JP2020074470A - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP2020074470A JP2020074470A JP2020017162A JP2020017162A JP2020074470A JP 2020074470 A JP2020074470 A JP 2020074470A JP 2020017162 A JP2020017162 A JP 2020017162A JP 2020017162 A JP2020017162 A JP 2020017162A JP 2020074470 A JP2020074470 A JP 2020074470A
- Authority
- JP
- Japan
- Prior art keywords
- oxide semiconductor
- semiconductor layer
- transistor
- electrode layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 578
- 239000000463 material Substances 0.000 claims description 40
- 230000015572 biosynthetic process Effects 0.000 claims description 33
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 239000010703 silicon Substances 0.000 claims description 25
- 239000000758 substrate Substances 0.000 abstract description 90
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 833
- 239000010408 film Substances 0.000 description 227
- 239000011701 zinc Substances 0.000 description 73
- 238000000034 method Methods 0.000 description 49
- 239000003990 capacitor Substances 0.000 description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 44
- 239000001301 oxygen Substances 0.000 description 44
- 229910052760 oxygen Inorganic materials 0.000 description 44
- 239000013078 crystal Substances 0.000 description 43
- 238000004088 simulation Methods 0.000 description 38
- 239000012535 impurity Substances 0.000 description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 24
- 230000005684 electric field Effects 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 125000004429 atom Chemical group 0.000 description 22
- 230000006870 function Effects 0.000 description 18
- 238000004544 sputter deposition Methods 0.000 description 17
- 229910052738 indium Inorganic materials 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000005530 etching Methods 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 229910052719 titanium Inorganic materials 0.000 description 11
- 229910052721 tungsten Inorganic materials 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 10
- 239000004020 conductor Substances 0.000 description 10
- 229910052733 gallium Inorganic materials 0.000 description 10
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 10
- 230000007774 longterm Effects 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 230000000717 retained effect Effects 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- 229910052735 hafnium Inorganic materials 0.000 description 8
- 230000003071 parasitic effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000000231 atomic layer deposition Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 229910052684 Cerium Inorganic materials 0.000 description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 229910000449 hafnium oxide Inorganic materials 0.000 description 6
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 229910052707 ruthenium Inorganic materials 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 206010021143 Hypoxia Diseases 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 5
- 229910001195 gallium oxide Inorganic materials 0.000 description 5
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 5
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 5
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- 229910018137 Al-Zn Inorganic materials 0.000 description 3
- 229910018573 Al—Zn Inorganic materials 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- 229910018120 Al-Ga-Zn Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 2
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 240000007711 Peperomia pellucida Species 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910020994 Sn-Zn Inorganic materials 0.000 description 2
- 229910018725 Sn—Al Inorganic materials 0.000 description 2
- 229910009069 Sn—Zn Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910007541 Zn O Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 2
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 241000700560 Molluscum contagiosum virus Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910020868 Sn-Ga-Zn Inorganic materials 0.000 description 1
- 229910020944 Sn-Mg Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- CUZHTAHNDRTVEF-UHFFFAOYSA-N n-[bis(dimethylamino)alumanyl]-n-methylmethanamine Chemical compound [Al+3].C[N-]C.C[N-]C.C[N-]C CUZHTAHNDRTVEF-UHFFFAOYSA-N 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical group [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- 238000004402 ultra-violet photoelectron spectroscopy Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/70—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78612—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
- Electrodes Of Semiconductors (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
成物(コンポジション オブ マター)に関する。特に、本発明は、例えば、半導体装置
、表示装置、発光装置、それらの駆動方法、または、それらの製造方法に関する。特に、
本発明は、例えば、酸化物半導体を有する半導体装置、表示装置、または、発光装置に関
する。
全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
タ(TFT)ともいう)を構成する技術が注目されている。当該トランジスタは集積回路
(IC)や画像表示装置(表示装置)のような電子デバイスに広く応用されている。トラ
ンジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、そ
の他の材料として酸化物半導体が注目されている。
亜鉛(Zn)を含む非晶質酸化物半導体を用いたトランジスタが特許文献1に開示されて
いる。
トランジスタを微細化すると、しきい値電圧やS値(サブスレッショルド値)などのトラ
ンジスタの電気特性が悪化することが知られている。
成の半導体装置を提供することを目的の一つとする。または、低消費電力の半導体装置を
提供することを目的の一つとする。または、信頼性の高い半導体装置を提供することを目
的の一つとする。または、本発明の一態様は、S値(サブスレッショルド値)の悪化を低
減した半導体装置を提供することを目的の一つとする。または、本発明の一態様は、しき
い値電圧の悪化を低減した半導体装置を提供することを目的の一つとする。または、本発
明の一態様は、寄生チャネルを低減した半導体装置を提供することを目的の一つとする。
または、本発明の一態様は、電源が遮断されてもデータが保持される半導体装置を提供す
ることを目的の一つとする。
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
、第2の酸化物半導体層、第3の酸化物半導体層の順で積層した酸化物半導体層と、酸化
物半導体層と接するソース電極層およびドレイン電極層と、酸化物半導体層、ソース電極
層およびドレイン電極層上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲ
ート電極層と、を有し、第1の酸化物半導体層は第1の領域を有し、ゲート絶縁膜は第2
の領域を有し、第1の領域の膜厚をTS1、第2の領域の膜厚をTGIとするとき、TS
1≧TGIであることを特徴とする半導体装置である。
ために付すものであり、数的に限定するものではないことを付記する。
半導体層よりも伝導帯下端のエネルギーが0.05eV以上2eV以下の範囲で真空準位
に近いことが好ましい。
Al、Ti、Ga、Y、Zr、La、Ce、NdまたはHf)であり、第1の酸化物半導
体層および第3の酸化物半導体層は、Inに対するMの原子数比が第2の酸化物半導体層
よりも大きいことが好ましい。
極層を覆うように形成され、酸化物半導体層に接する第2のソース電極層を有し、ドレイ
ン電極層は、酸化物半導体層に接する第1のドレイン電極層と、第1のドレイン電極層を
覆うように形成され、酸化物半導体層に接する第2のドレイン電極層を有する構成として
もよい。
極層上に形成され、酸化物半導体層に接する第1のソース電極層を有し、ドレイン電極層
は、酸化物半導体層に接する第2のドレイン電極層と、第2のドレイン電極層上に形成さ
れ、酸化物半導体層に接する第1のドレイン電極層を有する構成としてもよい。
Ti、Mo、W、またはこれらを主成分とする合金材料で形成され、第2のソース電極層
および第2のドレイン電極層は、窒化タンタル、窒化チタン、またはルテニウムを含む材
料で形成されていることが好ましい。
物半導体層と、第1の酸化物半導体層に形成された第2の酸化物半導体層と、第2の酸化
物半導体層上に形成された第1のソース電極層および第1のドレイン電極層と、第2の酸
化物半導体層、第1のソース電極層および第1のドレイン電極層上に形成された第3の酸
化物半導体層と、第1のソース電極層を覆うように形成された第2のソース電極層と、第
1のドレイン電極層を覆うように形成された第2のドレイン電極層と、第3の酸化物半導
体層、第2のソース電極層および第2のドレイン電極層上に形成されたゲート絶縁膜と、
ゲート絶縁膜上に形成されたゲート電極層と、を有し、第1のソース電極層および第1の
ドレイン電極層は、第1の酸化物半導体層乃至第3の酸化物半導体層と接し、第2のソー
ス電極層および第2のドレイン電極層は、第3の酸化物半導体層と接し、第1の酸化物半
導体層は第1の領域を有し、ゲート絶縁膜は第2の領域を有し、第1の領域の膜厚をTS
1、第2の領域の膜厚をTGIとするとき、TS1≧TGIであることを特徴とする半導
体装置である。
半導体層よりも伝導帯下端のエネルギーが0.05eV以上2eV以下の範囲で真空準位
に近いことが好ましい。
Al、Ti、Ga、Y、Zr、La、Ce、NdまたはHf)であり、第1の酸化物半導
体層および第3の酸化物半導体層は、Inに対するMの原子数比が第2の酸化物半導体層
よりも大きいことが好ましい。
i、Mo、W、またはこれらを主成分とする合金材料であることが好ましい。
またはルテニウムを含む材料で形成されていることが好ましい。
る構成の半導体装置を提供することができる。または、低消費電力の半導体装置を提供す
ることができる。または、信頼性の高い半導体装置を提供することができる。または、S
値(サブスレッショルド値)の悪化を低減した半導体装置を提供することができる。また
は、しきい値電圧の悪化を低減した半導体装置を提供することができる。または、寄生チ
ャネルを低減した半導体装置を提供することができる。または、電源が遮断されてもデー
タが保持される半導体装置を提供することができる。
れず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変
更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施
の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成
において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通
して用い、その繰り返しの説明は省略することがある。
とYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、X
とYとが直接接続されている場合とを含むものとする。ここで、X、Yは、対象物(例え
ば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。したがっ
て、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または
文章に示された接続関係以外のものも含むものとする。
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが
可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイ
ッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか
流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択し
て切り替える機能を有している。
とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変
換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電
源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)
、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る
回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成
回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能であ
る。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号
がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている
場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を
挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、
XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含むものとす
る。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続されてい
る、とのみ明示的に記載されている場合と同じであるとする。
る場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もあ
る。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び
電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電
気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場
合も、その範疇に含める。
。基板の種類は、特定のものに限定されることはない。その基板の一例としては、半導体
基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラ
スチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有す
る基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わ
せフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガラス基板の一例と
しては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラ
スなどがある。可撓性基板の一例としては、ポリエチレンテレフタレート(PET)、ポ
リエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプ
ラスチック、又はアクリル等の可撓性を有する合成樹脂などがある。貼り合わせフィルム
の一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニ
ルなどがある。基材フィルムの一例としては、ポリエステル、ポリアミド、ポリイミド、
無機蒸着フィルム、又は紙類などがある。特に、半導体基板、単結晶基板、又はSOI基
板などを用いてトランジスタを製造することによって、特性、サイズ、又は形状などのば
らつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる
。このようなトランジスタによって回路を構成すると、回路の低消費電力化、又は回路の
高集積化を図ることができる。
し、別の基板上にトランジスタを配置してもよい。トランジスタが転置される基板の一例
としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファ
ン基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、
ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再
生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を用
いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形成
、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができる。
本実施の形態では、本発明の一態様の半導体装置について図面を用いて説明する。
断面図である。図1(A)は上面図であり、図1(A)に示す一点鎖線A1−A2の断面
が図1(B)、一点鎖線A3−A4の断面が図1(C)、一点鎖線A5−A6の断面が図
1(D)に相当する。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を
省いて図示している。また、一点鎖線A1−A2方向をチャネル幅方向、一点鎖線A5−
A6方向をチャネル長方向と呼称する場合がある。
された下地絶縁膜120と、該下地絶縁膜120上に形成された酸化物半導体層130と
、該酸化物半導体層130上に形成されたソース電極層140およびドレイン電極層15
0と、該ソース電極層140、該ドレイン電極層150および酸化物半導体層130上に
形成されたゲート絶縁膜160と、該ゲート絶縁膜160上に形成されたゲート電極層1
70を有する。また、該ゲート絶縁膜160および該ゲート電極層170上に酸化物絶縁
層180が形成されていてもよい。当該酸化物絶縁層180は必要に応じて設ければよく
、さらにその上部に他の絶縁層を形成してもよい。
採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることが
ある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて
用いることができるものとする。
基板であってもよい。この場合、トランジスタ100のゲート電極層170、ソース電極
層140、およびドレイン電極層150の少なくとも一つは、上記の他のデバイスと電気
的に接続されていてもよい。
物半導体層130に酸素を供給する役割を担うことができるため、酸素を含む絶縁膜であ
ることが好ましく、過剰な酸素を含む絶縁膜がより好ましい。また、上述のように基板1
10が他のデバイスが形成された基板である場合、下地絶縁膜120は、層間絶縁膜とし
ての機能も有する。その場合は、表面が平坦になるようにCMP(Chemical M
echanical Polishing)法等で平坦化処理を行うことが好ましい。
酸化物半導体層132、および第3の酸化物半導体層133が積層された構造を有してい
る。ここで、一例としては、第2の酸化物半導体層132には、第1の酸化物半導体層1
31および第3の酸化物半導体層133よりも電子親和力(真空準位から伝導帯下端まで
のエネルギー)が大きい酸化物半導体を用いる。電子親和力は、真空準位と価電子帯上端
とのエネルギー差(イオン化ポテンシャル)から、伝導帯下端と価電子帯上端とのエネル
ギー差(エネルギーギャップ)を差し引いた値として求めることができる。
るが、酸化物半導体層130が一層、二層または四層以上であってもよい。一層の場合は
、例えば、第2の酸化物半導体層132に相当する層を用いればよい。二層の場合は、例
えば、基板110側に第2の酸化物半導体層132に相当する層を用い、ゲート絶縁膜1
60側に第1の酸化物半導体層131または第3の酸化物半導体層133に相当する層を
用いる構造、または、基板110側に第1の酸化物半導体層131または第3の酸化物半
導体層133に相当する層を用い、ゲート絶縁膜160側に第2の酸化物半導体層132
に相当する層を用いる構造とすればよい。四層以上である場合は、例えば、本実施の形態
の説明と同じように第2の酸化物半導体層132が第1の酸化物半導体層131または第
3の酸化物半導体層133に相当する層で挟まれる構造とすればよい。
層132を構成する金属元素を一種以上含み、例えば、伝導帯下端のエネルギーが第2の
酸化物半導体層132よりも、0.05eV、0.07eV、0.1eV、0.15eV
のいずれか以上であって、2eV、1eV、0.5eV、0.4eVのいずれか以下の範
囲で真空準位に近い酸化物半導体で形成することが好ましい。
0のうち、伝導帯下端のエネルギーが最も小さい第2の酸化物半導体層132にチャネル
が形成される。すなわち、第2の酸化物半導体層132とゲート絶縁膜160との間に第
3の酸化物半導体層133が形成されていることよって、トランジスタのチャネルをゲー
ト絶縁膜160と接しない構造とすることができる。
を一種以上含んで構成されるため、第2の酸化物半導体層132と第1の酸化物半導体層
131の界面に界面準位を形成しにくくなる。該界面準位はチャネルを形成することがあ
るため、トランジスタのしきい値電圧が変動することがある。したがって、第1の酸化物
半導体層131を設けることにより、トランジスタのしきい値電圧などの電気特性のばら
つきを低減することができる。
を一種以上含んで構成されるため、第2の酸化物半導体層132と第3の酸化物半導体層
133との界面ではキャリアの散乱が起こりにくくなる。したがって、第3の酸化物半導
体層133を設けることにより、トランジスタの電界効果移動度を高くすることができる
。
i、Ga、Ge、Y、Zr、Sn、La、CeまたはHfを第2の酸化物半導体層132
よりも高い原子数比で含む材料を用いることができる。具体的には、当該原子数比を1.
