JP2015535681A - まれな変異およびコピー数多型を検出するためのシステムおよび方法 - Google Patents

まれな変異およびコピー数多型を検出するためのシステムおよび方法 Download PDF

Info

Publication number
JP2015535681A
JP2015535681A JP2015530152A JP2015530152A JP2015535681A JP 2015535681 A JP2015535681 A JP 2015535681A JP 2015530152 A JP2015530152 A JP 2015530152A JP 2015530152 A JP2015530152 A JP 2015530152A JP 2015535681 A JP2015535681 A JP 2015535681A
Authority
JP
Japan
Prior art keywords
polynucleotide
sequence
polynucleotides
sequencing
reads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015530152A
Other languages
English (en)
Other versions
JP6275145B2 (ja
JP2015535681A5 (ja
Inventor
アミルアリ タラサズ,
アミルアリ タラサズ,
ヘルミー エルトーキー,
ヘルミー エルトーキー,
Original Assignee
ガーダント ヘルス, インコーポレイテッド
ガーダント ヘルス, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50237580&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015535681(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ガーダント ヘルス, インコーポレイテッド, ガーダント ヘルス, インコーポレイテッド filed Critical ガーダント ヘルス, インコーポレイテッド
Publication of JP2015535681A publication Critical patent/JP2015535681A/ja
Publication of JP2015535681A5 publication Critical patent/JP2015535681A5/ja
Application granted granted Critical
Publication of JP6275145B2 publication Critical patent/JP6275145B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/165Mathematical modelling, e.g. logarithm, ratio
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2545/00Reactions characterised by their quantitative nature
    • C12Q2545/10Reactions characterised by their quantitative nature the purpose being quantitative analysis
    • C12Q2545/114Reactions characterised by their quantitative nature the purpose being quantitative analysis involving a quantitation step
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Evolutionary Biology (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)

Abstract

本開示は、無細胞ポリヌクレオチドにおける稀な変異およびコピー数多型を検出するためのシステムおよび方法を提供する。概して、本システムおよび方法は、サンプル調製または体液からの無細胞ポリヌクレオチド配列の抽出および単離;それに続く、当該分野で公知の手法による無細胞ポリヌクレオチドの配列決定;および参照と比較して、稀な変異およびコピー数多型を検出するバイオインフォマティクスツールの適用を含む。本システムおよび方法は、稀な変異の検出、コピー数多型プロファイリングまたは疾患の一般的な遺伝子プロファイリングを助ける際にさらなる参照として使用される、種々の稀な変異または種々の疾患のコピー数多型プロファイルのデータベースまたはコレクションも含み得る。

