각 메모리 블록은 블록 제어 회로를 포함한다. 예를 들어, 메모리 블록(17)은 블록 제어 회로(21)를 포함하고, 메모리 블록(18)은 블록 제어 회로(22)를 포함한다. 본 발명의 일 실시예에서, 블록 제어 회로(21, 22)는 동일하다. 본 발명의 대안적인 실시예들에서, 각 메모리 블록 내의 블록 제어 회로는 동일하거나 약간 다를 수도 있다. 본 실시예에서, 퓨즈 회로(24)는 4개의 2진 데이터 비트들을 포함하는 신호(62)를 블록 제어 회로(21, 22)에 제공하는 출력을 가진다. 블록 제어 회로(21, 22)는 글로벌 데이터 라인들(56)에 연결되고, 2차 증폭기(30) 글로벌 데이터 라인들(56)에 출력을 제공한다. 또한, 블록 제어 회로(21, 22)는 라인(12)에 연결되고, 라인(12)을 경유하여 지연 조정 회로(32)에 출력을 제공한다. 또한, 도 1은 어레이(14) 내의 블록(70), 블록 제어 회로(72), 글로벌 데이터 라인(74), 2차 증폭기(30)와 유사한 2차 증폭기(76), 출력 회로(78) 및 지연 조정 회로(80)를 도시한다. 블록(70)은 블록 제어 회로들(21, 22)과 유사한 블록 제어 회로(72)를 포함한다. 블록 제어 회로(72)는 글로벌 데이터 라인(74)에 연결된 한 쌍의 출력들, 2차 증폭 제어 신호(82)를 제공하는 출력 및 퓨즈 회로(24)의 출력에 연결된 입력을 갖는다. 2차 증폭기(76)는 글로벌 데이터 라인들(74)에 연결된 한 쌍의 신호 입력들, 인에이블 입력 및 한 쌍의 출력들을 갖는다. 출력 회로(78)는 2차 증폭기(76)의 한 쌍의 출력들에 연결된 한 쌍의 입력을 갖는다. 지연 조정 회로(80)는 2차 증폭 제어 신호(82)를 수신하기 위한 클럭 입력, 퓨즈 회로(34)의 출력에 연결되는 프로그램 입력, 및 2차 증폭기(76)의 인에이블 입력에 연결된 출력을 갖는다.
선택적인 멀티플렉서(28)는, 어레이(13 또는 14)에 위치된 블록이 데이터를 2차 증폭기(30)에 제공하기 위해 사용되는지의 여부를 결정하기 위해 사용될 수도 있다. 블록 제어 회로(21, 22)는 각각 2차 증폭 제어 신호(50)를 지연 조정 회로(32) 및 등화 회로(26)에 독립적으로 제공할 수 있다. 등화 회로(26)는 글로벌 데이터 라인들(56)에 연결된다. 퓨즈 회로(34)는 하나 이상의 신호들(54)을 지연 조정 회로(32)에 제공한다. 지연 조정 회로(32)는 조정된 증폭 제어 신호(52)를 2차 증폭기(30)에 제공한다. 2차 증폭기(30)는 데이터 라인들(58)을 출력 회로(36)에 제공한다. 출력 회로(36)는 데이터 라인들(60)을 집적 회로들(10)의 외부에 제공한다. 래치(11)는 블록 제어 회로(21, 22)와 같은 블록 제어 회로들을 연결하는 라인에 연결되고, 2차 증폭 제어 신호(50)를 래치한다. 블록 제어 회로(21, 22)와 같은 블록 제어 회로에 의해 제공되는 출력인 2차 증폭 제어 신호(50)는 3상(tri-stateable)이다.
도 2는 블록 제어 회로(21) 및 퓨즈 회로(24)의 부분을 예시한다. 퓨즈 회로(24)는 하나 이상의 신호들(47)을 지연 조정 회로(40)에 제공한다. 또한, 지연 조정 회로(40)는 입력들로서 블록 선택 신호(49) 및 판독 신호(51)를 수신한다. 또한, 블록 선택 신호(49)는 감지 증폭 제어 신호 발생 회로(42)에 대한 입력으로서 제공된다. 지연 조정 회로(40)는 신호(45)를 감지 증폭 제어 신호 발생 회로(42) 및 2차 증폭 제어 신호 발생 회로(44)에 제공한다. 감지 증폭 제어 신호 발생 회로(42)는 감지 증폭 제어 신호들(43)을 감지 증폭기(46)에 제공한다. 2차 증폭 제어 신호 발생 회로(44)는 2차 증폭 제어 신호(50)를 제공한다. 감지 증폭기(46)는 열(column) 디코더(47)에 연결된 로컬 라인들(61, 62)에 연결된다. 열 디코더(47)는 비트 라인들(53)을 경유하여 메모리 셀들(48)에 연결된다. 감지 증폭기(46)는 글로벌 데이터 라인들(56, 57) 상에 출력을 제공한다.
도 3은 도 2의 지연 조정 회로(40)의 일 실시예를 예시한다. 지연 조정 회로(40)는 미리 결정된 지연 회로(100 내지 103), 3상 버퍼들(110 내지 117), 인버터들(118 내지 121) 및 NAND 게이트(104)를 포함한다. NAND 게이트(104)는 입력들로서 블록 선택 신호(49) 및 판독 신호(51)를 수신한다. NAND 게이트(104)의 출력은 미리 결정된 지연 회로(100) 및 3상 버퍼(110)의 입력에 연결된다. 미리 결정된 지연 회로(100)의 출력은 3상 버퍼(114)의 입력에 연결된다. 3상 버퍼(114)의 출력은 미리 결정된 지연 회로(101)의 입력 및 3상 버퍼(111)의 입력에 연결된다. 미리 결정된 지연 회로(101)의 출력은 3상 버퍼(115)의 입력에 연결된다. 3상 버퍼(115)의 출력은 미리 결정된 지연 회로(102) 및 3상 버퍼(112)의 입력에 연결된다. 미리 결정된 지연 회로(102)의 출력은 3상 버퍼(116)의 입력에 연결된다. 3상 버퍼(116)의 출력은 미리 결정된 지연 회로(103) 및 3상 버퍼(113)의 입력에 연결된다. 미리 결정된 지연 회로(103)의 출력은 3상 버퍼(117)의 입력에 연결된다. 3상 버퍼(117)의 출력은 3상 버퍼(113)의 출력에 연결되고, 신호(45)를 제공한다. 3상 버퍼(110)의 출력은 3상 버퍼(111)의 입력에 연결된다. 3상 버퍼(111)의 출력은 3상 버퍼(112)의 입력에 연결된다. 3상 버퍼(112)의 출력은 3상 버퍼(113)의 입력에 연결된다.
퓨즈 회로(24)는 N 선택 신호들(122 내지 125)을 지연 조정 회로(40)에 제공한다. 도 3에 예시된 실시예는 퓨즈 회로(24)로부터 제공되는 4개의 선택 신호들을 도시하지만, 본 발명의 다른 실시예들은 임의의 수의 선택 신호들을 사용할 수도 있다. 선택된 신호(122)는 인버터(118)의 입력, 3상 버퍼(110)의 반전 제어 입력(inverting control input) 및 3상 버퍼(114)의 비반전 제어 입력에 연결된다. 선택 신호(123)는 인버터(119)의 입력, 3상 버퍼(111)의 반전 제어 입력 및 3상 버퍼(115)의 비반전 제어 입력에 연결된다. 선택 신호(124)는 인버터(120)의 입력, 3상 버퍼(112)의 반전 제어 입력 및 3상 버퍼(116)의 비반전 제어 입력에 연결된다. 선택 신호(125)는 인버터(121)의 입력, 3상 버퍼(113)의 반전 제어 입력 및 3상 버퍼(117)의 비반전 제어 입력에 연결된다. 인버터(118)의 출력은 3상 버퍼(110)의 비반전 제어 입력 및 3상 버퍼(114)의 반전 제어 입력에 연결된다. 인버터(119)의 출력은 3상 버퍼(111)의 비반전 제어 입력 및 3상 버퍼(115)의 반전 제어 입력에 연결된다. 인버터(120)의 출력은 3상 버퍼(112)의 비반전 제어 입력 및 3상 버퍼(116)의 반전 제어 입력에 연결된다. 인버터(121)의 출력은 3상 버퍼(113)의 비반전 제어 입력 및 3상 버퍼(117)의 반전 제어 입력에 연결된다.