5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上とする。前述の元素は酸素と
強く結合するため、酸素欠損が酸化物半導体層に生じることを抑制する機能を有する。す
なわち、第1の酸化物半導体層131および第3の酸化物半導体層133は、第2の酸化
物半導体層132よりも酸素欠損が生じにくいということができる。
層133が、少なくともインジウム、亜鉛およびM(Al、Ti、Ga、Ge、Y、Zr
、Sn、La、CeまたはHf等の金属)を含むIn−M−Zn酸化物であるとき、第1
の酸化物半導体層131をIn:M:Zn=x1:y1:z1[原子数比]、第2の酸化
物半導体層132をIn:M:Zn=x2:y2:z2[原子数比]、第3の酸化物半導
体層133をIn:M:Zn=x3:y3:z3[原子数比]とすると、y1/x1およ
びy3/x3がy2/x2よりも大きくなることが好ましい。y1/x1およびy3/x
3はy2/x2よりも1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上と
する。このとき、第2の酸化物半導体層132において、y2がx2以上であるとトラン
ジスタの電気特性を安定させることができる。ただし、y2がx2の3倍以上になると、
トランジスタの電界効果移動度が低下してしまうため、y2はx2の3倍未満であること
が好ましい。
数比率は、InおよびMの和を100atomic%としたとき、好ましくはInが50
atomic%未満、Mが50atomic%以上、さらに好ましくはInが25ato
mic%未満、Mが75atomic%以上とする。また、第2の酸化物半導体層132
のInとMの原子数比率は、InおよびMの和を100atomic%としたとき、好ま
しくはInが25atomic%以上、Mが75atomic%未満、さらに好ましくは
Inが34atomic%以上、Mが66atomic%未満とする。
00nm以下、好ましくは3nm以上50nm以下とする。また、第2の酸化物半導体層
132の厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さ
らに好ましくは3nm以上50nm以下とする。
層133には、例えば、インジウム、亜鉛およびガリウムを含んだ酸化物半導体を用いる
ことができる。特に、第2の酸化物半導体層132にインジウムを含ませると、キャリア
移動度が高くなるため好ましい。
には、酸化物半導体層中の不純物濃度を低減し、酸化物半導体層を真性または実質的に真
性にすることが有効である。ここで、実質的に真性とは、酸化物半導体層のキャリア密度
が、1×1017/cm3未満であること、好ましくは1×1015/cm3未満である
こと、さらに好ましくは1×1013/cm3未満であることを指す。
元素は不純物となる。例えば、水素および窒素は、ドナー準位の形成に寄与し、キャリア
密度を増大させてしまう。また、シリコンは、酸化物半導体層中で不純物準位を形成する
。当該不純物準位はトラップとなり、トランジスタの電気特性を劣化させることがある。
したがって、第1の酸化物半導体層131、第2の酸化物半導体層132および第3の酸
化物半導体層133の層中や、それぞれの界面において不純物濃度を低減させることが好
ましい。
y Ion Mass Spectrometry)分析において、例えば、酸化物半導
体層のある深さにおいて、または、酸化物半導体層のある領域において、シリコン濃度を
1×1019atoms/cm3未満、好ましくは5×1018atoms/cm3未満
、さらに好ましくは1×1018atoms/cm3未満とする部分を有していることが
好ましい。また、水素濃度は、例えば、酸化物半導体層のある深さにおいて、または、酸
化物半導体層のある領域において、2×1020atoms/cm3以下、好ましくは5
×1019atoms/cm3以下、より好ましくは1×1019atoms/cm3以
下、さらに好ましくは5×1018atoms/cm3以下とする部分を有していること
が好ましい。また、窒素濃度は、例えば、酸化物半導体層のある深さにおいて、または、
酸化物半導体層のある領域において、5×1019atoms/cm3未満、好ましくは
5×1018atoms/cm3以下、より好ましくは1×1018atoms/cm3
以下、さらに好ましくは5×1017atoms/cm3以下とする部分を有しているこ
とが好ましい。
半導体層の結晶性を低下させることがある。酸化物半導体層の結晶性を低下させないため
には、例えば、酸化物半導体層のある深さにおいて、または、酸化物半導体層のある領域
において、シリコン濃度を1×1019atoms/cm3未満、好ましくは5×101
8atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とす
る部分を有していればよい。また、例えば、酸化物半導体層のある深さにおいて、または
、酸化物半導体層のある領域において、炭素濃度を1×1019atoms/cm3未満
、好ましくは5×1018atoms/cm3未満、さらに好ましくは1×1018at
oms/cm3未満とする部分を有していればよい。
スタのオフ電流は極めて小さく、トランジスタのチャネル幅で規格化したオフ電流は、数
yA/μm〜数zA/μmにまで低減することが可能となる。なお、その場合のソースと
ドレインとの間の電圧は、例えば、0.1V、5V、または、10V程度である。
め、上記理由により酸化物半導体層のチャネルとなる領域はゲート絶縁膜と接しないこと
が好ましいということができる。また、ゲート絶縁膜と酸化物半導体層との界面にチャネ
ルが形成される場合、該界面でキャリアの散乱が起こり、トランジスタの電界効果移動度
が低くなることがある。このような観点からも、酸化物半導体層のチャネルとなる領域は
ゲート絶縁膜から離すことが好ましい。
層132、第3の酸化物半導体層133の積層構造とすることで、トランジスタのチャネ
ルが形成される第2の酸化物半導体層132をゲート絶縁膜から離すことができ、高い電
界効果移動度を有し、安定した電気特性のトランジスタを形成することができる。
物半導体層131および第3の酸化物半導体層133に相当する層としてエネルギーギャ
ップが3.5eVであるIn−Ga−Zn酸化物、第2の酸化物半導体層132に相当す
る層としてエネルギーギャップが3.15eVであるIn−Ga−Zn酸化物を用い、酸
化物半導体層130に相当する積層を作製して行っている。なお、便宜的に当該積層を酸
化物半導体層130、当該積層を構成するそれぞれの層を第1の酸化物半導体層131、
第2の酸化物半導体層132、第3の酸化物半導体層133と称して説明する。
3の膜厚はそれぞれ10nmとし、エネルギーギャップは、分光エリプソメータ(HOR
IBA JOBIN YVON社 UT−300)を用いて測定した。また、真空準位と
価電子帯上端のエネルギー差は、紫外線光電子分光分析(UPS:Ultraviole
t Photoelectron Spectroscopy)装置(PHI社 Ver
saProbe)を用いて測定した。
の差分として算出される真空準位と伝導帯下端のエネルギー差(電子親和力)から模式的
に示されるバンド構造の一部である。図2(A)は、第1の酸化物半導体層131および
第3の酸化物半導体層133と接して、酸化シリコン膜を設けた場合のバンド図である。
ここで、Evは真空準位のエネルギー、EcI1およびEcI2は酸化シリコン膜の伝導
帯下端のエネルギー、EcS1は第1の酸化物半導体層131の伝導帯下端のエネルギー
、EcS2は第2の酸化物半導体層132の伝導帯下端のエネルギー、EcS3は第3の
酸化物半導体層133の伝導帯下端のエネルギーである。また、トランジスタを構成する
場合、ゲート電極層(トランジスタ100ではゲート電極層170に相当)はEcI2を
有する酸化シリコン膜に接するものとする。
第3の酸化物半導体層133において、伝導帯下端のエネルギーが連続的に変化する。こ
れは、第1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体
層133の組成が近似することにより、酸素が相互に拡散しやすい点からも理解される。
したがって、第1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物
半導体層133は組成が異なる層の積層体ではあるが、物性的に連続であるということも
でき、本明細書の図面において、当該積層体のそれぞれの界面は点線で表している。
連続接合(ここでは特に伝導帯下端のエネルギーが各層の間で連続的に変化するU字型の
井戸構造(U Shape Well))が形成されるように作製する。すなわち、各層
の界面にトラップ中心や再結合中心のような欠陥準位を形成するような不純物が存在しな
いように積層構造を形成する。仮に、積層された酸化物半導体層の層間に不純物が混在し
ていると、エネルギーバンドの連続性が失われ、界面でキャリアがトラップあるいは再結
合により消滅してしまう。
(スパッタ装置)を用いて各層を大気に触れさせることなく連続して積層することが必要
となる。スパッタ装置における各チャンバーは、酸化物半導体にとって不純物となる水等
を可能な限り除去すべく、クライオポンプのような吸着式の真空排気ポンプを用いて高真
空排気(1×10−4Pa〜5×10−7Pa程度まで)できること、かつ、成膜される
基板を100℃以上、好ましくは500℃以上に加熱できることが好ましい。または、タ
ーボ分子ポンプとコールドトラップを組み合わせて排気系からチャンバー内に炭素成分や
水分等を含む気体が逆流しないようにしておくことが好ましい。
ッタガスの高純度化も必要である。スパッタガスとして用いる酸素ガスやアルゴンガスは
、露点が−40℃以下、好ましくは−80℃以下、より好ましくは−100℃以下にまで
高純度化したガスを用いることで酸化物半導体層に水分等が取り込まれることを可能な限
り防ぐことができる。
れが異なっていてもよい。例えば、EcS3よりもEcS1が高いエネルギーを有する場
合、バンド構造の一部は、図2(B)のように示される。
化物半導体層133にIn:Ga:Zn=1:3:2、1:6:4または1:9:6(原
子数比)、第2の酸化物半導体層132にIn:Ga:Zn=1:1:1または3:1:
2(原子数比)のIn−Ga−Zn酸化物などを用いることができる。また、EcS1>
EcS3である場合は、第1の酸化物半導体層131にIn:Ga:Zn=1:6:4ま
たは1:9:6(原子数比)、第2の酸化物半導体層132にIn:Ga:Zn=1:1
:1または3:1:2(原子数比)、第3の酸化物半導体層133にIn:Ga:Zn=
1:3:2(原子数比)のIn−Ga−Zn酸化物などを用いることができる。
ウェル(井戸)となり、酸化物半導体層130を用いたトランジスタにおいて、チャネル
が第2の酸化物半導体層132に形成されることがわかる。なお、酸化物半導体層130
は伝導帯下端のエネルギーが連続的に変化しているため、U字型井戸とも呼ぶことができ
る。また、このような構成で形成されたチャネルを埋め込みチャネルということもできる
。
膜などの絶縁膜との界面近傍には、不純物や欠陥に起因したトラップ準位が形成され得る
。第1の酸化物半導体層131および第3の酸化物半導体層133があることにより、第
2の酸化物半導体層132と当該トラップ準位とを遠ざけることができる。ただし、Ec
S1またはEcS3と、EcS2とのエネルギー差が小さい場合、第2の酸化物半導体層
132の電子が該エネルギー差を越えてトラップ準位に達することがある。トラップ準位
に電子が捕獲されることで、絶縁膜界面にマイナスの電荷が生じ、トランジスタのしきい
値電圧はプラス方向にシフトしてしまう。
eV以上、好ましくは0.15eV以上とすることで、トランジスタのしきい値電圧の変
動が低減され、安定した電気特性を得ることができる。
導体層133のいずれか一つ以上の層には、結晶部が含まれることが好ましい。例えば、
第1の酸化物半導体層131を非晶質とし、第2の酸化物半導体層132および第3の酸
化物半導体層133を結晶部が含まれる層とする。チャネルが形成される第2の酸化物半
導体層132が結晶部を含むことにより、トランジスタに安定した電気特性を付与するこ
とができる。
は、表面と略垂直な方向にc軸が配向した結晶を有することが好ましい。
140およびドレイン電極層150に接しており、電流を効率良く取り出すにはエネルギ
ーギャップが絶縁体のように大きくないこと、および膜厚が薄いことが好ましい。また、
酸化物半導体層130にIn−Ga−Zn酸化物を用いる場合は、Inのゲート絶縁膜へ
の拡散を防ぐために、第3の酸化物半導体層133は第2の酸化物半導体層132よりも
Inを少なくする組成とすることが好ましい。
V時の電流(Icutともいう)を低減させることが有効である。しかしながら、トラン
ジスタを微細化するとしきい値電圧やS値(サブスレッショルド値)などのトランジスタ
の電気特性が悪化することが知られており、微細化と低消費電力化との両立が望まれてい
た。
の酸化物半導体層131の一部である第1の領域の膜厚をTS1、ゲート絶縁膜160の
一部である第2の領域の膜厚をTGIとしたとき、TS1≧TGI(TS1はTGI以上
)として形成する。このようにすることで、ゲート電極層170がゲート絶縁膜160を
介して第2の酸化物半導体層132の側面を覆うようになる。
32の側面にゲート電極層170から電界を印加しやすい構造にすることによって、第2
の酸化物半導体層132に対して全体的に電界が印加されるようになり、トランジスタの
しきい値電圧やS値を向上させることができる。当該構造を有するトランジスタでは、W
長が短い場合に特に有効であるため、トランジスタを微細化してもIcutを下げること
ができ、消費電力を低減させることができる。また、トランジスタのしきい値電圧が安定
化することから、半導体装置の長期信頼性を向上させることができる。
うに、ソース電極層140およびドレイン電極層150のチャネル幅方向の長さは、酸化
物半導体層130のチャネル幅方向の長さよりも小さく、当該酸化物半導体層のチャネル
長方向の端部を覆うように形成することが好ましい。このような構造とすることで、ゲー
ト電極層170から第2の酸化物半導体層132の側面への電界印加に対する障害物が減
少するため、上述したTS1≧TGIによるトランジスタのしきい値電圧やS値を向上さ
せる効果を助長させることができる。
うに、酸化物半導体層130の端部に曲面を有する領域134を設けても良い。酸化物半
導体層130をIn−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、
NdまたはHf)で形成する場合、第2の酸化物半導体層132を構成するM(MS2)
と領域134を構成するM(MS4)の量的関係は、MS4>MS2であることが好まし
い。より好ましくは、MS4は第1の酸化物半導体層131を構成するM(MS1)と同
等とする。このような構成にすることによって、第2の酸化物半導体層132を保護する
ことができる。
物半導体層131の成分を再付着させる、所謂ラビットイヤーを利用して形成することが
できる。さらに酸化処理によりラビットイヤー形成時に付着するエッチングガス成分を除
去し、M成分を酸化することで領域134の絶縁性を高めることができる。
混入や酸素欠損の発生などによりn型化しやすく、寄生チャネルとなることがある。特に
エネルギーギャップの小さい第2の酸化物半導体層132ではn型化が顕著に起こりやす
い。したがって、図4(B)に示すトランジスタの拡大断面図(チャネル幅方向の断面の
一部)のように領域134が形成されることによって、寄生チャネルの発生を抑制するこ
とができる。
断面図である。第1の酸化物半導体層131と領域134の主成分が同一であるとき、第
2の酸化物半導体層132の伝導帯下端のエネルギー(EcS2)と領域134の伝導帯
下端のエネルギー(EcS4)の差分(ΔE)が大きいほど寄生チャネルの発生を抑える
効果が高い。また、領域134の厚みは、第1の酸化物半導体層131または第3の酸化
物半導体層133よりも厚いことが好ましく、厚いほど第2の酸化物半導体層132端部
のn型化による寄生チャネルの発生を抑えることができる。
の酸化物半導体層133と組成が近似することにより、酸化物半導体層のバンド構造の一
部を示す図5(B)のように伝導帯下端のエネルギーが連続的に変化する。すなわち、第
1の酸化物半導体層131、第2の酸化物半導体層132、第3の酸化物半導体層133
、および領域134は連続接合であるということができる。なお、図5(B)に示すD1
−D2は、図5(A)の酸化物半導体層130の断面図に示す一点鎖線D1−D2方向に
相当し、図5(B)に示すE1−E2は図5(A)に示す一点鎖線E1−E2方向に相当
する。
ることが好ましい。例えば、Al、Cr、Cu、Ta、Ti、Mo、Wなどを用いること
ができる。上記材料において、特に酸素と結合し易いTiや、後のプロセス温度が比較的
高くできることなどから、融点の高いWを用いることがより好ましい。なお、酸素と結合
し易い導電材料には、酸素が拡散し易い材料も含まれる。
、酸素と結合し易い導電材料側に拡散する現象が起こる。当該現象は、温度が高いほど顕
著に起こる。トランジスタの作製工程には、いくつかの加熱工程があることから、上記現
象により、酸化物半導体層のソース電極層またはドレイン電極層と接触した近傍の領域に
酸素欠損が発生し、当該領域はn型化する。したがって、n型化した当該領域はトランジ
スタのソースまたはドレインとして作用させることができる。
される。酸化物半導体層130中に点線で示される境界135は、真性半導体領域とn型
半導体領域の境界であり、酸化物半導体層130におけるソース電極層140またはドレ
イン電極層150と接触した近傍の領域がn型化した領域となる。なお、境界135は模
式的に示したものであり、実際には明瞭ではない場合がある。また、図6では、境界13
5が第2の酸化物半導体層132中で横方向に延びているように位置している状態を示し
たが、境界135は、第1の酸化物半導体層131中、または第3の酸化物半導体層13
3中で横方向に延びるように位置することもある。また、酸化物半導体層130のソース
電極層140またはドレイン電極層150と下地絶縁膜120との間に挟まれた領域の膜
厚方向全体がn型化することもある。
よってn型化した領域がトランジスタのチャネル長方向に延在してしまうことがある。こ
の場合、トランジスタの電気特性には、しきい値電圧のシフトやゲート電圧でオンオフの
制御ができない状態(導通状態)が現れる。そのため、チャネル長が極短いトランジスタ
を形成する場合は、ソース電極層およびドレイン電極層に酸素と結合し易い導電材料を用
いることが必ずしも好ましいとはいえない。
ース電極層およびドレイン電極層を積層とする構造としてもよい。図7(A)は上面図で
あり、図7(A)に示す一点鎖線B1−B2の断面が図7(B)、一点鎖線B3−B4の
断面が図7(C)、一点鎖線B5−B6の断面が図7(D)に相当する。また、一点鎖線
B1−B2方向をチャネル幅方向、一点鎖線B5−B6方向をチャネル長方向と呼称する
場合がある。
用い、チャネル長を定める第2のソース電極層142および第2のドレイン電極層152
には、酸素と結合しにくい導電材料を用いる。当該導電材料としては、例えば、窒化タン
タル、窒化チタン、またはルテニウムを含む材料などを用いることが好ましい。なお、酸
素と結合しにくい導電材料には、酸素が拡散しにくい材料も含まれる。
と第2のドレイン電極層152の間隔のことをいう。
第2のドレイン電極層152の間における第2の酸化物半導体層132のことをいう。
142と第2のドレイン電極層152の間における第1の酸化物半導体層131、第2の
酸化物半導体層132、第3の酸化物半導体層133のことをいう。
層152に用いることによって、酸化物半導体層130に形成されるチャネル形成領域に
酸素欠損が形成されることを抑制することができ、チャネルのn型化を抑えることができ
る。したがって、チャネル長が極短いトランジスタであっても良好な電気特性を得ること
ができる。
すると、酸化物半導体層130とのコンタクト抵抗が高くなりすぎることから、図7(C
)に示すように、第1のソース電極層141および第1のドレイン電極層151を酸化物
半導体層130上に形成し、第1のソース電極層141および第1のドレイン電極層15
1を覆うように第2のソース電極層142および第2のドレイン電極層152を形成する
ことが好ましい。
層130との接触面積を大として、第2のソース電極層142および第2のドレイン電極
層152と酸化物半導体層130との接触面積は小とすることが好ましい。第1のソース
電極層141および第1のドレイン電極層151と酸化物半導体層130の接触した領域
は、酸素欠損の生成によってn型化した領域となる。該n型化した領域により第1のソー
ス電極層141および第1のドレイン電極層151と酸化物半導体層130のコンタクト
抵抗を下げることができる。したがって、第1のソース電極層141および第1のドレイ
ン電極層151と酸化物半導体層130の接触面積を大とすることで、n型化した領域の
面積も大とすることが可能となる。
窒化チタンなどの窒化物を用いる場合はその限りではない。窒化物中の窒素が酸化物半導
体層130との界面近傍に僅かに拡散し、酸化物半導体層130中で窒素がドナーとして
作用してn型領域を形成し、コンタクト抵抗を低下させることができる。
m以上、好ましくは1.0μm以上とする。当該間隔が0.8μmより小さいとチャネル
形成領域において発生する酸素欠損の影響を排除できなくなり、トランジスタの電気特性
が低下してしまう。
0nm以下としても良好なトランジスタの電気特性を得ることができる。
周波数特性を向上させるため、ゲート電極層とソース電極層またはドレイン電極層とが極
力重ならない構造とすることが好ましい。
ランジスタ200の第1のソース電極層141および第1のドレイン電極層151の端部
は、階段状に複数の段を設けた形状とすることが好ましい。このような複数の段を設けた
形状とすることで、それらの上方に形成される膜の被覆性が向上し、トランジスタの電気
特性や長期信頼性を向上させることができる。なお、図31(A)に示すトランジスタ1
02、図31(B)に示すトランジスタ202のように、ソース電極層140およびドレ
イン電極層150の端部、または第1のソース電極層141および第1のドレイン電極層
151の端部は、階段状の段を設けない形状であってもよい。
化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化
イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび
酸化タンタルを一種以上含む絶縁膜を用いることができる。また、ゲート絶縁膜160は
上記材料の積層であってもよい。
Ag、TaおよびWなどの導電膜を用いることができる。また、当該ゲート電極層は、上
記材料の積層であってもよい。
いてもよい。当該酸化物絶縁層180には、酸化アルミニウム、酸化マグネシウム、酸化
シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲ
ルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化
ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用いることができる。また、当該
酸化物絶縁層180は上記材料の積層であってもよい。
絶縁層とは、加熱処理などによって酸素を放出することができる酸化物絶縁層をいう。好
ましくは、昇温脱離ガス分光法分析にて、酸素原子に換算しての酸素の放出量が1.0×
1019atoms/cm3以上である膜とする。当該酸化物絶縁層180から放出され
る酸素はゲート絶縁膜160を経由して酸化物半導体層130のチャネル形成領域に拡散
させることができることから、不本意に形成された酸素欠損に酸素を補填することができ
る。したがって、安定したトランジスタの電気特性を得ることができる。
であり、長期信頼性の高い半導体装置を提供することができる。
。
本実施の形態では、実施の形態1で説明した本発明の一態様のトランジスタの構成につい
て、シミュレーションを行った結果を説明する。
A)、(B)、(C)、(D)、図11(A)、(B)、(C)、(D)は、第1のシミ
ュレーションに用いたデバイスモデルを説明する図である。図8(A)は上面図であり、
図8(A)に示す一点鎖線H1−H2の断面が図8(B)、一点鎖線H3−H4の断面が
図8(C)、一点鎖線H5−H6の断面が図8(D)に相当する。また、図9(A)は上
面図であり、図9(A)に示す一点鎖線J1−J2の断面が図9(B)、一点鎖線J3−
J4の断面が図9(C)、一点鎖線J5−J6の断面が図9(D)に相当する。また、図
10(A)は上面図であり、図10(A)に示す一点鎖線K1−K2の断面が図10(B
)、一点鎖線K3−K4の断面が図10(C)、一点鎖線K5−K6の断面が図10(D
)に相当する。また、図11(A)は上面図であり、図11(A)に示す一点鎖線M1−
M2の断面が図11(B)、一点鎖線M3−M4の断面が図11(C)、一点鎖線M5−
M6の断面が図11(D)に相当する。また、一点鎖線H1−H2、J1−J2、K1−
K2、M1−M2方向をチャネル幅方向、一点鎖線H5−H6、J5−J6、K5−K6
、M5−M6方向をチャネル長方向と呼称する場合がある。
絶縁膜520上に第1の酸化物半導体層531、第2の酸化物半導体層532、第3の酸
化物半導体層533からなる酸化物半導体層530、ソース電極層540、ドレイン電極
層550、ゲート絶縁膜560、ゲート電極層570を有する。また、ゲート電極層57
0は、チャネル幅方向において酸化物半導体層530の端部を覆う構成となっている。
半導体層530と、ソース電極層540またはドレイン電極層550がチャネル長方向に
重なる長さを30nm、下地絶縁膜520の膜厚を300nm、ゲート絶縁膜560の比
誘電率を4.1、膜厚を20nm、ゲート電極層の仕事関数を4.9eV、ソース電極層
540およびドレイン電極層550の仕事関数を4.4eVとした。また、第1の酸化物
半導体層531(S1)、第2の酸化物半導体層532(S2)、第3の酸化物半導体層
533(S3)として用いるIn−Ga−Zn酸化物の原子数比(In:Ga:Zn)お
よびシミュレーションに用いる数値は、表1に示すとおりである。なお、シミュレーショ
ンには、シノプシス社製Sentaurus Deviceを用いた。また、各層や界面
に局在する固定電荷や電子トラップ等は仮定していない。
1とゲート電極層570の形状が異なり、チャネル幅方向において酸化物半導体層530
の端部を覆わない構成、すなわち、上面形状は酸化物半導体層530と同等なっている。
その他の条件はDM1と同じである。
化物半導体層580を表1に示すS2と同条件の単層とし、その他の条件はDM1と同じ
(ゲート電極層570がチャネル幅方向において酸化物半導体層530の端部を覆う構成
)である。
化物半導体層580を表1に示すS2と同条件の単層とし、その他の条件はDM2と同じ
(ゲート電極層570がチャネル幅方向において酸化物半導体層530の端部を覆わない
構成)である。
を用いたシミュレーションにより得られたId−Vg特性を示す。
0がチャネル幅方向において酸化物半導体層530の端部を覆う構成であるDM1の特性
が良好となった(図12(A)参照)。また、酸化物半導体層が単層構造を有するDM3
とDM4の比較では、ゲート電極層570がチャネル幅方向において酸化物半導体層58
0の端部を覆う構成であるDM3の特性が良好となった(図12(B)参照)。ここで、
DM1とDM3の比較においては、DM1のほうが、S値およびしきい値電圧が良好であ
る。したがって、Icutを小さくする目的においては、DM1の構造、すなわち、酸化
物半導体層が積層構造であって、ゲート電極層がチャネル幅方向において酸化物半導体層
の端部を覆う構成が優位といえる。
の一部の領域の膜厚を同じに設定したことに起因する。この場合、酸化物半導体層530
において、チャネルが形成される第2の酸化物半導体層532の相対位置が高くなり、第
2の酸化物半導体層532の端部がゲート絶縁膜560を介してゲート電極層570で覆
われるため、第2の酸化物半導体層532の全体に対してゲート電極層570からの電界
印加がされやすくなる。一方、DM2、DM3、DM4では、酸化物半導体層530、5
80の端部がゲート絶縁膜560を介してゲート電極層570で覆われる構造とはならな
いため、いずれも不十分なId−Vg特性となってしまう。
層構造においてチャネルとなる層の相対位置を高くすること、そして当該チャネルとなる
層に対して横方向からもゲート電極層からの電界が印加されやすい構成にすることが有効
であることがわかった。具体的には、チャネルとなる層の下層に位置する層の一部の領域
の膜厚をゲート絶縁膜の一部の領域の膜厚と同等以上とし、酸化物半導体層端部を覆うよ
うにゲート電極層を形成すればよい。
2のシミュレーションに用いたデバイスモデルを説明する図である。図13(A)は上面
図であり、図13(A)に示す一点鎖線N1−N2の断面が図13(B)、一点鎖線N3
−N4の断面が図13(C)、一点鎖線N5−N6の断面が図13(D)に相当する。ま
た、図14(A)は上面図であり、図14(A)に示す一点鎖線P1−P2の断面が図1
4(B)、一点鎖線P3−P4の断面が図14(C)、一点鎖線P5−P6の断面が図1
4(D)に相当する。また、一点鎖線N1−N2、P1−P2方向をチャネル幅方向、一
点鎖線N5−N6、P5−P6方向をチャネル長方向と呼称する場合がある。
M1とソース電極層540またはドレイン電極層550の形状が異なり、ソース電極層5
40またはドレイン電極層550が酸化物半導体層530のチャネル長方向の端部を覆う
構成となっている。その他の条件はDM1と同じである。
M1とソース電極層540またはドレイン電極層550の形状が異なり、ソース電極層5
40またはドレイン電極層550が酸化物半導体層530のチャネル長方向の端部および
チャネル幅方向の端部の一部を覆う構成となっている。その他の条件はDM1と同じであ
る。つまり、DM5とDM6では、ソース電極層540またはドレイン電極層550がチ
ャネル幅方向の端部の一部を覆うか否かが異なる。
ョンにより得られたId−Vg特性である。図15におけるDM5とDM6の比較では、
ソース電極層540またはドレイン電極層550が酸化物半導体層530のチャネル幅方
向の端部を覆わない構成であるDM5の特性が良好となった。また、DM5はDM1と比
較して若干しきい値電圧がマイナス側にあるものの、S値は同等であり、高いオン電流を
示した。したがって、オン電流を含めた特性向上を目的にする場合においては、DM5の
構造、すなわち、ソース電極層またはドレイン電極層が酸化物半導体層のチャネル長方向
の端部を覆い、チャネル幅方向の端部を覆わない構成が好ましいといえる。
イン電極層550で覆うことにより、ゲート電極層570からの電界の一部が遮断され、
酸化物半導体層530、特にチャネルが形成される第2の酸化物半導体層532に当該電
界が印加されにくくなるためである。
ルとなる層へのゲート電極層からの電界印加を妨げない構成にすることが有効であること
がわかった。具体的には、ソース電極層またはドレイン電極層が酸化物半導体層のチャネ
ル長方向の端部を覆い、チャネル幅方向の端部を覆わない構成とすればよい。または、ソ
ース電極層またはドレイン電極層のチャネル幅方向の長さが酸化物半導体層のチャネル幅
方向の長さと同じ、または小さくなるような構成ということもできる。
第3のシミュレーションを行った。第3のシミュレーションのデバイスモデルにおいては
、酸化物半導体層530のチャネル幅方向の長さ、およびソース電極層またはドレイン電
極層のチャネル幅方向の長さを一致させ、当該長さをW長として定義した。そして、W=
300nm、40nm、30nm、10nmをシミュレーションの条件とした。その他の
条件はDM5と同じである。
g特性である。W長が300nmの場合、オフ特性が非常に悪いが、W長を40nm以下
とすることでS値が著しく改善することわかる。
物半導体層532の側面からの電界印加の寄与度がW長が小さいほど大きいためである。
図33(A)、(B)は、図13(B)に相当するDM5のチャネル幅方向の断面であり
、第2の酸化物半導体層532が横方向から受ける電界強度を模式的にベクトルで表した
図である。図33(A)に示すように、W長が小さい場合は、第2の酸化物半導体層53
2に対して横方向に印加される電界はチャネル全体に及ぶが、図33(B)に示すように
、W長が長い場合は当該電界はチャネル全体に及ばない。したがって、DM5の構成にお
ける効果は、W長が小さいトランジスタほど有効であるといえる。
れる第2の酸化物半導体層532の膜厚に関して、第4のシミュレーションを行った。第
4のシミュレーションでは、L/W=30nm/40nmのデバイスモデルにおいて、第
2の酸化物半導体層532の膜厚を5nm乃至90nmとするシミュレーション条件を用
いた。また、L/W=30nm/300nmのデバイスモデルにおいては、第2の酸化物
半導体層532の膜厚を5nm乃至50nmとするシミュレーション条件を用いた。その
他の条件はDM5と同じである。
により得られたId−Vg特性である。図17(A)、(B)は、L/W=30nm/4
0nmのデバイスモデルにおけるId−Vg特性のシミュレーション結果であり、図17
(A)に第2の酸化物半導体層532の膜厚が5nm、10nm、15nm、20nm、
25nm、30nm、40nm、50nmの結果を示し、図17(B)に第2の酸化物半
導体層532の膜厚が60nm、70nm、80nm、90nmの結果を示している。ま
た、図17(C)は、L/W=30nm/300nmのデバイスモデルにおけるId−V
g特性のシミュレーション結果であり、第2の酸化物半導体層532の膜厚が5nm、1
0nm、15nm、20nm、25nm、30nm、40nm、50nmの結果を示して
いる。それぞれの図において、矢印の始点側から終点側にかけて膜厚が順次増加する条件
となっている。
は、第2の酸化物半導体層532の膜厚が50nm程度までは膜厚が厚いほどS値および
オン電流が改善される結果となった。そして、図17(B)に示されるように、第2の酸
化物半導体層532の膜厚が60nm以上となるとS値およびしきい値電圧はほとんど変
化がなくなり、オン電流のみ膜厚とともに増加する傾向となった。
においては、第2の酸化物半導体層532の膜厚が5nm乃至50nmのいずれであって
もS値およびしきい値電圧は向上せず、それらの膜厚の依存においてはL/W=30nm
/40nmのデバイスモデルとは逆の傾向となった。
酸化物半導体層532全体に対するゲート電極層570からの電界印加がされやすくなる
ためである。一方、W長が長い場合は、第3のシミュレーションの結果と同様に第2の酸
化物半導体層532の側面側から印加されるゲート電極層570からの電界が第2の酸化
物半導体層532に形成されるチャネル全体にまで及ばないため、Id−Vg特性は向上
しない。
ることが有効なため、DM5の構造は、トランジスタの構造をフィン型(酸化物半導体層
530の膜厚>W長)にすることに対しても適しているといえ、微細化にともなうオン電
流の減少の抑制にも効果を奏する。
Si)とするデバイスモデルの比較を第5のシミュレーションとして行った。活性層をシ
リコンとするデバイスモデル7(以降、DM7)は、図18(A)、(B)、(C)、(
D)に示すように、DM5を基本とし、シリコン活性層630はn+型領域632、p−
型領域631を有する構成とした。ここで、n+型領域632のドナー不純物密度(ND
)を1E20/cm3とし、p−型領域631のアクセプタ不純物密度(NA)を1E1
7/cm3、1E18/cm3、1E19/cm3としてシミュレーションを行った。
−Vg特性である。また、比較として、図15で示した活性層を酸化物半導体層とするD
M5のId−Vg特性を図示している。
れない結果となった。また、NAが比較的大きい場合は、オンオフ比がとれるようになる
が、オフ電流はDM5と比べて十分に下がりきらない結果となった。
化物半導体層の積層とする構成であること、当該積層においてチャネルとなる中間層の相
対位置を高くし、当該中間層の側面からもゲート電極層からの電界が印加しやすい構成と
すること、ソース電極層またはドレイン電極層で活性層のチャネル幅方向の端部を覆わず
、ゲート電極層から活性層に印加される電界を遮蔽しない構成とすることがトランジスタ
の特性向上に対して有意であることが明らかとなった。また、当該構成において、W長を
小さくすること、およびチャネルとなる中間層を厚くすることも有意であることも明らか
となった。したがって、他の実施の形態で説明する本発明の一態様における半導体装置は
、微細構造であっても電気特性が良好であり、信頼性が高いということができる。
。
本実施の形態では、実施の形態1で説明したトランジスタとは異なる構造のトランジスタ
について説明する。
び断面図である。図20(A)は上面図であり、図20(A)に示す一点鎖線C1−C2
の断面が図20(B)、一点鎖線C3−C4の断面が図20(C)、一点鎖線C5−C6
の断面が図20(D)に相当する。なお、図20(A)の上面図では、図の明瞭化のため
に一部の要素を省いて図示している。また、一点鎖線C1−C2方向をチャネル幅方向、
一点鎖線C5−C6方向をチャネル長方向と呼称する場合がある。
成された下地絶縁膜120と、該下地絶縁膜120上に形成された酸化物半導体層130
と、該酸化物半導体層130上に形成された第2のソース電極層142および第2のドレ
イン電極層152と、該第2のソース電極層142および該第2のドレイン電極層152
のそれぞれの上に形成された第1のソース電極層141および第1のドレイン電極層15
1と、該第1のソース電極層141、該第2のソース電極層142、該第1のドレイン電
極層151、該第2のドレイン電極層152、および酸化物半導体層130上に形成され
たゲート絶縁膜160と、該ゲート絶縁膜160上に形成されたゲート電極層170と、
該ゲート絶縁膜160および該ゲート電極層170上に形成された酸化物絶縁層180を
有する。なお、酸化物絶縁層180は必要に応じて設ければよく、さらにその上部に他の
絶縁層を形成してもよい。
、(C)、(D)に示すトランジスタ300とは、第1のソース電極層141と第2のソ
ース電極層142との積層順序、および第1のドレイン電極層151と第2のドレイン電
極層152との積層順序が異なり、その他の点では同じである。
1のドレイン電極層151とが接していないことから、第1のソース電極層141および
第1のドレイン電極層151が起因した酸化物半導体層130における酸素欠損の発生は
起こらない。そのため、当該酸素欠損によってソースまたはドレインとして作用するn型
領域は形成されない。
152に実施の形態1で説明した導電性の窒化物(窒化タンタルまたは窒化チタン)を用
いる。したがって、当該窒化物から酸化物半導体層130の界面近傍にドナーとなる窒素
を拡散させることができ、窒素を拡散させた領域をソースまたはドレインとして作用させ
ることができる。なお、窒素はチャネル長方向にも拡散することがあり、図示してあるよ
うにチャネル形成領域の一部を取り除くことが好ましい。当該チャネル形成領域の一部は
、第2のソース電極層142および第2のドレイン電極層152の形成時のエッチング工
程によっても取り除くことができる。なお、窒素は酸化物半導体層130中に深く拡散さ
せる必要はなく、界面近傍に拡散させるのみで十分にソースまたはドレインとして作用さ
せることができる。
151が起因した酸化物半導体層130における酸素欠損の発生は起こらないことから、
第1のソース電極層141と第1のドレイン電極層151の距離をトランジスタ100よ
りも短くすることができる。例えば、第2のソース電極層142の端面と第1のソース電
極層141の端面、および第2のドレイン電極層152の端面と第1のドレイン電極層1
51の端面とを一致させてもよい。このようにすることで、ソース電極層およびドレイン
電極層全体としての抵抗を低下させることができる。
1の端部は、階段状に複数の段を設けた形状とすることが好ましい。このような複数の段
を設けた形状とすることで、それらの上方に形成される膜の被覆性が向上し、トランジス
タの電気特性や長期信頼性を向上させることができる。なお、図32(A)に示すトラン
ジスタ302のように、第1のソース電極層141および第1のドレイン電極層151の
端部は、階段状の段を設けない形状であってもよい。
V時の電流(Icutともいう)を低減させることが有効である。しかしながら、トラン
ジスタを微細化するとしきい値電圧やS値(サブスレッショルド値)などのトランジスタ
の電気特性が悪化することが知られており、微細化と低消費電力化との両立が望まれてい
た。
域の膜厚をTS1、ゲート絶縁膜160の一部である第2の領域の膜厚をTGIとしたと
き、TS1≧TGI(TS1はTGI以上)として形成する。このようにすることで、ゲ
ート電極層170がゲート絶縁膜160を介して第2の酸化物半導体層132の側面を覆
うようになる。
32の側面にゲート電極層170から電界を印加しやすい構造にすることによって、第2
の酸化物半導体層132に対して全体的に電界が印加されるようになり、トランジスタの
しきい値電圧やS値を向上させることができる。当該構造を有するトランジスタでは、W
長が短い場合に特に有効であるため、トランジスタを微細化してもIcutを下げること
ができ、消費電力を低減させることができる。また、トランジスタのしきい値電圧が安定
化することから、半導体装置の長期信頼性を向上させることができる。
ように、ソース電極層140およびドレイン電極層150のチャネル幅方向の長さは、酸
化物半導体層130のチャネル幅方向の長さよりも小さく、当該酸化物半導体層のチャネ
ル長方向の端部を覆うように形成することが好ましい。このような構造とすることで、ゲ
ート電極層170から第2の酸化物半導体層132の側面への電界印加に対する障害物が
減少するため、上述したTS1≧TGIによるトランジスタのしきい値電圧やS値を向上
させる効果を助長させることができる。
であり、長期信頼性の高い半導体装置を提供することができる。
。
本実施の形態では、実施の形態1および実施の形態3で説明したトランジスタとは異なる
構造のトランジスタについて説明する。
び断面図である。図21(A)は上面図であり、図21(A)に示す一点鎖線D1−D2
の断面が図21(B)、一点鎖線D3−D4の断面が図21(C)、一点鎖線D5−D6
の断面が図21(D)に相当する。なお、図21(A)の上面図では、図の明瞭化のため
に一部の要素を省いて図示している。また、一点鎖線D1−D2方向をチャネル幅方向、
一点鎖線D5−D6方向をチャネル長方向と呼称する場合がある。
成された下地絶縁膜120と、該下地絶縁膜120上に形成された第1の酸化物半導体層
131および第2の酸化物半導体層132と、該第2の酸化物半導体層132上に形成さ
れた第1のソース電極層141および第1のドレイン電極層151と、該第2の酸化物半
導体層132、該第1のソース電極層141、および該第1のドレイン電極層151上に
形成された第3の酸化物半導体層133と、第1のソース電極層141を覆うように重畳
し、該第1のソース電極層141および第3の酸化物半導体層133のそれぞれと接する
第2のソース電極層142と、第1のドレイン電極層151を覆うように重畳し、該第1
のドレイン電極層151および第3の酸化物半導体層133のそれぞれと接する第2のド
レイン電極層152と、第3の酸化物半導体層133、第2のソース電極層142、およ
び第2のドレイン電極層152上に形成されたゲート絶縁膜160と、該ゲート絶縁膜1
60上に形成されたゲート電極層170と、該ゲート絶縁膜160および該ゲート電極層
170上に形成された酸化物絶縁層180を有する。なお、酸化物絶縁層180は必要に
応じて設ければよく、さらにその上部に他の絶縁層を形成してもよい。
、(C)、(D)に示すトランジスタ400とは、第3の酸化物半導体層133が第1の
ソース電極層141上および第1のドレイン電極層151上に形成されている点が異なり
、その他の点は同じである。
ース電極層141上および第1のドレイン電極層151が接しており、第2の酸化物半導
体層132に高密度の酸素欠損が生成し、n型領域が形成される。したがって、キャリア
のパスに抵抗成分が少なく、効率良くキャリアを移動させることができる。
電極層151形成後に形成するため、該第1のソース電極層141および該第1のドレイ
ン電極層151形成時の第3の酸化物半導体層133のオーバーエッチングが無い。した
がって、チャネルが形成される第2の酸化物半導体層132をゲート絶縁膜160から十
分離すことができ、界面からの不純物拡散の影響を抑える効果を大きくすることができる
。
1の端部は、階段状に複数の段を設けた形状とすることが好ましい。このような複数の段
を設けた形状とすることで、それらの上方に形成される膜の被覆性が向上し、トランジス
タの電気特性や長期信頼性を向上させることができる。なお、図32(B)に示すトラン
ジスタ402のように、第1のソース電極層141および第1のドレイン電極層151の
端部は、階段状の段を設けない形状であってもよい。
V時の電流(Icutともいう)を低減させることが有効である。しかしながら、トラン
ジスタを微細化するとしきい値電圧やS値(サブスレッショルド値)などのトランジスタ
の電気特性が悪化することが知られており、微細化と低消費電力化との両立が望まれてい
た。
域の膜厚をTS1、ゲート絶縁膜160の一部である第2の領域の膜厚をTGIとしたと
き、TS1≧TGI(TS1はTGI以上)として形成する。このようにすることで、ゲ
ート電極層170がゲート絶縁膜160を介して第2の酸化物半導体層132の側面を覆
うようになる。
32の側面にゲート電極層170から電界を印加しやすい構造にすることによって、第2
の酸化物半導体層132に対して全体的に電界が印加されるようになり、トランジスタの
しきい値電圧やS値を向上させることができる。当該構造を有するトランジスタでは、W
長が短い場合に特に有効であるため、トランジスタを微細化してもIcutを下げること