Description

相互参照
本願は、2012年9月4日出願の米国仮特許出願第61/696,734号、2012年9月21日出願の米国仮特許出願第61/704,400号、2013年3月15日出願の米国仮特許出願第61/793,997号、および、2013年7月13日出願の米国仮特許出願第61/845,987号に対する優先権を主張し、それらの各々は、本明細書で参照によって全ての目的のために全体的に援用される。
発明の背景
ポリヌクレオチドの検出および定量は、分子生物学および診断学などの医学的応用にとって重要である。遺伝子検査は、いくつかの診断方法にとって特に有用である。例えば、稀な遺伝子変化(例えば、配列バリアント)またはエピジェネティックマーカーの変化によって引き起こされる障害(例えば、がんおよび部分異数性または完全異数性)が、検出され得るか、またはより正確には、DNA配列情報を用いて特徴付けられ得る。
がんなどの遺伝性疾患の早期の検出およびモニタリングは、しばしば有用であり、その疾患の処置または管理の成功に必要である。1つのアプローチは、種々のタイプの体液に見られ得るポリヌクレオチドの集団である無細胞核酸に由来するサンプルのモニタリングを含み得る。場合によっては、疾患は、遺伝子の異常(例えば、1つ以上の核酸配列のコピー数多型(copy number variation)および/または配列変異の変化)または他のある特定の稀な遺伝子変化の発生の検出に基づいて特徴付けられ得るかまたは検出され得る。無細胞DNA(「cfDNA」)は、数十年間にわたって当該分野で知られており、特定の疾患に関連する遺伝子の異常を含み得る。配列決定法および核酸を操作する手法が改善されてきたにもかかわらず、疾患を検出およびモニターするために無細胞DNAを使用するための改善された方法およびシステムが当該分野において必要とされている。
発明の要旨
本開示は、コピー数多型を検出するための方法を提供し、その方法は、a)被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、必要に応じて、ユニークなバーコードに付着される、工程;b)指定の閾値を満たさないリードを除外する工程;c)工程(a)から得られた配列リードを参照配列に対してマッピングする工程;d)参照配列の予め定義された2つ以上の領域におけるマッピングされたリードを定量/カウントする工程;e)(i)予め定義された領域におけるリードの数を互いに対しておよび/または予め定義された領域におけるユニークなバーコードの数を互いに対して正規化する工程;および(ii)工程(i)において得られた正規化された数を、コントロールサンプルから得られた正規化された数と比較する工程によって、予め定義された領域の1つ以上におけるコピー数多型を決定する工程を含む。
本開示は、被験体から得られた無細胞のまたは実質的に無細胞のサンプル中の稀な変異を検出するための方法も提供し、その方法は、a)被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;b)被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;c)指定の閾値を満たさないリードを除外する工程;d)配列決定工程に由来する配列リードを参照配列上にマッピングする工程;e)マッピング可能な各塩基位置において参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;f)マッピング可能な各塩基位置に対して、(a)参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;g)マッピング可能な各塩基位置に対して上記比または分散の頻度を正規化し、潜在的な稀なバリアントまたは変異を決定する工程;h)潜在的な稀なバリアントまたは変異を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程
を含む。
さらに、本開示は、被験体における異常な状態の不均一性を特徴付ける方法も提供し、その方法は、その被験体における細胞外ポリヌクレオチドの遺伝的プロファイルを生成する工程を含み、その遺伝的プロファイルは、コピー数多型および/または他の稀な変異(例えば、遺伝子変化)の解析からもたらされる複数のデータを含む。
いくつかの実施形態において、被験体において同定された稀な各バリアントの保有率(prevalence)/濃度は、同時に報告および定量される。他の実施形態では、被験体における稀なバリアントの保有率/濃度に関する信頼スコアが、報告される。
いくつかの実施形態において、細胞外ポリヌクレオチドは、DNAを含む。他の実施形態において、細胞外ポリヌクレオチドは、RNAを含む。ポリヌクレオチドは、フラグメントであり得るか、または単離後に断片化され得る。さらに、本開示は、循環核酸の単離および抽出のための方法を提供する。
いくつかの実施形態において、細胞外ポリヌクレオチドは、血液、血漿、血清、尿、唾液、粘膜排出物、痰、便および涙からなる群より選択され得る身体サンプルから単離される。
いくつかの実施形態において、本開示の方法は、前記身体サンプル中にコピー数多型または他の稀な遺伝子変化(例えば、配列バリアント)を有する配列のパーセントを決定する工程も含む。
いくつかの実施形態において、前記身体サンプル中にコピー数多型を有する配列のパーセントは、所定の閾値より多いまたは少ないポリヌクレオチドの量を有する予め定義された領域のパーセンテージを計算することによって決定される。
いくつかの実施形態において、変異、稀な変異、単一ヌクレオチドバリアント、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染およびがんからなる群より選択され得る異常な状態を有すると疑われる被験体から体液を採取する。
いくつかの実施形態において、被験体は、妊婦であり得、その妊婦における異常な状態は、単一ヌクレオチドバリアント、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染およびがんからなる群より選択される胎児の異常であり得る。
いくつかの実施形態において、上記方法は、配列決定前に、1つ以上のバーコードを細胞外ポリヌクレオチドまたはそのフラグメントに付着する工程を含み得、それらのバーコードは、ユニークである。他の実施形態において、配列決定前に細胞外ポリヌクレオチドまたはそのフラグメントに付着されるバーコードは、ユニークでない。
いくつかの実施形態において、本開示の方法は、配列決定前に被験体のゲノムまたはトランスクリプトームから領域を選択的に富化する工程を含み得る。他の実施形態において、本開示の方法は、配列決定前に被験体のゲノムまたはトランスクリプトームから領域を選択的に富化する工程を含む。他の実施形態において、本開示の方法は、配列決定前に被験体のゲノムまたはトランスクリプトームから領域を非選択的に富化する工程を含む。
また、本開示の方法は、任意の増幅する工程または富化工程の前に、細胞外ポリヌクレオチドまたはそのフラグメントに1つ以上のバーコードを付着させる工程を含む。
いくつかの実施形態において、バーコードは、選ばれた領域から配列決定された分子の多様性と組み合わせて、ユニークな分子の同定を可能にする、ランダムな配列または固定されたもしくはセミランダムなセットのオリゴヌクレオチドをさらに含み得、少なくとも3、5、10、15、20、25、30、35、40、45または50merの塩基対の長さであり得る、ポリヌクレオチドである。
いくつかの実施形態において、細胞外ポリヌクレオチドまたはそのフラグメントは、増幅され得る。いくつかの実施形態において、増幅は、グローバル増幅または全ゲノム増幅を含む。
いくつかの実施形態において、ユニークな同一性(unique identity)の配列リードは、その配列リードの始めの(開始)領域および終わりの(終止)領域における配列情報、ならびに配列リードの長さに基づいて検出され得る。他の実施形態において、ユニークな同一性の配列分子は、その配列リードの始めの(開始)領域および終わりの(終止)領域における配列情報、その配列リードの長さ、ならびにバーコードの付着に基づいて検出される。
いくつかの実施形態において、増幅は、選択的増幅、非選択的増幅、抑制増幅(suppression amplification)またはサブトラクションによる富化(subtractive enrichment)を含む。
いくつかの実施形態において、本開示の方法は、リードを定量する、または列挙する前に、さらなる解析からリードのサブセットを除去する工程を含む。
いくつかの実施形態において、上記方法は、閾値未満、例えば、90%、99%、99.9%もしくは99.99%未満の精度スコアもしくは品質スコア、および/または閾値未満、例えば、90%、99%、99.9%もしくは99.99%未満のマッピングスコアを有するリードを除外する工程を含み得る。他の実施形態において、本開示の方法は、指定の閾値より低い品質スコアを有するリードを選別する工程を含む。
いくつかの実施形態において、予め定義された領域は、均一なまたは実質的に均一なサイズであり、約10kb、20kb、30kb、40kb、50kb、60kb、70kb、80kb、90kbまたは100kbのサイズである。いくつかの実施形態において、少なくとも50、100、200、500、1000、2000、5000、10,000、20,000または50,000個の領域が、解析される。
いくつかの実施形態において、遺伝的バリアント、稀な変異またはコピー数多型は、遺伝子融合、遺伝子重複、遺伝子欠失、遺伝子転座、マイクロサテライト領域、遺伝子フラグメントまたはそれらの組み合わせからなる群より選択されるゲノムの領域に存在する。他の実施形態において、遺伝的バリアント、稀な変異またはコピー数多型は、遺伝子、癌遺伝子、腫瘍抑制遺伝子、プロモーター、制御配列エレメントまたはそれらの組み合わせからなる群より選択されるゲノムの領域に存在する。いくつかの実施形態において、バリアントは、ヌクレオチドバリアント、一塩基置換もしくは小インデル、トランスバージョン、転座、逆位、欠失、切断または遺伝子切断であり、約1、2、3、4、5、6、7、8、9、10、15または20ヌクレオチド長である。
いくつかの実施形態において、上記方法は、個々のリードのバーコードまたはユニークな特性を用いて、マッピングされたリードの数量を訂正する/正規化する/調整する工程を含む。
いくつかの実施形態において、リードを列挙する工程は、予め定義された領域の各々におけるユニークなバーコードを列挙し、配列決定された予め定義された領域の少なくとも1つのサブセットにわたってそれらの数を正規化することによって行われる。いくつかの実施形態において、同じ被験体由来の、次の時間間隔におけるサンプルが、解析され、前のサンプルの結果と比較される。本開示の方法は、バーコードが付着された細胞外ポリヌクレオチドを増幅した後に、部分的なコピー数多型の頻度、ヘテロ接合性の喪失、遺伝子発現の解析、エピジェネティックな解析および/または過剰メチル化の解析を測定する工程をさらに含み得る。
いくつかの実施形態において、コピー数多型および稀な変異の解析は、10,000を超える配列決定反応を行うこと;少なくとも10,000個の異なるリードを同時に配列決定すること;または少なくとも10,000個の異なるリードに対するデータ解析をゲノムにわたって行うことを含む、多重配列決定を用いて、被験体から得られた無細胞のまたは実質的に無細胞のサンプルにおいて測定される。上記方法は、少なくとも10,000個の異なるリードに対するデータ解析をゲノムにわたって行うことを含む多重配列決定を含み得る。上記方法は、ユニークに同定可能な配列決定されたリードを列挙する工程をさらに含み得る。
いくつかの実施形態において、本開示の方法は、隠れマルコフ、動的計画法、サポートベクターマシン、ベイジアンネットワーク、トレリス復号、ビタビ復号、期待値最大化、カルマンフィルタリングまたはニューラルネットワーク法のうちの1つ以上を使用して行われる正規化および検出を含む。
いくつかの実施形態において、本開示の方法は、疾患の進行をモニターする工程、残存する疾患をモニターする工程、治療をモニターする工程、状態を診断する工程、状態を予後診断する工程、または発見されたバリアントに基づいて治療を選択する工程を含む。
いくつかの実施形態において、治療は、最新のサンプル解析に基づいて改変される。また、本開示の方法は、腫瘍、感染または他の組織異常の遺伝的プロファイルを推論する工程を含む。いくつかの実施形態において、腫瘍の成長、寛解もしくは進展、感染または他の組織異常が、モニターされる。いくつかの実施形態において、被験体の免疫系が、単一の場合においてまたは経時的に解析およびモニターされる。
いくつかの実施形態において、本開示の方法は、同定されたバリアントを引き起こすと疑われる組織異常の位置を特定するためのイメージング検査(例えば、CT、PET−CT、MRI、X線、超音波)を通じて追跡されるバリアントの同定を含む。
いくつかの実施形態において、本開示の方法は、同じ患者由来の組織または腫瘍のバイオプシーから得られる遺伝子データの使用を含む。いくつかの実施形態において、腫瘍、感染または他の組織異常の系統発生が、推論される。
いくつかの実施形態において、本開示の方法は、信頼度の低い領域を、集団に基づいてコールしないこと(population−based no−calling)および同定することを行う工程を含む。いくつかの実施形態において、配列カバー率(sequence coverage)についての測定データを得る工程は、ゲノムのすべての位置において配列カバー率の深さ(sequence coverage depth)を計測する工程を含む。いくつかの実施形態において、配列カバー率についての測定データのバイアスについて訂正する工程は、ウィンドウ平均カバー率を計算する工程を含む。いくつかの実施形態において、配列カバー率についての測定データのバイアスについて訂正する工程は、ライブラリー構築および配列決定プロセスにおけるGCバイアスを説明するための調整を行う工程を含む。いくつかの実施形態において、配列カバー率についての測定データのバイアスについて訂正する工程は、バイアスを相殺するために、個々のマッピングに関連するさらなる重み付け因子(weighting factor)に基づいて調整を行う工程を含む。
いくつかの実施形態において、本開示の方法は、病的な細胞起源に由来する細胞外ポリヌクレオチドを含む。いくつかの実施形態において、細胞外ポリヌクレオチドは、健常な細胞起源に由来する。
本開示は、以下の工程:ゲノム内の予め定義された領域を選択する工程;その予め定義された領域内の配列リードの数を列挙する工程;その予め定義された領域にわたる配列リードの数を正規化する工程;およびその予め定義された領域内のコピー数多型のパーセントを決定する工程を行うためのコンピュータ可読媒体を備えるシステムも提供する。いくつかの実施形態において、ゲノムの全体またはゲノムの少なくとも10%、20%、30%、40%、50%、60%、70%、80%もしくは90%が、解析される。いくつかの実施形態において、コンピュータ可読媒体は、血漿または血清中のがんDNAまたはがんRNAのパーセントに関するデータをエンドユーザーに提供する。
いくつかの実施形態において、多型(polymorphisms)または原因バリアント(causal variants)などの遺伝的変異の量が、解析される。いくつかの実施形態において、遺伝子変化の有無が、検出される。
本開示は、被験体から得られた無細胞のまたは実質的に無細胞のサンプル中の稀な変異を検出するための方法も提供し、その方法は、a)被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;b)指定の閾値を満たさないリードを除外する工程;c)配列決定工程に由来する配列リードを参照配列上にマッピングする工程;d)マッピング可能な各塩基位置において参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;e)マッピング可能な各塩基位置に対して、(a)参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;f)マッピング可能な各塩基位置に対してその比または分散の頻度を正規化し、潜在的な稀なバリアントまたは他の遺伝子変化を決定する工程;およびg)各領域に対して得られた数を比較する工程を含む。
本開示は、a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b.そのセット内のタグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;c.そのセットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;およびd.そのセットの配列決定リードを折りたたむ(collapsing)ことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程を含む方法も提供する。ある特定の実施形態において、その方法は、e.タグ化された親分子の各セットについて、コンセンサス配列のセットを解析する工程をさらに含む。
いくつかの実施形態において、セット内の各ポリヌクレオチドは、参照配列にマッピング可能である。
いくつかの実施形態において、上記方法は、タグ化された親ポリヌクレオチドの複数のセットを提供する工程を含み、各セットは、異なる参照配列にマッピング可能である。
いくつかの実施形態において、上記方法は、開始の最初の遺伝物質をタグ化された親ポリヌクレオチドに変換する工程をさらに含む。
いくつかの実施形態において、開始の最初の遺伝物質は、100ng以下のポリヌクレオチドを含む。
いくつかの実施形態において、上記方法は、変換前に、開始の最初の遺伝物質を制限する(bottlenecking)工程を含む。
いくつかの実施形態において、上記方法は、開始の最初の遺伝物質を、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも80%または少なくとも90%の変換効率で、タグ化された親ポリヌクレオチドに変換する工程を含む。
いくつかの実施形態において、変換工程は、平滑末端ライゲーション、粘着末端ライゲーション、分子反転プローブ(molecular inversion probes)、PCR、ライゲーションベースのPCR、一本鎖ライゲーションおよび一本鎖環状化のうちのいずれかを含む。
いくつかの実施形態において、開始の最初の遺伝物質は、無細胞核酸である。
いくつかの実施形態において、複数の参照配列は、同じゲノムに由来する。
いくつかの実施形態において、セット内のタグ化された親ポリヌクレオチドの各々は、ユニークにタグ化される。
いくつかの実施形態において、タグは、ユニークではない。
いくつかの実施形態において、コンセンサス配列の生成は、タグからの情報ならびに/または配列リードの始めの(開始)領域の配列情報、配列リードの終わりの(終止)領域の配列情報および配列リードの長さのうちの少なくとも1つに基づく。
いくつかの実施形態において、上記方法は、上記セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドの少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.9%または少なくとも99.99%の各々の少なくとも1つの子孫に対する配列リードを生成するのに十分な、上記セットの増幅された子孫ポリヌクレオチドのサブセットを配列決定する工程を含む。
いくつかの実施形態において、少なくとも1つの子孫は、複数の子孫、例えば、少なくとも2つ、少なくとも5つまたは少なくとも10個の子孫である。
いくつかの実施形態において、配列リードのセット内の配列リードの数は、タグ化された親ポリヌクレオチドのセット内のタグ化されたユニークな親ポリヌクレオチドの数より多い。
いくつかの実施形態において、上記セットの配列決定された増幅された子孫ポリヌクレオチドのサブセットは、使用される配列決定プラットフォームの1塩基あたりの配列決定エラー率のパーセンテージと同じパーセンテージで、タグ化された親ポリヌクレオチドのセット内に表示される任意のヌクレオチド配列が、コンセンサス配列のセットの中に表示される少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.9%または少なくとも99.99%の確率を有するのに十分なサイズである。
いくつかの実施形態において、上記方法は、(i)タグ化された親ポリヌクレオチドに変換される開始の最初の遺伝物質からの配列の選択的増幅;(ii)タグ化された親ポリヌクレオチドの選択的増幅;(iii)増幅された子孫ポリヌクレオチドの選択的配列捕捉;または(iv)開始の最初の遺伝物質の選択的配列捕捉によって、1つ以上の選択された参照配列に位置するポリヌクレオチドについて、上記セットの増幅された子孫ポリヌクレオチドを富化する工程を含む。
いくつかの実施形態において、解析する工程は、コンセンサス配列のセットからもたらされた尺度(例えば、数)を、コントロールサンプル由来のコンセンサス配列のセットからもたらされた尺度に対して正規化する工程を含む。
いくつかの実施形態において、解析する工程は、変異、稀な変異、単一ヌクレオチドバリアント、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染またはがんを検出する工程を含む。
いくつかの実施形態において、ポリヌクレオチドは、DNA、RNA、それら2つの組み合わせまたはDNA+RNA由来cDNAを含む。
いくつかの実施形態において、ポリヌクレオチドのある特定のサブセットは、最初のセットのポリヌクレオチドまたは増幅されたポリヌクレオチドから、塩基対を単位とするポリヌクレオチド長について選択されるかまたはそれに基づいて富化される。
いくつかの実施形態において、解析は、感染および/またはがんなどの個体内の異常または疾患の検出およびモニタリングをさらに含む。
いくつかの実施形態において、上記方法は、免疫レパートリーのプロファイリングと組み合わせて行われる。
いくつかの実施形態において、ポリヌクレオチドは、血液、血漿、血清、尿、唾液、粘膜排出物、痰、便および涙からなる群から抽出される(are extract)。
いくつかの実施形態において、折りたたむ工程は、タグ化された親ポリヌクレオチドまたは増幅された子孫ポリヌクレオチドのセンス鎖もしくはアンチセンス鎖に存在するエラー、ニックまたは損傷を検出することおよび/または訂正することを含む。
本開示は、開始の最初の遺伝物質中の遺伝的変異を、少なくとも5%、少なくとも1%、少なくとも0.5%、少なくとも0.1%または少なくとも0.05%の感度で検出する工程を含む方法も提供する。いくつかの実施形態において、開始の最初の遺伝物質は、100ng未満の量の核酸で提供され、その遺伝的変異は、コピー数多型/ヘテロ接合性変異であり、検出する工程は、染色体より小さい解像度(sub−chromosomal resolution);例えば、少なくとも100メガベースの解像度、少なくとも10メガベースの解像度、少なくとも1メガベースの解像度、少なくとも100キロベースの解像度、少なくとも10キロベースの解像度または少なくとも1キロベースの解像度で行われる。別の実施形態において、上記方法は、タグ化された親ポリヌクレオチドの複数のセットを提供する工程を含み、各セットは、異なる参照配列にマッピング可能である。別の実施形態において、参照配列は、腫瘍マーカーの遺伝子座であり、解析する工程は、コンセンサス配列のセット内に腫瘍マーカーを検出する工程を含む。別の実施形態において、腫瘍マーカーは、増幅する工程において導入されるエラー率より低い頻度で、コンセンサス配列のセットに存在する。別の実施形態において、少なくとも1つのセットは、複数のセットであり、参照配列は、複数の参照配列を含み、その各々は、腫瘍マーカーの遺伝子座である。別の実施形態において、解析する工程は、親ポリヌクレオチドの少なくとも2つのセットの間にコンセンサス配列のコピー数多型を検出する工程を含む。別の実施形態において、解析する工程は、参照配列と比べて配列変異の存在を検出する工程を含む。別の実施形態において、解析する工程は、参照配列と比べて配列変異の存在を検出する工程および親ポリヌクレオチドの少なくとも2つのセットの間にコンセンサス配列のコピー数多型を検出する工程を含む。別の実施形態において、折りたたむ工程は、i.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化する工程であって、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、工程;およびii.ファミリー内の配列リードに基づいてコンセンサス配列を決定する工程を含む。
本開示は、以下の工程:a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b.そのセット内のタグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;c.そのセットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;およびd.そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程、および必要に応じてe.コンセンサス配列のセットを、タグ化された親分子の各セットについて解析する工程を行うためのコンピュータ可読媒体を備えるシステムも提供する。
本開示は、a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b.そのセット内のタグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;c.そのセットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;d.そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;およびe.そのコンセンサス配列の中から、品質閾値を満たさないものを除外する工程を含む方法も提供する。1つの実施形態において、品質閾値は、コンセンサス配列に折りたたまれた増幅された子孫ポリヌクレオチド由来の配列リードの数を考慮する。別の実施形態において、品質閾値は、コンセンサス配列に折りたたまれた増幅された子孫ポリヌクレオチド由来の配列リードの数を考慮する。本開示は、前述の方法を行うためのコンピュータ可読媒体を備えるシステムも提供する。
本開示は、a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程であって、各セットは、1つ以上のゲノムにおける異なる参照配列に位置する、工程、およびタグ化された親ポリヌクレオチドの各セットに対して;i.第1ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成する工程;ii.そのセットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成する工程;iii.1.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化することによって配列リードを折りたたむ工程であって、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、工程を含む方法も提供する。1つの実施形態において、折りたたむ工程は、2.各ファミリー内の配列リードの定量的尺度を決定する工程をさらに含む。別の実施形態において、上記方法は、b.ユニークなファミリーの定量的尺度を決定する工程;ならびにc.(1)ユニークなファミリーの定量的尺度および(2)各グループ内の配列リードの定量的尺度に基づいて、そのセット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程をさらに含む(aを含むa)を含む)。別の実施形態において、推論する工程は、統計的モデルまたは確率的モデルを使用して行われる。別の実施形態において、少なくとも1つのセットは、複数のセットである。別の実施形態において、上記方法は、2つのセットの間の増幅バイアスまたは表示バイアス(representational bias)について訂正する工程をさらに含む。別の実施形態において、上記方法は、コントロールまたはコントロールサンプルのセットを使用することにより、2つのセットの間の増幅バイアスまたは表示バイアスについて訂正する工程をさらに含む。別の実施形態において、上記方法は、セット間のコピー数多型を決定する工程をさらに含む。別の実施形態において、上記方法は、d.ファミリーの間の多型の形態の定量的尺度を決定する工程;およびe.多型の形態の決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程をさらに含む(a、b、cを含む)。別の実施形態において、多型の形態には、置換、挿入、欠失、逆位、マイクロサテライトの変化、トランスバージョン、転座、融合、メチル化、過剰メチル化、ヒドロキシメチル化(hyrdroxymethylation)、アセチル化、エピジェネティックなバリアント、制御関連(regulatory−associated)バリアントまたはタンパク質結合部位が含まれるがこれらに限定されない。上記セットが共通のサンプルに由来する別の実施形態において、上記方法は、a.複数の参照配列の各々に位置する、各セット内のタグ化された親ポリヌクレオチドの推論される数の比較に基づいて、複数のセットに対してコピー数多型を推論する工程をさらに含む。別の実施形態において、各セット内のポリヌクレオチドの元の数が、さらに推論される。本開示は、前述の方法を行うためのコンピュータ可読媒体を備えるシステムも提供する。
本開示は、ポリヌクレオチドを含むサンプル中のコピー数多型を決定する方法も提供し、その方法は、a.少なくとも2つのセットの第1ポリヌクレオチドを提供する工程であって、各セットは、ゲノム内の異なる参照配列に位置し、第1ポリヌクレオチドの各セットに対して;i.ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;ii.そのセットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;iii.増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化し、各ファミリーは、そのセット内の同じ第1ポリヌクレオチドから増幅され;iv.そのセット内のファミリーの定量的尺度を推論する、工程;b.各セット内のファミリーの定量的尺度を比較することによって、コピー数多型を決定する工程を含む。本開示は、前述の方法を行うためのコンピュータ可読媒体を備えるシステムも提供する。
本開示は、ポリヌクレオチドのサンプル中の配列コールの頻度を推論する方法も提供し、その方法は、a.少なくとも1つのセットの第1ポリヌクレオチドを提供する工程であって、各セットは、1つ以上のゲノムにおける異なる参照配列に位置し、第1ポリヌクレオチドの各セットに対して;i.第1ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;ii.そのセットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;iii.その配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;b.第1ポリヌクレオチドの各セットに対して、第1ポリヌクレオチドのセットにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、i.各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、その信頼スコアは、ファミリーのメンバーの間のコールの頻度を考慮に入れている、工程;およびii.各ファミリーに割り当てられた1つ以上のコールの信頼スコアを考慮に入れて、1つ以上のコールの頻度を推定する工程を含む工程を含む。本開示は、前述の方法を行うためのコンピュータ可読媒体を備えるシステムも提供する。
本開示は、少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を通信する方法も提供し、その方法は、a.少なくとも1つの個々のポリヌクレオチド分子を提供する工程;b.その少なくとも1つの個々のポリヌクレオチド分子における配列情報を符号化することにより、信号を生成する工程;c.その信号の少なくとも一部をチャネルに通すことにより、少なくとも1つの個々のポリヌクレオチド分子に関するヌクレオチド配列情報を含む受信信号を生成する工程(その受信信号は、ノイズおよび/または歪みを含む);d.受信信号を復号することにより、少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージを生成する工程(復号は、メッセージ内のノイズおよび/または歪みを減少させる);およびe.そのメッセージをレシピエントに提供する工程を含む。1つの実施形態において、ノイズは、誤ったヌクレオチドコールを含む。別の実施形態において、歪みは、他の個々のポリヌクレオチド分子と比べて、個々のポリヌクレオチド分子の不均一な増幅を含む。別の実施形態において、歪みは、増幅バイアスまたは配列決定バイアスに起因する。別の実施形態において、少なくとも1つの個々のポリヌクレオチド分子は、複数の個々のポリヌクレオチド分子であり、復号する工程は、その複数の中の各分子に関するメッセージを生成する。別の実施形態において、符号化する工程は、必要に応じてタグ化された少なくとも個々のポリヌクレオチド分子を増幅する工程を含み、その信号は、増幅された分子のコレクションを含む。別の実施形態において、チャネルは、ポリヌクレオチド配列分析装置を構成し、受信信号は、少なくとも1つの個々のポリヌクレオチド分子から増幅された複数のポリヌクレオチドの配列リードを含む。別の実施形態において、復号する工程は、少なくとも1つの個々のポリヌクレオチド分子の各々から増幅された増幅分子の配列リードをグループ化する工程を含む。別の実施形態において、復号する工程は、生成された配列信号を選別する確率的方法または統計学的方法からなる。本開示は、前述の方法を行うためのコンピュータ可読媒体を備えるシステムも提供する。
別の実施形態において、ポリヌクレオチドは、腫瘍ゲノムDNAまたはRNAに由来する。別の実施形態において、ポリヌクレオチドは、無細胞ポリヌクレオチド、エキソソームポリヌクレオチド、細菌ポリヌクレオチドまたはウイルスポリヌクレオチドに由来する。別の実施形態では、影響される分子経路の検出および/または関連付けをさらに含む。別の実施形態では、個体の健康状態または疾患状態の連続モニタリングをさらに含む。別の実施形態では、個体内の疾患に関連するゲノムの系統発生が、推論される。別の実施形態では、疾患の診断、モニタリングまたは処置をさらに含む。別の実施形態では、処置レジメンは、検出された多型の形態またはCNVまたは関連する経路に基づいて選択されるかまたは改変される。別の実施形態において、処置は、併用療法を含む。
本開示は、以下の工程:ゲノム内の予め定義された領域を選択する工程;配列リードにアクセスし、予め定義された領域における配列リードの数を列挙する工程;予め定義された領域にわたって配列リードの数を正規化する工程;および予め定義された領域におけるコピー数多型のパーセントを決定する工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程;b.指定の閾値を満たさないリードを除外する工程;c.配列決定工程に由来する配列リードを参照配列上にマッピングする工程;d.マッピング可能な各塩基位置において参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;e.マッピング可能な各塩基位置に対して、(a)参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;f.マッピング可能な各塩基位置に対してその比または分散の頻度を正規化し、潜在的な稀なバリアントまたは他の遺伝子変化を決定する工程;およびg.潜在的な稀なバリアントまたは変異を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;b.そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;b.そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;c.そのコンセンサス配列の中から、品質閾値を満たさないものを除外する工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;ならびにi.1.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化すること(各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される)および必要に応じて、2.各ファミリー内の配列リードの定量的尺度を決定することによって配列リードを折りたたむ工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。ある特定の実施形態において、実行可能なコードは、b.ユニークなファミリーの定量的尺度を決定する工程;c.(1)ユニークなファミリーの定量的尺度および(2)各グループ内の配列リードの定量的尺度に基づいて、セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程をさらに行う。ある特定の実施形態において、実行可能なコードは、d.ファミリーの間の多型の形態の定量的尺度を決定する工程;およびe.多型の形態の決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程をさらに行う。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化し、各ファミリーは、そのセット内の同じ第1ポリヌクレオチドから増幅される、工程;b.そのセット内のファミリーの定量的尺度を推論する工程;c.各セット内のファミリーの定量的尺度を比較することによってコピー数多型を決定する工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、その配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;b.第1ポリヌクレオチドの各セットに対して、第1ポリヌクレオチドのセットにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、c.各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、その信頼スコアは、そのファミリーのメンバーの間のコールの頻度を考慮に入れている、工程;およびd.各ファミリーに割り当てられた1つ以上のコールの信頼スコアを考慮に入れて、1つ以上のコールの頻度を推定する工程を含む、工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.少なくとも1つの個々のポリヌクレオチド分子由来の符号化された配列情報を含む受信信号を含むデータファイルにアクセスするデータにアクセスする工程(その受信信号は、ノイズおよび/または歪みを含む);b.受信信号を復号することにより、少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージを生成する工程(復号は、そのメッセージ内の個々の各ポリヌクレオチドに関するノイズおよび/または歪みを減少させる);およびc.その少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージをコンピュータファイルに書き込む工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;b.そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;c.そのコンセンサス配列の中から、品質閾値を満たさないものを除外する工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;ならびにb.i.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化すること(各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される)およびii.必要に応じて、各ファミリー内の配列リードの定量的尺度を決定することによって配列リードを折りたたむ工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。ある特定の実施形態において、実行可能なコードは、c.ユニークなファミリーの定量的尺度を決定する工程;d.(1)ユニークなファミリーの定量的尺度および(2)各グループ内の配列リードの定量的尺度に基づいて、セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程をさらに行う。ある特定の実施形態において、実行可能なコードは、e.ファミリーの間の多型の形態の定量的尺度を決定する工程;およびf.多型の形態の決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程をさらに行う。ある特定の実施形態において、実行可能なコードは、e.複数の参照配列の各々に位置する、各セット内のタグ化された親ポリヌクレオチドの推論される数の比較に基づいて、複数のセットに対してコピー数多型を推論する工程をさらに行う。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;b.増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化し、各ファミリーは、そのセット内の同じ第1ポリヌクレオチドから増幅される、工程;c.そのセット内のファミリーの定量的尺度を推論する工程;d.各セット内のファミリーの定量的尺度を比較することによってコピー数多型を決定する工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、以下の工程:a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、その配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;およびb.第1ポリヌクレオチドの各セットに対して、そのセットの第1ポリヌクレオチドにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、i.各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、信頼スコアは、ファミリーのメンバーの間のコールの頻度を考慮に入れている、工程;およびii.各ファミリーに割り当てられた1つ以上のコールの信頼スコアを考慮に入れて、1つ以上のコールの頻度を推定する工程を含む、工程を行うように設定された実行可能なコードを含む一時的でない有形の形態のコンピュータ可読媒体も提供する。
本開示は、a.100〜100,000個の半数体ヒトゲノム等価物の無細胞DNA(cfDNA)ポリヌクレオチドを含むサンプルを提供する工程;およびb.そのポリヌクレオチドを2〜1,000,000個のユニークな識別子でタグ化する工程を含む方法も提供する。ある特定の実施形態において、ユニークな識別子の数は、少なくとも3、少なくとも5、少なくとも10、少なくとも15または少なくとも25および多くとも100、多くとも1000または多くとも10,000である。ある特定の実施形態において、ユニークな識別子の数は、多くとも100、多くとも1000、多くとも10,000、多くとも100,000である。
本開示は、a.複数のヒト半数体ゲノム等価物の断片化されたポリヌクレオチドを含むサンプルを提供する工程;b.zを決定する工程(zは、ゲノム内の任意の位置から開始する2つ組のポリヌクレオチドの期待数の中心傾向の尺度(例えば、平均値、中央値または最頻値)であり、2つ組のポリヌクレオチドは、同じ開始位置および終止位置を有する);およびc.サンプル中のポリヌクレオチドをn個のユニークな識別子でタグ化する工程(nは、2〜100,000z、2〜10,000z、2〜1,000zまたは2〜100zである)を含む方法も提供する。
本開示は、a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b.そのセット内のタグ化された親ポリヌクレオチドの各々に対して複数の配列リードを生成することにより、配列決定リードのセットを生成する工程;およびc.そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程を含む方法も提供する。
本開示は、コピー数多型を検出するための方法を提供し、その方法は、a)被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;b)指定の閾値を満たさないリードを除外する工程;c)工程(a)から得られた配列リードを、リードを除外した後に、参照配列に対してマッピングする工程;d)参照配列の予め定義された2つ以上の領域におけるマッピングされたリードを定量するかまたは列挙する工程;ならびにe)(ii)予め定義された領域におけるリードの数を互いに対しておよび/または予め定義された領域におけるユニークな配列リードの数を互いに対して正規化し;(ii)工程(i)において得られた正規化された数を、コントロールサンプルから得られた正規化された数と比較することによって、予め定義された領域の1つ以上におけるコピー数多型を決定する工程を含む。
本開示は、被験体から得られた無細胞のまたは実質的に無細胞のサンプル中の稀な変異を検出するための方法も提供し、その方法は、a)被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;b)領域において多重配列決定を行うか、または富化が行われない場合、全ゲノム配列決定を行う、工程;c)指定の閾値を満たさないリードを除外する工程;d)配列決定工程に由来する配列リードを参照配列上にマッピングする工程;e)マッピング可能な各塩基位置において参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;f)マッピング可能な各塩基位置に対して、(a)参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;g)マッピング可能な各塩基位置に対してその比または分散の頻度を正規化し、潜在的な稀なバリアントまたは変異を決定する工程;およびh)潜在的な稀なバリアントまたは変異を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程を含む。
本開示は、被験体における異常な状態の不均一性を特徴付ける方法も提供し、その方法は、その被験体における細胞外ポリヌクレオチドの遺伝的プロファイルを生成する工程を含み、その遺伝的プロファイルは、コピー数多型および稀な変異の解析からもたらされる複数のデータを含む。
いくつかの実施形態において、被験体において同定された稀な各バリアントの保有率/濃度は、同時に報告および定量される。いくつかの実施形態において、被験体における稀なバリアントの保有率/濃度に関する信頼スコアが、報告される。
いくつかの実施形態において、細胞外ポリヌクレオチドは、DNAを含む。いくつかの実施形態において、細胞外ポリヌクレオチドは、RNAを含む。
いくつかの実施形態において、上記方法は、身体サンプルから細胞外ポリヌクレオチドを単離する工程をさらに含む。いくつかの実施形態において、その単離工程は、循環核酸の単離および抽出のための方法を含む。いくつかの実施形態において、上記方法は、前記単離された細胞外ポリヌクレオチドを断片化する工程をさらに含む。いくつかの実施形態において、身体サンプルは、血液、血漿、血清、尿、唾液、粘膜排出物、痰、便および涙からなる群より選択される。
いくつかの実施形態において、上記方法は、前記身体サンプル中にコピー数多型または稀な変異もしくはバリアントを有する配列のパーセントを決定する工程をさらに含む。いくつかの実施形態において、その決定工程は、所定の閾値より多いまたは少ないポリヌクレオチドの量を有する予め定義された領域のパーセンテージを計算する工程を含む。
いくつかの実施形態において、被験体は、異常な状態を有すると疑われる。いくつかの実施形態において、その異常な状態は、変異、稀な変異、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染およびがんからなる群より選択される。
いくつかの実施形態において、被験体は、妊婦である。いくつかの実施形態において、コピー数多型または稀な変異または遺伝的バリアントは、胎児の異常を示す。いくつかの実施形態において、その胎児の異常は、変異、稀な変異、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染およびがんからなる群より選択される。
いくつかの実施形態において、上記方法は、配列決定前に、細胞外ポリヌクレオチドまたはそのフラグメントに1つ以上のバーコードを付着させる工程をさらに含む。いくつかの実施形態において、配列決定前に細胞外ポリヌクレオチドまたはそのフラグメントに付着される各バーコードは、ユニークである。いくつかの実施形態において、配列決定前に細胞外ポリヌクレオチドまたはそのフラグメントに付着される各バーコードは、ユニークでない。
いくつかの実施形態において、上記方法は、配列決定前に被験体のゲノムまたはトランスクリプトームから領域を選択的に富化する工程をさらに含む。いくつかの実施形態において、上記方法は、配列決定前に被験体のゲノムまたはトランスクリプトームから領域を非選択的に富化する工程をさらに含む。
いくつかの実施形態において、上記方法は、任意の増幅する工程または富化工程の前に、細胞外ポリヌクレオチドまたはそのフラグメントに1つ以上のバーコードを付着させる工程をさらに含む。いくつかの実施形態において、バーコードは、ポリヌクレオチドである。いくつかの実施形態において、バーコードは、ランダムな配列を含む。いくつかの実施形態において、バーコードは、選ばれた領域から配列決定された分子の多様性と組み合わせて、ユニークな分子の同定を可能にする、固定されたまたはセミランダムなセットのオリゴヌクレオチドを含む。いくつかの実施形態において、バーコードは、少なくとも3、5、10、15、20、25、30、35、40、45または50mer塩基対長であるオリゴヌクレオチドを含む。
いくつかの実施形態において、上記方法は、細胞外ポリヌクレオチドまたはそのフラグメントを増幅する工程をさらに含む。いくつかの実施形態において、増幅は、グローバル増幅または全ゲノム増幅を含む。いくつかの実施形態において、増幅は、選択的増幅を含む。いくつかの実施形態において、増幅は、非選択的増幅を含む。いくつかの実施形態において、抑制増幅またはサブトラクションによる富化が、行われる。
いくつかの実施形態において、ユニークな同一性の配列リードは、配列リードの始めの(開始)領域および終わりの(終止)領域における配列情報ならびに配列リードの長さに基づいて検出される。いくつかの実施形態において、ユニークな同一性の配列分子は、配列リードの始めの(開始)領域および終わりの(終止)領域における配列情報、配列リードの長さならびにバーコードの付着に基づいて検出される。
いくつかの実施形態において、上記方法は、リードを定量する、または列挙する前に、さらなる解析からリードのサブセットを除去する工程をさらに含む。いくつかの実施形態において、除去工程は、閾値未満、例えば、90%、99%、99.9%もしくは99.99%未満の精度スコアもしくは品質スコア、および/または閾値未満、例えば、90%、99%、99.9%もしくは99.99%未満のマッピングスコアを有するリードを除外する工程を含む。いくつかの実施形態において、上記方法は、指定の閾値より低い品質スコアを有するリードを選別する工程をさらに含む。
いくつかの実施形態において、予め定義された領域は、均一なまたは実質的に均一なサイズである。いくつかの実施形態において、予め定義された領域は、少なくとも約10kb、20kb、30kb、40kb、50kb、60kb、70kb、80kb、90kbまたは100kbのサイズである。
いくつかの実施形態において、少なくとも50、100、200、500、1000、2000、5000、10,000、20,000または50,000個の領域が、解析される。
いくつかの実施形態において、上記バリアントは、遺伝子融合、遺伝子重複、遺伝子欠失、遺伝子転座、マイクロサテライト領域、遺伝子フラグメントまたはそれらの組み合わせからなる群より選択されるゲノムの領域に現れる。いくつかの実施形態において、上記バリアントは、遺伝子、癌遺伝子、腫瘍抑制遺伝子、プロモーター、制御配列エレメントまたはそれらの組み合わせからなる群より選択されるゲノムの領域に現れる。いくつかの実施形態において、上記バリアントは、1、2、3、4、5、6、7、8、9、10、15または20ヌクレオチド長のヌクレオチドバリアント、一塩基置換、小インデル、トランスバージョン、転座、逆位、欠失、切断または遺伝子切断である。
いくつかの実施形態において、上記方法は、個々のリードのバーコードまたはユニークな特性を用いて、マッピングされたリードの数量を訂正する/正規化する/調整する工程をさらに含む。いくつかの実施形態において、リードを列挙する工程は、予め定義された領域の各々におけるユニークなバーコードを列挙し、配列決定された予め定義された領域の少なくとも1つのサブセットにわたってそれらの数を正規化することによって行われる。
いくつかの実施形態において、同じ被験体由来の次の時間間隔におけるサンプルが、解析され、前のサンプルの結果と比較される。いくつかの実施形態において、上記方法は、バーコードが付着された細胞外ポリヌクレオチドを増幅する工程をさらに含む。いくつかの実施形態において、上記方法は、部分的なコピー数多型の頻度を決定する工程、ヘテロ接合性の喪失を測定する工程、遺伝子発現の解析を行う工程、エピジェネティックな解析を行う工程、および/または過剰メチル化の解析を行う工程をさらに含む。
本開示は、多重配列決定を用いて、被験体から得られた無細胞のまたは実質的に無細胞のサンプルにおいて、コピー数多型を決定するかまたは稀な変異の解析を行う工程を含む方法も提供する。
いくつかの実施形態において、多重配列決定は、10,000を超える配列決定反応を行うことを含む。いくつかの実施形態において、多重配列決定は、少なくとも10,000個の異なるリードを同時に配列決定することを含む。いくつかの実施形態において、多重配列決定は、少なくとも10,000個の異なるリードに対するデータ解析をゲノムにわたって行うことを含む。いくつかの実施形態において、正規化および検出は、隠れマルコフ、動的計画法、サポートベクターマシン、ベイジアンモデリングもしくは確率モデリング、トレリス復号、ビタビ復号、期待値最大化、カルマンフィルタリングまたはニューラルネットワーク法のうちの1つ以上を使用して行われる。いくつかの実施形態において、上記方法は、疾患の進行をモニターする工程、残存する疾患をモニターする工程、治療をモニターする工程、状態を診断する工程、状態を予後診断する工程、または被験体に対して発見されたバリアントに基づいて治療を選択する工程をさらに含む。いくつかの実施形態において、治療は、最新のサンプル解析に基づいて改変される。いくつかの実施形態において、腫瘍、感染または他の組織異常の遺伝的プロファイルが、推論される。
いくつかの実施形態において、腫瘍の成長、寛解もしくは進展、感染または他の組織異常が、モニターされる。いくつかの実施形態において、被験体の免疫系に関係する配列が、単一の場合においてまたは経時的に解析およびモニターされる。いくつかの実施形態において、バリアントの同定は、同定されたバリアントを引き起こすと疑われる組織異常の位置を特定するためのイメージング検査(例えば、CT、PET−CT、MRI、X線、超音波)を通じて追跡される。いくつかの実施形態において、上記解析は、同じ患者由来の組織または腫瘍のバイオプシーから得られる遺伝子データの使用をさらに含む。いくつかの実施形態において、腫瘍、感染または他の組織異常の系統発生が、推論される。いくつかの実施形態において、上記方法は、信頼度の低い領域を、集団に基づいてコールしないことおよび同定することを行う工程をさらに含む。いくつかの実施形態において、配列カバー率についての測定データを得る工程は、ゲノムのすべての位置において配列カバー率の深さを計測する工程を含む。いくつかの実施形態において、配列カバー率についての測定データのバイアスについて訂正する工程は、ウィンドウ平均カバー率を計算する工程を含む。いくつかの実施形態において、配列カバー率についての測定データのバイアスを訂正する工程は、ライブラリー構築および配列決定プロセスにおけるGCバイアスを説明するための調整を行う工程を含む。いくつかの実施形態において、配列カバー率についての測定データのバイアスについて訂正する工程は、バイアスを相殺するために、個々のマッピングに関連するさらなる重み付け因子に基づいて調整を行う工程を含む。
いくつかの実施形態において、細胞外ポリヌクレオチドは、病的な細胞起源に由来する。いくつかの実施形態において、細胞外ポリヌクレオチドは、健常な細胞起源に由来する。
本開示は、以下の工程:ゲノム内の予め定義された領域を選択する工程;その予め定義された領域内の配列リードの数を列挙する工程;その予め定義された領域にわたる配列リードの数を正規化する工程;およびその予め定義された領域内のコピー数多型のパーセントを決定する工程を行うためのコンピュータ可読媒体を備えるシステムも提供する。
いくつかの実施形態において、ゲノムの全体またはゲノムの少なくとも85%が、解析される。いくつかの実施形態において、コンピュータ可読媒体は、血漿または血清中のがんDNAまたはがんRNAのパーセントに関するデータをエンドユーザーに提供する。いくつかの実施形態において、同定されたコピー数バリアントは、サンプル中の不均一性に起因して、分数(すなわち、非整数レベル)である。いくつかの実施形態において、選択された領域の富化が、行われる。いくつかの実施形態において、コピー数多型の情報は、本明細書中に記載される方法に基づいて同時に抽出される。いくつかの実施形態において、上記方法は、ポリヌクレオチドを妨げて(bottlenecking)、サンプル中のポリヌクレオチドの、開始の最初のコピー数または多様性を制限する、最初の工程を含む。
本開示は、被験体から得られた無細胞のまたは実質的に無細胞のサンプル中の稀な変異を検出するための方法も提供し、その方法は、a)被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、その細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;b)指定の品質閾値を満たさないリードを除外する工程;c)配列決定工程に由来する配列リードを参照配列上にマッピングする工程;d)マッピング可能な各塩基位置において参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;e)マッピング可能な各塩基位置に対して、(a)参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;f)マッピング可能な各塩基位置に対してその比または分散の頻度を正規化し、潜在的な稀なバリアントまたは他の遺伝子変化を決定する工程;およびg)潜在的な稀なバリアントまたは変異を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程を含む。
本開示は、a)少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b)そのセット内のタグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;c)そのセットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;およびd)そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程を含む方法も提供する。
いくつかの実施形態において、あるセット内の各ポリヌクレオチドは、参照配列にマッピング可能である。いくつかの実施形態において、上記方法は、タグ化された親ポリヌクレオチドの複数のセットを提供する工程を含み、各セットは、参照配列中の異なるマッピング可能な位置にマッピング可能である。いくつかの実施形態において、上記方法は、e)タグ化された親分子の各セットについて、そのセットのコンセンサス配列を別々にまたは組み合わせて解析する工程をさらに含む。いくつかの実施形態において、上記方法は、開始の最初の遺伝物質を、タグ化された親ポリヌクレオチドに変換する工程をさらに含む。いくつかの実施形態において、開始の最初の遺伝物質は、100ng以下のポリヌクレオチドを含む。いくつかの実施形態において、上記方法は、変換前に、開始の最初の遺伝物質を制限する工程を含む。いくつかの実施形態において、上記方法は、開始の最初の遺伝物質を、タグ化された親ポリヌクレオチドに、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも80%または少なくとも90%の変換効率で変換する工程を含む。いくつかの実施形態において、変換工程は、平滑末端ライゲーション、粘着末端ライゲーション、分子反転プローブ、PCR、ライゲーションベースのPCR、一本鎖ライゲーションおよび一本鎖環状化のいずれかを含む。いくつかの実施形態において、開始の最初の遺伝物質は、無細胞核酸である。いくつかの実施形態において、複数のセットは、同じゲノム由来の参照配列内の異なるマッピング可能な位置に位置する。
いくつかの実施形態において、セット内のタグ化された親ポリヌクレオチドの各々は、ユニークにタグ化される。いくつかの実施形態において、親ポリヌクレオチドの各セットは、参照配列内の位置にマッピング可能であり、各セット内のポリヌクレオチドは、ユニークにタグ化されない。いくつかの実施形態において、コンセンサス配列の生成は、タグからの情報ならびに/または(i)配列リードの始めの(開始)領域における配列情報、(ii)配列リードの終わりの(終止)領域および(iii)配列リードの長さのうちの少なくとも1つに基づく。
いくつかの実施形態において、上記方法は、上記セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドの少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.9%または少なくとも99.99%の各々の少なくとも1つの子孫に対する配列リードを生成するのに十分な、上記セットの増幅された子孫ポリヌクレオチドのサブセットを配列決定する工程を含む。いくつかの実施形態において、少なくとも1つの子孫は、複数の子孫、例えば、少なくとも2つ、少なくとも5つまたは少なくとも10個の子孫である。いくつかの実施形態において、配列リードのセット内の配列リードの数は、タグ化された親ポリヌクレオチドのセット内のタグ化されたユニークな親ポリヌクレオチドの数よりも多い。いくつかの実施形態において、上記セットの配列決定された増幅された子孫ポリヌクレオチドのサブセットは、使用される配列決定プラットフォームの1塩基あたりの配列決定エラー率のパーセンテージと同じパーセンテージで、タグ化された親ポリヌクレオチドのセット内に表示される任意のヌクレオチド配列が、コンセンサス配列のセットの中に表示される少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.9%または少なくとも99.99%の確率を有するのに十分なサイズである。
いくつかの実施形態において、上記方法は、(i)タグ化された親ポリヌクレオチドに変換される開始の最初の遺伝物質からの配列の選択的増幅;(ii)タグ化された親ポリヌクレオチドの選択的増幅;(iii)増幅された子孫ポリヌクレオチドの選択的配列捕捉;または(iv)開始の最初の遺伝物質の選択的配列捕捉によって、参照配列中の1つ以上の選択されたマッピング可能な位置に位置するポリヌクレオチドについて、増幅された子孫ポリヌクレオチドのセットを富化する工程を含む。
いくつかの実施形態において、解析する工程は、コンセンサス配列のセットからもたらされた尺度(例えば、数)を、コントロールサンプル由来のコンセンサス配列のセットからもたらされた尺度に対して正規化する工程を含む。いくつかの実施形態において、解析する工程は、変異、稀な変異、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染またはがんを検出する工程を含む。
いくつかの実施形態において、ポリヌクレオチドは、DNA、RNA、それら2つの組み合わせまたはDNA+RNA由来cDNAを含む。いくつかの実施形態において、ポリヌクレオチドのある特定のサブセットは、最初のセットのポリヌクレオチドまたは増幅されたポリヌクレオチドから、塩基対を単位とするポリヌクレオチド長について選択されるかまたはそれに基づいて富化される。いくつかの実施形態において、解析は、感染および/またはがんなどの個体内の異常または疾患の検出およびモニタリングをさらに含む。いくつかの実施形態において、上記方法は、免疫レパートリーのプロファイリングと組み合わせて行われる。いくつかの実施形態において、ポリヌクレオチドは、血液、血漿、血清、尿、唾液、粘膜排出物、痰、便および涙からなる群より選択されるサンプルから抽出される。いくつかの実施形態において、折りたたむ工程は、タグ化された親ポリヌクレオチドまたは増幅された子孫ポリヌクレオチドのセンス鎖もしくはアンチセンス鎖に存在するエラー、ニックまたは損傷を検出することおよび/または訂正することを含む。
本開示は、ユニークにタグ化されない開始の最初の遺伝物質中の遺伝的変異を、少なくとも5%、少なくとも1%、少なくとも0.5%、少なくとも0.1%または少なくとも0.05%の感度で検出する工程を含む方法も提供する。
いくつかの実施形態において、開始の最初の遺伝物質は、100ng未満の量の核酸で提供され、遺伝的変異は、コピー数多型/ヘテロ接合性変異であり、検出する工程は、染色体より小さい解像度;例えば、少なくとも100メガベースの解像度、少なくとも10メガベースの解像度、少なくとも1メガベースの解像度、少なくとも100キロベースの解像度、少なくとも10キロベースの解像度または少なくとも1キロベースの解像度で行われる。いくつかの実施形態において、上記方法は、タグ化された親ポリヌクレオチドの複数のセットを提供する工程を含み、各セットは、参照配列中の異なるマッピング可能な位置にマッピング可能である。いくつかの実施形態において、参照配列中のマッピング可能な位置は、腫瘍マーカーの遺伝子座であり、解析する工程は、上記セットのコンセンサス配列内に腫瘍マーカーを検出する工程を含む。
いくつかの実施形態において、腫瘍マーカーは、増幅する工程において導入されるエラー率より低い頻度で、コンセンサス配列のセットに存在する。いくつかの実施形態において、少なくとも1つのセットは、複数のセットであり、参照配列のマッピング可能な位置は、参照配列中の複数のマッピング可能な位置を含み、そのマッピング可能な位置の各々は、腫瘍マーカーの遺伝子座である。いくつかの実施形態において、解析する工程は、親ポリヌクレオチドの少なくとも2つのセットの間にコンセンサス配列のコピー数多型を検出する工程を含む。いくつかの実施形態において、解析する工程は、参照配列と比べて配列変異の存在を検出する工程を含む。
いくつかの実施形態において、解析する工程は、参照配列と比べて配列変異の存在を検出する工程および親ポリヌクレオチドの少なくとも2つのセットの間にコンセンサス配列のコピー数多型を検出する工程を含む。いくつかの実施形態において、折りたたむ工程は、(i)増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化する工程であって、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、工程;および(ii)ファミリー内の配列リードに基づいてコンセンサス配列を決定する工程を含む。
本開示は、以下の工程:a)少なくとも1つのセットのタグ化された親ポリヌクレオチドを受け取る工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b)そのセット内のタグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;c)そのセットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;d)そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程、および必要に応じて、e)コンセンサス配列のセットを、タグ化された親分子の各セットについて解析する工程を行うためのコンピュータ可読媒体を備えるシステムも提供する。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも10%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも20%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも30%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも40%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも50%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも60%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも70%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも80%が、配列決定される。
本開示は、個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも90%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも10%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも20%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも30%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも40%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも50%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも60%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも70%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも80%が、配列決定される。
本開示は、個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法も提供し、その検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、個体のゲノムの少なくとも90%が、配列決定される。