도 4는 블록도의 형태로 도 2에서 도시된 감지 증폭기(46)를 보다 구체적으로 도시한다. 감지 증폭기(46)는 P 채널 트랜지스터(202), P 채널 트랜지스터(204), P 채널 트랜지스터(206), P 채널 트랜지스터(208), N 채널 트랜지스터(210), N 채널 트랜지스터(212), N 채널 트랜지스터(214), P 채널 트랜지스터(216) 및 P 채널 트랜지스터(218)를 포함한다. 트랜지스터들(202, 204) 각각은 프리차지(precharge) 신호(200)를 수신하기 위한 게이트를 갖는다. 프리차지 신호(200)는 도 2에 도시된 감지 증폭 제어 신호들(43) 중 하나이다. 트랜지스터들(202, 204) 각각은 양의 전력 공급을 수신하기 위한 양의 전원 단자(VDD)에 연결된다. 트랜지스터(202)는 로컬 데이터 라인(61)에 연결되는 드레인을 가진다. 트랜지스터(204)는 로컬 데이터 라인(62)에 연결되는 드레인을 갖는다. 트랜지스터(206)는 VDD에 접속된 소스, 로컬 데이터 라인(62)에 접속된 게이트, 로컬 데이터 라인(61)에 접속된 드레인을 갖는다. 트랜지스터(208)는 VDD에 접속된 소스, 로컬 데이터 라인(61)에 접속된 게이트 및 로컬 데이터 라인(62)에 접속된 드레인을 갖는다. 트랜지스터(210)는 로컬 데이터 라인(62)에 접속된 게이트, 로컬 데이터 라인(61)에 접속된 드레인 및 소스를 갖는다. 트랜지스터(212)는 로컬 데이터 라인(61)에 접속된 게이트, 로컬 데이터 라인(62)에 접속된 드레인 및 트랜지스터(210)의 소스에 접속된 소스를 갖는다. 트랜지스터(214)는 도 2에 도시된 감지 증폭 제어 신호들(43) 중 하나인 감지 증폭 인에이블 신호(201)를 수신하기 위한 게이트를 갖는다. 트랜지스터(214)는 트랜지스터들(210, 212)의 소스들에 접속된 드레인 및 접지로서 도 4에 도시된 음의 전원 단자에 접속된 소스를 갖는다. 트랜지스터(216)는 로컬 데이터 라인(61)에 접속된 게이트, 접지에 접속된 드레인 및 글로벌 데이터 라인(56)에 접속된 소스를 갖는다. 트랜지스터(218)는 로컬 데이터 라인(62)에 접속된 게이트, 접지에 접속된 드레인 및 글로벌 데이터 라인(57)에 접속된 소스를 갖는다.
동작에 있어서, 어레이들(13, 14)과 유사한 8개의 어레이들이 있고, 편리하게 악텐트(octant)들이라고 할 수도 있다. 집적 회로(10)의 메모리의 임의의 주어진 액세스시, 4개의 악텐트들은 본 설명된 실시예에서 데이터를 공급할 것이다. 각 액세스시마다 36 비트가 제공되어, 각 악텐트는 액세스 당 9 비트를 제공한다. 각각의 악텐트는 도 1에 도시된 블록들(17, 18)과 같은 32 블록들을 갖는다. 주어진 액세스에 대해서, 하나의 블록만이 데이터를 제공하므로, 주어진 액세스에 대해서, 선택된 블록이 9 비트의 데이터를 제공할 것이다. 즉, 선택되는 4개의 악텐트들에 대하여 하나의 블록이 데이터를 제공할 것이다. 따라서, 어레이들(13, 14)은 집적 회로(10)의 서브어레이(subarray)들로 고려될 수 있고, 블록들(17, 18)은 어레이(13)의 서브어레이들로 고려될 수 있다.
판독에 앞서, 등화 회로(26)는 글로벌 데이터 라인들(56)을 등화(equalize)한다. 도 1에 도시된 멀티플렉서(28)는 블록들(17, 18)을 갖는 악텐트에 대한 글로벌 데이터 라인들에 연결된다. 또한, 어레이(14)와 같이 상이한 악텐트로부터 유도되는 글로벌 데이터 라인들이 멀티플렉서(28)에 연결된다. 멀티플렉서(28)는 글로벌 데이터 라인들(56), 또는 대안적으로, 도시되지 않은 글로벌 데이터 라인들로부터 수신된 데이터를 2차 증폭기(30)에 제공한다. 선택적인 경우에, 멀티플렉서(28)는 존재하지 않고, 글로벌 데이터 라인들(56)은 2차 증폭기(30)에 직접 접속되고, 어레이(14)와 같이, 다른 악텐트로부터 보이지 않는 글로벌 데이터 라인들로부터 데이터를 수신하기 위한 부가적인 2차 증폭기가 있을 수도 있다.
출력 회로(36)는 2차 증폭기(30)로부터 데이터를 수신하고, 원하는 출력을 데이터 라인들(60)에 제공한다. 지연 조정 회로(32)는 2차 증폭기(30)를 인에이블하기 위한 타이밍을 제공한다. 지연량은 퓨즈 회로(34)로부터 라인(54) 상에 제공되는 정보에 의해 결정된다. 집적 회로(10)가 완전히 제조된 후의 처리 동안에는 퓨즈 회로(34)만 선택된다. 퓨즈 차단(blowing)은 메모리 분야에서는 일반적이다. 통상, 메모리들은 퓨즈 차단에 의해 선택적으로 실행되는 리던던시(redundancy)를 갖는다. 또한, 로트 번호(lot number), 웨이퍼 상의 위치 및 다른 정보에 기초하여 개별적인 집적 회로들을 식별하는 것이 요즘 일반적이다. 또한, 이 정보는 퓨즈 차단에 의해 집적 회로 상에 배치된다. 이 정보는 퓨즈 차단에 의해 인코딩된다. 따라서, 퓨즈 차단은 실제로 장치가 제조되는 경우마다 발생한다. 메모리에 있어서의 리던던시의 경우에 있어서, 리던던시가 필요한 경우에만 퓨즈 차단이 발생한다. 그러나, 리던던시를 구현하기 위한 기술은 매우 신뢰할 수 있으며, 따라서, 이 기술을 사용하는데 있어서의 위험은 모든 장치에 대해 효력을 발생시킴에도 불구하고 미미하다.
퓨즈 회로(24)는 유사하게 블록 제어 회로(21, 22) 뿐만 아니라 도시되지 않는 다른 블록들에 대한 다른 블록 제어 회로에 정보를 제공한다. 또한, 이 퓨즈 회로는 최적의 지연 동안 전기 검사 후에 선택적으로 차단된다. 블록 제어 회로(21, 22)는 퓨즈 회로(24)로부터 라인(62) 상에 제공되는 정보를 실행한다. 예를 들어, 블록 제어 회로(21)는 블록(17)에 제공되는 정보의 감지를 시작한다. 또한, 데이터의 감지를 시작하는 동일한 회로인 블록 제어 회로(21)는 2차 증폭 제어 신호(50)를 지연 조정 회로(32)에 제공한다. 지연 조정 회로(32)에 의한 2차 증폭기(30)의 트리거링은 퓨즈 회로(34)에 의해 선택되는 양만큼 지연된 2차 증폭 제어 신호(50)에 의해 시작된다. 또한, 2차 증폭 제어 신호(50)는 등화 회로(26)에 의해 제공되는 등화를 종결시키는데 사용된다. 신호(50)는 이 경우에 블록 제어 회로(21)에 의해 제공되는 논리 상태에서 지연 조정 회로에 대한 입력을 유지시키기 위해 래치(11)에 의해 래치된다. 신호(50)를 전달하는 라인(12)은 글로벌 데이터 라인들(56)에 물리적으로 매칭된다. 그것은 의도적이고, 지연을 포함한 신호의 거동과 글로벌 데이터 라인들(56)에 제공된 출력의 거동의 뛰어난 매칭을 제공하는 이점을 제공한다. 또한, 퓨즈 회로(24)에 의해 수행되는 지연 선택의 기능은 프로그래밍 가능한 회로의 다른 형태에 의해 수행될 수 있다. 예를 들어, 이 기능은 비휘발성 메모리의 4 비트에 의해 수행될 수 있다. 특히, 이것은 제공되는 지연이 일부 EEPROM을 갖는 MCU의 보드 상에 위치한 SRAM 메모리에 대한 것일 경우에 응용될 수 있다. 선택된 지연은 퓨즈들의 차단을 필요로 하는 대신 EEPROM에 편리하게 로드될 수 있다.
