JP2021121024A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2021121024A
JP2021121024A JP2021071745A JP2021071745A JP2021121024A JP 2021121024 A JP2021121024 A JP 2021121024A JP 2021071745 A JP2021071745 A JP 2021071745A JP 2021071745 A JP2021071745 A JP 2021071745A JP 2021121024 A JP2021121024 A JP 2021121024A
Authority
JP
Japan
Prior art keywords
semiconductor
transistor
region
conductor
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021071745A
Other languages
English (en)
Other versions
JP2021121024A5 (ja
JP7171813B2 (ja
Inventor
由幸 小林
Yoshiyuki Kobayashi
由幸 小林
大介 松林
Daisuke Matsubayashi
大介 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2021098666A priority Critical patent/JP6937957B1/ja
Publication of JP2021121024A publication Critical patent/JP2021121024A/ja
Publication of JP2021121024A5 publication Critical patent/JP2021121024A5/ja
Priority to JP2022175964A priority patent/JP7455928B2/ja
Application granted granted Critical
Publication of JP7171813B2 publication Critical patent/JP7171813B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】優れた電気特性を有するトランジスタ、非導通時の電流の小さいトランジスタ、導通時の電流の大きいトランジスタ並びに当該トランジスタを有する半導体装置、集積度の高い半導体装置及び丈夫な半導体装置を提供する。【解決手段】半導体106a〜106cと、絶縁体102、108、112と、第1の導電体104と、第2の導電体116a、116bと、を有する半導体装置であって、半導体106cの上面は、絶縁体112と接する領域を有し、半導体106cの側面は、絶縁体108と接する領域を有する。第1の導電体は、絶縁体112を介して半導体106cと互いに重なる第1の領域を有する。第1の領域は、半導体106cの上面と面する領域と、半導体106cの側面と面する領域と、を有する。第2の導電体は、半導体106cと接する第2の領域を有する。第1の領域と、第2の領域と、は互いに重ならない。【選択図】図1