いくつかの実施形態において、遺伝子変化は、コピー数多型または1つ以上の稀な変異である。いくつかの実施形態において、遺伝的変異は、1つ以上の原因バリアントおよび1つ以上の多型を含む。いくつかの実施形態において、個体における遺伝子変化および/または遺伝的変異の量は、公知の疾患を有する1つ以上の個体における遺伝子変化および/または遺伝的変異の量と比較され得る。いくつかの実施形態において、個体における遺伝子変化および/または遺伝的変異の量は、疾患を有しない1つ以上の個体における遺伝子変化および/または遺伝的変異の量と比較され得る。いくつかの実施形態において、無細胞核酸は、DNAである。いくつかの実施形態において、無細胞核酸は、RNAである。いくつかの実施形態において、無細胞核酸は、DNAおよびRNAである。いくつかの実施形態において、疾患は、がんまたは前がん状態である。いくつかの実施形態において、上記方法は、疾患の診断または処置をさらに含む。
本開示は、a)少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b)そのセット内のタグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;c)そのセットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;d)そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;およびe)コンセンサス配列の中から、品質閾値を満たさないものを除外する工程を含む方法も提供する。
いくつかの実施形態において、品質閾値は、コンセンサス配列に折りたたまれた増幅された子孫ポリヌクレオチド由来の配列リードの数を考慮する。いくつかの実施形態において、品質閾値は、コンセンサス配列に折りたたまれた増幅された子孫ポリヌクレオチド由来の配列リードの数を考慮する。
本開示は、本明細書中に記載される方法を行うためのコンピュータ可読媒体を備えるシステムも提供する。
本開示は、a)少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程であって、各セットは、1つ以上のゲノム内の参照配列中の異なるマッピング可能な位置に位置し、タグ化された親ポリヌクレオチドの各セットに対して;i)第1ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;ii)そのセットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;iii)(1)増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化することによって、配列リードを折りたたむ工程であって、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、工程を含む方法も提供する。
いくつかの実施形態において、折りたたむ工程は、各ファミリー内の配列リードの定量的尺度を決定する工程をさらに含む。いくつかの実施形態において、上記方法は、a)ユニークなファミリーの定量的尺度を決定する工程;およびb)(1)ユニークなファミリーの定量的尺度および(2)各グループ内の配列リードの定量的尺度に基づいて、セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程をさらに含む。いくつかの実施形態において、推論する工程は、統計的モデルまたは確率的モデルを使用して行われる。いくつかの実施形態において、少なくとも1つのセットは、複数のセットである。いくつかの実施形態において、上記方法は、2つのセットの間の増幅バイアスまたは表示バイアスについて訂正する工程をさらに含む。いくつかの実施形態において、上記方法は、コントロールまたはコントロールサンプルのセットを使用することにより、2つのセットの間の増幅バイアスまたは表示バイアスについて訂正する工程をさらに含む。いくつかの実施形態において、上記方法は、セット間のコピー数多型を決定する工程をさらに含む。
いくつかの実施形態において、上記方法は、d)ファミリーの間の多型の形態の定量的尺度を決定する工程;およびe)多型の形態の決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程をさらに含む。いくつかの実施形態において、多型の形態には、置換、挿入、欠失、逆位、マイクロサテライトの変化、トランスバージョン、転座、融合、メチル化、過剰メチル化、ヒドロキシメチル化、アセチル化、エピジェネティックなバリアント、制御関連バリアントまたはタンパク質結合部位が含まれるがこれらに限定されない。
いくつかの実施形態において、上記セットは、共通のサンプルに由来し、上記方法は、d)参照配列中の複数のマッピング可能な位置の各々に位置する、各セット内のタグ化された親ポリヌクレオチドの推論される数の比較に基づいて、複数のセットに対してコピー数多型を推論する工程をさらに含む。いくつかの実施形態において、各セット内のポリヌクレオチドの元の数が、さらに推論される。いくつかの実施形態において、各セット内のタグ化された親ポリヌクレオチドの少なくとも1つのサブセットは、ユニークにタグ化されない。
本開示は、ポリヌクレオチドを含むサンプル中のコピー数多型を決定する方法も提供し、その方法は、a)少なくとも2つのセットの第1ポリヌクレオチドを提供する工程であって、各セットは、ゲノム内の参照配列中の異なるマッピング可能な位置に位置し、第1ポリヌクレオチドの各セットに対して;(i)ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;(ii)そのセットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;(iii)増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化し、各ファミリーは、そのセット内の同じ第1ポリヌクレオチドから増幅され;(iv)そのセット内のファミリーの定量的尺度を推論する、工程;およびb)各セット内のファミリーの定量的尺度を比較することによって、コピー数多型を決定する工程を含む。
本開示は、ポリヌクレオチドのサンプル中の配列コールの頻度を推論する方法も提供し、その方法は、a)少なくとも1つのセットの第1ポリヌクレオチドを提供する工程であって、各セットは、1つ以上のゲノム内の参照配列中の異なるマッピング可能な位置に位置し、第1ポリヌクレオチドの各セットに対して;(i)第1ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;(ii)そのセットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;(iii)その配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;b)第1ポリヌクレオチドの各セットに対して、そのセットの第1ポリヌクレオチドにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、(i)各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、その信頼スコアは、ファミリーのメンバーの間のコールの頻度を考慮に入れている、工程;および(ii)各ファミリーに割り当てられた1つ以上のコールの信頼スコアを考慮に入れて、1つ以上のコールの頻度を推定する工程を含む、工程を含む。
本開示は、少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を通信する方法も提供し、その方法は、a)少なくとも1つの個々のポリヌクレオチド分子を提供する工程;b)その少なくとも1つの個々のポリヌクレオチド分子における配列情報を符号化することにより、信号を生成する工程;c)その信号の少なくとも一部をチャネルに通すことにより、少なくとも1つの個々のポリヌクレオチド分子に関するヌクレオチド配列情報を含む受信信号を生成する工程(その受信信号は、ノイズおよび/または歪みを含む);d)受信信号を復号することにより、少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージを生成する工程(復号は、メッセージ内の個々の各ポリヌクレオチドに関するノイズおよび/または歪みを減少させる);およびe)その少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージをレシピエントに提供する工程を含む。
いくつかの実施形態において、ノイズは、誤ったヌクレオチドコールを含む。いくつかの実施形態において、歪みは、他の個々のポリヌクレオチド分子と比べて、個々のポリヌクレオチド分子の不均一な増幅を含む。いくつかの実施形態において、歪みは、増幅バイアスまたは配列決定バイアスに起因する。いくつかの実施形態において、少なくとも1つの個々のポリヌクレオチド分子は、複数の個々のポリヌクレオチド分子であり、復号する工程は、その複数の中の各分子に関するメッセージを生成する。いくつかの実施形態において、符号化する工程は、必要に応じてタグ化された少なくとも1つの個々のポリヌクレオチド分子を増幅する工程を含み、信号は、増幅された分子のコレクションを含む。いくつかの実施形態において、チャネルは、ポリヌクレオチド配列分析装置を構成し、受信信号は、少なくとも1つの個々のポリヌクレオチド分子から増幅された複数のポリヌクレオチドの配列リードを含む。いくつかの実施形態において、復号する工程は、少なくとも1つの個々のポリヌクレオチド分子の各々から増幅された増幅分子の配列リードをグループ化する工程を含む。いくつかの実施形態において、復号する工程は、生成された配列信号を選別する確率的方法または統計学的方法からなる。
いくつかの実施形態において、ポリヌクレオチドは、腫瘍ゲノムDNAまたはRNAに由来する。いくつかの実施形態において、ポリヌクレオチドは、無細胞ポリヌクレオチド、エキソソームポリヌクレオチド、細菌ポリヌクレオチドまたはウイルスポリヌクレオチドに由来する。本明細書中の任意の方法のいくつかの実施形態において、その方法は、影響される分子経路の検出および/または関連付けをさらに含む。本明細書中の任意の方法のいくつかの実施形態において、その方法は、個体の健康状態または疾患状態の連続モニタリングをさらに含む。いくつかの実施形態において、個体内の疾患に関連するゲノムの系統発生が、推論される。いくつかの実施形態において、本明細書中に記載される方法のいずれかは、疾患の診断、モニタリングまたは処置をさらに含む。いくつかの実施形態において、処置レジメンは、検出された多型の形態またはCNVまたは関連する経路に基づいて選択されるかまたは改変される。いくつかの実施形態において、処置は、併用療法を含む。いくつかの実施形態において、診断は、放射線撮影法、例えば、CT−Scan、PET−CT、MRI、超音波、マイクロバブルを用いる超音波などを使用して、疾患の位置を特定する工程をさらに含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、ゲノム内の予め定義された領域を選択する工程;配列リードにアクセスし、予め定義された領域における配列リードの数を列挙する工程;予め定義された領域にわたって配列リードの数を正規化する工程;および予め定義された領域におけるコピー数多型のパーセントを決定する工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、複数の配列決定リードを含むデータファイルにアクセスする工程;指定の閾値を満たさないリードを除外する工程;配列決定工程に由来する配列リードを参照配列上にマッピングする工程;マッピング可能な各塩基位置において参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;マッピング可能な各塩基位置に対して、(a)参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;マッピング可能な各塩基位置に対してその比または分散の頻度を正規化し、潜在的な稀なバリアントまたは他の遺伝子変化を決定する工程;および潜在的な稀なバリアントまたは変異を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;およびb)そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;b)そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;およびc)コンセンサス配列の中から、品質閾値を満たさないものを除外する工程を含む。
コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;ならびにi)(1)増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化すること(各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される)および必要に応じて(2)各ファミリー内の配列リードの定量的尺度を決定することによって配列リードを折りたたむ工程を含む。
いくつかの実施形態において、コンピュータプロセッサによって実行されるとき、実行可能なコードは、b)ユニークなファミリーの定量的尺度を決定する工程;ならびにc)(1)ユニークなファミリーの定量的尺度および(2)各グループ内の配列リードの定量的尺度に基づいて、セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程をさらに行う。
いくつかの実施形態において、コンピュータプロセッサによって実行されるとき、実行可能なコードは、d)ファミリーの間の多型の形態の定量的尺度を決定する工程;およびe)多型の形態の決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程をさらに行う。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化し、各ファミリーは、そのセット内の同じ第1ポリヌクレオチドから増幅される、工程;b)そのセット内のファミリーの定量的尺度を推論する工程;およびc)各セット内のファミリーの定量的尺度を比較することによって、コピー数多型を決定する工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、その配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;b)第1ポリヌクレオチドの各セットに対して、第1ポリヌクレオチドのセットにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、c)各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、その信頼スコアは、ファミリーのメンバーの間のコールの頻度を考慮に入れている、工程;およびd)各ファミリーに割り当てられた1つ以上のコールの信頼スコアを考慮に入れて、1つ以上のコールの頻度を推定する、工程を含む、工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)少なくとも1つの個々のポリヌクレオチド分子由来の符号化された配列情報を含む受信信号を含むデータファイルにアクセスする工程(その受信信号は、ノイズおよび/または歪みを含む);b)受信信号を復号することにより、少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージを生成する工程(復号は、メッセージ内の個々の各ポリヌクレオチドに関するノイズおよび/または歪みを減少させる);およびc)少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージをコンピュータファイルに書き込む工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;b)そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;およびc)コンセンサス配列の中から、品質閾値を満たさないものを除外する工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;ならびにb)(i)増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化すること(各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される);および(ii)必要に応じて、各ファミリー内の配列リードの定量的尺度を決定することによって配列リードを折りたたむ工程を含む。
いくつかの実施形態において、コンピュータプロセッサによって実行されるとき、実行可能なコードは、d)ユニークなファミリーの定量的尺度を決定する工程;e)(1)ユニークなファミリーの定量的尺度および(2)各グループ内の配列リードの定量的尺度に基づいて、セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程をさらに行う。
いくつかの実施形態において、コンピュータプロセッサによって実行されるとき、実行可能なコードは、e)ファミリーの間の多型の形態の定量的尺度を決定する工程;およびf)多型の形態の決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程をさらに行う。
いくつかの実施形態において、コンピュータプロセッサによって実行されるとき、実行可能なコードは、e)複数の参照配列の各々に位置する、各セット内のタグ化された親ポリヌクレオチドの推論される数の比較に基づいて、複数のセットに対してコピー数多型を推論する工程をさらに行う。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、a)複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;b)増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化する工程であって、各ファミリーは、そのセット内の同じ第1ポリヌクレオチドから増幅される、工程;c)そのセット内のファミリーの定量的尺度を推論する工程;d)各セット内のファミリーの定量的尺度を比較することによって、コピー数多型を決定する工程を含む。
本開示は、コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体も提供し、その方法は、複数の配列決定リードを含むデータファイルにアクセスする工程であって、その配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、その配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;および第1ポリヌクレオチドの各セットに対して、そのセットの第1ポリヌクレオチドにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、(i)各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、その信頼スコアは、そのファミリーのメンバーの間のコールの頻度を考慮に入れている、工程;および(ii)各ファミリーに割り当てられた1つ以上のコールの信頼スコアを考慮に入れて、1つ以上のコールの頻度を推定する工程を含む工程を含む。
本開示は、100〜100,000個のヒト半数体ゲノム等価物のcfDNAポリヌクレオチドを含む組成物も提供し、そのポリヌクレオチドは、2〜1,000,000個のユニークな識別子でタグ化される。
いくつかの実施形態において、組成物は、1000〜50,000個の半数体ヒトゲノム等価物のcfDNAポリヌクレオチドを含み、そのポリヌクレオチドは、2〜1,000個のユニークな識別子でタグ化される。いくつかの実施形態において、ユニークな識別子は、ヌクレオチドバーコードを含む。本開示は、a)100〜100,000個の半数体ヒトゲノム等価物のcfDNAポリヌクレオチドを含むサンプルを提供する工程;およびb)そのポリヌクレオチドを2〜1,000,000個のユニークな識別子でタグ化する工程を含む方法も提供する。
本開示は、a)複数のヒト半数体ゲノム等価物の断片化されたポリヌクレオチドを含むサンプルを提供する工程;b)zを決定する工程(zは、そのゲノム内の任意の位置から開始する2つ組のポリヌクレオチドの期待数の中心傾向の尺度(例えば、平均値、中央値または最頻値)であり、2つ組のポリヌクレオチドは、同じ開始位置および終止位置を有する);およびc)サンプル中のポリヌクレオチドをn個のユニークな識別子でタグ化する工程(nは、2〜100,000z、2〜10,000z、2〜1,000zまたは2〜100zである)を含む方法も提供する。本開示は、a)少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;b)そのセット内のタグ化された親ポリヌクレオチドの各々に対して複数の配列リードを生成することにより、配列決定リードのセットを生成する工程;およびc)そのセットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、そのセットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程を含む方法も提供する。
本開示は、本明細書中に記載されるような機械実行可能コードを含むコンピュータ可読媒体を備えるシステムも提供する。本開示は、コンピュータプロセッサによって実行されるとき、本明細書中に記載されるような方法を実行する機械実行可能コードを含むコンピュータ可読媒体を備えるシステムも提供する。
本開示のさらなる態様および利点は、以下の詳細な説明(ここで、本開示の単なる例証的な実施形態が示され、記載される)から、当業者に容易に明らかになるだろう。理解されるように、本開示は、他の実施形態および異なる実施形態が可能であり、そのいくつかの詳細は、すべてが本開示から逸脱せずに、様々な明らかな点において改変が可能である。したがって、図面および明細書は、例証的な性質であると見なされるべきであって、限定的と見なされるべきでない。
参照による援用
本明細書で言及されるすべての刊行物、特許および特許出願は、各個別の刊行物、特許または特許出願が、具体的かつ個別に参照により援用されると示されているかのように同程度に、参照により本明細書中に援用される。
本開示のシステムおよび方法の新規特徴は、添付の請求項に詳細に説明されている。本開示の特徴および利点のよりよい理解が、例証的な実施形態を説明している以下の詳細な説明(本開示のシステムおよび方法の原理が利用されている)および添付の図面を参照することにより得られるだろう:
図1は、単一のサンプルを使用してコピー数多型を検出する方法のフローチャート図である。
図2は、対のサンプルを使用してコピー数多型を検出する方法のフローチャート図である。
図3は、稀な変異(例えば、単一ヌクレオチドバリアント)を検出する方法のフローチャート図である。
図4Aは、正常な非がん性の被験体から生成された、グラフによるコピー数多型の検出レポートである。
図4Bは、前立腺がんを有する被験体から生成された、グラフによるコピー数多型の検出レポートである。
図4Cは、前立腺がんを有する被験体のコピー数多型解析から生成されたレポートのインターネットで可能なアクセスの模式図である。
図5Aは、前立腺がんが寛解している被験体から生成された、グラフによるコピー数多型の検出レポートである。
図5Bは、前立腺再発がんを有する被験体から生成された、グラフによるコピー数多型の検出レポートである。
図6Aは、METおよびTP53の野生型コピーと変異体コピーの両方を含むDNAサンプルを使用した様々な混合実験から生成された、グラフによる検出レポート(例えば、単一ヌクレオチドバリアントに対する)である。
図6Bは、検出結果の対数グラフの図である(例えば、単一ヌクレオチドバリアント)。パーセントがん測定値の実測値対期待値が、MET、HRASおよびTP53の野生型コピーと変異体コピーの両方を含むDNAサンプルを使用した様々な混合実験に対して示されている。
図7Aは、参照(コントロール)と比較した、前立腺がんを有する被験体における2つの遺伝子、PIK3CAおよびTP53における2つ(例えば、単一ヌクレオチドバリアント)のパーセンテージのグラフによるレポートである。
図7Bは、前立腺がんを有する被験体の(例えば、単一ヌクレオチドバリアント)解析から生成されたレポートのインターネットで可能なアクセスの模式図である。
図8は、遺伝物質を解析する方法のフローチャート図である。
図9は、タグ化された親ポリヌクレオチドのセットにおける情報の表示をノイズおよび/または歪みが少ない状態で生成する配列リードのセットにおける情報を復号する方法のフローチャート図である。
図10は、配列リードのセットからのCNVの決定における歪みを減少させる方法のフローチャート図である。
図11は、配列リードのセットからタグ化された親ポリヌクレオチド集団中のある遺伝子座における塩基または塩基の配列の頻度を推定する方法のフローチャート図である。
図12は、配列情報を通信する方法を示している。
図13は、標準的な配列決定法およびデジタル配列決定ワークフローを使用した0.3%LNCaP cfDNA滴定において70kbのパネル全体にわたって検出されたマイナーな対立遺伝子頻度を示している。標準的な「アナログな」配列決定法(図13A)は、Q30フィルタリングにもかかわらず、PCRエラーおよび配列決定エラーに起因して、極めて大きいノイズの中に真陽性の稀なバリアントのすべてをマスクしてしまう。デジタル配列決定法(図13B)は、すべてのPCRノイズおよび配列決定ノイズを排除することから、偽陽性でない真の変異を明らかにする:緑色の丸は、正常なcfDNAにおけるSNPポイントであり、赤色の丸は、検出されたLNCaP変異である。
図14:LNCap cfDNAの滴定を示している。
図15は、本開示の様々な方法を実行するようにプログラムされたまたは別途設定された、コンピュータシステムを示している。
発明の詳細な説明
I.全体的な概要
本開示は、無細胞ポリヌクレオチド中の稀な変異(例えば、単一または複数個のヌクレオチド変異)およびコピー数多型を検出するためのシステムおよび方法を提供する。概して、本システムおよび方法は、サンプル調製または体液からの無細胞ポリヌクレオチド配列の抽出および単離;それに続く、当該分野で公知の手法による無細胞ポリヌクレオチドの配列決定;ならびに参照と比較して、稀な変異およびコピー数多型を検出するバイオインフォマティクスツールの適用を含む。本システムおよび方法は、稀な変異の検出(例えば、単一ヌクレオチド変異のプロファイリング)、コピー数多型のプロファイリングまたは疾患の一般的な遺伝子プロファイリングを助ける際にさらなる参照として使用される、種々の稀な変異または種々の疾患のコピー数多型プロファイルのデータベースまたはコレクションも含み得る。
本システムおよび方法は、無細胞DNAの解析において、特に有用であり得る。場合によっては、無細胞DNAは、血液などの容易に入手可能な体液から抽出され、単離される。例えば、無細胞DNAは、イソプロパノール沈殿および/またはシリカベースの精製を含むがこれらに限定されない当該分野で公知の種々の方法を用いて抽出され得る。無細胞DNAは、任意の数の被験体(例えば、がんを有しない被験体、がんのリスクがある被験体または(例えば、他の手段を通じて)がんを有すると判明している被験体)から抽出され得る。
単離/抽出工程の後、いくつかの異なる配列決定作業のいずれかが、無細胞ポリヌクレオチドサンプルに対して行われ得る。サンプルは、配列決定前に、1つ以上の試薬(例えば、酵素、ユニークな識別子(例えば、バーコード)、プローブなど)を用いて処理され得る。場合によっては、サンプルが、バーコードなどのユニークな識別子で処理される場合、そのサンプルまたはサンプルのフラグメントは、個々にまたはサブグループとして、ユニークな識別子でタグ化され得る。次いで、タグ化されたサンプルは、個々の分子の親分子を突き止め得る配列決定反応などの下流の適用において使用され得る。
無細胞ポリヌクレオチド配列のシーケンシングデータが収集された後、その配列データに1つ以上のバイオインフォマティクスプロセスを適用することにより、遺伝子の特徴または異常(例えば、コピー数多型、稀な変異(例えば、単一または複数個のヌクレオチド変異)、またはメチル化プロファイルを含むがこれに限定されないエピジェネティックマーカーの変化)が検出され得る。コピー数多型の解析が望まれる場合、配列データは、1)参照ゲノムとアラインメントされ得;2)選別されて、マッピングされ得;3)配列のウィンドウまたはビンに分割され得;4)カバー率リードが、各ウィンドウに対してカウントされ得;5)次いで、確率論的または統計的モデリングアルゴリズムを使用して、カバー率リードが正規化され得;6)そのゲノム内の様々な位置における別個のコピー数の状態を反映する出力ファイルが生成され得る。稀な変異の解析が望まれる他の場合では、配列データは、1)参照ゲノムとアラインメントされ得;2)選別されて、マッピングされ得;3)その特定の塩基に対するカバー率リードに基づいて、バリアント塩基の頻度が計算され得;4)確率論的、統計的または確率的モデリングアルゴリズムを使用して、バリアント塩基の頻度が正規化され得;5)そのゲノム内の様々な位置における変異の状態を反映する出力ファイルが生成され得る。
核酸の配列決定、核酸の定量、配列決定の最適化、遺伝子発現の検出、遺伝子発現の定量、ゲノムのプロファイリング、がんのプロファイリングまたは発現されたマーカーの解析を含むがこれらに限定されない、種々の異なる反応および/作業が、本明細書中に開示されるシステムおよび方法において行われ得る。さらに、本システムおよび方法は、数多くの医学的用途を有する。例えば、それは、様々な遺伝性疾患および非遺伝性疾患ならびにがんを含む障害の同定、検出、診断、処置、病期分類またはリスク予測のために使用され得る。それは、前記遺伝性疾患および非遺伝性疾患の種々の処置に対する被験体の応答を評価するため、または疾患の進行および予後に関する情報を提供するために使用され得る。
ポリヌクレオチドの配列決定は、コミュニケーション理論の問題と比較され得る。最初の個々のポリヌクレオチドまたはポリヌクレオチドの集合は、元のメッセージと考えられる。タグ化および/または増幅は、その元のメッセージを信号に符号化すると考えられ得る。配列決定は、コミュニケーションチャネルと考えられ得る。配列分析装置のアウトプット、例えば、配列リードは、受信信号と考えられ得る。バイオインフォマティクス処理は、受信信号を復号することにより、送信されるメッセージ、例えば、ヌクレオチド配列を生成する受信機と考えられ得る。受信信号は、ノイズおよび歪みなどのアーチファクトを含み得る。ノイズは、信号への望まれないランダムな付加と考えられ得る。歪みは、信号または信号の一部の振幅の変化と考えられ得る。
ポリヌクレオチドを複製および/または解読する際のエラーによって、ノイズが導入され得る。例えば、配列決定プロセスでは、まず、単一のポリヌクレオチドが、増幅に供され得る。増幅により、エラーが導入され得、その結果、増幅されたポリヌクレオチドのサブセットは、特定の遺伝子座に元の塩基と同じでない塩基をその遺伝子座に含み得る。また、解読プロセスにおいて、任意の特定の遺伝子座における塩基は、誤って解読され得る。結果として、配列リードのコレクションには、ある遺伝子座に、ある特定のパーセンテージの元の塩基と同じでない塩基コールが含まれ得る。代表的な配列決定技術において、このエラー率は、1桁、例えば、2%〜3%であり得る。すべてが同じ配列を有すると推定される分子のコレクションが配列決定されるとき、このノイズは、元の塩基を高い信頼度で同定できるほど十分に小さい。
しかしながら、親ポリヌクレオチドのコレクションが、特定の遺伝子座に配列バリアントを有するポリヌクレオチドのサブセットを含む場合、ノイズは、重大な問題であり得る。これは、例えば、無細胞DNAが、生殖細胞系列DNAだけでなく別の起源由来のDNA(例えば、胎児のDNAまたはがん細胞由来のDNA)も含む場合であり得る。この場合、配列バリアントを有する分子の頻度が、配列決定プロセスによって導入されるエラーの頻度と同じ範囲内である場合、真の配列バリアントは、ノイズと識別可能でない可能性がある。これは、例えば、サンプル中の配列バリアントの検出を干渉し得る。
歪みは、親集団内の分子によって同じ頻度で生成される信号強度の差、例えば、配列リードの総数として、配列決定プロセスにおいて表われ得る。歪みは、例えば、増幅バイアス、GCバイアスまたは配列決定バイアスによって、導入され得る。これは、サンプル中のコピー数多型の検出を干渉し得る。GCバイアスは、配列の解読において、GC含有量が多いまたは少ない領域の不均一な表示をもたらす。
本発明は、ポリヌクレオチド配列決定プロセスにおいて配列決定のアーチファクト(例えば、ノイズおよび/または歪み)を減少させる方法を提供する。元の個々の分子に由来する配列リードをファミリーにグループ化することにより、単一の個々の分子または分子の集合からノイズおよび/または歪みが減少し得る。単一分子に関しては、リードをファミリーにグループ化することにより、例えば、多くの配列リードが、実際には、多くの異なる分子ではなく単一分子であることを指摘することによって、歪みが減少する。配列リードをコンセンサス配列に折りたたむことは、1つの分子からの受信メッセージにおけるノイズを減少させる1つの方法である。受信周波数を変換する確率的関数を使用することが、別の方法である。分子の集合に関しては、リードをファミリーにグループ化し、それらのファミリーの定量的尺度を決定することにより、例えば、複数の異なる遺伝子座の各々における分子の数量の歪みが減少する。また、種々のファミリーの配列リードをコンセンサス配列に折りたたむことにより、増幅エラーおよび/または配列決定エラーによって導入されるエラーが排除される。また、ファミリー情報に由来する確率に基づいて塩基コールの頻度を決定することによってもまた、分子の集合から、受信メッセージにおけるノイズが減少する。
配列決定プロセスからノイズおよび/または歪みを減少させる方法は、公知である。これらには、例えば、配列を選別すること、例えば、配列が品質閾値を満たすことを要求すること、またはGCバイアスを減少させることが含まれる。そのような方法は、代表的には、配列分析装置のアウトプットである配列リードのコレクションに対して行われ、ファミリー構造(単一の元の親分子に由来する配列のサブコレクション)に関係なく配列リード毎に行われ得る。本発明のある特定の方法は、配列リードのファミリー内のノイズおよび/または歪みを減少させることによって、すなわち、単一の親ポリヌクレオチド分子に由来するファミリーにグループ化された配列リードに対して作用することによって、ノイズおよび歪みを減少させる。ファミリーレベルでの信号アーチファクトの減少は、配列リード毎のレベルでまたは配列分析装置のアウトプットに対して全体として行われるアーチファクトの減少よりも、有意に少ないノイズおよび歪みを、提供される最終メッセージにもたらし得る。
本開示はさらに、最初の遺伝物質のサンプル中の遺伝的変異を高感度で検出するための方法およびシステムを提供する。本方法は、以下のツールの一方または両方を使用することを含む:第1に、最初の遺伝物質のサンプル中の個々のポリヌクレオチドが、すぐに配列決定できるサンプル中に表される確率を上げるために、最初の遺伝物質のサンプル中の個々のポリヌクレオチドを、すぐに配列決定できるタグ化された親ポリヌクレオチドに効率的に変換すること。これにより、その最初のサンプル中により多くのポリヌクレオチドに関する配列情報が生成され得る。第2に、タグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドの高速サンプリングによる、タグ化された親ポリヌクレオチドに対するコンセンサス配列の高収率生成、およびタグ化された親ポリヌクレオチドの配列を代表するコンセンサス配列への、生成された配列リードの折りたたみ。これにより、増幅バイアスおよび/または配列決定エラーによって導入されるノイズが減少し得、検出の感度が高まり得る。折りたたみは、増幅された分子のリードまたは単一分子の複数個のリードから生成された、複数の配列リードに対して行われる。
配列決定方法は、代表的には、サンプル調製、調製されたサンプル中のポリヌクレオチドを配列決定することにより配列リードを得ること、およびそれらの配列リードのバイオインフォマティクス操作により、そのサンプルに関する定量的および/または定性的な遺伝情報を得ることを含む。サンプル調製は、代表的には、サンプル中のポリヌクレオチドを、使用される配列決定プラットフォームと適合する形態に変換することを含む。この変換は、ポリヌクレオチドのタグ化を含み得る。本発明のある特定の実施形態において、タグは、ポリヌクレオチド配列タグを含む。配列決定において使用される変換方法は、100%効率的でない可能性がある。例えば、サンプル中のポリヌクレオチドを約1〜5%の変換効率で変換すること、すなわち、サンプル中のポリヌクレオチドの約1〜5%が、タグ化されたポリヌクレオチドに変換されることも珍しくない。タグ化された分子に変換されないポリヌクレオチドは、配列決定用のタグ化されたライブラリー中に表われない。したがって、最初の遺伝物質に低頻度で表れる遺伝的バリアントを有するポリヌクレオチドは、タグ化されたライブラリー中に表れない可能性があり、ゆえに、配列決定または検出されない可能性がある。変換効率を高めることによって、最初の遺伝物質中の稀なポリヌクレオチドが、タグ化されたライブラリー中に表われ、その結果として、配列決定によって検出される確率が高まる。また、今までの大抵のプロトコルは、ライブラリー調製の低変換効率の問題に直接対処するのではなく、インプット材料として1マイクログラムを超えるDNAを要求する。しかしながら、インプットサンプル材料が限定的であるとき、または低提示のポリヌクレオチドの検出が望まれるとき、高い変換効率によって、サンプルが効率的に配列決定され得るおよび/またはそのようなポリヌクレオチドが適切に検出され得る。
本開示は、最初のポリヌクレオチドを、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも80%または少なくとも90%の変換効率で、タグ化されたポリヌクレオチドに変換する方法を提供する。本方法は、例えば、平滑末端ライゲーション、粘着末端ライゲーション、分子反転プローブ、PCR、ライゲーションベースのPCR、多重PCR、一本鎖ライゲーションおよび一本鎖環状化のいずれかを使用することを含む。本方法は、最初の遺伝物質の量を限定する工程も含み得る。例えば、最初の遺伝物質の量は、1μg未満、100ng未満または10ng未満であり得る。これらの方法は、本明細書中でさらに詳細に記載される。
タグ化されたライブラリー中のポリヌクレオチドに関する正確な定量的および定性的な情報を得ることにより、最初の遺伝物質のより高感度の特徴付けがもたらされ得る。代表的には、タグ化されたライブラリー中のポリヌクレオチドを増幅し、得られた増幅分子を配列決定する。使用される配列決定プラットフォームの処理能力に応じて、増幅されたライブラリー中の分子のサブセットだけが、配列リードを生成する。ゆえに、例えば、配列決定のためにサンプリングされた増幅分子の数は、タグ化されたライブラリー中のユニークなポリヌクレオチドのわずか約50%であり得る。また、増幅は、タグ化されたライブラリーのある特定の配列またはある特定のメンバーを優先してまたはそれらに対抗して偏り得る。これは、タグ化されたライブラリー中の配列の定量的測定を歪め得る。また、配列決定プラットフォームは、配列決定する際にエラーを導入し得る。例えば、配列は、0.5〜1%という1塩基あたりのエラー率を有し得る。増幅バイアスおよび配列決定エラーは、最終的な配列決定産物にノイズを導入する。このノイズは、検出感度を低下させ得る。例えば、タグ化された集団内の頻度が配列決定エラー率より低い配列バリアントは、ノイズと間違われ得る。配列のリードを、集団内の実際の数よりも多いまたは少ない量で提供することによってもまた、増幅バイアスは、コピー数多型の実測値を歪め得る。あるいは、単一のポリヌクレオチド由来の複数の配列リードは、増幅なしで生成され得る。これは、例えば、ナノポア法を用いて行われ得る。
本開示は、タグ化されたプール中のユニークなポリヌクレオチドを正確に検出および解読する方法を提供する。ある特定の実施形態において、本開示は、増幅されて配列決定されるとき、または複数回配列決定されることにより複数の配列リードが生成されるとき、子孫ポリヌクレオチドをユニークなタグの親ポリヌクレオチド分子にさかのぼるかまたは折りたたむことを可能にする情報を提供する、配列タグ化されたポリヌクレオチドを提供する。増幅された子孫ポリヌクレオチドのファミリーを折りたたむことは、元のユニークな親分子に関する情報を提供することによって、増幅バイアスを減少させる。折りたたみは、配列決定データから子孫分子の変異体配列を排除することによって、配列決定エラーも減少させる。
タグ化されたライブラリー中のユニークなポリヌクレオチドの検出および解読は、2つのストラテジーを伴い得る。1つのストラテジーでは、タグ化された親ポリヌクレオチドのセット内の、タグ化されたユニークな親ポリヌクレオチドが高いパーセンテージであるために、タグ化されたユニークな親ポリヌクレオチドから生成されたファミリー内に少なくとも1つの増幅された子孫ポリヌクレオチドに対して生成される配列リードが存在するように、増幅された子孫ポリヌクレオチドプールの十分に大きなサブセットを配列決定する。第2のストラテジーでは、増幅された子孫ポリヌクレオチドセットを、ユニークな親ポリヌクレオチドに由来するファミリーの複数個の子孫メンバーから配列リードを生成するレベルで配列決定するためにサンプリングする。あるファミリーの複数個の子孫メンバー由来の配列リードの生成によって、コンセンサス親配列への配列の折りたたみが可能になる。
したがって、例えば、タグ化された親ポリヌクレオチドのセット内のタグ化されたユニークな親ポリヌクレオチドの数に等しい増幅された子孫ポリヌクレオチドのセットからいくつかの増幅された子孫ポリヌクレオチドをサンプリングすることによって(特に、その数が、少なくとも10,000であるとき)、統計的に、そのセット内のタグ化された親ポリヌクレオチドの約68%の子孫の少なくとも1つに対して配列リードが生成され、元のセットの中のタグ化されたユニークな親ポリヌクレオチドの約40%は、少なくとも2つの子孫配列リードによって表示され得る。ある特定の実施形態において、増幅された子孫ポリヌクレオチドセットは、各ファミリーに対して平均5〜10個の配列リードが生成されるように、十分にサンプリングされる。タグ化されたユニークな親ポリヌクレオチドの数より10倍多い分子の増幅された子孫セットからのサンプリングは、統計的に、そのファミリーの99.995%に関する配列情報を生成し得る(ファミリー全体の99.95%が、複数の配列リードによってカバーされ得る)。コンセンサス配列は、名目上の1塩基あたりの配列決定エラー率から、おそらくそれより多数桁小さい率までエラー率を劇的に低下させるように、各ファミリー内の子孫ポリヌクレオチドから構築され得る。例えば、配列分析装置が、1%というランダムな1塩基あたりのエラー率を有し、かつ選択されたファミリーが、10個のリードを有する場合、これらの10個のリードから構築されたコンセンサス配列は、0.0001%未満のエラー率を有するだろう。したがって、配列決定される増幅された子孫のサンプリングサイズは、サンプル中に、使用される配列決定プラットフォームの割合に対して名目上の1塩基あたりの配列決定エラー率以下の頻度を有し、少なくとも1つのリードによって表される少なくとも99%の確率を有する配列を保証するように選択され得る。
別の実施形態において、増幅された子孫ポリヌクレオチドのセットは、使用される配列決定プラットフォームの1塩基あたりの配列決定エラー率とほぼ同じ頻度で、タグ化された親ポリヌクレオチドのセットに表示される配列が、少なくとも1つの配列リード、好ましくは、複数の配列リードによってカバーされる、高い確率、例えば、少なくとも90%をもたらすレベルまでサンプリングされる。ゆえに、例えば、配列決定プラットフォームが、ある配列において0.2%という1塩基あたりのエラー率を有するか、または配列のセットが、タグ化された親ポリヌクレオチドのセットにおいて約0.2%という頻度で表示される場合、配列決定された増幅された子孫プール中のポリヌクレオチドの数は、タグ化された親ポリヌクレオチドのセット内のユニークな分子の数の約X倍であり得る。
これらの方法は、記載されるノイズを減少させる方法のいずれかと組み合わされ得る。例えば、コンセンサス配列を生成するために使用される配列のプールに含めるための配列リードに条件付けること(qualifying)を含む。
この情報は、ここで、定性的解析と定量的解析の両方のために使用され得る。例えば、定量的解析の場合、参照配列に位置するタグ化された親分子の量の尺度、例えば、カウントが、決定される。この尺度は、異なるゲノム領域に位置するタグ化された親分子の尺度と比較され得る。すなわち、ヒトゲノムなどの参照配列中の第1の部位またはマッピング可能な位置に位置するタグ化された親分子の量が、参照配列中の第2の部位またはマッピング可能な位置に位置するタグ化された親分子の尺度と比較され得る。この比較により、例えば、各領域に位置する親分子の相対量が明らかにされ得る。そして、これにより、特定の領域に位置する分子に対するコピー数多型の指摘が提供される。例えば、第1の参照配列に位置するポリヌクレオチドの尺度が、第2の参照配列に位置するポリヌクレオチドの尺度より大きい場合、これは、その親集団、および伸長によって元のサンプルが、異数性を示す細胞由来のポリヌクレオチドを含んでいたことを示唆し得る。これらの尺度は、様々なバイアスを排除するためにコントロールサンプルに対して正規化され得る。定量的尺度としては、例えば、数、カウント、頻度(相対的なものであるか、推論されるものであるか、または絶対的なものであるかを問わない)が挙げられ得る。
参照ゲノムは、目的の任意の種のゲノムを含み得る。参照として有用なヒトゲノム配列は、hg19アセンブリまたは任意の以前のもしくは入手可能なhgアセンブリを含み得る。そのような配列は、genome.ucsc.edu/index.htmlで利用可能なゲノムブラウザ(brower)を使用して、問い合わせすることができる。他の種のゲノムとしては、例えば、PanTro2(チンパンジー)およびmm9(マウス)が挙げられる。
定性的な解析の場合、参照配列に位置するタグ化されたポリヌクレオチドのセット由来の配列が、バリアント配列について解析され得、タグ化された親ポリヌクレオチドの集団内のそれらの頻度が、計測され得る。
II.サンプル調製
A.ポリヌクレオチドの単離および抽出
本開示のシステムおよび方法は、無細胞ポリヌクレオチドの操作、調製、同定および/または定量において多種多様の用途を有し得る。ポリヌクレオチドの例としては、DNA、RNA、アンプリコン、cDNA、dsDNA、ssDNA、プラスミドDNA、コスミドDNA、高分子量(MW)DNA、染色体DNA、ゲノムDNA、ウイルスDNA、細菌DNA、mtDNA(ミトコンドリアDNA)、mRNA、rRNA、tRNA、nRNA、siRNA、snRNA、snoRNA、scaRNA、マイクロRNA、dsRNA、リボザイム、リボスイッチおよびウイルスRNA(例えば、レトロウイルスRNA)が挙げられるがこれらに限定されない。
無細胞ポリヌクレオチドは、ヒト、哺乳動物、非ヒト哺乳動物、類人猿、サル、チンパンジー、爬虫類、両生類または鳥類の起源を含む種々の起源に由来し得る。また、サンプルは、血液、血清、血漿、硝子液、痰、尿、涙、汗、唾液、精液、粘膜排出物、粘液、髄液、羊水、リンパ液などを含むがこれらに限定されない、無細胞配列を含む種々の動物体液から抽出され得る。無細胞ポリヌクレオチドは、胎児起源であり得るか(妊娠中の被験体から採取された体液を介して)、または被験体自身の組織に由来し得る。
無細胞ポリヌクレオチドの単離および抽出は、種々の手法を使用した体液の収集を通じて行われ得る。場合によっては、収集は、注射器を使用した被験体からの体液の吸引を含み得る。他の場合では、収集は、ピペット操作または回収容器への体液の直接の収集を含み得る。
体液を収集した後、無細胞ポリヌクレオチドは、当該分野で公知の種々の手法を使用して単離および抽出され得る。場合によっては、無細胞DNAは、Qiagen Qiamp(登録商標)Circulating Nucleic Acid Kitプロトコルなどの商業的に入手可能なキットを使用して単離、抽出および調製され得る。他の例では、Qiagen Qubit(商標)dsDNA HS Assayキットプロトコル、Agilent(商標)DNA 1000キットまたはTruSeq(商標)Sequencing Library Preparation;Low−Throughput(LT)プロトコルが、使用され得る。
概して、無細胞ポリヌクレオチドは、無細胞DNAが、溶液中に見られるとき、細胞および体液の他の不溶性成分から分離される分割工程を通じて体液から抽出および単離される。分割には、遠心分離または濾過などの手法が含まれ得るが、これらに限定されない。他の場合では、細胞は、最初に無細胞DNAから分割されず、溶解される。この例では、インタクトな細胞のゲノムDNAが、選択的沈殿によって分割される。DNAを含む無細胞ポリヌクレオチドは、可溶性のままであり得、不溶性のゲノムDNAから分離され得、抽出され得る。概して、緩衝液の添加および種々のキットに特異的な他の洗浄工程の後、DNAは、イソプロパノール沈殿を用いて沈殿され得る。夾雑物または塩を除去するためにシリカベースのカラムなどのさらなるクリーンアップ工程が使用され得る。一般的な工程は、特定の用途のために最適化され得る。例えば、非特異的なバルクキャリアポリヌクレオチドが、収率などのその手順のある特定の態様を最適化するために、反応全体にわたって加えられ得る。
無細胞DNAの単離および精製は、Sigma Aldrich、Life Technologies、Promega、Affymetrix、IBIなどのような会社によって提供される市販のキットおよびプロトコルの使用を含むがこれらに限定されない任意の手段を使用して達成され得る。キットおよびプロトコルは、商業的に入手可能でない可能性もある。
単離の後、場合によっては、無細胞ポリヌクレオチドは、配列決定前に、1つ以上のさらなる材料、例えば、1つ以上の試薬(例えば、リガーゼ、プロテアーゼ、ポリメラーゼ)と予め混合される。
変換効率を高める1つの方法は、一本鎖DNAに対する最適な反応性について操作されたリガーゼ(例えば、ThermoPhage ssDNAリガーゼ誘導体)を使用することを含む。そのようなリガーゼは、不良な効率を有し得るおよび/または中間のクリーンアップ工程に起因して損失を蓄積し得る、末端修復およびA−テーリングの、ライブラリー調製における従来の工程を迂回し、センスまたはアンチセンスのいずれかの開始ポリヌクレオチドが、適切にタグ化されたポリヌクレオチドに変換される確率を2倍にする。それは、代表的な末端修復反応によって十分に平滑末端化されない可能性があるオーバーハングを有し得る二本鎖ポリヌクレオチドも変換する。このssDNA反応に対する最適な反応条件は:1×反応緩衝液(50mM MOPS(pH7.5)、1mM DTT、5mM MgCl2、10mM KCl)である。50mM ATPと、25mg/ml BSA、2.5mM MnCl2、200pmol 85nt ssDNAオリゴマーおよび5U ssDNAリガーゼを65℃で1時間インキュベートした。PCRを使用するその後の増幅は、さらに、タグ化された一本鎖ライブラリーを二本鎖ライブラリーに変換し得、20%を軽く超える全体的な変換効率をもたらし得る。変換率を例えば10%超に上げる他の方法は、例えば、以下のうちのいずれかを単独でまたは組み合わせて含む:アニーリングに最適化された分子逆位プローブ、十分に制御されたポリヌクレオチドサイズ範囲での平滑末端ライゲーション、粘着末端ライゲーション、または融合プライマーの使用ありもしくはなしでの前もっての多重増幅工程。
B.無細胞ポリヌクレオチドの分子バーコード化
本開示のシステムおよび方法は、特定のポリヌクレオチドのその後の同定および起源を可能にするために、無細胞ポリヌクレオチドをタグ化することまたは追跡することも可能にし得る。この特徴は、プールされた反応または多重反応を使用し、測定または解析を複数個のサンプルの平均として提供するだけの他の方法と対照的である。ここで、個々のポリヌクレオチドまたはポリヌクレオチドのサブグループに識別子を割り当てることにより、ユニークな同一性を個々の配列または配列のフラグメントに割り当てることが可能になり得る。これは、個々のサンプルからのデータの取得を可能にし得、サンプルの平均に限定されない。
いくつかの例において、核酸または一本鎖に由来する他の分子は、共通のタグまたは識別子を共有し得、ゆえに後で、その鎖に由来すると同定され得る。同様に、一本鎖の核酸由来のフラグメントのすべてが、同じ識別子またはタグでタグ化され得ることにより、後に、その親鎖由来のフラグメントの同定が可能になり得る。他の場合では、バーコード、またはそれに付着された配列と組み合されたバーコードをカウントし得る発現を定量するために、遺伝子発現産物(例えば、mRNA)がタグ化され得る。なおも他の場合において、本システムおよび方法は、PCR増幅のコントロールとして使用され得る。そのような場合、PCR反応からの複数個の増幅産物が、同じタグまたは識別子でタグ化され得る。その産物が、後に配列決定されて、配列の差異を示す場合、同じ識別子を有する産物の間の差異は、PCRエラーに起因し得る。
さらに、リード自体に対する配列データの特徴に基づいて個々の配列が同定され得る。例えば、個々の配列決定リードの始め(開始)および終わり(終止)の部分におけるユニークな配列データの検出は、単独でまたは各配列リードのユニークな配列の塩基対の長さ、すなわち数と組み合わせて、使用されることにより、個々の分子にユニークな同一性が割り当てられ得る。それにより、ユニークな同一性が割り当てられた一本鎖の核酸由来のフラグメントは、親鎖由来のフラグメントをその後同定することを可能にし得る。これは、多様性を限定するために、開始の最初の遺伝物質の制限とともに使用され得る。
さらに、個々の配列決定リードの始め(開始)および終わり(終止)の部分におけるユニークな配列データおよび配列決定リード長を使用することは、単独で、またはバーコードの使用と組み合わせて、使用され得る。場合によっては、バーコードは、本明細書中に記載されるようにユニークであり得る。他の場合では、バーコード自体は、ユニークでない可能性がある。この場合、個々の配列決定リードの始め(開始)および終わり(終止)の部分における配列データならびに配列決定リード長と組み合わせて、ユニークでないバーコードを使用することにより、個々の配列にユニークな同一性を割り当てることが可能になり得る。同様に、それにより、ユニークな同一性が割り当てられた一本鎖の核酸由来のフラグメントは、親鎖由来のフラグメントをその後同定することを可能にし得る。
概して、本明細書中に提供される方法およびシステムは、下流の適用である配列決定反応のための無細胞ポリヌクレオチド配列の調製にとって有用である。しばしば、配列決定方法は、古典的なサンガー配列決定法である。配列決定方法としては、ハイスループットシーケンシング、パイロシーケンシング、合成によるシーケンシング、一分子シーケンシング、ナノポアシーケンシング、半導体シーケンシング、ライゲーションによるシーケンシング、ハイブリダイゼーションによるシーケンシング、RNA−Seq(Illumina)、Digital Gene Expression(Helicos)、次世代シーケンシング、Single Molecule Sequencing by Synthesis(SMSS)(Helicos)、超並列シーケンシング、Clonal Single Molecule Array(Solexa)、ショットガンシーケンシング、マクサム・ギルバート・シーケンシング、プライマーウォーキングおよび当該分野で公知の他の任意の配列決定方法が挙げられ得るが、これらに限定されない。
C.無細胞ポリヌクレオチド配列へのバーコードの割り当て
本明細書中に開示されるシステムおよび方法は、無細胞ポリヌクレオチドへのユニークなもしくはユニークでない識別子または分子バーコードの割り当てを含む用途において使用され得る。しばしば、識別子は、ポリヌクレオチドをタグ化するために使用されるバーコードオリゴヌクレオチドである;しかし、場合によっては、異なるユニークな識別子が使用される。例えば、場合によっては、ユニークな識別子は、ハイブリダイゼーションプローブである。他の場合では、ユニークな識別子は、色素であり、その場合、付着は、被検体分子の中への色素のインターカレーション(例えば、DNAまたはRNAの中へのインターカレーション)または色素で標識されたプローブへの結合を含み得る。なおも他の場合では、ユニークな識別子は、核酸オリゴヌクレオチドであり得、その場合、ポリヌクレオチド配列への付着は、オリゴヌクレオチドとその配列との間のライゲーション反応またはPCRによる組み込みを含み得る。他の場合では、その反応は、被検体への直接的な、または同位体で標識されたプローブによる、金属同位体の付加を含み得る。概して、本開示の反応におけるユニークなもしくはユニークでない識別子または分子バーコードの割り当ては、例えば、米国特許出願20010053519、20030152490、20110160078および米国特許第6,582,908号に記載されている方法およびシステムに従い得る。
しばしば、本方法は、ライゲーション反応を含むがこれに限定されない酵素反応によって核酸被検体にオリゴヌクレオチドバーコードを付着する工程を含む。例えば、リガーゼ酵素は、断片化されたDNA(例えば、高分子量DNA)にDNAバーコードを共有結合的に付着し得る。バーコードの付着の後、それらの分子は、配列決定反応に供され得る。
しかしながら、他の反応も同様に使用され得る。例えば、バーコード配列を含むオリゴヌクレオチドプライマーが、DNA鋳型被検体の増幅反応(例えば、PCR、qPCR、逆転写酵素PCR、デジタルPCRなど)において使用され得、それにより、タグ化された被検体が生成され得る。個々の無細胞ポリヌクレオチド配列へのバーコードの割り当ての後、分子のプールが、配列決定され得る。
場合によっては、無細胞ポリヌクレオチド配列のグローバル増幅のためにPCRが使用され得る。これは、まず、種々の分子にライゲートされ得るアダプター配列を使用した後、ユニバーサルプライマーを使用するPCR増幅を含み得る。配列決定のためのPCRは、Nugen(WGAキット)、Life Technologies、Affymetrix、Promega、Qiagenなどによって提供される市販のキットの使用を含むがこれらに限定されない任意の手段を使用して行われ得る。他の場合では、無細胞ポリヌクレオチド分子の集団内のある特定の標的分子だけが、増幅され得る。特異的プライマーは、アダプターライゲーションと併用して、下流の配列決定のために、ある特定の標的を選択的に増幅するために使用され得る。
ユニークな識別子(例えば、オリゴヌクレオチドバーコード、抗体、プローブなど)は、ランダムにまたは非ランダムに無細胞ポリヌクレオチド配列に導入され得る。場合によっては、それらは、ユニークな識別子の期待される比で、マイクロウェルに導入される。例えば、ユニークな識別子は、1ゲノムサンプルあたり約1、2、3、4、5、6、7、8、9、10、20、50、100、500、1000、5000、10000、50,000、100,000、500,000、1,000,000、10,000,000、50,000,000または1,000,000,000個を超えるユニークな識別子がロードされる(loaded)ように、ロードされ得る。場合によっては、ユニークな識別子は、1ゲノムサンプルあたり約2、3、4、5、6、7、8、9、10、20、50、100、500、1000、5000、10000、50,000、100,000、500,000、1,000,000、10,000,000、50,000,000または1,000,000,000個未満のユニークな識別子がロードされるように、ロードされ得る。場合によっては、1ゲノムサンプルあたりにロードされるユニークな識別子の平均数は、1ゲノムサンプルあたり約1、2、3、4、5、6、7、8、9、10、20、50、100、500、1000、5000、10000、50,000、100,000、500,000、1,000,000、10,000,000、50,000,000または1,000,000,000個のユニークな識別子より少ないまたは多い。
場合によっては、ユニークな識別子は、種々の長さであり得、各バーコードは、少なくとも約1、2、3、4、5、6、7、8、9、10、20、50、100、500、1000塩基対である。他の場合では、バーコードは、1、2、3、4、5、6、7、8、9、10、20、50、100、500、1000塩基対未満を含み得る。
場合によっては、ユニークな識別子は、所定のまたはランダムなもしくはセミランダムな配列オリゴヌクレオチドであり得る。他の場合では、バーコードが、複数の中で互いに必ずしもユニークでないように、複数のバーコードが使用され得る。この例では、バーコードと配列との組み合わせがライゲートされて個々に追跡され得るユニークな配列が作り出されるように、そのバーコードは、個々の分子にライゲートされ得る。ユニークでないバーコードの検出は、本明細書中に記載されるように、配列リードの始め(開始)および終わり(終止)の部分の配列データと組み合わせて、特定の分子へのユニークな同一性の割り当てを可能にし得る。個々の配列リードの長さ、つまり塩基対の数もまた、そのような分子にユニークな同一性を割り当てるために使用され得る。本明細書中に記載されるように、それにより、ユニークな同一性を割り当てられた一本鎖の核酸由来のフラグメントは、親鎖由来のフラグメントをその後同定することを可能にし得る。このように、サンプル中のポリヌクレオチドは、ユニークにまたは実質的にユニークにタグ化され得る。
ユニークな識別子は、RNAまたはDNA分子を含むがこれらに限定されない広範囲の被検体をタグ化するために使用され得る。例えば、ユニークな識別子(例えば、バーコードオリゴヌクレオチド)は、核酸鎖全体または核酸のフラグメント(例えば、断片化されたゲノムDNA、断片化されたRNA)に付着され得る。ユニークな識別子(例えば、オリゴヌクレオチド)は、遺伝子発現産物、ゲノムDNA、ミトコンドリアDNA、RNA、mRNAなどにも結合し得る。
多くの応用法において、個々の無細胞ポリヌクレオチド配列の各々に、異なるユニークな識別子(例えば、オリゴヌクレオチドバーコード)を与えるか否かを決定することが重要であり得る。本システムおよび方法に導入されるユニークな識別子の集団が、有意に多様でない場合、おそらく、異なる被検体が同一の識別子でタグ化され得る。本明細書中に開示されるシステムおよび方法は、同じ識別子でタグ化された無細胞ポリヌクレオチド配列の検出を可能にし得る。場合によっては、参照配列が、解析される無細胞ポリヌクレオチド配列の集団とともに含められ得る。参照配列は、例えば、公知の配列および公知の数量を有する核酸であり得る。ユニークな識別子が、オリゴヌクレオチドバーコードであり、被検体が、核酸である場合、タグ化された被検体は、その後、配列決定され、定量され得る。これらの方法は、1つ以上のフラグメントおよび/または被検体が、同一のバーコードを割り当てられている可能性があることを示唆し得る。
本明細書中に開示される方法は、被検体にバーコードを割り当てるために必要な試薬を使用する工程を含み得る。ライゲーション反応の場合、リガーゼ酵素、緩衝剤、アダプターオリゴヌクレオチド、複数のユニークな識別子DNAバーコードなどを含むがこれらに限定されない試薬が、本システムおよび方法にロードされ得る。富化の場合、複数のPCRプライマー、ユニークな同定配列を含むオリゴヌクレオチド、すなわちバーコード配列、DNAポリメラーゼ、DNTPおよび緩衝剤などを含むがこれらに限定されない試薬が、配列決定に向けた調製において使用され得る。
概して、本開示の方法およびシステムは、分子または被検体をカウントするために分子バーコードを使用する米国特許第7,537,897号の方法を使用し得る。
複数のゲノム由来の断片化されたゲノムDNA、例えば、無細胞DNA(cfDNA)を含むサンプルにおいて、異なるゲノム由来の2つ以上のポリヌクレオチドが同じ開始位置および終止位置を有する可能性はいくらかある(「2つ組」または「同起源」)。任意の位置で始まる2つ組の推定数は、サンプル中の半数体ゲノム等価物の数およびフラグメントサイズの分布の関数である。例えば、cfDNAは、約160ヌクレオチドにフラグメントのピークを有し、このピークにおけるフラグメントのほとんどが、約140ヌクレオチド〜180ヌクレオチドの範囲である。したがって、約30億塩基のゲノム(例えば、ヒトゲノム)由来のcfDNAは、ほぼ2000万(2×10)個のポリヌクレオチドフラグメントを含み得る。約30ngのDNAのサンプルは、約10,000個の半数体ヒトゲノム等価物を含み得る。(同様に、約100ngのDNAのサンプルは、約30,000個の半数体ヒトゲノム等価物を含み得る。)そのようなDNAの約10,000(10)個の半数体ゲノム等価物を含むサンプルは、約2000億(2×1011)個の個々のポリヌクレオチド分子を有し得る。ヒトDNAの約10,000個の半数体ゲノム等価物のサンプル中に、任意の所与の位置で始まる約3つの2つ組のポリヌクレオチドが存在することが、経験的に明らかにされている。したがって、そのようなコレクションは、約6×1010〜8×1010(約600億〜800億、例えば、約700億(7×1010))個の異なって配列決定されるポリヌクレオチド分子という多様性を含み得る。
分子が正しく同定される確率は、ゲノム等価物の最初の数、配列決定された分子の長さの分布、配列の均一性およびタグの数に依存する。タグの数が1に等しいとき、それは、ユニークなタグを有しないまたはタグ化していないに等しい。下記の表は、上記のような代表的な無細胞のサイズ分布を仮定して、分子をユニークとして正しく同定する確率を列挙している。
この場合、ゲノムDNAを配列決定する際、どの配列リードがどの親分子に由来するかを判定することは可能でない可能性がある。2つの2つ組分子、すなわち、同じ開始位置および終止位置を有する分子が、異なるユニークな識別子を有するという可能性があり、配列リードは、特定の親分子にさかのぼることができるように、親分子を十分な数のユニークな識別子(例えば、タグの数)でタグ化することによって、この問題は減少し得る。この問題に対する1つのアプローチは、サンプル中のすべてまたはほぼすべての異なる親分子をユニークにタグ化することである。しかしながら、半数体遺伝子等価物の数およびサンプル中のフラグメントサイズの分布に応じて、これは、数十億個の異なるユニークな識別子を必要とし得る。
この方法は、煩雑かつ高価であり得る。本発明は、断片化されたゲノムDNAのサンプル中のポリヌクレオチドの集団が、n個の異なるユニークな識別子でタグ化される、方法および組成物を提供し、nは、少なくとも2かつ100,000z以下であり、zは、同じ開始位置および終止位置を有する2つ組分子の期待数の中心傾向の尺度(例えば、平均値、中央値、最頻値)である。ある特定の実施形態において、nは、2z、3z、4z、5z、6z、7z、8z、9z、10z、11z、12z、13z、14z、15z、16z、17z、18z、19zまたは20zのうちの少なくともいずれかである(例えば、下限)。他の実施形態において、nは、100,000z、10,000z、1000zまたは100zより大きくない(例えば、上限)。したがって、nは、これらの下限と上限の任意の組み合わせの間の範囲であり得る。ある特定の実施形態において、nは、5z〜15z、8z〜12zまたは約10zである。例えば、半数体ヒトゲノム等価物は、約3ピコグラムのDNAを有する。約1マイクログラムのDNAのサンプルは、約300,000個の半数体ヒトゲノム等価物を含む。数字nは、15〜45、24〜36または約30であり得る。2つ組または同起源のポリヌクレオチドの少なくともいくつかが、ユニークな識別子を有する、すなわち、異なるタグを有する限り、配列決定の改善が達成され得る。しかしながら、ある特定の実施形態において、使用されるタグの数は、任意の1つの位置で始まる2つ組の分子のすべてがユニークな識別子を有する確率が少なくとも95%存在するように、選択される。例えば、約10,000個の半数体ヒトゲノム等価物のcfDNAを含むサンプルが、約36個のユニークな識別子でタグ化され得る。そのユニークな識別子は、6つのユニークなDNAバーコードを含み得る。ポリヌクレオチドの両端に付着されるとき、36個の可能性のあるユニークな識別子が生成される。そのような方法でタグ化されるサンプルは、約10ngから約100ng、約1μg、約10μgのいずれかまでの範囲の断片化されたポリヌクレオチド、例えば、ゲノムDNA、例えば、cfDNAを含むサンプルであり得る。
したがって、本発明は、タグ化されたポリヌクレオチドの組成物も提供する。そのポリヌクレオチドは、断片化されたDNA、例えば、cfDNAを含み得る。ゲノム内のマッピング可能な塩基位置に位置する組成物中のポリヌクレオチドのセットは、ユニークにタグ化されない可能性があり、すなわち、異なる識別子の数が、少なくとも少なくとも2であり得、かつマッピング可能な塩基位置に位置するポリヌクレオチドの数より少ない可能性がある。約10ng〜約10μg(例えば、約10ng〜1μg、約10ng〜100ng、約100ng〜10μg、約100ng〜1μg、約1μg〜10μgのいずれか)の組成物は、2、5、10、50または100のいずれかから100、1000、10,000または100,000のいずれかまでの異なる識別子を有し得る。例えば、5〜100個の異なる識別子が、そのような組成物中のポリヌクレオチドをタグ化するために使用され得る。
III.核酸配列決定プラットフォーム
体液から無細胞ポリヌクレオチドを抽出および単離した後、無細胞配列は、配列決定され得る。しばしば、配列決定方法は、古典的なサンガー配列決定法である。配列決定方法としては、ハイスループットシーケンシング、パイロシーケンシング、合成によるシーケンシング、一分子シーケンシング、ナノポアシーケンシング、半導体シーケンシング、ライゲーションによるシーケンシング、ハイブリダイゼーションによるシーケンシング、RNA−Seq(Illumina)、Digital Gene Expression(Helicos)、次世代シーケンシング、Single Molecule Sequencing by Synthesis(SMSS)(Helicos)、超並列シーケンシング、Clonal Single Molecule Array(Solexa)、ショットガンシーケンシング、マクサム・ギルバート・シーケンシング、プライマーウォーキング、PacBio、SOLiD、Ion Torrentまたはナノポアプラットフォームを使用するシーケンシング、および当該分野で公知の他の任意の配列決定方法が挙げられ得るが、これらに限定されない。
場合によっては、本明細書中に記載されるような様々なタイプの配列決定反応は、種々のサンプル処理ユニットを含み得る。サンプル処理ユニットとしては、複数個のレーン、複数個のチャネル、複数個のウェルまたは複数個のサンプルセットを実質的に同時に処理する他の手段が挙げられ得るがこれらに限定されない。さらに、サンプル処理ユニットは、複数のランを同時に処理することを可能にする複数個のサンプルチャンバーを備え得る。