ができ、消費電力を低減させることができる。また、トランジスタのしきい値電圧が安定
化することから、半導体装置の長期信頼性を向上させることができる。
ように、第1のソース電極層141、第2のソース電極層142、第1のドレイン電極層
151、および第2のドレイン電極層152のチャネル幅方向の長さは、酸化物半導体層
130のチャネル幅方向の長さよりも小さく、当該酸化物半導体層のチャネル長方向の端
部を覆うように形成することが好ましい。このような構造とすることで、ゲート電極層1
70から第2の酸化物半導体層132の側面への電界印加に対する障害物が減少するため
、上述したTS1≧TGIによるトランジスタのしきい値電圧やS値を向上させる効果を
助長させることができる。
であり、長期信頼性の高い半導体装置を提供することができる。
。
本実施の形態では、実施の形態1で説明した図7に示すトランジスタ200の作製方法に
ついて、図22乃至図24を用いて説明する。
ことができる。また、シリコンや炭化シリコンなどの単結晶半導体基板、多結晶半導体基
板、シリコンゲルマニウムなどの化合物半導体基板、SOI(Silicon On I
nsulator)基板などを用いることも可能であり、これらの基板上に半導体素子が
設けられたものを用いてもよい。
酸化マグネシウム、酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム
、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム
および酸化タンタルなどの酸化物絶縁膜、窒化シリコン、窒化酸化シリコン、窒化アルミ
ニウム、窒化酸化アルミニウムなどの窒化物絶縁膜、または上記材料を混合した膜を用い
て形成することができる。また、上記材料の積層であってもよく、少なくとも酸化物半導
体層130と接する上層は酸化物半導体層130への酸素の供給源となりえる酸素を含む
材料で形成することが好ましい。
散の影響が無い場合は、下地絶縁膜120を設けない構成とすることができる。
、第3の酸化物半導体層133をスパッタリング法、CVD法、MBE法、ALD法また
はPLD法を用いて成膜し、選択的にエッチングを行うことで酸化物半導体層130を形
成する(図22(A)参照)。なお、エッチングの前に加熱工程を行ってもよい。
層133には、実施の形態1で説明した材料を用いることができる。例えば、第1の酸化
物半導体層131にIn:Ga:Zn=1:3:2[原子数比]のIn−Ga−Zn酸化
物、第2の酸化物半導体層132にIn:Ga:Zn=1:1:1[原子数比]のIn−
Ga−Zn酸化物、第3の酸化物半導体層133にIn:Ga:Zn=1:3:2[原子
数比]のIn−Ga−Zn酸化物を用いることができる。
半導体層133として用いることのできる酸化物半導体は、少なくともインジウム(In
)もしくは亜鉛(Zn)を含むことが好ましい。または、InとZnの双方を含むことが
好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすた
め、それらと共に、スタビライザーを含むことが好ましい。
ミニウム(Al)、またはジルコニウム(Zr)等がある。また、他のスタビライザーと
しては、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(P
r)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(
Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウ
ム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等がある
。
、Sn−Zn酸化物、Al−Zn酸化物、Zn−Mg酸化物、Sn−Mg酸化物、In−
Mg酸化物、In−Ga酸化物、In−Ga−Zn酸化物、In−Al−Zn酸化物、I
n−Sn−Zn酸化物、Sn−Ga−Zn酸化物、Al−Ga−Zn酸化物、Sn−Al
−Zn酸化物、In−Hf−Zn酸化物、In−La−Zn酸化物、In−Ce−Zn酸
化物、In−Pr−Zn酸化物、In−Nd−Zn酸化物、In−Sm−Zn酸化物、I
n−Eu−Zn酸化物、In−Gd−Zn酸化物、In−Tb−Zn酸化物、In−Dy
−Zn酸化物、In−Ho−Zn酸化物、In−Er−Zn酸化物、In−Tm−Zn酸
化物、In−Yb−Zn酸化物、In−Lu−Zn酸化物、In−Sn−Ga−Zn酸化
物、In−Hf−Ga−Zn酸化物、In−Al−Ga−Zn酸化物、In−Sn−Al
−Zn酸化物、In−Sn−Hf−Zn酸化物、In−Hf−Al−Zn酸化物を用いる
ことができる。
有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとGa
とZn以外の金属元素が入っていてもよい。また、本明細書においては、In−Ga−Z
n酸化物で構成した膜をIGZO膜とも呼ぶ。
いてもよい。なお、Mは、Ga、Fe、MnおよびCoから選ばれた一つの金属元素また
は複数の金属元素を示す。また、In2SnO5(ZnO)n(n>0、且つ、nは整数
)で表記される材料を用いてもよい。
酸化物半導体層133は、第2の酸化物半導体層132よりも電子親和力が大きくなるよ
うに材料を選択する。
ては、RFスパッタ法、DCスパッタ法、ACスパッタ法等を用いることができる。特に
、成膜時に発生するゴミを低減でき、かつ膜厚分布も均一とすることからDCスパッタ法
を用いることが好ましい。
3としてIn−Ga−Zn酸化物を用いる場合、In、Ga、Znの原子数比としては、
例えば、In:Ga:Zn=1:1:1、In:Ga:Zn=2:2:1、In:Ga:
Zn=3:1:2、In:Ga:Zn=1:3:2、In:Ga:Zn=1:4:3、I
n:Ga:Zn=1:5:4、In:Ga:Zn=1:6:6、In:Ga:Zn=2:
1:3、In:Ga:Zn=1:6:4、In:Ga:Zn=1:9:6、In:Ga:
Zn=1:1:4、In:Ga:Zn=1:1:2のいずれかの材料を用い、第1の酸化
物半導体層131および第3の酸化物半導体層133の電子親和力が第2の酸化物半導体
層132よりも大きくなるようにすればよい。
c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C
=1)の酸化物の組成の近傍であるとは、a、b、cが、(a−A)2+(b−B)2+
(c−C)2≦r2を満たすことをいう。rとしては、例えば、0.05とすればよい。
他の酸化物でも同様である。
半導体層133よりもインジウムの含有量を多くするとよい。酸化物半導体では主として
重金属のs軌道がキャリア伝導に寄与しており、Inの含有率を多くすることにより、よ
り多くのs軌道が重なるため、InがGaよりも多い組成となる酸化物はInがGaと同
等または少ない組成となる酸化物と比較して移動度が高くなる。そのため、第2の酸化物
半導体層132にインジウムの含有量が多い酸化物を用いることで、高い移動度のトラン
ジスタを実現することができる。
配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「垂
直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従
って、85°以上95°以下の場合も含まれる。
。
単結晶酸化物半導体膜とは、非晶質酸化物半導体膜、微結晶酸化物半導体膜、多結晶酸化
物半導体膜、CAAC−OS(C Axis Aligned Crystalline
Oxide Semiconductor)膜などをいう。
化物半導体膜である。微小領域においても結晶部を有さず、膜全体が完全な非晶質構造の
酸化物半導体膜が典型である。
ともいう。)を含む。従って、微結晶酸化物半導体膜は、非晶質酸化物半導体膜よりも原
子配列の規則性が高い。そのため、微結晶酸化物半導体膜は、非晶質酸化物半導体膜より
も欠陥準位密度が低いという特徴がある。
晶部は、一辺が100nm未満の立方体内に収まる大きさである。従って、CAAC−O
S膜に含まれる結晶部は、一辺が10nm未満、5nm未満または3nm未満の立方体内
に収まる大きさの場合も含まれる。CAAC−OS膜は、微結晶酸化物半導体膜よりも欠
陥準位密度が低いという特徴がある。以下、CAAC−OS膜について詳細な説明を行う
。
ron Microscope)によって観察すると、結晶部同士の明確な境界、即ち結
晶粒界(グレインバウンダリーともいう。)を確認することができない。そのため、CA
AC−OS膜は、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
)すると、結晶部において、金属原子が層状に配列していることを確認できる。金属原子
の各層は、CAAC−OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸
を反映した形状であり、CAAC−OS膜の被形成面または上面と平行に配列する。
M観察)すると、結晶部において、金属原子が三角形状または六角形状に配列しているこ
とを確認できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られな
い。
いることがわかる。
置を用いて構造解析を行うと、例えばInGaZnO4の結晶を有するCAAC−OS膜
のout−of−plane法による解析では、回折角(2θ)が31°近傍にピークが
現れる場合がある。このピークは、InGaZnO4の結晶の(009)面に帰属される
ことから、CAAC−OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概
略垂直な方向を向いていることが確認できる。
ane法による解析では、2θが56°近傍にピークが現れる場合がある。このピークは
、InGaZnO4の結晶の(110)面に帰属される。InGaZnO4の単結晶酸化
物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)と
して試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面に
帰属されるピークが6本観察される。これに対し、CAAC−OS膜の場合は、2θを5
6°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平行
な方向を向いていることがわかる。従って、前述の断面TEM観察で確認された層状に配
列した金属原子の各層は、結晶のab面に平行な面である。
った際に形成される。上述したように、結晶のc軸は、CAAC−OS膜の被形成面また
は上面の法線ベクトルに平行な方向に配向する。従って、例えば、CAAC−OS膜の形
状をエッチングなどによって変化させた場合、結晶のc軸がCAAC−OS膜の被形成面
または上面の法線ベクトルと平行にならないこともある。
の結晶部が、CAAC−OS膜の上面近傍からの結晶成長によって形成される場合、上面
近傍の領域は、被形成面近傍の領域よりも結晶化度が高くなることがある。また、CAA
C−OS膜に不純物を添加する場合、不純物が添加された領域の結晶化度が変化し、部分
的に結晶化度の異なる領域が形成されることもある。
による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れ
る場合がある。2θが36°近傍のピークは、CAAC−OS膜中の一部に、c軸配向性
を有さない結晶が含まれることを示している。CAAC−OS膜は、2θが31°近傍に
ピークを示し、2θが36°近傍にピークを示さないことが好ましい。
が小さい。よって、当該トランジスタは、信頼性が高い。
AC−OS膜のうち、二種以上を有する積層膜であってもよい。
スパッタ法によって成膜することができる。
る。例えば、成膜室内に存在する不純物(水素、水、二酸化炭素および窒素など)を低減
すればよい。また、成膜ガス中の不純物を低減すればよい。具体的には、露点が−80℃
以下、好ましくは−100℃以下である成膜ガスを用いる。
ョンが起こる。具体的には、基板加熱温度を100℃以上740℃以下、好ましくは20
0℃以上500℃以下として成膜する。成膜時の基板加熱温度を高めることで、平板状の
スパッタ粒子が基板に到達した場合、基板上でマイグレーションが起こり、スパッタ粒子
の平らな面が基板に付着する。
を軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100体
積%とする。
ることができる。In−Ga−Zn−O化合物ターゲットは、InOX粉末、GaOY粉
末およびZnOZ粉末を所定のモル数比で混合し、加圧処理後、1000℃以上1500
℃以下の温度で加熱処理をすることで多結晶体とする。なお、X、YおよびZは任意の正
数である。また、当該多結晶体の粒径は、例えば1μm以下など、小さいほど好ましい。
ここで、粉末の種類、およびその混合するモル数比は、作製するスパッタ用ターゲットに
よって適宜変更すればよい。
以下、好ましくは300℃以上500℃以下の温度で、不活性ガス雰囲気、酸化性ガスを
10ppm以上含む雰囲気、または減圧状態で行えばよい。また、第1の加熱処理の雰囲
気は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを1
0ppm以上含む雰囲気で行ってもよい。第1の加熱処理によって、第2の酸化物半導体
層132の結晶性を高め、さらに下地絶縁膜120、第1の酸化物半導体層131、およ
び第3の酸化物半導体層133から水素や水などの不純物を除去することができる。なお
、酸化物半導体層130を形成するエッチングの前に第1の加熱工程を行ってもよい。
AAC―OS膜が形成しやすくなる。したがって、第1の酸化物半導体層131を非晶質
とし、第2の酸化物半導体層132をCAAC―OS膜としてもよい。
151となる第1の導電膜を形成する。第1の導電膜としては、Al、Cr、Cu、Ta
、Ti、Mo、W、またはこれらを主成分とする合金材料を用いることができる。例えば
、スパッタ法などにより100nmのチタン膜を形成する。
ース電極層141および第1のドレイン電極層151を形成する(図22(B)参照)。
ここで、第1のソース電極層141および第1のドレイン電極層151の端部は図示する
ように階段状に形成することが好ましい。当該端部の加工は、アッシングによってレジス
トマスクを後退させる工程とエッチングの工程を交互に複数回行うことで形成することが
できる。
130の一部がエッチングされた形状となる。ただし、第1の導電膜と酸化物半導体層1
30のエッチングの選択比が大きい場合は、酸化物半導体層130がほとんどエッチング
されない形状となる。
51上に、第2のソース電極層142および第2のドレイン電極層152となる第2の導
電膜800(図22Cには示さず)を形成する。第2の導電膜800としては、窒化タン
タル、窒化チタン、ルテニウム、またはこれらを主成分とする合金材料を用いることがで
きる。例えば、スパッタ法などにより20nmの窒化タンタル膜を形成する。
2のソース電極層142および第2のドレイン電極層152を形成する(図22(C)参
照)。このとき、酸化物半導体層130の一部がエッチングされてもよい。
極短いトランジスタを形成する場合は、図24(A)に示す上面図のように、まず、第1
のソース電極層141および第1のドレイン電極層151を覆うような形状に第2の導電
膜800をエッチングする。
ーム露光などの細線加工に適した方法を用いてレジストマスク加工を行い、エッチング工
程によって領域900をエッチングし、第2のソース電極層142および第2のドレイン
電極層152を形成する。なお、当該レジストマスクとしては、ポジ型レジストを用いれ
ば、露光領域を最小限にすることができ、スループットを向上させることができる。この
ような方法を用いれば、チャネル長を30nm以下とするトランジスタを形成することが
できる。
の条件で行うことができる。第2の加熱処理により、酸化物半導体層130から、さらに
水素や水などの不純物を除去することができる。
52上にゲート絶縁膜160を形成する(図23(A)参照)。ゲート絶縁膜160には
、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シ
リコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジル
コニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルなどを用い
ることができる。なお、ゲート絶縁膜160は、上記材料の積層であってもよい。ゲート
絶縁膜160は、スパッタ法、CVD法、MBE法、ALD法またはPLD法などを用い
て形成することができる。
Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Ta、W、またはこれら
を主成分とする合金材料を用いることができる。第3の導電膜は、スパッタ法などにより
形成することができる。そして、チャネル形成領域と重畳するようにエッチングし、ゲー
ト電極層170を形成する(図23(B)参照)。
23(C)参照)。酸化物絶縁層180は、下地絶縁膜120と同様の材料、方法を用い
て形成することができる。酸化物絶縁層180としては、酸化アルミニウム、酸化マグネ
シウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリ
ウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネ
オジム、酸化ハフニウムおよび酸化タンタル、もしくは窒素を含む酸化物絶縁層を用いる
とよい。酸化物絶縁層180は、スパッタ法、CVD法、MBE法、ALD法またはPL
D法を用いて形成することができ、酸化物半導体層130に対し酸素を供給できるよう過
剰に酸素を含む膜とすることが好ましい。
イオンインプランテーション法などを用いて酸素を添加してもよい。酸素を添加すること
によって、酸化物絶縁層180から酸化物半導体層130への酸素の供給をさらに容易に
することができる。
の条件で行うことができる。第3の加熱処理により、下地絶縁膜120、ゲート絶縁膜1
60、酸化物絶縁層180から過剰酸素が放出されやすくなり、酸化物半導体層130の
酸素欠損を低減することができる。
。
本実施の形態では、本発明の一態様であるトランジスタを使用し、電力が供給されない状
況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置(記憶装
置)の一例を、図面を用いて説明する。
。
トランジスタ3200を有し、上部に第2の半導体材料を用いたトランジスタ3300、
および容量素子3400を有している。なお、トランジスタ3300としては、実施の形
態1、3、4で説明したトランジスタを用いることができ、本実施の形態では、実施の形
態1の図7に示すトランジスタ200を適用する例を示している。なお、図25(A)に
は、図7(A)に示す一点鎖線B5−B6で示された位置の断面が含まれる。
レイン電極層、他方の電極をトランジスタ3300のゲート電極層、誘電体をトランジス
タ3300のゲート絶縁膜160と同じ材料を用いる構造とすることで、トランジスタ3
300と同時に形成することができる。
望ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料(シリコンなど)
とし、第2の半導体材料を実施の形態1で説明した酸化物半導体とすることができる。酸
化物半導体以外の材料を用いたトランジスタは、高速動作が容易である。一方で、酸化物
半導体を用いたトランジスタは、オフ電流が低い電気特性により長時間の電荷保持を可能
とする。
るが、pチャネル型トランジスタを用いることができるのはいうまでもない。また、情報
を保持するために酸化物半導体を用いた実施の形態1、3、4に示すようなトランジスタ
を用いる他は、半導体装置に用いられる材料や半導体装置の構造など、半導体装置の具体
的な構成をここで示すものに限定する必要はない。
ど)を含む基板3000に設けられたチャネル形成領域と、チャネル形成領域を挟むよう
に設けられた不純物領域と、不純物領域に接する金属間化合物領域と、チャネル形成領域
上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられたゲート電極層と、を有する
。なお、図において、明示的にはソース電極層やドレイン電極層を有しない場合があるが
、便宜上、このような状態を含めてトランジスタと呼ぶ場合がある。また、この場合、ト
ランジスタの接続関係を説明するために、ソース領域やドレイン領域を含めてソース電極
層やドレイン電極層と表現することがある。つまり、本明細書において、ソース電極層と
の記載には、ソース領域が含まれうる。
れており、トランジスタ3200を覆うように絶縁層3150が設けられている。なお、
素子分離絶縁層3100は、LOCOS(Local Oxidation of Si
licon)や、STI(Shallow Trench Isolation)などの
素子分離技術を用いて形成することができる。
る。このため、当該トランジスタを読み出し用のトランジスタとして用いることで、情報
の読み出しを高速に行うことができる。
ン電極層の一方は延在して、容量素子3400の一方の電極として作用する。また、当該
電極は、トランジスタ3200のゲート電極層と電気的に接続される。
ップゲート型トランジスタである。トランジスタ3300は、オフ電流が低いため、これ
を用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレ
ッシュ動作を必要としない、或いは、リフレッシュ動作の頻度が極めて少ない半導体記憶
装置とすることが可能となるため、消費電力を十分に低減することができる。
けられている。当該電極に適切な電位を供給することで、トランジスタ3300のしきい
値電圧を制御することができる。また、トランジスタ3300の長期信頼性を高めること
ができる。なお、電極3250を設けない構成とすることもできる。
子3400は重畳するように形成することができるため、その占有面積を低減することが
できる。したがって、半導体装置の集積度を高めることができる。
気的に接続され、第2の配線3002はトランジスタ3200のドレイン電極層と電気的
に接続されている。また、第3の配線3003はトランジスタ3300のソース電極層ま
たはドレイン電極層の一方と電気的に接続され、第4の配線3004はトランジスタ33
00のゲート電極層と電気的に接続されている。そして、トランジスタ3200のゲート
電極層、およびトランジスタ3300のソース電極層またはドレイン電極層の他方は、容
量素子3400の電極の一方と電気的に接続され、第5の配線3005は容量素子340
0の電極の他方と電気的に接続されている。
可能という特徴を活かすことで、次のように、情報の書き込み、保持、読み出しが可能で
ある。
ンジスタ3300がオン状態となる電位にして、トランジスタ3300をオン状態とする
。これにより、第3の配線3003の電位が、トランジスタ3200のゲート電極層、お