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン
、マニュファクチャ、または組成物(コンポジション・オブ・マター)に関する。特に、
本発明は、例えば、半導体、半導体装置、表示装置、発光装置、照明装置、蓄電装置、記
憶装置またはプロセッサに関する。または、半導体、半導体装置、表示装置、発光装置、
照明装置、蓄電装置、記憶装置またはプロセッサの製造方法に関する。または、半導体装
置、表示装置、発光装置、照明装置、蓄電装置、記憶装置またはプロセッサの駆動方法に
関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指す。表示装置、発光装置、照明装置、電気光学装置、半導体回路および電子機器
は、半導体装置を有する場合がある。
絶縁表面を有する基板上の半導体を用いて、トランジスタを構成する技術が注目されてい
る。当該トランジスタは集積回路や表示装置のような半導体装置に広く応用されている。
トランジスタに適用可能な半導体としてシリコンが知られている。
トランジスタの半導体に用いられるシリコンは、用途によって非晶質シリコン、多結晶シ
リコン、単結晶シリコンなどが使い分けられている。例えば、大型の表示装置を構成する
トランジスタに適用する場合、大面積基板への成膜技術が確立されている非晶質シリコン
を用いると好適である。一方、駆動回路と画素回路とを同一基板上に形成するような高機
能の表示装置を構成するトランジスタに適用する場合、高い電界効果移動度を有するトラ
ンジスタを作製可能な多結晶シリコンを用いると好適である。また、集積回路などを構成
するトランジスタに適用する場合、さらに高い電界効果移動度を有する単結晶シリコンを
用いると好適である。多結晶シリコンは、非晶質シリコンに対し高温での熱処理、または
レーザ光処理を行うことで形成する方法が知られる。
また、近年は、酸化物半導体が注目されている。酸化物半導体は、スパッタリング法など
を用いて成膜できるため、大型の表示装置を構成するトランジスタの半導体に用いること
ができる。また、酸化物半導体を用いたトランジスタは、高い電界効果移動度を有するた
め、駆動回路と画素回路とを同一基板上に形成するような高機能の表示装置を実現できる
。また、非晶質シリコンを用いたトランジスタの生産設備の一部を改良して利用すること
が可能であるため、設備投資を抑えられるメリットもある。
ところで、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流
が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク特性
を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。このように
、CPUなどの集積回路に酸化物半導体を用いたトランジスタを応用する場合、トランジ
スタを縮小し、高集積化することが好ましい。
半導体装置は、高集積化を進めると、配線や電極などが重なり合うことに起因して形成さ
れる寄生容量の影響が無視できなくなる場合がある。特許文献2には、導体電極から半導
体中に電子を流入させることで、オフセット領域が設けられても優れた電気特性を有する
トランジスタが得られることが開示されている。特許文献2に開示された技術を用いるこ
とで、配線や電極などが重なり合うことに起因して形成される寄生容量を低減することが
できる。
また、半導体からなる活性層で井戸型ポテンシャルを構成することにより、高い電界効果
移動度を有するトランジスタが得られることが開示されている(特許文献3参照。)。
特開2012−257187号公報 特開2011−22507号公報 特開2012−59860号公報
優れた電気特性を有するトランジスタを提供することを課題の一とする。または、非導通
時の電流の小さいトランジスタを提供することを課題の一とする。または、導通時の電流
の大きいトランジスタを提供することを課題の一とする。または、当該トランジスタを有
する半導体装置を提供することを課題の一とする。または、集積度の高い半導体装置を提
供することを課題の一とする。または、丈夫な半導体装置を提供することを課題の一とす
る。または、新規な半導体装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
(1)
本発明の一態様は、半導体と、絶縁体と、第1の導電体と、第2の導電体と、を有する半
導体装置であって、半導体の上面は、絶縁体と接する領域を有し、半導体の側面は、絶縁
体と接する領域を有し、第1の導電体は、絶縁体を介して第1の導電体と半導体とが互い
に重なる第1の領域を有し、第1の領域は、半導体の上面と面する領域と、半導体の側面
と面する領域と、を有し、第2の導電体は、半導体と接する第2の領域を有し、第1の領
域と、第2の領域と、は互いに重ならない半導体装置である。
(2)
本発明の一態様は、半導体と、絶縁体と、第1の導電体と、第2の導電体と、第3の導電
体と、を有する半導体装置であって、半導体の上面は、絶縁体と接する領域を有し、半導
体の側面は、絶縁体と接する領域を有し、第1の導電体は、絶縁体を介して第1の導電体
と半導体とが互いに重なる第1の領域を有し、第1の領域は、半導体の上面と面する領域
と、半導体の側面と面する領域と、を有し、第2の導電体は、半導体と接する第2の領域
を有し、第3の導電体は、半導体と接する第3の領域を有し、第2の領域と、第3の領域
と、は互いに重なる領域を有し、第1の領域と、第2の領域と、は互いに重ならない半導
体装置である。
(3)
本発明の一態様は、半導体と、第1の絶縁体と、第2の絶縁体と、第1の導電体と、第2
の導電体と、を有する半導体装置であって、半導体は、第1の絶縁体と接する領域と、第
1の導電体および第2の導電体と互いに重ならない第1の領域と、を有し、第1の導電体
は、絶縁体を介して第1の導電体と半導体とが互いに重なる第2の領域を有し、第2の導
電体は、半導体と接する第3の領域を有し、第2の絶縁体は、第1の領域と接する領域を
有する半導体装置である。
(4)
本発明の一態様は、第2の絶縁体は、第1の絶縁体よりも比誘電率が高い(3)に記載の
半導体装置である。
(5)
本発明の一態様は、半導体上における第1の導電体と、半導体上における第2の導電体と
の間の距離が30nm以下である領域を有する(1)乃至(4)のいずれか一に記載の半
導体装置である。
(6)
本発明の一態様は、半導体は、第1の層および第2の層を有し、第1の層の電子親和力と
、第2の層の電子親和力と、は大きさが異なる(1)乃至(5)のいずれか一に記載の半
導体装置である。
(7)
本発明の一態様は、半導体が、インジウムおよび酸素を有する(1)乃至(6)のいずれ
か一に記載の半導体装置である。
(8)
本発明の一態様は、表示装置、バッテリーまたはセンサーと、(1)乃至(7)のいずれ
か一に記載の半導体装置と、を有する電子機器である。
電気特性の優れたトランジスタを提供することができる。または、非導通時の電流の小さ
いトランジスタを提供することができる。または、導通時の電流が大きいトランジスタを
提供することができる。または、当該トランジスタを有する半導体装置を提供することが
できる。または、集積度の高い半導体装置を提供することができる。または、丈夫な半導
体装置を提供することができる。または、新規な半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一
態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、
図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項な
どの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタの電気特性の計算結果を示す図。 本発明の一態様に係るトランジスタの電気特性の計算結果を示す図。 本発明の一態様に係るトランジスタの電気特性の計算結果を示す図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の回路図。 本発明の一態様に係る記憶装置の回路図。 本発明の一態様に係るRFタグのブロック図。 本発明の一態様に係るRFタグの使用例を示す図。 本発明の一態様に係るCPUを示すブロック図。 本発明の一態様に係る記憶素子の回路図。 本発明の一態様に係る表示装置の上面図および回路図。 本発明の一態様に係る表示モジュールを説明する図。 本発明の一態様に係る電子機器を示す図。 本発明の一態様に係る電子機器を示す図。 CAAC−OSの断面におけるCs補正高分解能TEM像、およびCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 半導体の積層を示す断面図、およびバンド構造を示す図。
本発明の実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下の説
明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に
理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるもの
ではない。なお、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異
なる図面間でも共通して用いる。なお、同様のものを指す際にはハッチパターンを同じく
し、特に符号を付さない場合がある。
なお、図において、大きさ、膜(層)の厚さ、または領域は、明瞭化のために誇張されて
いる場合がある。
また、電圧は、ある電位と、基準の電位(例えば接地電位(GND)またはソース電位)
との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である
なお、第1、第2として付される序数詞は便宜的に用いるものであり、工程順または積層
順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」な
どと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と
、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
なお、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」とし
ての特性を有する場合がある。また、「半導体」と「絶縁体」は境界が曖昧であり、厳密
に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「絶縁体」と
言い換えることができる場合がある。同様に、本明細書に記載の「絶縁体」は、「半導体
」と言い換えることができる場合がある。
また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」とし
ての特性を有する場合がある。また、「半導体」と「導電体」は境界が曖昧であり、厳密
に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「導電体」と
言い換えることができる場合がある。同様に、本明細書に記載の「導電体」は、「半導体
」と言い換えることができる場合がある。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度
が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導
体にDOS(Density of State)が形成されることや、キャリア移動度
が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導
体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族
元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、
水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素
などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形
成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純
物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15
族元素などがある。
なお、以下に示す実施の形態では、半導体が酸化物半導体である場合について説明するが
、これに限定されるものではない。例えば、半導体として、多結晶構造、単結晶構造など
のシリコン、ゲルマニウム、などを用いてもよい。または、歪みシリコンなどの歪みを有
する半導体を用いてもよい。または、半導体としてHEMTに適用可能なヒ化ガリウム、
ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム
、シリコンゲルマニウムなどを用いてもよい。これらの半導体を用いることで、高速動作
をすることに適したトランジスタとすることができる。
なお、本明細書において、Aが濃度Bの領域を有する、と記載する場合、例えば、Aのあ
る領域における深さ方向全体の濃度がBである場合、Aのある領域における深さ方向の濃
度の平均値がBである場合、Aのある領域における深さ方向の濃度の中央値がBである場
合、Aのある領域における深さ方向の濃度の最大値がBである場合、Aのある領域におけ
る深さ方向の濃度の最小値がBである場合、Aのある領域における深さ方向の濃度の収束
値がBである場合、測定上Aそのものの確からしい値の得られる領域における濃度がBで
ある場合などを含む。
また、本明細書において、Aが大きさB、長さB、厚さB、幅Bまたは距離Bの領域を有
する、と記載する場合、例えば、Aのある領域における全体の大きさ、長さ、厚さ、幅、
または距離がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離
の平均値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の
中央値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の最
大値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の最小
値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の収束値
がBである場合、測定上Aそのものの確からしい値の得られる領域での大きさ、長さ、厚
さ、幅、または距離がBである場合などを含む。
<トランジスタ構造と電気特性の関係>
以下では、トランジスタ構造と電気特性の関係について、計算による結果を図1乃至図6
を用いて説明する。
図1(A)は、本発明の一態様に係るトランジスタ構造Aの上面図の一例である。図1(
A)の一点鎖線A1−A2および一点鎖線A3−A4に対応する断面図の一例を図1(B
)に示す。なお、図1(A)では、理解を容易にするため、絶縁体などの一部を省略して
示す。
図1(B)に示すトランジスタ構造Aは、絶縁体102と、絶縁体102上の半導体10
6aと、半導体106a上の半導体106bと、半導体106bと接する領域を有する導
電体116aおよび導電体116bと、導電体116a上、導電体116b上および半導
体106b上にあり、半導体106bの上面および側面、ならびに半導体106aの側面
と接する領域を有する半導体106cと、絶縁体102上および半導体106c上の絶縁
体112と、絶縁体112上にあり、半導体106a、半導体106bおよび半導体10
6cと互いに重なる領域を有する導電体104と、絶縁体102上、導電体116a上、
導電体116b上、半導体106c上および導電体104上の絶縁体108と、を有する
。なお、半導体106bは、導電体116aおよび導電体116bと互いに重なる領域に
、それぞれ領域124aおよび領域124bを有する。なお、本明細書において、半導体
、絶縁体、導電体は、それぞれ半導体層、絶縁層、導電層ともいう。
トランジスタ構造Aにおいて、絶縁体102は下地絶縁体としての機能を有する。また、
絶縁体112はゲート絶縁体としての機能を有する。また、導電体104はゲート電極と
しての機能を有する。また、導電体116aおよび導電体116bは、ソース電極および
ドレイン電極としての機能を有する。また、領域124aおよび領域124bは、ソース
領域およびドレイン領域としての機能を有する。また、半導体106bの一部はチャネル
形成領域としての機能を有する。また、半導体106aおよび半導体106cは、半導体
106bに含まれるチャネル形成領域を絶縁体102および絶縁体112から離間させる
機能を有する。
また、トランジスタ構造Aにおいて、A1−A2断面における導電体104の幅をLg、
領域124aと領域124bとの間の領域または間隔をLと呼ぶ。また、A1−A2断面
における導電体104と領域124aとの間の領域または間隔をLoff1、導電体10
4と領域124bとの間の領域または間隔をLoff2と呼ぶ。また、A3−A4断面に
おける半導体106bの幅をWと呼ぶ。また、A3−A4断面における導電体104の最
下面から半導体106bの下面までの高さをhと呼ぶ。半導体106bにおいて、導電体
104と互いに重なる領域のみをチャネル形成領域とすれば、Loff1およびLoff
2はオフセット領域となる。
また、図2(A)は、本発明の一態様に係るトランジスタ構造Bの上面図の一例である。
図2(A)の一点鎖線B1−B2および一点鎖線B3−B4に対応する断面図の一例を図
2(B)に示す。なお、図2(A)では、理解を容易にするため、絶縁体などの一部を省
略して示す。
トランジスタ構造Bは、絶縁体102と、絶縁体102上の半導体106aと、半導体1
06a上の半導体106bと、半導体106bと接する領域を有する導電体116aおよ
び導電体116bと、導電体116a上、導電体116b上および半導体106b上にあ
り、半導体106bの上面および側面、ならびに半導体106aの側面と接する領域を有
する半導体106cと、絶縁体102上、半導体106c上、導電体116a上および導
電体116b上の絶縁体112と、絶縁体112上にあり、半導体106a、半導体10
6bおよび半導体106cと互いに重なる領域を有する導電体104と、絶縁体102上
、導電体116a上、導電体116b上および導電体104上の絶縁体108と、を有す
る。なお、半導体106bは、導電体116aおよび導電体116bと互いに重なる領域
に、それぞれ領域124aおよび領域124bを有する。
トランジスタ構造Bにおいて、絶縁体102は下地絶縁体としての機能を有する。また、
絶縁体112はゲート絶縁体としての機能を有する。また、導電体104はゲート電極と
しての機能を有する。また、導電体116aおよび導電体116bは、ソース電極および
ドレイン電極としての機能を有する。また、領域124aおよび領域124bは、ソース
領域およびドレイン領域としての機能を有する。また、半導体106bの一部はチャネル
形成領域としての機能を有する。また、半導体106aおよび半導体106cは、半導体
106bに含まれるチャネル形成領域を絶縁体102および絶縁体112から離間させる
機能を有する。
また、トランジスタ構造Bにおいて、B1−B2断面における導電体104の幅をLg、
領域124aと領域124bとの間隔をLと呼ぶ。また、B1−B2断面における導電体
104と領域124aとの間の領域またはその間隔をLoff1、導電体104と領域1
24bとの間の領域またはその間隔をLoff2と呼ぶ。また、B3−B4断面における
半導体106bの幅をWと呼ぶ。また、B3−B4断面における導電体104の最下面か
ら半導体106bの下面までの高さをhと呼ぶ。半導体106bにおいて、導電体104
と互いに重なる領域のみをチャネル形成領域とすれば、Loff1およびLoff2はオ
フセット領域となる。
したがって、トランジスタ構造Bは、トランジスタ構造Aと絶縁体112の形状が異なる
また、図3(A)は、本発明の一態様に係るトランジスタ構造Cの上面図の一例である。
図3(A)の一点鎖線C1−C2および一点鎖線C3−C4に対応する断面図の一例を図
3(B)に示す。なお、図3(A)では、理解を容易にするため、絶縁体などの一部を省
略して示す。
トランジスタ構造Cは、絶縁体102と、絶縁体102上の半導体106aと、半導体1
06a上の半導体106bと、半導体106bと接する領域を有する導電体116aおよ
び導電体116bと、導電体116a上、導電体116b上および半導体106b上にあ
り、半導体106bの上面および側面、ならびに半導体106aの側面と接する領域を有
する半導体106cと、絶縁体102上、半導体106c上、導電体116a上および導
電体116b上の絶縁体112と、絶縁体112上にあり、半導体106a、半導体10
6b、半導体106c、導電体116aおよび導電体116bと互いに重なる領域を有す
る導電体104と、絶縁体102上、導電体116a上、導電体116b上および導電体
104上の絶縁体108と、を有する。なお、半導体106bは、導電体116aおよび
導電体116bと重なる領域に、それぞれ領域124aおよび領域124bを有する。
トランジスタ構造Cにおいて、絶縁体102は下地絶縁体としての機能を有する。また、
絶縁体112はゲート絶縁体としての機能を有する。また、導電体104はゲート電極と
しての機能を有する。また、導電体116aおよび導電体116bは、ソース電極および
ドレイン電極としての機能を有する。また、領域124aおよび領域124bは、ソース
領域およびドレイン領域としての機能を有する。また、半導体106bの一部はチャネル
形成領域としての機能を有する。また、半導体106aおよび半導体106cは、半導体
106bに含まれるチャネル形成領域を絶縁体102および絶縁体112から離間させる
機能を有する。
また、トランジスタ構造Cにおいて、C1−C2断面における領域124aと領域124
bとの間隔をLと呼ぶ。また、C1−C2断面における導電体104と領域124aとが
互いに重なる領域またはその幅をLov1、導電体104と領域124bとが互いに重な
る領域またはその幅をLov2と呼ぶ。また、C3−C4断面における半導体106bの
幅をWと呼ぶ。また、C3−C4断面における導電体104の最下面から半導体106b
の下面までの高さをhと呼ぶ。半導体106bにおいて、領域124aと領域124bと
の間の導電体104と重なる領域をチャネル形成領域とすれば、Lov1およびLov2
はオーバーラップ領域となる。
したがって、トランジスタ構造Cは、トランジスタ構造Aおよびトランジスタ構造Bと、
導電体104の形状が異なる。具体的には、トランジスタ構造Aおよびトランジスタ構造
Bは、導電体116aおよび導電体116bと導電体104とが互いに重なる領域を有さ
ない構造であるが、トランジスタ構造Cは、導電体116aおよび導電体116bと導電
体104とが互いに重なる領域を有する構造である。
ここで、オフセット領域を有する構造(トランジスタ構造Aおよびトランジスタ構造B)
は、オーバーラップ領域を有する構造(トランジスタ構造C)よりもオン電流(Ionと
も表記する。)が小さくなると推測される。これは、オフセット領域がトランジスタのオ
ン抵抗となることに起因する。一方、オーバーラップ領域を有する構造は、オフセット領
域を有する構造よりも寄生容量が大きくなる。なお、オン電流とは、トランジスタのゲー
ト電極にしきい値電圧以上の電圧を印加した際に、ソース−ドレイン間を流れる電流をい
う。
次に、上述したトランジスタ構造A、トランジスタ構造Bおよびトランジスタ構造Cにつ
いて、Lの違いによる電気特性の変化を計算により評価する。なお、計算には、syno
psys社のSentaurusを用い、三次元構造を用いる。
計算に用いた条件を下表に示す。
Figure 2021121024
なお、Egはエネルギーギャップ、Ncは伝導帯の実効状態密度、Nvは価電子帯の実効
状態密度を示す。
また、hを20nm、Wを40nmとし、トランジスタ構造Aおよびトランジスタ構造B
ではLgを60nmとし、トランジスタ構造CではLovを20nmとしている。このと
き、Lを60nm、80nm、100nm、120nm、140nmまたは260nmと
して電気特性の計算を行う。また、トランジスタ構造Aおよびトランジスタ構造Bにおけ
るLoff1およびLoff2は、LからLgを差し引いた値を2で除した値となり、具
体的には0nm、10nm、20nm、30nm、40nmまたは100nmとなる。な
お、半導体106aおよび半導体106bの、L方向における長さは、Lに120nmを
加えた値としている。
計算により得られた、ゲート電圧(Vgとも表記する。)−ドレイン電流(Idとも表記
する)特性を図4に示す。なお、図4において、点線はトランジスタ構造A、破線はトラ
ンジスタ構造B、実線はトランジスタ構造Cを示す。また、図4に示したVg−Id特性
から、各Lにおけるオン電流およびサブスレッショルドスイング値(S値とも表記する。
)を導出し、図5に示す。なお、オン電流は、ドレイン電圧(Vdとも表記する。)を1
Vとし、ゲート電圧をしきい値電圧(Vthとも表記する。)に1.5V加えた電圧とし
たとき、またはゲート電圧が2.7Vのときのドレイン電流を示す。また、サブスレッシ
ョルドスイング値は、ドレイン電圧を1Vとしたとき、または0.1Vとしたときの値を
示す。
図6に、トランジスタ構造Cのオン電流に対する、トランジスタ構造Aおよびトランジス
タ構造Bのオン電流の比を示す。Lが大きくなるほど、トランジスタ構造Cとのオン電流
の差が広がっていく。
一方、トランジスタ構造Aにおいて、Lが140nmであってもトランジスタ構造Cの8
0%程度のオン電流が得られることが示された。また、Lが120nmであってもトラン
ジスタ構造Cの90%程度のオン電流が得られることが示された。また、Lが100nm
であってもトランジスタ構造Cの98%程度のオン電流が得られることが示された。なお
、トランジスタ構造Aは、Lが80nm以下のとき、トランジスタ構造Cよりもオン電流
が高くなることが示された。したがって、オフセット領域がある程度以下の大きさであれ
ば、トランジスタ構造Aとトランジスタ構造Cとはオン電流の差がほとんど見られないこ
とがわかった。具体的には、トランジスタ構造Aにおいて、Loff1およびLoff2
が40nm以下、好ましくは30nm以下、さらに好ましくは20nm以下であるとき、
オン電流が高く、かつ寄生容量の小さいトランジスタが実現できることがわかる。
また、トランジスタ構造Bにおいて、Lが120nmであってもトランジスタ構造Cの8
0%程度のオン電流が得られることが示された。また、Lが100nmであってもトラン
ジスタ構造Cの90%程度のオン電流が得られることが示された。また、Lが80nmで
あってもトランジスタ構造Cの95%程度のオン電流が得られることが示された。したが
って、オフセット領域がある程度以下の大きさであれば、トランジスタ構造Bとトランジ
スタ構造Cとはオン電流の差がほとんど見られないことがわかった。具体的には、トラン
ジスタ構造Cにおいて、Loff1およびLoff2が30nm以下、好ましくは20n
m以下、さらに好ましくは10nm以下であるとき、オン電流が高く、かつ寄生容量の小
さいトランジスタが実現できることがわかる。
トランジスタ構造Aおよびトランジスタ構造Bにおいても、トランジスタ構造Cとほとん
ど差のないオン電流が得られた理由としては、ゲート電極(導電体104)によるフリン
ジ電界の寄与が示唆される。即ち、フリンジ電界によって、オフセット領域にもキャリア
が誘起され、大きな抵抗とならなかった可能性がある。
フリンジ電界の寄与があることは、トランジスタ構造Aとトランジスタ構造Bとを比較す
ることで理解できる。トランジスタ構造Aは、トランジスタ構造Bとは絶縁体112をオ
フセット領域上に有さない点が異なる。また、絶縁体108は、絶縁体112よりも高い
比誘電率を有する。そのため、フリンジ電界によるオフセット領域へのキャリアの誘起が
多くなり、よりオン電流の低下が抑制された可能性が高い。このことから、オフセット領
域を有するトランジスタのオン電流には、フリンジ電界が寄与していることがわかる。
なお、フリンジ電界の寄与は、導電体104が厚いほど高まる。したがって、導電体10
4が厚いほど好ましい。例えば、導電体104の厚さを20nm以上、好ましくは30n
m以上、さらに好ましくは50nm以上、より好ましくは100nm以上とすればよい。
また、トランジスタ構造Aにおいて、フリンジ電界の寄与は、半導体106cおよび絶縁
体108の比誘電率が高いほど高まる。したがって、半導体106cおよび絶縁体108
の比誘電率が高いほど好ましい。例えば、半導体106cの比誘電率を10以上、好まし
くは15以上、さらに好ましくは20以上、より好ましくは25以上とすればよい。また
、例えば、絶縁体108の比誘電率を5以上、好ましくは10以上、さらに好ましくは1
5以上、より好ましくは20以上とすればよい。
また、トランジスタ構造Bにおいて、フリンジ電界の寄与は、半導体106c、絶縁体1
12および絶縁体108の比誘電率が高いほど高まる。したがって、半導体106c、絶
縁体112および絶縁体108の比誘電率が高いほど好ましい。例えば、絶縁体112の
比誘電率を3以上、好ましくは4以上、さらに好ましくは6以上、より好ましくは10以
上とすればよい。また、例えば、半導体106cの比誘電率を10以上、好ましくは15
以上、さらに好ましくは20以上、より好ましくは25以上とすればよい。また、例えば
、絶縁体108の比誘電率を5以上、好ましくは10以上、さらに好ましくは15以上、
より好ましくは20以上とすればよい。
なお、トランジスタ構造Aおよびトランジスタ構造Bは、導電体104の電界によって、
半導体106bを電気的に取り囲むことができる(導電体から生じる電界によって、半導
体を電気的に取り囲むトランジスタの構造を、surrounded channel(
s−channel)構造とよぶ。)。そのため、半導体106bの全体(バルク)にチ
ャネルが形成される場合がある。s−channel構造では、トランジスタのソース−
ドレイン間に大電流を流すことができ、導通時の電流(オン電流)を高くすることができ
る。
s−channel構造を有することで、フリンジ電界の寄与も半導体106bの側面ま
で及ぶ。したがって、s−channel構造は、フリンジ電界によるオフセット領域の
低抵抗化に適した構造であることがわかる。
<トランジスタ構造1>
図7(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図7(A)の
一点鎖線D1−D2および一点鎖線D3−D4に対応する断面図の一例を図7(B)に示
す。なお、図7(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
図7(A)および図7(B)に示すトランジスタは、基板400上の導電体413と、基
板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸部上
の半導体406aと、半導体406a上の半導体406bと、半導体406b上の半導体
406cと、半導体406c上の絶縁体412と、絶縁体412上の導電体404と、絶
縁体402上、半導体406b上および導電体404上の絶縁体408と、を有する。な
お、ここでは、導電体413をトランジスタの一部としているが、これに限定されない。
例えば、導電体413がトランジスタとは独立した構成要素であるとしてもよい。
なお、半導体406bは、トランジスタのチャネル形成領域としての機能を有する。また
、導電体404は、トランジスタの第1のゲート電極(フロントゲート電極ともいう。)
としての機能を有する。また、導電体413は、トランジスタの第2のゲート電極(バッ
クゲート電極ともいう。)としての機能を有する。また、絶縁体408は、バリア層とし
ての機能を有する。絶縁体408は、例えば、酸素または/および水素をブロックする機