いくつかの例において、同時の配列決定反応は、多重配列決定を用いて行われ得る。場合によっては、無細胞ポリヌクレオチドは、少なくとも1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、50000、100,000個の配列決定反応によって配列決定され得る。他の場合では、無細胞ポリヌクレオチドは、1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、50000、100,000個未満の配列決定反応によって配列決定され得る。配列決定反応は、順次または同時に行われ得る。その後のデータ解析は、配列決定反応の全部または一部に対して行われ得る。場合によっては、データ解析は、少なくとも1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、50000、100,000個の配列決定反応に対して行われ得る。他の場合では、データ解析は、1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、50000、100,000個未満の配列決定反応に対して行われ得る。
他の例では、配列決定反応の数は、種々の量のゲノムに対してカバー率を提供し得る。場合によっては、ゲノムの配列カバー率は、少なくとも5%、10%、15%、20%、25%、30%、40%、50%、60%、70%、80%、90%、95%、99%、99.9%または100%であり得る。他の場合では、ゲノムの配列カバー率は、5%、10%、15%、20%、25%、30%、40%、50%、60%、70%、80%、90%、95%、99%、99.9%または100%未満であり得る。
いくつかの例において、配列決定は、種々の異なるタイプの核酸を含み得る無細胞ポリヌクレオチドに対して行われ得る。核酸は、ポリヌクレオチドまたはオリゴヌクレオチドであり得る。核酸としては、DNAもしくはRNA、一本鎖もしくは二本鎖またはRNA/cDNA対が挙げられるが、これらに限定されない。
IV.ポリヌクレオチド解析ストラテジー
図8は、最初の遺伝物質のサンプル中のポリヌクレオチドを解析するためのストラテジーを示している流れ図800である。工程802では、最初の遺伝物質を含むサンプルを提供する。そのサンプルは、標的核酸を少ない存在量で含み得る。例えば、20%以下、10%以下、5%以下、1%以下、0.5%以下または0.1%以下の、遺伝的変異を含む少なくとも1つの他のゲノム、例えば、がんゲノムもしくは胎児ゲノムまたは別の種のゲノム由来の核酸も含むサンプル中において、正常または野生型ゲノム(例えば、生殖細胞系列ゲノム)由来の核酸が、優勢であり得る。そのサンプルは、例えば、無細胞核酸または核酸を含む細胞を含み得る。最初の遺伝物質は、100ng以下の核酸を構成し得る。これは、配列決定または遺伝子解析プロセスによる元のポリヌクレオチドの適切なオーバーサンプリングに寄与し得る。あるいは、サンプルは、人工的に上限が課される(capped)かまたは制限されることにより、核酸の量を100ng以下に減少され得るか、または目的の配列だけを解析するために選択的に富化され得る。サンプルは、参照配列中の1つ以上の選択された各部位に位置する分子の配列リードを選択的に生成するように改変され得る。100ngの核酸のサンプルは、約30,000個のヒト半数体ゲノム等価物、すなわち、合計でヒトゲノムの30,000倍のカバー率を提供する分子を含み得る。
工程804では、最初の遺伝物質を、タグ化された親ポリヌクレオチドのセットに変換する。タグ化は、配列決定されたタグを、最初の遺伝物質中の分子に付着することを含み得る。配列決定されたタグは、参照配列中の同じ部位に位置するユニークなポリヌクレオチドのすべてが、ユニークな同定タグを有するように、選択され得る。変換は、高効率で、例えば、少なくとも50%で行われ得る。
工程806では、タグ化された親ポリヌクレオチドのセットを増幅することにより、増幅された子孫ポリヌクレオチドのセットを生成する。増幅は、例えば、1,000倍であり得る。
工程808では、増幅された子孫ポリヌクレオチドのセットを、配列決定のためにサンプリングする。そのサンプリング率は、生成された配列リードが、(1)タグ化された親ポリヌクレオチドのセット内のユニークな分子の目標数をカバーし、かつ(2)目標カバー率の倍率(例えば、親ポリヌクレオチドの5〜10倍のカバー率)で、タグ化された親ポリヌクレオチドのセット内のユニークな分子をカバーするように、選択される。
工程810では、配列リードのセットを折りたたむことにより、タグ化されたユニークな親ポリヌクレオチドに対応するコンセンサス配列のセットを生成する。配列リードは、解析に含めるために条件付けられ得る。例えば、品質管理スコアを満たさない配列リードは、プールから除去され得る。配列リードは、特定のユニークな親分子に由来する子孫分子のリードに相当するファミリーに分別され得る。例えば、増幅された子孫ポリヌクレオチドのファミリーは、単一の親ポリヌクレオチドに由来する増幅された分子を構成し得る。あるファミリーの中の子孫の配列を比較することによって、元の親ポリヌクレオチドのコンセンサス配列が、推定され得る。これは、タグ化されたプール中のユニークな親ポリヌクレオチドに相当するコンセンサス配列のセットを生成する。
工程812では、本明細書中に記載される任意の解析方法を用いて、コンセンサス配列のセットを解析する。例えば、特定の参照配列の部位に位置するコンセンサス配列を解析することにより、遺伝的変異の事実が検出され得る。特定の参照配列に位置するコンセンサス配列が、計測され、コントロールサンプルに対して正規化され得る。参照配列に位置する分子の尺度は、ゲノムにわたって比較されることにより、コピー数が変動しているかまたはヘテロ接合性が失われているゲノム内の領域が同定され得る。
図9は、配列リードのコレクションによって表された信号から情報を抽出するより一般的な方法を示している流れ図である。この方法では、増幅された子孫ポリヌクレオチドを配列決定した後、それらの配列リードを、ユニークな同一性の分子から増幅された分子のファミリーにグループ化する(910)。このグループ化は、その配列中の情報を解釈する方法のための起点であり得、それにより、タグ化された親ポリヌクレオチドの内容が、より高い忠実度で、例えば、より少ないノイズおよび/または歪みで決定される。
配列リードのコレクションの解析により、配列リードを生成した親ポリヌクレオチド集団に関して推論することが可能になる。配列決定は、通常、全体的な増幅された全ポリヌクレオチドの一部のサブセットだけを解読することを含むので、そのような推論は、有用であり得る。ゆえに、すべての親ポリヌクレオチドが、配列リードのコレクション中の少なくとも1つの配列リードによって表されることを確実にすることはできない。
そのような1つの推論結果は、元のプール中のユニークな親ポリヌクレオチドの数である。そのような推論は、配列リードがグループ化され得るユニークなファミリーの数および各ファミリー内の配列リードの数に基づいて行われ得る。この場合、ファミリーとは、元の親ポリヌクレオチドにさかのぼることができる配列リードのコレクションのことを指す。その推論は、周知の統計学的方法を用いて行われ得る。例えば、グループ化により、多くのファミリー(各々が1つまたは数個の子孫によって代表される)が生成される場合、元の集団は、配列決定されなかったより多くのユニークな親ポリヌクレオチドを含んだと推論することができる。他方、グループ化により、ほんの数個のファミリー(各ファミリーは多くの子孫によって代表される)しか生成されない場合、その親集団内のユニークなポリヌクレオチドのほとんどが、少なくとも1つの配列リードグループによってそのファミリーに表わされると推論することができる。
別のそのような推論結果は、ポリヌクレオチドの元のプール中の特定の遺伝子座における塩基または塩基の配列の頻度である。そのような推論は、配列リードがグループ化され得るユニークなファミリーの数および各ファミリー内の配列リードの数に基づいて行われ得る。配列リードのファミリー内の遺伝子座における塩基コールを解析するとき、信頼スコアが、各特定の塩基コールまたは配列に割り当てられる。次いで、複数のファミリー内の各塩基コールに対する信頼スコアを考慮して、その遺伝子座における各塩基または配列の頻度が、決定される。
V.コピー数多型の検出
A.単一サンプルを使用したコピー数多型の検出
図1は、単一の被験体におけるコピー数多型を検出するためのストラテジーを示している流れ図100である。本明細書中に示されるように、コピー数多型の検出方法は、以下のとおり実行され得る。工程102において無細胞ポリヌクレオチドを抽出および単離した後、単一のユニークなサンプルが、工程104において、当該分野で公知の核酸配列決定プラットフォームによって配列決定され得る。この工程により、複数のゲノムフラグメント配列リードが生成される。場合によっては、これらの配列リードは、バーコード情報を含み得る。他の例では、バーコードは、使用されない。配列決定した後、リードに品質スコアを割り当てる。品質スコアは、それらのリードが、閾値に基づいて、その後の解析において有用であり得ることを示唆するリードの表示であり得る。場合によっては、いくつかのリードは、その後のマッピング工程を行うのに十分な品質または長さでない。少なくとも90%、95%、99%、99.9%、99.99%または99.999%の品質スコアを有する配列決定リードは、データから除外され得る。他の場合では、90%、95%、99%、99.9%、99.99%または99.999%未満の品質スコアを割り当てられた配列決定リードが、データセットから除外され得る。工程106では、規定の品質スコア閾値を満たすゲノムフラグメントリードを、参照ゲノム、すなわち、コピー数多型を含まないと知られている鋳型配列にマッピングする。マッピングアラインメントの後、配列リードにマッピングスコアを割り当てる。マッピングスコアは、各位置がユニークにマッピング可能であるかまたはそうでないかを示唆する参照配列にマッピングし戻される表示またはリードであり得る。ある場合において、リードは、コピー数多型の解析と無関係の配列であり得る。例えば、いくつかの配列リードは、夾雑物ポリヌクレオチドを起源とし得る。少なくとも90%、95%、99%、99.9%、99.99%または99.999%のマッピングスコアを有する配列決定リードは、データセットから除外され得る。他の場合では、90%、95%、99%、99.9%、99.99%または99.999%未満のマッピングスコアを割り当てられた配列決定リードが、データセットから除外され得る。
データの選別およびマッピングの後、複数の配列リードは、染色体領域のカバー率をもたらす。工程108において、これらの染色体領域は、可変の長さのウィンドウまたはビンに分割され得る。ウィンドウまたはビンは、少なくとも5kb、10kb、25kb、30kb、35kb、40kb、50kb、60kb、75kb、100kb、150kb、200kb、500kbまたは1000kbであり得る。ウィンドウまたはビンは、最大5kb、10kb、25kb、30kb、35kb、40kb、50kb、60kb、75kb、100kb、150kb、200kb、500kbまたは1000kbの塩基も有し得る。ウィンドウまたはビンは、約5kb、10kb、25kb、30kb、35kb、40kb、50kb、60kb、75kb、100kb、150kb、200kb、500kbまたは1000kbでもあり得る。
工程110におけるカバー率の正規化に向けて、ほぼ同じ数のマッピング可能な塩基を含むように、各ウィンドウまたはビンを選択する。場合によっては、ある染色体領域内の各ウィンドウまたはビンは、正確な数のマッピング可能な塩基を含み得る。他の場合では、各ウィンドウまたはビンは、異なる数のマッピング可能な塩基を含み得る。さらに、各ウィンドウまたはビンは、隣接するウィンドウまたはビンと重複しない可能性がある。他の場合では、ウィンドウまたはビンは、別の隣接するウィンドウまたはビンと重複し得る。場合によっては、ウィンドウまたはビンは、少なくとも1bp、2bp、3bp、4bp、5bp、10bp、20bp、25bp、50bp、100bp、200bp、250bp、500bpまたは1000bp重複し得る。他の場合では、ウィンドウまたはビンは、最大1bp、2bp、3bp、4bp、5bp、10bp、20bp、25bp、50bp、100bp、200bp、250bp、500bpまたは1000bp重複し得る。場合によっては、ウィンドウまたはビンは、約1bp、2bp、3bp、4bp、5bp、10bp、20bp、25bp、50bp、100bp、200bp、250bp、500bpまたは1000bp重複し得る。
場合によっては、ウィンドウ領域の各々は、ほぼ同じ数のユニークにマッピング可能な塩基を含むような大きさにされ得る。ウィンドウ領域を構成する各塩基のマッピング可能性が決定され、それを用いることにより、各ファイルに対する参照にマッピングし戻される参照からのリードの表示を含むマッピング可能性ファイルが生成される。そのマッピング可能性ファイルは、各位置ごとに1列を含み、それにより、各位置がユニークにマッピング可能であるかまたはそうでないかが示唆される。
さらに、配列決定し難いかまたは実質的に高いGCバイアスを含むとゲノム全体にわたって知られている予め定義されたウィンドウが、データセットから除外され得る。例えば、染色体のセントロメア(すなわち、セントロメアDNA)付近にあると知られる領域は、偽陽性の結果をもたらし得る高度に反復性の配列を含むと知られている。これらの領域は、除外され得る。異常に高い濃度の他の高度に反復性の配列(例えば、マイクロサテライトDNA)を含む領域などのゲノムの他の領域も、データセットから除外され得る。
解析されるウィンドウの数もまた、変動し得る。場合によっては、少なくとも10、20、30、40、50、100、200、500、1000、2000、5,000、10,000、20,000、50,000または100,000個のウィンドウが、解析される。他の場合では、解析されるウィンドウ(widows)の数は、最大10、20、30、40、50、100、200、500、1000、2000、5,000、10,000、20,000、50,000または100,000個のウィンドウが、解析される。
無細胞ポリヌクレオチド配列に由来する例示的なゲノムの場合、次の工程は、各ウィンドウ領域に対するリードカバー率を決定する工程を含む。これは、バーコードを有するまたはバーコードを有しないリードを用いて行われ得る。バーコードを有しない場合、先のマッピング工程は、種々の塩基位置のカバー率を提供し得る。十分なマッピングスコアおよび品質スコアを有し、選別されない染色体ウィンドウに含まれる配列リードが、カウントされ得る。カバー率リードの数は、マッピング可能な各位置あたりのスコアを割り当てられ得る。バーコードを含む場合、同じバーコード、物理的特性またはそれら2つの組み合わせを有するすべての配列が、サンプル親分子に由来するので、それらのすべてが、1つのリードに折りたたまれ得る。この工程は、増幅を含む工程などの前述の工程のいずれかの間に導入されている可能性があるバイアスを減少させる。例えば、1つの分子が、10倍増幅されるが、別の分子が、1000倍増幅される場合、各分子は、折りたたまれた後に1回表示されるだけであり、それによって、不均一な増幅の影響が打ち消される。ユニークなバーコードを有するリードだけが、マッピング可能な各位置に対してカウントされ得、割り当てられたスコアに影響し得る。
コンセンサス配列は、当該分野で公知の任意の方法によって配列リードのファミリーから生成され得る。そのような方法としては、例えば、デジタル通信理論、情報理論またはバイオインフォマティクスから得られるコンセンサス配列を構築する線形法または非線形法(例えば、投票、平均化、統計的、最大事後もしくは最尤検出、動的計画法、ベイジアン、隠れマルコフまたはサポートベクターマシン法など)が挙げられる。
配列リードカバー率が決定された後、各ウィンドウ領域に対する正規化された核酸配列リードカバー率を別個のコピー数の状態に変換するために、確率論的モデリングアルゴリズムが適用される。場合によっては、このアルゴリズムは、以下のうちの1つ以上を含み得る:隠れマルコフモデル、動的計画法、サポートベクターマシン、ベイジアンネットワーク、トレリス復号、ビタビ復号、期待値最大化、カルマンフィルタリング法およびニューラルネットワーク。
工程112では、各ウィンドウ領域の別個のコピー数の状態を利用することにより、染色体領域におけるコピー数多型が同定され得る。場合によっては、同じコピー数を有する隣接するウィンドウ領域のすべてが、1つのセグメントにマージされることにより、コピー数多型の状態の有無が報告され得る。場合によっては、様々なウィンドウを他のセグメントとマージする前に、それらを選別し得る。
工程114では、コピー数多型は、ゲノム内の様々な位置、およびそれぞれの各位置におけるコピー数多型の対応する増加または減少または維持を示すグラフとして報告され得る。さらに、コピー数多型を使用することにより、無細胞ポリヌクレオチドサンプル中に病的な材料(またはコピー数多型を有する核酸)がどれだけ存在するかを指摘するパーセンテージスコアが報告され得る。
コピー数多型を決定する1つの方法を図10に示す。その方法では、配列リードを、単一の親ポリヌクレオチドから生成されたファミリーにグループ化した後(1010)、例えば、複数の異なる参照配列の各部位に位置するファミリーの数を決定することによって、それらのファミリーを定量する。CNVは、複数の異なる遺伝子座の各々におけるファミリーの定量的尺度を比較することによって直接、決定され得る(1016b)。あるいは、ファミリーの定量的尺度と、例えば、上で論じたような、各ファミリーにおけるファミリーメンバーの定量的尺度との両方を使用して、タグ化された親ポリヌクレオチドの集団内のファミリーの定量的尺度が推論され得る。次いで、複数の遺伝子座における数量の推論された尺度を比較することによって、CNVが決定され得る。他の実施形態では、GCバイアスなどのような配列決定プロセス中の表示バイアスに対する正規化の後に元の数量の同様の推論が行われ得るハイブリッドアプローチが取られ得る。
B.対のサンプルを使用するコピー数多型の検出
対のサンプルのコピー数多型の検出は、その工程およびパラメータの多くを本明細書中に記載される単一サンプルアプローチと共有する。しかしながら、コピー数多型検出の図2の200に表されているように、対のサンプルの使用は、配列カバー率とゲノムの予測されるマッピング可能性との比較ではなく、配列カバー率とコントロールサンプルとの比較を必要とする。このアプローチは、ウィンドウにわたる正規化に役立ち得る。
図2は、対の被験体におけるコピー数多型を検出するためのストラテジーを示している流れ図200である。本明細書中に示されるように、コピー数多型の検出方法は、以下のとおり実行され得る。工程204では、工程202におけるサンプルの抽出および単離の後、単一のユニークなサンプルが、当該分野で公知の核酸配列決定プラットフォームによって配列決定され得る。この工程により、複数のゲノムフラグメント配列リードが生成される。さらに、サンプルまたはコントロールサンプルを別の被験体から採取する。場合によっては、コントロール被験体は、疾患を有していないと判明している被験体であり得る一方で、他方の被験体は、特定の疾患を有し得るか、またはそのリスクがあり得る。場合によっては、これらの配列リードは、バーコード情報を含み得る。他の例では、バーコードは、使用されない。配列決定した後、リードに品質スコアを割り当てる。場合によっては、いくつかのリードは、その後のマッピング工程を行うのに十分な品質または長さでない。少なくとも90%、95%、99%、99.9%、99.99%または99.999%の品質スコアを有する配列決定リードは、データセットから除外され得る。他の場合では、90%、95%、99%、99.9%、99.99%または99.999%未満の品質スコアを割り当てられた配列決定リードが、データセットから除外され得る。工程206では、規定の品質スコア閾値を満たすゲノムフラグメントリードを、参照ゲノム、すなわち、コピー数多型を含まないと判明している鋳型配列にマッピングする。マッピングアラインメントの後、配列リードにマッピングスコアを割り当てる。ある場合において、リードは、コピー数多型の解析と無関係の配列であり得る。例えば、いくつかの配列リードは、夾雑物ポリヌクレオチドを起源とし得る。少なくとも90%、95%、99%、99.9%、99.99%または99.999%のマッピングスコアを有する配列決定リードは、データセットから除外され得る。他の場合では、90%、95%、99%、99.9%、99.99%または99.999%未満のマッピングスコアを割り当てられた配列決定リードが、データセットから除外され得る。
データの選別およびマッピングの後、複数の配列リードは、試験被験体およびコントロール被験体の各々に対して染色体領域のカバー率をもたらす。工程208では、これらの染色体領域は、可変の長さのウィンドウまたはビンに分割され得る。ウィンドウまたはビンは、少なくとも5kb、10kb、25kb、30kb、35kb、40kb、50kb、60kb、75kb、100kb、150kb、200kb、500kbまたは1000kbであり得る。ウィンドウまたはビンは、5kb、10kb、25kb、30kb、35kb、40kb、50kb、60kb、75kb、100kb、150kb、200kb、500kbまたは1000kb未満でもあり得る。
工程210におけるカバー率の正規化に向けて、試験被験体およびコントロール被験体の各々に対してほぼ同じ数のマッピング可能な塩基を含むように、各ウィンドウまたはビンを選択する。場合によっては、ある染色体領域内の各ウィンドウまたはビンは、正確な数のマッピング可能な塩基を含み得る。他の場合では、各ウィンドウまたはビンは、異なる数のマッピング可能な塩基を含み得る。さらに、各ウィンドウまたはビンは、隣接するウィンドウまたはビンと重複しない可能性がある。他の場合では、ウィンドウまたはビンは、別の隣接するウィンドウまたはビンと重複し得る。場合によっては、ウィンドウまたはビンは、少なくとも1bp、2bp、3bp、4bp、5bp、10bp、20bp、25bp、50bp、100bp、200bp、250bp、500bpまたは1000bp重複し得る。他の場合では、ウィンドウまたはビンは、1bp、2bp、3bp、4bp、5bp、10bp、20bp、25bp、50bp、100bp、200bp、250bp、500bpまたは1000bp未満だけ重複し得る。
場合によっては、ウィンドウ領域の各々は、試験被験体およびコントロール被験体の各々に対してほぼ同じ数のユニークにマッピング可能な塩基を含むような大きさにされ得る。ウィンドウ領域を構成する各塩基のマッピング可能性が決定され、それを用いることにより、各ファイルに対する参照にマッピングし戻される参照からのリードの表示を含むマッピング可能性ファイルが生成される。そのマッピング可能性ファイルは、各位置ごとに1列を含み、それにより、各位置がユニークにマッピング可能であるかまたはそうでないかが示唆される。
さらに、配列決定し難いかまたは実質的に高いGCバイアスを含むとゲノム全体にわたって知られている予め定義されたウィンドウが、データセットから除外される。例えば、染色体のセントロメア(すなわち、セントロメアDNA)付近にあると知られる領域は、偽陽性の結果をもたらし得る高度に反復性の配列を含むと知られている。これらの領域は、選別され得る。異常に高い濃度の他の高度に反復性の配列(例えば、マイクロサテライトDNA)を含む領域などのゲノムの他の領域も、データセットから除外され得る。
解析されるウィンドウの数もまた、変動し得る。場合によっては、少なくとも10、20、30、40、50、100、200、500、1000、2000、5,000、10,000、20,000、50,000または100,000個のウィンドウが、解析される。他の場合では、10、20、30、40、50、100、200、500、1000、2000、5,000、10,000、20,000、50,000または100,000個未満のウィンドウが、解析される。
無細胞ポリヌクレオチド配列に由来する例示的なゲノムの場合、次の工程は、試験被験体およびコントロール被験体の各々に対する各ウィンドウ領域に対するリードカバー率を決定する工程を含む。これは、バーコードを有するまたはバーコードを有しないリードを用いて行われ得る。バーコードを有しない場合、先の(pervious)マッピング工程は、種々の塩基位置のカバー率を提供し得る。十分なマッピングスコアおよび品質スコアを有し、選別されない染色体ウィンドウに含まれる配列リードが、カウントされ得る。カバー率リードの数は、マッピング可能な各位置あたりのスコアを割り当てられ得る。バーコードを含む場合、同じバーコードを有するすべての配列が、サンプル親分子に由来するので、それらのすべてが、1つのリードに折りたたまれ得る。この工程は、増幅を含む工程などの前述の工程のいずれかにおいて導入されている可能性があるバイアスを減少させる。ユニークなバーコードを有するリードだけが、マッピング可能な各位置に対してカウントされ得、割り当てられたスコアに影響し得る。このため、バイアスの量を最も少なくするために最適化された様式でバーコードライゲーション工程を行うことが重要である。
各ウィンドウに対する核酸リードカバー率を決定する際、各ウィンドウのカバー率は、そのサンプルの平均カバー率によって正規化され得る。そのようなアプローチを使用するとき、試験被験体とコントロールの両方を同様の条件下で配列決定することが望ましいことがある。次いで、各ウィンドウに対するリードカバー率は、同様のウィンドウにわたる比として表現され得る。
試験被験体の各ウィンドウに対する核酸リードカバー率比は、試験サンプルの各ウィンドウ領域のリードカバー率をコントロールサンプル(control ample)の対応するウィンドウ領域のリードカバー率で除算することによって、決定され得る。
配列リードカバー率比が決定された後、確率論的モデリングアルゴリズムを適用することにより、各ウィンドウ領域に対する正規化された比が別個のコピー数の状態に変換される。場合によっては、このアルゴリズムは、隠れマルコフモデルを含み得る。他の場合では、確率論的モデルは、動的計画法、サポートベクターマシン、ベイジアンモデリング、確率的モデリング、トレリス復号、ビタビ復号、期待値最大化、カルマンフィルタリング法またはニューラルネットワークを含み得る。
工程212では、各ウィンドウ領域の別個のコピー数の状態を利用することにより、染色体領域におけるコピー数多型が同定され得る。場合によっては、同じコピー数を有する隣接するウィンドウ領域のすべてが、1つのセグメントにマージされることにより、コピー数多型の状態の有無が報告され得る。場合によっては、様々なウィンドウが他のセグメントとマージされる前に、それらは選別され得る。
工程214では、コピー数多型は、ゲノム内の様々な位置、およびそれぞれの各位置におけるコピー数多型の対応する増加または減少または維持を示すグラフとして報告され得る。さらに、コピー数多型を使用することにより、無細胞ポリヌクレオチドサンプル中に病的な材料がどれだけ存在するかを示唆するパーセンテージスコアが報告され得る。
VI.稀な変異の検出
稀な変異の検出は、両方のコピー数多型アプローチと類似の特徴を共有する。しかしながら、図3の300に表されているように、稀な変異の検出は、配列カバー率とゲノムの相対的なマッピング可能性との比較ではなく、配列カバー率とコントロールサンプルまたは参照配列との比較を使用する。このアプローチは、ウィンドウにわたる正規化に役立ち得る。
通常、稀な変異の検出は、工程302において精製および単離されたゲノムまたはトランスクリプトームの選択的に富化された領域に対して行われ得る。本明細書中に記載されるとき、遺伝子、癌遺伝子、腫瘍抑制遺伝子、プロモーター、制御配列エレメント、非コード領域、miRNA、snRNAなどを含み得るがこれらに限定されない特定の領域が、無細胞ポリヌクレオチドの全集団から選択的に増幅され得る。これは、本明細書中に記載されるように行われ得る。1つの例において、多重配列決定が、個々のポリヌクレオチド配列に対するバーコードラベル有りまたは無しで使用され得る。他の例では、配列決定は、当該分野で公知の任意の核酸配列決定プラットフォームを使用して行われ得る。工程304におけるように、この工程により、複数のゲノムフラグメント配列リードが生成される。さらに、参照配列を、別の被験体から採取されたコントロールサンプルから得る。場合によっては、コントロール被験体は、公知の遺伝子の異常または疾患を有していないと判明している被験体であり得る。場合によっては、これらの配列リードは、バーコード情報を含み得る。他の例では、バーコードは、使用されない。配列決定した後、リードに品質スコアを割り当てる。品質スコアは、それらのリードが、閾値に基づいて、その後の解析において有用であり得ることを示唆するリードの表示であり得る。場合によっては、いくつかのリードは、その後のマッピング工程を行うのに十分な品質または長さでない。少なくとも90%、95%、99%、99.9%、99.99%または99.999%の品質スコアを有する配列決定リードは、データセットから除外され得る。他の場合では、少なくとも90%、95%、99%、99.9%、99.99%または99.999%のスコアが付けられた品質スコアを割り当てられた配列決定リードが、データセットから除外され得る。工程306では、規定の品質スコア閾値を満たすゲノムフラグメントリードを、参照ゲノム、すなわち、稀な変異を含まないと判明している参照配列にマッピングする。マッピングアラインメントの後、配列リードにマッピングスコアを割り当てる。マッピングスコアは、各位置がユニークにマッピング可能であるかまたはそうでないかを示唆する参照配列にマッピングし戻される表示またはリードであり得る。ある場合において、リードは、稀な変異の解析と無関係の配列であり得る。例えば、いくつかの配列リードは、夾雑物ポリヌクレオチドを起源とし得る。少なくとも90%、95%、99%、99.9%、99.99%または99.999%のマッピングスコアを有する配列決定リードは、データセットから除外され得る。他の場合では、90%、95%、99%、99.9%、99.99%または99.999%未満のマッピングスコアを割り当てられた配列決定リードが、データセットから除外され得る。
マッピング可能な各塩基に対して、マッピング可能性に対する最小閾値を満たさない塩基、すなわち低品質塩基は、参照配列に見られるような対応する塩基によって置き換えられ得る。
データの選別およびマッピングの後、被験体から得られた配列リードと参照配列との間に見られるバリアント塩基が、解析される。
無細胞ポリヌクレオチド配列に由来する例示的なゲノムの場合、次の工程は、マッピング可能な各塩基位置に対するリードカバー率を決定する工程を含む。これは、バーコードを有するリードまたはバーコードを有しないリードを使用して行われ得る。バーコードを有しない場合、先のマッピング工程は、異なる塩基位置のカバー率を提供し得る。十分なマッピングスコアおよび品質スコアを有する配列リードが、カウントされ得る。カバー率リードの数は、マッピング可能な各位置ごとにスコアを割り当てられ得る。バーコードを含む場合、同じバーコードを有するすべての配列が、サンプル親分子に由来するので、それらのすべてが、1つのコンセンサスリードに折りたたまれ得る。各塩基に対する配列が、その特定の部位に対して最も支配的なヌクレオチドリードとアラインメントされる。また、ユニークな分子の数を各位置においてカウントすることにより、各位置において同時の定量を得ることができる。この工程は、増幅を伴う工程などの前述の工程のいずれかの間に導入されている可能性があるバイアスを減少させる。ユニークなバーコードを有するリードだけが、マッピング可能な各位置に対してカウントされ得、割り当てられたスコアに影響し得る。
いったん、リードカバー率が確かめられ得、各リードにおけるコントロール配列に対するバリアント塩基が同定されたら、リードの総数で除算された、バリアントを含むリードの数として、バリアント塩基の頻度が計算され得る。これは、ゲノム内のマッピング可能な各位置に対する比として表現され得る。
各塩基位置に対して、4種のヌクレオチド、シトシン、グアニン、チミン、アデニンのすべての頻度が、参照配列と比較して解析される。確率論的または統計的モデリングアルゴリズムを適用することにより、各マッピング可能な位置に対する正規化された比が変換されて、各塩基バリアントに対する頻度の状態が反映される。場合によっては、このアルゴリズムは、以下のうちの1つ以上を含み得る:隠れマルコフモデル、動的計画法、サポートベクターマシン、ベイジアンモデリングもしくは確率モデリング、トレリス復号、ビタビ復号、期待値最大化、カルマンフィルタリング法およびニューラルネットワーク。
工程312では、各塩基位置の別個の稀な変異の状態を利用することにより、参照配列のベースラインと比べて分散の頻度が高い塩基バリアントを同定することができる。場合によっては、ベースラインは、少なくとも0.0001%、0.001%、0.01%、0.1%、1.0%、2.0%、3.0%、4.0%、5.0%、10%または25%の頻度であり得る。他の場合、ベースラインは、少なくとも0.0001%、0.001%、0.01%、0.1%、1.0%、2.0%、3.0%、4.0%、5.0%、10%または25%の頻度であり得る。場合によっては、塩基バリアントまたは変異を有する隣接する塩基位置のすべてが、1つのセグメントにマージされることにより、稀な変異の有無が報告され得る。場合によっては、様々な位置が、他のセグメントとマージされる前に選別され得る。
各塩基位置に対する分散の頻度を計算した後、被験体に由来する配列中の特定の位置に対して、参照配列と比べて最も大きい偏差を有するバリアントを稀な変異と同定する。場合によっては、稀な変異は、がん変異であり得る。他の場合では、稀な変異は、疾患状態と相関し得る。
稀な変異またはバリアントは、一塩基置換もしくは小インデル、トランスバージョン、転座、逆位、欠失、切断または遺伝子切断を含むがこれらに限定されない遺伝子の異常を含み得る。場合によっては、稀な変異は、多くとも1、2、3、4、5、6、7、8、9、10、15または20ヌクレオチド長であり得る。他の場合、稀な変異は、少なくとも1、2、3、4、5、6、7、8、9、10、15または20ヌクレオチド長であり得る。
工程314において、変異の有無は、ゲノム内の様々な位置、およびそれぞれの各位置における変異の頻度の対応する増加または減少または維持を示す、グラフの形態で反映され得る。さらに、稀な変異を使用することにより、無細胞ポリヌクレオチドサンプル中に病的な材料がどれだけ存在するかを指摘するパーセンテージスコアが報告され得る。非疾患参照配列中の報告された位置における代表的な分散の公知の統計量を考慮すると、信頼スコアは、検出される各変異を伴い得る。変異はまた、被験体内の存在量順にランク付けされ得るか、または臨床的に実用的な重要度によってランク付けされ得る。
図11は、集団ポリヌクレオチド中の特定の遺伝子座における塩基または塩基の配列の頻度を推論する方法を示している。配列リードを、元のタグ化されたポリヌクレオチドから生成されたファミリーにグループ化する(1110)。各ファミリーに対して、その遺伝子座における1つ以上の塩基の各々に、信頼スコアを割り当てる。その信頼スコアは、いくつかの公知の統計学的方法のいずれかによって割り当てられ得、ある塩基がそのファミリーに属する配列リードの中に現れる頻度に少なくとも部分的に基づき得る(1112)。例えば、信頼スコアは、塩基が配列リードの中に現れる頻度であり得る。別の例として、各ファミリーに対して、単一ファミリーにおける特定の塩基の出現頻度に基づいて最大尤度または最大事後の決定が行われ得るように、隠れマルコフモデルが構築され得る。このモデルの一部として、特定の決定に対するエラーの確率および得られた信頼スコアが、同様にアウトプットされ得る。次いで、元の集団における塩基の頻度が、ファミリー間の信頼スコアに基づいて割り当てられ得る(1114)。
VII.応用法
A.がんの早期検出
数多くのがんが、本明細書中に記載される方法およびシステムを使用して検出され得る。がん細胞は、ほとんどの細胞と同様に、古い細胞が死滅して新しい細胞に置き換わるターンオーバーの速度によって特徴付けられ得る。通常、所与の被験体において脈管構造と接触している死細胞は、DNAまたはDNAのフラグメントを血流中に放出し得る。これは、その疾患の様々なステージのがん細胞にも当てはまる。がん細胞は、その疾患のステージに依存して、コピー数多型ならびに稀な変異などの様々な遺伝子の異常によっても特徴付けられ得る。この現象は、本明細書中に記載される方法およびシステムを使用して、がん個体の有無を検出するために使用され得る。
例えば、がんのリスクがある被験体由来の血液が、本明細書中に記載されるように採取され、調製されることにより、無細胞ポリヌクレオチドの集団が生成され得る。1つの例において、これは、無細胞DNAであり得る。本開示のシステムおよび方法は、存在するある特定のがんに存在し得る稀な変異またはコピー数多型を検出するために使用され得る。本方法は、疾患の徴候または他の特徴が存在しないにもかかわらず、体内のがん性細胞の存在の検出を助け得る。
検出され得るがんのタイプおよび数としては、血液のがん、脳腫瘍、肺がん、皮膚がん、鼻のがん、咽喉がん、肝臓がん、骨がん、リンパ腫、膵がん、皮膚がん、腸がん、直腸がん、甲状腺がん、膀胱がん、腎臓がん、口腔がん、胃がん、固形腫瘍、不均一な腫瘍、均一な(homogenous)腫瘍などが挙げられ得るがこれらに限定されない。
がんの早期の検出において、稀な変異の検出またはコピー数多型の検出を含む、本明細書中に記載される任意のシステムまたは方法は、がんを検出するために使用され得る。これらのシステムおよび方法は、がんを引き起こし得るかまたはがんに起因し得る任意の数の遺伝子の異常を検出するために使用され得る。これらとしては、変異、稀な変異、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染およびがんが挙げられ得るがこれらに限定されない。
さらに、本明細書中に記載されるシステムおよび方法は、ある特定のがんを特徴付けるのを助けるためにも使用され得る。本開示のシステムおよび方法から生成される遺伝子データは、専門家が、特定の形態のがんをよりうまく特徴付けるのを助けることを可能にし得る。多くの場合、がんは、組成と病期分類の両方において不均一である。遺伝的プロファイルデータは、特定のサブタイプのがんの診断または処置において重要であり得るその特定のサブタイプの特徴付けを可能にし得る。この情報はまた、特定のタイプのがんの予後に関する手掛かりを被験体または専門家に提供し得る。
B.がんのモニタリングおよび予後診断
本明細書中に提供されるシステムおよび方法は、特定の被験体におけるすでに判明しているがんまたは他の疾患をモニターするために使用され得る。これは、被験体または専門家が、処置の選択肢を疾患の進行に合わせて適合させるのを可能にし得る。この例では、本明細書中に記載されるシステムおよび方法は、特定の被験体の疾患の経過の遺伝的プロファイルを構築するために使用され得る。場合によっては、がんは、進行し、より高悪性度かつ遺伝的に不安定になり得る。他の例では、がんは、良性、不活性、休眠または寛解のままであり得る。本開示のシステムおよび方法は、疾患の進行、寛解または再発の判定において有用であり得る。
また、本明細書中に記載されるシステムおよび方法は、特定の処置の選択肢の有効性の判定において有用であり得る。1つの例において、より多くのがんが死滅し、DNAを脱落し得るようにその処置が奏功する場合、奏功する処置の選択肢は、被験体の血液中で検出されるコピー数多型または稀な変異の量を実際に増加させ得る。他の例では、これは、生じない場合もある。別の例では、おそらく、ある特定の処置の選択肢は、長い時間にわたって、がんの遺伝的プロファイルと相関し得る。この相関関係は、治療を選択する際に有用であり得る。さらに、がんが、処置後に寛解であるとみとめられる場合、本明細書中に記載されるシステムおよび方法は、残存する疾患または疾患の再発をモニターする際に有用であり得る。
例えば、閾値レベルを起点としてある範囲内の頻度で生じる変異が、被験体、例えば、患者由来のサンプル中のDNAから決定され得る。それらの変異は、例えば、がん関連の変異であり得る。その頻度は、例えば、少なくとも0.1%、少なくとも1%または少なくとも5%〜100%の範囲であり得る。サンプルは、例えば、無細胞DNAまたは腫瘍サンプルであり得る。処置の進め方は、例えば、それらの頻度を含む上記頻度の範囲内で生じる変異のいずれかまたはすべてに基づいて指示され得る。サンプルは、その後の任意の時点において被験体から採取され得る。元の範囲内の頻度または異なる範囲内の頻度で生じる変異が、決定され得る。処置の進め方は、その後の測定値に基づいて調整され得る。
C.他の疾患または疾患状態の早期の検出およびモニタリング
本明細書中に記載される方法およびシステムは、がんだけに関連する稀な変異およびコピー数多型の検出に限定されない可能性がある。様々な他の疾患および感染が、早期の検出およびモニタリングに適し得る他のタイプの状態をもたらし得る。例えば、ある特定の場合において、遺伝的障害または感染症は、被験体内にある特定の遺伝子モザイク現象を引き起こし得る。この遺伝子モザイク現象は、観察され得るコピー数多型および稀な変異を引き起こし得る。別の例では、本開示のシステムおよび方法は、体内の免疫細胞のゲノムをモニターするためにも使用され得る。B細胞などの免疫細胞は、ある特定の疾患が存在すると、急速にクローン増殖を起こし得る。クローン増殖は、コピー数多型の検出を使用してモニターされ得、ある特定の免疫状態が、モニターされ得る。この例では、コピー数多型の解析は、長い時間にわたって行われることにより、どのようにして特定の疾患が進行し得るのかというプロファイルが生成され得る。
また、本開示のシステムおよび方法は、細菌またはウイルスなどの病原体によって引き起こされ得るような全身感染症自体をモニターするためにも使用され得る。コピー数多型または稀な変異の検出は、どのようにして病原体の集団が感染の経過中に変化しているのかを決定するために使用され得る。これは、ウイルスが、感染の経過中に、生活環の状態を変化させ得るおよび/またはより毒性の高い形態に変異し得る、HIV/AIDsまたは肝炎の感染症などの慢性感染症において特に重要であり得る。
本開示のシステムおよび方法が使用され得るなおも別の例は、移植被験体のモニタリングである。一般に、移植組織は、移植されると、身体によってある特定の程度の拒絶を起こす。本開示の方法は、免疫細胞が、移植された組織を破壊しようとするときの宿主の身体の拒絶活性を決定するためまたはプロファイルするために使用され得る。これは、移植された組織の状態をモニターする際ならびに拒絶の処置または予防の進め方を変更する際に有用であり得る。
また、本開示の方法は、被験体における異常な状態の不均一性を特徴付けるために使用され得、その方法は、その被験体における細胞外ポリヌクレオチドの遺伝的プロファイルを生成する工程を含み、その遺伝的プロファイルは、コピー数多型および稀な変異の解析からもたらされた複数のデータを含む。場合によっては、がんを含むがこれに限定されない疾患が、不均一であり得る。疾患の細胞は、同一でない可能性がある。がんの例では、いくつかの腫瘍は、異なるタイプの腫瘍細胞を含むことが知られており、いくつかの細胞は、そのがんの異なるステージである。他の例では、不均一性は、複数個の病巣を含み得る。また、がんの例では、おそらく1つ以上の病巣が原発部位から広がった転移の結果である複数個の腫瘍病巣が存在し得る。
本開示の方法は、不均一な疾患における異なる細胞に由来する遺伝情報の要約であるフィンガープリントまたはデータセットを生成するためまたはプロファイルするために使用され得る。このデータセットは、コピー数多型および稀な変異の解析結果を単独でまたは組み合わせて含み得る。
D.胎児起源の他の疾患または疾患状態の早期の検出およびモニタリング
さらに、本開示のシステムおよび方法は、胎児起源のがんまたは他の疾患を診断、予後診断、モニターまたは観察するために使用され得る。すなわち、これらの方法は、そのDNAおよび他のポリヌクレオチドが母体の分子と同時に循環している可能性があるまだ生まれていない被験体におけるがんまたは他の疾患を診断、予後診断、モニターまたは観察するために、妊娠中の被験体において使用され得る。
VIII.用語
本明細書中で使用される用語は、特定の実施形態だけを説明する目的であって、本開示のシステムおよび方法を限定すると意図されていない。本明細書中で使用されるとき、単数形「a」、「an」および「the」は、文脈が明らかに別のことを示していない限り、複数形も含むと意図されている。また、用語「含む(including)」、「含む(includes)」、「有する(having)」、「有する(has)」、「有する(with)」またはそれらの変化形が、詳細な説明および/または請求項で使用される限りにおいて、そのような用語は、用語「含む(comprising)」と類似の様式で包含的であると意図されている。
本開示のシステムおよび方法のいくつかの態様は、例証のための例示の応用法に照らして上に記載されている。数多くの具体的な詳細、関係性および方法は、システムおよび方法の十分な理解を提供するために示されていることが理解されるべきである。しかしながら、関連する分野の当業者は、システムおよび方法が、その具体的な詳細の1つ以上を用いずにまたは他の方法とともに、実施され得ることを容易に認識するだろう。いくつかの行為は、異なる順序でおよび/または他の行為もしくは事象と同時に行われ得るので、本開示は、行為または事象の例証された順序によって限定されない。また、例証されたすべての行為または事象が、本開示に係る方法を実行するために必要とされるわけではない。
範囲は、「約」1つの特定の値からおよび/または「約」別の特定の値までとして本明細書中で表現され得る。そのような範囲が表現されるとき、別の実施形態は、一方の特定の値からおよび/または他方の特定の値までを含む。同様に、値が、先行詞「約」を使用することによって近似値として表現されるとき、その特定の値が、別の実施形態を形成することが理解されるだろう。それらの各範囲の終点が、他方の終点に関して、かつ他方の終点とは独立して、重要であることがさらに理解されるだろう。本明細書中で使用される用語「約」は、特定の使用法の文脈内で述べられた数値から15%+または−である範囲のことを指す。例えば、約10は、8.5〜11.5の範囲を含み得る。
コンピュータシステム
本開示の方法は、コンピュータシステムを使用して、またはその助けを借りて、実行され得る。図15は、本開示の方法を実行するようにプログラムされたまたは別途設定されたコンピュータシステム1501を示している。コンピュータシステム1501は、サンプル調製、配列決定および/または解析の様々な態様を制御し得る。いくつかの例において、コンピュータシステム1501は、サンプル調製、および核酸の配列決定を含むサンプル解析を行うように設定される。
コンピュータシステム1501は、シングルコアもしくはマルチコアプロセッサまたは並列処理のための複数のプロセッサであり得る、中央処理装置(CPU、本明細書中で「プロセッサ」および「コンピュータプロセッサ」とも)1505を備える。コンピュータシステム1501は、メモリーまたは記憶域1510(例えば、ランダムアクセスメモリー、読み出し専用メモリー、フラッシュメモリー)、電子的記憶装置1515(例えば、ハードディスク)、1つ以上の他のシステムと通信するための通信用インターフェース1520(例えば、ネットワークアダプター)および周辺機器1525(例えば、キャッシュ、他のメモリー、データストレージおよび/または電子ディスプレーアダプター)も備える。メモリー1510、記憶装置1515、インターフェース1520および周辺機器1525は、マザーボードなどのコミュニケーションバス(実線)を介してCPU1505と通信している。記憶装置1515は、データを格納するためのデータストレージ装置(またはデータリポジトリ)であり得る。コンピュータシステム1501は、通信用インターフェース1520の助けを借りてコンピュータネットワーク(「ネットワーク」)1530に動作可能なように連結され得る。ネットワーク1530は、インターネット、インターネットおよび/もしくはエクストラネット、またはインターネットと通信しているイントラネットおよび/もしくはエクストラネットであり得る。場合によっては、ネットワーク1530は、テレコミュニケーションおよび/またはデータネットワークである。ネットワーク1530は、クラウドコンピューティングなどの分散コンピューティングを可能にし得る1つ以上のコンピュータサーバーを備え得る。ネットワーク1530は、場合によってはコンピュータシステム1501の助けを借りて、コンピュータシステム1501に連結されたデバイスがクライアントまたはサーバーとして動作することを可能にし得るピアツーピアネットワークを実行し得る。
CPU1505は、プログラムまたはソフトウェアに組み入れられ得る一連の機械可読命令を実行し得る。それらの命令は、メモリー1510などの記憶域に格納され得る。CPU1505によって行われる演算の例としては、フェッチ、デコード、実行およびライトバックが挙げられ得る。
記憶装置1515は、ファイル(例えば、ドライバー、ライブラリーおよび保存されたプログラム)を格納し得る。記憶装置1515は、ユーザーによって生成されたプログラムおよび記録されたセッション、ならびにそれらのプログラムに関連するアウトプットを格納し得る。記憶装置1515は、ユーザーデータ、例えば、ユーザーの好みおよびユーザープログラムを格納し得る。コンピュータシステム1501は、場合によっては、コンピュータシステム1501の外側の1つ以上のさらなるデータストレージ装置(例えば、イントラネットまたはインターネットを通じてコンピュータシステム1501と通信しているリモートサーバー上に位置する)を備え得る。
コンピュータシステム1501は、ネットワーク1530を通じて1つ以上のリモートコンピュータシステムと通信し得る。例えば、コンピュータシステム1501は、ユーザー(例えば、オペレーター)のリモートコンピュータシステムと通信し得る。リモートコンピュータシステムの例としては、パーソナルコンピュータ(例えば、携帯型PC)、スレートまたはタブレットPC(例えば、Apple(登録商標)iPad、Samsung(登録商標)Galaxy Tab)、電話、スマートフォン(例えば、Apple(登録商標)iPhone、Android対応デバイス、Blackberry(登録商標))または携帯情報端末が挙げられる。ユーザーは、ネットワーク1530を介してコンピュータシステム1501にアクセスし得る。
本明細書中に記載されるような方法は、コンピュータシステム1501の電子的記憶場所(例えば、メモリー1510または電子的記憶装置1515)上に格納された機械(例えば、コンピュータプロセッサ)実行コードによって実行され得る。その機械実行コードまたは機械可読コードは、ソフトウェアの形態で提供され得る。使用中に、そのコードは、プロセッサ1505によって実行され得る。場合によっては、そのコードは、記憶装置1515から検索されて、プロセッサ1505によって、いつでもアクセスできるようにメモリー1510上に格納され得る。時として、電子的記憶装置1515は、妨げられ得、機械が実行可能な命令が、メモリー1510上に格納される。
そのコードは、事前コンパイルされ、そのコードを実行するように適合されたプロセッサを有する機械で使用するために構成され得るか、または実行時間中にコンパイルされ得る。そのコードは、そのコードが、事前コンパイルされたまたは事後コンパイルされた(as−compiled)様式で実行するのを可能にするように選択され得るプログラミング言語で供給され得る。
コンピュータシステム1501などの本明細書中に提供されるシステムおよび方法の態様は、プログラミングにおいて具体化され得る。その技術の様々な態様は、代表的には、あるタイプの機械可読媒体において持ち運ばれるかまたは具体化される、機械(またはプロセッサ)が実行可能なコードおよび/または関連するデータの形態の「製品」または「製造品」と考えられ得る。機械実行可能コードは、電子的記憶装置、そのようなメモリー(例えば、読み出し専用メモリー、ランダムアクセスメモリー、フラッシュメモリー)またはハードディスクに格納され得る。「ストレージ」タイプの媒体には、ソフトウェアプログラミングのために任意の時点において一時的でないストレージを提供し得る、コンピュータ、プロセッサなどの有形メモリーまたはそれらの関連するモジュール(例えば、様々な半導体メモリー、テープドライブ、ディスクドライブなど)のいずれかまたはすべてが含まれ得る。ソフトウェアの全部または一部は、時折、インターネットまたは様々な他のテレコミュニケーションネットワークを介して通信され得る。そのような通信は、例えば、1つのコンピュータまたはプロセッサから別のものへの、例えば、管理サーバーまたはホストコンピュータからアプリケーションサーバーのコンピュータプラットフォームへの、ソフトウェアのローディングを可能にし得る。したがって、ソフトウェアエレメントを有し得る別のタイプの媒体には、有線ネットワークおよび光学的な陸線ネットワークを介するならびに様々なエアリンク(air−link)による、光波、電波および電磁波(例えば、ローカルデバイス間の物理的インターフェースにわたって使用されるもの)が含まれる。そのような波を運ぶ物理的エレメント(例えば、有線または無線リンク、光リンクなど)もまた、ソフトウェアを有する媒体と見なされ得る。本明細書中で使用されるとき、一時的でない有形の「記憶」媒体に限定されない限り、コンピュータまたは機械「可読媒体」などの用語は、実行用のプロセッサへの命令の提供に関与する任意の媒体のことを指す。
ゆえに、コンピュータが実行可能なコードなどの機械可読媒体は、有形記憶媒体、搬送波媒体または物理的伝送媒体を含むがこれらに限定されない多くの形態をとり得る。不揮発性記憶媒体としては、例えば、光学ディスクまたは磁気ディスク(例えば、図面に示されている、データベースなどを実装するために使用され得るような、任意のコンピュータにおける任意の記憶デバイスなど)が挙げられる。揮発性記憶媒体としては、ダイナミックメモリー(例えば、そのようなコンピュータプラットフォームのメインメモリー)が挙げられる。有形伝送媒体としては、同軸ケーブル;コンピュータシステム内のバスを含むワイヤーを含む、銅線および光ファイバーが挙げられる。搬送波伝送媒体は、電気信号もしくは電磁信号または音波もしくは光波の形態(例えば、高周波(RF)および赤外(IR)データ通信中に生成されるもの)をとり得る。ゆえに、コンピュータ可読媒体の通常の形態としては、例えば、フロッピー(登録商標)ディスク、フレキシブルディスク、ハードディスク、磁気テープ、他の任意の磁気媒体、CD−ROM、DVDもしくはDVD−ROM、他の任意の光学媒体、パンチカード紙テープ、穴のパターンを有する他の任意の物理的記録媒体、RAM、ROM、PROMおよびEPROM、FLASH−EPROM、他の任意のメモリーチップもしくはカートリッジ、データまたは命令を運ぶ搬送波、そのような搬送波を運ぶケーブルもしくはリンク、またはコンピュータがプログラミングコードおよび/もしくはデータを読み出し得る他の任意の媒体が挙げられる。これらの形態のコンピュータ可読媒体の多くは、1つ以上の命令の1つ以上の連続を実行用のプロセッサに運ぶ際に必要とされ得る。
コンピュータシステム1501は、例えば、サンプル解析の1つ以上の結果を提供するためのユーザーインターフェース(UI)を備える電子ディスプレーを備え得るかまたは電子ディスプレーと通信し得る。UIの例としては、グラフィカルユーザーインターフェース(GUI)およびウェブベースユーザーインターフェースが挙げられるがこれらに限定されない。
実施例1−前立腺がんの予後診断および処置
血液サンプルを前立腺がんの被験体から採取する。予め、腫瘍学者は、その被験体がステージIIの前立腺がんを有することを明らかにしており、処置を推奨している。最初の診断後の6ヶ月毎に、無細胞DNAを抽出し、単離し、配列決定し、解析する。
Qiagen Qubitキットプロトコルを使用して、血液から無細胞DNAを抽出し、単離する。収量を上げるために、キャリアDNAを加える。PCRおよびユニバーサルプライマーを使用して、DNAを増幅する。Illumina MiSeqパーソナル配列分析装置を使用する超並列シーケンシングアプローチを用いて、10ngのDNAを配列決定する。無細胞DNAを配列決定することにより、被験体のゲノムの90%がカバーされる。
配列データをアセンブルし、コピー数多型について解析する。配列リードをマッピングし、健常個体(コントロール)と比較する。配列リードの数に基づいて、染色体領域を50kbの非重複領域に分ける。配列リードを互いに比較し、マッピング可能な各位置について比を求める。
隠れマルコフモデルを適用して、コピー数を各ウィンドウに対する別個の状態に変換する。
レポートが生成され、マッピングゲノム位置およびコピー数多型が、図4A(健常個体について)に、がんを有する被験体については図4Bに示している。
既知の結果を有する被験体の他のプロファイルと比較したこれらのレポートは、この特定のがんが、高悪性度であり、処置に抵抗性であることを示唆する。無細胞腫瘍量は、21%である。この被験体を18ヶ月間モニターする。18ヶ月目に、コピー数多型のプロファイルは、無細胞腫瘍量が21%から30%に劇的に増加し始める。他の前立腺がんの被験体の遺伝的プロファイルとの比較を行う。このコピー数多型の増加は、前立腺がんがステージIIからステージIIIに進行していることを示唆することが明らかにされている。指示されたような元の処置レジメンは、もはやそのがんを処置していない。新たな処置が指示される。
また、これらのレポートは、インターネットを介して電子的に送信され、アクセスされる。配列データの解析は、被験体の所在地以外の場所で行われる。レポートは、生成されて、被験体の所在地に送信される。インターネット対応のコンピュータを介して、被験体は、自身の腫瘍量を反映しているレポートにアクセスする(図4C)。
実施例2−前立腺がんの寛解および再発。
血液サンプルを前立腺がん生存者から採取する。その被験体は、以前に、多数回の化学療法および放射線照射を受けている。試験時の被験体は、がんに関する徴候または健康問題を表していなかった。標準的なスキャンおよびアッセイは、その被験体にがんが無いことを明らかにする。
Qiagen TruSeqキットプロトコルを使用して、血液から無細胞DNAを抽出し、単離する。収量を上げるために、キャリアDNAを加える。PCRおよびユニバーサルプライマーを使用して、DNAを増幅する。Illumina MiSeqパーソナル配列分析装置を使用する超並列シーケンシングアプローチを用いて、10ngのDNAを配列決定する。ライゲーション法を使用して、個々の分子に12merのバーコードを付加する。
配列データをアセンブルし、コピー数多型について解析する。配列リードをマッピングし、健常個体(コントロール)と比較する。配列リードの数に基づいて、染色体領域を40kbの非重複領域に分ける。配列リードを互いに比較し、マッピング可能な各位置について比を求める。
増幅からのバイアスを正規化するのを助けるために、ユニークでないバーコード化された配列を単一のリードに折りたたむ。
隠れマルコフモデルを適用して、コピー数を各ウィンドウに対する別個の状態に変換する。
レポートが生成され、がんが寛解中の被験体については図5Aおよびがんが再発中の被験体については図5Bに、マッピングゲノム位置およびコピー数多型が示されている。
既知の結果を有する被験体の他のプロファイルと比較したこのレポートは、18ヶ月目において、コピー数多型に対する稀な変異の解析が、5%の無細胞腫瘍量で検出されることを示唆する。腫瘍学者は、再度、処置を指示する。
実施例3−甲状腺がんおよび処置
被験体は、ステージIVの甲状腺がんを有することが判明しており、I−131による放射線治療を含む標準的な処置を受ける。CTスキャンは、その放射線治療ががん性の塊を破壊しているか否かに関して不確かである。最後の放射線照射のセッションの前後に、血液を採取する。
Qiagen Qubitキットプロトコルを使用して、血液から無細胞DNAを抽出し、単離する。収量を上げるために、非特異的なバルクDNAのサンプルをサンプル調製反応物に加える。
この甲状腺がんでは、BRAF遺伝子が600位のアミノ酸において変異され得ることが知られている。その遺伝子に特異的なプライマーを使用して、無細胞DNAの集団からBRAF DNAを選択的に増幅する。リードをカウントするためのコントロールとして、20merのバーコードを親分子に付加する。
Illumina MiSeqパーソナル配列分析装置を使用する超並列シーケンシングアプローチを用いて、10ngのDNAを配列決定する。
配列データをアセンブルし、コピー数多型の検出について解析する。配列リードをマッピングし、健常個体(コントロール)と比較する。バーコード配列をカウントすることによって決定される配列リードの数に基づいて、染色体領域を50kbの非重複領域に分ける。配列リードを互いに比較し、マッピング可能な各位置について比を求める。
隠れマルコフモデルを適用して、コピー数を各ウィンドウに対する別個の状態に変換する。
マッピングゲノム位置およびコピー数多型であるレポートが生成される。
処置の前後に生成されたレポートを比較する。腫瘍細胞量のパーセンテージは、放射線照射セッションの後、30%から60%に急増する。腫瘍量の急増は、処置の結果として、正常組織に対するがん組織のネクローシスの増加であると判断される。腫瘍学者は、被験体が指示された処置を続けることを推奨する。
実施例4−稀な変異の検出の感度
DNAの集団内に存在する稀な変異の検出範囲を決定するために、混合実験を行う。DNAの配列(いくつかは、野生型のコピー数の遺伝子TP53、HRASおよびMETを含み、いくつかは、それらの同じ遺伝子に稀な変異を有するコピーを含む)を異なる比で混合する。変異体DNAと野生型DNAとの比またはパーセンテージが、100%から0.01%までの範囲になるように、DNA混合物を調製する。
Illumina MiSeqパーソナル配列分析装置を使用する超並列シーケンシングアプローチを用いて、各混合実験に対して10ngのDNAを配列決定する。
配列データをアセンブルし、稀な変異の検出について解析する。配列リードをマッピングし、参照配列(コントロール)と比較する。配列リードの数に基づいて、マッピング可能な各位置に対する分散の頻度を求める。
隠れマルコフモデルを適用して、マッピング可能な各位置に対する分散の頻度を塩基位置に対する別個の状態に変換する。
マッピングゲノム塩基位置、および参照配列によって決定されるベースラインより上の稀な変異の検出パーセンテージである、レポートが生成される(図6A)。
0.1%から100%までの範囲の様々な混合実験の結果は、対数目盛のグラフに示され、稀な変異を有するDNAの計測されたパーセンテージは、稀な変異を有するDNAの実際のパーセンテージの関数としてグラフ化される(図6B)。3つの遺伝子、TP53、HRASおよびMETが表されている。計測された稀な変異集団と予想される稀な変異集団との間に、強い線形相関が見られる。さらに、変異していないDNAの集団中の稀な変異を有する約0.1%のDNAのより低い感度閾値は、これらの実験を用いて見出される(図6B)。
実施例5−前立腺がん被験体における稀な変異の検出
被験体は、初期の前立腺がんを有すると考えられる。他の臨床検査は、不確かな結果を提供する。その被験体から血液を採取し、無細胞DNAを抽出し、単離し、調製し、配列決定する。
様々な癌遺伝子および腫瘍抑制遺伝子のパネルを、遺伝子特異的プライマーを使用するTaqMan(著作権)PCRキット(Invitrogen)を使用する選択的増幅のために選択する。増幅されるDNA領域は、PIK3CAおよびTP53遺伝子を含むDNAを含む。
Illumina MiSeqパーソナル配列分析装置を使用する超並列シーケンシングアプローチを用いて、10ngのDNAを配列決定する。
配列データをアセンブルし、稀な変異の検出について解析する。配列リードをマッピングし、参照配列(コントロール)と比較する。配列リードの数に基づいて、マッピング可能な各位置に対する分散の頻度を求めた。
隠れマルコフモデルを適用して、マッピング可能な各位置に対する分散の頻度を各塩基位置に対する別個の状態に変換する。
マッピングゲノム塩基位置、および参照配列によって決定されるベースラインより上の稀な変異の検出パーセンテージである、レポートが生成される(図7A)。稀な変異は、2つの遺伝子、それぞれPIK3CAおよびTP53において5%の出現率で見られ、その被験体が初期のがんを有することを示唆する。処置を開始する。
また、これらのレポートは、インターネットを介して電子的に送信され、アクセスされる。配列データの解析は、被験体の所在地以外の場所で行われる。レポートは、生成されて、被験体の所在地に送信される。インターネット対応のコンピュータを介して、被験体は、自身の腫瘍量を反映しているレポートにアクセスする(図7B)。
実施例6−直腸結腸がんの被験体における稀な変異の検出
被験体は、中期の直腸結腸がんを有すると考えられる。他の臨床検査は、不確かな結果を提供する。その被験体から血液を採取し、無細胞DNAを抽出する。
単一のチューブの血漿から抽出された10ngの無細胞遺伝物質を使用する。最初の遺伝物質を、タグ化された親ポリヌクレオチドのセットに変換する。このタグ化には、配列決定のために必要なタグ、ならびに子孫分子の親核酸をさかのぼるためのユニークでない識別子を付着することが含まれた。この変換は、上に記載したような最適化されたライゲーション反応によって行われ、ライゲーション後の分子のサイズプロファイルを調べることによって、変換収率が確かめられる。変換収率は、両端にタグがライゲートされた開始の最初の分子のパーセンテージとして計測される。このアプローチを用いる変換は、高効率で、例えば、少なくとも50%で行われる。
タグ化されたライブラリーをPCR増幅し、直腸結腸がんに最も関連する遺伝子(例えば、KRAS、APC、TP53など)について富化し、得られたDNAを、Illumina MiSeqパーソナル配列分析装置を使用する超並列シーケンシングアプローチを用いて配列決定する。
配列データをアセンブルし、稀な変異の検出について解析する。配列リードを、親分子に属するファミリーグループに折りたたみ(ならびに折りたたむ際にエラーを訂正し)、参照配列(コントロール)を用いてマッピングする。配列リードの数に基づいて、マッピング可能な各位置について、稀な変異(置換、挿入、欠失など)およびコピー数多型およびヘテロ接合性(適切なとき)の頻度を求める。
マッピングゲノム塩基位置、および参照配列によって決定されるベースラインより上の稀な変異の検出パーセンテージである、レポートが生成される。稀な変異は、2つの遺伝子、それぞれKRASおよびFBXW7において0.3〜0.4%の出現率で見られ、その被験体にがんが残存していることを示唆する。処置を開始する。
さらに、これらのレポートは、インターネットを介して電子的に送信され、アクセスされる。配列データの解析は、被験体の所在地以外の場所で行われる。レポートは、生成されて、被験体の所在地に送信される。インターネット対応のコンピュータを介して、被験体は、自身の腫瘍量を反映しているレポートにアクセスする。
実施例7−デジタル配列決定技術
腫瘍から脱落した核酸の濃度は、代表的には、現在の次世代シーケンシング技術が、そのような信号を散発的にしかまたは末期的に高腫瘍量を有する患者においてしか検出できない程度に低い。主な理由は、そのような技術が、循環DNAにおけるがんに関連する新規の遺伝子変化を確実に検出するのに必要なオーダーより高いオーダーであり得るエラー率およびバイアスに悩まされていることである。新しい配列決定技術であるデジタル配列決定技術(DST)がここに示され、それは、生殖細胞系列フラグメントの間の腫瘍由来の稀な核酸を検出および定量する感度および特異性を少なくとも1〜2桁高める。
DSTの構造は、現代の通信路によって引き起こされる高いノイズおよび歪みの抑制に努める最新式のデジタル通信システムによって着想され、デジタル情報を非常に高いデータ速度で完全に伝送することができる。同様に、現在の次世代ワークフローは、極めて高いノイズおよび歪み(サンプル調製、PCRベースの増幅および配列決定に起因する)に悩まされる。デジタル配列決定は、これらのプロセスによってもたらされるエラーおよび歪みを排除することができ、稀なバリアントのすべて(CNVを含む)の完璧に近い表示をもたらすことができる。
高多様性ライブラリーの調製
非効率的なライブラリー変換に起因して、抽出された循環DNAフラグメントの大部分が失われる従来のシーケンシングライブラリー調製プロトコルとは異なって、本発明者らのデジタル配列決定技術のワークフローは、出発分子の大多数の変換および配列決定を可能にする。10mLチューブ全体の血液中には、体細胞変異した分子はほんの少数しか存在しない可能性があるので、これは、稀なバリアントの検出にとって非常に重要である。開発された効率的な分子生物学変換プロセスは、稀なバリアントの検出に対して最も高い可能性のある感度を可能にする。
包括的な実用的な癌遺伝子パネル
DSTプラットフォームに基づいて設計されたワークフローは、順応性があり、標的化された領域が、単一のエキソンほど小さいかまたはエクソーム全体(または全ゲノムさえ)ほど大きい可能性があるとき、高度に調整可能である。標準的なパネルは、15個の実用的ながん関連遺伝子のエキソンの全塩基およびさらなる36個の腫瘍(onco)−/腫瘍(tumor)−抑制遺伝子の「ホット」エキソン(例えば、COSMICにおいて少なくとも1つまたはそれ以上の報告された体細胞変異を含むエキソン)のカバー度からなる。
実施例8:分析的研究
本発明者らの技術の性能を研究するために、分析用サンプルにおいてその感度を評価した。本発明者らは、様々な量のLNCaPがん細胞株DNAを正常なcfDNAのバックグラウンドに加え、0.1%の感度に至るまで体細胞変異の検出に成功することができた(図13を参照のこと)。
前臨床試験
マウスでのヒト異種移植片モデルにおける循環DNAと腫瘍gDNAとの一致を調査した。7匹のCTC陰性マウス(各々が、2つの異なるヒト乳がん腫瘍のうちの1つを有する)では、腫瘍gDNAにおいて検出されるすべての体細胞変異は、DSTを使用して、マウス血中cfDNAにおいても検出されたことから、非侵襲性の腫瘍の遺伝的プロファイリングに対するcfDNAの有用性がさらに確証された。
パイロット臨床研究
腫瘍バイオプシー 対 循環DNAの体細胞変異の相関関係
種々のがんタイプにわたるヒトサンプルにおいて、パイロット研究を開始した。循環無細胞DNAに由来する腫瘍変異プロファイルと、マッチする腫瘍バイオプシーサンプルに由来する腫瘍変異プロファイルとの一致性を調査した。14人の患者にわたる直腸結腸がんとメラノーマがんの両方において腫瘍の体細胞変異プロファイルとcfDNAの体細胞変異プロファイルとの間に93%超の一致が見られた(表1)。
特定の実施態様を例証し、記載してきたが、それらに対して様々な改変を行うことができ、それらの改変が本明細書中で企図されることが、前述から理解されるべきである。本発明は、本明細書内に提供された特定の例に限定されないことも意図されている。上述の明細書に照らして本発明を記載してきたが、本明細書中の好ましい実施形態の説明および例証は、限定の意味で解釈されるように意味されていない。また、本発明のすべての態様が、種々の条件および可変事項に依存する、本明細書中に示される特定の描写、配置または相対的比率に限定されないことが理解されるものとする。本発明の実施形態の形態および詳細の様々な改変が、当業者に明らかになるだろう。ゆえに、本発明は、そのような任意の改変、バリエーションおよび等価物も包含するものとすることが企図される。