よび容量素子3400に与えられる。すなわち、トランジスタ3200のゲート電極層に
は、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える
電荷(以下Lowレベル電荷、Highレベル電荷という)のいずれかが与えられるもの
とする。その後、第4の配線3004の電位を、トランジスタ3300がオフ状態となる
電位にして、トランジスタ3300をオフ状態とすることにより、トランジスタ3200
のゲート電極層に与えられた電荷が保持される(保持)。
層の電荷は長時間にわたって保持される。
えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、トランジス
タ3200のゲート電極層に保持された電荷量に応じて、第2の配線3002は異なる電
位をとる。一般に、トランジスタ3200をnチャネル型とすると、トランジスタ320
0のゲート電極層にHighレベル電荷が与えられている場合の見かけのしきい値電圧V
th_Hは、トランジスタ3200のゲート電極層にLowレベル電荷が与えられている
場合の見かけのしきい値電圧Vth_Lより低くなるためである。ここで、見かけのしき
い値電圧とは、トランジスタ3200を「オン状態」とするために必要な第5の配線30
05の電位をいうものとする。したがって、第5の配線3005の電位をVth_HとV
th_Lの間の電位V0とすることにより、トランジスタ3200のゲート電極層に与え
られた電荷を判別できる。例えば、書き込みにおいて、Highレベル電荷が与えられて
いた場合には、第5の配線3005の電位がV0(>Vth_H)となれば、トランジス
タ3200は「オン状態」となる。Lowレベル電荷が与えられていた場合には、第5の
配線3005の電位がV0(<Vth_L)となっても、トランジスタ3200は「オフ
状態」のままである。このため、第2の配線3002の電位を判別することで、保持され
ている情報を読み出すことができる。
出せることが必要になる。このように情報を読み出さない場合には、ゲート電極層の状態
にかかわらずトランジスタ3200が「オフ状態」となるような電位、つまり、Vth_
Hより小さい電位を第5の配線3005に与えればよい。または、ゲート電極層の状態に
かかわらずトランジスタ3200が「オン状態」となるような電位、つまり、Vth_L
より大きい電位を第5の配線3005に与えればよい。
の極めて低いトランジスタを適用することで、極めて長期にわたり記憶内容を保持するこ
とが可能である。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ動作
の頻度を極めて低くすることが可能となるため、消費電力を十分に低減することができる
。また、電力の供給がない場合(ただし、電位は固定されていることが望ましい)であっ
ても、長期にわたって記憶内容を保持することが可能である。
子の劣化の問題もない。例えば、従来の不揮発性メモリのように、フローティングゲート
への電子の注入や、フローティングゲートからの電子の引き抜きを行う必要がないため、
ゲート絶縁膜の劣化といった問題が全く生じない。すなわち、開示する発明に係る半導体
装置では、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信
頼性が飛躍的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報の
書き込みが行われるため、高速な動作も容易に実現しうる。
装置を提供することができる。
。
本実施の形態では、本発明の一態様であるトランジスタを使用し、電力が供給されない状
況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置について
、実施の形態6に示した構成と異なる半導体装置の説明を行う。
500とトランジスタ4300のソース電極層とは電気的に接続され、第2の配線460
0とトランジスタ4300の第1のゲート電極層とは電気的に接続され、トランジスタ4
300のドレイン電極層と容量素子4400の一方の端子とは電気的に接続されている。
なお、当該半導体装置に含まれるトランジスタ4300としては、実施の形態1、3,4
で説明したトランジスタを用いることができる。なお、第1の配線4500はビット線、
第2の配線4600はワード線としての機能を有することができる。
量素子3400と同様の接続形態とすることができる。したがって、容量素子4400は
、実施の形態6で説明した容量素子3400と同様に、トランジスタ4300の作製工程
にて同時に作製することができる。
行う場合について説明する。
ンジスタ4300をオン状態とする。これにより、第1の配線4500の電位が、容量素
子4400の第1の端子に与えられる(書き込み)。その後、第2の配線4600の電位
を、トランジスタ4300がオフ状態となる電位として、トランジスタ4300をオフ状
態とすることにより、容量素子4400の第1の端子の電位が保持される(保持)。
ている。このため、トランジスタ4300をオフ状態とすることで、容量素子4400の
第1の端子の電位(あるいは、容量素子4400に蓄積された電荷)を極めて長時間にわ
たって保持することが可能である。
遊状態である第1の配線4500と容量素子4400とが導通し、第1の配線4500と
容量素子4400の間で電荷が再分配される。その結果、第1の配線4500の電位が変
化する。第1の配線4500の電位の変化量は、容量素子4400の第1の端子の電位(
あるいは容量素子4400に蓄積された電荷)によって、異なる値をとる。
の配線4500が有する容量成分をCB、電荷が再分配される前の第1の配線4500の
電位をVB0とすると、電荷が再分配された後の第1の配線4500の電位は、(CB×
VB0+C×V)/(CB+C)となる。したがって、メモリセル4250の状態として
、容量素子4400の第1の端子の電位がV1とV0(V1>V0)の2状態をとるとす
ると、電位V1を保持している場合の第1の配線4500の電位(=(CB×VB0+C
×V1)/(CB+C))は、電位V0を保持している場合の第1の配線4500の電位
(=CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
ができる。
のオフ電流が極めて低いという特徴から、容量素子4400に蓄積された電荷は長時間に
わたって保持することができる。つまり、リフレッシュ動作が不要となるか、または、リ
フレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減す
ることができる。また、電力の供給がない場合であっても、長期にわたって記憶内容を保
持することが可能である。
が形成された基板を積層することが好ましい。メモリセル4250と駆動回路を積層する
ことで、半導体装置の小型化を図ることができる。なお、積層するメモリセル4250お
よび駆動回路の数は限定しない。
ることが好ましい。例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリ
コン、またはガリウムヒ素等を用いることができ、単結晶半導体を用いることがより好ま
しい。このような半導体材料を用いたトランジスタは、酸化物半導体を用いたトランジス
タよりも高速動作が可能であり、メモリセル4250の駆動回路の構成に用いることが適
している。
装置を提供することができる。
。
本実施の形態では、少なくとも実施の形態1、3、4で説明したトランジスタを用いるこ
とができ、実施の形態6で説明した記憶装置を含むCPUについて説明する。
Uの一例の構成を示すブロック図である。
ic logic unit、演算回路)、ALUコントローラ1192、インストラク
ションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ
1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1
198、書き換え可能なROM1199、およびROMインターフェース1189を有し
ている。基板1190は、半導体基板、SOI基板、ガラス基板などを用いる。書き換え
可能なROM1199およびROMインターフェース1189は、別チップに設けてもよ
い。もちろん、図27に示すCPUは、その構成を簡略化して示した一例にすぎず、実際
のCPUはその用途によって多種多様な構成を有している。例えば、図27に示すCPU
または演算回路を含む構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並
列で動作するような構成としてもよい。また、CPUが内部演算回路やデータバスで扱え
るビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることが
できる。
デコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタ
ラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ
1195に入力される。
ラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制
御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御する
ための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラ
ム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク
状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアド
レスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行なう。
2、インストラクションデコーダ1193、インタラプトコントローラ1194、および
レジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタ
イミングコントローラ1195は、基準クロック信号CLK1を元に、内部クロック信号
CLK2を生成する内部クロック生成部を備えており、内部クロック信号CLK2を上記
各種回路に供給する。
1196のメモリセルとして、先の実施の形態に示したトランジスタを用いることができ
る。
指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ11
96が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量
素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が
選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる
。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換え
が行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる
。
記憶素子700は、電源遮断で記憶データが揮発する回路701と、電源遮断で記憶デー
タが揮発しない回路702と、スイッチ703と、スイッチ704と、論理素子706と
、容量素子707と、選択機能を有する回路720と、を有する。回路702は、容量素
子708と、トランジスタ709と、トランジスタ710と、を有する。なお、記憶素子
700は、必要に応じて、ダイオード、抵抗素子、インダクタなどのその他の素子をさら
に有していても良い。
素子700への電源電圧の供給が停止した際、回路702のトランジスタ709の第1ゲ
ートには接地電位(0V)、またはトランジスタ709がオフする電位が入力され続ける
構成とする。例えば、トランジスタ709の第1ゲートが抵抗等の負荷を介して接地され
る構成とする。
成され、スイッチ704は、一導電型とは逆の導電型(例えば、pチャネル型)のトラン
ジスタ714を用いて構成した例を示す。ここで、スイッチ703の第1の端子はトラン
ジスタ713のソースとドレインの一方に対応し、スイッチ703の第2の端子はトラン
ジスタ713のソースとドレインの他方に対応し、スイッチ703はトランジスタ713
のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または
非導通(つまり、トランジスタ713のオン状態またはオフ状態)が選択される。スイッ
チ704の第1の端子はトランジスタ714のソースとドレインの一方に対応し、スイッ
チ704の第2の端子はトランジスタ714のソースとドレインの他方に対応し、スイッ
チ704はトランジスタ714のゲートに入力される制御信号RDによって、第1の端子
と第2の端子の間の導通または非導通(つまり、トランジスタ714のオン状態またはオ
フ状態)が選択される。
一方、およびトランジスタ710のゲートと電気的に接続される。ここで、接続部分をノ
ードM2とする。トランジスタ710のソースとドレインの一方は、低電位電源を供給す
ることのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ703の
第1の端子(トランジスタ713のソースとドレインの一方)と電気的に接続される。ス
イッチ703の第2の端子(トランジスタ713のソースとドレインの他方)はスイッチ
704の第1の端子(トランジスタ714のソースとドレインの一方)と電気的に接続さ
れる。スイッチ704の第2の端子(トランジスタ714のソースとドレインの他方)は
電源電位VDDを供給することのできる配線と電気的に接続される。スイッチ703の第
2の端子(トランジスタ713のソースとドレインの他方)と、スイッチ704の第1の
端子(トランジスタ714のソースとドレインの一方)と、論理素子706の入力端子と
、容量素子707の一対の電極のうちの一方と、は電気的に接続される。ここで、接続部
分をノードM1とする。容量素子707の一対の電極のうちの他方は、一定の電位が入力
される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(V
DD等)が入力される構成とすることができる。容量素子707の一対の電極のうちの他
方は、低電位電源を供給することのできる配線(例えばGND線)と電気的に接続される
。容量素子708の一対の電極のうちの他方は、一定の電位が入力される構成とすること
ができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される
構成とすることができる。容量素子708の一対の電極のうちの他方は、低電位電源を供
給することのできる配線(例えばGND線)と電気的に接続される。
的に利用することによって省略することも可能である。
る。スイッチ703およびスイッチ704は、制御信号WEとは異なる制御信号RDによ
って第1の端子と第2の端子の間の導通状態または非導通状態を選択され、一方のスイッ
チの第1の端子と第2の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の
端子の間は非導通状態となる。
応する信号が入力される。図28では、回路701から出力された信号が、トランジスタ
709のソースとドレインの他方に入力される例を示した。スイッチ703の第2の端子
(トランジスタ713のソースとドレインの他方)から出力される信号は、論理素子70
6によってその論理値が反転された反転信号となり、回路720を介して回路701に入
力される。
ンの他方)から出力される信号は、論理素子706および回路720を介して回路701
に入力する例を示したがこれに限定されない。スイッチ703の第2の端子(トランジス
タ713のソースとドレインの他方)から出力される信号が、論理値を反転させられるこ
となく、回路701に入力されてもよい。例えば、回路701内に、入力端子から入力さ
れた信号の論理値が反転した信号が保持されるノードが存在する場合に、スイッチ703
の第2の端子(トランジスタ713のソースとドレインの他方)から出力される信号を当
該ノードに入力することができる。
用いることができる。また、実施の形態6で説明したように第2ゲート(第2のゲート電
極層)を有する構成とすることが好ましい。第1ゲートには制御信号WEを入力し、第2
ゲートには制御信号WE2を入力することができる。制御信号WE2は、一定の電位の信
号とすればよい。当該一定の電位には、例えば、接地電位GNDやトランジスタ709の
ソース電位よりも小さい電位などが選ばれる。制御信号WE2は、トランジスタ709の
しきい値電圧を制御するための電位信号であり、トランジスタ709のIcutをより低
減することができる。なお、トランジスタ709としては、第2ゲートを有さないトラン
ジスタを用いることもできる。
709以外のトランジスタは、酸化物半導体以外の半導体でなる層または基板1190に
チャネルが形成されるトランジスタとすることができる。例えば、シリコン層またはシリ
コン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子70
0に用いられるトランジスタ全てを、チャネルが酸化物半導体層で形成されるトランジス
タとすることもできる。または、記憶素子700は、トランジスタ709以外にも、チャ
ネルが酸化物半導体層で形成されるトランジスタを含んでいてもよく、残りのトランジス
タは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトラ
ンジスタとすることもできる。
た、論理素子706としては、例えばインバータやクロックドインバータ等を用いること
ができる。
て説明する。
するために電源電圧の供給を停止し、再び電源電圧を供給する場合の駆動方法を図29の
タイミングチャートを参照して説明する。図29のタイミングチャートにおいて、701
は回路701に保持されているデータを示し、WEは制御信号WEの電位を示し、WE2
は制御信号WE2の電位を示し、RDは制御信号RDの電位を示し、SELは回路720
における一経路の制御信号SELの電位を示し、VDDは電源電位VDDを示す。また、
M1はノードM1の電位を示し、M2はノードM2の電位を示す。なお、上記回路720
における一経路とは、回路702の出力側と回路701の入力側を接続する経路である。
ネル型トランジスタとし、スイッチ704をpチャネル型トランジスタとして、制御信号
RDがハイレベル電位の場合に、スイッチ703の第1の端子と第2の端子の間が導通状
態となり、且つスイッチ704の第1の端子と第2の端子の間が非導通状態となり、制御
信号RDがローレベル電位の場合に、スイッチ703の第1の端子と第2の端子の間が非
導通状態となり、且つスイッチ704の第1の端子と第2の端子の間が導通状態となる例
を示す。また、制御信号SELがハイレベル電位の場合に回路720の一経路における第
1の端子と第2の端子の間が導通状態となり、制御信号SELがローレベル電位の場合に
第1の端子と第2の端子の間が非導通状態となる例を示す。また、トランジスタ709を
nチャネル型トランジスタとして、制御信号WEがハイレベル電位の場合に、トランジス
タ709がオン状態となり、制御信号WEがローレベル電位の場合に、トランジスタ70
9がオフ状態となる例を示す。
における、スイッチ703、スイッチ704、回路720、トランジスタ709の状態が
同じとなるように、各制御信号の電位を定めることができる。
記憶素子700に供給されている。記憶素子700へ電源電圧が供給されている間は、回
路701がデータ(図29中、dataXと表記)を保持する。この際、制御信号SEL
をローレベル電位として、回路720の一経路における第1の端子と第2の端子の間は非
導通状態とされる。なお、スイッチ703およびスイッチ704の第1の端子と第2の端
子の間の状態(導通状態、非導通状態)はどちらの状態であってもよい。即ち、制御信号
RDはハイレベル電位であってもローレベル電位であってもよい(図29中、Aと表記)
。また、トランジスタ709の状態(オン状態、オフ状態)はどちらの状態であってもよ
い。即ち、制御信号WEはハイレベル電位であってもローレベル電位であってもよい(図
29中、Aと表記)。T1において、ノードM1はどのような電位であってもよい(図2
9中、Aと表記)。T1において、ノードM2はどのような電位であってもよい(図29
中、Aと表記)。T1の動作を通常動作と呼ぶ。また、制御信号WE2は期間を問わず定
電位とし、例えば接地電位などのローレベル電位とする。
の供給の停止をする前に、制御信号WEをハイレベル電位として、トランジスタ709を
オン状態とする。こうして、回路701に保持されたデータ(dataX)に対応する信
号が、トランジスタ709を介してトランジスタ710のゲートに入力される。トランジ
スタ710のゲートに入力された信号は、容量素子708によって保持される。こうして
、ノードM2の電位は、回路701に保持されたデータに対応する信号電位(図29中、
VXと表記)となる。その後、制御信号WEをローレベル電位としてトランジスタ709
をオフ状態とする。こうして、回路701に保持されたデータに対応する信号が回路70
2に保持される。T2の間も、制御信号SELによって、回路720の一経路における第
1の端子と第2の端子の間は非導通状態とされる。スイッチ703およびスイッチ704
の第1の端子と第2の端子の間の状態(導通状態、非導通状態)はどちらの状態であって
もよい。即ち、制御信号RDはハイレベル電位であってもローレベル電位であってもよい
(図29中、Aと表記)。T2において、ノードM1はどのような電位であってもよい(
図29中、Aと表記)。T2の動作を電源電圧供給停止前の動作と呼ぶ。
行った後、T3のはじめに、記憶素子700への電源電圧の供給を停止する。電源電圧の
供給が停止すると、回路701に保持されていたデータ(dataX)は消失する。しか
し、記憶素子700への電源電圧の供給が停止した後においても、容量素子708によっ
て回路701に保持されていたデータ(dataX)に対応する信号電位(VX)がノー
ドM2に保持される。ここで、トランジスタ709は、チャネルが酸化物半導体層で形成
され、リーク電流(オフ電流)が極めて小さい、エンハンスメント型(ノーマリオフ型)
のnチャネル型のトランジスタである。したがって、記憶素子700への電源電圧の供給
が停止した際、トランジスタ709のゲートには接地電位(0V)またはトランジスタ7
09がオフとなる電位が入力され続ける構成であるため、記憶素子700への電源電圧の
供給が停止した後も、トランジスタ709のオフ状態を維持することができ、容量素子7
08によって保持された電位(ノードM2の電位VX)を長期間保つことができる。こう
して、記憶素子700は電源電圧の供給が停止した後も、データ(dataX)を保持す
る。T3は、記憶素子700への電源電圧の供給が停止している期間に対応する。
の供給を再開した後、制御信号RDをローレベル電位として、スイッチ704の第1の端
子と第2の端子の間を導通状態とし、スイッチ703の第1の端子と第2の端子の間を非