도 2는 퓨즈 회로(24) 및 블록 제어 회로(21)의 일부를 도시한다. 또한, 도 2는 블록(17)의 메모리 셀들을 나타내는 메모리 셀들(48)의 블록 및 메모리 셀들로부터 감지 증폭기(46)에 데이터를 선택적으로 연결하는 열 디코더(47)를 도시한다. 그래서, 동작에 있어서, 메모리 셀들(48)에서의 메모리 셀들의 행이 인에이블된 다음, 비트 라인들이 워드 라인을 따라 데이터를 전개(develop)한다. 데이터는 비트 라인 쌍들에서 전개된다. 그후, 이 비트 라인 쌍들 중 선택된 하나는 비트 라인 쌍은 열 디코더(47)에 의해 감지 증폭기(46)에 연결된다. 이것은 SRAM들에 대한 표준 동작이다. 열 디코더가 인에이블되기 전에 감지 증폭기가 인에이블되는 것을 제외하면 DRAM과 유사하다. 감지 증폭기(46)는, 감지 증폭 제어 신호들(43)에 응답하여, 선택된 비트 라인 쌍으로부터 정보를 증폭하고 래치하기 시작한다. 이 특정 실시예에서, 감지 증폭기(46)는 로컬 데이터 라인(61) 및 로컬 데이터 라인(62)을 경유하여, 비트 라인들로부터 정보를 수신한다. 열 디코더(47)는 8 비트 라인 쌍들로부터 선택하여, 8 비트 라인 쌍들 중 하나가 로컬 데이터 라인(61, 62)을 경유하여 감지 증폭기(46)에 연결되도록 한다. 감지 증폭기(46)는 감지 증폭 제어 신호 발생 회로(42)로부터의 감지 증폭 제어 신호들(43)에 의해 인에이블된다. 지연 조정 회로(40)는 블록 선택 및 판독 신호들의 조합인 공통 클럭 신호를 라인(45) 상에 제공한다. 또한, 블록 선택 신호(49)는 감지 증폭 제어 신호 발생 회로(42)에 의해 수신되고, 감지 증폭 제어 신호 발생 회로(42)는 감지 증폭기(46)를 인에이블하기 전에 감지 증폭기(46)의 프리차지를 방출하기 위해 그 신호를 이용한다. 감지 증폭기(46)는 도 4에 보다 상세히 도시되어 있다. 프리차지 신호(200)는 감지 증폭 제어 신호들(43) 중 하나이다.
통상의 동작시에는, 판독 신호가 먼저 액티브되고 블록 선택 신호가 뒤따른다. 그후, 지연 조정 회로(40)는, 퓨즈 회로(24)에 의해 결정되는 블록 선택 신호 지연에 응답하여, 그의 출력인 공통 클럭 신호를 제공한다. 지연 조정 회로(40)는 퓨즈 회로(24)에 의해 제공되는 선택 신호들에 응답하는 프로그래밍 가능한 지연이다. 본 설명된 실시예에서, 퓨즈 회로(24)는 지연 조정 회로(40)의 지연을 조정하기 위하여 데이터의 4개의 2진 비트들을 제공한다. 퓨즈 회로(24)는 데이터를 라인(47)을 경유하여 지연 조정 회로(40)에 제공하는 것으로 도시되어 있다. 또한, 다른 블록들에 대한 유사한 지연 조정 회로들은 퓨즈 회로(24)에 연결되고, 그로부터 데이터의 이러한 4개의 2진 비트들을 수신한다. 따라서, 블록 제어 회로들(21) 내에 있는 지연 조정 회로(40)와 같이 블록 제어 회로 내에 존재하는 이러한 다른 프로그래밍 가능한 지연들 각각은 동일한 지연을 갖도록 프로그래밍된다.
또한, 2차 증폭 제어 신호 발생 회로(44)는 지연 조정 회로(40)의 출력인 공통 클럭 신호(45)에 응답하고, 도 1에 도시된 지연 조정 회로(32)를 경유하여 2차 증폭기(30)를 인에이블하기 위해 사용되는 2차 증폭 제어 신호(50)를 제공한다. 따라서, 감지 증폭기(46) 및 2차 증폭기(30)는 공통 클럭 신호(45)를 통해 블록 선택 신호(49)에 응답하여 인에이블된다. 신호(45)는 블록 선택 신호(49)로부터 국부적으로 발생된 제어 신호이기 때문에, 감지 증폭기(46)의 클럭킹, 글로벌 데이터 라인(56) 상에의 데이터의 발생 및 2차 증폭기(40)를 클럭킹하기 위해 사용되는 신호(50)의 발생은 밀접하게 매칭된다. 포함되지 않은 블록이 선택된 경우에 대해, 2차 증폭 제어 신호 발생 회로(44)는 높은 임피던스 출력을 제공해야 하고, 따라서, 그후, 다른 선택된 블록으로부터의 유사한 블록 제어 회로는 지연 조정 회로(32)를 통해 2차 증폭기(30)를 인에이블할 수 있다. 2차 증폭 제어 신호 발생 회로(44)는 3상 버퍼를 포함하는 출력단을 갖는다. 래치(11)는 액티브 되는 블록이 없을 때 감지 증폭 제어 신호(50)를 유지한다. 감지 증폭기(46)는, 도 1에 도시된 일 실시예에서의 멀티플렉서(28)를 경유하여 간접적으로 또는 다른 2차 증폭기(30)에 의해 직접적으로 2차 증폭기(30)에 의해 수신되는 글로벌 데이터 라인(56, 57) 상에 데이터를 제공한다.
퓨즈 회로(24, 34)는 전기 검사될 수 있는 지점에 대해 집적 회로(10)를 처리한 후에 만들어지는 전기 측정에 따라 차단된다. 전기 검사는 지연 조정 회로(40) 및 지연 조정 회로(32)에 대한 최적의 지연을 결정하기 위해 사용된다. 이것은 각각의 메모리 셀로부터 확실하게 데이터를 검출할 수 있도록 하는 최소 지연이 무엇인지를 결정함으로써 이루어진다. 따라서, 퓨즈 회로(24, 34)가 선택되어, 느린 비트들조차도 신뢰할 수 있도록 한다. 일부의 비트들이 극도로 느리다면, 그 비트들은 사실상 결함이 있고, 지연 조정 회로(40, 32)와 같은 지연 조정 회로들에 대한 적절한 지연을 선택하는데 있어서 고려되지 않는다. 지연이 과도한 경우에, 그러한 너무 느린 비트들은 결함이 있는 것으로 고려되고, 메모리들 상에서 흔히 이용 가능한 리던던시에 의해 교체된다. 지연 조정 회로가 퓨즈 회로(24, 34)를 선택하여 최적화된 후에, 필요하다면, 리던던시가 실시되고, 식별 퓨즈 차단(identification fuse blowing)이 발생된 후, 집적 회로(10)가 재검사된다.
블록 내에서의 지연 조정 회로(40)의 구성은 지연 조정 회로(40)에 의해 제공되는 지연에 관련되어 발생하는 다른 지연들의 매우 정확한 트래킹을 가능하게 한다. 대안으로서, 지연 조정 회로(40)는 이웃하는 블록 선택 회로에 의해 공유될 수 있다. 예를 들어, 지연 조정 회로(40)는 블록 제어 회로(21, 22)에 의해 공유될 수도 있다. 퓨즈 회로(24)는 처리 변경들에 따라 스케일링하지 않는 미세 조정을 위해 이용된다. 예를 들어, 각각의 블록에 근접한 지연 조정 회로를 가짐으로써, 긴 지연들 및 일치하지 않는 지연들의 문제들은, 지연 조정 회로가 칩 상에서 단일 위치에 있을 경우 발생하는 것과 비교하여 감소된다. 유효하게 하기 위해서, 감지 증폭기(46)는 비트 라인들에 매우 가까워야 하거나, 또는 극도로 느려야 한다. 비트 라인들 상에 데이터를 제공하는 메모리 셀들은 매우 작은 구동 능력을 가진다. 따라서, 블록(21) 내의 감지 증폭기(46)와 같이 블록들 내부에 있는 감지 증폭기들에 의해, 어떠한 중앙화된 지연 조정 회로는 그의 위치로부터 각 블록까지의 거리를 통과해야 한다. 따라서, 지연 회로로부터 블록들까지 통과하는 거리는 어떤 블록이 선택되는지에 따라서 변한다. 지연 회로를 국부적으로 제공하는 이점의 다른 예는 전력 공급 변동들을 매칭할 수 있다는 것이다. 전원 전압은 칩 내의 위치에 기초하여 변한다. 지연 회로가 블록에 가깝게 있다면, 지연 회로는, 블록으로부터 멀리 떨어져 있는 것보다 블록에 의해 수신되는 것에 보다 가까운 전원 전압을 수신할 것이다. 유사하게, 지연 조정 회로(32)는 2차 증폭기(30)에 아주 근접하여 위치되어 있어, 둘 사이의 매칭을 강화한다.