Claims (206)

  1. コピー数多型を検出するための方法であって、該方法は、
    a.被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、該細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;
    b.指定の閾値を満たさないリードを除外する工程;
    c.工程(a)から得られた配列リードを、リードを除外した後に、参照配列に対してマッピングする工程;
    d.該参照配列の予め定義された2つ以上の領域におけるマッピングされたリードを定量するかまたは列挙する工程;および
    e.
    i.該予め定義された領域におけるリードの数を互いに対しておよび/または該予め定義された領域におけるユニークな配列リードの数を互いに対して正規化する工程;
    ii.工程(i)において得られた正規化された数を、コントロールサンプルから得られた正規化された数と比較する工程
    によって、該予め定義された領域の1つ以上におけるコピー数多型を決定する工程
    を含む、方法。
  2. 被験体から得られた無細胞のまたは実質的に無細胞のサンプル中の稀な変異を検出するための方法であって、該方法は、
    a.被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、該細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;
    b.領域において多重配列決定を行うか、または富化が行われない場合、全ゲノム配列決定を行う、工程;
    c.指定の閾値を満たさないリードを除外する工程;
    d.該配列決定工程に由来する配列リードを参照配列上にマッピングする工程;
    e.マッピング可能な各塩基位置において該参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;
    f.マッピング可能な各塩基位置に対して、(a)該参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;
    g.マッピング可能な各塩基位置に対して該比または分散の頻度を正規化し、潜在的な稀なバリアント(複数可)または変異(複数可)を決定する工程;および
    h.潜在的な稀なバリアント(複数可)または変異(複数可)を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程
    を含む、方法。
  3. 被験体における異常な状態の不均一性を特徴付ける方法であって、該方法は、該被験体における細胞外ポリヌクレオチドの遺伝的プロファイルを生成する工程を含み、該遺伝的プロファイルは、コピー数多型および稀な変異の解析からもたらされる複数のデータを含む、方法。
  4. 前記被験体において同定された稀な各バリアントの保有率/濃度が、同時に報告および定量される、請求項1、2または3に記載の方法。
  5. 前記被験体における稀なバリアントの保有率/濃度に関する信頼スコアが、報告される、請求項1、2または3に記載の方法。
  6. 前記細胞外ポリヌクレオチドが、DNAを含む、請求項1、2または3に記載の方法。
  7. 前記細胞外ポリヌクレオチドが、RNAを含む、請求項1、2または3に記載の方法。
  8. 前記身体サンプルから細胞外ポリヌクレオチドを単離する工程をさらに含む、請求項1、2または3に記載の方法。
  9. 前記単離する工程が、循環核酸の単離および抽出のための方法を含む、請求項1、2または3に記載の方法。
  10. 単離された前記細胞外ポリヌクレオチドを断片化する工程をさらに含む、請求項1、2または3に記載の方法。
  11. 前記身体サンプルが、血液、血漿、血清、尿、唾液、粘膜排出物、痰、便および涙からなる群より選択される、請求項8に記載の方法。
  12. 前記身体サンプル中にコピー数多型または稀な変異もしくはバリアントを有する配列のパーセントを決定する工程をさらに含む、請求項1、2または3に記載の方法。
  13. 前記決定する工程が、所定の閾値より多いまたは少ないポリヌクレオチドの量を有する予め定義された領域のパーセンテージを計算する工程を含む、請求項12に記載の方法。
  14. 前記被験体が、異常な状態を有すると疑われる、請求項1、2または3に記載の方法。
  15. 前記異常な状態が、変異、稀な変異、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染およびがんからなる群より選択される、請求項14に記載の方法。
  16. 前記被験体が、妊婦である、請求項1、2または3に記載の方法。
  17. 前記コピー数多型または稀な変異または遺伝的バリアントが、胎児の異常を示す、請求項1または2に記載の方法。
  18. 前記胎児の異常が、変異、稀な変異、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染およびがんからなる群より選択される、請求項17に記載の方法。
  19. 配列決定前に、前記細胞外ポリヌクレオチドまたはそのフラグメントに1つ以上のバーコードを付着させる工程をさらに含む、請求項1、2または3に記載の方法。
  20. 配列決定前に細胞外ポリヌクレオチドまたはそのフラグメントに付着される各バーコードが、ユニークである、請求項19に記載の方法。
  21. 配列決定前に細胞外ポリヌクレオチドまたはそのフラグメントに付着される各バーコードが、ユニークでない、請求項19に記載の方法。
  22. 配列決定前に前記被験体のゲノムまたはトランスクリプトームから領域を選択的に富化する工程をさらに含む、請求項1、2または3に記載の方法。
  23. 配列決定前に前記被験体のゲノムまたはトランスクリプトームから領域を非選択的に富化する工程をさらに含む、請求項1、2または3に記載の方法。
  24. 任意の増幅工程または富化工程の前に、前記細胞外ポリヌクレオチドまたはそのフラグメントに1つ以上のバーコードを付着させる工程をさらに含む、請求項1、2または3に記載の方法。
  25. 前記バーコードが、ポリヌクレオチドである、請求項19に記載の方法。
  26. 前記バーコードが、ランダムな配列を含む、請求項19に記載の方法。
  27. 前記バーコードが、選ばれた領域から配列決定された分子の多様性と組み合わせて、ユニークな分子の同定を可能にする、固定されたまたはセミランダムなセットのオリゴヌクレオチドを含む、請求項19に記載の方法。
  28. 前記バーコードが、少なくとも3、5、10、15、20、25、30、35、40、45または50merの塩基対の長さであるオリゴヌクレオチドを含む、請求項19に記載の方法。
  29. 前記細胞外ポリヌクレオチドまたはそのフラグメントを増幅する工程をさらに含む、請求項1、2または3に記載の方法。
  30. 前記増幅が、グローバル増幅または全ゲノム増幅を含む、請求項29に記載の方法。
  31. ユニークな同一性の配列リードが、該配列リードの始めの(開始)領域および終わりの(終止)領域における配列情報ならびに該配列リードの長さに基づいて検出される、請求項1、2または3に記載の方法。
  32. ユニークな同一性の配列分子が、前記配列リードの始めの(開始)領域および終わりの(終止)領域における配列情報、該配列リードの長さならびにバーコードの付着に基づいて検出される、請求項31に記載の方法。
  33. 前記増幅が、選択的増幅を含む、請求項30に記載の方法。
  34. 前記増幅が、非選択的増幅を含む、請求項33に記載の方法。
  35. 抑制増幅またはサブトラクションによる富化が、行われる、請求項1、2または3に記載の方法。
  36. 前記リードのサブセットを、リードを定量するかまたは列挙する前に、さらなる解析から除去する工程をさらに含む、請求項1、2または3に記載の方法。
  37. 除去する工程が、閾値未満、例えば、90%、99%、99.9%もしくは99.99%未満の精度スコアもしくは品質スコア、および/または閾値未満、例えば、90%、99%、99.9%もしくは99.99%未満のマッピングスコアを有するリードを除外する工程を含む、請求項36に記載の方法。
  38. 指定の閾値より低い品質スコアを有するリードを選別する工程をさらに含む、請求項1、2または3に記載の方法。
  39. 前記予め定義された領域が、均一なまたは実質的に均一なサイズである、請求項1に記載の方法。
  40. 前記予め定義された領域が、少なくとも約10kb、20kb、30kb、40kb、50kb、60kb、70kb、80kb、90kbまたは100kbのサイズである、請求項39に記載の方法。
  41. 少なくとも50、100、200、500、1000、2000、5000、10,000、20,000または50,000個の領域が、解析される、請求項1、2または3に記載の方法。
  42. 前記バリアントが、遺伝子融合、遺伝子重複、遺伝子欠失、遺伝子転座、マイクロサテライト領域、遺伝子フラグメントまたはそれらの組み合わせからなる群より選択されるゲノムの領域に存在する、請求項1、2または3に記載の方法。
  43. 前記バリアントが、遺伝子、癌遺伝子、腫瘍抑制遺伝子、プロモーター、制御配列エレメントまたはそれらの組み合わせからなる群より選択されるゲノムの領域に存在する、請求項1、2または3に記載の方法。
  44. 前記バリアントが、1、2、3、4、5、6、7、8、9、10、15または20ヌクレオチド長のヌクレオチドバリアント、一塩基置換、小インデル、トランスバージョン、転座、逆位、欠失、切断または遺伝子切断である、請求項2に記載の方法。
  45. 個々のリードの前記バーコードまたはユニークな特性を用いて、マッピングされたリードの数量を訂正する/正規化する/調整する工程をさらに含む、請求項1、2または3に記載の方法。
  46. 前記リードを列挙する工程が、前記予め定義された領域の各々におけるユニークなバーコードを列挙し、配列決定された予め定義された領域の少なくとも1つのサブセットにわたってそれらの数を正規化することによって行われる、請求項1または2に記載の方法。
  47. 同じ前記被験体由来の、次の時間間隔におけるサンプルが、解析され、前のサンプルの結果と比較される、請求項1、2または3に記載の方法。
  48. 前記方法が、前記バーコードが付着された細胞外ポリヌクレオチドを増幅する工程をさらに含む、請求項45に記載の方法。
  49. 部分的なコピー数多型の頻度を決定する工程、ヘテロ接合性の喪失を測定する工程、遺伝子発現の解析を行う工程、エピジェネティックな解析を行う工程、および/または過剰メチル化の解析を行う工程をさらに含む、請求項1、2または3に記載の方法。
  50. 多重配列決定を用いて、被験体から得られた無細胞のまたは実質的に無細胞のサンプルにおいて、コピー数多型を決定するかまたは稀な変異の解析を行う工程を含む、方法。
  51. 前記多重配列決定が、10,000を超える配列決定反応を行うことを含む、請求項50に記載の方法。
  52. 前記多重配列決定が、少なくとも10,000個の異なるリードを同時に配列決定することを含む、請求項50に記載の方法。
  53. 前記多重配列決定が、少なくとも10,000個の異なるリードに対するデータ解析を前記ゲノムにわたって行うことを含む、請求項50に記載の方法。
  54. 前記正規化することおよび検出が、隠れマルコフ、動的計画法、サポートベクターマシン、ベイジアンモデリングもしくは確率モデリング、トレリス復号、ビタビ復号、期待値最大化、カルマンフィルタリングまたはニューラルネットワーク法のうちの1つ以上を使用して行われる、請求項1または2に記載の方法。
  55. 疾患の進行をモニターする工程、残存する疾患をモニターする工程、治療をモニターする工程、状態を診断する工程、状態を予後診断する工程、または前記被験体に対して発見されたバリアントに基づいて治療を選択する工程をさらに含む、請求項1、2または3に記載の方法。
  56. 治療が、最新のサンプル解析に基づいて改変される、請求項55に記載の方法。
  57. 腫瘍、感染または他の組織異常の遺伝的プロファイルが、推論される、請求項1、2または3に記載の方法。
  58. 腫瘍の成長、寛解もしくは進展、感染または他の組織異常が、モニターされる、請求項1、2または3に記載の方法。
  59. 前記被験体の免疫系に関係する配列が、単一の場合においてまたは経時的に解析およびモニターされる、請求項1、2または3に記載の方法。
  60. バリアントの同定が、該同定されたバリアントを引き起こすと疑われる組織異常の位置を特定するためのイメージング検査(例えば、CT、PET−CT、MRI、X線、超音波)を通じて追跡される、請求項1、2または3に記載の方法。
  61. 前記解析が、同じ患者由来の組織または腫瘍のバイオプシーから得られる遺伝子データの使用をさらに含む、請求項1、2または3に記載の方法。
  62. 腫瘍、感染または他の組織異常の系統発生が、推論される、請求項1、2または3に記載の方法。
  63. 前記方法が、信頼度の低い領域を、集団に基づいてコールしないことおよび同定することを行う工程をさらに含む、請求項1または2に記載の方法。
  64. 配列カバー率についての測定データを得る工程が、前記ゲノムのすべての位置において配列カバー率の深さを計測する工程を含む、請求項1または2に記載の方法。
  65. 前記配列カバー率についての前記測定データのバイアスについて訂正する工程が、ウィンドウ平均カバー率を計算する工程を含む、請求項64に記載の方法。
  66. 前記配列カバー率についての前記測定データのバイアスについて訂正する工程が、ライブラリー構築および配列決定プロセスにおけるGCバイアスを説明する調整を行う工程を含む、請求項64に記載の方法。
  67. 前記配列カバー率についての前記測定データのバイアスについて訂正する工程が、バイアスを相殺するために、個々のマッピングに関連するさらなる重み付け因子に基づいて調整を行う工程を含む、請求項64に記載の方法。
  68. 細胞外ポリヌクレオチドが、病的な細胞起源に由来する、請求項1、2または3に記載の方法。
  69. 細胞外ポリヌクレオチドが、健常な細胞起源に由来する、請求項1、2または3に記載の方法。
  70. 以下の工程:ゲノム内の予め定義された領域を選択する工程;該予め定義された領域内の配列リードの数を列挙する工程;該予め定義された領域にわたる配列リードの該数を正規化する工程;および該予め定義された領域内のコピー数多型のパーセントを決定する工程を行うためのコンピュータ可読媒体を備えるシステム。
  71. 前記ゲノムの全体または該ゲノムの少なくとも85%が、解析される、請求項70に記載のシステム。
  72. 前記コンピュータ可読媒体が、血漿または血清中のがんDNAまたはがんRNAのパーセントに関するデータをエンドユーザーに提供する、請求項70に記載のシステム。
  73. 同定された前記コピー数多型が、前記サンプル中の不均一性に起因して、分数(すなわち、非整数レベル)である、請求項1に記載の方法。
  74. 選択された領域の富化が、行われる、請求項1に記載の方法。
  75. コピー数多型の情報が、請求項1、64、65、66および67に記載された方法に基づいて同時に抽出される、請求項1に記載の方法。
  76. ポリヌクレオチドを妨げて、前記サンプル中のポリヌクレオチドの開始の最初のコピー数または多様性を制限する最初の工程とともに使用される、請求項1または2に記載の方法。
  77. 被験体から得られた無細胞のまたは実質的に無細胞のサンプル中の稀な変異を検出するための方法であって、該方法は、
    a.被験体の身体サンプル由来の細胞外ポリヌクレオチドを配列決定する工程であって、該細胞外ポリヌクレオチドの各々は、複数の配列決定リードを生成する、工程;
    b.指定の品質閾値を満たさないリードを除外する工程;
    c.該配列決定する工程に由来する配列リードを参照配列上にマッピングする工程;
    d.マッピング可能な各塩基位置において該参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;
    e.マッピング可能な各塩基位置に対して、(a)該参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;
    f.マッピング可能な各塩基位置に対して該比または分散の頻度を正規化し、潜在的な稀なバリアント(複数可)または他の遺伝子変化(複数可)を決定する工程;および
    g.潜在的な稀なバリアント(複数可)または変異(複数可)を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程
    を含む、方法。
  78. a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;
    b.該セット内の該タグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;
    c.該セットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;および
    d.該セットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、該セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程
    を含む、方法。
  79. あるセット内の各ポリヌクレオチドが、参照配列にマッピング可能である、請求項78に記載の方法。
  80. タグ化された親ポリヌクレオチドの複数のセットを提供する工程を含み、各セットは、前記参照配列中の異なるマッピング可能な位置にマッピング可能である、請求項78に記載の方法。
  81. e.前記セットのコンセンサス配列を、タグ化された親分子の各セットについて、別々にまたは組み合わせて解析する工程をさらに含む、請求項78に記載の方法。
  82. 開始の最初の遺伝物質を、前記タグ化された親ポリヌクレオチドに変換する工程をさらに含む、請求項78に記載の方法。
  83. 前記開始の最初の遺伝物質が、100ng以下のポリヌクレオチドを含む、請求項82に記載の方法。
  84. 変換前に、前記開始の最初の遺伝物質を妨害する工程を含む、請求項82に記載の方法。
  85. 前記開始の最初の遺伝物質を、タグ化された親ポリヌクレオチドに、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも80%または少なくとも90%の変換効率で変換する工程を含む、請求項82に記載の方法。
  86. 変換する工程が、平滑末端ライゲーション、粘着末端ライゲーション、分子反転プローブ、PCR、ライゲーションベースのPCR、一本鎖ライゲーションおよび一本鎖環状化のいずれかを含む、請求項82に記載の方法。
  87. 前記開始の最初の遺伝物質が、無細胞核酸である、請求項82に記載の方法。
  88. 複数の前記セットが、同じ前記ゲノム由来の参照配列内の異なるマッピング可能な位置にマッピングする、請求項79に記載の方法。
  89. 前記セット内のタグ化された親ポリヌクレオチドの各々が、ユニークにタグ化される、請求項78に記載の方法。
  90. 親ポリヌクレオチドの各セットが、参照配列内の位置にマッピング可能であり、各セット内の該ポリヌクレオチドが、ユニークにタグ化されない、請求項78に記載の方法。
  91. コンセンサス配列の生成が、前記タグからの情報ならびに/または(i)前記配列リードの始めの(開始)領域における配列情報、(ii)該配列リードの終わりの(終止)領域および(iii)該配列リードの長さのうちの少なくとも1つに基づく、請求項78に記載の方法。
  92. 前記セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドの少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.9%または少なくとも99.99%の各々の少なくとも1つの子孫に対する配列リードを生成するのに十分な、前記セットの増幅された子孫ポリヌクレオチドのサブセットを配列決定する工程を含む、請求項78に記載の方法。
  93. 前記少なくとも1つの子孫が、複数の子孫、例えば、少なくとも2つ、少なくとも5つまたは少なくとも10個の子孫である、請求項92に記載の方法。
  94. 配列リードの前記セット内の配列リードの数が、タグ化された親ポリヌクレオチドの前記セット内のタグ化されたユニークな親ポリヌクレオチドの数よりも多い、請求項78に記載の方法。
  95. 配列決定された前記セットの増幅された子孫ポリヌクレオチドの前記サブセットが、使用される配列決定プラットフォームの1塩基あたりの配列決定エラー率のパーセンテージと同じパーセンテージで、タグ化された親ポリヌクレオチドの前記セット内に表示される任意のヌクレオチド配列が、コンセンサス配列の前記セットの中に表示される少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.9%または少なくとも99.99%の確率を有するのに十分なサイズである、請求項78に記載の方法。
  96. (i)タグ化された親ポリヌクレオチドに変換される開始の最初の遺伝物質からの配列の選択的増幅;(ii)タグ化された親ポリヌクレオチドの選択的増幅;(iii)増幅された子孫ポリヌクレオチドの選択的配列捕捉;または(iv)開始の最初の遺伝物質の選択的配列捕捉によって、参照配列中の1つ以上の選択されたマッピング可能な位置に位置するポリヌクレオチドについて、前記セットの増幅された子孫ポリヌクレオチドを富化する工程を含む、請求項78に記載の方法。
  97. 解析する工程が、コンセンサス配列のセットからもたらされた尺度(例えば、数)を、コントロールサンプル由来のコンセンサス配列のセットからもたらされた尺度に対して正規化する工程を含む、請求項81に記載の方法。
  98. 解析する工程が、変異、稀な変異、インデル、コピー数多型、トランスバージョン、転座、逆位、欠失、異数性、部分異数性、倍数性、染色体不安定性、染色体の構造変化、遺伝子融合、染色体融合、遺伝子切断、遺伝子増幅、遺伝子重複、染色体損傷、DNA損傷、核酸化学修飾の異常な変化、エピジェネティックパターンの異常な変化、核酸メチル化の異常な変化、感染またはがんを検出する工程を含む、請求項81に記載の方法。
  99. 前記ポリヌクレオチドが、DNA、RNA、それら2つの組み合わせまたはDNA+RNA由来cDNAを含む、請求項78に記載の方法。
  100. ポリヌクレオチドのある特定のサブセットが、前記最初のセットのポリヌクレオチドまたは前記増幅されたポリヌクレオチドから、塩基対を単位とするポリヌクレオチド長について選択されるかまたはそれに基づいて富化される、請求項82に記載の方法。
  101. 解析が、感染および/またはがんなどの個体内の異常または疾患の検出およびモニタリングをさらに含む、請求項82に記載の方法。
  102. 免疫レパートリーのプロファイリングと組み合わせて行われる、請求項101に記載の方法。
  103. 前記ポリヌクレオチドが、血液、血漿、血清、尿、唾液、粘膜排出物、痰、便および涙からなる群より選択されるサンプルから抽出される、請求項78に記載の方法。
  104. 折りたたむ工程が、前記タグ化された親ポリヌクレオチドまたは増幅された子孫ポリヌクレオチドのセンス鎖もしくはアンチセンス鎖に存在するエラー、ニックまたは損傷を検出することおよび/または訂正することを含む、請求項78に記載の方法。
  105. ユニークにタグ化されない開始の最初の遺伝物質中の遺伝的変異を、少なくとも5%、少なくとも1%、少なくとも0.5%、少なくとも0.1%または少なくとも0.05%の感度で検出する工程を含む、方法。
  106. 前記開始の最初の遺伝物質が、100ng未満の量の核酸で提供され、前記遺伝的変異が、コピー数多型/ヘテロ接合性変異であり、検出する工程が、染色体より小さい解像度;例えば、少なくとも100メガベースの解像度、少なくとも10メガベースの解像度、少なくとも1メガベースの解像度、少なくとも100キロベースの解像度、少なくとも10キロベースの解像度または少なくとも1キロベースの解像度で行われる、請求項105に記載の方法。
  107. タグ化された親ポリヌクレオチドの複数のセットを提供する工程を含み、各セットは、参照配列中の異なるマッピング可能な位置にマッピング可能である、請求項81に記載の方法。
  108. 前記参照配列中の前記マッピング可能な位置が、腫瘍マーカーの遺伝子座であり、解析する工程が、前記セットのコンセンサス配列内に該腫瘍マーカーを検出する工程を含む、請求項107に記載の方法。
  109. 前記腫瘍マーカーが、前記増幅する工程において導入されるエラー率より低い頻度で、前記セットのコンセンサス配列に存在する、請求項108に記載の方法。
  110. 前記少なくとも1つのセットが、複数のセットであり、前記参照配列の前記マッピング可能な位置が、該参照配列中の複数のマッピング可能な位置を含み、そのマッピング可能な位置の各々は、腫瘍マーカーの遺伝子座である、請求項107に記載の方法。
  111. 解析する工程が、親ポリヌクレオチドの少なくとも2つのセットの間にコンセンサス配列のコピー数多型を検出する工程を含む、請求項107に記載の方法。
  112. 解析する工程が、前記参照配列と比べて配列変異の存在を検出する工程を含む、請求項107に記載の方法。
  113. 解析する工程が、前記参照配列と比べて配列変異の存在を検出する工程および親ポリヌクレオチドの少なくとも2つのセットの間にコンセンサス配列のコピー数多型を検出する工程を含む、請求項107に記載の方法。
  114. 折りたたむ工程が、
    i.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化する工程であって、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、工程;および
    ii.ファミリー内の配列リードに基づいてコンセンサス配列を決定する工程
    を含む、請求項78に記載の方法。
  115. 以下の工程:
    a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを受け取る工程、およびタグ化された親ポリヌクレオチドの各セットに対して;
    b.該セット内の該タグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;
    c.該セットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;
    d.該セットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、該セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程、および必要に応じて
    e.コンセンサス配列の該セットを、タグ化された親分子の各セットについて解析する工程
    を行うためのコンピュータ可読媒体を備えるシステム。
  116. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも10%が、配列決定される、方法。
  117. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも20%が、配列決定される、方法。
  118. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも30%が、配列決定される、方法。
  119. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも40%が、配列決定される、方法。
  120. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも50%が、配列決定される、方法。
  121. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも60%が、配列決定される、方法。
  122. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも70%が、配列決定される、方法。
  123. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも80%が、配列決定される、方法。
  124. 個体における遺伝子変化の有無または遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも90%が、配列決定される、方法。
  125. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも10%が、配列決定される、方法。
  126. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも20%が、配列決定される、方法。
  127. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも30%が、配列決定される、方法。
  128. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも40%が、配列決定される、方法。
  129. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも50%が、配列決定される、方法。
  130. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも60%が、配列決定される、方法。
  131. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも70%が、配列決定される、方法。
  132. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも80%が、配列決定される、方法。
  133. 個体における遺伝子変化の有無および遺伝的変異の量を検出する工程を含む方法であって、該検出する工程は、無細胞核酸の配列決定の助けを借りて行われ、該個体のゲノムの少なくとも90%が、配列決定される、方法。
  134. 前記遺伝子変化が、コピー数多型または1つ以上の稀な変異である、請求項116〜133に記載の方法。
  135. 前記遺伝的変異が、1つ以上の原因バリアントおよび1つ以上の多型を含む、請求項116〜133に記載の方法。
  136. 前記個体における前記遺伝子変化および/または遺伝的変異の量が、公知の疾患を有する1つ以上の個体における遺伝子変化および/または遺伝的変異の量と比較され得る、請求項116〜133に記載の方法。
  137. 前記個体における前記遺伝子変化および/または遺伝的変異の量が、疾患を有しない1つ以上の個体における遺伝子変化および/または遺伝的変異の量と比較され得る、請求項116〜133に記載の方法。
  138. 前記無細胞核酸が、DNAである、請求項116〜133に記載の方法。
  139. 前記無細胞核酸が、RNAである、請求項116〜133に記載の方法。
  140. 前記無細胞核酸が、DNAおよびRNAである、請求項116〜133に記載の方法。
  141. 前記疾患が、がんまたは前がん状態である、請求項136に記載の方法。
  142. 前記方法が、疾患の診断または処置をさらに含む、請求項116〜133に記載の方法。
  143. a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;
    b.該セット内の該タグ化された親ポリヌクレオチドを増幅することにより、対応するセットの増幅された子孫ポリヌクレオチドを生成する工程;
    c.該セットの増幅された子孫ポリヌクレオチドのサブセット(適切なサブセットを含む)を配列決定することにより、配列決定リードのセットを生成する工程;
    d.該セットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、該セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;および
    e.該コンセンサス配列の中から、品質閾値を満たさないものを除外する工程
    を含む、方法。
  144. 前記品質閾値が、コンセンサス配列に折りたたまれた増幅された子孫ポリヌクレオチド由来の配列リードの数を考慮する、請求項143に記載の方法。
  145. 前記品質閾値が、コンセンサス配列に折りたたまれた増幅された子孫ポリヌクレオチド由来の配列リードの数を考慮する、請求項143に記載の方法。
  146. 請求項143〜145のいずれかに記載の方法を行うためのコンピュータ可読媒体を備える、システム。
  147. a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程
    を含む方法であって、各セットは、1つ以上のゲノム内の参照配列中の異なるマッピング可能な位置に位置し、タグ化された親ポリヌクレオチドの各セットに対して;
    i.第1ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;
    ii.該セットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;
    iii.
    1.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化することによって、該配列リードを折りたたみ、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、
    方法。
  148. 折りたたむ工程が、
    2.各ファミリー内の配列リードの定量的尺度を決定すること
    をさらに含む、請求項147に記載の方法。
  149. b.ユニークなファミリーの定量的尺度を決定する工程;ならびに
    c.(1)ユニークなファミリーの該定量的尺度および(2)各グループ内の配列リードの該定量的尺度に基づいて、前記セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程
    をさらに含む、請求項148に記載の方法。
  150. 推論する工程が、統計的モデルまたは確率的モデルを使用して行われる、請求項149に記載の方法。
  151. 少なくとも1つの前記セットが、複数のセットである、請求項149に記載の方法。
  152. 2つの前記セットの間の増幅バイアスまたは表示バイアスについて訂正する工程をさらに含む、請求項151に記載の方法。
  153. コントロールまたはコントロールサンプルのセットを使用することにより、2つの前記セットの間の増幅バイアスまたは表示バイアスについて訂正する工程をさらに含む、請求項152に記載の方法。
  154. 前記セット間のコピー数多型を決定する工程をさらに含む、請求項151に記載の方法。
  155. d.前記ファミリーの間の多型の形態の定量的尺度を決定する工程;および
    e.多型の形態の該決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程
    をさらに含む、請求項149に記載の方法。
  156. 多型の形態には、置換、挿入、欠失、逆位、マイクロサテライトの変化、トランスバージョン、転座、融合、メチル化、過剰メチル化、ヒドロキシメチル化、アセチル化、エピジェネティックなバリアント、制御関連バリアントまたはタンパク質結合部位が含まれるがこれらに限定されない、請求項155に記載の方法。
  157. 前記セットが、共通のサンプルに由来し、前記方法が、
    d.参照配列中の複数のマッピング可能な位置の各々に位置する、各セット内のタグ化された親ポリヌクレオチドの推論される数の比較に基づいて、複数の該セットに対してコピー数多型を推論する工程
    をさらに含む、請求項149に記載の方法。
  158. 各セット内のポリヌクレオチドの元の数が、さらに推論される、請求項157に記載の方法。
  159. 各セット内の前記タグ化された親ポリヌクレオチドの少なくとも1つのサブセットが、ユニークにタグ化されない、請求項147に記載の方法。
  160. コンピュータプロセッサによって実行されるとき、請求項147〜158のいずれか1項に記載の方法を実行する機械実行可能コードを含むコンピュータ可読媒体を備えるシステム。
  161. ポリヌクレオチドを含むサンプル中のコピー数多型を決定する方法であって、該方法は、
    a.少なくとも2つのセットの第1ポリヌクレオチドを提供する工程であって、各セットは、ゲノム内の参照配列中の異なるマッピング可能な位置に位置し、第1ポリヌクレオチドの各セットに対して;
    i.該ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;
    ii.該セットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;
    iii.増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化し、各ファミリーは、該セット内の同じ第1ポリヌクレオチドから増幅され;
    iv.該セット内のファミリーの定量的尺度を推論する、
    工程;および
    b.各セット内のファミリーの該定量的尺度を比較することによって、コピー数多型を決定する工程
    を含む、方法。
  162. コンピュータプロセッサによって実行されるとき、請求項161に記載の方法を実行する機械実行可能コードを含むコンピュータ可読媒体を備えるシステム。
  163. ポリヌクレオチドのサンプル中の配列コールの頻度を推論する方法であって、該方法は、
    a.少なくとも1つのセットの第1ポリヌクレオチドを提供する工程であって、各セットは、1つ以上のゲノム内の参照配列中の異なるマッピング可能な位置に位置し、第1ポリヌクレオチドの各セットに対して;
    i.該第1ポリヌクレオチドを増幅することにより、増幅されたポリヌクレオチドのセットを生成し;
    ii.該セットの増幅されたポリヌクレオチドのサブセットを配列決定することにより、配列決定リードのセットを生成し;
    iii.該配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、
    工程;
    b.第1ポリヌクレオチドの各セットに対して、該セットの第1ポリヌクレオチドにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、
    i.各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、該信頼スコアは、該ファミリーのメンバーの間の該コールの頻度を考慮に入れている、工程;および
    ii.各ファミリーに割り当てられた1つ以上の該コールの該信頼スコアを考慮に入れて、1つ以上の該コールの頻度を推定する工程
    を含む、工程
    を含む、方法。
  164. コンピュータプロセッサによって実行されるとき、請求項163に記載の方法を実行する機械実行可能コードを含むコンピュータ可読媒体を備えるシステム。
  165. 少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を通信する方法であって、該方法は、
    a.少なくとも1つの個々のポリヌクレオチド分子を提供する工程;
    b.該少なくとも1つの個々のポリヌクレオチド分子における配列情報を符号化することにより、信号を生成する工程;
    c.該信号の少なくとも一部をチャネルに通すことにより、該少なくとも1つの個々のポリヌクレオチド分子に関するヌクレオチド配列情報を含む受信信号を生成する工程であって、該受信信号は、ノイズおよび/または歪みを含む、工程;
    d.該受信信号を復号することにより、該少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージを生成する工程であって、復号する工程は、該メッセージ内の個々の各ポリヌクレオチドに関するノイズおよび/または歪みを減少させる、工程;および
    e.該少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含む該メッセージをレシピエントに提供する工程
    を含む、方法。
  166. 前記ノイズが、誤ったヌクレオチドコールを含む、請求項165に記載の方法。
  167. 歪みが、他の個々のポリヌクレオチド分子と比べて、前記個々のポリヌクレオチド分子の不均一な増幅を含む、請求項165に記載の方法。
  168. 歪みが、増幅バイアスまたは配列決定バイアスに起因する、請求項167に記載の方法。
  169. 前記少なくとも1つの個々のポリヌクレオチド分子が、複数の個々のポリヌクレオチド分子であり、復号する工程が、該複数の中の各分子に関するメッセージを生成する、請求項165に記載の方法。
  170. 符号化する工程が、必要に応じてタグ化された前記少なくとも1つの個々のポリヌクレオチド分子を増幅する工程を含み、前記信号は、増幅された分子のコレクションを含む、請求項165に記載の方法。
  171. 前記チャネルが、ポリヌクレオチド配列分析装置を構成し、前記受信信号が、前記少なくとも1つの個々のポリヌクレオチド分子から増幅された複数のポリヌクレオチドの配列リードを含む、請求項165に記載の方法。
  172. 復号する工程が、前記少なくとも1つの個々のポリヌクレオチド分子の各々から増幅された増幅分子の配列リードをグループ化する工程を含む、請求項165に記載の方法。
  173. 前記復号する工程が、生成された配列信号を選別する確率的方法または統計学的方法からなる、請求項169に記載の方法。
  174. コンピュータプロセッサによって実行されるとき、請求項165〜173のいずれかに記載の方法を実行する機械実行可能コードを含むコンピュータ可読媒体を備えるシステム。
  175. 前記ポリヌクレオチドが、腫瘍ゲノムDNAまたはRNAに由来する、請求項143〜145、147〜159および161のいずれかに記載の方法。
  176. 前記ポリヌクレオチドが、無細胞ポリヌクレオチド、エキソソームポリヌクレオチド、細菌ポリヌクレオチドまたはウイルスポリヌクレオチドに由来する、請求項143〜175のいずれかに記載の方法。
  177. 影響される分子経路の検出および/または関連付けをさらに含む、請求項1〜3または143〜175のいずれかに記載の方法。
  178. 個体の健康状態または疾患状態の連続モニタリングをさらに含む、請求項1〜3または143〜175のいずれかに記載の方法。
  179. 個体内の疾患に関連するゲノムの系統発生が、推論される、請求項1〜3または143〜175のいずれかに記載の方法。
  180. 疾患の診断、モニタリングまたは処置をさらに含む、請求項1〜3または143〜175のいずれかに記載の方法。
  181. 処置レジメンが、検出された多型の形態またはCNVまたは関連する経路に基づいて選択されるかまたは改変される、請求項180。
  182. 前記処置が、併用療法を含む、請求項180または181。
  183. 前記診断が、放射線撮影法、例えば、CT−Scan、PET−CT、MRI、超音波、マイクロバブルを用いる超音波などを使用して、前記疾患の位置を特定する工程をさらに含む、請求項179。
  184. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    ゲノム内の予め定義された領域を選択する工程;
    配列リードにアクセスし、該予め定義された領域における配列リードの数を列挙する工程;
    該予め定義された領域にわたって配列リードの該数を正規化する工程;および
    該予め定義された領域におけるコピー数多型のパーセントを決定する工程
    を含む、コンピュータ可読媒体。
  185. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程;
    b.指定の閾値を満たさないリードを除外する工程;
    c.配列決定することに由来する配列リードを参照配列上にマッピングする工程;
    d.マッピング可能な各塩基位置において該参照配列のバリアントと整列するマッピングされた配列リードのサブセットを同定する工程;
    e.マッピング可能な各塩基位置に対して、(a)該参照配列と比べてバリアントを含むマッピングされた配列リードの数と(b)マッピング可能な各塩基位置に対する配列リードの総数との比を計算する工程;
    f.マッピング可能な各塩基位置に対して該比または分散の頻度を正規化し、潜在的な稀なバリアント(複数可)または他の遺伝子変化(複数可)を決定する工程;および
    g.潜在的な稀なバリアント(複数可)または変異(複数可)を含む領域の各々に対して得られた数を、参照サンプルから同様に得られた数と比較する工程
    を含む、コンピュータ可読媒体。
  186. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;および
    b.該セットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、該セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程
    を含む、コンピュータ可読媒体。
  187. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;
    b.該セットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、該セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;および
    c.該コンセンサス配列の中から、品質閾値を満たさないものを除外する工程
    を含む、コンピュータ可読媒体。
  188. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能なコードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;ならびに
    i.
    1.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化することであって、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、こと、および必要に応じて、
    2.各ファミリー内の配列リードの定量的尺度を決定すること
    によって該配列リードを折りたたむ工程
    を含む、コンピュータ可読媒体。
  189. コンピュータプロセッサによって実行されるとき、前記実行可能なコードが、
    b.ユニークなファミリーの定量的尺度を決定する工程;
    c.(1)ユニークなファミリーの該定量的尺度および(2)各グループ内の配列リードの該定量的尺度に基づいて、前記セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程
    をさらに行う、請求項188に記載のコンピュータ可読媒体。
  190. コンピュータプロセッサによって実行されるとき、前記実行可能なコードが、
    d.前記ファミリーの間の多型の形態の定量的尺度を決定する工程;および
    e.多型の形態の該決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程
    をさらに行う、請求項189に記載のコンピュータ可読媒体。
  191. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化し、各ファミリーは、該セット内の同じ第1ポリヌクレオチドから増幅される、工程;
    b.該セット内のファミリーの定量的尺度を推論する工程;
    c.各セット内のファミリーの該定量的尺度を比較することによって、コピー数多型を決定する工程
    を含む、コンピュータ可読媒体。
  192. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、該配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;
    b.第1ポリヌクレオチドの各セットに対して、該セットの第1ポリヌクレオチドにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、
    c.各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、該信頼スコアは、該ファミリーのメンバーの間の該コールの頻度を考慮に入れている、工程;および
    d.各ファミリーに割り当てられた1つ以上の該コールの該信頼スコアを考慮に入れて、1つ以上の該コールの頻度を推定する工程
    を含む、工程
    を含む、コンピュータ可読媒体。
  193. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.少なくとも1つの個々のポリヌクレオチド分子由来の符号化された配列情報を含む受信信号を含むデータファイルにアクセスする工程であって、該受信信号は、ノイズおよび/または歪みを含む、工程;
    b.該受信信号を復号することにより、該少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含むメッセージを生成する工程であって、復号する工程は、該メッセージ内の個々の各ポリヌクレオチドに関するノイズおよび/または歪みを減少させる、工程;および
    c.該少なくとも1つの個々のポリヌクレオチド分子に関する配列情報を含む該メッセージをコンピュータファイルに書き込む工程
    を含む、コンピュータ可読媒体。
  194. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;
    b.該セットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、該セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程;および
    c.該コンセンサス配列の中から、品質閾値を満たさないものを除外する工程
    を含む、コンピュータ可読媒体。
  195. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;および
    b.
    i.増幅された子孫ポリヌクレオチドから配列決定された配列リードをファミリーにグループ化する工程であって、各ファミリーは、同じタグ化された親ポリヌクレオチドから増幅される、工程、および
    ii.必要に応じて、各ファミリー内の配列リードの定量的尺度を決定する工程
    によって該配列リードを折りたたむ工程
    を含む、コンピュータ可読媒体。
  196. コンピュータプロセッサによって実行されるとき、前記実行可能なコードが、
    c.ユニークなファミリーの定量的尺度を決定する工程;
    d.(1)ユニークなファミリーの該定量的尺度および(2)各グループ内の配列リードの該定量的尺度に基づいて、前記セット内のタグ化されたユニークな親ポリヌクレオチドの尺度を推論する工程
    をさらに行う、請求項195に記載のコンピュータ可読媒体。
  197. コンピュータプロセッサによって実行されるとき、前記実行可能なコードが、
    e.前記ファミリーの間の多型の形態の定量的尺度を決定する工程;および
    f.多型の形態の該決定された定量的尺度に基づいて、推論されるタグ化されたユニークな親ポリヌクレオチドの数における多型の形態の定量的尺度を推論する工程
    をさらに行う、請求項196に記載のコンピュータ可読媒体。
  198. コンピュータプロセッサによって実行されるとき、前記実行可能なコードが、
    e.複数の参照配列の各々に位置する、各セット内のタグ化された親ポリヌクレオチドの推論される数の比較に基づいて、複数の該セットに対してコピー数多型を推論する工程
    をさらに行う、請求項196に記載のコンピュータ可読媒体。
  199. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来する、工程;
    b.増幅されたポリヌクレオチドから配列決定された配列リードをファミリーにグループ化する工程であって、各ファミリーは、該セット内の同じ第1ポリヌクレオチドから増幅される、工程;
    c.該セット内のファミリーの定量的尺度を推論する工程;および
    d.各セット内のファミリーの該定量的尺度を比較することによって、コピー数多型を決定する工程
    を含む、コンピュータ可読媒体。
  200. コンピュータプロセッサによって実行されるとき、ある方法を実行する一時的でない機械実行可能コードを含むコンピュータ可読媒体であって、該方法は、
    a.複数の配列決定リードを含むデータファイルにアクセスする工程であって、該配列リードは、少なくとも1つのセットのタグ化された親ポリヌクレオチドから増幅された子孫ポリヌクレオチドのセットに由来し、該配列リードをファミリーにグループ化し、各ファミリーは、同じ第1ポリヌクレオチドから増幅された増幅ポリヌクレオチドの配列リードを含む、工程;および
    b.第1ポリヌクレオチドの各セットに対して、該セットの第1ポリヌクレオチドにおける1つ以上の塩基に対するコール頻度を推論する工程であって、推論する工程は、
    i.各ファミリーに対して、複数のコールの各々に対して信頼スコアを割り当てる工程であって、該信頼スコアは、該ファミリーのメンバーの間の該コールの頻度を考慮に入れている、工程;および
    ii.各ファミリーに割り当てられた1つ以上の該コールの該信頼スコアを考慮に入れて、1つ以上の該コールの頻度を推定する工程
    を含む、工程
    を含む、コンピュータ可読媒体。
  201. 100〜100,000個のヒト半数体ゲノム等価物のcfDNAポリヌクレオチドを含む組成物であって、該ポリヌクレオチドは、2〜1,000,000個のユニークな識別子でタグ化される、組成物。
  202. 1000〜50,000個の半数体ヒトゲノム等価物のcfDNAポリヌクレオチドを含み、該ポリヌクレオチドは、2〜1,000個のユニークな識別子でタグ化される、請求項201に記載の組成物。
  203. 前記ユニークな識別子が、ヌクレオチドバーコードを含む、請求項201に記載の組成物。
  204. a.100〜100,000個の半数体ヒトゲノム等価物のcfDNAポリヌクレオチドを含むサンプルを提供する工程;および
    b.該ポリヌクレオチドを2〜1,000,000個のユニークな識別子でタグ化する工程
    を含む、方法。
  205. a.複数のヒト半数体ゲノム等価物の断片化されたポリヌクレオチドを含むサンプルを提供する工程;
    b.zを決定する工程であって、zは、該ゲノム内の任意の位置から開始する2つ組のポリヌクレオチドの期待数の中心傾向の尺度(例えば、平均値、中央値または最頻値)であり、2つ組のポリヌクレオチドは、同じ開始位置および終止位置を有する、工程;および
    c.サンプル中のポリヌクレオチドをn個のユニークな識別子でタグ化する工程であって、nは、2〜100,000z、2〜10,000z、2〜1,000zまたは2〜100zである、工程
    を含む、方法。
  206. a.少なくとも1つのセットのタグ化された親ポリヌクレオチドを提供する工程、およびタグ化された親ポリヌクレオチドの各セットに対して;
    b.該セット内のタグ化された親ポリヌクレオチドの各々に対して複数の配列リードを生成することにより、配列決定リードのセットを生成する工程;および
    c.該セットの配列決定リードを折りたたむことにより、コンセンサス配列のセットを生成する工程であって、各コンセンサス配列は、該セットのタグ化された親ポリヌクレオチドの中のユニークなポリヌクレオチドに対応する、工程
    を含む、方法。
JP2015530152A 2012-09-04 2013-09-04 まれな変異およびコピー数多型を検出するためのシステムおよび方法 Active JP6275145B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201261696734P 2012-09-04 2012-09-04
US61/696,734 2012-09-04
US201261704400P 2012-09-21 2012-09-21
US61/704,400 2012-09-21
US201361793997P 2013-03-15 2013-03-15
US61/793,997 2013-03-15
US201361845987P 2013-07-13 2013-07-13
US61/845,987 2013-07-13
PCT/US2013/058061 WO2014039556A1 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017207043A Division JP2018027096A (ja) 2012-09-04 2017-10-26 まれな変異およびコピー数多型を検出するためのシステムおよび方法