導通状態とする。この際、制御信号WEはローレベル電位であり、トランジスタ709は
オフ状態のままである。また、制御信号SELはローレベル電位であり、回路720の一
経路における第1の端子と第2の端子の間は非導通状態である。こうして、スイッチ70
3の第2の端子およびスイッチ704の第1の端子に、電源電圧VDDが入力される。し
たがって、スイッチ703の第2の端子およびスイッチ704の第1の端子の電位(ノー
ドM1の電位)を、一定の電位(ここではVDD)にすることができる。T4の動作をプ
リチャージ動作と呼ぶ。なお、ノードM1の電位は、容量素子707によって保持される
。
ことによって、スイッチ703の第1の端子と第2の端子の間を導通状態とし、スイッチ
704の第1の端子と第2の端子の間を非導通状態とする。この際、制御信号WEはロー
レベル電位のままであり、トランジスタ709はオフ状態のままである。また、制御信号
SELはローレベル電位であり、回路720の一経路における第1の端子と第2の端子の
間は非導通状態である。容量素子708に保持された信号(ノードM2の電位VX)に応
じて、トランジスタ710のオン状態またはオフ状態が選択され、スイッチ703の第2
の端子およびスイッチ704の第1の端子の電位、即ちノードM1の電位が定まる。トラ
ンジスタ710がオン状態の場合、ノードM1には低電源電位(例えば、GND)が入力
される。一方、トランジスタ710がオフ状態の場合には、ノードM1の電位は、上記プ
リチャージ動作によって定められた一定の電位(例えば、VDD)のまま維持される。こ
うして、トランジスタ710のオン状態またはオフ状態に対応して、ノードM1の電位は
VDDまたはGNDとなる。例えば、回路701に保持されていた信号が「1」であり、
ハイレベルの電位(VDD)に対応する場合、ノードM1の電位は、信号「0」に対応す
るローレベルの電位(GND)となる。一方、回路701に保持されていた信号が「0」
であり、ローレベルの電位(GND)に対応する場合、ノードM1の電位は、信号「1」
に対応するハイレベルの電位(VDD)となる。つまり、回路701に記憶されていた信
号の反転信号がノードM1に保持されることとなる。図29において、この電位をVXb
と表記する。つまり、T2において回路701から入力されたデータ(dataX)に対
応する信号が、ノードM1の電位(VXb)に変換される。
経路における第1の端子と第2の端子の間を導通状態とする。この際、制御信号RDはハ
イレベル電位のままである。また、制御信号WEはローレベル電位のままであり、トラン
ジスタ709はオフ状態のままである。すると、スイッチ703の第2の端子およびスイ
ッチ704の第1の端子の電位(ノードM1の電位(VXb))に対応する信号を、論理
素子706を介して反転信号とし、当該反転信号を回路701に入力することができる。
こうして、回路701は、記憶素子700への電源電圧の供給停止前に保持していたデー
タ(dataX)を再び保持することができる。
では、VDD)にされた後、T5において、データ(dataX)に対応する電位VXb
となる。プリチャージ動作を行っているため、ノードM1の電位が所定の電位VXbに定
まるまでの時間を短くすることができる。こうして、電源電圧供給再開後に、回路701
が元のデータを保持しなおすまでの時間を短くすることができる。
れない間は、回路701に記憶されていたデータを、回路702に設けられた容量素子7
08によって保持することができる。
例えば、酸化物半導体層にチャネルが形成されるトランジスタのオフ電流は、結晶性を有
するシリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく低い。その
ため、当該トランジスタをトランジスタ709として用いることによって、記憶素子70
0に電源電圧が供給されない間も容量素子708に保持された信号は長期間にわたり保た
れる。こうして、記憶素子700は電源電圧の供給が停止した間も記憶内容(データ)を
保持することが可能である。
ジ動作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路701
が元のデータを保持しなおすまでの時間を短くすることができる。
0のゲートに入力される。そのため、記憶素子700への電源電圧の供給が再開された後
、容量素子708によって保持された信号を、トランジスタ710の状態(オン状態、ま
たはオフ状態)に変換して、回路702から読み出すことができる。それ故、容量素子7
08に保持された信号に対応する電位が多少変動していても、元の信号を正確に読み出す
ことが可能である。
憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐこと
ができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰す
ることができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、または
複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力を抑
えることができる。
rocessor)、カスタムLSI、FPGA(Field Programmabl
e Gate Array)等のLSIにも応用可能である。
本実施の形態では、実施の形態1、3、4で説明したトランジスタ、実施の形態6、7で
説明した記憶装置、または実施の形態8で説明したCPUを用いることのできる電子機器
の例について説明する。
または実施の形態8で説明したCPUは、さまざまな電子機器(遊技機も含む)に適用す
ることができる。電子機器としては、テレビ、モニタ等の表示装置、照明装置、パーソナ
ルコンピュータ、ワードプロセッサ、画像再生装置、ポータブルオーディオプレーヤ、ラ
ジオ、テープレコーダ、ステレオ、電話、コードレス電話、携帯電話、自動車電話、トラ
ンシーバ、無線機、ゲーム機、電卓、携帯情報端末、電子手帳、電子書籍、電子翻訳機、
音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、ICチップ、電子
レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、エアコンディショナ
ーなどの空調設備、食器洗い機、食器乾燥機、衣類乾燥機、布団乾燥機、電気冷蔵庫、電
気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、放射線測定器、透析装置、X線診断装
置等の医療機器、などが挙げられる。また、煙感知器、熱感知器、ガス警報装置、防犯警
報装置などの警報装置も挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベ
ータ、エスカレータ、産業用ロボット、電力貯蔵システム等の産業機器も挙げられる。ま
た、燃料を用いたエンジンや、非水系二次電池からの電力を用いて電動機により推進する
移動体なども、電子機器の範疇に含まれるものとする。上記移動体として、例えば、電気
自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグイン
ハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動ア
シスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型ま
たは大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機や惑星
探査機、宇宙船が挙げられる。これらの電子機器の一部の具体例を図30に示す。
8102と、マイクロコンピュータ8101を用いた電子機器の一例である。マイクロコ
ンピュータ8101は、先の実施の形態に示したトランジスタ、記憶装置、またはCPU
を含む。
ョナーは、先の実施の形態に示したトランジスタ、記憶装置、またはCPUを含む電子機
器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、CPU
8203等を有する。図30(A)においては、CPU8203が、室内機8200に設
けられている場合を例示しているが、CPU8203は室外機8204に設けられていて
もよい。または、室内機8200と室外機8204の両方に、CPU8203が設けられ
ていてもよい。先の実施の形態に示したトランジスタをエアコンディショナーのCPUに
用いることによって省電力化を図ることができる。
スタ、記憶装置、またはCPUを含む電子機器の一例である。具体的に、電気冷凍冷蔵庫
8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、CPU8304
等を有する。図30(A)では、CPU8304が、筐体8301の内部に設けられてい
る。先の実施の形態に示したトランジスタを電気冷凍冷蔵庫8300のCPU8304に
用いることによって省電力化が図れる。
車9700には、二次電池9701が搭載されている。二次電池9701の電力は、回路
9702により出力が調整されて、駆動装置9703に供給される。回路9702は、図
示しないROM、RAM、CPU等を有する処理装置9704によって制御される。先の
実施の形態に示したトランジスタを電気自動車9700のCPUに用いることによって省
電力化が図れる。
を組み合わせて構成される。処理装置9704は、電気自動車9700の運転者の操作情
報(加速、減速、停止など)や走行時の情報(上り坂や下り坂等の情報、駆動輪にかかる
負荷情報など)の入力情報に基づき、回路9702に制御信号を出力する。回路9702
は、処理装置9704の制御信号により、二次電池9701から供給される電気エネルギ
ーを調整して駆動装置9703の出力を制御する。交流電動機を搭載している場合は、図
示していないが、直流を交流に変換するインバータも内蔵される。
。
なお、上記実施の形態で開示された、導電膜はスパッタ法により形成することができるが
、他の方法、例えば、熱CVD法により形成してもよい。熱CVD法の例としてMOCV
D(Metal Organic Chemical Vapor Depositio
n)法やALD(Atomic Layer Deposition)法を使っても良い
。
されることが無いという利点を有する。
ンバー内に送り、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行
ってもよい。
導電膜や半導体膜など様々な膜を形成することができ、例えば、InGaZnOX(X>
0)膜を成膜する場合には、トリメチルインジウム、トリメチルガリウム、及びジエチル
亜鉛を用いる。なお、トリメチルインジウムの化学式は、(CH3)3Inである。また
、トリメチルガリウムの化学式は、(CH3)3Gaである。また、ジメチル亜鉛の化学
式は、(CH3)2Znである。また、これらの組み合わせに限定されず、トリメチルガ
リウムに代えてトリエチルガリウム(化学式(C2H5)3Ga)を用いることもでき、
ジメチル亜鉛に代えてジエチル亜鉛(化学式(C2H5)2Zn)を用いることもできる
。
体(ハフニウムアルコキシド溶液、代表的にはテトラキスジメチルアミドハフニウム(T
DMAH))を気化させた原料ガスと、酸化剤としてオゾン(O3)の2種類のガスを用
いる。なお、テトラキスジメチルアミドハフニウムの化学式はHf[N(CH3)2]4
である。また、他の材料液としては、テトラキス(エチルメチルアミド)ハフニウムなど
がある。
む液体(トリメチルアルミニウム(TMA)など)を気化させた原料ガスと、酸化剤とし
てH2Oの2種類のガスを用いる。なお、トリメチルアルミニウムの化学式はAl(CH
3)3である。また、他の材料液としては、トリス(ジメチルアミド)アルミニウム、ト
リイソブチルアルミニウム、アルミニウムトリス(2,2,6,6−テトラメチル−3,
5−ヘプタンジオナート)などがある。
せ、吸着物に含まれる塩素を除去し、酸化性ガス(O2、一酸化二窒素)のラジカルを供
給して吸着物と反応させる。
スとB2H6ガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WF6
ガスとH2ガスを同時に導入してタングステン膜を形成する。なお、B2H6ガスに代え
てSiH4ガスを用いてもよい。
102 トランジスタ
110 基板
120 下地絶縁膜
130 酸化物半導体層
131 第1の酸化物半導体層
132 第2の酸化物半導体層
133 第3の酸化物半導体層
134 領域
135 境界
140 ソース電極層
141 第1のソース電極層
142 第2のソース電極層
150 ドレイン電極層
151 第1のドレイン電極層
152 第2のドレイン電極層
160 ゲート絶縁膜
170 ゲート電極層
180 酸化物絶縁層
200 トランジスタ
202 トランジスタ
300 トランジスタ
302 トランジスタ
400 トランジスタ
402 トランジスタ
520 下地絶縁膜
530 酸化物半導体層
531 第1の酸化物半導体層
532 第2の酸化物半導体層
533 第3の酸化物半導体層
540 ソース電極層
550 ドレイン電極層
560 ゲート絶縁膜
570 ゲート電極層
580 酸化物半導体層
630 シリコン活性層
631 p−型領域
632 n+型領域
700 記憶素子
701 回路
702 回路
703 スイッチ
704 スイッチ
706 論理素子
707 容量素子
708 容量素子
709 トランジスタ
710 トランジスタ
713 トランジスタ
714 トランジスタ
720 回路
800 導電膜
900 領域
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
3000 基板
3001 第1の配線
3002 第2の配線
3003 第3の配線
3004 第4の配線
3005 第5の配線
3100 素子分離絶縁層
3150 絶縁層
3200 トランジスタ
3250 電極
3300 トランジスタ
3400 容量素子
4250 メモリセル
4300 トランジスタ
4400 容量素子
4500 第1の配線
4600 第2の配線
8100 警報装置
8101 マイクロコンピュータ
8102 検出部
8200 室内機
8201 筐体
8202 送風口
8203 CPU
8204 室外機
8300 電気冷凍冷蔵庫
8301 筐体
8302 冷蔵室用扉
8303 冷凍室用扉
8304 CPU
9700 電気自動車
9701 二次電池
9702 回路
9703 駆動装置
9704 処理装置
Claims (2)
- 第1のチャネル形成領域と、前記第1のチャネル形成領域の上方の第1のゲート電極と、を有する第1のトランジスタと、
前記第1のゲート電極と同じ材料を有する第1の電極と、
前記第1のゲート電極の上面に接する領域と、前記第1の電極の上面に接する領域と、を有する絶縁膜と、
前記第1の電極と、前記絶縁膜上の酸化物半導体層と、前記酸化物半導体層の上方の第2の電極と、を有する第2のトランジスタと、を有し、
前記第1のチャネル形成領域は、シリコンを有し、
前記酸化物半導体層の上面に接する領域を有する導電層は、前記第1のゲート電極と電気的に接続されている、半導体装置。 - 第1のチャネル形成領域と、前記第1のチャネル形成領域の上方の第1のゲート電極と、を有する第1のトランジスタと、
前記第1のゲート電極と同じ材料を有する第1の電極と、
前記第1のゲート電極の上面に接する領域と、前記第1の電極の上面に接する領域と、を有する絶縁膜と、
前記第1の電極と、前記絶縁膜上の酸化物半導体層と、前記酸化物半導体層の上方の第2の電極と、を有する第2のトランジスタと、を有し、
前記第1のチャネル形成領域は、シリコンを有し、
前記酸化物半導体層の上面に接する領域を有する導電層は、前記第1のゲート電極と電気的に接続され、
前記第1のゲート電極と電気的に接続される容量素子を有する、半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021175171A JP7273925B2 (ja) | 2012-11-30 | 2021-10-27 | 半導体装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012261795 | 2012-11-30 | ||
JP2012261795 | 2012-11-30 | ||
JP2018092839A JP6656301B2 (ja) | 2012-11-30 | 2018-05-14 | 半導体装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018092839A Division JP6656301B2 (ja) | 2012-11-30 | 2018-05-14 | 半導体装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021175171A Division JP7273925B2 (ja) | 2012-11-30 | 2021-10-27 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020074470A true JP2020074470A (ja) | 2020-05-14 |
JP6968920B2 JP6968920B2 (ja) | 2021-11-17 |
Family
ID=50824581
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013246931A Expired - Fee Related JP6340190B2 (ja) | 2012-11-30 | 2013-11-29 | 半導体装置 |
JP2018092839A Active JP6656301B2 (ja) | 2012-11-30 | 2018-05-14 | 半導体装置 |
JP2020017162A Active JP6968920B2 (ja) | 2012-11-30 | 2020-02-04 | 半導体装置 |
JP2021175171A Active JP7273925B2 (ja) | 2012-11-30 | 2021-10-27 | 半導体装置 |
JP2023074943A Pending JP2023100796A (ja) | 2012-11-30 | 2023-04-28 | 半導体装置 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013246931A Expired - Fee Related JP6340190B2 (ja) | 2012-11-30 | 2013-11-29 | 半導体装置 |
JP2018092839A Active JP6656301B2 (ja) | 2012-11-30 | 2018-05-14 | 半導体装置 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021175171A Active JP7273925B2 (ja) | 2012-11-30 | 2021-10-27 | 半導体装置 |
JP2023074943A Pending JP2023100796A (ja) | 2012-11-30 | 2023-04-28 | 半導体装置 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9252283B2 (ja) |
JP (5) | JP6340190B2 (ja) |
KR (3) | KR102526635B1 (ja) |
CN (3) | CN104823283B (ja) |
TW (2) | TWI632641B (ja) |
WO (1) | WO2014084152A1 (ja) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013001579A1 (ja) * | 2011-06-30 | 2013-01-03 | パナソニック株式会社 | 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法 |
US9153699B2 (en) | 2012-06-15 | 2015-10-06 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor with multiple oxide semiconductor layers |
KR102207028B1 (ko) | 2012-12-03 | 2021-01-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
WO2014103901A1 (en) | 2012-12-25 | 2014-07-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
TWI621270B (zh) * | 2013-02-07 | 2018-04-11 | 群創光電股份有限公司 | 薄膜電晶體元件與薄膜電晶體顯示裝置 |
US9318484B2 (en) | 2013-02-20 | 2016-04-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
TWI644433B (zh) | 2013-03-13 | 2018-12-11 | 半導體能源研究所股份有限公司 | 半導體裝置 |
JP6376788B2 (ja) | 2013-03-26 | 2018-08-22 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法 |
US9590109B2 (en) | 2013-08-30 | 2017-03-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
KR102446991B1 (ko) | 2013-09-13 | 2022-09-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 장치 |
JP6438727B2 (ja) | 2013-10-11 | 2018-12-19 | 株式会社半導体エネルギー研究所 | 半導体装置および半導体装置の作製方法 |
DE102014220672A1 (de) | 2013-10-22 | 2015-05-07 | Semiconductor Energy Laboratory Co., Ltd. | Halbleitervorrichtung |
TWI642186B (zh) | 2013-12-18 | 2018-11-21 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
TWI721409B (zh) | 2013-12-19 | 2021-03-11 | 日商半導體能源研究所股份有限公司 | 半導體裝置 |