能を有する。または、絶縁体408は、例えば、半導体406aまたは/および半導体4
06cよりも、酸素または/および水素をブロックする能力が高い。
トランジスタは、導電体426aおよび導電体426bなどを介して、導電体424aお
よび導電体424bとそれぞれ電気的に接続していても構わない。なお、導電体426a
および導電体426bは、絶縁体408と、絶縁体408上の絶縁体418と、絶縁体4
18上の絶縁体428と、に設けられた開口部を介して、それぞれトランジスタのソース
領域およびドレイン領域と電気的に接続する。また、導電体424aおよび導電体424
bは、例えば、半導体装置の配線としての機能を有する。
なお、半導体406cは、D3−D4断面において、少なくとも半導体406bの上面お
よび側面と接する領域を有する。また、導電体404は、D3−D4断面において、半導
体406cおよび絶縁体412を介して半導体406bの上面および側面と面する。また
、導電体413は、絶縁体402を介して半導体406bの下面と面する。また、絶縁体
402が凸部を有さなくても構わない。また、半導体406cを有さなくても構わない。
また、絶縁体408を有さなくても構わない。
図7(B)において、トランジスタは、導電体426aと接する箇所と、半導体406b
の導電体404と重なる箇所との間の領域が高抵抗であっても、導電体404のフリンジ
電界によって該領域の抵抗が低減されるためトランジスタのオン電流の低下が起こりにく
い構造である。フリンジ電界については、図1乃至図6などの説明を参照する。
ただし、該領域が、それ以外の領域よりも抵抗が低い領域であっても構わない。該領域が
、例えば、希ガスなどの不活性な元素、酸素との結合エネルギーの高い元素、酸素との反
応性の高い元素、または酸素と反応して安定な酸化物を形成する元素を含む領域であって
も構わない。また、該領域が、例えば、ヘリウム、ホウ素、炭素、窒素、ネオン、マグネ
シウム、アルミニウム、シリコン、リン、アルゴン、カルシウム、チタン、バナジウム、
クロム、マンガン、鉄、コバルト、ゲルマニウム、クリプトン、ストロンチウム、イット
リウム、ジルコニウム、ニオブ、モリブデン、キセノン、ランタン、セリウム、ネオジム
、ハフニウム、タンタルまたはタングステンから選択された一種以上を含む領域であって
も構わない。該領域が、例えば、上述の元素を5×1019atoms/cm以上、好
ましくは1×1020atoms/cm以上、さらに好ましくは2×1020atom
s/cm以上、より好ましくは5×1020atoms/cm以上含む領域であって
も構わない。本明細書中では、上述の元素を不純物と呼ぶこともある。
なお、以下では、半導体406a、半導体406bおよび半導体406cが酸化物半導体
である場合について説明するが、半導体406a、半導体406bおよび半導体406c
が酸化物半導体以外の半導体であってもよい。
なお、絶縁体402は、過剰酸素を含む絶縁体である。
例えば、過剰酸素を含む絶縁体は、加熱処理によって酸素を放出する機能を有する絶縁体
である。例えば、過剰酸素を含む酸化シリコンは、加熱処理などによって酸素を放出する
ことができる酸化シリコンである。したがって、絶縁体402は膜中を酸素が移動可能な
絶縁体である。即ち、絶縁体402は酸素透過性を有する絶縁体とすればよい。例えば、
絶縁体402は、半導体406aよりも酸素透過性の高い絶縁体とすればよい。
過剰酸素を含む絶縁体は、半導体406b中の酸素欠損を低減させる機能を有する場合が
ある。半導体406b中で酸素欠損は、DOSを形成し、正孔トラップなどとなる。また
、酸素欠損のサイトに水素が入ることによって、キャリアである電子を生成することがあ
る。したがって、半導体406b中の酸素欠損を低減することで、トランジスタに安定し
た電気特性を付与することができる。
ここで、加熱処理によって酸素を放出する絶縁体は、TDS分析にて、100℃以上70
0℃以下または100℃以上500℃以下の表面温度の範囲で1×1018atoms/
cm以上、1×1019atoms/cm以上または1×1020atoms/cm
以上の酸素(酸素原子数換算)を放出することもある。
ここで、TDS分析を用いた酸素の放出量の測定方法について、以下に説明する。
測定試料をTDS分析したときの気体の全放出量は、放出ガスのイオン強度の積分値に比
例する。そして標準試料との比較により、気体の全放出量を計算することができる。
例えば、標準試料である所定の密度の水素を含むシリコン基板のTDS分析結果、および
測定試料のTDS分析結果から、測定試料の酸素分子の放出量(NO2)は、下に示す式
で求めることができる。ここで、TDS分析で得られる質量電荷比32で検出されるガス
の全てが酸素分子由来と仮定する。CHOHの質量電荷比は32であるが、存在する可
能性が低いものとしてここでは考慮しない。また、酸素原子の同位体である質量数17の
酸素原子および質量数18の酸素原子を含む酸素分子についても、自然界における存在比
率が極微量であるため考慮しない。
O2=NH2/SH2×SO2×α
H2は、標準試料から脱離した水素分子を密度で換算した値である。SH2は、標準試
料をTDS分析したときのイオン強度の積分値である。ここで、標準試料の基準値を、N
H2/SH2とする。SO2は、測定試料をTDS分析したときのイオン強度の積分値で
ある。αは、TDS分析におけるイオン強度に影響する係数である。上に示す式の詳細に
関しては、特開平6−275697公報を参照する。なお、上記酸素の放出量は、電子科
学株式会社製の昇温脱離分析装置EMD−WA1000S/Wを用い、標準試料として、
例えば1×1016atoms/cmの水素原子を含むシリコン基板を用いて測定する
また、TDS分析において、酸素の一部は酸素原子として検出される。酸素分子と酸素原
子の比率は、酸素分子のイオン化率から算出することができる。なお、上述のαは酸素分
子のイオン化率を含むため、酸素分子の放出量を評価することで、酸素原子の放出量につ
いても見積もることができる。
なお、NO2は酸素分子の放出量である。酸素原子に換算したときの放出量は、酸素分子
の放出量の2倍となる。
または、加熱処理によって酸素を放出する絶縁体は、過酸化ラジカルを含むこともある。
具体的には、過酸化ラジカルに起因するスピン密度が、5×1017spins/cm
以上であることをいう。なお、過酸化ラジカルを含む絶縁体は、ESRにて、g値が2.
01近傍に非対称の信号を有することもある。
または、過剰酸素を含む絶縁体は、酸素が過剰な酸化シリコン(SiO(X>2))で
あってもよい。酸素が過剰な酸化シリコン(SiO(X>2))は、シリコン原子数の
2倍より多い酸素原子を単位体積当たりに含むものである。単位体積当たりのシリコン原
子数および酸素原子数は、ラザフォード後方散乱法(RBS:Rutherford B
ackscattering Spectrometry)により測定した値である。
図7(B)は、導電体404の電界によって、半導体406bを電気的に取り囲むことが
できるs−channel構造である。そのため、トランジスタのソース−ドレイン間に
大電流を流すことができ、導通時の電流(オン電流)を高くすることができる。
高いオン電流が得られるため、s−channel構造は、微細化されたトランジスタに
適した構造といえる。トランジスタを微細化できるため、該トランジスタを有する半導体
装置は、集積度の高い、高密度化された半導体装置とすることが可能となる。例えば、ト
ランジスタは、チャネル長が好ましくは40nm以下、さらに好ましくは30nm以下、
より好ましくは20nm以下の領域を有し、かつ、トランジスタは、チャネル幅が好まし
くは40nm以下、さらに好ましくは30nm以下、より好ましくは20nm以下の領域
を有する。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトラン
ジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重な
る領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電
極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つの
トランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一
つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細
書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、
最小値または平均値とする。
チャネル幅とは、例えば、上面図において半導体(またはトランジスタがオン状態のとき
に半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネル
が形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。
なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限ら
ない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そ
のため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一
の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネ
ル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示される
チャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、
立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図
において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる
場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の上面に
形成されるチャネル領域の割合に対して、半導体の側面に形成されるチャネル領域の割合
が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よ
りも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測
による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積
もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状
が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが互いに
重なる領域における、ソースとドレインとが向かい合っている部分の長さである見かけ上
のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channe
l Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した
場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、
本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合があ
る。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い
込みチャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによ
って、値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求め
る場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャ
ネル幅を用いて計算する場合とは異なる値をとる場合がある。
また、導電体413に、ソース電極よりも低い電圧または高い電圧を印加し、トランジス
タのしきい値電圧をプラス方向またはマイナス方向へ変動させてもよい。例えば、トラン
ジスタのしきい値電圧をプラス方向に変動させることで、ゲート電圧が0Vであってもト
ランジスタが非導通状態(オフ状態)となる、ノーマリーオフが実現できる場合がある。
なお、導電体413に印加する電圧は、可変であってもよいし、固定であってもよい。導
電体413に印加する電圧を可変にする場合、電圧を制御する回路を導電体413と電気
的に接続してもよい。
次に、半導体406a、半導体406b、半導体406cなどに適用可能な半導体につい
て説明する。
半導体406bは、例えば、インジウムを含む酸化物半導体である。半導体406bは、
例えば、インジウムを含むと、キャリア移動度(電子移動度)が高くなる。また、半導体
406bは、元素Mを含むと好ましい。元素Mは、好ましくは、アルミニウム、ガリウム
、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホ
ウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、イットリウム、ジルコニウム、
モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステンなど
がある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
元素Mは、例えば、酸素との結合エネルギーが高い元素である。例えば、酸素との結合エ
ネルギーがインジウムよりも高い元素である。または、元素Mは、例えば、酸化物半導体
のエネルギーギャップを大きくする機能を有する元素である。また、半導体406bは、
亜鉛を含むと好ましい。酸化物半導体は、亜鉛を含むと結晶化しやすくなる場合がある。
ただし、半導体406bは、インジウムを含む酸化物半導体に限定されない。半導体40
6bは、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物などの、インジウムを含まず、亜
鉛を含む酸化物半導体、ガリウムを含む酸化物半導体、スズを含む酸化物半導体などであ
っても構わない。
半導体406bは、例えば、エネルギーギャップが大きい酸化物を用いる。半導体406
bのエネルギーギャップは、例えば、2.5eV以上4.2eV以下、好ましくは2.8
eV以上3.8eV以下、さらに好ましくは3eV以上3.5eV以下とする。
例えば、半導体406aおよび半導体406cは、半導体406bを構成する酸素以外の
元素のうち一種以上、または二種以上から構成される酸化物半導体である。半導体406
bを構成する酸素以外の元素のうち一種以上、または二種以上から半導体406aおよび
半導体406cが構成されるため、半導体406aと半導体406bとの界面、および半
導体406bと半導体406cとの界面において、界面準位が形成されにくい。
半導体406a、半導体406bおよび半導体406cは、少なくともインジウムを含む
と好ましい。なお、半導体406aがIn−M−Zn酸化物のとき、InおよびMの和を
100atomic%としたとき、好ましくはInが50atomic%未満、Mが50
atomic%以上、さらに好ましくはInが25atomic%未満、Mが75ato
mic%以上とする。また、半導体406bがIn−M−Zn酸化物のとき、Inおよび
Mの和を100atomic%としたとき、好ましくはInが25atomic%以上、
Mが75atomic%未満、さらに好ましくはInが34atomic%以上、Mが6
6atomic%未満とする。また、半導体406cがIn−M−Zn酸化物のとき、I
nおよびMの和を100atomic%としたとき、好ましくはInが50atomic
%未満、Mが50atomic%以上、さらに好ましくはInが25atomic%未満
、Mが75atomic%以上とする。なお、半導体406cは、半導体406aと同種
の酸化物を用いても構わない。
半導体406bは、半導体406aおよび半導体406cよりも電子親和力の大きい酸化
物を用いる。例えば、半導体406bとして、半導体406aおよび半導体406cより
も電子親和力の0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV
以下、さらに好ましくは0.15eV以上0.4eV以下大きい酸化物を用いる。なお、
電子親和力は、真空準位と伝導帯下端のエネルギーとの差である。
なお、インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する
。そのため、半導体406cがインジウムガリウム酸化物を含むと好ましい。ガリウム原
子割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さら
に好ましくは90%以上とする。
このとき、ゲート電圧を印加すると、半導体406a、半導体406b、半導体406c
のうち、電子親和力の大きい半導体406bにチャネルが形成される。
ここで、半導体406aと半導体406bとの間には、半導体406aと半導体406b
との混合領域を有する場合がある。また、半導体406bと半導体406cとの間には、
半導体406bと半導体406cとの混合領域を有する場合がある。混合領域は、界面準
位密度が低くなる。そのため、半導体406a、半導体406bおよび半導体406cの
積層体は、それぞれの界面近傍において、エネルギーが連続的に変化する(連続接合とも
いう。)バンド構造となる。なお、図32(A)は、半導体406a、半導体406bお
よび半導体406cが、この順番に積層した断面図である。図32(B)は、図32(A
)の一点鎖線P1−P2に対応する伝導帯下端のエネルギー(Ec)であり、半導体40
6aより半導体406cの電子親和力が大きい場合を示す。また、図32(C)は、半導
体406aより半導体406cの電子親和力が小さい場合を示す。
このとき、電子は、半導体406a中および半導体406c中ではなく、半導体406b
中を主として移動する。上述したように、半導体406aおよび半導体406bの界面に
おける界面準位密度、半導体406bと半導体406cとの界面における界面準位密度を
低くすることによって、半導体406b中で電子の移動が阻害されることが少なく、トラ
ンジスタのオン電流を高くすることができる。
トランジスタのオン電流は、電子の移動を阻害する要因を低減するほど、高くすることが
できる。例えば、電子の移動を阻害する要因のない場合、効率よく電子が移動すると推定
される。電子の移動は、例えば、チャネル形成領域の物理的な凹凸が大きい場合にも阻害
される。
トランジスタのオン電流を高くするためには、例えば、半導体406bの上面または下面
(被形成面、ここでは半導体406a)の、1μm×1μmの範囲における二乗平均平方
根(RMS:Root Mean Square)粗さが1nm未満、好ましくは0.6
nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とすればよ
い。また、1μm×1μmの範囲における平均面粗さ(Raともいう。)が1nm未満、
好ましくは0.6nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4n
m未満とすればよい。また、1μm×1μmの範囲における最大高低差(P−Vともいう
。)が10nm未満、好ましくは9nm未満、さらに好ましくは8nm未満、より好まし
くは7nm未満とすればよい。RMS粗さ、RaおよびP−Vは、エスアイアイ・ナノテ
クノロジー株式会社製走査型プローブ顕微鏡システムSPA−500などを用いて測定す
ることができる。
酸化物半導体において、酸素欠損はトランジスタの電気特性を劣化させる要因となる場合
がある。よって、チャネル形成領域における酸素欠損を低減することがトランジスタに安
定した電気特性を付与するためには重要となる。一方、トランジスタのソース領域および
ドレイン領域に酸化物半導体を用いる場合、酸素欠損に起因して酸化物半導体を低抵抗化
させることができる。よって、トランジスタのオン電流を大きくするために酸素欠損を有
するほうがよい場合がある。
例えば、酸化物半導体が酸素欠損(Vとも表記。)を有する場合、酸素欠損のサイトに
水素が入り込むことでドナー準位を形成することがある。以下では酸素欠損のサイトに水
素が入り込んだ状態をVHと表記する場合がある。なお、酸素欠損のサイトは、水素が
入るよりも酸素が入る方が安定する。したがって、酸化物半導体に酸素を供給することで
、VHを低減することができる。
なお、トランジスタがs−channel構造を有する場合、半導体406bの全体にチ
ャネルが形成される。したがって、半導体406bが厚いほどチャネル領域は大きくなる
。即ち、半導体406bが厚いほど、トランジスタのオン電流を高くすることができる。
例えば、20nm以上、好ましくは40nm以上、さらに好ましくは60nm以上、より
好ましくは100nm以上の厚さの領域を有する半導体406bとすればよい。ただし、
半導体装置の生産性が低下する場合があるため、例えば、300nm以下、好ましくは2
00nm以下、さらに好ましくは150nm以下の厚さの領域を有する半導体406bと
すればよい。
また、トランジスタのオン電流を高くするためには、半導体406cの厚さは小さいほど
好ましい。例えば、10nm未満、好ましくは5nm以下、さらに好ましくは3nm以下
の領域を有する半導体406cとすればよい。一方、半導体406cは、チャネルの形成
される半導体406bへ、隣接する絶縁体を構成する酸素以外の元素(水素、シリコンな
ど)が入り込まないようブロックする機能を有する。そのため、半導体406cは、ある
程度の厚さを有することが好ましい。例えば、0.3nm以上、好ましくは1nm以上、
さらに好ましくは2nm以上の厚さの領域を有する半導体406cとすればよい。また、
半導体406cは、絶縁体402などから放出される酸素の外方拡散を抑制するために、
酸素をブロックする性質を有すると好ましい。
また、信頼性を高くするためには、半導体406aは厚く、半導体406cは薄いことが
好ましい。例えば、10nm以上、好ましくは20nm以上、さらに好ましくは40nm
以上、より好ましくは60nm以上の厚さの領域を有する半導体406aとすればよい。
半導体406aの厚さを、厚くすることで、隣接する絶縁体と半導体406aとの界面か
らチャネルの形成される半導体406bまでの距離を離すことができる。ただし、半導体
装置の生産性が低下する場合があるため、例えば、200nm以下、好ましくは120n
m以下、さらに好ましくは80nm以下の厚さの領域を有する半導体406aとすればよ
い。
例えば、半導体406bと半導体406aとの間に、例えば、二次イオン質量分析法(S
IMS:Secondary Ion Mass Spectrometry)において
、1×1019atoms/cm未満、好ましくは5×1018atoms/cm
満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を
有する。また、半導体406bと半導体406cとの間に、SIMSにおいて、1×10
19atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに
好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。
また、半導体406bの水素濃度を低減するために、半導体406aおよび半導体406
cの水素濃度を低減すると好ましい。半導体406aおよび半導体406cは、SIMS
において、2×1020atoms/cm以下、好ましくは5×1019atoms/
cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5
×1018atoms/cm以下の水素濃度となる領域を有する。また、半導体406
bの窒素濃度を低減するために、半導体406aおよび半導体406cの窒素濃度を低減
すると好ましい。半導体406aおよび半導体406cは、SIMSにおいて、5×10
19atoms/cm未満、好ましくは5×1018atoms/cm以下、より好
ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atom
s/cm以下の窒素濃度となる領域を有する。
なお、酸化物半導体に銅が混入すると、電子トラップを生成する場合がある。電子トラッ
プは、トランジスタのしきい値電圧をプラス方向へ変動させる場合がある。したがって、
半導体406bの表面または内部における銅濃度は低いほど好ましい。例えば、半導体4
06bは、銅濃度が1×1019atoms/cm以下、5×1018atoms/c
以下、または1×1018atoms/cm以下となる領域を有すると好ましい。
また、半導体406aの表面または内部における銅濃度は低いほど好ましい。例えば、半
導体406aは、銅濃度が1×1019atoms/cm以下、5×1018atom
s/cm以下、または1×1018atoms/cm以下となる領域を有すると好ま
しい。また、半導体406cの表面または内部における銅濃度は低いほど好ましい。例え
ば、半導体406cは、銅濃度が1×1019atoms/cm以下、5×1018
toms/cm以下、または1×1018atoms/cm以下となる領域を有する
と好ましい。
上述の3層構造は一例である。例えば、半導体406aまたは半導体406cのない2層
構造としても構わない。または、半導体406aの上もしくは下、または半導体406c
上もしくは下に、半導体406a、半導体406bおよび半導体406cとして例示した
半導体のいずれか一を有する4層構造としても構わない。または、半導体406aの上、
半導体406aの下、半導体406cの上、半導体406cの下のいずれか二箇所以上に
、半導体406a、半導体406bおよび半導体406cとして例示した半導体のいずれ
か一を有するn層構造(nは5以上の整数)としても構わない。
以下では、酸化物半導体の構造について説明する。
本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置さ
れている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平
行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。ま
た、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態を
いう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二
つの直線が60°以上120°以下の角度で配置されている状態をいう。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す
<酸化物半導体の構造>
以下では、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けられ
る。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned
Crystalline Oxide Semiconductor)、多結晶酸化物半
導体、nc−OS(nanocrystalline Oxide Semicondu
ctor)、擬似非晶質酸化物半導体(a−like OS:amorphous li
ke Oxide Semiconductor)、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半
導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−O
S、多結晶酸化物半導体、nc−OSなどがある。
非晶質構造の定義としては、一般に、準安定状態で固定化していないこと、等方的であっ
て不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距離
秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
逆の見方をすると、本質的に安定な酸化物半導体の場合、完全な非晶質(complet
ely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でない
(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物
半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周期
構造を有するものの、鬆を有し、不安定な構造である。そのため、物性的には非晶質酸化
物半導体に近いといえる。
<CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半
導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Micro
scope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分
解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方
、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーとも
いう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に起
因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC−OSについて説明する。図27(A)に、
試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高
分解能TEM像の観察には、球面収差補正(Spherical Aberration
Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、
特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日
本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行うこ
とができる。
図27(A)の領域(1)を拡大したCs補正高分解能TEM像を図27(B)に示す。
図27(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる
。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)ま
たは上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
図27(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図27(C)
は、特徴的な原子配列を、補助線で示したものである。図27(B)および図27(C)
より、ペレット一つの大きさは1nm以上3nm以下程度であり、ペレットとペレットと
の傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペ
レットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CA
AC−OSを、CANC(C−Axis Aligned nanocrystals)
を有する酸化物半導体と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレッ
ト5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造と
なる(図27(D)参照。)。図27(C)で観察されたペレットとペレットとの間で傾
きが生じている箇所は、図27(D)に示す領域5161に相当する。
また、図28(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs
補正高分解能TEM像を示す。図28(A)の領域(1)、領域(2)および領域(3)
を拡大したCs補正高分解能TEM像を、それぞれ図28(B)、図28(C)および図
28(D)に示す。図28(B)、図28(C)および図28(D)より、ペレットは、
金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しかし
ながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X−Ray Diffraction)によって解析したCA
AC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OS
に対し、out−of−plane法による構造解析を行うと、図29(A)に示すよう
に回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZ
nOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性
を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC−OSのout−of−plane法による構造解析では、2θが31°
近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近
傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれることを
示している。より好ましいCAAC−OSは、out−of−plane法による構造解
析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−plan
e法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、In
GaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを56
°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(
φスキャン)を行っても、図29(B)に示すように明瞭なピークは現れない。これに対
し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφス
キャンした場合、図29(C)に示すように(110)面と等価な結晶面に帰属されるピ
ークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、
a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZ
nOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの
電子線を入射させると、図30(A)に示すような回折パターン(制限視野透過電子回折
パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnO
結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、
CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略
垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ
径が300nmの電子線を入射させたときの回折パターンを図30(B)に示す。図30
(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、
CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。
なお、図30(B)における第1リングは、InGaZnOの結晶の(010)面およ
び(100)面などに起因すると考えられる。また、図30(B)における第2リングは
(110)面などに起因すると考えられる。
上述したように、CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結
晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をする
とCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属
元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素
との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を
乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二
酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を
乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合があ
る。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリ
ア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとな
る場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体であ
る。具体的には、キャリア密度を8×1011/cm未満、好ましくは1×1011
cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm
以上とすることができる。そのような酸化物半導体を、高純度真性または実質的に高純度
真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い
。即ち、安定な特性を有する酸化物半導体であるといえる。
<nc−OS>
次に、nc−OSについて説明する。
nc−OSは、高分解能TEM像において、結晶部を確認することのできる領域と、明確
な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、
1nm以上10nm以下、または1nm以上3nm以下の大きさであることが多い。なお
、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化
物半導体と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を
明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと
起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼
ぶ場合がある。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3
nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレ
ット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。した
がって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体
と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX
線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは検
出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50n
m以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが観
測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプロ
ーブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、n
c−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い
領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測される
場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc−
OSを、RANC(Random Aligned nanocrystals)を有す
る酸化物半導体、またはNANC(Non−Aligned nanocrystals
)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、
nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる
。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため
、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半
導体である。
a−like OSは、高分解能TEM像において鬆(ボイドともいう。)が観察される
場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領
域と、結晶部を確認することのできない領域と、を有する。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like
OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため
、電子照射による構造の変化を示す。
電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS(
試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いずれ
の試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料
は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、
InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を
6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これ
らの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度で
あり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の
間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見
なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図31は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である
。ただし、上述した格子縞の長さを結晶部の大きさとしている。図31より、a−lik
e OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的
には、図31中に(1)で示すように、TEMによる観察初期においては1.2nm程度
の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/nm
においては2.6nm程度の大きさまで成長していることがわかる。一方、nc−OS
およびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10
nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図
31中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSおよ
びCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度で
あることがわかる。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合があ
る。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど
見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−O
Sと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べ
て密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶
の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAAC
−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶
の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱
面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よっ
て、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において
、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。また
、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、
nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm
未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる
単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もる
ことができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせ
る割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない
種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。な
お、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、
CAAC−OSのうち、二種以上を有する積層膜であってもよい。
図7において、基板400としては、例えば、絶縁体基板、半導体基板または導電体基板
を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板
、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある
。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、
または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜
鉛、酸化ガリウムなどの化合物半導体基板などがある。さらには、前述の半導体基板内部
に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insula
tor)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性
樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板な
どがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に
導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基
板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設
けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などが
ある。
また、基板400として、可とう性基板を用いてもよい。なお、可とう性基板上にトラン
ジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トラン
ジスタを剥離し、可とう性基板である基板400に転置する方法もある。その場合には、
非可とう性基板とトランジスタとの間に剥離層を設けるとよい。なお、基板400として
、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。また、基板400が
伸縮性を有してもよい。また、基板400は、折り曲げや引っ張りをやめた際に、元の形
状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板4
00の厚さは、例えば、5μm以上700μm以下、好ましくは10μm以上500μm
以下、さらに好ましくは15μm以上300μm以下とする。基板400を薄くすると、
半導体装置を軽量化することができる。また、基板400を薄くすることで、ガラスなど
を用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に
戻る性質を有する場合がある。そのため、落下などによって基板400上の半導体装置に
加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができ
る。
可とう性基板である基板400としては、例えば、金属、合金、樹脂もしくはガラス、ま
たはそれらの繊維などを用いることができる。可とう性基板である基板400は、線膨張
率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板400とし
ては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×1
−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリ
オレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、
アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板
400として好適である。
導電体413としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミ
ニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イット
リウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよ
びタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、
合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体
、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンお
よび窒素を含む導電体などを用いてもよい。
絶縁体402としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。なお、絶縁体402が、窒化酸化シリコン、窒化シリコ
ンなどの窒素を含む絶縁体を含んでも構わない。
絶縁体402は、基板400からの不純物の拡散を防止する役割を有してもよい。また、
半導体406bが酸化物半導体である場合、絶縁体402は、半導体406bに酸素を供
給する役割を担うことができる。
絶縁体412としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。
導電体404としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミ
ニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イット
リウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよ
びタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、
合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体
、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンお
よび窒素を含む導電体などを用いてもよい。
絶縁体408としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。絶縁体408は、好ましくは酸化アルミニウム、窒化酸
化シリコン、窒化シリコン、酸化ガリウム、酸化イットリウム、酸化ジルコニウム、酸化
ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを含む絶縁体を、単層で、
または積層で用いればよい。
絶縁体418としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。絶縁体418は、好ましくは酸化シリコンまたは酸化窒
化シリコンを含む絶縁体を、単層で、または積層で用いればよい。
絶縁体428としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。絶縁体428は、好ましくは酸化シリコンまたは酸化窒
化シリコンを含む絶縁体を、単層で、または積層で用いればよい。
導電体426aおよび導電体426bとしては、例えば、ホウ素、窒素、酸素、フッ素、
シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、
亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウ
ム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で
用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅お
よびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素
を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
導電体424aおよび導電体424bとしては、例えば、ホウ素、窒素、酸素、フッ素、
シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、
亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウ
ム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で
用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅お
よびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素
を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
なお、図7では、トランジスタの第1のゲート電極である導電体404と第2のゲート電
極である導電体413とが、電気的に接続しない例を示したが、本発明の一態様に係るト
ランジスタの構造はこれに限定されない。例えば、図8(A)に示すように、導電体40
4と導電体413とが導電体405などを介して電気的に接続する構造であっても構わな
い。このような構成とすることで、導電体404と導電体413とに同じ電位が供給され
るため、トランジスタのスイッチング特性を向上させることができる。または、図8(B
)に示すように、導電体413を有さない構造であっても構わない。
または、図7では、トランジスタのソース領域およびドレイン領域と電気的に接続する導
電体426aおよび導電体426bが、半導体406bと接する領域を有する例を示した
が、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図9(A
)に示すように、導電体426aおよび導電体426bが半導体406bおよび半導体4
06aを貫通して、絶縁体402と接する領域を有していても構わない。または、図9(
B)に示すように、半導体406bを貫通して、半導体406aと接する領域を有してい
ても構わない。
または、図7では、半導体406cおよび絶縁体412が、導電体404と重なる領域に
のみ配置される例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定さ
れない。例えば、図10(A)に示すように、半導体406cおよび絶縁体412を、半
導体406bおよび半導体406aを覆うように配置しても構わない。または、図10(
B)に示すように、半導体406cを半導体406bと重なるように配置し、絶縁体41
2を半導体406c、半導体406bおよび半導体406aを覆うように配置しても構わ
ない。
<トランジスタ構造2>
図11(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図11(A
)の一点鎖線E1−E2および一点鎖線E3−E4に対応する断面図の一例を図11(B
)に示す。なお、図11(A)では、理解を容易にするため、絶縁体などの一部を省略し
て示す。
図11(A)および図11(B)に示すトランジスタは、基板400上の導電体413と
、基板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸
部上の半導体406aと、半導体406a上の半導体406bと、半導体406bの上面
と接する領域を有し、半導体406bの側面と接しない導電体416aおよび導電体41
6bと、半導体406b上の、導電体416aおよび導電体416bと重ならない領域に
配置された半導体406cと、半導体406c上の絶縁体412と、絶縁体412上の導
電体404と、絶縁体402上、半導体406b上および導電体404上の絶縁体408
と、を有する。なお、ここでは、導電体413をトランジスタの一部としているが、これ
に限定されない。例えば、導電体413がトランジスタとは独立した構成要素であるとし
てもよい。
なお、導電体416aおよび導電体416bとしては、例えば、ホウ素、窒素、酸素、フ
ッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル
、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、イ
ンジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または
積層で用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体
、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよ
び酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
図11に示すトランジスタは、図7などに示したトランジスタと比べて、導電体416a
および導電体416bを有する点が異なるが、そのほかの構成については類似している。
したがって、図11に示すトランジスタの詳細は、図7などに示したトランジスタについ
ての記載を参酌することができる。
図11に示すトランジスタは、図7などに示したトランジスタと比べて、導電体416a
および導電体416bを有する分だけ、オン電流の大きいトランジスタを実現することが
できる場合がある。
<トランジスタ構造3>
図12(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図12(A
)の一点鎖線F1−F2および一点鎖線F3−F4に対応する断面図の一例を図12(B
)に示す。なお、図12(A)では、理解を容易にするため、絶縁体などの一部を省略し
て示す。
図12(A)および図12(B)に示すトランジスタは、基板400上の導電体413と
、基板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸
部上の半導体406aと、半導体406a上の半導体406bと、半導体406bの上面
および側面と接する領域を有する導電体416aおよび導電体416bと、半導体406
b上の、導電体416aおよび導電体416bと重ならない領域に配置された半導体40
6cと、半導体406c上の絶縁体412と、絶縁体412上の導電体404と、絶縁体
402上、半導体406b上および導電体404上の絶縁体408と、を有する。なお、
ここでは、導電体413をトランジスタの一部としているが、これに限定されない。例え
ば、導電体413がトランジスタとは独立した構成要素であるとしてもよい。
図12に示すトランジスタは、図11に示したトランジスタと比べて、導電体416aお
よび導電体416bが半導体406bの側面と接する領域を有する点が異なるが、そのほ
かの構成については類似している。したがって、図12に示すトランジスタの詳細は、図
11などに示したトランジスタについての記載を参酌することができる。
図12に示すトランジスタは、図11などに示したトランジスタと比べて、導電体416
aおよび導電体416bが半導体406bの側面に接する領域を有する分だけ、オン電流
の大きいトランジスタを実現することができる場合がある。
なお、図12では、トランジスタの第1のゲート電極である導電体404と第2のゲート
電極である導電体413とが、電気的に接続しない例を示したが、本発明の一態様に係る
トランジスタの構造はこれに限定されない。例えば、図13(A)に示すように、導電体
404と導電体413とが接する領域を有する構造であっても構わない。このような構成
とすることで、導電体404と導電体413とに同じ電位が供給されるため、トランジス
タのスイッチング特性を向上させることができる。または、図13(B)に示すように、
導電体413を有さない構造であっても構わない。
または、図12では、半導体406cおよび絶縁体412が、導電体404と重なる領域
にのみ配置される例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定
されない。例えば、図14(A)に示すように、半導体406cを、半導体406bおよ
び半導体406aを覆うように配置しても構わない。または、図14(B)に示すように
、半導体406cを、半導体406bおよび半導体406aを覆うように配置し、絶縁体
412を導電体416a、導電体416b、半導体406c、半導体406bおよび半導
体406aを覆うように配置しても構わない。
<トランジスタ構造4>
図15(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図15(A
)の一点鎖線G1−G2および一点鎖線G3−G4に対応する断面図の一例を図15(B
)に示す。なお、図15(A)では、理解を容易にするため、絶縁体などの一部を省略し
て示す。
図15(A)および図15(B)に示すトランジスタは、基板400上の導電体413と
、基板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸
部上の半導体406aと、半導体406a上の半導体406bと、半導体406bの上面
および側面と接する領域を有する導電体416aおよび導電体416bと、半導体406
b上の、導電体416aと重ならず、導電体416bと重なる領域に配置された半導体4
06cと、半導体406c上の絶縁体412と、絶縁体412上の導電体404と、絶縁
体402上、半導体406b上および導電体404上の絶縁体408と、を有する。なお
、図15に示すトランジスタは、導電体404が導電体416bと重なる領域を有する。
なお、ここでは、導電体413をトランジスタの一部としているが、これに限定されない
。例えば、導電体413がトランジスタとは独立した構成要素であるとしてもよい。
図15に示すトランジスタは、図12に示したトランジスタと比べて、導電体404が導
電体416bと重なる領域を有する点が異なるが、そのほかの構成については類似してい
る。したがって、図15に示すトランジスタの詳細は、図12などに示したトランジスタ
についての記載を参酌することができる。
なお、図15(B)に示すように、トランジスタにおいてゲート電極としての機能を有す
る導電体404と、チャネル形成領域としての機能を有する半導体406bとが互いに重
なる領域をLov領域と呼ぶ。
Lov領域が大きすぎると、寄生容量が増大するため、トランジスタのスイッチング特性
を低下させる場合がある。したがって、図15(B)に示すLov領域の大きさは、チャ
ネル形成領域の大きさの100%未満、好ましくは80%未満、さらに好ましくは50%
未満とする。例えば、Lov領域の大きさは、50nm未満、好ましくは20nm未満、
さらに好ましくは10nm未満とする。
図15に示すトランジスタは、図12などに示したトランジスタと比べて、導電体404
が導電体416bと重なる領域を有する分だけ、オン電流の大きいトランジスタを実現す
ることができる場合がある。
以上に示したトランジスタの構造は一例であり、これらを組み合わせたものも本発明の一
態様の範疇に含まれる。
<半導体装置>
以下では、本発明の一態様に係る半導体装置を例示する。
以下では、本発明の一態様に係るトランジスタを利用した半導体装置の一例について説明
する。
図16(A)に本発明の一態様の半導体装置の断面図を示す。図16(A)に示す半導体
装置は、下部に第1の半導体を用いたトランジスタ2200を有し、上部に第2の半導体
を用いたトランジスタ2100を有している。図16(A)では、第2の半導体を用いた
トランジスタ2100として、図11で例示したトランジスタを適用した例を示している
第1の半導体は、第2の半導体と異なるエネルギーギャップを持つ半導体を用いてもよい
。例えば、第1の半導体を酸化物半導体以外の半導体とし、第2の半導体を酸化物半導体
とする。第1の半導体として多結晶構造、単結晶構造などのシリコン、ゲルマニウム、な
どを用いてもよい。または、歪みシリコンなどの歪みを有する半導体を用いてもよい。ま
たは、第1の半導体として高電子移動度トランジスタ(HEMT:High Elect
ron Mobility Transistor)に適用可能なヒ化ガリウム、ヒ化ア
ルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリ
コンゲルマニウムなどを用いてもよい。これらの半導体を第1の半導体に用いることで、
高速動作をすることに適したトランジスタ2200とすることができる。また、酸化物半
導体を第2の半導体に用いることで、オフ電流の小さいトランジスタ2100とすること
ができる。
なお、トランジスタ2200は、nチャネル型、pチャネル型のどちらでもよいが、回路
によって適切なトランジスタを用いる。また、トランジスタ2100または/およびトラ
ンジスタ2200として、上述したトランジスタや図16(A)に示したトランジスタを
用いなくても構わない場合がある。
図16(A)に示す半導体装置は、絶縁体2201および絶縁体2207を介して、トラ
ンジスタ2200の上部にトランジスタ2100を有する。また、トランジスタ2200
とトランジスタ2100の間には、配線として機能する複数の導電体2202が配置され
ている。また各種絶縁体に埋め込まれた複数の導電体2203により、上層と下層にそれ
ぞれ配置された配線や電極が電気的に接続されている。また、該半導体装置は、トランジ
スタ2100上の絶縁体2204と、絶縁体2204上の導電体2205と、トランジス
タ2100のソース電極およびドレイン電極と同一層に(同一工程を経て)形成された導
電体2206と、を有する。
絶縁体2204は、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミ
ニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジ
ルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、
または積層で用いればよい。なお、絶縁体2204が、窒化酸化シリコン、窒化シリコン
などの窒素を含む絶縁体を含んでも構わない。
または、絶縁体2204は、樹脂を用いてもよい。例えば、ポリイミド、ポリアミド、ア
クリル、シリコーンなどを含む樹脂を用いればよい。樹脂を用いることで、絶縁体220
4の上面を平坦化処理しなくてもよい場合がある。また、樹脂は短い時間で厚い膜を成膜
することができるため、生産性を高めることができる。
複数のトランジスタを積層した構造とすることにより、高密度に複数の回路を配置するこ
とができる。
ここで、トランジスタ2200に用いる第1の半導体に半導体基板2211に含まれる単
結晶シリコンを用いた場合、トランジスタ2200の第1の半導体の近傍の絶縁体の水素
濃度が高いことが好ましい。該水素により、シリコンのダングリングボンドを終端させる
ことで、トランジスタ2200の信頼性を向上させることができる。一方、トランジスタ
2100に用いる第2の半導体に酸化物半導体を用いた場合、トランジスタ2100の第
2の半導体の近傍の絶縁体の水素濃度が低いことが好ましい。該水素は、酸化物半導体中
にキャリアを生成する要因の一つとなるため、トランジスタ2100の信頼性を低下させ
る要因となる場合がある。したがって、単結晶シリコンを用いたトランジスタ2200、
および酸化物半導体を用いたトランジスタ2100を積層する場合、これらの間に水素を
ブロックする機能を有する絶縁体2207を配置することは両トランジスタの信頼性を高
めるために有効である。
絶縁体2207としては、例えば酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウ
ム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸
化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)などを含む絶縁体を、単層で
、または積層で用いればよい。
また、酸化物半導体を用いたトランジスタ2100を覆うように、トランジスタ2100
上に水素をブロックする機能を有する絶縁体を形成することが好ましい。絶縁体としては
、絶縁体2207と同様の絶縁体を用いることができ、特に酸化アルミニウムを適用する
ことが好ましい。酸化アルミニウム膜は、水素、水分などの不純物および酸素の双方に対
して膜を透過させない遮断効果が高い。したがって、トランジスタ2100を覆う絶縁体
2208として酸化アルミニウム膜を用いることで、トランジスタ2100に含まれる酸
化物半導体からの酸素の脱離を防止するとともに、酸化物半導体への水および水素の混入
を防止することができる。
なお、トランジスタ2200は、プレーナ型のトランジスタだけでなく、様々なタイプの
トランジスタとすることができる。例えば、FIN(フィン)型のトランジスタなどとす
ることができる。その場合の断面図の例を、図16(B)に示す。半導体基板2211の
上に、絶縁体2212が配置されている。半導体基板2211は、先端の細い凸部(フィ
ンともいう。)を有する。なお、凸部は、先端が細くなくてもよく、例えば、略直方体の
凸部であってもよいし、先端が太い凸部であってもよい。半導体基板2211の凸部の上
には、ゲート絶縁体2214が配置され、その上には、ゲート電極2213が配置されて
いる。半導体基板2211には、ソース領域およびドレイン領域2215が形成されてい
る。なお、ここでは、半導体基板2211が、凸部を有する例を示したが、本発明の一態
様に係る半導体装置は、これに限定されない。例えば、SOI基板を加工して、凸型の半
導体領域を形成しても構わない。
上記回路において、トランジスタ2100やトランジスタ2200の電極の接続を異なら
せることにより、様々な回路を構成することができる。以下では、本発明の一態様の半導
体装置を用いることにより実現できる回路構成の例を説明する。
図17(A)に示す回路図は、pチャネル型のトランジスタ2200とnチャネル型のト
ランジスタ2100を直列に接続し、かつそれぞれのゲートを接続した、いわゆるCMO
Sインバータの構成を示している。
また図17(B)に示す回路図は、トランジスタ2100とトランジスタ2200のそれ
ぞれのソースとドレインを接続した構成を示している。このような構成とすることで、い
わゆるCMOSアナログスイッチとして機能させることができる。
本発明の一態様に係るトランジスタを用いた、電力が供給されない状況でも記憶内容の保
持が可能で、かつ、書き込み回数にも制限が無い半導体装置(記憶装置)の一例を図18
に示す。
図18(A)に示す半導体装置は、第1の半導体を用いたトランジスタ3200と第2の
半導体を用いたトランジスタ3300、および容量素子3400を有している。なお、ト
ランジスタ3300としては、上述したトランジスタを用いることができる。
トランジスタ3300は、酸化物半導体を用いたトランジスタである。トランジスタ33
00のオフ電流が小さいことにより、半導体装置の特定のノードに長期にわたり記憶内容
を保持することが可能である。つまり、リフレッシュ動作を必要としない、またはリフレ
ッシュ動作の頻度が極めて少なくすることが可能となるため、消費電力の低い半導体装置
となる。
図18(A)において、第1の配線3001はトランジスタ3200のソースと電気的に
接続され、第2の配線3002はトランジスタ3200のドレインと電気的に接続される
。また、第3の配線3003はトランジスタ3300のソース、ドレインの一方と電気的
に接続され、第4の配線3004はトランジスタ3300のゲートと電気的に接続されて
いる。そして、トランジスタ3200のゲート、およびトランジスタ3300のソース、
ドレインの他方は、容量素子3400の電極の一方と電気的に接続され、第5の配線30
05は容量素子3400の電極の他方と電気的に接続されている。
図18(A)に示す半導体装置は、トランジスタ3200のゲートの電位が保持可能とい
う特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能であ
る。
情報の書き込みおよび保持について説明する。まず、第4の配線3004の電位を、トラ
ンジスタ3300が導通状態となる電位にして、トランジスタ3300を導通状態とする
。これにより、第3の配線3003の電位が、トランジスタ3200のゲート、および容
量素子3400の電極の一方と電気的に接続するノードFGに与えられる。すなわち、ト
ランジスタ3200のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異
なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という
。)のどちらかが与えられるものとする。その後、第4の配線3004の電位を、トラン
ジスタ3300が非導通状態となる電位にして、トランジスタ3300を非導通状態とす
ることにより、ノードFGに電荷が保持される(保持)。
トランジスタ3300のオフ電流は極めて小さいため、ノードFGの電荷は長期間にわた
って保持される。
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与
えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、第2の配線
3002は、ノードFGに保持された電荷量に応じた電位をとる。これは、トランジスタ
3200をnチャネル型とすると、トランジスタ3200のゲートにHighレベル電荷
が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ3200の
ゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_L
り低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ3200を
「導通状態」とするために必要な第5の配線3005の電位をいうものとする。したがっ
て、第5の配線3005の電位をVth_HとVth_Lの間の電位Vとすることによ
り、ノードFGに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードFG
にHighレベル電荷が与えられていた場合には、第5の配線3005の電位がV(>
th_H)となれば、トランジスタ3200は「導通状態」となる。一方、ノードFG
にLowレベル電荷が与えられていた場合には、第5の配線3005の電位がV(<V
th_L)となっても、トランジスタ3200は「非導通状態」のままである。このため
、第2の配線3002の電位を判別することで、ノードFGに保持されている情報を読み
出すことができる。
なお、メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報
を読み出さなくてはならない。ほかのメモリセルの情報を読み出さないためには、ノード
FGに与えられた電荷によらずトランジスタ3200が「非導通状態」となるような電位
、つまり、Vth_Hより低い電位を第5の配線3005に与えればよい。または、ノー
ドFGに与えられた電荷によらずトランジスタ3200が「導通状態」となるような電位
、つまり、Vth_Lより高い電位を第5の配線3005に与えればよい。
図18(B)に示す半導体装置は、トランジスタ3200を有さない点で図18(A)に
示した半導体装置と異なる。この場合も図18(A)に示した半導体装置と同様の動作に
より情報の書き込みおよび保持動作が可能である。
図18(B)に示す半導体装置における、情報の読み出しについて説明する。トランジス
タ3300が導通状態になると、浮遊状態である第3の配線3003と容量素子3400
とが導通し、第3の配線3003と容量素子3400の間で電荷が再分配される。その結
果、第3の配線3003の電位が変化する。第3の配線3003の電位の変化量は、容量
素子3400の電極の一方の電位(または容量素子3400に蓄積された電荷)によって
、異なる値をとる。
例えば、容量素子3400の電極の一方の電位をV、容量素子3400の容量をC、第3
の配線3003が有する容量成分をCB、電荷が再分配される前の第3の配線3003の
電位をVB0とすると、電荷が再分配された後の第3の配線3003の電位は、(CB×
VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、容量素
子3400の電極の一方の電位がV1とV0(V1>V0)の2つの状態をとるとすると
、電位V1を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V
1)/(CB+C))は、電位V0を保持している場合の第3の配線3003の電位(=
(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
そして、第3の配線3003の電位を所定の電位と比較することで、情報を読み出すこと
ができる。
この場合、メモリセルを駆動させるための駆動回路に上記第1の半導体が適用されたトラ
ンジスタを用い、トランジスタ3300として第2の半導体が適用されたトランジスタを
駆動回路上に積層して配置する構成とすればよい。
以上に示した半導体装置は、酸化物半導体を用いたオフ電流の極めて小さいトランジスタ
を適用することで、長期にわたって記憶内容を保持することが可能となる。つまり、リフ
レッシュ動作が不要となるか、またはリフレッシュ動作の頻度を極めて低くすることが可
能となるため、消費電力の低い半導体装置を実現することができる。また、電力の供給が
ない場合(ただし、電位は固定されていることが好ましい)であっても、長期にわたって
記憶内容を保持することが可能である。
また、該半導体装置は、情報の書き込みに高い電圧が不要であるため、素子の劣化が起こ
りにくい。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注
入や、フローティングゲートからの電子の引き抜きを行わないため、絶縁体の劣化といっ
た問題が生じない。すなわち、本発明の一態様に係る半導体装置は、従来の不揮発性メモ
リで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上した半導体
装置である。さらに、トランジスタの導通状態、非導通状態によって、情報の書き込みが
行われるため、高速な動作が可能となる。
<RFタグ>
以下では、上述したトランジスタ、または記憶装置を含むRFタグについて、図19を用
いて説明する。
本発明の一態様に係るRFタグは、内部に記憶回路を有し、記憶回路に情報を記憶し、非
接触手段、例えば無線通信を用いて外部と情報の授受を行うものである。このような特徴
から、RFタグは、物品などの個体情報を読み取ることにより物品の識別を行う個体認証
システムなどに用いることが可能である。なお、これらの用途に用いるためには高い信頼
性が要求される。
RFタグの構成について図19を用いて説明する。図19は、RFタグの構成例を示すブ
ロック図である。
図19に示すようにRFタグ800は、通信器801(質問器、リーダ/ライタなどとも
いう)に接続されたアンテナ802から送信される無線信号803を受信するアンテナ8
04を有する。またRFタグ800は、整流回路805、定電圧回路806、復調回路8
07、変調回路808、論理回路809、記憶回路810、ROM811を有している。
なお、復調回路807に含まれる整流作用を示すトランジスタの半導体には、逆方向電流
を十分に抑制することが可能な、例えば、酸化物半導体を用いてもよい。これにより、逆
方向電流に起因する整流作用の低下を抑制し、復調回路の出力が飽和することを防止でき
る。つまり、復調回路の入力に対する復調回路の出力を線形に近づけることができる。な
お、データの伝送形式は、一対のコイルを対向配置して相互誘導によって交信を行う電磁
結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信する電波方式
の3つに大別される。RFタグ800は、そのいずれの方式に用いることも可能である。
次に各回路の構成について説明する。アンテナ804は、通信器801に接続されたアン
テナ802との間で無線信号803の送受信を行うためのものである。また、整流回路8
05は、アンテナ804で無線信号を受信することにより生成される入力交流信号を整流
、例えば、半波2倍圧整流し、後段の容量素子により、整流された信号を平滑化すること
で入力電位を生成するための回路である。なお、整流回路805の入力側または出力側に
は、リミッタ回路を有してもよい。リミッタ回路とは、入力交流信号の振幅が大きく、内
部生成電圧が大きい場合に、ある電力以上の電力を後段の回路に入力しないように制御す
るための回路である。
定電圧回路806は、入力電位から安定した電源電圧を生成し、各回路に供給するための
回路である。なお、定電圧回路806は、内部にリセット信号生成回路を有していてもよ
い。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路80
9のリセット信号を生成するための回路である。
復調回路807は、入力交流信号を包絡線検出することにより復調し、復調信号を生成す
るための回路である。また、変調回路808は、アンテナ804より出力するデータに応
じて変調をおこなうための回路である。
論理回路809は復調信号を解析し、処理を行うための回路である。記憶回路810は、
入力された情報を保持する回路であり、ロウデコーダ、カラムデコーダ、記憶領域などを
有する。また、ROM811は、固有番号(ID)などを格納し、処理に応じて出力を行
うための回路である。
なお、上述の各回路は、適宜、取捨することができる。
ここで、上述した記憶装置を、記憶回路810に用いることができる。本発明の一態様に
係る記憶装置は、電源が遮断された状態であっても情報を保持できるため、RFタグに好
適である。さらに本発明の一態様に係る記憶装置は、データの書き込みに必要な電力(電
圧)が従来の不揮発性メモリに比べて低いため、データの読み出し時と書込み時の最大通
信距離の差を生じさせないことも可能である。さらに、データの書き込み時に電力が不足
し、誤動作または誤書込みが生じることを抑制することができる。
また、本発明の一態様に係る記憶装置は、不揮発性メモリとして用いることが可能である
ため、ROM811に適用することもできる。その場合には、生産者がROM811にデ
ータを書き込むためのコマンドを別途用意し、ユーザが自由に書き換えできないようにし
ておくことが好ましい。生産者が出荷前に固有番号を書込んだのちに製品を出荷すること
で、作製したRFタグすべてについて固有番号を付与するのではなく、出荷する良品にの
み固有番号を割り当てることが可能となり、出荷後の製品の固有番号が不連続になること
がなく出荷後の製品に対応した顧客管理が容易となる。
<RFタグの使用例>
以下では、本発明の一態様に係るRFタグの使用例について図20を用いて説明する。R
Fタグの用途は広範にわたるが、例えば、紙幣、硬貨、有価証券類、無記名債券類、証書
類(運転免許証や住民票等、図20(A)参照。)、包装用容器類(包装紙やボトル等、
図20(C)参照。)、記録媒体(DVDやビデオテープ等、図20(B)参照。)、乗
り物類(自転車等、図20(D)参照。)、身の回り品(鞄や眼鏡等)、食品類、植物類
、動物類、人体、衣類、生活用品類、薬品や薬剤を含む医療品、または電子機器(液晶表
示装置、EL表示装置、テレビジョン装置、または携帯電話)等の物品、もしくは各物品
に取り付ける荷札(図20(E)および図20(F)参照。)等に設けて使用することが
できる。
本発明の一態様に係るRFタグ4000は、表面に貼る、または埋め込むことにより、物
品に固定される。例えば、本であれば紙に埋め込み、有機樹脂からなるパッケージであれ
ば当該有機樹脂の内部に埋め込み、各物品に固定される。本発明の一態様に係るRFタグ
4000は、小型、薄型、軽量を実現するため、物品に固定した後もその物品自体のデザ
イン性を損なうことがない。また、紙幣、硬貨、有価証券類、無記名債券類、または証書
類等に本発明の一態様に係るRFタグ4000により、認証機能を付与することができ、
この認証機能を活用すれば、偽造を防止することができる。また、包装用容器類、記録媒
体、身の回り品、食品類、衣類、生活用品類、または電子機器等に本発明の一態様に係る
RFタグ4000を取り付けることにより、検品システム等のシステムの効率化を図るこ
とができる。また、乗り物類であっても、本発明の一態様に係るRFタグ4000を取り
付けることにより、盗難などに対するセキュリティ性を高めることができる。
以上のように、本発明の一態様に係るRFタグは、上述したような各用途に用いることが
できる。
<CPU>
以下では、上述したトランジスタや上述した記憶装置などの半導体装置を含むCPUにつ
いて説明する。
図21は、上述したトランジスタを一部に用いたCPUの一例の構成を示すブロック図で
ある。
図21に示すCPUは、基板1190上に、ALU1191(ALU:Arithmet
ic logic unit、演算回路)、ALUコントローラ1192、インストラク
ションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ
1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1
198(Bus I/F)、書き換え可能なROM1199、およびROMインターフェ
ース1189(ROM I/F)を有している。基板1190は、半導体基板、SOI基
板、ガラス基板などを用いる。ROM1199およびROMインターフェース1189は
、別チップに設けてもよい。もちろん、図21に示すCPUは、その構成を簡略化して示
した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例え
ば、図21に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含
み、それぞれのコアが並列で動作するような構成としてもよい。また、CPUが内部演算
回路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64
ビットなどとすることができる。
バスインターフェース1198を介してCPUに入力された命令は、インストラクション
デコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタ
ラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ
1195に入力される。
ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントロー
ラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制
御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御する
ための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラ
ム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク
状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアド
レスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行なう。
また、タイミングコントローラ1195は、ALU1191、ALUコントローラ119
2、インストラクションデコーダ1193、インタラプトコントローラ1194、および
レジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタ
イミングコントローラ1195は、基準クロック信号CLK1を元に、内部クロック信号
CLK2を生成する内部クロック生成部を備えており、内部クロック信号CLK2を上記
各種回路に供給する。
図21に示すCPUでは、レジスタ1196に、メモリセルが設けられている。レジスタ
1196のメモリセルとして、上述したトランジスタや記憶装置などを用いることができ
る。
図21に示すCPUにおいて、レジスタコントローラ1197は、ALU1191からの
指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ11
96が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量
素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が
選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる
。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換え
が行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる
図22は、レジスタ1196として用いることのできる記憶素子1200の回路図の一例
である。記憶素子1200は、電源遮断で記憶データが揮発する回路1201と、電源遮
断で記憶データが揮発しない回路1202と、スイッチ1203と、スイッチ1204と
、論理素子1206と、容量素子1207と、選択機能を有する回路1220と、を有す
る。回路1202は、容量素子1208と、トランジスタ1209と、トランジスタ12
10と、を有する。なお、記憶素子1200は、必要に応じて、ダイオード、抵抗素子、
インダクタなどのその他の素子をさらに有していてもよい。
ここで、回路1202には、上述した記憶装置を用いることができる。記憶素子1200
への電源電圧の供給が停止した際、回路1202のトランジスタ1209のゲートにはG
ND(0V)、またはトランジスタ1209がオフする電位が入力され続ける構成とする
。例えば、トランジスタ1209のゲートが抵抗等の負荷を介して接地される構成とする
スイッチ1203は、一導電型(例えば、nチャネル型)のトランジスタ1213を用い
て構成され、スイッチ1204は、一導電型とは逆の導電型(例えば、pチャネル型)の
トランジスタ1214を用いて構成した例を示す。ここで、スイッチ1203の第1の端
子はトランジスタ1213のソースとドレインの一方に対応し、スイッチ1203の第2
の端子はトランジスタ1213のソースとドレインの他方に対応し、スイッチ1203は
トランジスタ1213のゲートに入力される制御信号RDによって、第1の端子と第2の
端子の間の導通または非導通(つまり、トランジスタ1213の導通状態または非導通状
態)が選択される。スイッチ1204の第1の端子はトランジスタ1214のソースとド
レインの一方に対応し、スイッチ1204の第2の端子はトランジスタ1214のソース
とドレインの他方に対応し、スイッチ1204はトランジスタ1214のゲートに入力さ
れる制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、
トランジスタ1214の導通状態または非導通状態)が選択される。
トランジスタ1209のソースとドレインの一方は、容量素子1208の一対の電極のう
ちの一方、およびトランジスタ1210のゲートと電気的に接続される。ここで、接続部
分をノードM2とする。トランジスタ1210のソースとドレインの一方は、低電源電位
を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ
1203の第1の端子(トランジスタ1213のソースとドレインの一方)と電気的に接
続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの
他方)はスイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一
方)と電気的に接続される。スイッチ1204の第2の端子(トランジスタ1214のソ
ースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続さ
れる。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方
)と、スイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方
)と、論理素子1206の入力端子と、容量素子1207の一対の電極のうちの一方と、
は電気的に接続される。ここで、接続部分をノードM1とする。容量素子1207の一対
の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電
源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる
。容量素子1207の一対の電極のうちの他方は、低電源電位を供給することのできる配
線(例えばGND線)と電気的に接続される。容量素子1208の一対の電極のうちの他
方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等
)または高電源電位(VDD等)が入力される構成とすることができる。容量素子120
8の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND
線)と電気的に接続される。
なお、容量素子1207および容量素子1208は、トランジスタや配線の寄生容量等を
積極的に利用することによって省略することも可能である。
トランジスタ1209のゲートには、制御信号WEが入力される。スイッチ1203およ
びスイッチ1204は、制御信号WEとは異なる制御信号RDによって第1の端子と第2
の端子の間の導通状態または非導通状態を選択され、一方のスイッチの第1の端子と第2
の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の端子の間は非導通状態
となる。
トランジスタ1209のソースとドレインの他方には、回路1201に保持されたデータ
に対応する信号が入力される。図22では、回路1201から出力された信号が、トラン
ジスタ1209のソースとドレインの他方に入力される例を示した。スイッチ1203の
第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、
論理素子1206によってその論理値が反転された反転信号となり、回路1220を介し
て回路1201に入力される。
なお、図22では、スイッチ1203の第2の端子(トランジスタ1213のソースとド
レインの他方)から出力される信号は、論理素子1206および回路1220を介して回
路1201に入力する例を示したがこれに限定されない。スイッチ1203の第2の端子
(トランジスタ1213のソースとドレインの他方)から出力される信号が、論理値を反
転させられることなく、回路1201に入力されてもよい。例えば、回路1201内に、
入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合
に、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)
から出力される信号を当該ノードに入力することができる。
また、図22において、記憶素子1200に用いられるトランジスタのうち、トランジス
タ1209以外のトランジスタは、酸化物半導体以外の半導体でなる膜または基板119
0にチャネルが形成されるトランジスタとすることができる。例えば、シリコンまたはシ
リコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子1
200に用いられるトランジスタ全てを、チャネルが酸化物半導体で形成されるトランジ
スタとすることもできる。または、記憶素子1200は、トランジスタ1209以外にも
、チャネルが酸化物半導体で形成されるトランジスタを含んでいてもよく、残りのトラン
ジスタは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成される
トランジスタとすることもできる。
図22における回路1201には、例えばフリップフロップ回路を用いることができる。
また、論理素子1206としては、例えばインバータやクロックドインバータ等を用いる
ことができる。
本発明の一態様に係る半導体装置では、記憶素子1200に電源電圧が供給されない間は
、回路1201に記憶されていたデータを、回路1202に設けられた容量素子1208
によって保持することができる。
また、酸化物半導体にチャネルが形成されるトランジスタはオフ電流が極めて小さい。例
えば、酸化物半導体にチャネルが形成されるトランジスタのオフ電流は、結晶性を有する
シリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく小さい。そのた
め、当該トランジスタをトランジスタ1209として用いることによって、記憶素子12
00に電源電圧が供給されない間も容量素子1208に保持された信号は長期間にわたり
保たれる。こうして、記憶素子1200は電源電圧の供給が停止した間も記憶内容(デー
タ)を保持することが可能である。
また、スイッチ1203およびスイッチ1204を設けることによって、プリチャージ動
作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路1201が
元のデータを保持しなおすまでの時間を短くすることができる。
また、回路1202において、容量素子1208によって保持された信号はトランジスタ
1210のゲートに入力される。そのため、記憶素子1200への電源電圧の供給が再開
された後、容量素子1208によって保持された信号を、トランジスタ1210の状態(
導通状態、または非導通状態)に変換して、回路1202から読み出すことができる。そ
れ故、容量素子1208に保持された信号に対応する電位が多少変動していても、元の信
号を正確に読み出すことが可能である。
このような記憶素子1200を、プロセッサが有するレジスタやキャッシュメモリなどの
記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐこ
とができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰
することができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、また
は複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力を
抑えることができる。
記憶素子1200をCPUに用いる例として説明したが、記憶素子1200は、DSP(
Digital Signal Processor)、カスタムLSI、PLD(Pr
ogrammable Logic Device)等のLSI、RF−ID(Radi
o Frequency Identification)にも応用可能である。
<表示装置>
以下では、本発明の一態様に係る表示装置の構成例について説明する。
[構成例]
図23(A)には、本発明の一態様に係る表示装置の上面図を示す。また、図23(B)
には、本発明の一態様に係る表示装置の画素に液晶素子を用いた場合における画素回路を
示す。また、図23(C)には、本発明の一態様に係る表示装置の画素に有機EL素子を
用いた場合における画素回路を示す。
画素に用いるトランジスタは、上述したトランジスタを用いることができる。ここでは、
nチャネル型のトランジスタを用いる例を示す。なお、画素に用いたトランジスタと、同
一工程を経て作製したトランジスタを駆動回路として用いても構わない。このように、画
素や駆動回路に上述したトランジスタを用いることにより、表示品位が高い、または/お
よび信頼性の高い表示装置となる。
アクティブマトリクス型表示装置の上面図の一例を図23(A)に示す。表示装置の基板
5000上には、画素部5001、第1の走査線駆動回路5002、第2の走査線駆動回
路5003、信号線駆動回路5004が配置される。画素部5001は、複数の信号線に
よって信号線駆動回路5004と電気的に接続され、複数の走査線によって第1の走査線
駆動回路5002、および第2の走査線駆動回路5003と電気的に接続される。なお、
走査線と信号線とによって区切られる領域には、それぞれ表示素子を有する画素が配置さ
れている。また、表示装置の基板5000は、FPC(Flexible Printe
d Circuit)等の接続部を介して、タイミング制御回路(コントローラ、制御I
Cともいう)に電気的に接続されている。
第1の走査線駆動回路5002、第2の走査線駆動回路5003および信号線駆動回路5
004は、画素部5001と同じ基板5000上に形成される。そのため、駆動回路を別
途作製する場合と比べて、表示装置を作製するコストを低減することができる。また、駆
動回路を別途作製した場合、配線間の接続数が増える。したがって、同じ基板5000上
に駆動回路を設けることで、配線間の接続数を減らすことができ、信頼性の向上、または
/および歩留まりの向上を図ることができる。
〔液晶表示装置〕
また、画素の回路構成の一例を図23(B)に示す。ここでは、VA型液晶表示装置の画
素などに適用することができる画素回路を示す。
この画素回路は、一つの画素に複数の画素電極を有する構成に適用できる。それぞれの画
素電極は異なるトランジスタに接続され、各トランジスタは異なるゲート信号で駆動でき
るように構成されている。これにより、マルチドメイン設計された画素の個々の画素電極
に印加する信号を、独立して制御できる。
トランジスタ5016のゲート配線5012と、トランジスタ5017のゲート配線50
13には、異なるゲート信号を与えることができるように分離されている。一方、データ
線として機能するソース電極またはドレイン電極5014は、トランジスタ5016とト
ランジスタ5017で共通に用いられている。トランジスタ5016とトランジスタ50
17は上述したトランジスタを適宜用いることができる。これにより、表示品位が高い、
または/および信頼性の高い液晶表示装置を提供することができる。
トランジスタ5016と電気的に接続する第1の画素電極と、トランジスタ5017と電
気的に接続する第2の画素電極の形状について説明する。第1の画素電極と第2の画素電
極の形状は、スリットによって分離されている。第1の画素電極はV字型に広がる形状を
有し、第2の画素電極は第1の画素電極の外側を囲むように形成される。
トランジスタ5016のゲート電極はゲート配線5012と電気的に接続され、トランジ
スタ5017のゲート電極はゲート配線5013と電気的に接続されている。ゲート配線
5012とゲート配線5013に異なるゲート信号を与えてトランジスタ5016とトラ
ンジスタ5017の動作タイミングを異ならせ、液晶の配向を制御することができる。
また、容量配線5010と、誘電体として機能するゲート絶縁体と、第1の画素電極また
は第2の画素電極と電気的に接続する容量電極とで容量素子を形成してもよい。
マルチドメイン構造は、一画素に第1の液晶素子5018と第2の液晶素子5019を備
える。第1の液晶素子5018は第1の画素電極と対向電極とその間の液晶層とで構成さ
れ、第2の液晶素子5019は第2の画素電極と対向電極とその間の液晶層とで構成され
る。
なお、本発明の一態様に係る表示装置は、図23(B)に示す画素回路に限定されない。
例えば、図23(B)に示す画素回路に新たにスイッチ、抵抗素子、容量素子、トランジ
スタ、センサー、または論理回路などを追加してもよい。
〔有機EL表示装置〕
画素の回路構成の他の一例を図23(C)に示す。ここでは、有機EL素子を用いた表示
装置の画素構造を示す。
有機EL素子は、発光素子に電圧を印加することにより、有機EL素子が有する一対の電
極の一方から電子が、他方から正孔がそれぞれ発光性の有機化合物を含む層に注入され、
電流が流れる。そして、電子および正孔が再結合することにより、発光性の有機化合物が
励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズム
から、このような発光素子は、電流励起型の発光素子と呼ばれる。
図23(C)は、画素回路の一例を示す図である。ここでは1つの画素にnチャネル型の
トランジスタを2つ用いる例を示す。なお、nチャネル型のトランジスタには、上述した
トランジスタを用いることができる。また、当該画素回路は、デジタル時間階調駆動を適
用することができる。
適用可能な画素回路の構成およびデジタル時間階調駆動を適用した場合の画素の動作につ
いて説明する。
画素5020は、スイッチング用トランジスタ5021、駆動用トランジスタ5022、
発光素子5024および容量素子5023を有する。スイッチング用トランジスタ502
1は、ゲート電極が走査線5026に接続され、第1電極(ソース電極、ドレイン電極の
一方)が信号線5025に接続され、第2電極(ソース電極、ドレイン電極の他方)が駆
動用トランジスタ5022のゲート電極に接続されている。駆動用トランジスタ5022
は、ゲート電極が容量素子5023を介して電源線5027に接続され、第1電極が電源
線5027に接続され、第2電極が発光素子5024の第1電極(画素電極)に接続され
ている。発光素子5024の第2電極は共通電極5028に相当する。共通電極5028
は、同一基板上に形成される共通電位線と電気的に接続される。
スイッチング用トランジスタ5021および駆動用トランジスタ5022は上述したトラ
ンジスタを用いることができる。これにより、表示品位の高い、または/および信頼性の
高い有機EL表示装置となる。
発光素子5024の第2電極(共通電極5028)の電位は低電源電位に設定する。なお
、低電源電位とは、電源線5027に供給される高電源電位より低い電位であり、例えば
GND、0Vなどを低電源電位として設定することができる。発光素子5024の順方向
のしきい値電圧以上となるように高電源電位と低電源電位を設定し、その電位差を発光素
子5024に印加することにより、発光素子5024に電流を流して発光させる。なお、
発光素子5024の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なく
とも順方向しきい値電圧を含む。
なお、容量素子5023は駆動用トランジスタ5022のゲート容量を代用することによ
り省略できる場合がある。駆動用トランジスタ5022のゲート容量については、チャネ
ル形成領域とゲート電極との間で容量が形成されていてもよい。
次に、駆動用トランジスタ5022に入力する信号について説明する。電圧入力電圧駆動
方式の場合、駆動用トランジスタ5022がオンまたはオフの二つの状態となるようなビ
デオ信号を、駆動用トランジスタ5022に入力する。なお、駆動用トランジスタ502
2を線形領域で動作させるために、電源線5027の電圧よりも高い電圧を駆動用トラン
ジスタ5022のゲート電極に与える。また、信号線5025には、電源線電圧に駆動用
トランジスタ5022のしきい値電圧Vthを加えた値以上の電圧をかける。
アナログ階調駆動を行う場合、駆動用トランジスタ5022のゲート電極に発光素子50
24の順方向電圧に駆動用トランジスタ5022のしきい値電圧Vthを加えた値以上の
電圧をかける。なお、駆動用トランジスタ5022が飽和領域で動作するようにビデオ信
号を入力し、発光素子5024に電流を流す。また、駆動用トランジスタ5022を飽和
領域で動作させるために、電源線5027の電位を、駆動用トランジスタ5022のゲー
ト電位より高くする。ビデオ信号をアナログとすることで、発光素子5024にビデオ信
号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、本発明の一態様に係る表示装置は、図23(C)に示す画素構成に限定されない。
例えば、図23(C)に示す画素回路にスイッチ、抵抗素子、容量素子、センサー、トラ
ンジスタまたは論理回路などを追加してもよい。
図23で例示した回路に上述したトランジスタを適用する場合、低電位側にソース電極(
第1の電極)、高電位側にドレイン電極(第2の電極)がそれぞれ電気的に接続される構
成とする。さらに、制御回路等により第1のゲート電極の電位を制御し、第2のゲート電
極にはソース電極に与える電位よりも低い電位など、上記で例示した電位を入力可能な構
成とすればよい。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素
子、および発光素子を有する装置である発光装置は、様々な形態を用いること、または様
々な素子を有することが出来る。表示素子、表示装置、発光素子または発光装置は、例え
ば、EL素子(有機物および無機物を含むEL素子、有機EL素子、無機EL素子)、L
ED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に
応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、
グレーティングライトバルブ(GLV)、プラズマディスプレイパネル(PDP)、ME
MS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイ
クロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD
(インターフェアレンス・モジュレーション)素子、シャッター方式のMEMS表示素子
、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディ
スプレイ、カーボンナノチューブを用いた表示素子などの少なくとも一つを有している。
これらの他にも、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率
などが変化する表示媒体を有していてもよい。EL素子を用いた表示装置の一例としては
、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィー
ルドエミッションディスプレイ(FED)またはSED方式平面型ディスプレイ(SED
:Surface−conduction Electron−emitter Dis
play)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(
透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型
液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク、または電気泳動
素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶デ
ィスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部または全部が
、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部または全部
が、アルミニウム、銀などを有するようにすればよい。さらに、その場合、反射電極の下
に、SRAMなどの記憶回路を設けることも可能である。これにより、消費電力をさらに
低減することができる。
なお、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色光(W
)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルターともいう
。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)
、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、
着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を
有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領
域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配置
することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割
から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光
素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有す
る素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合より
も、さらに消費電力を低減できる場合がある。
<モジュール>
以下では、本発明の一態様に係る半導体装置を適用した表示モジュールについて、図24
を用いて説明を行う。
図24に示す表示モジュール8000は、上部カバー8001と下部カバー8002との
間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された
セル8006、バックライトユニット8007、フレーム8009、プリント基板801
0、バッテリー8011を有する。なお、バックライトユニット8007、バッテリー8
011、タッチパネル8004などを有さない場合もある。
本発明の一態様に係る半導体装置は、例えば、セル8006に用いることができる。
上部カバー8001および下部カバー8002は、タッチパネル8004およびセル80
06のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルをセル8006
に重畳して用いることができる。また、セル8006の対向基板(封止基板)に、タッチ
パネル機能を持たせるようにすることも可能である。または、セル8006の各画素内に
光センサーを設け、光学式のタッチパネルとすることも可能である。または、セル800
6の各画素内にタッチセンサー用電極を設け、静電容量方式のタッチパネルとすることも
可能である。
バックライトユニット8007は、光源8008を有する。光源8008をバックライト
ユニット8007の端部に設け、光拡散板を用いる構成としてもよい。
フレーム8009は、セル8006の保護機能の他、プリント基板8010の動作により
発生する電磁波を遮断するための電磁シールドとしての機能を有してもよい。またフレー
ム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号およびクロック信号を出力するための信
号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であって
もよいし、別途設けたバッテリー8011による電源であってもよい。商用電源を用いる
場合には、バッテリー8011を有さなくてもよい。
また、表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追
加して設けてもよい。
<電子機器>
本発明の一態様に係る半導体装置は、表示機器、パーソナルコンピュータ、記録媒体を備
えた画像再生装置(代表的にはDVD:Digital Versatile Disc
等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)に用いること
ができる。その他に、本発明の一態様に係る半導体装置を用いることができる電子機器と
して、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ
、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプ
レイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオ
プレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ
払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図25に示
す。
図25(A)は携帯型ゲーム機であり、筐体901、筐体902、表示部903、表示部
904、マイクロフォン905、スピーカー906、操作キー907、スタイラス908
等を有する。なお、図25(A)に示した携帯型ゲーム機は、2つの表示部903と表示
部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない
図25(B)は携帯データ端末であり、第1筐体911、第2筐体912、第1表示部9
13、第2表示部914、接続部915、操作キー916等を有する。第1表示部913
は第1筐体911に設けられており、第2表示部914は第2筐体912に設けられてい
る。そして、第1筐体911と第2筐体912とは、接続部915により接続されており
、第1筐体911と第2筐体912の間の角度は、接続部915により変更が可能である
。第1表示部913における映像を、接続部915における第1筐体911と第2筐体9
12との間の角度にしたがって、切り替える構成としてもよい。また、第1表示部913
および第2表示部914の少なくとも一方に、位置入力装置としての機能が付加された表
示装置を用いるようにしてもよい。なお、位置入力装置としての機能は、表示装置にタッ
チパネルを設けることで付加することができる。または、位置入力装置としての機能は、
フォトセンサーとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加す
ることができる。
図25(C)はノート型パーソナルコンピュータであり、筐体921、表示部922、キ
ーボード923、ポインティングデバイス924等を有する。
図25(D)は電気冷凍冷蔵庫であり、筐体931、冷蔵室用扉932、冷凍室用扉93
3等を有する。
図25(E)はビデオカメラであり、第1筐体941、第2筐体942、表示部943、
操作キー944、レンズ945、接続部946等を有する。操作キー944およびレンズ
945は第1筐体941に設けられており、表示部943は第2筐体942に設けられて
いる。そして、第1筐体941と第2筐体942とは、接続部946により接続されてお
り、第1筐体941と第2筐体942の間の角度は、接続部946により変更が可能であ
る。表示部943における映像を、接続部946における第1筐体941と第2筐体94
2との間の角度にしたがって切り替える構成としてもよい。
図25(F)は普通自動車であり、車体951、車輪952、ダッシュボード953、ラ
イト954等を有する。
<表示領域または発光領域に曲面を有する電子機器>
以下では、本発明の一態様に係る電子機器の一例である表示領域または発光領域に曲面を
有する電子機器について、図26を参照しながら説明する。なお、ここでは、電子機器の
一例として、情報機器、特に携帯性を有する情報機器(携帯機器)について説明する。携
帯性を有する情報機器としては、例えば、携帯電話機(ファブレット、スマートフォン(
スマホ))、タブレット端末(スレートPC)なども含まれる。
図26(A−1)は、携帯機器1300Aの外形を説明する斜視図である。図26(A−
2)は、携帯機器1300Aの上面図である。図26(A−3)は、携帯機器1300A
の使用状態を説明する図である。
図26(B−1)および図26(B−2)は、携帯機器1300Bの外形を説明する斜視
図である。
図26(C−1)および図26(C−2)は、携帯機器1300Cの外形を説明する斜視
図である。
<携帯機器>
携帯機器1300Aは、例えば電話、電子メール作成閲覧、手帳または情報閲覧などの機
能から選ばれた一つまたは複数の機能を有する。
携帯機器1300Aは、筐体の複数の面に沿って表示部が設けられている。例えば、可と
う性を有する表示装置を、筐体の内側に沿うように配置することで表示部を設ければよい
。これにより、文字情報や画像情報などを第1の領域1311または/および第2の領域
1312に表示することができる。
例えば、3つの操作の用に供する画像を第1の領域1311に表示することができる(図
26(A−1)参照。)。また、図中に破線の矩形で示すように文字情報などを第2の領
域1312に表示することができる(図26(A−2)参照。)。
携帯機器1300Aの上部に第2の領域1312を配置した場合、携帯機器1300Aを
洋服の胸ポケットに収納したままの状態で、携帯機器1300Aの第2の領域1312に
表示された文字や画像情報を、使用者は容易に確認することができる(図26(A−3)
参照。)。例えば、着信した電話の発信者の電話番号または氏名などを、携帯機器130
0Aの上方から観察できる。
なお、携帯機器1300Aは、表示装置と筐体との間、表示装置内または筐体上に入力装
置などを有してもよい。入力装置は、例えば、タッチセンサー、光センサー、超音波セン
サーなどを用いればよい。入力装置を表示装置と筐体との間または筐体上に配置する場合
、マトリクススイッチ方式、抵抗膜方式、超音波表面弾性波方式、赤外線方式、電磁誘導
方式、静電容量方式などのタッチパネルを用いればよい。また、入力装置を表示装置内に
配置する場合、インセルタイプのセンサー、またはオンセルタイプのセンサーなどを用い
ればよい。
なお、携帯機器1300Aは、振動センサーなどと、当該振動センサーなどに検知された
振動に基づいて、着信を拒否するモードに移行するプログラムを記憶した記憶装置を備え
ることができる。これにより、使用者は携帯機器1300Aを洋服の上から軽く叩いて振
動を与えることにより着信を拒否するモードに移行させることができる。
携帯機器1300Bは、第1の領域1311および第2の領域1312を有する表示部と
、表示部を支持する筐体1310を有する。
筐体1310は複数の屈曲部を備え、筐体1310が備える最も長い屈曲部が、第1の領
域1311と第2の領域1312に挟まれる。
携帯機器1300Bは、最も長い屈曲部に沿って設けられた第2の領域1312を側面に
向けて使用することができる。
携帯機器1300Cは、第1の領域1311および第2の領域1312を有する表示部と
、表示部を支持する筐体1310を有する。
筐体1310は複数の屈曲部を備え、筐体1310が備える二番目に長い屈曲部が、第1
の領域1311と第2の領域1312に挟まれる。
携帯機器1300Cは、第2の領域1312を上部に向けて使用することができる。
102 絶縁体
104 導電体
106a 半導体
106b 半導体
106c 半導体
108 絶縁体
112 絶縁体
116a 導電体
116b 導電体
124a 領域
124b 領域
400 基板
402 絶縁体
404 導電体
405 導電体
406a 半導体
406b 半導体
406c 半導体
408 絶縁体
412 絶縁体
413 導電体
416a 導電体
416b 導電体
418 絶縁体
424a 導電体
424b 導電体
426a 導電体
426b 導電体
428 絶縁体
800 RFタグ
801 通信器
802 アンテナ
803 無線信号
804 アンテナ
805 整流回路
806 定電圧回路
807 復調回路
808 変調回路
809 論理回路
810 記憶回路
811 ROM
901 筐体
902 筐体
903 表示部
904 表示部
905 マイクロフォン
906 スピーカー
907 操作キー
908 スタイラス
911 筐体
912 筐体
913 表示部
914 表示部
915 接続部
916 操作キー
921 筐体
922 表示部
923 キーボード
924 ポインティングデバイス
931 筐体
932 冷蔵室用扉
933 冷凍室用扉
941 筐体
942 筐体
943 表示部
944 操作キー
945 レンズ
946 接続部
951 車体
952 車輪
953 ダッシュボード
954 ライト
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
1200 記憶素子
1201 回路
1202 回路
1203 スイッチ
1204 スイッチ
1206 論理素子
1207 容量素子
1208 容量素子
1209 トランジスタ
1210 トランジスタ
1213 トランジスタ
1214 トランジスタ
1220 回路
1300A 携帯機器
1300B 携帯機器
1300C 携帯機器
1310 筐体
1311 領域
1312 領域
2100 トランジスタ
2200 トランジスタ
2201 絶縁体
2202 導電体
2203 導電体
2204 絶縁体
2205 導電体
2206 導電体
2207 絶縁体
2208 絶縁体
2211 半導体基板
2212 絶縁体
2213 ゲート電極
2214 ゲート絶縁体
2215 ソース領域およびドレイン領域
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
3200 トランジスタ
3300 トランジスタ
3400 容量素子
4000 RFタグ
5000 基板
5001 画素部
5002 走査線駆動回路
5003 走査線駆動回路
5004 信号線駆動回路
5010 容量配線
5012 ゲート配線
5013 ゲート配線
5014 ドレイン電極
5016 トランジスタ
5017 トランジスタ
5018 液晶素子
5019 液晶素子
5020 画素
5021 スイッチング用トランジスタ
5022 駆動用トランジスタ
5023 容量素子
5024 発光素子
5025 信号線
5026 走査線
5027 電源線
5028 共通電極
5100 ペレット
5120 基板
5161 領域
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 セル
8007 バックライトユニット
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリー

Claims (2)

  1. トランジスタを有する半導体装置であって、
    第1のゲート電極と、
    前記第1のゲート電極上の第1の絶縁体と、
    前記第1の絶縁体を介して前記第1のゲート電極上に位置する酸化物半導体と、
    第2の絶縁体を介して前記酸化物半導体上に位置する第2のゲート電極と、
    前記第2のゲート電極上の第3の絶縁体と、
    前記酸化物半導体上に位置し、前記酸化物半導体と電気的に接続された第1の導電体と、を有し、
    前記トランジスタのチャネル長方向に平行な断面視において、前記酸化物半導体は、前記第2の絶縁体と接する第1の領域と、前記第1の導電体と接する第2の領域と、前記第1の領域と前記第2の領域の間に位置し、且つ前記第3の絶縁体と接する第3の領域と、を有し、
    前記第3の領域における前記酸化物半導体の膜厚は、前記第1の領域における前記酸化物半導体の膜厚より小さく、
    前記第2の領域における前記酸化物半導体の膜厚は、前記第3の領域における前記酸化物半導体の膜厚より小さく、
    前記第3の領域における前記酸化物半導体の膜厚と、前記第2の領域における前記酸化物半導体の膜厚との差は、前記第3の領域における前記酸化物半導体の膜厚と、前記第1の領域における前記酸化物半導体の膜厚との差よりも大きく、
    前記第2のゲート電極と、前記第1の導電体とは、互いに重なる領域を有さない半導体装置。
  2. 請求項1において、
    前記第1の絶縁体は、前記酸化物半導体と接する第4の領域と、前記第3の絶縁体と接する第5の領域とを有し、
    前記第4の領域における前記第1の絶縁体の膜厚は、前記第5の領域における前記第1の絶縁体の膜厚より大きい半導体装置。
JP2021071745A 2014-01-16 2021-04-21 半導体装置 Active JP7171813B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021098666A JP6937957B1 (ja) 2014-01-16 2021-06-14 半導体装置、表示装置、表示モジュール、及び電子機器
JP2022175964A JP7455928B2 (ja) 2014-01-16 2022-11-02 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014005618 2014-01-16
JP2014005618 2014-01-16
JP2019221859A JP6874105B2 (ja) 2014-01-16 2019-12-09 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019221859A Division JP6874105B2 (ja) 2014-01-16 2019-12-09 半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2021098666A Division JP6937957B1 (ja) 2014-01-16 2021-06-14 半導体装置、表示装置、表示モジュール、及び電子機器
JP2022175964A Division JP7455928B2 (ja) 2014-01-16 2022-11-02 半導体装置

Publications (3)

Publication Number Publication Date
JP2021121024A true JP2021121024A (ja) 2021-08-19
JP2021121024A5 JP2021121024A5 (ja) 2021-10-14
JP7171813B2 JP7171813B2 (ja) 2022-11-15

Family

ID=53522059

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2015004858A Withdrawn JP2015156480A (ja) 2014-01-16 2015-01-14 半導体装置および電子機器
JP2019221859A Active JP6874105B2 (ja) 2014-01-16 2019-12-09 半導体装置
JP2021071745A Active JP7171813B2 (ja) 2014-01-16 2021-04-21 半導体装置
JP2021098666A Active JP6937957B1 (ja) 2014-01-16 2021-06-14 半導体装置、表示装置、表示モジュール、及び電子機器
JP2022175964A Active JP7455928B2 (ja) 2014-01-16 2022-11-02 半導体装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015004858A Withdrawn JP2015156480A (ja) 2014-01-16 2015-01-14 半導体装置および電子機器
JP2019221859A Active JP6874105B2 (ja) 2014-01-16 2019-12-09 半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021098666A Active JP6937957B1 (ja) 2014-01-16 2021-06-14 半導体装置、表示装置、表示モジュール、及び電子機器
JP2022175964A Active JP7455928B2 (ja) 2014-01-16 2022-11-02 半導体装置

Country Status (2)

Country Link
US (3) US9401432B2 (ja)
JP (5) JP2015156480A (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI663726B (zh) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
KR20160114511A (ko) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI721026B (zh) * 2015-10-30 2021-03-11 日商半導體能源研究所股份有限公司 電容器、半導體裝置、模組以及電子裝置的製造方法
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US10115741B2 (en) 2016-02-05 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR20180123028A (ko) 2016-03-11 2018-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장비, 상기 반도체 장치의 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
US10096720B2 (en) * 2016-03-25 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
KR102458660B1 (ko) 2016-08-03 2022-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
US10504925B2 (en) 2016-08-08 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN109791950A (zh) 2016-10-21 2019-05-21 株式会社半导体能源研究所 半导体装置
US10910407B2 (en) 2017-01-30 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN111801796A (zh) * 2018-02-08 2020-10-20 英特尔公司 集成晶体管器件的硅化物结构及其提供方法
KR20230067042A (ko) 2021-11-09 2023-05-16 엘지디스플레이 주식회사 박막 트랜지스터 및 이를 포함하는 표시장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070034915A1 (en) * 2003-02-07 2007-02-15 Randy Hoffman Transparent double-injection field-effect transistor
JP2012191180A (ja) * 2011-02-23 2012-10-04 Semiconductor Energy Lab Co Ltd 半導体装置
JP2013149994A (ja) * 2010-12-03 2013-08-01 Semiconductor Energy Lab Co Ltd 酸化物半導体膜
JP2013232689A (ja) * 2011-12-23 2013-11-14 Semiconductor Energy Lab Co Ltd 半導体素子
JP2013235644A (ja) * 2012-04-12 2013-11-21 Semiconductor Energy Lab Co Ltd 記憶回路、記憶装置及び電子機器
JP2013239702A (ja) * 2012-04-20 2013-11-28 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2013243349A (ja) * 2012-04-25 2013-12-05 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013243352A (ja) * 2012-04-27 2013-12-05 Semiconductor Energy Lab Co Ltd 酸化物半導体膜および半導体装置
JP2014002827A (ja) * 2012-05-25 2014-01-09 Semiconductor Energy Lab Co Ltd 記憶素子の駆動方法

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166680A (ja) * 1982-03-29 1983-10-01 Semiconductor Energy Lab Co Ltd 半導体装置
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
US5854494A (en) * 1991-02-16 1998-12-29 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
JPH0828520B2 (ja) * 1991-02-22 1996-03-21 株式会社半導体エネルギー研究所 薄膜半導体装置およびその製法
JPH04360570A (ja) * 1991-06-06 1992-12-14 Mitsubishi Electric Corp 積層型半導体装置
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3298974B2 (ja) 1993-03-23 2002-07-08 電子科学株式会社 昇温脱離ガス分析装置
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH08330593A (ja) * 1995-05-31 1996-12-13 Sharp Corp 薄膜トランジスタの製造方法
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
US6225218B1 (en) * 1995-12-20 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP2907128B2 (ja) * 1996-07-01 1999-06-21 日本電気株式会社 電界効果型トランジスタ及びその製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW469484B (en) * 1999-03-26 2001-12-21 Semiconductor Energy Lab A method for manufacturing an electrooptical device
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
US20030000149A1 (en) * 2001-02-23 2003-01-02 Oakley Robert L. Linearly actuated locking device for transit vehicle door system
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
KR100533719B1 (ko) * 2001-06-29 2005-12-06 엘지.필립스 엘시디 주식회사 유기 전계발광소자 및 그 제조방법
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
JP2003258259A (ja) * 2002-02-28 2003-09-12 Advanced Lcd Technologies Development Center Co Ltd 電極構造、薄膜トランジスタおよびそれらの製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
KR101019337B1 (ko) 2004-03-12 2011-03-07 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 아몰퍼스 산화물 및 박막 트랜지스터
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
EP1603271A1 (de) * 2004-06-01 2005-12-07 Siemens Aktiengesellschaft Topology handler
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
WO2006051995A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CN101057339B (zh) 2004-11-10 2012-12-26 佳能株式会社 无定形氧化物和场效应晶体管
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
JP5261979B2 (ja) * 2007-05-16 2013-08-14 凸版印刷株式会社 画像表示装置
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP2009016469A (ja) * 2007-07-03 2009-01-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
TWI495108B (zh) * 2008-07-31 2015-08-01 Semiconductor Energy Lab 半導體裝置的製造方法
JP2010045159A (ja) 2008-08-12 2010-02-25 Fujifilm Corp 薄膜電界効果型トランジスタ及びその製造方法
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5397759B2 (ja) 2009-07-17 2014-01-22 富士ゼロックス株式会社 画像形成装置
JP5436241B2 (ja) * 2010-01-25 2014-03-05 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
WO2011096286A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and semiconductor device
CN104979369B (zh) * 2010-03-08 2018-04-06 株式会社半导体能源研究所 半导体器件及其制造方法
KR102141064B1 (ko) 2010-04-02 2020-08-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011129456A1 (en) * 2010-04-16 2011-10-20 Semiconductor Energy Laboratory Co., Ltd. Deposition method and method for manufacturing semiconductor device
KR101809105B1 (ko) 2010-08-06 2017-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 집적 회로
US8508276B2 (en) 2010-08-25 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including latch circuit
JP5626978B2 (ja) 2010-09-08 2014-11-19 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
KR101680768B1 (ko) * 2010-12-10 2016-11-29 삼성전자주식회사 트랜지스터 및 이를 포함하는 전자장치
JP2012160679A (ja) * 2011-02-03 2012-08-23 Sony Corp 薄膜トランジスタ、表示装置および電子機器
TWI538215B (zh) * 2011-03-25 2016-06-11 半導體能源研究所股份有限公司 場效電晶體及包含該場效電晶體之記憶體與半導體電路
JP6104522B2 (ja) * 2011-06-10 2017-03-29 株式会社半導体エネルギー研究所 半導体装置
US9385238B2 (en) * 2011-07-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Transistor using oxide semiconductor
JP2013125826A (ja) 2011-12-14 2013-06-24 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
JP6128906B2 (ja) * 2012-04-13 2017-05-17 株式会社半導体エネルギー研究所 半導体装置
TWI595502B (zh) 2012-05-18 2017-08-11 半導體能源研究所股份有限公司 記憶體裝置和用於驅動記憶體裝置的方法
JP2013247143A (ja) 2012-05-23 2013-12-09 Semiconductor Energy Lab Co Ltd 半導体装置
WO2013179922A1 (en) * 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014021442A1 (en) 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor stacked film and semiconductor device
JP2014056963A (ja) 2012-09-13 2014-03-27 Toshiba Corp 薄膜トランジスタおよび固体撮像装置
TWI620324B (zh) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
US9343579B2 (en) 2013-05-20 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102537022B1 (ko) 2013-05-20 2023-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102098795B1 (ko) 2013-05-20 2020-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6400336B2 (ja) 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070034915A1 (en) * 2003-02-07 2007-02-15 Randy Hoffman Transparent double-injection field-effect transistor
JP2013149994A (ja) * 2010-12-03 2013-08-01 Semiconductor Energy Lab Co Ltd 酸化物半導体膜
JP2012191180A (ja) * 2011-02-23 2012-10-04 Semiconductor Energy Lab Co Ltd 半導体装置
JP2013232689A (ja) * 2011-12-23 2013-11-14 Semiconductor Energy Lab Co Ltd 半導体素子
JP2013235644A (ja) * 2012-04-12 2013-11-21 Semiconductor Energy Lab Co Ltd 記憶回路、記憶装置及び電子機器
JP2013239702A (ja) * 2012-04-20 2013-11-28 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
CN104247030A (zh) * 2012-04-20 2014-12-24 株式会社半导体能源研究所 半导体装置及其制造方法
JP2013243349A (ja) * 2012-04-25 2013-12-05 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013243352A (ja) * 2012-04-27 2013-12-05 Semiconductor Energy Lab Co Ltd 酸化物半導体膜および半導体装置
JP2014002827A (ja) * 2012-05-25 2014-01-09 Semiconductor Energy Lab Co Ltd 記憶素子の駆動方法

Also Published As

Publication number Publication date
US20150200305A1 (en) 2015-07-16
JP2021170642A (ja) 2021-10-28
US9401432B2 (en) 2016-07-26
JP2020065060A (ja) 2020-04-23
JP6937957B1 (ja) 2021-09-22
US20210328074A1 (en) 2021-10-21
JP2015156480A (ja) 2015-08-27
JP2023017887A (ja) 2023-02-07
JP6874105B2 (ja) 2021-05-19
JP7455928B2 (ja) 2024-03-26
US20160329436A1 (en) 2016-11-10
JP7171813B2 (ja) 2022-11-15

Similar Documents

Publication Publication Date Title
JP6937957B1 (ja) 半導体装置、表示装置、表示モジュール、及び電子機器
JP6794572B2 (ja) トランジスタ
JP6950032B2 (ja) 半導体装置
JP6715364B2 (ja) 半導体装置
JP6670408B2 (ja) 半導体装置
JP6694933B2 (ja) 半導体装置
JP6556446B2 (ja) トランジスタ
JP2020145443A (ja) 半導体装置
JP6440457B2 (ja) 半導体装置
JP6474625B2 (ja) 半導体装置の作製方法
JP2016072633A (ja) 配線層およびその作製方法
JP2024073544A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150