전원 전압은 칩에서의 위치에 기초하여 상당히 변화할 수 있다. 전원 전압들을 전달하는 라인들은 크기에 있어서 한정되고, 라인들을 통해서 움직이는 전류는 전압 강하를 유발하고, 따라서, 위치에 따라서, 전압이 변할 수도 있다. 따라서, 지연 조정 회로(40)와 같이, 정보를 프로그래밍 가능한 조정 회로에 차례로 제공하는 퓨즈들을 차단함으로써 프로그래밍 가능한 퓨즈 회로는 변하는 그러한 종류의 것들을 조정할 수 있지만, 아주 근접한 회로를 가짐으로써 반드시 완전하게 매칭될 필요는 없다. 이것은 전원 변동을 포함할 수도 있다. 다른 예에 대해서, 감지 증폭기가 유용한 출력 그 자체를 제공하는 속도는 그것이 경험하는 처리에 기초하여 변할 수도 있다. 그 특징은, 그것이 어느 정도까지 스케일링된다면, 일 대 일로 스케일링되지 않거나, 또는 보통의 인버터들에 발생하는 지연들 및 클럭 신호들을 발생하는 논리 게이트들에 대해 스케일링하지 않을 수도 있다. 따라서, 예를 들어, 변하기는 하지만 매칭되지 않거나 적어도 완전하게 매칭되는 파라미터들은 클럭 회로에 아주 근접함으로써 퓨즈 회로(24)에 의해 고려된다.
가장 느린 비트는 메모리의 속도를 결정한다. 실제 사용에 있어서, 어떤 비트들이 사용될 것인지 어떤 비트들이 사용되지 않을 것인지는 알 수 없다. 이들 모두가 가정되어야 한다. 따라서, 제조자는 가장 느린 비트에 기초하여 장치의 속도를 명시한다. 장치의 사용자 또는 오퍼레이터는 신뢰할 수 있는 가장 느린 레벨을 고려한 클럭 속도에서 장치를 비슷하게 동작시킬 수 있다. 이 경우에, 로컬 회로는 주어진 비트에 대하여 최대 동작 속도를 이용할 수 있음을 보장하고, 퓨즈 회로는, 가장 느린 비트가 가장 빠른 능력에서 동작하도록 가장 느린 비트조차도 고려함을 보장한다.
따라서, 감지 증폭기 및 2차 증폭기의 최적화를 위하여 지연들이 제공되어, 신뢰할 수 있는 검색을 위해 충분한 신호가 발생되도록 하지만, 더 이상의 지연 시간은 필요하지 않도록 한다. 이것은, 클럭 지연 회로를, 그러한 지연들에 의해 클럭킹되는 회로들에 아주 근접시킴으로써 달성된다. 이 지연들을 프로그래밍하기 위한 단일 퓨즈 회로는, 최악의 경우는 장치의 속도에 관한 판정 문제이고, 단일 퓨즈 회로는 가장 느린 경우의 속도를 최적화하는데 충분하기 때문에 효과적이다. 빠른 비트들은 그들의 가장 빠른 속도에서는 동작하지 않지만, 여하튼 장치의 유용성을 개선하지는 않을 것이다. 이 경우에, 지연과 관련된 정보는 포괄적이고 연속적으로 전송되어, 지연 회로는 어떠한 신호가 지연을 위해 수신되기 전에 지연 정보를 수신한다. 따라서, 지연 정보의 전송과 관련된 지연은 없다. 따라서, 단일 회로를 가짐으로써 통상 제기되는 타이밍 문제들은 퓨즈 회로를 배치하는데 있어서 문제를 나타내지 않는 다양한 위치들에 있는 다른 회로들에 정보를 제공한다.
감지 증폭기(46) 및 2차 증폭기(30)는 각각 동적 증폭기들로서 공지되어 있는 종류의 것이다. 감지 증폭기(46)는 감지 증폭 제어 신호(43)에 의해 클럭킹되어 필요한 것보다 느리지는 않지만, 신뢰할 수 있는 데이터의 래칭을 보장하기에는 충분히 길다. 유사하게, 2차 증폭기(30)는 동일하게 고려되어 클럭킹된다. 이 경우에, 2차 증폭기(30)는 너무 일찍 턴온될 수 있으며, 예를 들어, 블록(17)에 의해 글로벌 데이터 라인(56) 상에 제공되는 데이터는 2차 증폭기(30)가 인에이블될 때 충분히 전개되지 않는다. 지연 조정 회로(32)는 2차 증폭기(30)에 아주 근접하게 위치되고, 블록 제어 회로는 블록(17)에 아주 근접하게 위치된다. 따라서, 블록(17)으로부터 2차 증폭기(30)로의 글로벌 데이터 라인들(56) 상의 지연은 블록 제어 회로(21)로부터 지연 조정 회로(32)로의 라인(12) 상의 지연에 의해 매칭된다. 이러한 매칭에 의해서, 신호 전개 지연은 입력을 수신하는 지연 조정 회로(32)와 글로벌 데이터 라인들(56) 상의 데이터를 수신하는 2차 증폭기(30) 사이에서 매우 일치한다. 또한, 증폭 제어 신호(50) 및 감지 증폭 제어 신호(43)는 공통 신호인 블록 선택 신호(49)로부터 발생되고, 이 블록 선택 신호(49)는 라인(12) 상의 2차 증폭 제어 신호 및 글로벌 데이터 라인들(56) 상에 제공되는 데이터의 관계를 더욱 매칭하는 이점을 가진다.
퓨즈 회로(34)는 퓨즈 회로(24)와 유사하게 최적화된다. 최악의 경우의 조건이 공지되도록 측정들이 행해지고, 퓨즈 회로(34)는 그 정보를 지연 조정 회로(32)에 제공하여, 2차 증폭기(30)를 인에이블하는 지연을, 신뢰할 수 있는 동작에 대해서는 필요한 만큼 길게 하고, 최대 속도 동작에 대해서는 가능한 한 짧게 하도록 한다. 퓨즈 회로(34)는 2차 증폭기(30)의 동작에 대해 최악의 경우의 조건에 대해 선택되지만, 각 악텐트는 그 자신의 2차 증폭기를 가질 수도 있다. 퓨즈 회로(34)는 각 2차 증폭기에 대한 지연을 선택한다. 칩의 동작은 2차 증폭기(30)와 같은 2차 증폭기의 가장 느린 동작보다 빠르게 동작할 수 없으므로, 퓨즈 회로(34)가 가장 느린 경우를 최적화하기 때문에 각 2차 증폭기에 대한 퓨즈 회로의 단일 세트를 가짐으로써 속도에 있어서 불리하지 않다. 감지 증폭기(46) 및 2차 증폭기(30)의 개선된 인에이블 타이밍에 의해, 고속의 동작을 제공하면서 동적 증폭기들의 전력 절약 이점들이 구현될 수 있다.
도 3은 지연 조정 회로(40)로서 사용되는 지연 회로를 도시한다. 이 회로에는 4개의 상이한 지연들이 있고, 이 지연들은 증가적으로 서로에 대한 비율이 정해진다. 이 경우에, 미리 결정된 지연(103)은 기준 지연으로 가정되고, 도 3에서는 (1)의 지연으로 도시되어 있다. 미리 결정된 지연(102)은 미리 결정된 지연(103)의 2배(2)를 갖고, 미리 결정된 지연(101)은 미리 결정된 지연(103)의 4배(4)를 갖고, 미리 결정된 지연(100)은 미리 결정된 지연(3)의 8배(8)를 갖는다. 4개의 2진 비트들이 인입되기 때문에, 이 4개의 지연들은 이러한 4개의 비트들에 따라 선택되고 배열되어, 0으로부터 15까지의 임의의 지연량이 4개의 2진 비트들로부터 이용 가능한 모든 16개 옵션들을 고려하여 선택될 수 있다.
동작은 임의의 미리 결정된 지연들(100, 101, 102, 103)이 임의의 조합에서 사용되거나 바이패스할 수 있다. 지연들(100, 101, 102, 103)은 2진 신호들(122, 123, 124, 125)에 각각 대응한다. 특정 2진 신호가 논리 하이(high)일 때, 대응하는 지연이 인에이블된다. 예를 들어, 10의 지연은 논리 하이 상태에서 2진 신호들(122, 124)을 적용하고 논리 로우(low) 상태에서 2진 신호들(123, 125)을 적용함으로써 달성될 수 있다. 이것은 미리 결정된 지연(101) 및 미리 결정된 지연(103)이 바이패스되는 동안 미리 결정된 지연(100) 및 미리 결정된 지연(102)을 통과하는 효과를 갖는다. 2의 승수로서, 지연들 사이에 3상 구동들을 사용함으로써, 지연들은 선형으로 0에서 15까지 모든 옵션들을 제공한다. 또한, 이것은, 디코딩 회로를 지연 경로에 통합하여 비교적 작은 면적이 되도록 하기 때문에 컴팩트하다. 이러한 종류의 프로그래밍 가능한 지연은 이러한 면에서 유리하며, 반드시 필요한 것은 아니다. 이 기술분야에서 공지된 다른 종류의 프로그래밍 가능한 지연들은 지연 조정 회로(40)를 대체할 수도 있다.
2진의 1, 2, 4, 8 방법보다 지연들의 비율을 선택하기 위하여 다른 옵션들도 이용할 수 있다. 비트 선택에 기초하여 비선형 지연들이 사용되는 상황들이 있을 수도 있다. 그것은 선택이 지연량이 상당한 경우 또는 지연이 거의 없는 경우 중 하나를 선택하는 상황이 있을 수도 있지만, 두 경우 모두 미세 조정이 필요하다. 그러한 경우에, 미리 결정된 지연(100)은, 큰 지연을 원하는 경우에 대한 지연의 추정으로서 비교적 큰 수로 선택될 수 있다. 다른 지연들은 큰 지연 또는 거의 0인 지연의 경우에 대해 미세 분해능을 커버하기 위하여 동일한 1, 2 및 4 관계로 남아 있을 수 있다. 어떤 경우에 있어서도, 보다 유용하고 2진 신호들(122, 123, 124, 125)에 대한 2진 입력들에 의해 선택될 수 있는 지연의 다른 조합들이 있을 수도 있다.
도 4는 논리 로우 상태에서 로컬 데이터 라인들(61, 62)을 VDD 상에 나타나는 전압까지 프리차지하도록 트랜지스터들(202, 204)을 인에이블하는 프리차지 신호를 수신하는 감지 증폭기(46)를 도시한다. 로컬 데이터 라인(61)(LDLB, local data line bar)은 상보(complementary) 데이터 라인으로서 도시되어 있다. 로컬 데이터 라인(62)(LDL)은 참(true)의 데이터 라인이다. 프리차지 신호(200)는 논리 로우에서 액티브되는데, 이는 로컬 데이터 라인들(61, 62)을 논리 하이로 프리차지되도록 하는 상태이기 때문이다. 프리차지 신호(200)가 로컬 데이터 라인들(61, 62)을 프리차지하는 동시에, 등화 회로(26)는 VDD에서 글로벌 데이터 라인들(56, 57)을 등화한다. 로컬 데이터 라인들(61, 62)이 논리 하이이면, 트랜지스터들(216, 218)은 디스에이블된다. 판독의 개시시, 프리차지 신호(200)는 디스에이블되어, 로컬 데이터 라인들(61, 62)은 그에 연결된 트랜지스터 노드들 및 라인들과 연관된 커패시턴스에 의해 논리 하이 상태가 유지되게 된다. 판독 처리가 시작되면, 비트 라인들은 데이터 전개를 시작하고, 열 디코더(47)와 같은 열 디코더는 선택된 비트 라인 쌍을 로컬 데이터 라인들(61, 62)에 연결한다. 신호가 로컬 데이터 라인(61, 62) 상에 충분히 전개된 후에, 감지 증폭 인에이블 신호(201)가 인에이블되어 트랜지스터(214)가 도통되게 된다. 이것은 로컬 데이터 라인들(61, 62) 상에 제공되는 데이터를 증폭하기 시작하고 래치하기 위하여 트랜지스터(206, 208, 210, 212)를 인에이블함으로써 감지 증폭기(46)를 인에이블하는 효과를 가진다. 이 예에서, 로컬 데이터 라인(61, 62)은 각각 논리 로우 상태 및 논리 하이 상태에 의해 나타나는 정보를 수신하는 것으로 가정한다. 그러한 경우에, 트랜지스터(218)는 비도통 상태를 유지하고, 트랜지스터(216)는 도통 상태가 된다. 트랜지스터(216)가 도통 상태인 동안, 전류가 트랜지스터(216)를 통하여 접지로 흐르기 때문에 글로벌 데이터 라인(56) 상의 전압은 감소된다. 글로벌 데이터 라인(56) 상의 전압은 트랜지스터(216)가 비도통 상태가 될 때까지 계속 강하할 것이다. 이것은, 트랜지스터(216)의 임계 전압이 더 이상 초과되지 않도록, 글로벌 데이터 라인이 충분히 강하된 후에 발생할 것이다. 트랜지스터(216)의 임계 전압은 트랜지스터(216)의 소스 때문에 바디 효과(body effect)에 의해 영향을 받는다. 따라서, 글로벌 데이터 라인(56) 및 로컬 데이터 라인(61)간의 전압의 차이는 P 채널 트랜지스터의 통상의 임계 전압에 바디 효과로 인해 부가된 양을 더한 크기가 된다.
글로벌 데이터 라인(57)은 충전되지 않은 채로 유지된다. 따라서, 글로벌 데이터 라인(56)과 글로벌 데이터 라인(57) 사이에는 전압 차이가 확립되지만, 그 전압은 트랜지스터(16)의 임계 전압에 바디 효과를 더한 것과 VDD간의 차이로 제한된다. 이러한 종류의 증폭기의 이점은, 그 차이가 비교적 작게 유지되지만, 2차 증폭기(30)에 의한 신속한 검출에 대해서는 충분하다. 글로벌 데이터 라인(56, 57)이 비교적 길고, 그에 따라, 커패시턴스가 커지면, 이 작은 전압 차이는, 프라차지하기 위한 시간을 단축함으로써, 발생하게 될 수도 있는 다음의 판독을 준비하는데 도움을 준다. 2차 증폭기(30)는 동적 증폭기이기 때문에, 이러한 비교적 작은 차이를 감지하고, 글로벌 데이터 라인들(56)로부터 제공되는 데이터를 래치할 수 있다. 그러나, 주요한 이점은, 이 경우에 그러한 액세스들은 대략 3 나노초 떨어져 발생하므로 글로벌 데이터 라인들(56, 57)의 큰 커패시턴스로 흐르는 전하량은 상당하기 때문에 전류를 절약할 수 있다는 것이다.
감지 증폭 인에이블 신호(201)는 감지 증폭기(46)의 동작을 최적화하기 위한 결정적인(critical) 타이밍 신호이다. 이것은 지연 조정 회로(40)에 의해 정확하게 지연되고, 퓨즈 회로(24)에 의해 제공되는 지연 선택 신호(47)에 의해 프로그래밍되는 신호이다. 지연 선택 신호(47)는 포괄적으로 지연 정보를 지연 조정 회로(40)와 같은 지연 조정 회로들에 제공하고, 국부적으로 블록 선택 신호(49)에 응답하여 공통 클럭 신호(45)의 정확한 인에이블을 지연시킨다. 차례로, 정확하게 발생되는 공통 클럭 신호(45)는 감지 증폭 인에이블 신호(201)를 정확하게 발생시킨다. 또한, 공통 신호(45)는 2차 증폭 신호(50)를 발생시키므로, 글로벌 데이터 라인들(56) 상에의 데이터의 전개는 라인(12) 상에의 2차 증폭 신호(50)의 전개와 매칭된다.
클럭들을 수신하고 있는 회로가 적절한 시간에 클럭을 수신할 수 있도록 클럭들을 최적화할 수 있다.