TWI663726B (zh) | 2014-05-30 | 2019-06-21 | Semiconductor Energy Laboratory Co., Ltd. | 半導體裝置、模組及電子裝置 |
KR102437450B1 (ko) * | 2014-06-13 | 2022-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 및 반도체 장치를 포함하는 전자 기기 |
US9455337B2 (en) * | 2014-06-18 | 2016-09-27 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US9461179B2 (en) * | 2014-07-11 | 2016-10-04 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor device (TFT) comprising stacked oxide semiconductor layers and having a surrounded channel structure |
US9991393B2 (en) * | 2014-10-16 | 2018-06-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, module, and electronic device |
TW201624708A (zh) | 2014-11-21 | 2016-07-01 | 半導體能源研究所股份有限公司 | 半導體裝置及記憶體裝置 |
US10186618B2 (en) | 2015-03-18 | 2019-01-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
KR102582523B1 (ko) * | 2015-03-19 | 2023-09-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 전자 기기 |
KR20160114511A (ko) | 2015-03-24 | 2016-10-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치의 제작 방법 |
US9806200B2 (en) | 2015-03-27 | 2017-10-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US10714633B2 (en) | 2015-12-15 | 2020-07-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device |
KR20180123028A (ko) | 2016-03-11 | 2018-11-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장비, 상기 반도체 장치의 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치 |
KR102589754B1 (ko) * | 2016-08-05 | 2023-10-18 | 삼성디스플레이 주식회사 | 트랜지스터 및 이를 포함하는 표시 장치 |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
KR102619290B1 (ko) * | 2018-12-04 | 2023-12-28 | 엘지디스플레이 주식회사 | 박막 트랜지스터 및 이를 포함하는 표시장치 |
JP7387475B2 (ja) * | 2020-02-07 | 2023-11-28 | キオクシア株式会社 | 半導体装置及び半導体記憶装置 |
CN114846623A (zh) * | 2020-12-01 | 2022-08-02 | 京东方科技集团股份有限公司 | 氧化物薄膜晶体管及其制备方法、显示装置 |
JPWO2023145203A1 (ja) | 2022-01-25 | 2023-08-03 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011135065A (ja) * | 2009-11-27 | 2011-07-07 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2011192979A (ja) * | 2010-02-19 | 2011-09-29 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2011216177A (ja) * | 2010-03-17 | 2011-10-27 | Semiconductor Energy Lab Co Ltd | 記憶装置、半導体装置 |
JP2012033896A (ja) * | 2010-06-29 | 2012-02-16 | Semiconductor Energy Lab Co Ltd | 配線基板、半導体装置、及びそれらの作製方法 |
JP2012039059A (ja) * | 2009-12-28 | 2012-02-23 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2012114422A (ja) * | 2010-11-05 | 2012-06-14 | Semiconductor Energy Lab Co Ltd | 半導体装置及び半導体記憶装置 |
JP2012199528A (ja) * | 2011-03-04 | 2012-10-18 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
Family Cites Families (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60198861A (ja) | 1984-03-23 | 1985-10-08 | Fujitsu Ltd | 薄膜トランジスタ |
JPH0244256B2 (ja) | 1987-01-28 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244258B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPS63210023A (ja) | 1987-02-24 | 1988-08-31 | Natl Inst For Res In Inorg Mater | InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法 |
JPH0244260B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244262B2 (ja) | 1987-02-27 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244263B2 (ja) | 1987-04-22 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH05251705A (ja) | 1992-03-04 | 1993-09-28 | Fuji Xerox Co Ltd | 薄膜トランジスタ |
JP3479375B2 (ja) | 1995-03-27 | 2003-12-15 | 科学技術振興事業団 | 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法 |
JPH11505377A (ja) | 1995-08-03 | 1999-05-18 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | 半導体装置 |
JP3625598B2 (ja) | 1995-12-30 | 2005-03-02 | 三星電子株式会社 | 液晶表示装置の製造方法 |
JP4187819B2 (ja) * | 1997-03-14 | 2008-11-26 | シャープ株式会社 | 薄膜装置の製造方法 |
JP4170454B2 (ja) | 1998-07-24 | 2008-10-22 | Hoya株式会社 | 透明導電性酸化物薄膜を有する物品及びその製造方法 |
JP2000150861A (ja) | 1998-11-16 | 2000-05-30 | Tdk Corp | 酸化物薄膜 |
JP3276930B2 (ja) | 1998-11-17 | 2002-04-22 | 科学技術振興事業団 | トランジスタ及び半導体装置 |
TW460731B (en) | 1999-09-03 | 2001-10-21 | Ind Tech Res Inst | Electrode structure and production method of wide viewing angle LCD |
JP4089858B2 (ja) | 2000-09-01 | 2008-05-28 | 国立大学法人東北大学 | 半導体デバイス |
KR20020038482A (ko) | 2000-11-15 | 2002-05-23 | 모리시타 요이찌 | 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널 |
JP3997731B2 (ja) | 2001-03-19 | 2007-10-24 | 富士ゼロックス株式会社 | 基材上に結晶性半導体薄膜を形成する方法 |
JP2002289859A (ja) | 2001-03-23 | 2002-10-04 | Minolta Co Ltd | 薄膜トランジスタ |
JP4090716B2 (ja) | 2001-09-10 | 2008-05-28 | 雅司 川崎 | 薄膜トランジスタおよびマトリクス表示装置 |
JP3925839B2 (ja) | 2001-09-10 | 2007-06-06 | シャープ株式会社 | 半導体記憶装置およびその試験方法 |
US7061014B2 (en) | 2001-11-05 | 2006-06-13 | Japan Science And Technology Agency | Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film |
JP4164562B2 (ja) | 2002-09-11 | 2008-10-15 | 独立行政法人科学技術振興機構 | ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ |
JP4083486B2 (ja) | 2002-02-21 | 2008-04-30 | 独立行政法人科学技術振興機構 | LnCuO(S,Se,Te)単結晶薄膜の製造方法 |
US7049190B2 (en) | 2002-03-15 | 2006-05-23 | Sanyo Electric Co., Ltd. | Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device |
JP3933591B2 (ja) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
US7339187B2 (en) | 2002-05-21 | 2008-03-04 | State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University | Transistor structures |
JP2004022625A (ja) | 2002-06-13 | 2004-01-22 | Murata Mfg Co Ltd | 半導体デバイス及び該半導体デバイスの製造方法 |
US7105868B2 (en) | 2002-06-24 | 2006-09-12 | Cermet, Inc. | High-electron mobility transistor with zinc oxide |
US7067843B2 (en) | 2002-10-11 | 2006-06-27 | E. I. Du Pont De Nemours And Company | Transparent oxide semiconductor thin film transistors |
JP4166105B2 (ja) | 2003-03-06 | 2008-10-15 | シャープ株式会社 | 半導体装置およびその製造方法 |
JP2004273732A (ja) | 2003-03-07 | 2004-09-30 | Sharp Corp | アクティブマトリクス基板およびその製造方法 |
JP2004304167A (ja) * | 2003-03-20 | 2004-10-28 | Advanced Lcd Technologies Development Center Co Ltd | 配線、表示装置及び、これらの形成方法 |
JP4108633B2 (ja) | 2003-06-20 | 2008-06-25 | シャープ株式会社 | 薄膜トランジスタおよびその製造方法ならびに電子デバイス |
US7262463B2 (en) | 2003-07-25 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | Transistor including a deposited channel region having a doped portion |
US7297977B2 (en) | 2004-03-12 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
US7145174B2 (en) | 2004-03-12 | 2006-12-05 | Hewlett-Packard Development Company, Lp. | Semiconductor device |
US7282782B2 (en) | 2004-03-12 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Combined binary oxide semiconductor device |
US20070194379A1 (en) | 2004-03-12 | 2007-08-23 | Japan Science And Technology Agency | Amorphous Oxide And Thin Film Transistor |
US7211825B2 (en) | 2004-06-14 | 2007-05-01 | Yi-Chi Shih | Indium oxide-based thin film transistors and circuits |
JP2006100760A (ja) | 2004-09-02 | 2006-04-13 | Casio Comput Co Ltd | 薄膜トランジスタおよびその製造方法 |
US7285501B2 (en) | 2004-09-17 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Method of forming a solution processed device |
US7298084B2 (en) | 2004-11-02 | 2007-11-20 | 3M Innovative Properties Company | Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes |
JP5126729B2 (ja) | 2004-11-10 | 2013-01-23 | キヤノン株式会社 | 画像表示装置 |
US7872259B2 (en) | 2004-11-10 | 2011-01-18 | Canon Kabushiki Kaisha | Light-emitting device |
US7791072B2 (en) | 2004-11-10 | 2010-09-07 | Canon Kabushiki Kaisha | Display |
US7863611B2 (en) | 2004-11-10 | 2011-01-04 | Canon Kabushiki Kaisha | Integrated circuits utilizing amorphous oxides |
US7453065B2 (en) | 2004-11-10 | 2008-11-18 | Canon Kabushiki Kaisha | Sensor and image pickup device |
EP2453480A2 (en) | 2004-11-10 | 2012-05-16 | Canon Kabushiki Kaisha | Amorphous oxide and field effect transistor |
US7829444B2 (en) | 2004-11-10 | 2010-11-09 | Canon Kabushiki Kaisha | Field effect transistor manufacturing method |
WO2006051995A1 (en) | 2004-11-10 | 2006-05-18 | Canon Kabushiki Kaisha | Field effect transistor employing an amorphous oxide |
US7579224B2 (en) | 2005-01-21 | 2009-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a thin film semiconductor device |
TWI412138B (zh) | 2005-01-28 | 2013-10-11 | Semiconductor Energy Lab | 半導體裝置,電子裝置,和半導體裝置的製造方法 |
TWI390735B (zh) | 2005-01-28 | 2013-03-21 | Semiconductor Energy Lab | 半導體裝置,電子裝置,和半導體裝置的製造方法 |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
US7948171B2 (en) | 2005-02-18 | 2011-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20060197092A1 (en) | 2005-03-03 | 2006-09-07 | Randy Hoffman | System and method for forming conductive material on a substrate |
US8681077B2 (en) | 2005-03-18 | 2014-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and display device, driving method and electronic apparatus thereof |
WO2006105077A2 (en) | 2005-03-28 | 2006-10-05 | Massachusetts Institute Of Technology | Low voltage thin film transistor with high-k dielectric material |
US7645478B2 (en) | 2005-03-31 | 2010-01-12 | 3M Innovative Properties Company | Methods of making displays |
JP4849817B2 (ja) | 2005-04-08 | 2012-01-11 | ルネサスエレクトロニクス株式会社 | 半導体記憶装置 |
US8300031B2 (en) | 2005-04-20 | 2012-10-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element |
JP2006344849A (ja) | 2005-06-10 | 2006-12-21 | Casio Comput Co Ltd | 薄膜トランジスタ |
US7691666B2 (en) | 2005-06-16 | 2010-04-06 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7402506B2 (en) | 2005-06-16 | 2008-07-22 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7507618B2 (en) | 2005-06-27 | 2009-03-24 | 3M Innovative Properties Company | Method for making electronic devices using metal oxide nanoparticles |
KR100711890B1 (ko) | 2005-07-28 | 2007-04-25 | 삼성에스디아이 주식회사 | 유기 발광표시장치 및 그의 제조방법 |
JP2007059128A (ja) | 2005-08-23 | 2007-03-08 | Canon Inc | 有機el表示装置およびその製造方法 |
JP5116225B2 (ja) | 2005-09-06 | 2013-01-09 | キヤノン株式会社 | 酸化物半導体デバイスの製造方法 |
JP2007073705A (ja) | 2005-09-06 | 2007-03-22 | Canon Inc | 酸化物半導体チャネル薄膜トランジスタおよびその製造方法 |
JP4280736B2 (ja) | 2005-09-06 | 2009-06-17 | キヤノン株式会社 | 半導体素子 |
JP4850457B2 (ja) | 2005-09-06 | 2012-01-11 | キヤノン株式会社 | 薄膜トランジスタ及び薄膜ダイオード |
JP4963021B2 (ja) | 2005-09-06 | 2012-06-27 | 独立行政法人産業技術総合研究所 | 半導体構造 |
EP1998373A3 (en) | 2005-09-29 | 2012-10-31 | Semiconductor Energy Laboratory Co, Ltd. | Semiconductor device having oxide semiconductor layer and manufacturing method thereof |
JP5037808B2 (ja) | 2005-10-20 | 2012-10-03 | キヤノン株式会社 | アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置 |
KR101103374B1 (ko) | 2005-11-15 | 2012-01-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체장치 |
TWI292281B (en) | 2005-12-29 | 2008-01-01 | Ind Tech Res Inst | Pixel structure of active organic light emitting diode and method of fabricating the same |
US7867636B2 (en) | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
JP4977478B2 (ja) | 2006-01-21 | 2012-07-18 | 三星電子株式会社 | ZnOフィルム及びこれを用いたTFTの製造方法 |
US7576394B2 (en) | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
US7977169B2 (en) | 2006-02-15 | 2011-07-12 | Kochi Industrial Promotion Center | Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof |
KR20070101595A (ko) | 2006-04-11 | 2007-10-17 | 삼성전자주식회사 | ZnO TFT |
US20070252928A1 (en) | 2006-04-28 | 2007-11-01 | Toppan Printing Co., Ltd. | Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof |
JP5028033B2 (ja) | 2006-06-13 | 2012-09-19 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4999400B2 (ja) | 2006-08-09 | 2012-08-15 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4609797B2 (ja) | 2006-08-09 | 2011-01-12 | Nec液晶テクノロジー株式会社 | 薄膜デバイス及びその製造方法 |
KR100748261B1 (ko) | 2006-09-01 | 2007-08-09 | 경북대학교 산학협력단 | 낮은 누설전류를 갖는 fin 전계효과트랜지스터 및 그제조 방법 |
JP4332545B2 (ja) | 2006-09-15 | 2009-09-16 | キヤノン株式会社 | 電界効果型トランジスタ及びその製造方法 |
JP5164357B2 (ja) | 2006-09-27 | 2013-03-21 | キヤノン株式会社 | 半導体装置及び半導体装置の製造方法 |
JP4274219B2 (ja) | 2006-09-27 | 2009-06-03 | セイコーエプソン株式会社 | 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置 |
US7622371B2 (en) | 2006-10-10 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Fused nanocrystal thin film semiconductor and method |
US7772021B2 (en) | 2006-11-29 | 2010-08-10 | Samsung Electronics Co., Ltd. | Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays |
JP2008140684A (ja) | 2006-12-04 | 2008-06-19 | Toppan Printing Co Ltd | カラーelディスプレイおよびその製造方法 |
KR101303578B1 (ko) | 2007-01-05 | 2013-09-09 | 삼성전자주식회사 | 박막 식각 방법 |
US8207063B2 (en) | 2007-01-26 | 2012-06-26 | Eastman Kodak Company | Process for atomic layer deposition |
KR100851215B1 (ko) | 2007-03-14 | 2008-08-07 | 삼성에스디아이 주식회사 | 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치 |
US7795613B2 (en) | 2007-04-17 | 2010-09-14 | Toppan Printing Co., Ltd. | Structure with transistor |
KR101325053B1 (ko) | 2007-04-18 | 2013-11-05 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이의 제조 방법 |
KR20080094300A (ko) | 2007-04-19 | 2008-10-23 | 삼성전자주식회사 | 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이 |
KR101334181B1 (ko) | 2007-04-20 | 2013-11-28 | 삼성전자주식회사 | 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법 |
WO2008133345A1 (en) | 2007-04-25 | 2008-11-06 | Canon Kabushiki Kaisha | Oxynitride semiconductor |
KR101345376B1 (ko) | 2007-05-29 | 2013-12-24 | 삼성전자주식회사 | ZnO 계 박막 트랜지스터 및 그 제조방법 |
JP5215158B2 (ja) | 2007-12-17 | 2013-06-19 | 富士フイルム株式会社 | 無機結晶性配向膜及びその製造方法、半導体デバイス |
US8586979B2 (en) | 2008-02-01 | 2013-11-19 | Samsung Electronics Co., Ltd. | Oxide semiconductor transistor and method of manufacturing the same |
JP4591525B2 (ja) | 2008-03-12 | 2010-12-01 | ソニー株式会社 | 半導体装置 |
EP2146379B1 (en) * | 2008-07-14 | 2015-01-28 | Samsung Electronics Co., Ltd. | Transistor comprising ZnO based channel layer |
KR101497425B1 (ko) | 2008-08-28 | 2015-03-03 | 삼성디스플레이 주식회사 | 액정 표시 장치 및 그 제조 방법 |
JP4623179B2 (ja) | 2008-09-18 | 2011-02-02 | ソニー株式会社 | 薄膜トランジスタおよびその製造方法 |
JP5451280B2 (ja) | 2008-10-09 | 2014-03-26 | キヤノン株式会社 | ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置 |
US8741702B2 (en) * | 2008-10-24 | 2014-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
KR20100054453A (ko) * | 2008-11-14 | 2010-05-25 | 삼성전자주식회사 | 반도체 소자 및 그 형성 방법 |
WO2010064590A1 (en) | 2008-12-01 | 2010-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
KR101547326B1 (ko) | 2008-12-04 | 2015-08-26 | 삼성전자주식회사 | 트랜지스터 및 그 제조방법 |
KR101064470B1 (ko) * | 2009-01-12 | 2011-09-15 | 삼성모바일디스플레이주식회사 | 박막트랜지스터 및 그 제조방법 |
TWI535023B (zh) * | 2009-04-16 | 2016-05-21 | 半導體能源研究所股份有限公司 | 半導體裝置和其製造方法 |
JP5322787B2 (ja) * | 2009-06-11 | 2013-10-23 | 富士フイルム株式会社 | 薄膜トランジスタ及びその製造方法、電気光学装置、並びにセンサー |
JP2011071476A (ja) | 2009-08-25 | 2011-04-07 | Canon Inc | 薄膜トランジスタ、薄膜トランジスタを用いた表示装置及び薄膜トランジスタの製造方法 |
WO2011034012A1 (en) * | 2009-09-16 | 2011-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Logic circuit, light emitting device, semiconductor device, and electronic device |
WO2011039853A1 (ja) * | 2009-09-30 | 2011-04-07 | キヤノン株式会社 | 薄膜トランジスタ |
KR101800852B1 (ko) * | 2009-11-20 | 2017-12-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR101803553B1 (ko) | 2009-11-28 | 2017-11-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
JP5497417B2 (ja) * | 2009-12-10 | 2014-05-21 | 富士フイルム株式会社 | 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置 |
KR101097322B1 (ko) * | 2009-12-15 | 2011-12-23 | 삼성모바일디스플레이주식회사 | 산화물 반도체 박막 트랜지스터, 그 제조방법 및 산화물 반도체 박막 트랜지스터를 구비한 유기전계 발광소자 |
US9057758B2 (en) | 2009-12-18 | 2015-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Method for measuring current, method for inspecting semiconductor device, semiconductor device, and test element group |
KR101781336B1 (ko) | 2009-12-25 | 2017-09-25 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
CN102903758B (zh) * | 2009-12-28 | 2015-06-03 | 株式会社半导体能源研究所 | 半导体装置 |
KR101637789B1 (ko) | 2010-01-22 | 2016-07-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
WO2011105310A1 (en) * | 2010-02-26 | 2011-09-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP5606787B2 (ja) * | 2010-05-18 | 2014-10-15 | 富士フイルム株式会社 | 薄膜トランジスタの製造方法、並びに、薄膜トランジスタ、イメージセンサー、x線センサー及びx線デジタル撮影装置 |
US8278173B2 (en) | 2010-06-30 | 2012-10-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating gate structures |
KR102233958B1 (ko) * | 2010-07-02 | 2021-03-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
US8785241B2 (en) | 2010-07-16 | 2014-07-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
TWI587405B (zh) * | 2010-08-16 | 2017-06-11 | 半導體能源研究所股份有限公司 | 半導體裝置之製造方法 |
KR101928897B1 (ko) | 2010-08-27 | 2018-12-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 기억 장치, 반도체 장치 |
US8634228B2 (en) | 2010-09-02 | 2014-01-21 | Semiconductor Energy Laboratory Co., Ltd. | Driving method of semiconductor device |
TWI562379B (en) * | 2010-11-30 | 2016-12-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device and method for manufacturing semiconductor device |
KR20240025046A (ko) * | 2010-12-03 | 2024-02-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물 반도체막 및 반도체 장치 |
TWI416737B (zh) * | 2010-12-30 | 2013-11-21 | Au Optronics Corp | 薄膜電晶體及其製造方法 |
JP5527225B2 (ja) * | 2011-01-14 | 2014-06-18 | ソニー株式会社 | 薄膜トランジスタおよび表示装置 |
TWI538215B (zh) | 2011-03-25 | 2016-06-11 | 半導體能源研究所股份有限公司 | 場效電晶體及包含該場效電晶體之記憶體與半導體電路 |
US8809928B2 (en) * | 2011-05-06 | 2014-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, memory device, and method for manufacturing the semiconductor device |
US9171840B2 (en) | 2011-05-26 | 2015-10-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
-
2013
- 2013-11-19 CN CN201380061385.6A patent/CN104823283B/zh not_active Expired - Fee Related
- 2013-11-19 KR KR1020227012786A patent/KR102526635B1/ko active IP Right Grant
- 2013-11-19 CN CN202310258441.0A patent/CN116207143A/zh active Pending
- 2013-11-19 WO PCT/JP2013/081577 patent/WO2014084152A1/en active Application Filing
- 2013-11-19 CN CN201810257440.3A patent/CN108493253B/zh active Active
- 2013-11-19 KR KR1020157016783A patent/KR102248765B1/ko active IP Right Grant
- 2013-11-19 KR KR1020217009894A patent/KR102389073B1/ko active IP Right Grant
- 2013-11-28 TW TW106127963A patent/TWI632641B/zh not_active IP Right Cessation
- 2013-11-28 TW TW102143548A patent/TWI604611B/zh not_active IP Right Cessation
- 2013-11-29 JP JP2013246931A patent/JP6340190B2/ja not_active Expired - Fee Related
- 2013-12-02 US US14/093,648 patent/US9252283B2/en active Active
-
2016
- 2016-01-20 US US15/001,300 patent/US10074748B2/en active Active
-
2018
- 2018-05-14 JP JP2018092839A patent/JP6656301B2/ja active Active
-
2020
- 2020-02-04 JP JP2020017162A patent/JP6968920B2/ja active Active
-
2021
- 2021-10-27 JP JP2021175171A patent/JP7273925B2/ja active Active
-
2023
- 2023-04-28 JP JP2023074943A patent/JP2023100796A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011135065A (ja) * | 2009-11-27 | 2011-07-07 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2012039059A (ja) * | 2009-12-28 | 2012-02-23 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2011192979A (ja) * | 2010-02-19 | 2011-09-29 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
JP2011216177A (ja) * | 2010-03-17 | 2011-10-27 | Semiconductor Energy Lab Co Ltd | 記憶装置、半導体装置 |
JP2012033896A (ja) * | 2010-06-29 | 2012-02-16 | Semiconductor Energy Lab Co Ltd | 配線基板、半導体装置、及びそれらの作製方法 |
JP2012114422A (ja) * | 2010-11-05 | 2012-06-14 | Semiconductor Energy Lab Co Ltd | 半導体装置及び半導体記憶装置 |
JP2012199528A (ja) * | 2011-03-04 | 2012-10-18 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20220053052A (ko) | 2022-04-28 |
CN108493253B (zh) | 2023-04-25 |
JP2018139314A (ja) | 2018-09-06 |
KR20210040183A (ko) | 2021-04-12 |
US20160141422A1 (en) | 2016-05-19 |
TWI632641B (zh) | 2018-08-11 |
JP6656301B2 (ja) | 2020-03-04 |
CN104823283B (zh) | 2018-04-27 |
KR20230062659A (ko) | 2023-05-09 |
JP7273925B2 (ja) | 2023-05-15 |
JP6968920B2 (ja) | 2021-11-17 |
JP2022009539A (ja) | 2022-01-14 |
US20140151691A1 (en) | 2014-06-05 |
JP2014131025A (ja) | 2014-07-10 |
KR20150092191A (ko) | 2015-08-12 |
JP6340190B2 (ja) | 2018-06-06 |
CN104823283A (zh) | 2015-08-05 |
CN108493253A (zh) | 2018-09-04 |
CN116207143A (zh) | 2023-06-02 |
WO2014084152A1 (en) | 2014-06-05 |
KR102248765B1 (ko) | 2021-05-04 |
US9252283B2 (en) | 2016-02-02 |
TW201431079A (zh) | 2014-08-01 |
JP2023100796A (ja) | 2023-07-19 |
US10074748B2 (en) | 2018-09-11 |
TWI604611B (zh) | 2017-11-01 |
KR102389073B1 (ko) | 2022-04-22 |
KR102526635B1 (ko) | 2023-04-26 |
TW201810528A (zh) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7273925B2 (ja) | 半導体装置 | |
JP7397137B2 (ja) | 半導体装置 | |
JP6612944B2 (ja) | 半導体装置 | |
JP6220641B2 (ja) | 半導体装置 | |
JP6342701B2 (ja) | 半導体装置およびその作製方法 | |
JP6334191B2 (ja) | 半導体装置 | |
KR102720789B1 (ko) | 반도체 장치 | |
KR20240155376A (ko) | 반도체 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211027 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6968920 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |