JP7066929B2 - インターコネクトのためのルテニウムメタルによるフィーチャ充填 - Google Patents
インターコネクトのためのルテニウムメタルによるフィーチャ充填 Download PDFInfo
- Publication number
- JP7066929B2 JP7066929B2 JP2017562997A JP2017562997A JP7066929B2 JP 7066929 B2 JP7066929 B2 JP 7066929B2 JP 2017562997 A JP2017562997 A JP 2017562997A JP 2017562997 A JP2017562997 A JP 2017562997A JP 7066929 B2 JP7066929 B2 JP 7066929B2
- Authority
- JP
- Japan
- Prior art keywords
- metal layer
- feature
- metal
- substrate
- features
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011049 filling Methods 0.000 title claims description 29
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 title claims description 6
- 239000002184 metal Substances 0.000 claims description 110
- 229910052751 metal Inorganic materials 0.000 claims description 110
- 239000000758 substrate Substances 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 17
- 230000006911 nucleation Effects 0.000 claims description 10
- 238000010899 nucleation Methods 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 6
- 238000000231 atomic layer deposition Methods 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000012159 carrier gas Substances 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 67
- 239000010949 copper Substances 0.000 description 19
- 238000001878 scanning electron micrograph Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 238000004377 microelectronic Methods 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28194—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/16—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76814—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76826—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76879—Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
- H01L21/76882—Reflowing or applying of pressure to better fill the contact hole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53242—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76876—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01044—Ruthenium [Ru]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562171739P | 2015-06-05 | 2015-06-05 | |
| US62/171,739 | 2015-06-05 | ||
| PCT/US2016/035724 WO2016196937A1 (en) | 2015-06-05 | 2016-06-03 | Ruthenium metal feature fill for interconnects |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2018516465A JP2018516465A (ja) | 2018-06-21 |
| JP2018516465A5 JP2018516465A5 (enExample) | 2019-07-04 |
| JP7066929B2 true JP7066929B2 (ja) | 2022-05-16 |
Family
ID=57441803
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017562997A Active JP7066929B2 (ja) | 2015-06-05 | 2016-06-03 | インターコネクトのためのルテニウムメタルによるフィーチャ充填 |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US9711449B2 (enExample) |
| JP (1) | JP7066929B2 (enExample) |
| KR (1) | KR102542758B1 (enExample) |
| CN (1) | CN107836034B (enExample) |
| TW (1) | TWI621161B (enExample) |
| WO (1) | WO2016196937A1 (enExample) |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10049927B2 (en) * | 2016-06-10 | 2018-08-14 | Applied Materials, Inc. | Seam-healing method upon supra-atmospheric process in diffusion promoting ambient |
| JP7027432B2 (ja) | 2017-01-20 | 2022-03-01 | 東京エレクトロン株式会社 | 相互接続構造及びその形成方法 |
| US10224224B2 (en) | 2017-03-10 | 2019-03-05 | Micromaterials, LLC | High pressure wafer processing systems and related methods |
| US10622214B2 (en) | 2017-05-25 | 2020-04-14 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
| KR102405723B1 (ko) | 2017-08-18 | 2022-06-07 | 어플라이드 머티어리얼스, 인코포레이티드 | 고압 및 고온 어닐링 챔버 |
| US10276411B2 (en) | 2017-08-18 | 2019-04-30 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
| KR102601862B1 (ko) * | 2017-10-04 | 2023-11-13 | 도쿄엘렉트론가부시키가이샤 | 상호접속부를 위한 루테늄 금속 피처 충전 |
| US10790188B2 (en) | 2017-10-14 | 2020-09-29 | Applied Materials, Inc. | Seamless ruthenium gap fill |
| US10672649B2 (en) | 2017-11-08 | 2020-06-02 | International Business Machines Corporation | Advanced BEOL interconnect architecture |
| CN111357090B (zh) | 2017-11-11 | 2024-01-05 | 微材料有限责任公司 | 用于高压处理腔室的气体输送系统 |
| KR20200075892A (ko) | 2017-11-17 | 2020-06-26 | 어플라이드 머티어리얼스, 인코포레이티드 | 고압 처리 시스템을 위한 컨덴서 시스템 |
| US10269698B1 (en) | 2017-12-20 | 2019-04-23 | International Business Machines Corporation | Binary metallization structure for nanoscale dual damascene interconnects |
| TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
| KR102702244B1 (ko) | 2018-03-09 | 2024-09-03 | 어플라이드 머티어리얼스, 인코포레이티드 | 금속 함유 재료들을 위한 고압 어닐링 프로세스 |
| US10950429B2 (en) | 2018-05-08 | 2021-03-16 | Applied Materials, Inc. | Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom |
| US10748783B2 (en) | 2018-07-25 | 2020-08-18 | Applied Materials, Inc. | Gas delivery module |
| JP7547037B2 (ja) * | 2018-08-20 | 2024-09-09 | エーエスエム・アイピー・ホールディング・ベー・フェー | 周期的堆積プロセスによって基材の誘電体表面上にモリブデン金属膜を堆積させる方法および関連する半導体デバイス構造 |
| JP7182970B2 (ja) * | 2018-09-20 | 2022-12-05 | 東京エレクトロン株式会社 | 埋め込み方法及び処理システム |
| US11631680B2 (en) | 2018-10-18 | 2023-04-18 | Applied Materials, Inc. | Methods and apparatus for smoothing dynamic random access memory bit line metal |
| WO2020117462A1 (en) | 2018-12-07 | 2020-06-11 | Applied Materials, Inc. | Semiconductor processing system |
| WO2020176814A1 (en) * | 2019-02-28 | 2020-09-03 | Tokyo Electron Limited | Dual silicide wrap-around contacts for semiconductor devices |
| US11901222B2 (en) | 2020-02-17 | 2024-02-13 | Applied Materials, Inc. | Multi-step process for flowable gap-fill film |
| JP7206355B2 (ja) * | 2020-11-12 | 2023-01-17 | アプライド マテリアルズ インコーポレイテッド | ダイナミックランダムアクセスメモリビット線金属を滑らかにするための方法及び装置 |
| US20220165852A1 (en) * | 2020-11-23 | 2022-05-26 | Applied Materials, Inc. | Methods and apparatus for metal fill in metal gate stack |
| US20220223472A1 (en) | 2021-01-11 | 2022-07-14 | Applied Materials, Inc. | Ruthenium Reflow For Via Fill |
| KR102659491B1 (ko) * | 2021-08-12 | 2024-04-23 | 한국과학기술연구원 | 배선 재료용 저저항 필름의 제조 방법 |
| US20240282709A1 (en) * | 2023-02-22 | 2024-08-22 | Applied Materials, Inc. | Layered Substrate with Ruthenium Layer and Method for Producing |
| US20240355673A1 (en) * | 2023-04-20 | 2024-10-24 | Applied Materials, Inc. | Hybrid molybdenum fill scheme for low resistivity semiconductor applications |
| US20240363410A1 (en) * | 2023-04-25 | 2024-10-31 | Tokyo Electron Limited | Methods for making semiconductor devices that include metal cap layers |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000091269A (ja) | 1998-09-10 | 2000-03-31 | Fujitsu Ltd | 半導体装置の製造方法 |
| US20030032238A1 (en) | 2001-08-08 | 2003-02-13 | Wan-Don Kim | Methods for manufacturing storage nodes of stacked capacitors |
| JP2010067638A (ja) | 2008-09-08 | 2010-03-25 | Tokyo Electron Ltd | ルテニウム膜の成膜方法 |
| JP2013055317A (ja) | 2011-08-05 | 2013-03-21 | Tokyo Electron Ltd | 半導体装置の製造方法 |
| JP2014033139A (ja) | 2012-08-06 | 2014-02-20 | Ulvac Japan Ltd | デバイスの製造方法 |
| JP2014204014A (ja) | 2013-04-08 | 2014-10-27 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6475903B1 (en) | 1993-12-28 | 2002-11-05 | Intel Corporation | Copper reflow process |
| JP3393436B2 (ja) * | 1996-12-03 | 2003-04-07 | ソニー株式会社 | 配線の形成方法 |
| JPH10209157A (ja) * | 1997-01-21 | 1998-08-07 | Hitachi Ltd | 半導体装置の製造方法 |
| KR100227843B1 (ko) * | 1997-01-22 | 1999-11-01 | 윤종용 | 반도체 소자의 콘택 배선 방법 및 이를 이용한 커패시터 제조방법 |
| KR100230418B1 (ko) * | 1997-04-17 | 1999-11-15 | 윤종용 | 백금족 금속층 형성방법 및 이를 이용한 커패시터 제조방법 |
| KR100408410B1 (ko) * | 2001-05-31 | 2003-12-06 | 삼성전자주식회사 | 엠아이엠(mim) 커패시터를 갖는 반도체 소자 및 그제조 방법 |
| US7270848B2 (en) * | 2004-11-23 | 2007-09-18 | Tokyo Electron Limited | Method for increasing deposition rates of metal layers from metal-carbonyl precursors |
| US7273814B2 (en) * | 2005-03-16 | 2007-09-25 | Tokyo Electron Limited | Method for forming a ruthenium metal layer on a patterned substrate |
| TW200734482A (en) * | 2005-03-18 | 2007-09-16 | Applied Materials Inc | Electroless deposition process on a contact containing silicon or silicide |
| US20070059502A1 (en) * | 2005-05-05 | 2007-03-15 | Applied Materials, Inc. | Integrated process for sputter deposition of a conductive barrier layer, especially an alloy of ruthenium and tantalum, underlying copper or copper alloy seed layer |
| WO2008049019A2 (en) * | 2006-10-17 | 2008-04-24 | Enthone Inc. | Copper deposition for filling features in manufacture of microelectronic devices |
| US7829454B2 (en) | 2007-09-11 | 2010-11-09 | Tokyo Electron Limited | Method for integrating selective ruthenium deposition into manufacturing of a semiconductior device |
| US7704879B2 (en) * | 2007-09-27 | 2010-04-27 | Tokyo Electron Limited | Method of forming low-resistivity recessed features in copper metallization |
| US7776740B2 (en) * | 2008-01-22 | 2010-08-17 | Tokyo Electron Limited | Method for integrating selective low-temperature ruthenium deposition into copper metallization of a semiconductor device |
| JP2010199349A (ja) | 2009-02-26 | 2010-09-09 | Toshiba Corp | 半導体装置の製造方法 |
| TWI536451B (zh) * | 2010-04-26 | 2016-06-01 | 應用材料股份有限公司 | 使用具金屬系前驅物之化學氣相沉積與原子層沉積製程之n型金氧半導體金屬閘極材料、製造方法及設備 |
| US8637390B2 (en) * | 2010-06-04 | 2014-01-28 | Applied Materials, Inc. | Metal gate structures and methods for forming thereof |
| US9048296B2 (en) * | 2011-02-11 | 2015-06-02 | International Business Machines Corporation | Method to fabricate copper wiring structures and structures formed thereby |
| KR101444527B1 (ko) * | 2011-08-05 | 2014-09-24 | 도쿄엘렉트론가부시키가이샤 | 반도체 장치의 제조 방법 |
| KR20130096949A (ko) * | 2012-02-23 | 2013-09-02 | 삼성전자주식회사 | 반도체 소자의 형성 방법 |
| US8517769B1 (en) | 2012-03-16 | 2013-08-27 | Globalfoundries Inc. | Methods of forming copper-based conductive structures on an integrated circuit device |
| TWI576961B (zh) * | 2012-04-26 | 2017-04-01 | 應用材料股份有限公司 | 用於高深寬比塡充的半導體重流處理 |
| US9245798B2 (en) * | 2012-04-26 | 2016-01-26 | Applied Matrials, Inc. | Semiconductor reflow processing for high aspect ratio fill |
| EP2779224A3 (en) * | 2013-03-15 | 2014-12-31 | Applied Materials, Inc. | Methods for producing interconnects in semiconductor devices |
-
2016
- 2016-06-03 KR KR1020187000200A patent/KR102542758B1/ko active Active
- 2016-06-03 CN CN201680040035.5A patent/CN107836034B/zh active Active
- 2016-06-03 WO PCT/US2016/035724 patent/WO2016196937A1/en not_active Ceased
- 2016-06-03 US US15/172,648 patent/US9711449B2/en active Active
- 2016-06-03 JP JP2017562997A patent/JP7066929B2/ja active Active
- 2016-06-03 TW TW105117505A patent/TWI621161B/zh active