Claims (3)

  1. 집적 회로에 있어서:
    제 1 지연을 나타내는 제 1 신호를 제공하는 출력을 갖는 제 1 회로; 및
    상기 제 1 회로의 출력에 연결된 프로그램 입력을 각각 갖는 복수의 프로그래밍 가능한 지연 회로들을 포함하는, 집적 회로.
  2. 메모리에 있어서:
    메모리 셀들의 블록들로 구성되는 복수의 어레이들;
    상기 메모리 셀들의 논리 상태들을 검출하기 위하여 상기 메모리 셀들의 블록들 내에 위치하고, 인에이블되는 것에 응답하여 상기 메모리 셀들의 논리 상태들을 나타내는 신호들을 제공하는 출력들을 갖는 복수의 감지 증폭기들;
    상기 감지 증폭기들의 출력들에 연결된 글로벌 데이터 라인들;
    지연 선택값을 제공하기 위한 출력을 갖는 제 1 지연 선택 회로; 및
    상기 감지 증폭기들을 인에이블하고, 상기 제 1 지연 선택 회로의 출력에 연결된 프로그램 입력을 각각 갖는 프로그래밍 가능한 지연 회로들을 포함하는, 메모리.
  3. 메모리에 있어서,
    메모리 셀들의 블록들로 구성되는 복수의 어레이들;
    상기 메모리 셀들의 블록들 중 제 1 블록 내에 위치하고, 데이터 라인에 연결되며, 인에이블 입력을 갖는 감지 증폭기;
    상기 데이터 라인에 연결된 2차 증폭기;
    출력을 갖는 제 1 지연 선택 회로; 및
    상기 제 1 지연 선택 회로의 출력에 연결된 프로그램 입력 및 상기 감지 증폭기의 입력에 연결된 출력을 갖는 제 1 프로그래밍 가능한 지연 회로를 포함하는, 메모리.
KR1019990041318A 1999-03-01 1999-09-27 프로그래밍 가능한 지연 회로를 포함하는 메모리 KR100665484B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/259,454 1999-03-01
US9/259,454 1999-03-01
US09/259,454 US6111796A (en) 1999-03-01 1999-03-01 Programmable delay control for sense amplifiers in a memory

Publications (2)

Publication Number Publication Date
KR20000062133A KR20000062133A (ko) 2000-10-25
KR100665484B1 true KR100665484B1 (ko) 2007-01-10

Family

ID=22985023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990041318A KR100665484B1 (ko) 1999-03-01 1999-09-27 프로그래밍 가능한 지연 회로를 포함하는 메모리

Country Status (8)

Country Link
US (2) US6111796A (ko)
EP (3) EP1770710B1 (ko)
JP (2) JP4445074B2 (ko)
KR (1) KR100665484B1 (ko)
CN (1) CN1265509B (ko)
DE (1) DE69942354D1 (ko)
SG (2) SG100732A1 (ko)
TW (1) TW440869B (ko)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438043B2 (en) * 1998-09-02 2002-08-20 Micron Technology, Inc. Adjustable I/O timing from externally applied voltage
US6111796A (en) * 1999-03-01 2000-08-29 Motorola, Inc. Programmable delay control for sense amplifiers in a memory
US6877100B1 (en) 2000-08-25 2005-04-05 Micron Technology, Inc. Adjustable timing circuit of an integrated circuit by selecting and moving clock edges based on a signal propagation time stored in a programmable non-volatile fuse circuit
KR100389916B1 (ko) * 2000-08-28 2003-07-04 삼성전자주식회사 메모리 모듈 및 메모리 컨트롤러
DE10126312B4 (de) * 2001-05-30 2015-10-22 Infineon Technologies Ag Halbleiterspeicher mit einem Signalpfad
US6721221B2 (en) * 2001-06-08 2004-04-13 Micron Technology, Inc. Sense amplifier and architecture for open digit arrays
US6538932B2 (en) * 2001-06-13 2003-03-25 International Business Machines Corporation Timing circuit and method for a compilable DRAM
JP3723477B2 (ja) * 2001-09-06 2005-12-07 松下電器産業株式会社 半導体記憶装置
KR100408420B1 (ko) * 2002-01-09 2003-12-03 삼성전자주식회사 감지증폭기의 센싱속도를 향상시킬 수 있는 반도체메모리장치의 감지증폭기 구동회로
US6947608B2 (en) * 2002-01-25 2005-09-20 Kabushiki Kaisha Toshiba Equalizing circuit and method, and image processing circuit and method
US6762961B2 (en) 2002-04-16 2004-07-13 Sun Microsystems, Inc. Variable delay compensation for data-dependent mismatch in characteristic of opposing devices of a sense amplifier
US7080275B2 (en) * 2002-08-12 2006-07-18 Micron Technology, Inc. Method and apparatus using parasitic capacitance for synchronizing signals a device
US7177201B1 (en) 2003-09-17 2007-02-13 Sun Microsystems, Inc. Negative bias temperature instability (NBTI) preconditioning of matched devices
US7020035B1 (en) 2003-10-10 2006-03-28 Sun Microsystems, Inc. Measuring and correcting sense amplifier and memory mismatches using NBTI
US7164612B1 (en) 2003-10-10 2007-01-16 Sun Microsystems, Inc. Test circuit for measuring sense amplifier and memory mismatches
TW200520388A (en) * 2003-10-10 2005-06-16 Atmel Corp Selectable delay pulse generator
US6914467B2 (en) * 2003-12-04 2005-07-05 International Business Machines Corporation Dual edge programmable delay unit
DE102004015868A1 (de) * 2004-03-31 2005-10-27 Micron Technology, Inc. Rekonstruktion der Signalzeitgebung in integrierten Schaltungen
US20110126073A1 (en) * 2004-04-29 2011-05-26 Nieuwland Andre K Error Correction in an Electronic Circuit
US6958943B1 (en) 2004-05-12 2005-10-25 International Business Machines Corporation Programmable sense amplifier timing generator
US7222224B2 (en) * 2004-05-21 2007-05-22 Rambus Inc. System and method for improving performance in computer memory systems supporting multiple memory access latencies
KR100555568B1 (ko) * 2004-08-03 2006-03-03 삼성전자주식회사 온/오프 제어가 가능한 로컬 센스 증폭 회로를 구비하는반도체 메모리 장치
US7157952B2 (en) * 2004-08-20 2007-01-02 L-3 Integrated Systems Company Systems and methods for implementing delay line circuitry
EP1630815B1 (en) * 2004-08-24 2011-10-05 Infineon Technologies AG Memory circuit with supply voltage flexibility and supply voltage adapted performance
KR100613073B1 (ko) 2004-09-21 2006-08-16 주식회사 하이닉스반도체 센스 앰프 오버드라이브 회로
KR100609621B1 (ko) 2005-07-19 2006-08-08 삼성전자주식회사 메모리 블락별로 레이턴시 제어가 가능한 동기식 반도체메모리 장치
US7215585B2 (en) * 2005-09-01 2007-05-08 Micron Technology, Inc. Method and apparatus for synchronizing data from memory arrays
US7158432B1 (en) * 2005-09-01 2007-01-02 Freescale Semiconductor, Inc. Memory with robust data sensing and method for sensing data
US8077533B2 (en) 2006-01-23 2011-12-13 Freescale Semiconductor, Inc. Memory and method for sensing data in a memory using complementary sensing scheme
US7339842B1 (en) * 2006-08-16 2008-03-04 Arm Limited Timing control for sense amplifiers in a memory circuit
KR100761381B1 (ko) * 2006-09-06 2007-09-27 주식회사 하이닉스반도체 비트라인 센스앰프 미스매치판단이 가능한 메모리장치.
KR100824779B1 (ko) * 2007-01-11 2008-04-24 삼성전자주식회사 반도체 메모리 장치의 데이터 출력 경로 및 데이터 출력방법
KR100889311B1 (ko) * 2007-02-23 2009-03-18 주식회사 하이닉스반도체 비트라인 감지증폭기를 포함하는 반도체메모리소자
JP5102800B2 (ja) 2009-04-15 2012-12-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 半導体記憶装置
KR20110025487A (ko) * 2009-09-04 2011-03-10 삼성전자주식회사 반도체 메모리 장치
JP5471761B2 (ja) * 2010-04-15 2014-04-16 富士通株式会社 受信回路
US9201096B2 (en) 2010-09-08 2015-12-01 Dcg Systems, Inc. Laser-assisted device alteration using synchronized laser pulses
JP5579580B2 (ja) * 2010-11-12 2014-08-27 ピーエスフォー ルクスコ エスエイアールエル 半導体装置
US8400852B2 (en) * 2011-03-04 2013-03-19 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit with remote amplifier
US8467254B2 (en) * 2011-09-25 2013-06-18 Nanya Technology Corporation Memory apparatus
US8879303B2 (en) * 2013-01-03 2014-11-04 Lsi Corporation Pre-charge tracking of global read lines in high speed SRAM
US11209985B2 (en) * 2019-04-23 2021-12-28 Macronix International Co., Ltd. Input/output delay optimization method, electronic system and memory device using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028824A (en) * 1989-05-05 1991-07-02 Harris Corporation Programmable delay circuit
US5204559A (en) * 1991-01-23 1993-04-20 Vitesse Semiconductor Corporation Method and apparatus for controlling clock skew
JPH05282865A (ja) * 1992-04-01 1993-10-29 Mitsubishi Electric Corp 半導体記憶装置
KR970060219A (ko) * 1996-01-17 1997-08-12 키타오카 타카시 입력 버퍼 회로의 소모 전류가 저감된 동기형 반도체 기억 장치
JPH1064275A (ja) * 1996-08-27 1998-03-06 Nkk Corp 遅延回路、atdパルス発生回路、及びそれを用いた半導体記憶装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244494A (ja) * 1987-03-31 1988-10-11 Toshiba Corp 半導体記憶装置
JPH03225849A (ja) * 1990-01-30 1991-10-04 Nec Corp 半導体装置
US5289413A (en) * 1990-06-08 1994-02-22 Kabushiki Kaisha Toshiba Dynamic semiconductor memory device with high-speed serial-accessing column decoder
US5321661A (en) * 1991-11-20 1994-06-14 Oki Electric Industry Co., Ltd. Self-refreshing memory with on-chip timer test circuit
EP0668592B1 (en) * 1994-02-18 2000-05-17 STMicroelectronics S.r.l. Internal timing method and circuit for programmable memories
DE69421266T2 (de) 1994-02-18 2000-05-18 St Microelectronics Srl Lesetaktsteuerungsverfahren und Schaltung für nichtflüchtige Speicher
JPH07264021A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 信号遅延回路及びプログラム可能な遅延回路
KR0122108B1 (ko) * 1994-06-10 1997-12-05 윤종용 반도체 메모리 장치의 비트라인 센싱회로 및 그 방법
EP0720291B1 (en) * 1994-12-20 2002-04-17 Nec Corporation Delay circuit device
JPH0973782A (ja) * 1995-09-07 1997-03-18 Fujitsu Ltd 半導体記憶装置
US5933032A (en) * 1995-12-29 1999-08-03 Cypress Semiconductor Corp. Apparatus and method for generating a pulse signal
JPH1050063A (ja) * 1996-07-30 1998-02-20 Nec Corp 半導体メモリ
TW340262B (en) * 1996-08-13 1998-09-11 Fujitsu Ltd Semiconductor device, system consisting of semiconductor devices and digital delay circuit
JPH1083677A (ja) * 1996-09-09 1998-03-31 Hitachi Ltd 半導体記憶装置及び半導体集積回路
TW353176B (en) * 1996-09-20 1999-02-21 Hitachi Ltd A semiconductor device capable of holding signals independent of the pulse width of an external clock and a computer system including the semiconductor
JPH10334665A (ja) * 1997-05-30 1998-12-18 Oki Micro Design Miyazaki:Kk 半導体記憶装置
US6247138B1 (en) * 1997-06-12 2001-06-12 Fujitsu Limited Timing signal generating circuit, semiconductor integrated circuit device and semiconductor integrated circuit system to which the timing signal generating circuit is applied, and signal transmission system
US6009501A (en) * 1997-06-18 1999-12-28 Micron Technology, Inc. Method and apparatus for local control signal generation in a memory device
US5978286A (en) * 1999-03-01 1999-11-02 Motorola, Inc. Timing control of amplifiers in a memory
US6031775A (en) * 1999-03-01 2000-02-29 Motorola Inc. Dynamic sense amplifier in a memory capable of limiting the voltage swing on high-capacitance global data lines
US6111796A (en) * 1999-03-01 2000-08-29 Motorola, Inc. Programmable delay control for sense amplifiers in a memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028824A (en) * 1989-05-05 1991-07-02 Harris Corporation Programmable delay circuit
US5204559A (en) * 1991-01-23 1993-04-20 Vitesse Semiconductor Corporation Method and apparatus for controlling clock skew
JPH05282865A (ja) * 1992-04-01 1993-10-29 Mitsubishi Electric Corp 半導体記憶装置
KR970060219A (ko) * 1996-01-17 1997-08-12 키타오카 타카시 입력 버퍼 회로의 소모 전류가 저감된 동기형 반도체 기억 장치
JPH1064275A (ja) * 1996-08-27 1998-03-06 Nkk Corp 遅延回路、atdパルス発生回路、及びそれを用いた半導体記憶装置

Also Published As

Publication number Publication date
EP1770708B1 (en) 2012-11-14
US6385101B1 (en) 2002-05-07
EP1033721A3 (en) 2000-10-25
EP1770708A3 (en) 2007-07-04
CN1265509B (zh) 2010-10-27
SG103248A1 (en) 2004-04-29
SG100732A1 (en) 2003-12-26
JP2010003406A (ja) 2010-01-07
KR20000062133A (ko) 2000-10-25
DE69942354D1 (de) 2010-06-17
JP4903847B2 (ja) 2012-03-28
JP2000251472A (ja) 2000-09-14
EP1770710A2 (en) 2007-04-04
EP1770710A3 (en) 2007-07-04
TW440869B (en) 2001-06-16
EP1033721B1 (en) 2017-03-15
EP1770710B1 (en) 2010-05-05
EP1033721A2 (en) 2000-09-06
CN1265509A (zh) 2000-09-06
EP1770708A2 (en) 2007-04-04
US6111796A (en) 2000-08-29
JP4445074B2 (ja) 2010-04-07

Similar Documents

Publication Publication Date Title
KR100665484B1 (ko) 프로그래밍 가능한 지연 회로를 포함하는 메모리
KR100871673B1 (ko) 반도체 메모리 장치의 센스 앰프 회로 및 그 동작 방법
US6031775A (en) Dynamic sense amplifier in a memory capable of limiting the voltage swing on high-capacitance global data lines
KR100512934B1 (ko) 반도체 메모리 장치
US10366764B2 (en) Sense amplifier for detecting data read from memory cell
US5978286A (en) Timing control of amplifiers in a memory
KR100650845B1 (ko) 소비 전력을 감소시키는 버퍼 제어 회로와, 이를 포함하는메모리 모듈용 반도체 메모리 장치 및 그 제어 동작 방법
KR19990033435A (ko) 반도체 메모리의 독출회로
KR100439039B1 (ko) 반도체 메모리 장치 및 이 장치의 센스 증폭기
KR19990059252A (ko) 반도체 메모리 장치의 감지 증폭기
KR100402388B1 (ko) 칩선택 출력 시간이 단축된 반도체 메모리 장치
KR100505454B1 (ko) 반도체 장치의 데이터 출력 회로 및 방법
KR100337205B1 (ko) 데이타 센스앰프 구동장치
KR100714890B1 (ko) 반도체 메모리 장치
KR0137341B1 (ko) 리셋 기능을 가지는 동기식 반도체 메모리 장치
KR100373350B1 (ko) 저전력 내장형 에스램
KR100549933B1 (ko) 반도체 메모리 장치
KR0172248B1 (ko) 센싱 제어회로
KR100469375B1 (ko) 플래쉬 메모리 소자
KR100190099B1 (ko) 데이터 라인 등화 장치
KR0176117B1 (ko) 불휘발성 반도체 메모리 장치
KR100225759B1 (ko) 불휘발성 반도체 메모리장치
KR100576829B1 (ko) 반도체 메모리 장치 및 이 장치의 프리차아지 신호 발생회로
KR20030006823A (ko) 감지 증폭 회로의 소모 전력을 감소시킬 수 있는 반도체메모리 장치
US20010030902A1 (en) Semiconductor memory for logic-hybrid memory

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141210

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161206

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 12