Publications (3)

Publication Number Publication Date
JP2015535681A true JP2015535681A (ja) 2015-12-17
JP2015535681A5 JP2015535681A5 (ja) 2016-10-20
JP6275145B2 JP6275145B2 (ja) 2018-02-07

Family

ID=50237580

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2015530152A Active JP6275145B2 (ja) 2012-09-04 2013-09-04 まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2017207043A Ceased JP2018027096A (ja) 2012-09-04 2017-10-26 まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2019139538A Active JP6664025B2 (ja) 2012-09-04 2019-07-30 まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2020024495A Active JP7119014B2 (ja) 2012-09-04 2020-02-17 まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2022123876A Pending JP2022169566A (ja) 2012-09-04 2022-08-03 まれな変異およびコピー数多型を検出するためのシステムおよび方法

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2017207043A Ceased JP2018027096A (ja) 2012-09-04 2017-10-26 まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2019139538A Active JP6664025B2 (ja) 2012-09-04 2019-07-30 まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2020024495A Active JP7119014B2 (ja) 2012-09-04 2020-02-17 まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2022123876A Pending JP2022169566A (ja) 2012-09-04 2022-08-03 まれな変異およびコピー数多型を検出するためのシステムおよび方法

Country Status (17)

Country Link
US (27) US10041127B2 (ja)
EP (6) EP3591073B1 (ja)
JP (5) JP6275145B2 (ja)
KR (5) KR102393608B1 (ja)
CN (2) CN110872617A (ja)
CA (2) CA3190199A1 (ja)
DE (1) DE202013012824U1 (ja)
DK (1) DK2893040T5 (ja)
ES (4) ES2906714T3 (ja)
GB (1) GB2533006B (ja)
HK (3) HK1201080A1 (ja)
IL (3) IL269097B2 (ja)
MX (1) MX367963B (ja)
PL (2) PL2893040T3 (ja)
PT (1) PT2893040T (ja)
SG (2) SG11201501662TA (ja)
WO (1) WO2014039556A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015536661A (ja) * 2012-11-29 2015-12-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 標的シーケンシングリードの正確かつ迅速なマッピング
JP2018523198A (ja) * 2015-05-18 2018-08-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. コピー数多型検出のための方法及びシステム
JP2019536466A (ja) * 2016-12-07 2019-12-19 ナテラ, インコーポレイテッド 核酸分子を同定するための組成物と方法
JP2019537095A (ja) * 2016-09-22 2019-12-19 イルミナ インコーポレイテッド 体細胞コピー数多型検出
JP2020000237A (ja) * 2012-09-04 2020-01-09 ガーダント ヘルス, インコーポレイテッド まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2020521442A (ja) * 2017-05-16 2020-07-27 ガーダント ヘルス, インコーポレイテッド 無細胞dnaについての体細胞起源または生殖系列起源の識別
JP2020530767A (ja) * 2017-07-21 2020-10-29 メナリーニ シリコン バイオシステムズ エッセ.ピー.アー. 超並列シークエンシングのためのdnaライブラリー生成のための改良された方法及びキット
US11286530B2 (en) 2010-05-18 2022-03-29 Natera, Inc. Methods for simultaneous amplification of target loci
US11306357B2 (en) 2010-05-18 2022-04-19 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11306359B2 (en) 2005-11-26 2022-04-19 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11319595B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11390916B2 (en) 2014-04-21 2022-07-19 Natera, Inc. Methods for simultaneous amplification of target loci
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US11519035B2 (en) 2010-05-18 2022-12-06 Natera, Inc. Methods for simultaneous amplification of target loci
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US12020778B2 (en) 2010-05-18 2024-06-25 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring
US12084720B2 (en) 2017-12-14 2024-09-10 Natera, Inc. Assessing graft suitability for transplantation
US12100478B2 (en) 2012-08-17 2024-09-24 Natera, Inc. Method for non-invasive prenatal testing using parental mosaicism data

Families Citing this family (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111544B2 (en) * 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
ES2640776T3 (es) 2009-09-30 2017-11-06 Natera, Inc. Métodos para denominar de forma no invasiva ploidía prenatal
CA2821906C (en) 2010-12-22 2020-08-25 Natera, Inc. Methods for non-invasive prenatal paternity testing
KR20190002733A (ko) 2010-12-30 2019-01-08 파운데이션 메디신 인코포레이티드 종양 샘플의 다유전자 분석의 최적화
WO2012129363A2 (en) 2011-03-24 2012-09-27 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
CN110016499B (zh) 2011-04-15 2023-11-14 约翰·霍普金斯大学 安全测序系统
US20140235474A1 (en) 2011-06-24 2014-08-21 Sequenom, Inc. Methods and processes for non invasive assessment of a genetic variation
US20130079241A1 (en) 2011-09-15 2013-03-28 Jianhua Luo Methods for Diagnosing Prostate Cancer and Predicting Prostate Cancer Relapse
US9984198B2 (en) 2011-10-06 2018-05-29 Sequenom, Inc. Reducing sequence read count error in assessment of complex genetic variations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20140242588A1 (en) 2011-10-06 2014-08-28 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations
EP2805280B1 (en) 2012-01-20 2022-10-05 Sequenom, Inc. Diagnostic processes that factor experimental conditions
LT3363901T (lt) 2012-02-17 2021-04-12 Fred Hutchinson Cancer Research Center Kompozicijos ir būdai, skirti tiksliam mutacijų nustatymui
US9892230B2 (en) 2012-03-08 2018-02-13 The Chinese University Of Hong Kong Size-based analysis of fetal or tumor DNA fraction in plasma
HUE051845T2 (hu) 2012-03-20 2021-03-29 Univ Washington Through Its Center For Commercialization Módszerek a tömegesen párhuzamos DNS-szekvenálás hibaarányának csökkentésére duplex konszenzus szekvenálással
EP2844771A4 (en) * 2012-05-04 2015-12-02 Complete Genomics Inc METHOD FOR DETERMINING THE ABSOLUTE GENOME-WIDE COPY COUNTER CHANGES OF COMPLEX TUMORS
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US10504613B2 (en) 2012-12-20 2019-12-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11261494B2 (en) 2012-06-21 2022-03-01 The Chinese University Of Hong Kong Method of measuring a fractional concentration of tumor DNA
US10497461B2 (en) 2012-06-22 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20150011396A1 (en) 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
US11913065B2 (en) 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
US20160040229A1 (en) 2013-08-16 2016-02-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10482994B2 (en) 2012-10-04 2019-11-19 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
ES2701742T3 (es) 2012-10-29 2019-02-25 Univ Johns Hopkins Prueba de Papanicolaou para cánceres de ovario y de endometrio
WO2014093330A1 (en) 2012-12-10 2014-06-19 Clearfork Bioscience, Inc. Methods for targeted genomic analysis
US20130309666A1 (en) 2013-01-25 2013-11-21 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CN105408496A (zh) 2013-03-15 2016-03-16 夸登特健康公司 检测稀有突变和拷贝数变异的系统和方法
US20140274738A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Sequential sequencing
HUE061261T2 (hu) 2013-04-03 2023-05-28 Sequenom Inc Eljárások és folyamatok genetikai variánsok nem invazív értékelésére
JP6561046B2 (ja) 2013-05-24 2019-08-14 セクエノム, インコーポレイテッド 遺伝子の変動の非侵襲性評価のための方法および処理
SI3011051T1 (sl) 2013-06-21 2019-05-31 Sequenom, Inc. Postopek za neinvazivno oceno genetskih variacij
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
IL289974B (en) 2013-10-04 2022-09-01 Sequenom Inc Methods and processes for non-invasive evaluation of genetic variations
JP6680680B2 (ja) 2013-10-07 2020-04-15 セクエノム, インコーポレイテッド 染色体変化の非侵襲性評価のための方法およびプロセス
WO2015061359A1 (en) 2013-10-21 2015-04-30 Verinata Health, Inc. Method for improving the sensitivity of detection in determining copy number variations
JP7451070B2 (ja) 2013-11-07 2024-03-18 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー ヒトミクロビオームおよびその成分の分析のための無細胞核酸
CA2929596C (en) 2013-11-13 2022-07-05 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
EP3087204B1 (en) 2013-12-28 2018-02-14 Guardant Health, Inc. Methods and systems for detecting genetic variants
DK3090062T3 (da) 2013-12-30 2020-09-21 Univ Pittsburgh Commonwealth Sys Higher Education Fusionsgener associeret med fremadskridende prostatakræft
EP3805404A1 (en) 2014-05-13 2021-04-14 Board of Regents, The University of Texas System Gene mutations and copy number alterations of egfr, kras and met
WO2015181718A1 (en) * 2014-05-26 2015-12-03 Ebios Futura S.R.L. Method of prenatal diagnosis
US10318704B2 (en) 2014-05-30 2019-06-11 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies
WO2015183872A1 (en) * 2014-05-30 2015-12-03 Sequenom, Inc. Chromosome representation determinations
WO2016011428A1 (en) 2014-07-17 2016-01-21 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods of treating cells containing fusion genes
GB201412834D0 (en) 2014-07-18 2014-09-03 Cancer Rec Tech Ltd A method for detecting a genetic variant
EP3169813B1 (en) 2014-07-18 2019-06-12 The Chinese University Of Hong Kong Methylation pattern analysis of tissues in dna mixture
US20170211143A1 (en) 2014-07-25 2017-07-27 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free dna, and methods of identifying a disease or disorder using same
EP3175000B1 (en) 2014-07-30 2020-07-29 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
JP6803327B2 (ja) * 2014-08-06 2020-12-23 ニューゲン テクノロジーズ, インコーポレイテッド 標的化されたシークエンシングからのデジタル測定値
AU2015357573B2 (en) 2014-12-05 2022-04-07 Foundation Medicine, Inc. Multigene analysis of tumor samples
WO2016090584A1 (zh) * 2014-12-10 2016-06-16 深圳华大基因研究院 确定肿瘤核酸浓度的方法和装置
CA2970501C (en) 2014-12-12 2020-09-15 Verinata Health, Inc. Using cell-free dna fragment size to determine copy number variations
WO2016095093A1 (zh) * 2014-12-15 2016-06-23 天津华大基因科技有限公司 肿瘤筛查方法、目标区域变异检测方法和装置
WO2016100049A1 (en) 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-sensitive field effect transistor
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
CN107111693A (zh) * 2014-12-29 2017-08-29 考希尔股份有限公司 用于确定高同源性区域中的基因型的方法
EP3766986B1 (en) * 2014-12-31 2022-06-01 Guardant Health, Inc. Detection and treatment of disease exhibiting disease cell heterogeneity and systems and methods for communicating test results
US10364467B2 (en) 2015-01-13 2019-07-30 The Chinese University Of Hong Kong Using size and number aberrations in plasma DNA for detecting cancer
HUE058263T2 (hu) * 2015-02-10 2022-07-28 Univ Hong Kong Chinese Mutációk detektálása rákszûrési és magzatelemzési célból
JP6995625B2 (ja) 2015-05-01 2022-01-14 ガーダント ヘルス, インコーポレイテッド 診断方法
CA2986036C (en) 2015-05-18 2022-07-26 Karius, Inc. Compositions and methods for enriching populations of nucleic acids
EP3653728B1 (en) 2015-06-09 2023-02-01 Life Technologies Corporation Methods, systems, compositions, kits, apparatus and computer-readable media for molecular tagging
CN107408163B (zh) * 2015-06-24 2021-03-05 吉尼努斯公司 用于分析基因的方法及装置
GB201819855D0 (en) * 2015-07-07 2019-01-23 Farsight Genome Systems Inc Methods and systems for sequencing-based variant detection
WO2017009372A2 (en) * 2015-07-13 2017-01-19 Cartagenia Nv System and methodology for the analysis of genomic data obtained from a subject
EP3828292A1 (en) 2015-07-21 2021-06-02 Guardant Health, Inc. Locked nucleic acids for capturing fusion genes
EP3967775B1 (en) 2015-07-23 2023-08-23 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free dna
EP3329014A2 (en) * 2015-07-29 2018-06-06 Progenity, Inc. Systems and methods for genetic analysis
EP3329010B1 (en) 2015-07-29 2019-07-10 Progenity, Inc. Nucleic acids and methods for detecting chromosomal abnormalities
WO2017027473A1 (en) * 2015-08-07 2017-02-16 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Methods for predicting prostate cancer relapse
WO2017027653A1 (en) 2015-08-11 2017-02-16 The Johns Hopkins University Assaying ovarian cyst fluid
US11302416B2 (en) 2015-09-02 2022-04-12 Guardant Health Machine learning for somatic single nucleotide variant detection in cell-free tumor nucleic acid sequencing applications
AU2016321204B2 (en) * 2015-09-08 2022-12-01 Cold Spring Harbor Laboratory Genetic copy number determination using high throughput multiplex sequencing of smashed nucleotides
JP6991134B2 (ja) 2015-10-09 2022-01-12 ガーダント ヘルス, インコーポレイテッド 無細胞dnaを使用する集団ベースの処置レコメンダ
KR101848438B1 (ko) 2015-10-29 2018-04-13 바이오코아 주식회사 디지털 pcr을 이용한 산전진단 방법
CN108350485A (zh) * 2015-10-30 2018-07-31 精密科学发展有限责任公司 血浆dna的多重扩增检测测定以及分离和检测
MX2018005858A (es) 2015-11-11 2019-02-20 Resolution Bioscience Inc Construccion de alta eficacia de bibliotecas de adn.
EP3377655A4 (en) * 2015-11-16 2018-11-21 Mayo Foundation for Medical Education and Research Detecting copy number variations
EP3387152B1 (en) 2015-12-08 2022-01-26 Twinstrand Biosciences, Inc. Improved adapters, methods, and compositions for duplex sequencing
EP3390668A4 (en) * 2015-12-17 2020-04-01 Guardant Health, Inc. METHODS OF DETERMINING THE NUMBER OF TUMOR GENE COPIES BY ACELLULAR DNA ANALYSIS
WO2017127741A1 (en) * 2016-01-22 2017-07-27 Grail, Inc. Methods and systems for high fidelity sequencing
CN109072309B (zh) 2016-02-02 2023-05-16 夸登特健康公司 癌症进化检测和诊断
US10095831B2 (en) 2016-02-03 2018-10-09 Verinata Health, Inc. Using cell-free DNA fragment size to determine copy number variations
US11479878B2 (en) 2016-03-16 2022-10-25 Dana-Farber Cancer Institute, Inc. Methods for genome characterization
BR112018069557A2 (pt) 2016-03-25 2019-01-29 Karius Inc spike-ins de ácido nucléico sintético
EP3443066B1 (en) 2016-04-14 2024-10-02 Guardant Health, Inc. Methods for early detection of cancer
US11384382B2 (en) 2016-04-14 2022-07-12 Guardant Health, Inc. Methods of attaching adapters to sample nucleic acids
ITUA20162640A1 (it) * 2016-04-15 2017-10-15 Menarini Silicon Biosystems Spa Metodo e kit per la generazione di librerie di dna per sequenziamento massivo parallelo
EP3458586B1 (en) 2016-05-16 2022-12-28 Accuragen Holdings Limited Method of improved sequencing by strand identification
WO2017201081A1 (en) 2016-05-16 2017-11-23 Agilome, Inc. Graphene fet devices, systems, and methods of using the same for sequencing nucleic acids
CN110168099B (zh) * 2016-06-07 2024-06-07 加利福尼亚大学董事会 用于疾病和病症分析的无细胞dna甲基化模式
EP4257701A3 (en) 2016-06-30 2023-12-20 Grail, LLC Differential tagging of rna for preparation of a cell-free dna/rna sequencing library
CN107577917A (zh) * 2016-07-05 2018-01-12 魏霖静 一种生物信息学高性能信息化管理系统及数据处理方法
SG11201811556RA (en) 2016-07-06 2019-01-30 Guardant Health Inc Methods for fragmentome profiling of cell-free nucleic acids
JP7048105B2 (ja) 2016-07-15 2022-04-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 核酸ライブラリを生成する方法
US11200963B2 (en) 2016-07-27 2021-12-14 Sequenom, Inc. Genetic copy number alteration classifications
WO2018039463A1 (en) 2016-08-25 2018-03-01 Resolution Bioscience, Inc. Methods for the detection of genomic copy changes in dna samples
US9850523B1 (en) 2016-09-30 2017-12-26 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
AU2017336153B2 (en) 2016-09-30 2023-07-13 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
EP3526350A4 (en) 2016-10-12 2020-06-17 Bellwether Bio, Inc. DETERMINATION OF THE CELLULAR ORIGIN OF CIRCULATING ACELLULAR DNA WITH MOLECULAR COUNTING
EP3535415A4 (en) 2016-10-24 2020-07-01 The Chinese University of Hong Kong TUMOR DETECTION METHODS AND SYSTEMS
WO2018081465A1 (en) * 2016-10-26 2018-05-03 Pathway Genomics Corporation Systems and methods for characterizing nucleic acid in a biological sample
CN106566877A (zh) * 2016-10-31 2017-04-19 天津诺禾致源生物信息科技有限公司 检测基因突变的方法和装置
IL315032A (en) 2016-11-30 2024-10-01 The Chinese Univ Of Hong Kong Analysis of cell-free DNA in urine and other samples
CN110383385B (zh) * 2016-12-08 2023-07-25 生命科技股份有限公司 从肿瘤样品中检测突变负荷的方法
US20180166170A1 (en) * 2016-12-12 2018-06-14 Konstantinos Theofilatos Generalized computational framework and system for integrative prediction of biomarkers
KR20190095410A (ko) 2016-12-22 2019-08-14 가던트 헬쓰, 인크. 핵산 분자를 분석하기 위한 방법 및 시스템
CN106701956A (zh) * 2017-01-11 2017-05-24 上海思路迪生物医学科技有限公司 ctDNA的数字化深度测序技术
US11929145B2 (en) 2017-01-20 2024-03-12 Sequenom, Inc Methods for non-invasive assessment of genetic alterations
JP7237003B2 (ja) 2017-01-24 2023-03-10 セクエノム, インコーポレイテッド 遺伝子片の評価のための方法およびプロセス
TWI803477B (zh) 2017-01-25 2023-06-01 香港中文大學 使用核酸片段之診斷應用
US11118228B2 (en) 2017-01-27 2021-09-14 Exact Sciences Development Company, Llc Detection of colon neoplasia by analysis of methylated DNA
AU2018225348A1 (en) 2017-02-21 2019-07-18 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
CN106755547A (zh) * 2017-03-15 2017-05-31 上海亿康医学检验所有限公司 一种膀胱癌的无创检测及其复发监测方法
WO2018183942A1 (en) 2017-03-31 2018-10-04 Grail, Inc. Improved library preparation and use thereof for sequencing-based error correction and/or variant identification
US10697008B2 (en) 2017-04-12 2020-06-30 Karius, Inc. Sample preparation methods, systems and compositions
US11342047B2 (en) * 2017-04-21 2022-05-24 Illumina, Inc. Using cell-free DNA fragment size to detect tumor-associated variant
EP3635138B1 (en) * 2017-05-15 2024-07-03 Katholieke Universiteit Leuven Method for analysing cell-free nucleic acids
CN110914911B (zh) 2017-05-16 2023-09-22 生命科技股份有限公司 压缩分子标记的核酸序列数据的方法
KR102145417B1 (ko) * 2017-05-24 2020-08-19 지니너스 주식회사 무세포 핵산으로부터 수득된 서열 분석 데이터에 대한 배경 대립인자의 빈도 분포를 생성하는 방법 및 이를 이용하여 무세포 핵산으로부터 변이를 검출하는 방법
WO2018227202A1 (en) * 2017-06-09 2018-12-13 Bellwether Bio, Inc. Determination of cancer type in a subject by probabilistic modeling of circulating nucleic acid fragment endpoints
CA3067419A1 (en) * 2017-06-20 2018-12-27 Illumina, Inc. Methods and systems for decomposition and quantification of dna mixtures from multiple contributors of known or unknown genotypes
US12054711B2 (en) 2017-07-14 2024-08-06 City Of Hope Meta-stable oligonucleotides junctions for delivery of therapeutics
ES2959360T3 (es) * 2017-07-26 2024-02-23 Univ Hong Kong Chinese Mejora del cribado del cáncer mediante ácidos nucleicos víricos acelulares
US11519024B2 (en) 2017-08-04 2022-12-06 Billiontoone, Inc. Homologous genomic regions for characterization associated with biological targets
JP6955732B2 (ja) 2017-08-04 2021-10-27 ビリオントゥーワン, インコーポレイテッドBillionToOne, Inc. 生物学的標的に関する定量化における標的関連分子のシーケンシング出力決定及び解析
CN111051511A (zh) 2017-08-04 2020-04-21 十亿至一公司 用于与生物靶相关的表征的靶相关分子
WO2019060640A1 (en) 2017-09-20 2019-03-28 Guardant Health, Inc. METHODS AND SYSTEMS FOR DIFFERENTIATING SOMATIC VARIANTS AND GERMINAL LINE VARIANTS
CN107688726B (zh) * 2017-09-21 2021-09-07 深圳市易基因科技有限公司 基于液相捕获技术判定单基因病相关拷贝数缺失的方法
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
EP3704268A4 (en) 2017-11-03 2021-08-11 Guardant Health, Inc. NORMALIZATION OF A TUMOR MUTATION LOAD
CA3079252A1 (en) 2017-11-03 2019-05-09 Guardant Health, Inc. Correcting for deamination-induced sequence errors
AU2018366213A1 (en) 2017-11-08 2020-05-14 Twinstrand Biosciences, Inc. Reagents and adapters for nucleic acid sequencing and methods for making such reagents and adapters
JP7054133B2 (ja) * 2017-11-09 2022-04-13 国立研究開発法人国立がん研究センター 配列解析方法、配列解析装置、参照配列の生成方法、参照配列生成装置、プログラム、および記録媒体
CA3080170A1 (en) * 2017-11-28 2019-06-06 Grail, Inc. Models for targeted sequencing
EP3622522A1 (en) * 2017-12-01 2020-03-18 Illumina, Inc. Methods and systems for determining somatic mutation clonality
CN108197428B (zh) * 2017-12-25 2020-06-19 西安交通大学 一种并行动态规划的下一代测序技术拷贝数变异检测方法
CN112365927B (zh) * 2017-12-28 2023-08-25 安诺优达基因科技(北京)有限公司 Cnv检测装置
AU2018399524B2 (en) 2018-01-05 2022-05-26 Billiontoone, Inc. Quality control templates for ensuring validity of sequencing-based assays
US11584929B2 (en) 2018-01-12 2023-02-21 Claret Bioscience, Llc Methods and compositions for analyzing nucleic acid
SG11201911805VA (en) * 2018-01-15 2020-01-30 Illumina Inc Deep learning-based variant classifier
CN108268752B (zh) * 2018-01-18 2019-02-01 东莞博奥木华基因科技有限公司 一种染色体异常检测装置
KR102036609B1 (ko) * 2018-02-12 2019-10-28 바이오코아 주식회사 디지털 pcr을 이용한 산전진단 방법
US11203782B2 (en) 2018-03-29 2021-12-21 Accuragen Holdings Limited Compositions and methods comprising asymmetric barcoding
WO2019195268A2 (en) 2018-04-02 2019-10-10 Grail, Inc. Methylation markers and targeted methylation probe panels
CA3097146A1 (en) * 2018-04-16 2019-10-24 Memorial Sloan Kettering Cancer Center Systems and methods for detecting cancer via cfdna screening
JP2021521885A (ja) * 2018-04-20 2021-08-30 バイオファイア・ダイアグノスティクス,リミテッド・ライアビリティ・カンパニー シーケンシングデータの正規化および定量化のための方法
EP3784806A4 (en) * 2018-04-24 2022-01-19 Grail, LLC SYSTEMS AND METHODS OF USING A PATHOGENIC NUCLEIC ACID LOAD TO DETERMINE IF A SUBJECT HAS A CANCER CONDITION
TW202410055A (zh) 2018-06-01 2024-03-01 美商格瑞爾有限責任公司 用於資料分類之卷積神經網路系統及方法
WO2019236478A1 (en) 2018-06-04 2019-12-12 Guardant Health, Inc. Methods and systems for determining the cellular origin of cell-free nucleic acids
JP7537748B2 (ja) 2018-06-06 2024-08-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 核酸ライブラリを生成する方法ならびにそれを実施するための組成物およびキット
CN109192246B (zh) * 2018-06-22 2020-10-16 深圳市达仁基因科技有限公司 检测染色体拷贝数异常的方法、装置和存储介质
NZ759884A (en) * 2018-07-11 2023-01-27 Illumina Inc Deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (sses)
US12073922B2 (en) 2018-07-11 2024-08-27 Illumina, Inc. Deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (SSEs)
KR20210059694A (ko) 2018-07-12 2021-05-25 트윈스트랜드 바이오사이언시스, 인코포레이티드 게놈 편집, 클론 팽창 및 연관된 분야를 규명하기 위한 방법 및 시약
CA3107983A1 (en) 2018-07-23 2020-01-30 Guardant Health, Inc. Methods and systems for adjusting tumor mutational burden by tumor fraction and coverage
WO2020021119A1 (en) * 2018-07-27 2020-01-30 F. Hoffmann-La Roche Ag Method of monitoring effectiveness of immunotherapy of cancer patients
EP3833776A4 (en) 2018-08-06 2022-04-27 Billiontoone, Inc. DILUTION MARKER FOR QUANTIFICATION OF BIOLOGICAL TARGETS
CN113166750A (zh) 2018-08-10 2021-07-23 希望之城 可编程的条件性sirna及其用途
WO2020041611A1 (en) * 2018-08-22 2020-02-27 The Regents Of The University Of California Sensitively detecting copy number variations (cnvs) from circulating cell-free nucleic acid
JP2021536232A (ja) 2018-08-30 2021-12-27 ガーダント ヘルス, インコーポレイテッド 試料間の汚染を検出するための方法およびシステム
AU2019328344A1 (en) 2018-08-31 2021-04-08 Guardant Health, Inc. Microsatellite instability detection in cell-free DNA
JP7535998B2 (ja) 2018-08-31 2024-08-19 ガーダント ヘルス, インコーポレイテッド マージされたリードおよびマージされないリードに基づいた遺伝的変異体の検出
US20200075124A1 (en) 2018-09-04 2020-03-05 Guardant Health, Inc. Methods and systems for detecting allelic imbalance in cell-free nucleic acid samples
KR20210058888A (ko) * 2018-09-14 2021-05-24 더 잭슨 래보라토리 게놈 중 복제수 변이를 검출하기 위한 방법 및 장치
WO2020069350A1 (en) 2018-09-27 2020-04-02 Grail, Inc. Methylation markers and targeted methylation probe panel
EP3815005A4 (en) * 2018-10-08 2022-03-30 Freenome Holdings, Inc. PROFILE OF TRANSCRIPTION FACTORS
CN109523520B (zh) * 2018-10-25 2020-12-18 北京大学第三医院 一种基于深度学习的染色体自动计数方法
SG11202103486YA (en) 2018-10-31 2021-05-28 Guardant Health Inc Methods, compositions and systems for calibrating epigenetic partitioning assays
CN109584961A (zh) * 2018-12-03 2019-04-05 元码基因科技(北京)股份有限公司 基于二代测序技术检测血液微卫星不稳定的方法
US11581062B2 (en) 2018-12-10 2023-02-14 Grail, Llc Systems and methods for classifying patients with respect to multiple cancer classes
US20200202975A1 (en) * 2018-12-19 2020-06-25 AiOnco, Inc. Genetic information processing system with mutation analysis mechanism and method of operation thereof
CA3119980A1 (en) 2018-12-20 2020-06-25 Guardant Health, Inc. Methods, compositions, and systems for improving recovery of nucleic acid molecules
CN109712671B (zh) * 2018-12-20 2020-06-26 北京优迅医学检验实验室有限公司 基于ctDNA的基因检测装置、存储介质及计算机系统
CN111383714B (zh) * 2018-12-29 2023-07-28 安诺优达基因科技(北京)有限公司 模拟目标疾病仿真测序文库的方法及其应用
CN113661249A (zh) 2019-01-31 2021-11-16 夸登特健康公司 用于分离无细胞dna的组合物和方法
CN109841265B (zh) * 2019-02-22 2021-09-21 清华大学 使用片段化模式确定血浆游离核酸分子组织来源的方法和系统及应用
WO2020176659A1 (en) 2019-02-27 2020-09-03 Guardant Health, Inc. Methods and systems for determining the cellular origin of cell-free dna
AU2020228058A1 (en) 2019-02-27 2021-09-23 Guardant Health, Inc. Computational modeling of loss of function based on allelic frequency
CN111755075B (zh) * 2019-03-28 2023-09-29 深圳华大生命科学研究院 对免疫组库高通量测序样本间序列污染进行过滤的方法
WO2020206170A1 (en) 2019-04-02 2020-10-08 Progenity, Inc. Methods, systems, and compositions for counting nucleic acid molecules
CN110299185B (zh) * 2019-05-08 2023-07-04 西安电子科技大学 一种基于新一代测序数据的插入变异检测方法及系统
EP3976822A1 (en) 2019-05-31 2022-04-06 Guardant Health, Inc. Methods and systems for improving patient monitoring after surgery
EP3983558A4 (en) * 2019-06-12 2023-06-28 Ultima Genomics, Inc. Methods for accurate base calling using molecular barcodes
WO2021067484A1 (en) 2019-09-30 2021-04-08 Guardant Health, Inc. Compositions and methods for analyzing cell-free dna in methylation partitioning assays
CN110578002A (zh) * 2019-10-10 2019-12-17 广州燃石医学检验所有限公司 用于检测循环肿瘤dna突变的质控品及其制备方法
JP2023502317A (ja) * 2019-10-10 2023-01-24 カールスバーグ アグシャセルスガーブ 変異体植物の調製方法
ES2971348T3 (es) 2019-10-25 2024-06-04 Guardant Health Inc Métodos de reparación de salientes 3'
WO2021077411A1 (zh) * 2019-10-25 2021-04-29 苏州宏元生物科技有限公司 染色体不稳定性检测方法、系统及试剂盒
GB2627085A (en) 2019-11-06 2024-08-14 Univ Leland Stanford Junior Methods and systems for analysing nucleic acid molecules
CA3157560A1 (en) 2019-11-26 2021-06-03 Dustin Howard HITE Methods, compositions and systems for improving the binding of methylated polynucleotides
KR102184277B1 (ko) * 2020-01-16 2020-11-30 성균관대학교산학협력단 초음파 진단 및 dna 검사 일체형 ai 자가 건강 관리 장치 및 이를 이용한 원격 의료 진단 방법
CN115428087A (zh) 2020-01-31 2022-12-02 夸登特健康公司 克隆水平缺乏靶变体的显著性建模
US12059674B2 (en) 2020-02-03 2024-08-13 Tecan Genomics, Inc. Reagent storage system
US11211144B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Methods and systems for refining copy number variation in a liquid biopsy assay
US11475981B2 (en) 2020-02-18 2022-10-18 Tempus Labs, Inc. Methods and systems for dynamic variant thresholding in a liquid biopsy assay
US11211147B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing
WO2021183821A1 (en) 2020-03-11 2021-09-16 Guardant Health, Inc. Methods for classifying genetic mutations detected in cell-free nucleic acids as tumor or non-tumor origin
CN111445950B (zh) * 2020-03-19 2022-10-25 西安交通大学 一种基于滤波策略的高容错基因组复杂结构变异检测方法
CN113436679B (zh) * 2020-03-23 2024-05-10 北京合生基因科技有限公司 确定待测核酸样本变异率的方法和系统
CA3177127A1 (en) 2020-04-30 2021-11-04 Guardant Health, Inc. Methods for sequence determination using partitioned nucleic acids
US20230183811A1 (en) * 2020-05-14 2023-06-15 Georgia Tech Research Corporation Methods of detecting the efficacy of anticancer agents
EP4150113A1 (en) 2020-05-14 2023-03-22 Guardant Health, Inc. Homologous recombination repair deficiency detection
WO2023282916A1 (en) 2021-07-09 2023-01-12 Guardant Health, Inc. Methods of detecting genomic rearrangements using cell free nucleic acids
EP4407042A3 (en) 2020-07-10 2024-09-18 Guardant Health, Inc. Methods of detecting genomic rearrangements using cell free nucleic acids
US11946044B2 (en) 2020-07-30 2024-04-02 Guardant Health, Inc. Methods for isolating cell-free DNA
AU2021333661A1 (en) 2020-08-25 2023-03-23 Seer, Inc. Compositions and methods for assaying proteins and nucleic acids
WO2022046947A1 (en) 2020-08-25 2022-03-03 Guardant Health, Inc. Methods and systems for predicting an origin of a variant
EP4205122A2 (en) 2020-08-27 2023-07-05 Guardant Health, Inc. Computational detection of copy number variation at a locus in the absence of direct measurement of the locus
JP7532157B2 (ja) 2020-09-10 2024-08-13 株式会社東芝 超電導線材の接続方法及び超電導磁石装置
EP4222278A1 (en) 2020-09-30 2023-08-09 Guardant Health, Inc. Compositions and methods for analyzing dna using partitioning and a methylation-dependent nuclease
JP2023547620A (ja) 2020-10-23 2023-11-13 ガーダント ヘルス, インコーポレイテッド 分配および塩基変換を使用してdnaを解析するための組成物および方法
CA3199829A1 (en) 2020-11-30 2022-06-02 Guardant Health, Inc. Compositions and methods for enriching methylated polynucleotides
EP4267757A1 (en) 2020-12-23 2023-11-01 Guardant Health, Inc. Methods and systems for analyzing methylated polynucleotides
CN112735516A (zh) * 2020-12-29 2021-04-30 上海派森诺生物科技股份有限公司 一种无参考基因组的群体变异检测分析方法
CN112908411B (zh) * 2021-01-12 2024-05-14 广州市金域转化医学研究院有限公司 一种线粒体变异位点数据库及其建立方法和应用
WO2022174109A1 (en) 2021-02-12 2022-08-18 Guardant Health, Inc. Methods and compositions for detecting nucleic acid variants
WO2022187862A1 (en) 2021-03-05 2022-09-09 Guardant Health, Inc. Methods and related aspects for analyzing molecular response
US20220344004A1 (en) 2021-03-09 2022-10-27 Guardant Health, Inc. Detecting the presence of a tumor based on off-target polynucleotide sequencing data
WO2022204730A1 (en) 2021-03-25 2022-09-29 Guardant Health, Inc. Methods and compositions for quantifying immune cell dna
CN113130005B (zh) * 2021-04-12 2022-11-22 中国科学院东北地理与农业生态研究所 一种基于m2群体的候选因果突变位点基因定位的方法
US11783912B2 (en) 2021-05-05 2023-10-10 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for analyzing nucleic acid molecules
WO2022251655A1 (en) 2021-05-28 2022-12-01 Guardant Health, Inc. Compositions and methods for assaying circulating molecules
CN113284555B (zh) * 2021-06-11 2023-08-22 中山大学 一种基因突变网络的构建方法、装置、设备及存储介质
WO2022271730A1 (en) 2021-06-21 2022-12-29 Guardant Health, Inc. Methods and compositions for copy-number informed tissue-of-origin analysis
CN118202417A (zh) * 2021-07-06 2024-06-14 斯威齐治疗公司 设计条件可激活小干扰rna传感器的方法
WO2023018791A1 (en) * 2021-08-10 2023-02-16 Cornell University Ultra-sensitive liquid biopsy through deep learning empowered whole genome sequencing of plasma
WO2023056065A1 (en) 2021-09-30 2023-04-06 Guardant Health, Inc. Compositions and methods for synthesis and use of probes targeting nucleic acid rearrangements
CA3233805A1 (en) * 2021-10-04 2023-04-13 The Chinese University Of Hong Kong Sequencing of viral dna for predicting disease relapse
EP4426858A2 (en) 2021-11-02 2024-09-11 Guardant Health, Inc. Quality control method
WO2023097325A2 (en) * 2021-11-29 2023-06-01 Mammoth Biosciences, Inc. Systems and methods for identifying genetic phenotypes using programmable nucleases
CN114703263B (zh) * 2021-12-20 2023-09-22 北京科迅生物技术有限公司 一种群组染色体拷贝数变异检测方法及装置
WO2023122623A1 (en) 2021-12-21 2023-06-29 Guardant Health, Inc. Methods and systems for combinatorial chromatin-ip sequencing
WO2023122740A1 (en) 2021-12-23 2023-06-29 Guardant Health, Inc. Compositions and methods for detection of metastasis
AU2023240345A1 (en) 2022-03-21 2024-10-10 Billion Toone, Inc. Molecule counting of methylated cell-free dna for treatment monitoring
WO2023197004A1 (en) 2022-04-07 2023-10-12 Guardant Health, Inc. Detecting the presence of a tumor based on methylation status of cell-free nucleic acid molecules
CN114724628B (zh) * 2022-04-24 2022-11-08 华中农业大学 一种对多物种进行多核苷酸变异鉴定和注释的方法
US20230360725A1 (en) 2022-05-09 2023-11-09 Guardant Health, Inc. Detecting degradation based on strand bias
WO2024006908A1 (en) 2022-06-30 2024-01-04 Guardant Health, Inc. Enrichment of aberrantly methylated dna
WO2024020573A1 (en) 2022-07-21 2024-01-25 Guardant Health, Inc. Methods for detection and reduction of sample preparation-induced methylation artifacts
WO2024059840A1 (en) 2022-09-16 2024-03-21 Guardant Health, Inc. Compositions and methods for analyzing soluble proteins
WO2024073508A2 (en) 2022-09-27 2024-04-04 Guardant Health, Inc. Methods and compositions for quantifying immune cell dna
WO2024107599A1 (en) 2022-11-15 2024-05-23 Guardant Health, Inc. Method of predicting non-small cell lung cancer (nsclc) patient drug response or time until death or cancer progression from circulating tumor dna (ctdna) utilizing signals from both baseline ctdna level and longitudinal change of ctdna level over time
WO2024107941A1 (en) 2022-11-17 2024-05-23 Guardant Health, Inc. Validation of a bioinformatic model for classifying non-tumor variants in a cell-free dna liquid biopsy assay
WO2024137682A1 (en) 2022-12-21 2024-06-27 Guardant Health, Inc. Detecting homologous recombination deficiences based on methylation status of cell-free nucleic acid molecules
WO2024138180A2 (en) 2022-12-22 2024-06-27 Guardant Health, Inc. Integrated targeted and whole genome somatic and dna methylation sequencing workflows
WO2024137880A2 (en) 2022-12-22 2024-06-27 Guardant Health, Inc. Methods involving methylation preserving amplification with error correction
WO2024151825A1 (en) 2023-01-11 2024-07-18 Guardant Health, Inc. Joint modeling of longitudinal and time-to-event data to predict patient survival
WO2024159053A1 (en) 2023-01-25 2024-08-02 Guardant Health, Inc. Nucleic acid methylation profiling method
CN115798580B (zh) * 2023-02-10 2023-11-07 北京中仪康卫医疗器械有限公司 基于基因型填补和低深度测序的一体化基因组分析方法
WO2024211717A1 (en) 2023-04-07 2024-10-10 Guardant Health, Inc. Detecting the presence of a tumor based on methylation status of cell-free nucleic acid molecules

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155833A2 (en) * 2010-06-09 2011-12-15 Keygene N.V. Combinatorial sequence barcodes for high throughput screening
US20120100548A1 (en) * 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations

Family Cites Families (274)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US604804A (en) * 1898-05-31 Shuttle for looms
US4725536A (en) 1985-09-19 1988-02-16 Genetics Institute, Inc. Reagent polynucleotide complex with multiple target binding regions, and kit and methods
US6150517A (en) 1986-11-24 2000-11-21 Gen-Probe Methods for making oligonucleotide probes for the detection and/or quantitation of non-viral organisms
US5149625A (en) 1987-08-11 1992-09-22 President And Fellows Of Harvard College Multiplex analysis of DNA
US4942124A (en) 1987-08-11 1990-07-17 President And Fellows Of Harvard College Multiplex sequencing
US5656731A (en) 1987-10-15 1997-08-12 Chiron Corporation Nucleic acid-amplified immunoassay probes
US5124246A (en) 1987-10-15 1992-06-23 Chiron Corporation Nucleic acid multimers and amplified nucleic acid hybridization assays using same
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US6309822B1 (en) 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
US5925525A (en) 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5871928A (en) 1989-06-07 1999-02-16 Fodor; Stephen P. A. Methods for nucleic acid analysis
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US6551784B2 (en) 1989-06-07 2003-04-22 Affymetrix Inc Method of comparing nucleic acid sequences
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US5200314A (en) 1990-03-23 1993-04-06 Chiron Corporation Polynucleotide capture assay employing in vitro amplification
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
DK0834575T3 (da) 1990-12-06 2002-04-02 Affymetrix Inc A Delaware Corp Identifikation af nucleinsyrer i prøver
US5981179A (en) 1991-11-14 1999-11-09 Digene Diagnostics, Inc. Continuous amplification reaction
US5424413A (en) 1992-01-22 1995-06-13 Gen-Probe Incorporated Branched nucleic acid probes
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US6020124A (en) 1992-04-27 2000-02-01 Trustees Of Dartmouth College Detection of soluble gene sequences in biological fluids
US5981176A (en) 1992-06-17 1999-11-09 City Of Hope Method of detecting and discriminating between nucleic acid sequences
WO1995000530A1 (en) 1993-06-25 1995-01-05 Affymax Technologies N.V. Hybridization and sequencing of nucleic acids
US5500356A (en) 1993-08-10 1996-03-19 Life Technologies, Inc. Method of nucleic acid sequence selection
US6309823B1 (en) 1993-10-26 2001-10-30 Affymetrix, Inc. Arrays of nucleic acid probes for analyzing biotransformation genes and methods of using the same
US5681697A (en) 1993-12-08 1997-10-28 Chiron Corporation Solution phase nucleic acid sandwich assays having reduced background noise and kits therefor
CH686982A5 (fr) 1993-12-16 1996-08-15 Maurice Stroun Méthode pour le diagnostic de cancers.
US20030017081A1 (en) 1994-02-10 2003-01-23 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US5714330A (en) 1994-04-04 1998-02-03 Lynx Therapeutics, Inc. DNA sequencing by stepwise ligation and cleavage
US5695934A (en) 1994-10-13 1997-12-09 Lynx Therapeutics, Inc. Massively parallel sequencing of sorted polynucleotides
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5604097A (en) 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
US6013445A (en) 1996-06-06 2000-01-11 Lynx Therapeutics, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US6600996B2 (en) 1994-10-21 2003-07-29 Affymetrix, Inc. Computer-aided techniques for analyzing biological sequences
DE69535240T2 (de) 1994-10-28 2007-06-06 Gen-Probe Inc., San Diego Zusammensetzungen und Verfahren für die gleichzeitige Detektion und Quantifizierung von einer Mehrheit spezifischer Nuklein Säure Sequenzen
US5648245A (en) 1995-05-09 1997-07-15 Carnegie Institution Of Washington Method for constructing an oligonucleotide concatamer library by rolling circle replication
US5968740A (en) 1995-07-24 1999-10-19 Affymetrix, Inc. Method of Identifying a Base in a Nucleic Acid
GB9516636D0 (en) 1995-08-14 1995-10-18 Univ London In-situ nucleic acid amplification and detection
US5763175A (en) 1995-11-17 1998-06-09 Lynx Therapeutics, Inc. Simultaneous sequencing of tagged polynucleotides
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
CA2248981C (en) 1996-03-15 2009-11-24 The Penn State Research Foundation Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays
WO1997035589A1 (en) 1996-03-26 1997-10-02 Kopreski Michael S Method enabling use of extracellular rna extracted from plasma or serum to detect, monitor or evaluate cancer
US6458530B1 (en) 1996-04-04 2002-10-01 Affymetrix Inc. Selecting tag nucleic acids
US6300077B1 (en) 1996-08-14 2001-10-09 Exact Sciences Corporation Methods for the detection of nucleic acids
US5935793A (en) 1996-09-27 1999-08-10 The Chinese University Of Hong Kong Parallel polynucleotide sequencing method using tagged primers
US6124092A (en) 1996-10-04 2000-09-26 The Perkin-Elmer Corporation Multiplex polynucleotide capture methods and compositions
US6117631A (en) 1996-10-29 2000-09-12 Polyprobe, Inc. Detection of antigens via oligonucleotide antibody conjugates
US6046005A (en) 1997-01-15 2000-04-04 Incyte Pharmaceuticals, Inc. Nucleic acid sequencing with solid phase capturable terminators comprising a cleavable linking group
CA2291180A1 (en) 1997-05-23 1998-11-26 Lynx Therapeutics, Inc. System and apparatus for sequential processing of analytes
WO1999028505A1 (en) 1997-12-03 1999-06-10 Curagen Corporation Methods and devices for measuring differential gene expression
AU5584999A (en) 1998-08-28 2000-03-21 Invitrogen Corporation System for the rapid manipulation of nucleic acid sequences
WO2000014282A1 (en) 1998-09-04 2000-03-16 Lynx Therapeutics, Inc. Method of screening for genetic polymorphism
US6503718B2 (en) 1999-01-10 2003-01-07 Exact Sciences Corporation Methods for detecting mutations using primer extension for detecting disease
WO2000046402A1 (en) 1999-02-05 2000-08-10 Amersham Pharmacia Biotech Uk Limited Genomic analysis method
US6629040B1 (en) 1999-03-19 2003-09-30 University Of Washington Isotope distribution encoded tags for protein identification
WO2000058516A2 (en) 1999-03-26 2000-10-05 Whitehead Institute For Biomedical Research Universal arrays
AU767983B2 (en) 1999-04-09 2003-11-27 Esoterix Genetic Laboratories, Llc Methods for detecting nucleic acids indicative of cancer
US6355431B1 (en) 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
DE60045059D1 (de) 1999-04-20 2010-11-18 Nat Inst Of Advanced Ind Scien Verfahren und Sonden zur Bestimmung der Konzentration von Nukleinsäure-Molekülen und Verfahren zur Analyse der gewonnenen Daten
US6242186B1 (en) 1999-06-01 2001-06-05 Oy Jurilab Ltd. Method for detecting a risk of cancer and coronary heart disease and kit therefor
US6326148B1 (en) 1999-07-12 2001-12-04 The Regents Of The University Of California Detection of copy number changes in colon cancer
US6440706B1 (en) 1999-08-02 2002-08-27 Johns Hopkins University Digital amplification
US6586177B1 (en) 1999-09-08 2003-07-01 Exact Sciences Corporation Methods for disease detection
US6849403B1 (en) 1999-09-08 2005-02-01 Exact Sciences Corporation Apparatus and method for drug screening
CA2394921A1 (en) 1999-12-07 2001-06-14 Anthony P. Shuber Supracolonic aerodigestive neoplasm detection
US6489114B2 (en) 1999-12-17 2002-12-03 Bio Merieux Process for labeling a ribonucleic acid, and labeled RNA fragments which are obtained thereby
US20020006617A1 (en) 2000-02-07 2002-01-17 Jian-Bing Fan Nucleic acid detection methods using universal priming
GB2364054B (en) 2000-03-24 2002-05-29 Smithkline Beecham Corp Method of amplifying quinolone-resistance-determining-regions and identifying polymorphic variants thereof
US20030207300A1 (en) 2000-04-28 2003-11-06 Matray Tracy J. Multiplex analytical platform using molecular tags
EP1158055A1 (fr) 2000-05-26 2001-11-28 Xu Qi University of Teaxs Laboratoire de Leucémie Chen Méthode pour le diagnostic de cancers
AU2002246612B2 (en) 2000-10-24 2007-11-01 The Board Of Trustees Of The Leland Stanford Junior University Direct multiplex characterization of genomic DNA
US20020142345A1 (en) 2000-12-22 2002-10-03 Nelsen Anita J. Methods for encoding and decoding complex mixtures in arrayed assays
US20030049616A1 (en) 2001-01-08 2003-03-13 Sydney Brenner Enzymatic synthesis of oligonucleotide tags
CA2344599C (en) 2001-05-07 2011-07-12 Bioneer Corporation Selective polymerase chain reaction of dna of which base sequence is completely unknown
US7406385B2 (en) 2001-10-25 2008-07-29 Applera Corporation System and method for consensus-calling with per-base quality values for sample assemblies
DK1342794T3 (da) 2002-03-05 2006-04-24 Epigenomics Ag Fremgangsmåde og anordning til at bestemme vævsspecificitet af fritflydende DNA i legemsvæsker
US20030186251A1 (en) 2002-04-01 2003-10-02 Brookhaven Science Associates, Llc Genome sequence tags
US7727720B2 (en) 2002-05-08 2010-06-01 Ravgen, Inc. Methods for detection of genetic disorders
US10229244B2 (en) 2002-11-11 2019-03-12 Affymetrix, Inc. Methods for identifying DNA copy number changes using hidden markov model based estimations
WO2004044225A2 (en) 2002-11-11 2004-05-27 Affymetrix, Inc. Methods for identifying dna copy number changes
US7822555B2 (en) 2002-11-11 2010-10-26 Affymetrix, Inc. Methods for identifying DNA copy number changes
US7704687B2 (en) 2002-11-15 2010-04-27 The Johns Hopkins University Digital karyotyping
US20040209299A1 (en) 2003-03-07 2004-10-21 Rubicon Genomics, Inc. In vitro DNA immortalization and whole genome amplification using libraries generated from randomly fragmented DNA
WO2006102264A1 (en) 2005-03-18 2006-09-28 Fluidigm Corporation Thermal reaction device and method for using the same
US20040259118A1 (en) 2003-06-23 2004-12-23 Macevicz Stephen C. Methods and compositions for nucleic acid sequence analysis
EP1641809B2 (en) 2003-07-05 2018-10-03 The Johns Hopkins University Method and compositions for detection and enumeration of genetic variations
EP1524321B2 (en) 2003-10-16 2014-07-23 Sequenom, Inc. Non-invasive detection of fetal genetic traits
DE10348407A1 (de) 2003-10-17 2005-05-19 Widschwendter, Martin, Prof. Prognostische und diagnostische Marker für Zell-proliferative Erkrankungen von Brustgeweben
US20070111233A1 (en) 2003-10-30 2007-05-17 Bianchi Diana W Prenatal diagnosis using cell-free fetal DNA in amniotic fluid
JP2007524410A (ja) 2004-01-23 2007-08-30 リングヴィテ エーエス ポリヌクレオチドライゲーション反応の改良
DE602005018166D1 (de) 2004-02-12 2010-01-21 Population Genetics Technologi Genetische analyse mittels sequenzspezifischem sortieren
US20100216153A1 (en) 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
US20060046258A1 (en) 2004-02-27 2006-03-02 Lapidus Stanley N Applications of single molecule sequencing
WO2005111242A2 (en) 2004-05-10 2005-11-24 Parallele Bioscience, Inc. Digital profiling of polynucleotide populations
US7276720B2 (en) 2004-07-19 2007-10-02 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US20060035258A1 (en) 2004-08-06 2006-02-16 Affymetrix, Inc. Methods for identifying DNA copy number changes
US7937225B2 (en) 2004-09-03 2011-05-03 New York University Systems, methods and software arrangements for detection of genome copy number variation
US20060073506A1 (en) 2004-09-17 2006-04-06 Affymetrix, Inc. Methods for identifying biological samples
WO2006047787A2 (en) 2004-10-27 2006-05-04 Exact Sciences Corporation Method for monitoring disease progression or recurrence
US7424371B2 (en) 2004-12-21 2008-09-09 Helicos Biosciences Corporation Nucleic acid analysis
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
ITRM20050068A1 (it) 2005-02-17 2006-08-18 Istituto Naz Per Le Malattie I Metodo per la rivelazione di acidi nucleici di agenti patogeni batterici o di parassiti nelle urine.
EP1856293A2 (en) 2005-03-16 2007-11-21 Compass Genetics, Llc Methods and compositions for assay readouts on multiple analytical platforms
DE602005009324D1 (de) 2005-04-06 2008-10-09 Maurice Stroun Methode zur Krebsdiagnose mittels Nachweis von DNA und RNA im Kreislauf
US20070020640A1 (en) 2005-07-21 2007-01-25 Mccloskey Megan L Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
CA2623539C (en) 2005-09-29 2015-12-15 Keygene N.V. High throughput screening of mutagenized populations
WO2007087312A2 (en) 2006-01-23 2007-08-02 Population Genetics Technologies Ltd. Molecular counting
US20070172839A1 (en) 2006-01-24 2007-07-26 Smith Douglas R Asymmetrical adapters and methods of use thereof
US8383338B2 (en) 2006-04-24 2013-02-26 Roche Nimblegen, Inc. Methods and systems for uniform enrichment of genomic regions
US7702468B2 (en) 2006-05-03 2010-04-20 Population Diagnostics, Inc. Evaluating genetic disorders
IL282783B2 (en) 2006-05-18 2023-09-01 Caris Mpi Inc A system and method for determining a personalized medical intervention for a disease stage
WO2007147018A1 (en) 2006-06-14 2007-12-21 Cellpoint Diagnostics, Inc. Analysis of rare cell-enriched samples
FR2904833A1 (fr) 2006-08-11 2008-02-15 Bioquanta Sarl Procede de dosage d'acide nuclieque par fluorescence
DK2518162T3 (en) 2006-11-15 2018-06-18 Biospherex Llc Multi-tag sequencing and ecogenomic analysis
WO2008070144A2 (en) 2006-12-06 2008-06-12 Duke University Imprinted genes and disease
CN104013956B (zh) 2007-01-25 2018-12-18 达娜-法勃肿瘤研究所公司 抗egfr抗体在治疗egfr突变体介导的疾病中的用途
CA2680326A1 (en) 2007-03-13 2008-09-18 Amgen Inc. K-ras mutations and anti-egfr antibody therapy
US20100196898A1 (en) 2007-05-24 2010-08-05 The Brigham & Women's Hospital, Inc. Disease-associated genetic variations and methods for obtaining and using same
JP2010528608A (ja) 2007-06-01 2010-08-26 454 ライフ サイエンシーズ コーポレイション 複合的な混合物から個々の試料を特定するためのシステムおよび方法
EP2155855B1 (en) * 2007-06-06 2016-10-12 Pacific Biosciences of California, Inc. Methods and processes for calling bases in sequence by incorporation methods
US20100112590A1 (en) 2007-07-23 2010-05-06 The Chinese University Of Hong Kong Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment
EP3770275A1 (en) 2007-07-23 2021-01-27 The Chinese University of Hong Kong Determining a fetal aneuploidy
US20090053719A1 (en) 2007-08-03 2009-02-26 The Chinese University Of Hong Kong Analysis of nucleic acids by digital pcr
CA2698545C (en) 2007-09-07 2014-07-08 Fluidigm Corporation Copy number variation determination, methods and systems
US20100173294A1 (en) 2007-09-11 2010-07-08 Roche Molecular Systems, Inc. Diagnostic test for susceptibility to b-raf kinase inhibitors
EP3144672B1 (en) 2007-11-21 2018-08-22 Cosmosid Inc. Genome identification system
JP2011511644A (ja) 2008-02-12 2011-04-14 ノバルティス アーゲー 無細胞のアポトーシス性核酸または胎児核酸を単離するための方法
US8216789B2 (en) 2008-02-27 2012-07-10 University Of Washington Diagnostic panel of cancer antibodies and methods for use
US20110003701A1 (en) * 2008-02-27 2011-01-06 454 Life Sciences Corporation System and method for improved processing of nucleic acids for production of sequencable libraries
CA2718137A1 (en) 2008-03-26 2009-10-01 Sequenom, Inc. Restriction endonuclease enhanced polymorphic sequence detection
CA2991818C (en) 2008-03-28 2022-10-11 Pacific Biosciences Of California, Inc. Compositions and methods for nucleic acid sequencing
US20110160290A1 (en) 2008-05-21 2011-06-30 Muneesh Tewari Use of extracellular rna to measure disease
US20090298709A1 (en) 2008-05-28 2009-12-03 Affymetrix, Inc. Assays for determining telomere length and repeated sequence copy number
DE102008025656B4 (de) 2008-05-28 2016-07-28 Genxpro Gmbh Verfahren zur quantitativen Analyse von Nukleinsäuren, Marker dafür und deren Verwendung
EP2310524A4 (en) 2008-07-10 2013-07-24 Versitech Ltd METHODS OF CARTOGRAPHY OF NUCLEIC ACIDS AND IDENTIFICATION OF FINE STRUCTURAL VARIATIONS IN NUCLEIC ACIDS
US20100041048A1 (en) 2008-07-31 2010-02-18 The Johns Hopkins University Circulating Mutant DNA to Assess Tumor Dynamics
US20100062494A1 (en) 2008-08-08 2010-03-11 President And Fellows Of Harvard College Enzymatic oligonucleotide pre-adenylation
US20100069250A1 (en) 2008-08-16 2010-03-18 The Board Of Trustees Of The Leland Stanford Junior University Digital PCR Calibration for High Throughput Sequencing
GB2467691A (en) 2008-09-05 2010-08-11 Aueon Inc Methods for stratifying and annotating cancer drug treatment options
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
LT2562268T (lt) 2008-09-20 2017-04-25 The Board Of Trustees Of The Leland Stanford Junior University Neinvazinis fetalinės aneuploidijos diagnozavimas sekvenavimu
WO2010075188A2 (en) 2008-12-23 2010-07-01 Illumina Inc. Multibase delivery for long reads in sequencing by synthesis protocols
JP2012514977A (ja) * 2009-01-13 2012-07-05 キージーン・エン・フェー 新規ゲノム配列決定戦略
US20100323348A1 (en) 2009-01-31 2010-12-23 The Regents Of The University Of Colorado, A Body Corporate Methods and Compositions for Using Error-Detecting and/or Error-Correcting Barcodes in Nucleic Acid Amplification Process
US9085798B2 (en) 2009-04-30 2015-07-21 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
US20120165202A1 (en) 2009-04-30 2012-06-28 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
US20130143747A1 (en) 2011-12-05 2013-06-06 Myriad Genetics, Incorporated Methods of detecting cancer
US9524369B2 (en) 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
CA2765949C (en) 2009-06-25 2016-03-29 Fred Hutchinson Cancer Research Center Method of measuring adaptive immunity
WO2011011426A2 (en) 2009-07-20 2011-01-27 Bar Harbor Biotechnology, Inc. Methods for assessing disease risk
EP2824191A3 (en) 2009-10-26 2015-02-18 Lifecodexx AG Means and methods for non-invasive diagnosis of chromosomal aneuploidy
CN102597272A (zh) 2009-11-12 2012-07-18 艾索特里克斯遗传实验室有限责任公司 基因座的拷贝数分析
US20110237444A1 (en) 2009-11-20 2011-09-29 Life Technologies Corporation Methods of mapping genomic methylation patterns
US9023769B2 (en) 2009-11-30 2015-05-05 Complete Genomics, Inc. cDNA library for nucleic acid sequencing
US9752187B2 (en) 2009-12-11 2017-09-05 Nucleix Categorization of DNA samples
US9315857B2 (en) 2009-12-15 2016-04-19 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse label-tags
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
WO2011087760A2 (en) 2009-12-22 2011-07-21 Sequenom, Inc. Processes and kits for identifying aneuploidy
AU2011207544A1 (en) 2010-01-19 2012-09-06 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic DNA by whole genome sequencing
US20110177512A1 (en) 2010-01-19 2011-07-21 Predictive Biosciences, Inc. Method for assuring amplification of an abnormal nucleic acid in a sample
US9260745B2 (en) 2010-01-19 2016-02-16 Verinata Health, Inc. Detecting and classifying copy number variation
US20120010085A1 (en) 2010-01-19 2012-01-12 Rava Richard P Methods for determining fraction of fetal nucleic acids in maternal samples
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
ES2704701T3 (es) 2010-01-19 2019-03-19 Verinata Health Inc Nuevo protocolo de preparación de bibliotecas de secuenciación
EP2536854B1 (en) 2010-02-18 2017-07-19 The Johns Hopkins University Personalized tumor biomarkers
EP2547698B1 (en) 2010-03-14 2015-07-29 The Translational Genomics Research Institute Methods of determining susceptibility of tumors to tyrosine kinase inhibitors
CN101967517B (zh) 2010-03-19 2012-11-07 黄乐群 一种无需借助pcr的基因检测方法
CA2796578C (en) 2010-04-16 2021-11-23 Chronix Biomedical Breast cancer associated circulating nucleic acid biomarkers
US9255291B2 (en) 2010-05-06 2016-02-09 Bioo Scientific Corporation Oligonucleotide ligation methods for improving data quality and throughput using massively parallel sequencing
EP2569447A4 (en) * 2010-05-14 2013-11-27 Fluidigm Corp ANALYZES FOR DETECTION OF GENOTYPE, MUTATIONS, AND / OR ANEUPLOIDIE
US20190010543A1 (en) 2010-05-18 2019-01-10 Natera, Inc. Methods for simultaneous amplification of target loci
PL2576837T3 (pl) 2010-06-04 2018-04-30 Chronix Biomedical Krążeniowe biomarkery typu kwasu nukleinowego związane z rakiem prostaty
EP2400035A1 (en) 2010-06-28 2011-12-28 Technische Universität München Methods and compositions for diagnosing gastrointestinal stromal tumors
EP2591433A4 (en) * 2010-07-06 2017-05-17 Life Technologies Corporation Systems and methods to detect copy number variation
KR20130041961A (ko) 2010-07-23 2013-04-25 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 체액에서 질환 또는 상태의 특징을 검출하는 방법
EP2599545B1 (en) 2010-07-29 2019-09-04 Toto Ltd. Photocatalyst coated body and photocatalyst coating liquid
DK2601609T3 (en) 2010-08-02 2017-06-06 Population Bio Inc COMPOSITIONS AND METHODS FOR DISCOVERING MUTATIONS CAUSING GENETIC DISORDERS
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US11031095B2 (en) * 2010-08-06 2021-06-08 Ariosa Diagnostics, Inc. Assay systems for determination of fetal copy number variation
EP2426217A1 (en) 2010-09-03 2012-03-07 Centre National de la Recherche Scientifique (CNRS) Analytical methods for cell free nucleic acids and applications
US20120231479A1 (en) 2010-09-09 2012-09-13 Robert Puskas Combination methods of diagnosing cancer in a patient
ES2595433T3 (es) 2010-09-21 2016-12-30 Population Genetics Technologies Ltd. Aumento de la confianza en las identificaciones de alelos con el recuento molecular
WO2012040387A1 (en) * 2010-09-24 2012-03-29 The Board Of Trustees Of The Leland Stanford Junior University Direct capture, amplification and sequencing of target dna using immobilized primers
WO2012042374A2 (en) 2010-10-01 2012-04-05 Anssi Jussi Nikolai Taipale Method of determining number or concentration of molecules
GB2497912B (en) 2010-10-08 2014-06-04 Harvard College High-throughput single cell barcoding
US8725422B2 (en) 2010-10-13 2014-05-13 Complete Genomics, Inc. Methods for estimating genome-wide copy number variations
DK2630263T4 (da) 2010-10-22 2022-02-14 Cold Spring Harbor Laboratory Varital tælling af nucleinsyrer for at opnå information om antal genomiske kopier
WO2012066451A1 (en) 2010-11-15 2012-05-24 Pfizer Inc. Prognostic and predictive gene signature for colon cancer
MX349568B (es) 2010-11-30 2017-08-03 Univ Hong Kong Chinese Deteccion de aberraciones geneticas o moleculares asociadas con el cancer.
CA2821906C (en) 2010-12-22 2020-08-25 Natera, Inc. Methods for non-invasive prenatal paternity testing
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
CA2822439A1 (en) 2010-12-23 2012-06-28 Sequenom, Inc. Fetal genetic variation detection
KR20190002733A (ko) 2010-12-30 2019-01-08 파운데이션 메디신 인코포레이티드 종양 샘플의 다유전자 분석의 최적화
US20140011694A1 (en) 2011-01-11 2014-01-09 Via Genomes, Inc. Methods, systems, databases, kits and arrays for screening for and predicting the risk of an identifying the presence of tumors and cancers
WO2012103031A2 (en) 2011-01-25 2012-08-02 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
JP6153874B2 (ja) 2011-02-09 2017-06-28 ナテラ, インコーポレイテッド 非侵襲的出生前倍数性呼び出しのための方法
US20120238464A1 (en) 2011-03-18 2012-09-20 Baylor Research Institute Biomarkers for Predicting the Recurrence of Colorectal Cancer Metastasis
WO2012129363A2 (en) 2011-03-24 2012-09-27 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
EP2691544B1 (en) 2011-03-30 2017-09-13 Verinata Health, Inc Method for verifying bioassay samples
EP2670866A4 (en) * 2011-04-05 2015-09-02 Translational Genomics Res Inst BIOMARKERS AND METHODS OF USE
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
CN110016499B (zh) 2011-04-15 2023-11-14 约翰·霍普金斯大学 安全测序系统
EP2702175B1 (en) 2011-04-25 2018-08-08 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
EP2705157B1 (en) 2011-05-06 2017-02-01 New England Biolabs, Inc. Ligation enhancement
SG194745A1 (en) 2011-05-20 2013-12-30 Fluidigm Corp Nucleic acid encoding reactions
US9752176B2 (en) 2011-06-15 2017-09-05 Ginkgo Bioworks, Inc. Methods for preparative in vitro cloning
KR101454886B1 (ko) 2011-08-01 2014-11-03 주식회사 셀레믹스 핵산분자의 제조방법
US10704164B2 (en) 2011-08-31 2020-07-07 Life Technologies Corporation Methods, systems, computer readable media, and kits for sample identification
WO2013033721A1 (en) 2011-09-02 2013-03-07 Atreca, Inc. Dna barcodes for multiplexed sequencing
US8712697B2 (en) 2011-09-07 2014-04-29 Ariosa Diagnostics, Inc. Determination of copy number variations using binomial probability calculations
US20130079241A1 (en) 2011-09-15 2013-03-28 Jianhua Luo Methods for Diagnosing Prostate Cancer and Predicting Prostate Cancer Relapse
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20140242588A1 (en) 2011-10-06 2014-08-28 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20130102485A1 (en) 2011-10-19 2013-04-25 Inhan Lee Method of Determining a Diseased State in a Subject
US20140303008A1 (en) 2011-10-21 2014-10-09 Chronix Biomedical Colorectal cancer associated circulating nucleic acid biomarkers
NO3051026T3 (ja) 2011-10-21 2018-07-28
US20130122499A1 (en) 2011-11-14 2013-05-16 Viomics, Inc. System and method of detecting local copy number variation in dna samples
WO2013086352A1 (en) 2011-12-07 2013-06-13 Chronix Biomedical Prostate cancer associated circulating nucleic acid biomarkers
KR101768652B1 (ko) 2011-12-08 2017-08-16 파이브3 제노믹스, 엘엘씨 Mdm2-포함 이중 소염색체들 및 그의 방법들
CN104334739A (zh) 2012-01-13 2015-02-04 Data生物有限公司 通过新一代测序进行基因分型
LT3363901T (lt) 2012-02-17 2021-04-12 Fred Hutchinson Cancer Research Center Kompozicijos ir būdai, skirti tiksliam mutacijų nustatymui
CN104364392B (zh) 2012-02-27 2018-05-25 赛卢拉研究公司 用于分子计数的组合物和试剂盒
WO2013130512A2 (en) 2012-02-27 2013-09-06 The University Of North Carolina At Chapel Hill Methods and uses for molecular tags
WO2013128281A1 (en) 2012-02-28 2013-09-06 Population Genetics Technologies Ltd Method for attaching a counter sequence to a nucleic acid sample
WO2013130791A1 (en) 2012-02-29 2013-09-06 Dana-Farber Cancer Institute, Inc. Compositions, kits, and methods for the identification, assessment, prevention, and therapy of cancer
US9892230B2 (en) 2012-03-08 2018-02-13 The Chinese University Of Hong Kong Size-based analysis of fetal or tumor DNA fraction in plasma
US9862995B2 (en) 2012-03-13 2018-01-09 Abhijit Ajit Patel Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing
HUE051845T2 (hu) 2012-03-20 2021-03-29 Univ Washington Through Its Center For Commercialization Módszerek a tömegesen párhuzamos DNS-szekvenálás hibaarányának csökkentésére duplex konszenzus szekvenálással
WO2013142213A1 (en) 2012-03-20 2013-09-26 Wake Forest University Health Sciences Methods, systems, and computer readable media for tracking and verifying receipt of contents of a delivery within an organization
CN104350158A (zh) 2012-03-26 2015-02-11 约翰霍普金斯大学 快速非整倍性检测
US8209130B1 (en) * 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
CA3209140A1 (en) 2012-04-19 2013-10-24 The Medical College Of Wisconsin, Inc. Highly sensitive surveillance using detection of cell free dna
PT2850211T (pt) 2012-05-14 2021-11-29 Irepertoire Inc Método para aumentar a precisão na deteção quantitativa de polinucleótidos
CA2872141C (en) 2012-05-31 2016-01-19 Board Of Regents, The University Of Texas System Method for accurate sequencing of dna
SG11201407888RA (en) 2012-06-11 2014-12-30 Sequenta Inc Method of sequence determination using sequence tags
US11261494B2 (en) 2012-06-21 2022-03-01 The Chinese University Of Hong Kong Method of measuring a fractional concentration of tumor DNA
WO2014004726A1 (en) 2012-06-26 2014-01-03 Caifu Chen Methods, compositions and kits for the diagnosis, prognosis and monitoring of cancer
EP2875149B1 (en) 2012-07-20 2019-12-04 Verinata Health, Inc. Detecting and classifying copy number variation in a cancer genome
US20160040229A1 (en) 2013-08-16 2016-02-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US20140066317A1 (en) 2012-09-04 2014-03-06 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
WO2014039556A1 (en) 2012-09-04 2014-03-13 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
WO2014093330A1 (en) 2012-12-10 2014-06-19 Clearfork Bioscience, Inc. Methods for targeted genomic analysis
US20140336943A1 (en) 2013-01-05 2014-11-13 Foundation Medicine, Inc. System and method for managing genomic testing results
US10980804B2 (en) 2013-01-18 2021-04-20 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
US20160034638A1 (en) 2013-03-14 2016-02-04 University Of Rochester System and Method for Detecting Population Variation from Nucleic Acid Sequencing Data
CA2905410A1 (en) 2013-03-15 2014-09-25 Abbott Molecular Inc. Systems and methods for detection of genomic copy number changes
WO2014145078A1 (en) 2013-03-15 2014-09-18 Verinata Health, Inc. Generating cell-free dna libraries directly from blood
GB2525568B (en) * 2013-03-15 2020-10-14 Abvitro Llc Single cell barcoding for antibody discovery
CN113337604A (zh) 2013-03-15 2021-09-03 莱兰斯坦福初级大学评议会 循环核酸肿瘤标志物的鉴别和用途
CN105408496A (zh) * 2013-03-15 2016-03-16 夸登特健康公司 检测稀有突变和拷贝数变异的系统和方法
WO2014148557A1 (ja) 2013-03-19 2014-09-25 凸版印刷株式会社 Egfr阻害剤感受性予測方法
SG11201508985VA (en) 2013-05-23 2015-12-30 Univ Leland Stanford Junior Transposition into native chromatin for personal epigenomics
CA2929596C (en) 2013-11-13 2022-07-05 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
JP2015096049A (ja) 2013-11-15 2015-05-21 凸版印刷株式会社 Vegf阻害剤長期奏功性予測方法
EP3087204B1 (en) 2013-12-28 2018-02-14 Guardant Health, Inc. Methods and systems for detecting genetic variants
PT4026917T (pt) 2014-04-14 2024-02-12 Yissum Research And Development Company Of The Hebrew Univ Of Jerusalem Ltd Método e kit para determinar a morte de células ou de tecido ou a origem de tecidos ou de células de dna por análise de metilação do dna
CN106460070B (zh) 2014-04-21 2021-10-08 纳特拉公司 检测染色体片段中的突变和倍性
EP3805404A1 (en) 2014-05-13 2021-04-14 Board of Regents, The University of Texas System Gene mutations and copy number alterations of egfr, kras and met
US20170211143A1 (en) 2014-07-25 2017-07-27 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free dna, and methods of identifying a disease or disorder using same
RU2699728C2 (ru) 2014-07-25 2019-09-09 БиДжиАй Дженомикс Ко., Лтд. Способ и устройство для определения фракции внеклеточных нуклеиновых кислот в биологическом образце и их применение
US20160053301A1 (en) 2014-08-22 2016-02-25 Clearfork Bioscience, Inc. Methods for quantitative genetic analysis of cell free dna
MX2017003189A (es) 2014-09-10 2017-10-16 Pathway Genomics Corp Metodos de gestion de salud y bienestar y sistemas utiles para la practica de los mismos.
WO2016040901A1 (en) 2014-09-12 2016-03-17 The Board Of Trustees Of The Leland Stanford Junior University Identification and use of circulating nucleic acids
HUE058263T2 (hu) 2015-02-10 2022-07-28 Univ Hong Kong Chinese Mutációk detektálása rákszûrési és magzatelemzési célból
US10844428B2 (en) 2015-04-28 2020-11-24 Illumina, Inc. Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS)
EP3387152B1 (en) 2015-12-08 2022-01-26 Twinstrand Biosciences, Inc. Improved adapters, methods, and compositions for duplex sequencing
EP3433373B1 (en) 2016-03-22 2022-01-12 Myriad Women's Health, Inc. Combinatorial dna screening
EP3443066B1 (en) 2016-04-14 2024-10-02 Guardant Health, Inc. Methods for early detection of cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155833A2 (en) * 2010-06-09 2011-12-15 Keygene N.V. Combinatorial sequence barcodes for high throughput screening
US20120100548A1 (en) * 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMITT, MICHAEL W. ET AL.: "Detection of ultra-rare mutations by next-generation sequencing", PNAS, vol. 109, no. 36, JPN6017027010, 1 August 2012 (2012-08-01), pages 14508 - 14513, XP055928698, ISSN: 0003606332, DOI: 10.1073/pnas.1208715109 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306359B2 (en) 2005-11-26 2022-04-19 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US11312996B2 (en) 2010-05-18 2022-04-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US12110552B2 (en) 2010-05-18 2024-10-08 Natera, Inc. Methods for simultaneous amplification of target loci
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11746376B2 (en) 2010-05-18 2023-09-05 Natera, Inc. Methods for amplification of cell-free DNA using ligated adaptors and universal and inner target-specific primers for multiplexed nested PCR
US11286530B2 (en) 2010-05-18 2022-03-29 Natera, Inc. Methods for simultaneous amplification of target loci
US11306357B2 (en) 2010-05-18 2022-04-19 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US12020778B2 (en) 2010-05-18 2024-06-25 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11482300B2 (en) 2010-05-18 2022-10-25 Natera, Inc. Methods for preparing a DNA fraction from a biological sample for analyzing genotypes of cell-free DNA
US11525162B2 (en) 2010-05-18 2022-12-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11519035B2 (en) 2010-05-18 2022-12-06 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US12100478B2 (en) 2012-08-17 2024-09-24 Natera, Inc. Method for non-invasive prenatal testing using parental mosaicism data
JP2020000237A (ja) * 2012-09-04 2020-01-09 ガーダント ヘルス, インコーポレイテッド まれな変異およびコピー数多型を検出するためのシステムおよび方法
JP2015536661A (ja) * 2012-11-29 2015-12-24 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 標的シーケンシングリードの正確かつ迅速なマッピング
US11414709B2 (en) 2014-04-21 2022-08-16 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11371100B2 (en) 2014-04-21 2022-06-28 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11408037B2 (en) 2014-04-21 2022-08-09 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11530454B2 (en) 2014-04-21 2022-12-20 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11390916B2 (en) 2014-04-21 2022-07-19 Natera, Inc. Methods for simultaneous amplification of target loci
US11319595B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11486008B2 (en) 2014-04-21 2022-11-01 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
JP2018523198A (ja) * 2015-05-18 2018-08-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. コピー数多型検出のための方法及びシステム
JP2019537095A (ja) * 2016-09-22 2019-12-19 イルミナ インコーポレイテッド 体細胞コピー数多型検出
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US11519028B2 (en) 2016-12-07 2022-12-06 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
JP2019536466A (ja) * 2016-12-07 2019-12-19 ナテラ, インコーポレイテッド 核酸分子を同定するための組成物と方法
US11530442B2 (en) 2016-12-07 2022-12-20 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
JP7467118B2 (ja) 2016-12-07 2024-04-15 ナテラ, インコーポレイテッド 核酸分子を同定するための組成物と方法
JP2022110013A (ja) * 2017-05-16 2022-07-28 ガーダント ヘルス, インコーポレイテッド 無細胞dnaについての体細胞起源または生殖系列起源の識別
JP2020521442A (ja) * 2017-05-16 2020-07-27 ガーダント ヘルス, インコーポレイテッド 無細胞dnaについての体細胞起源または生殖系列起源の識別
JP7513653B2 (ja) 2017-05-16 2024-07-09 ガーダント ヘルス, インコーポレイテッド 無細胞dnaについての体細胞起源または生殖系列起源の識別
JP7123975B2 (ja) 2017-05-16 2022-08-23 ガーダント ヘルス, インコーポレイテッド 無細胞dnaについての体細胞起源または生殖系列起源の識別
JP2020530767A (ja) * 2017-07-21 2020-10-29 メナリーニ シリコン バイオシステムズ エッセ.ピー.アー. 超並列シークエンシングのためのdnaライブラリー生成のための改良された方法及びキット
US12084720B2 (en) 2017-12-14 2024-09-10 Natera, Inc. Assessing graft suitability for transplantation
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA

Also Published As

Publication number Publication date
US20190177802A1 (en) 2019-06-13
US20220042104A1 (en) 2022-02-10
SG10202000486VA (en) 2020-03-30
US20210130912A1 (en) 2021-05-06
KR20240007774A (ko) 2024-01-16
EP3842551B1 (en) 2023-11-01
KR102028375B1 (ko) 2019-10-04
US10947600B2 (en) 2021-03-16
JP2022169566A (ja) 2022-11-09
GB2533006A (en) 2016-06-08
EP2893040B1 (en) 2019-01-02
IL269097B2 (en) 2024-01-01
GB2533006B (en) 2017-06-07
US10793916B2 (en) 2020-10-06
US11319597B2 (en) 2022-05-03
US20220205051A1 (en) 2022-06-30
US20180327862A1 (en) 2018-11-15
US10041127B2 (en) 2018-08-07
KR20210013317A (ko) 2021-02-03
KR20190112843A (ko) 2019-10-07
US11879158B2 (en) 2024-01-23
ES2769241T5 (es) 2023-05-30
US10738364B2 (en) 2020-08-11
US10876171B2 (en) 2020-12-29
US20200299785A1 (en) 2020-09-24
US10961592B2 (en) 2021-03-30
US20180223374A1 (en) 2018-08-09
US20170218459A1 (en) 2017-08-03
JP2018027096A (ja) 2018-02-22
US9598731B2 (en) 2017-03-21
US10501810B2 (en) 2019-12-10
US20210032707A1 (en) 2021-02-04
DE202013012824U1 (de) 2020-03-10
MX2015002769A (es) 2015-08-14
US11001899B1 (en) 2021-05-11
DK2893040T3 (en) 2019-03-11
EP2893040A1 (en) 2015-07-15
PL3591073T3 (pl) 2022-03-28
CN110872617A (zh) 2020-03-10
US20240200150A1 (en) 2024-06-20
US20150368708A1 (en) 2015-12-24
EP3842551A1 (en) 2021-06-30
US20190185940A1 (en) 2019-06-20
GB201509071D0 (en) 2015-07-08
JP7119014B2 (ja) 2022-08-16
US12049673B2 (en) 2024-07-30
EP3591073A1 (en) 2020-01-08
JP6275145B2 (ja) 2018-02-07
EP3470533B2 (en) 2023-01-18
SG11201501662TA (en) 2015-05-28
JP2020000237A (ja) 2020-01-09
CA3190199A1 (en) 2014-03-13
US9834822B2 (en) 2017-12-05
HK1201080A1 (zh) 2015-08-21
BR112015004847A2 (pt) 2020-04-22
US20180171415A1 (en) 2018-06-21
DK2893040T5 (en) 2019-03-18
US20150299812A1 (en) 2015-10-22
US20210340632A1 (en) 2021-11-04
ES2906714T3 (es) 2022-04-20
US20240240258A1 (en) 2024-07-18
CA2883901A1 (en) 2014-03-13
CA2883901C (en) 2023-04-11
KR102393608B1 (ko) 2022-05-03
EP3842551C0 (en) 2023-11-01
MX367963B (es) 2019-09-11
US20200087735A1 (en) 2020-03-19
PL2893040T3 (pl) 2019-05-31
US10822663B2 (en) 2020-11-03
US11773453B2 (en) 2023-10-03
US20200248270A1 (en) 2020-08-06
US10457995B2 (en) 2019-10-29
US11319598B2 (en) 2022-05-03
US12110560B2 (en) 2024-10-08
KR20220061271A (ko) 2022-05-12
US20200087736A1 (en) 2020-03-19
US12054783B2 (en) 2024-08-06
IL305303A (en) 2023-10-01
US20210139998A1 (en) 2021-05-13
US10876172B2 (en) 2020-12-29
IL237480A0 (en) 2015-04-30
IL269097B1 (en) 2023-09-01
ES2711635T3 (es) 2019-05-06
ES2769241T3 (es) 2020-06-25
EP3470533A1 (en) 2019-04-17
US10837063B2 (en) 2020-11-17
CN104781421B (zh) 2020-06-05
EP2893040A4 (en) 2016-04-27
EP4424826A2 (en) 2024-09-04
CN104781421A (zh) 2015-07-15
US20190177803A1 (en) 2019-06-13
EP3470533B1 (en) 2019-11-06
US10494678B2 (en) 2019-12-03
US20200291487A1 (en) 2020-09-17
US10995376B1 (en) 2021-05-04
KR20150067161A (ko) 2015-06-17
KR102210852B1 (ko) 2021-02-01
IL237480B (en) 2019-10-31
US10501808B2 (en) 2019-12-10
HK1225416B (zh) 2017-09-08
ES2968333T3 (es) 2024-05-09
US20210355549A1 (en) 2021-11-18
JP6664025B2 (ja) 2020-03-13
PT2893040T (pt) 2019-04-01
US20190185941A1 (en) 2019-06-20
WO2014039556A1 (en) 2014-03-13
EP4036247B1 (en) 2024-04-10
US9840743B2 (en) 2017-12-12
JP2020103298A (ja) 2020-07-09
HK1212396A1 (en) 2016-06-10
EP3591073B1 (en) 2021-12-01
EP4036247A1 (en) 2022-08-03
US20230151435A1 (en) 2023-05-18
US10683556B2 (en) 2020-06-16
US20230323477A1 (en) 2023-10-12
IL269097A (en) 2019-11-28
US20170218460A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP7119014B2 (ja) まれな変異およびコピー数多型を検出するためのシステムおよび方法
US10870880B2 (en) Systems and methods to detect rare mutations and copy number variation
US10894974B2 (en) Systems and methods to detect rare mutations and copy number variation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180109

R150 Certificate of patent or registration of utility model

Ref document number: 6275145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250