-
2017
- 2017-07-17 US US15/651,979 patent/US10056328B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000091269A (ja) | 1998-09-10 | 2000-03-31 | Fujitsu Ltd | 半導体装置の製造方法 |
| US20030032238A1 (en) | 2001-08-08 | 2003-02-13 | Wan-Don Kim | Methods for manufacturing storage nodes of stacked capacitors |
| JP2010067638A (ja) | 2008-09-08 | 2010-03-25 | Tokyo Electron Ltd | ルテニウム膜の成膜方法 |
| JP2013055317A (ja) | 2011-08-05 | 2013-03-21 | Tokyo Electron Ltd | 半導体装置の製造方法 |
| JP2014033139A (ja) | 2012-08-06 | 2014-02-20 | Ulvac Japan Ltd | デバイスの製造方法 |
| JP2014204014A (ja) | 2013-04-08 | 2014-10-27 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| US10056328B2 (en) | 2018-08-21 |
| TW201709293A (zh) | 2017-03-01 |
| WO2016196937A1 (en) | 2016-12-08 |
| KR102542758B1 (ko) | 2023-06-12 |
| JP2018516465A (ja) | 2018-06-21 |
| US9711449B2 (en) | 2017-07-18 |
| KR20180005743A (ko) | 2018-01-16 |
| US20160358815A1 (en) | 2016-12-08 |
| TWI621161B (zh) | 2018-04-11 |
| CN107836034A (zh) | 2018-03-23 |
| US20170317022A1 (en) | 2017-11-02 |
| CN107836034B (zh) | 2022-07-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7066929B2 (ja) | インターコネクトのためのルテニウムメタルによるフィーチャ充填 | |
| JP7277871B2 (ja) | 相互接続のためのルテニウム金属機能フィリング | |
| US7425506B1 (en) | Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films | |
| US11404311B2 (en) | Metallic interconnect structures with wrap around capping layers | |
| US9059259B2 (en) | Hard mask for back-end-of-line (BEOL) interconnect structure | |
| KR102694691B1 (ko) | 이중 금속 전력 레일을 갖는 집적 회로 제조 방법 | |
| JP2023182638A (ja) | 銅配線のためのシード層 | |
| US9318383B2 (en) | Integrated cluster to enable next generation interconnect | |
| JP2025512235A (ja) | 選択的金属堆積のための選択的阻害 | |
| JP2005203569A (ja) | 半導体装置の製造方法及び半導体装置 | |
| JP4492919B2 (ja) | 半導体装置の製造方法 | |
| US20170194192A1 (en) | Metal filling and planarization of recessed features | |
| JP2002356775A (ja) | TaN基板上でのCVD銅薄膜の高密着性を達成する方法 | |
| KR100919378B1 (ko) | 반도체 소자의 금속 배선 및 이의 형성 방법 | |
| JP2004031497A (ja) | 半導体装置およびその製造方法 | |
| JP2009117673A (ja) | 半導体装置およびその製造方法 | |
| US20180053688A1 (en) | Method of metal filling recessed features in a substrate | |
| TW202431541A (zh) | 阻障層與襯墊層的電漿處置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180226 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190531 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190531 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200430 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201030 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210224 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210621 |
|
| C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210621 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210630 |
|
| C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210706 |
|
| A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20210910 |
|
| C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20210914 |
|
| C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20211012 |
|
| C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220111 |
|
| C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220208 |
|
| C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220208 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20220308 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220308 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7066929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |