CN110016499B - 安全测序系统 - Google Patents
安全测序系统 Download PDFInfo
- Publication number
- CN110016499B CN110016499B CN201811425636.5A CN201811425636A CN110016499B CN 110016499 B CN110016499 B CN 110016499B CN 201811425636 A CN201811425636 A CN 201811425636A CN 110016499 B CN110016499 B CN 110016499B
- Authority
- CN
- China
- Prior art keywords
- uid
- nucleic acid
- dna
- fragments
- analyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012163 sequencing technique Methods 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 claims abstract description 104
- 239000012634 fragment Substances 0.000 claims abstract description 101
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 27
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims abstract description 21
- 108020004414 DNA Proteins 0.000 claims description 154
- 239000012491 analyte Substances 0.000 claims description 59
- 230000003321 amplification Effects 0.000 claims description 56
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 56
- 150000007523 nucleic acids Chemical group 0.000 claims description 50
- 108090000623 proteins and genes Proteins 0.000 claims description 43
- 239000002773 nucleotide Substances 0.000 claims description 40
- 125000003729 nucleotide group Chemical group 0.000 claims description 40
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 25
- 230000000295 complement effect Effects 0.000 claims description 25
- 102000039446 nucleic acids Human genes 0.000 claims description 15
- 108020004707 nucleic acids Proteins 0.000 claims description 15
- 230000037452 priming Effects 0.000 claims description 15
- 108060002716 Exonuclease Proteins 0.000 claims description 10
- 102000013165 exonuclease Human genes 0.000 claims description 10
- 108091093088 Amplicon Proteins 0.000 claims description 7
- 238000003752 polymerase chain reaction Methods 0.000 claims description 5
- 238000003776 cleavage reaction Methods 0.000 claims description 4
- 230000007017 scission Effects 0.000 claims description 4
- 230000006872 improvement Effects 0.000 claims description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000007385 chemical modification Methods 0.000 claims 1
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical class NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims 1
- 229940035893 uracil Drugs 0.000 claims 1
- 230000035772 mutation Effects 0.000 abstract description 127
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 238000000338 in vitro Methods 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract description 2
- 230000002438 mitochondrial effect Effects 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 41
- 238000002474 experimental method Methods 0.000 description 41
- 210000004027 cell Anatomy 0.000 description 23
- 230000008569 process Effects 0.000 description 21
- 239000000523 sample Substances 0.000 description 14
- 238000000638 solvent extraction Methods 0.000 description 14
- 238000007852 inverse PCR Methods 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 238000009396 hybridization Methods 0.000 description 9
- 150000008300 phosphoramidites Chemical class 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 230000002441 reversible effect Effects 0.000 description 8
- 239000007790 solid phase Substances 0.000 description 8
- 101000916173 Homo sapiens Catenin beta-1 Proteins 0.000 description 7
- 230000037429 base substitution Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 210000005260 human cell Anatomy 0.000 description 7
- 108020005196 Mitochondrial DNA Proteins 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000007847 digital PCR Methods 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 102100028914 Catenin beta-1 Human genes 0.000 description 5
- 108010007577 Exodeoxyribonuclease I Proteins 0.000 description 5
- 102100029075 Exonuclease 1 Human genes 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 206010069754 Acquired gene mutation Diseases 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- 102000003960 Ligases Human genes 0.000 description 3
- 108090000364 Ligases Proteins 0.000 description 3
- 241001625930 Luria Species 0.000 description 3
- 238000004166 bioassay Methods 0.000 description 3
- 230000000112 colonic effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000004877 mucosa Anatomy 0.000 description 3
- 238000007481 next generation sequencing Methods 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 230000037439 somatic mutation Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 230000036438 mutation frequency Effects 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 101150037241 CTNNB1 gene Proteins 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 230000030933 DNA methylation on cytosine Effects 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 208000035346 Margins of Excision Diseases 0.000 description 1
- 206010052641 Mitochondrial DNA mutation Diseases 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 241000283907 Tragelaphus oryx Species 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000012350 deep sequencing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000008995 epigenetic change Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000007427 paired t-test Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000003793 prenatal diagnosis Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/179—Modifications characterised by incorporating arbitrary or random nucleotide sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/191—Modifications characterised by incorporating an adaptor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/179—Nucleic acid detection characterized by the use of physical, structural and functional properties the label being a nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
存在于小部分DNA模板中的突变的识别对生物学研究的几个领域的发展至关重要。虽然大量平行测序仪器基本上非常适合该任务,但是这样的仪器中的差错率通常太高以至于不允许稀有变体的确信识别。我们这里描述了用于该目的的可大大增加大量平行测序仪器灵敏度的方法。该方法——称作“安全测序系统”——的一个实例包括(i)给每个模板分子分配独特识别符(UID);(ii)扩增每个独特标记的模板分子以产生UID‑家族;和(iii)扩增产物的丰余测序。如果它们的≥95%含有相同的突变,那么具有相同UID的PCR片段是真正的突变体(“超突变体”)。我们显示用于测定聚合酶保真度的该方法的实用性、体外合成的寡核苷酸的准确度、和正常细胞的核和线粒体基因组中的突变流行。
Description
本申请是分案申请,原申请的申请日是2012年4月12日,申请号为2012800292846(PCT/US2012/033207),发明名称为“安全测序系统”。
本发明利用国立卫生研究院的资助CA62924、CA43460和CA57345而作出。本发明的某些权利在资助条款下由美国政府保留。
发明的技术领域
本发明涉及核酸测序领域。特别地,涉及分析和验证低频率事件的产物的操作和分析步骤。
发明背景
基因突变分别成为生存和死亡——进化和疾病自始至终的许多方面的基础。相应地,它们的测量对几个研究领域是关键的。Luria和Delbrück的经典的波动分析是对生物学过程洞察的原型实例,该生物学过程可通过计数仔细控制的实验中突变的数目而简单地获得(1)。计数人类中不存在于它们的父母中的新形成的突变已相似地导致对我们的物种可进化的速度的新洞察(2、3)。相似地,计数肿瘤中遗传或后生变化可告知癌症生物学的基本问题(4)。在处理患有病毒疾病如AIDS和肝炎的患者中,由于它们可引起的抗药性,突变位于目前的问题的核心(5、6)。这样的突变的检测,特别地在它们变得在人口中占优势之前的阶段,对优化治疗将可能是必不可少的。器官移植患者的血中供体DNA的检测是移植物排斥的重要指示器,并且母亲血浆中胎儿DNA的检测可用于非创伤方式的产前诊断(7、8)。在均由体细胞突变驱动的肿瘤病中,稀有突变体检测的应用是各种各样;当在血浆中评价时,它们可用于辅助识别在手术边缘或在淋巴结中残余的疾病,以继续治疗过程,和当在粪便、唾液、血浆和其它体液中评价时,也许识别患有早期的手术可医治的疾病的患者(9-11)。
这些实例强调了对于基础和临床研究识别稀有突变的重要性。相应地,在几年里人们已想出了评价它们的创新的方法。第一方法包括基于原养型、对病毒感染或药物的抵抗或生物化学测定的生物学测定(1、12-18)。分子克隆和测序为该领域提供新的尺度,因为它允许识别突变类型而不仅仅是它的存在(19-24)。这些较新的方法中效力最大的一些基于数字PCR,其中个体分子被逐一评价(25)。数字PCR在概念上与细菌、细胞或病毒的个体克隆的分析相同,但是用限定的、无生命的试剂完全在体外进行。数字PCR的几个实现已被描述,包括多孔板中、群落(polonies)中、微流体装置中和油包水乳状液中排列的分子的分析(25-30)。在这些技术中的每个中,突变体模板通过它们结合到对潜在的突变体碱基特异的寡核苷酸而被识别。
大量平行测序代表特别地有效力的形式的数字PCR,因为许许多多模板分子可被逐一分析。它较常规的数字PCR方法具有优势,因为多个碱基可以以自动化方式被连续地和容易地询问。然而,由于与测序过程相关的高差错率,大量平行测序不能通常用于检测稀有变体。例如,通常使用的Illumina测序仪器,该差错率从~1%(31、32)至~0.05%(33、34)变化,取决于因素如阅读长度(35)、改进的碱基召唤算法(base callingalgorithms)的使用(36-38)和检测的变体的类型(39)。这些错误中的一些可能由模板制备期间、文库制备所需的预扩增步骤期间和仪器自身上进一步固相扩增期间引入的突变而产生。其它错误是由于测序期间碱基错误掺入和碱基召唤错误。碱基召唤的改进可提高可靠性(例如,(36-39)),但是基于仪器的误差仍然是限制性的,特别地在临床样品中,其中突变流行率可以是0.01%或更少(11)。在下面描述的工作中,我们显示模板如何可被制备和从它们中获得的测序数据如何可被更可靠地解释,以便相对稀有的突变可以用商业上可用的仪器识别。
在本领域中存在对提高研究、临床、法医和系谱目的的序列测定的灵敏度和准确性的持续需求。
发明概述
根据本发明的一个方面,一个方法分析核酸序列。将独特识别符(uniqueidentifier)(UID)核酸序列与多个分析物核酸片段中每个的第一末端连接以形成独特识别的分析物核酸片段。将独特识别的分析物核酸片段的核苷酸序列丰余地测定,其中测定的共享UID的核苷酸序列形成成员家族。当家族成员的至少1%含有该序列时,将核苷酸序列识别为准确代表分析物核酸片段。
根据本发明的另一个方面,一个方法分析核酸序列。利用至少两个用第一和第二引物的扩增循环将独特识别符序列(UID)与多个分析物DNA片段中每个的第一末端连接以形成独特识别的分析物DNA片段。扩增期间UID多于分析物DNA片段。第一引物包括与期望的扩增子互补的第一段;含有UID的第二段;和含有用于随后扩增的通用引发位点的第三段。第二引物包括用于随后扩增的通用引发位点。每个扩增循环将一个通用引发位点与链连接。扩增独特识别的分析物DNA片段以由每个独特识别的分析物DNA片段而形成独特识别的分析物DNA片段家族。测定家族的多个成员的核苷酸序列。
本发明的另一个方面是利用内源独特识别符序列(UID)分析DNA的方法。获得片段化的分析物DNA,其包含30至2000个碱基——包括30和2000个碱基——的片段。片段的每个末端形成针对片段的内源UID。将衔接头寡核苷酸与片段的末端连接以形成衔接的片段。代表一个或多个选择的基因的片段任选地通过利用与分析物DNA中选择的基因互补的捕获寡核苷酸而捕获片段的子集或通过扩增与选择的基因互补的片段而被富集。将衔接的片段利用与衔接头寡核苷酸互补的引物扩增以形成衔接的片段家族。测定家族的多个成员的核苷酸序列。比较家族的多个成员的核苷酸序列。当家族成员的至少1%含有该序列时,将核苷酸序列识别为准确代表分析物DNA片段。
本发明的另一个方面是包括引物对群体的组合物,其中每对包括用于扩增和识别基因或基因部分的第一和第二引物。第一引物包括与基因或基因部分互补的10-100个核苷酸的第一部分和包括与第三引物杂交的位点的10至100个核苷酸的第二部分。第二引物包括与基因或基因部分互补的10-100个核苷酸的第一部分和包括与第四引物杂交的位点的10至100个核苷酸的第二部分。第二引物的第一部分和第二部分之间插入的是由形成独特识别符(UID)的2至4000个核苷酸组成的第三部分。群体中的独特识别符具有至少4个不同的序列。第一和第二引物与基因或基因部分的相反链互补。试剂盒可包括引物群体和与第一和第二引物中每个的第二部分互补的第三和第四引物。
读了说明书之后对本领域技术人员将是明显的这些和其它实施方式提供选择性地和准确地测定核酸特点或序列的工具和方法。
附图简述
图1。安全测序系统的必要元件。在第一步骤中,给将被分析的每个片段分配独特标识(UID)序列(金属阴影线或点状条)。在第二步骤中,扩增独特标记的片段,产生UID-家族,其每个成员具有相同的UID。超突变体被定义为UID-家族,其中≥95%的家族成员具有相同的突变。
图2。用内源UID加捕获物的安全测序系统。随机剪切产生的每个片段的末端的序列(各种形状的条充当独特识别符(UID)。这些片段与衔接头连接(土地阴影线和网状线条)以便它们可随后通过PCR扩增。一个独特地可识别的片段从双链模板的每条链产生;只显示一条链。目的片段被捕获在含有与目的序列互补的寡核苷酸的固相上。PCR扩增以产生具有含有5’“嫁接”序列的引物的UID-家族(粘合剂填充的条和浅点状条)之后,进行测序和将超突变体如图1中一样地定义。
图3。用外源UID的安全测序系统。用一组基因特异的引物扩增DNA(剪切或未剪切的)。引物之一具有随机的DNA序列(例如,一组14N的),其形成独特识别符(UID;各种形状的条,位于其基因特异性序列的5’,和二者具有允许下一步骤中通用扩增的序列(土地阴影线条和网状线条)。两个UID分配(assignment)循环产生两个片段——每个具有与每个双链模板分子不同的UID,如所显示的。用还含有“嫁接”序列的通用引物(粘合剂填充的条和浅点状条)的随后PCR产生被直接测序的UID-家族。将超突变体如图1的图例中一样地定义。
图4A-4B。常规和安全测序系统分析识别的单碱基置换。图3中描绘的外源UID策略用于从三个正常的无关个体的CTNNB1基因产生PCR片段。每个位置代表87个可能的单碱基置换(3个可能的置换/碱基×29个分析的碱基)之一。将这些片段在IlluminaGA IIx仪器上测序和以常规方式(图4A)或用安全测序系统(图4B)分析。将安全测序系统结果以与常规分析相同的比例显示用于直接比较;插图是放大的视图。注意,常规分析识别的大多数变体可能代表测序错误,如相对于安全测序系统它们的高频率和无关样品之中它们的一致性所表明的。
图5。用内源UID加反向PCR的安全测序系统。随机剪切产生的每个片段末端的序列充当独特识别符(UID;各种形状的条)。如在标准的Illumina文库制备中将这些片段与接头连接(土地阴影线条和网状线条)。一个独特标记的片段从双链模板的每条链产生;只显示一条链。用连接酶环化之后,反向PCR用也含有5’“嫁接”序列的基因特异性引物(粘合剂填充的条和浅的点状条)进行。该PCR产生被直接测序的UID-家族。将超突变体如图1中一样地定义。
图6A-6B。用亚磷酰胺和Phusion合成的寡核苷酸中单碱基置换位置对错误频率。将用亚磷酰胺(图6A)或Phusion聚合酶(图6B)合成的相同的31-碱基DNA片段的代表性部分用安全测序系统来分析。绘制每个类型的七个独立的实验的平均值和标准偏差。亚磷酰胺合成的和Phusion产生的片段中分别识别到1,721±383和196±143SBS超突变体的平均数。y轴指示在指示位置的总错误的分数。注意,亚磷酰胺合成的DNA片段中的错误在七个复制之中是一致的,如在合成自身期间如果错误被系统地引入所将期望的。相比之下,Phusion产生的片段中的错误在样品之中表现出是异质的,如随机过程所期望的(Luria andDelbruck,Genetics 28:491-511,1943)。
图7。UID-家族成员分布。图3中描绘的外源UID策略用于从三个正常的无关个体的CTNNB1区域产生PCR片段(表2B);显示从一个个体产生的具有≤300个成员(总UID-家族的99%)的UID-家族的代表性实例。y轴指示不同的UID-家族——含有x轴上显示的家族成员数目——的数目。
发明详述
本发明人已开发了一种称作“安全测序系统(Safe-SeqS)”(来自Safe-SequencingSystem)的方法。在一个实施方式中,它包括两个基本步骤(图1)。第一个是将独特识别符(UID)分配给将被分析的每个核酸模板分子。第二个是每个独特标记的模板的扩增,以便产生许多具有相同序列的子分子(定义为UID-家族)。如果突变预先存在于用于扩增的模板分子中,突变应以一定比例存在,或甚至所有的子分子含有该UID(除任何随后复制或测序错误外)。UID-家族——其中每个家族成员(或一定的预设的比例)具有相同突变——被称作“超突变体(super-mutant)”。不发生在原始模板中的突变,如扩增步骤期间或碱基召唤中通过错误发生的那些突变,不应产生超突变体,即,将不以预设的频率存在于UID家族中。在其它实施方式中,扩增不是必需的。
该方法可用于任何目的,其中序列数据需要非常高水平的准确度和灵敏度。如下面所显示的,该方法可用于评价聚合酶的保真度、体外合成的核酸合成的准确度和正常细胞的核或线粒体核酸中突变的流行。该方法可用于检测和/或定量嵌合突变和体细胞突变。
核酸片段可利用随机片段形成技术如机械剪切、超声处理或使核酸经受其它物理或化学应激而获得。片段可以不是严格随机的,因为一些位点较其它位点可对应激更易感。随机或特别地片段化的内切核酸酶还可用于产生片段。片段的大小可变化,但是期望地将是30和5,000个碱基对之间,100和2,000个之间,150和1,000个之间,或在具有这些端点的不同的组合的范围内。核酸可以是,例如,RNA或DNA。还可利用RNA或DNA的修改的形式。
将外源UID与分析物核酸片段的连接可通过本领域已知的任何方法来进行,包括酶学、化学或生物学方法。一种方法利用聚合酶链反应。另一种方法利用连接酶。例如,酶可以是哺乳动物的或细菌的酶。在连接之前可将片段的末端利用其它酶如T4DNA聚合酶的Klenow片段来修复。可用于连接的其它酶是其它聚合酶。可将UID加到片段的一个或两个末端。UID可包含在核酸分子内,该核酸分子含有针对其它预期功能性的其它区域。例如,可加入通用引发位点以允许后面的扩增。另一个附加的位点可以是对分析物核酸中的特定区域或基因互补性的区域。UID的长度可以是例如,2至4,000、100至1000、4至400个碱基。
UID可利用核苷酸的随机添加来制备以形成将用作识别符的短序列。在每个添加位置,可使用来自四个脱氧核糖核苷酸之一的选择。可选地可使用来自三个、两个或一个脱氧核糖核苷酸之一的选择。因此UID在某些位置中可以是完全随机的,稍微随机的或非随机的。制备UID的另一个方式利用装配在芯片上的预设的核苷酸。在该制备方式中,以计划的方式获得复杂性。将UID与片段的每个末端连接可以是有利的,增加片段上UID群体的复杂性。
用于加入外源UID的聚合酶链反应循环指双链分子的热变性、第一引物与产生的单链的杂交、引物延伸以形成与原始单链杂交的新的第二条链。第二循环指新的第二条链从原始单链的变性、第二引物与新的第二条链的杂交和第二引物延伸以形成与新的第二条链杂交的新的第三条链。可需要多个循环以增加效率,例如,当分析物经稀释或存在抑制剂时。
在内源UID的情况中,可将接头通过连接加到片段的末端。分析物片段的复杂性可通过在固相上或在液体步骤中的捕获步骤而被减少。通常捕获步骤将利用与代表目的基因或基因组的探针的杂交。如果在固相上,则将非结合片段与结合片段分离。本领域已知的合适的固相包括过滤器、膜、珠、柱等。如果在液相中,则可加入捕获试剂,其结合探针,例如通过生物素-抗生物素蛋白型相互作用。捕获之后,可将期望的片段洗脱用于进一步处理。加入接头和捕获的顺序不是关键的。减少分析物片段复杂性的另一种方法包括一个或多个特定基因或区域的扩增。实现这的一个方法是利用反向PCR。可使用基因特异的引物,这样在形成文库时富集。任选地,基因特异的引物可含有用于随后与大量平行测序平台连接的嫁接序列。
因为内源UID提供有限数目的独特可能性,取决于片段大小和测序阅读长度,可使用内源和外源UID的组合。当扩增将增加可用的UID和由此增加灵敏度时引入另外的序列。例如,扩增之前,可将模板分配到96个孔中,扩增期间可使用96个不同的引物。这将有效地增加可用的UID 96-倍,因为多达96个具有相同的内源UID的模板将被区别。该技术还可与外源UID一起使用,以便每个孔的引物将独特的、非常特异的序列加到扩增产物。这可提高稀有模板检测的特异性。
含有UID的片段扩增可根据已知的技术来进行以产生片段家族。可利用聚合酶链反应。可也利用方便的其它扩增方法。可利用反向PCR,其可滚环扩增。片段扩增通常利用与引发位点互补的引物来进行,该引发位点与同时作为UID的片段连接。引发位点位于UID远侧,以便扩增包括UID。扩增形成片段家族,家族的每个成员共享相同的UID。因为UID的多样性大大超过片段的多样性,所以每个家族应来自分析物中的单个片段分子。用于扩增的引物可被化学修饰以使它们更加抵抗外切核酸酶。一种这样的修饰是利用一个或多个3’核苷酸之间的硫代磷酸键。另一种利用硼烷磷酸(boranophosphate)。
将家族成员测序和比较以识别家族内的任何多样性。测序优选在大量平行测序平台上进行,平台中的许多是商业上可获得的。如果测序平台需要用于“嫁接”的序列,即,与测序装置连接,这样的序列可在UID或接头加入期间加入或分开加入。嫁接序列可以是UID引物、通用引物、基因靶向特异性引物、用于制备家族的扩增引物的部分或分开的。丰余测序指单一家族的多个成员的测序。
可对识别分析物中的突变设置阈值。如果“突变”出现在家族的所有成员中,那么它来自分析物。如果它出现在小于所有的成员中,那么它可能在分析期间已被引入。可将召唤突变的阈值设定,例如,在1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、97%、98%或100%。阈值将基于被测序的家族成员的数目和特定目的和情形来设定。
引物对群体用于连接外源UID。第一引物包括与基因或基因部分互补的10-100个核苷酸的第一部分和包括与第三引物杂交的位点的10至100个核苷酸的第二部分。第二引物包括与基因或基因部分互补的10-100个核苷酸的第一部分和和包括与第四引物杂交的位点的10至100个核苷酸的第二部分。第二引物的第一部分和第二部分之间插入由形成独特识别符(UID)的2至4,000个核苷酸组成的第三部分。群体中独特识别符至少4、至少16、至少64、至少256、至少1,024、至少4,096、至少16,384、至少65,536、至少262,144、至少1,048,576、至少4,194,304、至少16,777,216,或至少67,108,864个不同的序列。第一和第二引物与基因或基因部分的相反链互补。可制备试剂盒,含有用于连接外源UID的引物以及扩增引物,即,与第一和第二引物中每个的第二部分互补的第三和第四引物。第三和第四引物可任选地含有另外的嫁接或标引序列。UID可包括随机选择的序列、预先限定的核苷酸序列或随机选择的序列和预先限定的核苷酸。如果二者都有,那么这些可被整批连接在一起或散布。
分析方法可用于定量以及测定序列。例如,可比较两个分析物DNA片段的相对丰度。
下面实施例中描述的结果显示,安全测序系统方法可基本上提高大量平行测序的准确度(表1和2)。它可通过内源或外源引入的UID而实现和可应用于实际上任何样品制备工作流或测序平台。如这里所显示的,该方法可容易地用于识别DNA模板群体中稀有的突变体,以测量聚合酶差错率,和判断寡核苷酸合成的可靠性。该策略的优势之一是它产生分析的模板数目以及含有不同碱基的模板部分。先前描述的用于少量模板分子检测的体外方法(例如,(29、50))允许测定突变体模板的部分但不能测定原始样品中突变体和正常模板的数目。
比较安全测序系统与减少下一代测序中错误的其它方法是有意义的。如上面所提到的,在本发明背景中,已开发了增加碱基召唤准确度的复杂算法(例如,(36-39))。这些可当然减少假阳性召唤,但是它们的灵敏度仍然受限于文库制备需要的PCR步骤期间发生的人工突变以及(减少数目的)碱基召唤错误。例如,目前的研究中利用的算法使用非常严格的碱基召唤标准和应用于短阅读长度,但是仍然不能将差错率减少到小于2.0×10-4错误/bp的平均值。该错误频率至少与用其它算法报道的一样低。为了进一步提高灵敏度,这些碱基召唤改进可以与安全测序系统一起使用。Travers et al.已描述了另一个有力的减少错误的策略(51)。用该技术,许多制备型酶法步骤之后,每个模板分子的两条链被丰余地测序。然而,该方法只可在特定的仪器上进行。而且,对于许多临床应用,最初的样品中存在相对少的模板分子,和需要几乎所有它们的评价以获得需要的灵敏度。这里描述的用外源引入的UID的方法(图3)通过将UID分配步骤与随后的扩增——其中丧失很少的分子——连接而实现该需要。由于连接和其它制备步骤期间不可避免的模板分子的丧失,我们的内源UID方法(图2和图5)和Travers et al.描述的方法不是理想地适合该目的。
我们如何知道目前的研究中常规分析识别的突变代表人为现象而不是原始模板中真正的突变?支持这的强有力的证据通过除了一个以外的所有实验中突变流行是相似的——2.0×10-4至2.4×10-4突变/bp——的观察来提供(表1和2)。例外是用从亚磷酰胺合成的寡核苷酸的实验,其中当用严格的碱基召唤标准时合成过程的错误明显高于常规Illumina分析的差错率。相比之下,安全测序系统的突变流行变化得更多,从0.0至1.4×10-5突变/bp,取决于模板和实验。而且,大多数对照实验——其中测量聚合酶保真度——中安全测序系统测量的突变流行(表2A)几乎与先前的实验——其中通过生物学试验测量聚合酶保真度——预测的相同。我们的来自正常细胞的DNA中突变流行的测量与一些先前的实验数据一致。然而,这些流行的估计变化很大并可取决于分析的细胞类型和序列(参见SI文本)。我们因此不能确定安全测序系统揭示的很少的突变代表测序过程期间发生的错误而不是原始DNA模板存在的真正的突变。安全测序系统过程中错误的潜在来源在SI文本中被描述。
安全测序系统的另一个潜在的应用是PCR污染——临床实验室的严重问题——的最小化。对于内源或外源UID分配,可将突变体模板的UID简单地与先前实验中识别的那些比较;当突变不常见时,不同的实验中来自两个独立的样品的相同突变将具有相同UID的概率是可以忽略的。另外,对于外源UID,具有相同模板但没有UID分配PCR循环的对照实验(图3)可保证模板制备中没有DNA污染存在;在缺少UID分配循环的情况中应没有模板被扩增,因此应没有观察到适当大小的PCR产物。
象所有的技术一样,安全测序系统具有局限性。例如,我们已经证明外源UID策略可用于深入地分析单一扩增子。该技术不可应用于这样的情形,其中多个扩增子必须从含有有限数目的模板样品被分析。UID分配循环中的多重技术(图3)可给该挑战提供解决方案。第二局限性是UID分配循环中的扩增效率对方法的成功是关键性的。临床样品可含有降低该步骤效率的抑制剂。该问题可能通过UID分配PCR步骤中进行两个以上的循环而克服(图3),虽然这将使分析的模板数目的测定变复杂。安全测序系统的特异性目前受限于UID分配PCR步骤中使用的聚合酶的保真度,即,在其目前的具有两个循环的实行中8.8×10-7突变/bp。将UID分配PCR步骤中的循环数增加到五会将整体特异性降低到~2×10-6突变/bp。然而,该特异性可通过需要一个以上用于突变识别的超突变体而增加——引入相同的人工突变两倍或三倍的概率将是非常低的(分别为[2×10-6]2或[2×10-6]3)。总之,有几种简单的方法来进行安全测序系统改变和分析改变以实现特定实验的需要。
Luria和Delbrück在它们1943年的经典论文中写到,他们的“预测不能被直接检验,因为当我们计数培养基中抗药菌数目时,我们观察到的不是已经出现的突变数目,而是通过突变的那些抗药菌繁殖而已出现的抗药菌的数目,繁殖的数量取决于发生的突变回溯多久”。这里描述的安全测序系统程序可检验这样的预测,因为每个突变发生的数目以及时间可从数据估计,如对聚合酶保真度的实验中所记录的。除了聚合酶体外产生的模板,相同的方法可应用于来自细菌、病毒和哺乳动物细胞的DNA。我们因此期望该策略将为许多种重要的生物医学问题提供确定的答案。
以上的公开概括地描述了本发明。本文公开的所有参考文献通过引用被清楚地并入。更完全的理解可通过参考以下具体实施例而获得,该实施例仅为了说明的目的而被本文提供,并且不意欲限制本发明的范围。
实施例1--内源UID。
UID,有时被称作条形码或索引,可以以许多方式被分配给核酸片段。这些包括外源序列通过PCR(40、41)或连接(42、43)的引入。甚至更简单地,随机剪切的基因组DNA固有地含有由每个剪切的片段的两个末端序列组成的UID(图2和图5)。这些片段的配对的末端测序产生可被如上所述分析的UID-家族。为了在安全测序系统中利用这样的内源UID,我们使用两个独立的方法:一个设计为同时评价许多基因的方法和另一个设计为深入地评价单个基因片段的方法(分别为图2和图5)。
为了多个基因的评价,我们将标准的Illumina测序衔接头与剪切的DNA片段的末端连接以产生标准的测序文库,然后在固相上捕获目的基因(44)。在该实验中,使用由~15,000个正常细胞的DNA制备的文库,和靶向来自六个基因的2,594bp用于捕获。排除已知的单核苷酸多态性之后,还识别了25,563个明显的突变——对应2.4×10-4±突变/bp(表1)。基于先前的人细胞中突变率的分析,这些明显的突变的至少90%可能代表模板和文库制备期间引入的突变或碱基召唤错误。注意,这里测定的差错率(2.4×10-4突变/bp)较利用Illumina仪器的实验中通常报道的低得多,因为我们使用非常严格的碱基召唤标准。
表1.用内源UID的安全测序系统
对于相同数据的安全测序系统分析,我们测定69,505个原始模板分子在该实验中被评价(即,识别了69,505个UID-家族,每个家族平均40个成员,表1)。还通过安全测序系统识别了常规分析识别的所有多态变体。然而,这些家族中只观察到8个超突变体,对应3.5×10-6突变/bp。因此安全测序系统降低假定的测序错误至少70倍。
安全测序系统分析还可测定模板的哪条链突变了,因此召唤突变的另外的标准可要求突变在原始双链模板的仅一条链或两条链中出现。大量平行测序仪能从两个连续的阅读中模板的两个末端获得序列信息。(这种类型的测序实验在Illumina平台上被称作“配对的末端”运行,但是相似的实验可在其它测序平台——其中它们可被称作另一个名字——上进行)。当序列信息从两个末端获得时,双链模板的两条链可通过观察到的序列定向和它们出现的顺序而被区分。例如,当模板的每个末端在连续的阅读中测序时,UID链对可由以下两组序列组成:1)有义方向的A序列,其在第一阅读中染色体2的位置100开始,之后是反义方向的序列,其在第二阅读中染色体2的位置400开始;和2)反义方向的A序列,其在第一阅读中染色体2的位置400开始,之后是有义方向的序列,其在第二阅读中染色体2的位置100开始。在上面描述的捕获实验中,目的区域中69,505个UID(代表21,111个原始双链分子)中的42,222个代表UID链对。这些42,222个UID包括目的区域中1,417,838个碱基。当允许突变仅发生在UID链对内(在一条链或两条链中),观察到两个超突变体,产生1.4×10-6超突变体/bp的突变率。当需要突变仅发生在UID链对的一条链中时,只观察到一个超突变体,产生7.1×10-7个超突变体/bp的突变率。当需要突变发生在UID链对的两条链中时,只观察到一个超突变体,产生7.1×10-7超突变体/bp的突变率。因此,需要突变发生在模板的仅仅一条链或两条链中可进一步增加安全测序系统的特异性。
利用内源UID的策略也用于减少单个目的区域的深入测序之后的假阳性突变。在这种情况中,将如上面描述的从~1,750个正常细胞制备的文库用作利用与目的基因互补的引物的反向PCR的模板,所以PCR产物可直接用于测序(图5)。对于常规分析,观察到2.3×10-4突变/bp的平均数,与捕获实验中观察到的相似(表1)。假定只有1,057个来自正常细胞的独立的分子在该实验中被评价,如通过安全测序系统分析所测定的,常规分析观察到的所有突变可能代表假阳性(表1)。对于相同数据的安全测序系统分析,在任何位置都没有识别到超突变体。
实施例2--外源UID.
虽然上面描述的结果显示安全测序系统可增加大量平行测序的可靠性,但是利用内源UID可被检查的不同的分子的数目受限制。对于被剪切到150bp(125-175)的平均大小的片段,36个碱基配对的末端测序可评价~7,200个含有特定突变的不同分子的最大值(在片段的任一末端上2个阅读×2个方向×36个碱基/阅读×50个碱基变化)。在实践中,实际的UID数目较小,因为剪切过程不是完全随机的。
为了使原始模板更有效的应用,我们开发了安全测序系统策略,其利用酶步骤的最小数目。该策略还允许降解或损伤的DNA的应用,如临床样本中或胞嘧啶甲基化检查的亚硫酸氢盐处理之后发现的(45)。如图3中所描绘的,该策略利用两组PCR引物。第一组用标准的亚磷酰胺前体合成和含有与3’末端上目的基因互补的序列和在正向和反向引物的5'末端的不同的尾。不同的尾允许在下一步骤中的通用扩增。最后,在正向引物中尾和序列特异的核苷酸之间存在12至14个随机核苷酸的延伸(40)。随机核苷酸形成UID。将UID分配给片段的等同的方法——不用于本研究——将利用微阵列上合成的10,000个正向引物和10,000个反向引物。这些20,000个引物中每个将具有在它们3'末端的基因特异性引物和在它们5'末端的10,000个特异的、预设的、无重叠的UID序列之一,考虑到108(即,[104]2)个可能的UID组合。在任何一种情况中,两个PCR循环用引物和高保真度聚合酶来进行,从每个原始模板分子的两条链中每个产生独特标记的、双链DNA片段(图3)。残留的、未用过的UID分配引物通过用单链特异性外切核酸酶的消化来去除,无需进一步纯化,和加入两条新引物。可选地或除了这种消化,人们可利用硅胶柱选择性地保留较大大小的片段或人们可在选择性地保留较大片段的条件下利用固相可逆固定(SPRI)珠来除去较小的、非特异的、扩增人为物。该纯化可潜在地有助于减少后面步骤中引物二聚体积累。新引物——与UID分配循环中引入的尾互补——含有在它们5'末端的嫁接序列,允许在Illumina仪器上固相扩增,和在它们的3'末端的硫代磷酸残基以使它们抵抗任何剩余的外切核酸酶。25个另外的PCR循环之后,将产物加载在Illumina仪器上。如下面所显示的,该策略允许我们评价大多数输入片段和用于几个示例的实验。
实施例3--DNA聚合酶保真度的分析。
DNA聚合酶的差错率的测量对于它们的表征是必要和指示这些酶可使用的情形。我们选择测量Phusion聚合酶的差错率,因为该聚合酶具有任何商业上可用的酶的最低报道的错误频率之一和因此对基于体外的方法提出特定的挑战。我们首先通过19轮PCR扩增了单个的人DNA模板分子,包括一段任意选择的人基因。将来自这些扩增的PCR产物,以它们的全部,用作安全测序系统的模板,如图3中所描述的。在七个独立的这种类型的实验中,测序识别的UID-家族的数目是624,678±421,274,其与每轮PCR的92±9.6%的扩增效率一致。
Phusion聚合酶的差错率——通过在质粒载体中克隆编码β-半乳糖苷酶的PCR产物和转化进细菌而被评价——由制造商报道为4.4×10-7错误/bp/PCR循环。甚至用非常高的严格碱基召唤,Illumina测序数据的常规分析显示9.1×10-6错误/bp/PCR循环的表观差错率,超过高于报道的Phusion聚合酶差错率的数量级(表2A)。相比之下,相同数据的安全测序系统显示4.5×10-7个错误/bp/PCR循环的差错率,几乎与生物学测定中对于Phusion聚合酶测量的相同(表2A)。这些错误的绝大多数(>99%)是单碱基置换(表3A),与由其它原核DNA聚合酶产生的突变谱上的先前数据一致(15、46、47)。
表2A-2C。用外源UID的安全测序系统
表3A-C.用外源UID的单碱基置换、插入和缺失的部分
安全测序系统还允许全部数目的不同突变事件的测定和突变发生的PCR循环的估计。在这些实验中存在19个在含有单个模板分子的孔中进行的PCR循环。如果聚合酶错误发生在第19个循环中,则将只存在一个产生的超突变体(来自含有突变的链)。如果错误发生在第18个循环中,则应存在两个超突变体(来自第19个循环中产生的突变体链)等。相应地,错误发生的循环与含有该错误的超突变体的数目相关。来自七个独立的实验的数据显示相对一致数目的观察到的全部聚合酶错误(2.2±1.1×10-6不同的突变/bp),与来自模拟的观察的预期数目非常一致(1.5±0.21×10-6不同的突变/bp)。该数据还显示实验之中高度可变的聚合酶错误的发生时机(表4),如从经典的波动分析所预测的(1)。该种类的信息难于利用相同的下一代测序数据的常规分析而取得,部分由于上面提到的禁止性地高度表观突变率。
表4A-4G.观察到的和预期数目的Phusion聚合酶产生的错误
*模拟的细节参见SI文本
实施例4--寡核苷酸组合物的分析。
从亚磷酰胺(phoshoramidite)前体的寡核苷酸合成期间少量错误对于大多数应用,如常规PCR或克隆是可容忍的。然而,对于合成生物学——其中许多寡核苷酸必须连接在一起,这样的错误呈现对成功的主要障碍。已想出了使基因构建方法更有效的较聪明的策略(48,49),但是所有这样的策略将从寡核苷酸自身更准确的合成获益。测定合成的寡核苷酸中错误的数目是困难的,因为含有错误的寡核苷酸的部分可以较常规的下一代测序分析的灵敏度更低。
为了测定是否安全测序系统可用于该测定,我们使用标准的亚磷酰胺化学来合成含有31个碱基的寡核苷酸,这些碱基被设计与上面描述的聚合酶保真度实验中分析的相同。在合成寡核苷酸中,31个碱基由与可用于安全测序系统的UID分配步骤的引物互补的序列包围(图3)。通过对~300,000个寡核苷酸进行安全测序系统,我们发现存在8.9±0.28×10-4个超突变体/bp,并且这些错误发生遍及寡核苷酸(图6A)。寡核苷酸含有大量的插入和缺失错误,分别代表全部超突变体的8.2±0.63%和25±1.5%。重要地,错误的位置和性质在对相同批次的寡核苷酸进行的该实验的七个独立的复制之中是高度可重现的(图6A)。错误的该性质和分布与Phusion聚合酶产生的错误的性质和分布——其在复制实验之中以期望的随机型分布——鲜有相同(图6B和表5)。用亚磷酰胺合成的寡核苷酸中错误的数目较Phusion聚合酶合成的相等产物高~60倍。这些数据全部指示,前者中的绝大多数错误在它们的合成期间而不是在安全测序系统程序期间产生。
表5.亚磷酰胺与Phusion合成的DNA:转换与颠换比较
*p值利用双尾配对t检验来计算
安全测序系统保持原始模板中突变体:正常序列之比吗?为了解决该问题,我们合成了两个相同序列的31-碱基寡核苷酸,除了nt 15(50:50C/G代替T)和将它们以3.3%和0.33%的突变体/正常部分混合。通过寡核苷酸混合物的安全测序系统分析,我们发现比分别是2.8%和0.27%。我们得出结论,安全测序系统中使用的UID分配和扩增程序没有大大改变变体序列的比例和由此当未知时提供该比例的可靠的估计。当在独立的安全测序系统实验中分析时,该结论还得到变体部分重现性的支持(图6A)。
实施例--5来自正常人细胞的DNA序列的分析。
然后外源UID策略(图3)用于测定来自三个无关个体的~100,000个正常人细胞的CTNNB1基因的小区域中稀有突变的流行(prevlence)。通过与安全测序系统实验中获得的UID-家族的数目的比较(表2B),我们计算得到,大多数(78±9.8%)输入片段转化进UID-家族。存在68个成员/UID-家族的平均数,容易满足安全测序系统需要的丰余(图7)。Illumina测序数据的常规分析显示每个样品~560Mb的分析的序列之中平均118,488±11,357个突变,对应2.1±0.16×10-4突变/bp的表观突变流行(表2B)。在安全测序系统分析中只观察到平均99±78个超突变体。绝大多数(>99%)超突变体是单碱基置换和计算的突变率是9.0±3.1×10-6突变/bp(表3B)。安全测序系统由此减少基因组DNA中表观突变频率至少24倍(图4)。
增加安全测序系统特异性的一个可能的策略是在多个孔中进行文库扩增(和可能地UID分配循环)。这可利用标准的PCR板在少至2个或多至384个孔中或当利用微流体装置时扩大到更多的孔(数千至数百万)来完成。当进行该方法时,可将指示序列引入模板,该模板对于模板被扩增的孔是独特的。因此,稀有突变应产生两个超突变体(即,每条链一个),两个都具有相同的孔指示序列。当在上面描述的CTNNB1模板上用外源UID进行安全测序系统和稀释进10个孔(每个孔产生用不同指示序列扩增的模板)时,突变率从9.0±3.1×10-6被进一步减小到3.7±1.2×10-6超突变体/bp。因此,分析多个区室中的模板——以基于模板被扩增的区室而产生有差别地编码的模板的方式——可以是增加安全测序系统特异性的另外的策略。
实施例6--来自线粒体DNA的DNA序列的分析
我们将相同的策略应用于来自七个无关个体每个的~1,000个细胞中的一短段线粒体DNA。用安全测序系统程序产生的Illumina测序文库的常规分析(图3)显示每个样品分析的~150Mb序列之中平均30,599±12,970个突变,对应2.1±0.94×10-4突变/bp的表观突变流行(表2C)。在安全测序系统分析中只观察到135±61个超突变体。当用CTNNB1基因时,绝大多数突变是单碱基置换,虽然也观察到偶然的单碱基缺失(表3C)。mtDNA的分析区段中计算的突变率是1.4±0.68×10-5突变/bp(表2C)。因此,安全测序系统由此减少基因组DNA中表观突变频率至少15倍。
实施例7--材料和方法
内源UID。利用Qiagen试剂盒制备来自人胰腺或培养的类淋巴母细胞的基因组DNA。胰腺DNA用于捕获实验,类淋巴母细胞用于反向PCR实验。通过光吸收和用qPCR来定量DNA。通过声学剪切(Covaris)将DNA破碎成~200bp的平均大小,然后根据标准的Illumina程序将其末端修复、加A尾和与Y-形衔接头连接。每个模板分子的末端提供对应它们的染色体位置的内源UID。用衔接头内引物序列对文库进行PCR介导的扩增之后,将DNA用含有2,594nt——对应六个癌基因——的过滤器捕获(1)。捕获之后,进行18个PCR循环以保证用于IlluminaGA IIx仪器上测序的足够量的模板。
对于反向PCR实验(图5),我们将定制的衔接头(IDT,表6)代替标准的Y形Illumina衔接头与剪切的细胞DNA连接。这些衔接头保留了与通用测序引物互补的区域但是缺少与IlluminaGA IIx流式细胞杂交需要的嫁接序列。将连接的DNA稀释到96孔中和将每列8孔中的DNA用独特的正向引物加标准的反向引物扩增,该正向引物在其5'末端含有12个指示序列之一(表6)。扩增利用Phusion HotStart I(NEB)在50uL反应中进行,该反应含有1XPhusion HF缓冲液、0.5mM dNTPs、每个正向和反向引物(都是5’磷酸化)0.5uM和1UPhusion聚合酶。使用以下循环条件:98℃持续30s的一个循环;和98℃持续10s、65℃持续30s和72℃持续30s的16个循环。将所有的96个反应混合和然后利用Qiagen MinElute PCR纯化试剂盒(cat.No.28004)和QIA快速凝胶提取试剂盒(目录号28704)纯化。为了制备反向PCR必需的环状模板,将DNA稀释到~1ng/uL和在室温在含有1×T4 DNA连接缓冲液和18,000U T4 DNA连接酶的600uL反应中与T4 DNA连接酶(Enzymatics)连接30min。利用QiagenMinElute试剂盒纯化连接反应。利用PhusionHot StartI对分布在12个50uL反应中的90ng环状模板进行反向PCR,每个反应含有1×Phusion HF缓冲液、0.25mM dNTPs、KRAS正向和反向引物每个0.5uM(表6)和1U Phusion聚合酶。KRAS-特异性引物均含有与IlluminaGA IIx流式细胞杂交的嫁接序列(表6)。使用以下循环条件:98℃持续2min的一个循环;和98℃持续10s、61℃持续15s和72℃持续10s的37个循环。最后的纯化用NucleoSpin Extract II试剂盒(Macherey-Nagel)进行和在20uL NE缓冲液中洗脱。产生的DNA片段含有由三个序列组成的UID:两个内源序列——由原始剪切的片段的两个末端表示——加上指示扩增期间引入的外源序列。由于使用12个外源序列,所以这比没有外源UID而获得的数目增加了不同UID数目12倍。该数目可通过利用更大数目的不同引物而容易地增加。表6.使用的寡核苷酸
外源UID。利用Qiagen试剂盒制备来自正常人结肠粘膜或血淋巴细胞的基因组DNA。将来自结肠粘膜的DNA用于关于CTNNB1和线粒体DNA的实验,而将淋巴细胞DNA用于关于CTNNB1和聚合酶保真度的实验。利用从人细胞扩增单拷贝基因的引物进行的数字PCR(聚合酶保真度和CTNNB1的分析)、qPCR(线粒体DNA)或通过光吸收(寡核苷酸)对DNA定量(2)。利用两个扩增子特异性PCR循环将每个模板分子的每条链用12或14碱基UID编码,如文本和图3中所描述的。扩增子特异性引物在它们的5'末端均含有用于后面扩增步骤的通用标签序列。UID构成附加于正向扩增子特异性引物5'末端的12或14个随机核苷酸序列(表6)。这些引物可分别产生1.68千万和2.68亿不同的UID。不同UID的数目大大超过原始模板分子的数目是重要的,以最小化两个不同原始模板取得相同UID的概率。UID分配PCR循环包括45uL反应中的Phusion Hot Start II(NEB),该反应含有1×Phusion HF缓冲液、0.25mM dNTPs、0.5uM每个正向(含有12-14Ns)和反向引物、和2U Phusion聚合酶。为了保持最终模板浓度<1.5ng/uL,多个孔用于产生一些文库。利用以下循环条件:98℃持续30s的一个温育(以激活Phusion Hot Start II);和98℃持续10s、61℃持续120s和72℃持续10s的两个循环。为了保证完全去除第一轮引物,将每个孔用60U单链DNA特异性核酸酶(外切核酸酶-I;Enzymatics)在37℃消化1hr。在98℃5min热灭活之后,加入与引入的通用标签互补的引物(表6)到每个0.5uM的终浓度。这些引物含有两个末端硫代磷酸以使它们抵抗任何残留的外切核酸酶-I活性。它们还含有与IlluminaGA IIx流式细胞杂交必需的5’嫁接序列。最后,它们在嫁接序列和通用标签序列之间含有指示序列。该指示序列使来自多个不同个体的PCR产物能够在测序仪的同一流动细胞室中被同时分析。以下循环条件用于随后的25个PCR循环:98℃持续10s和72℃持续15s。不进行中间体纯化步骤以减少模板分子的丧失。
第二轮扩增之后,将孔合并和利用Qiagen QIA快速PCR纯化试剂盒(目录号28104)纯化和在50uL EB缓冲液(Qiagen)中洗脱。将期望大小的片段在琼脂糖(mtDNA文库)或聚丙烯酰胺(所有其它文库)凝胶电泳之后纯化。对于琼脂糖凝胶纯化,将八个6-uL等分部分装载到2%尺寸选择凝胶(Invitrogen)的孔中和在EB缓冲液中收集期望大小的带,如制造商所说明的。对于聚丙烯酰胺凝胶纯化,将十个5-uL等分部分装载到10%TBE聚丙烯酰胺凝胶(Invitrogen)的孔中。将含有目的片段的凝胶薄片切下、破碎和洗脱,基本上如所描述的(3)。
Phusion聚合酶保真度的分析。BMX(RefSeq Accession NM_203281.2)基因内人基因组DNA片段的扩增首先利用上面描述的PCR条件进行。将模板稀释以便平均一个模板分子存在于96孔PCR板的每10个孔中。然后五十uL PCR反应在1×Phusion HF缓冲液、0.25mMdNTPs、0.5uM每个正向和反向引物(表6)、和2U Phusion聚合酶中进行。循环条件是98℃持续30s的一个循环;和98℃持续0s、61℃持续120s和72℃持续10s的19个循环。通过用60U外切核酸酶-I在37℃消化1hr,之后是在98℃的5min热灭活而去除引物。外切核酸酶-I消化之前或之后不进行PCR产物的纯化。然后将每个孔的全部内含物用作上面描述的外源UID策略的模板。
测序。所有上面描述的文库的测序利用IlluminaGA IIx仪器来进行,如制造商所说明的。用于每个实验的阅读总长度从36至73个碱基变化。碱基召唤和序列排列用Elandpipeline(Illumina)进行。只有满足以下标准的高质量阅读用于随后的分析:(i)第一个25个碱基通过标准的Illumina chastity过滤器;(ii)阅读中的每个碱基具有≥20的质量评分;和(iii)与期望序列≤3的错配。对于外源UID文库,我们另外要求UID具有≥30的质量评分。我们注意到在用标准的Illumina程序制备的内源UID文库中阅读末端的相对高的错误频率,可能是剪切或末端修复期间引入的,所以将这些标签的第一和最后的三个碱基从分析中排除。
安全测序系统分析。基于它们的内源或外源UID将高质量阅读分成UID-家族。只考虑具有两个或多个成员的UID-家族。这样的UID-家族包括绝大多数(≥99%)测序阅读。为了保证相同的数据用于常规和安全测序系统分析,我们还从常规分析排除了只含有一个成员的UID-家族。进一步,当比较常规分析与用外源UID的安全测序系统的分析时,如果相同的变体在至少一个UID-家族的至少两个成员(即,两个突变)中被识别,那么我们只将碱基识别为常规测序分析中的“突变体”。对于与用内源UID的安全测序系统的比较,我们要求两个UID-家族中每个的至少两个成员(即,四个突变)将位置识别为常规分析中的“突变体”。对于内源或外源UID,超突变体被限定为其中≥95%的成员共享相同突变的UID-家族。因此,具有<20个成员的UID-家族不得不在突变体位置100%相同,而5%组合的复制和测序差错率在具有更多成员的UID-家族中被允许。为了利用安全测序系统测定聚合酶保真度,和为了比较结果与Phusion聚合酶保真度的先前的分析,认识到先前的分析将只检测存在于PCR产物的两条链中的突变是必需的(4)。这将等同于分析用一个较少的安全测序系统循环产生的PCR产物,和在表2A中作出了适当的校正。除非另外说明,文本和表中列出的所有值代表平均值和标准偏差。
实施例8–错误-产生过程
明显的突变——被限定为与限定位置的期望碱基不同的任何碱基召唤——可由许多种过程产生:
1.存在于模板DNA中的突变。对于来自正常人细胞的模板,这些包括这样的突变,其存在于合子中,发生在后面胚胎和成年人发育期间,或存在于不注意地引入样品的污染物中。期望这些突变存在于相关模板的两条链中。如果突变只发生在其DNA用作模板的细胞的最后细胞-循环中,那么突变将只存在于模板的一条链中。
2.存在于模板中的化学修饰的碱基。已估计成千上万的氧化的碱基存在于每个人细胞中(5)。当这样的DNA通过Phusion聚合酶扩增时,在一条链中可产生明显的突变。
3.产生用于测序的小片段需要的剪切过程期间引入的错误。声学剪切产生短的活的,高温度可损伤DNA。
4.剪切片段的末端修复期间引入的错误。这些错误的来源可以是聚合酶不保真或通过化学修饰的碱基掺入用于聚合的dNTPs中。
5.其它酶步骤引入的错误,特别地如果酶不纯和用核酸酶、聚合酶或连接酶污染。
6.PCR扩增以制备用于捕获或用于反向PCR的文库的期间引入的错误。
7.捕获之后的PCR期间或反向PCR扩增期间的错误。
8.引入安全测序系统的UID分配循环中的错误(图3)。
9.引入用外源UID进行的安全测序系统的文库扩增循环中的错误。注意,如果来自过程#8的UID分配引物没有完全被去除,那么它们可潜在地扩增含有这些循环期间引入的错误的DNA片段,产生新的超突变体。
10.引入Illumina流式细胞上第一桥式PCR循环中的错误。如果扩增是无效的,那么引入第二桥式PCR循环中的错误还可导致在大多数其组成分子中含有突变的簇。
11.碱基召唤中的错误。
实施例9–用安全测序系统获得准确度
用常规的合成测序方法,上面描述的所有产生错误的过程是相关的,导致相对高数目的假阳性突变召唤(表1和2)。安全测序系统以几种方式最小化假阳性突变召唤的数目。用外源UID的安全测序系统导致最少的假阳性突变召唤,因为它需要最少的酶步骤。对于外源UID,产生错误的过程#3至#7被完全除去,因为这些步骤没有进行。由于数据被分析的方式,用外源UID的安全测序系统还显著减少由产生错误的过程#10和#11产生的错误。
用外源UID的安全测序系统之后,只有剩下的假阳性错误应是UID分配PCR循环(产生错误的过程#8)期间引入的那些错误或文库扩增循环(产生错误的过程#9)期间残留的含有UID的引物。来自产生错误的过程#8的错误可通过要求至少两个超突变体识别作为“突变体”的位置而被理论上地除去。该要求是合理的,因为双链DNA模板中每个预先存在的突变应产生两个超突变体,每条链一个。此外,该要求将除去产生错误的过程#2(原始模板中损伤的碱基),因为这样的碱基,当拷贝时,应只产生一个超突变体。最后,如果那些引物被完全去除,如这里用过量外切核酸酶-I进行的,文库扩增循环(过程#9)期间产生的错误将不被残留的含有UID的引物扩增。
对于内源UID,由于数据被分析的方式,过程#10和#11引入的错误显著减少(正如外源UID)。由于上面的段落中说明的原因,过程#2至#7中引入的错误可通过要求突变在至少两个UID-家族中观察到而被最小化。以该要求,在理论上,几乎没有假阳性突变将被识别。
在实践中,各种扩增不是完美的事实使情形复杂,所以每个原始模板分子的每条链没有恢复为UID-家族。该效率可在样品与样品之间不同,部分取决于存在于临床样品中的抑制剂的浓度。而且,对于外源UID,文库扩增步骤期间的聚合酶错误可产生未在UID分配步骤中描述的新UID-家族。如果该错误发生在突变体模板中,那么将产生另外的人工超突变体。
这些因素可通过将各种另外的标准并入分析中而被管理。例如,人们可要求UID-家族含有超过两个、五个或十个成员。另一个要求可以是超突变体的外源UID通过一个碱基差异而与文库中任何其它UID不相关。这将消除文库扩增步骤期间产生的人工超突变体(上面的段落中记录的)。我们在我们的安全测序系统分析中常规地制定该要求,但是它在识别的超突变体的数目上几乎没产生差别(<1%)。突变的特异性可通过要求超过一个的超突变体将位置识别为“突变体”而进一步增加,如上面针对内源UID所描述的。当需要多个超突变体时,特异性可通过要求原始双链模板的每条链含有突变而甚至进一步增加,或当文库利用多个孔扩增时,稀有突变共享识别突变(即,每条链一个)扩增所在孔的引入的序列。这样的决定包括特异性和灵敏度之间的通常的权衡。在我们用外源UID的实验中(表2),我们只要求一个超突变体将位置识别为“突变体”和包括具有超过一个成员的所有UID-家族。由于内源UID较外源UID与更多的产生错误的过程相关,我们要求两个超突变体在表1中报道的实验中将位置识别为突变体和还包括具有超过一个成员的所有UID-家族。
实施例10–正常人组织中的突变流行
表1和2中报道的评价>10,000个模板的实验显示,突变以3.5×10-6至9.0×10-6突变体/bp的频率——取决于分析的区域——存在于正常人细胞的核DNA中。不可能确定是否该低水平代表存在于原始模板中的真正突变或真正突变加来自上面描述的产生错误过程的人工突变之和。人细胞中的突变流行尚未被广泛研究,部分因为它们非常罕见。然而,识别稀有突变体的几种精巧的技术已被设计和可原则上用于比较。不幸的是,人突变流行的估计变化很大,从多至10-5突变体/bp至多至10-8突变体/bp(6-12)。在这些研究中的几个中,实际突变的特性方面的数据缺乏使估计变得复杂,在一些情况中该突变可以由整个染色体的丧失而引起,在其它情况中由错义突变,和在其它情况中由小的插入或缺失引起。另外,这些研究使用多种来源的正常细胞和检查不同的基因,使直接比较变得困难。线粒体DNA突变的流行和速度的估计相似地变化(13-19)。
在未来的工作中用各种技术分析相同的DNA模板和基因以测定这些不同的估计的基础将具有意义。
但是让我们假定用安全测序系统识别的所有突变代表存在于来自正常细胞的原始DNA模板的真正突变。这告诉我们关于世代的数目——通过该数目这些细胞自从生物体被孕育就已前进——的什么?突变率和突变流行之间存在简单关系:突变流行等于突变率和细胞从孕育开始已经过的世代数目的积。在先前的研究中体细胞突变率已被测定为~10-9突变体/bp/代,虽然因为关于突变流行的与上面提到的那些相关的原因,该估计也在研究之间变化。将该来自文献的突变率估计与我们的突变流行估计结合提示分析的正常细胞(淋巴细胞、类淋巴母细胞系或结肠粘膜)已从3,500代进行至8,900代,代表对于该研究中检查的个体(平均年龄65岁)每3至7天分裂的细胞。
实施例11–聚合酶引入错误的计算机模拟
聚合酶引入的突变计时大大改变了观察到的突变的最终数目(20)。例如,如果分开引入6个循环(26),那么两个突变的流行将差~64倍。因为聚合酶以随机的方式引入突变,简单的蒙地卡罗方法用于模拟。在这些模拟中,我们使用Phusion聚合酶差错率的制造者估计,对安全测序系统检测仅一条链中的突变的能力做出适当的调节(4)。注意,循环19中以及两个UID分配循环中引入的错误将导致仅双螺旋的一条链的改变,即,导致一个超突变体而不是两个。在每个实验中,我们假定存在实验结束时获得的总模板数目给予的恒定扩增效率(即,如果UID-家族的数目是N,那么我们假定每个循环中模板数目增加N/219)。对七个实验中每个进行一千次模拟,并将结果记录在表4中。
参考文献(仅针对实施例8-11)
1.Herman DS,et al.(2009)Filter-based hybridization capture ofsubgenomes enables resequencing and copy-number detection.Nat Methods 6:507-510.
2.Vogelstein B&Kinzler KW(1999)Digital PCR.Proc Natl Acad Sci U S A96:9236-9241.3.Chory J&Pollard JD,Jr.(2001)Separation of small DNA fragmentsby conventional gel electrophoresis.Curr Protoc Mol Biol Chapter 2:Unit2 7.
4.Barnes WM(1992)The fidelity of Taq polymerase catalyzing PCR isimproved by an N-terminal deletion.Gene 112:29-35.
5.Collins AR(1999)Oxidative DNA damage,antioxidants,andcancer.Bioessays 21:238-246.6.Morley AA,Cox S,&Holliday R(1982)Humanlymphocytes resistant to 6-thioguanine increase with age.Mech Ageing Dev 19:21-26.
7.Trainor KJ,et al.(1984)Mutation frequency in human lymphocytesincreases with age.Mech Ageing Dev 27:83-86.
8.Grist SA,McCarron M,Kutlaca A,Turner DR,&Morley AA(1992)In vivohuman somatic mutation:frequency and spectrum with age.Mutat Res 266:189-196.
9.Williams GT,Geraghty JM,Campbell F,Appleton MA,&Williams ED(1995)Normal colonic mucosa in hereditary non-polyposis colorectal cancer shows nogeneralised increase in somatic mutation.Br J Cancer 71:1077-1080.
10.Campbell F,Appleton MA,Shields CJ,&Williams GT(1998)No differencein stem cell somatic mutation between the background mucosa of right-andleft-sided sporadic colorectal carcinomas.J Pathol 186:31-35.
11.Araten DJ,Nafa K,Pakdeesuwan K,&Luzzatto L(1999)Clonal populationsof hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype andphenotype are present in normal individuals.Proc Natl Acad Sci U S A 96:5209-5214.
12.Araten DJ,et al.(2005)A quantitative measurement of the humansomatic mutation rate.Cancer Res 65:8111-8117.
13.Monnat RJ,Jr.&Loeb LA(1985)Nucleotide sequence preservation ofhuman mitochondrial DNA.Proc Natl Acad Sci U S A 82:2895-2899.
14.Bodenteich A,Mitchell LG,&Merril CR(1991)A lifetime of retinallight exposure does not appear to increase mitochondrial mutations.Gene 108:305-309.
15.Howell N,Kubacka I,&Mackey DA(1996)How rapidly does the humanmitochondrial genome evolve?Am J Hum Genet 59:501-509.
16.Khrapko K,et al.(1997)Mitochondrial mutational spectra in humancells and tissues.Proc Natl Acad Sci U S A 94:13798-13803.
17.Heyer E,et al.(2001)Phylogenetic and familial estimates ofmitochondrial substitution rates:study of control region mutations in deep-rooting pedigrees.Am J Hum Genet 69:1113-1126.
18.Howell N,et al.(2003)The pedigree rate of sequence divergence inthe human mitochondrial genome:there is a difference between phylogenetic andpedigree rates.Am J Hum Genet 72:659-670.
19.Taylor RW,et al.(2003)Mitochondrial DNA mutations in human coloniccrypt stem cells.J Clin Invest 112:1351-1360.
20.Luria SE&Delbruck M(1943)Mutations of Bacteria from VirusSensitivity to Virus Resistance.Genetics 28:491-511.
参考文献(针对全部,除外实施例8-11)
引用的每个参考文献的公开内容被清楚地并入本文。
1.Luria SE&Delbruck M(1943)Mutations of Bacteria from VirusSensitivity to Virus Resistance.Genetics 28:491-511.
2.Roach JC,et al.(2010)Analysis of genetic inheritance in a familyquartet by whole-genome sequencing.Science 328:636-639.
3.Durbin RM,et al.(2010)A map of human genome variation frompopulation-scale sequencing.Nature 467:1061-1073.
4.Shibata D(2011)Mutation and epigenetic molecular clocks incancer.Carcinogenesis 32:123-128.
5.McMahon MA,et al.(2007)The HBV drug entecavir-effects on HIV-1replication and resistance.N Engl J Med 356:2614-2621.
6.Eastman PS,et al.(1998)Maternal viral genotypic zidovudineresistance and infrequent failure of zidovudine therapy to prevent perinataltransmission of human immunodeficiency virus type 1 in pediatric AIDSClinical Trials Group Protocol 076.J Infect Dis 177:557-564.
7.Chiu RW,et al.(2008)Noninvasive prenatal diagnosis of fetalchromosomal aneuploidy by massively parallel genomic sequencing of DNA inmaternal plasma.Proc Natl Acad Sci U S A 105:20458-20463.
8.Fan HC,Blumenfeld YJ,Chitkara U,Hudgins L,&Quake SR(2008)Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA frommaternal blood.Proc Natl Acad Sci U S A 105:16266-16271.
9.Hoque MO,et al.(2003)High-throughput molecular analysis of urinesediment for the detection of bladder cancer by high-density single-nucleotide polymorphism array.Cancer Res 63:5723-5726.
10.Thunnissen FB(2003)Sputum examination for early detection of lungcancer.J Clin Pathol 56:805-810.
11.Diehl F,et al.(2008)Analysis of mutations in DNA isolated fromplasma and stool of colorectal cancer patients.Gastroenterology 135:489-498.
12.Barnes WM(1992)The fidelity of Taq polymerase catalyzing PCR isimproved by an N-terminal deletion.Gene 112:29-35.
13.Araten DJ,et al.(2005)A quantitative measurement of the humansomatic mutation rate.Cancer Res 65:8111-8117.
14.Campbell F,Appleton MA,Shields CJ,&Williams GT(1998)No differencein stem cell somatic mutation between the background mucosa of right-andleft-sided sporadic colorectal carcinomas.J Pathol 186:31-35.
15.Tindall KR&Kunkel TA(1988)Fidelity of DNA synthesis by the Thermusaquaticus DNA polymerase.Biochemistry 27:6008-6013.
16.Kunkel TA(1985)The mutational specificity of DNA polymerase-betaduring in vitro DNA synthesis.Production of frameshift,base substitution,anddeletion mutations.J Biol Chem 260:5787-5796.
17.van Dongen JJ&Wolvers-Tettero IL(1991)Analysis of immunoglobulinand T cell receptor genes.Part II:Possibilities and limitations in thediagnosis and management of lymphoproliferative diseases and relateddisorders.Clin Chim Acta 198:93-174.
18.Grist SA,McCarron M,Kutlaca A,Turner DR,&Morley AA(1992)In vivohuman somatic mutation:frequency and spectrum with age.Mutat Res 266:189-196.
19.Liu Q&Sommer SS(2004)Detection of extremely rare alleles bybidirectional pyrophosphorolysis-activated polymerization allele-specificamplification(Bi-PAP-A):measurement of mutation load in mammaliantissues.Biotechniques 36:156-166.
20.Monnat RJ,Jr.&Loeb LA(1985)Nucleotide sequence preservation ofhuman mitochondrial DNA.Proc Natl Acad Sci U S A 82:2895-2899.
21.Shi C,et al.(2004)LigAmp for sensitive detection of single-nucleotide differences.Nat Methods 1:141-147.
22.Keohavong P&Thilly WG(1989)Fidelity of DNA polymerases in DNAamplification.Proc Natl Acad Sci U S A 86:9253-9257.
23.Sidransky D,et al.(1991)Identification of p53 gene mutations inbladder cancers and urine samples.Science 252:706-709.
24.Bielas JH&Loeb LA(2005)Quantification of random genomicmutations.Nat Methods 2:285-290.
25.Vogelstein B&Kinzler KW(1999)Digital PCR.Proc Natl Acad Sci U S A96:9236-9241.
26.Mitra RD,et al.(2003)Digital genotyping and haplotyping withpolymerase colonies.Proc Natl Acad Sci U S A 100:5926-5931.
27.Chetverina HV,Samatov TR,Ugarov VI,&Chetverin AB(2002)Molecularcolony diagnostics:detection and quantitation of viral nucleic acids by in-gel PCR.Biotechniques 33:150-152,154,156.
28.Zimmermann BG,et al.(2008)Digital PCR:a powerful new tool fornoninvasive prenatal diagnosis?Prenat Diagn 28:1087-1093.
29.Dressman D,Yan H,Traverso G,Kinzler KW,&Vogelstein B(2003)Transforming single DNA molecules into fluorescent magnetic particles fordetection and enumeration of genetic variations.Proc Natl Acad Sci U S A 100:8817-8822.
30.Ottesen EA,Hong JW,Quake SR,&Leadbetter JR(2006)Microfluidicdigital PCR enables multigene analysis of individual environmentalbacteria.Science 314:1464-1467.
31.Quail MA,et al.(2008)A large genome center's improvements to theIllumina sequencing system.Nat Methods 5:1005-1010.
32.Nazarian R,et al.(2010)Melanomas acquire resistance to B-RAF(V600E)inhibition by RTK or N-RAS upregulation.Nature 468:973-977.
33.He Y,et al.(2010)Heteroplasmic mitochondrial DNA mutations innormal and tumour cells.Nature 464:610-614.
34.Gore A,et al.(2011)Somatic coding mutations in human inducedpluripotent stem cells.Nature 471:63-67.
35.Dohm JC,Lottaz C,Borodina T,&Himmelbauer H(2008)Substantial biasesin ultra-short read data sets from high-throughput DNA sequencing.NucleicAcids Res 36:e105.
36.Erlich Y,Mitra PP,delaBastide M,McCombie WR,&Hannon GJ(2008)Alta-Cyclic:a self-optimizing base caller for next-generation sequencing.NatMethods 5:679-682.
37.Rougemont J,et al.(2008)Probabilistic base calling of Solexasequencing data.BMC Bioinformatics 9:431.
38.Druley TE,et al.(2009)Quantification of rare allelic variants frompooled genomic DNA.Nat Methods 6:263-265.
39.Vallania FL,et al.(2010)High-throughput discovery of rareinsertions and deletions in large cohorts.Genome Res 20:1711-1718.
40.McCloskey ML,Stoger R,Hansen RS,&Laird CD(2007)Encoding PCRproducts with batch-stamps and barcodes.Biochem Genet 45:761-767.
41.Parameswaran P,et al.(2007)A pyrosequencing-tailored nucleotidebarcode design unveils opportunities for large-scale samplemultiplexing.Nucleic Acids Res 35:e130.
42.Craig DW,et al.(2008)Identification of genetic variants using bar-coded multiplexed sequencing.Nat Methods 5:887-893.
43.Miner BE,Stoger RJ,Burden AF,Laird CD,&Hansen RS(2004)Molecularbarcodes detect redundancy and contamination in hairpin-bisulfite PCR.NucleicAcids Res 32:e135.
44.Herman DS,et al.(2009)Filter-based hybridization capture ofsubgenomes enables resequencing and copy-number detection.Nat Methods 6:507-510.
45.Jones PA&Baylin SB(2007)The epigenomics of cancer.Cell 128:683-692.
46.de Boer JG&Ripley LS(1988)An in vitro assay for frameshiftmutations:hotspots for deletions of 1 bp by Klenow-fragment polymerase sharea consensus DNA sequence.Genetics 118:181-191.
47.Eckert KA &Kunkel TA(1990)High fidelity DNA synthesis by theThermus aquaticus DNA polymerase.Nucleic Acids Res 18:3739-3744.
48.Kosuri S,et al.(2010)Scalable gene synthesis by selectiveamplification of DNA pools from high-fidelity microchips.Nat Biotechnol 28:1295-1299.
49.Matzas M,et al.(2010)High-fidelity gene synthesis by retrieval ofsequence-verified DNA identified using high-throughput pyrosequencing.NatBiotechnol 28:1291-1294.
50.Li J,et al.(2008)Replacing PCR with COLD-PCR enriches variant DNAsequences and redefines the sensitivity of genetic testing.Nat Med 14:579-584.
51.Eid J,et al.(2009)Real-time DNA sequencing from single polymerasemolecules.Science 323:133-138.
序列表
<110> 约翰·霍普金斯大学
<120> 安全测序系统
<130> 001107.00873
<160> 81
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 1
gatcggaaga gcggttcagc aggaatgccg ag 32
<210> 2
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 2
acactctttc cctacacgac gctcttccga tct 33
<210> 3
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 3
aatgatacgg cgaccaccga gatctacaca cactctttcc ctacacgacg ctcttccgat 60
ct 62
<210> 4
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 4
caagcagaag acggcatacg agatctcggc attcctgctg aaccgctctt ccgatct 57
<210> 5
<211> 62
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 5
aatgatacgg cgaccaccga gatctacaca cactctttcc ctacacgacg ctcttccgat 60
ct 62
<210> 6
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 6
caagcagaag acggcatacg agatctcggc attcctgctg aaccgctctt ccgatct 57
<210> 7
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 7
acactctttc cctacacgac gctcttccga tct 33
<210> 8
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 8
ctcggcattc ctgctgaacc gctcttccga tct 33
<210> 9
<211> 32
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 9
gatcggaaga gcggttcagc aggaatgccg ag 32
<210> 10
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 10
acactctttc cctacacgac gctcttccga tct 33
<210> 11
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 11
cgtgatacac tctttcccta cacgacgctc ttccgatct 39
<210> 12
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 12
acatcgacac tctttcccta cacgacgctc ttccgatct 39
<210> 13
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 13
gcctaaacac tctttcccta cacgacgctc ttccgatct 39
<210> 14
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 14
tggtcaacac tctttcccta cacgacgctc ttccgatct 39
<210> 15
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 15
cactgtacac tctttcccta cacgacgctc ttccgatct 39
<210> 16
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 16
attggcacac tctttcccta cacgacgctc ttccgatct 39
<210> 17
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 17
gatctgacac tctttcccta cacgacgctc ttccgatct 39
<210> 18
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 18
tcaagtacac tctttcccta cacgacgctc ttccgatct 39
<210> 19
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 19
ctgatcacac tctttcccta cacgacgctc ttccgatct 39
<210> 20
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 20
aagctaacac tctttcccta cacgacgctc ttccgatct 39
<210> 21
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 21
gtagccacac tctttcccta cacgacgctc ttccgatct 39
<210> 22
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 22
tacaagacac tctttcccta cacgacgctc ttccgatct 39
<210> 23
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 23
ctcggcattc ctgctgaacc gctcttccga tct 33
<210> 24
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 24
aatgatacgg cgaccaccga gatctacacc agcaggcctt ataataaaaa taatga 56
<210> 25
<211> 51
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 25
caagcagaag acggcatacg agattgactg aatataaact tgtggtagtt g 51
<210> 26
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 26
acactctttc cctacacgac gctcttccga tct 33
<210> 27
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 27
ctcggcattc ctgctgaacc gctcttccga tct 33
<210> 28
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 28
cggaagagcg tcgtgtaggg aaagagtgt 29
<210> 29
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 29
cggaagagcg gttcagcagg aatgccgag 29
<210> 30
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 30
ggttacaggc tcatgatgta acc 23
<210> 31
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 31
gataccagct tggtaatggc a 21
<210> 32
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<221> misc_feature
<222> (1)...(56)
<223> n = A,T,C or G
<400> 32
cgacgtaaaa cgacggccag tnnnnnnnnn nnnggttaca ggctcatgat gtaacc 56
<210> 33
<211> 46
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 33
cacacaggaa acagctatga ccatggatac cagcttggta atggca 46
<210> 34
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 34
aatgatacgg cgaccaccga gatctacacc gtgatcgacg taaaacgacg gccagt 56
<210> 35
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 35
aatgatacgg cgaccaccga gatctacaca catcgcgacg taaaacgacg gccagt 56
<210> 36
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 36
aatgatacgg cgaccaccga gatctacacg cctaacgacg taaaacgacg gccagt 56
<210> 37
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 37
aatgatacgg cgaccaccga gatctacact ggtcacgacg taaaacgacg gccagt 56
<210> 38
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 38
aatgatacgg cgaccaccga gatctacacc actgtcgacg taaaacgacg gccagt 56
<210> 39
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 39
aatgatacgg cgaccaccga gatctacaca ttggccgacg taaaacgacg gccagt 56
<210> 40
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 40
aatgatacgg cgaccaccga gatctacacg atctgcgacg taaaacgacg gccagt 56
<210> 41
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 41
aatgatacgg cgaccaccga gatctacact caagtcgacg taaaacgacg gccagt 56
<210> 42
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 42
aatgatacgg cgaccaccga gatctacacc tgatccgacg taaaacgacg gccagt 56
<210> 43
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 43
aatgatacgg cgaccaccga gatctacaca agctacgacg taaaacgacg gccagt 56
<210> 44
<211> 49
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 44
caagcagaag acggcatacg agatcacaca ggaaacagct atgaccatg 49
<210> 45
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 45
cgacgtaaaa cgacggccag t 21
<210> 46
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 46
actggccgtc gttttacgtc g 21
<210> 47
<211> 58
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<221> misc_feature
<222> (1)...(58)
<223> n = A,T,C or G
<400> 47
cgacgtaaaa cgacggccag tnnnnnnnnn nnnnngcagc aacagtctta cctggact 58
<210> 48
<211> 48
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 48
cacacaggaa acagctatga ccatgtccac atcctcttcc tcaggatt 48
<210> 49
<211> 50
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 49
aatgatacgg cgaccaccga gatctacacc gacgtaaaac gacggccagt 50
<210> 50
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 50
caagcagaag acggcatacg agatatcacg cacacaggaa acagctatga ccatg 55
<210> 51
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 51
caagcagaag acggcatacg agatcgatgt cacacaggaa acagctatga ccatg 55
<210> 52
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 52
caagcagaag acggcatacg agattgacca cacacaggaa acagctatga ccatg 55
<210> 53
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 53
caagcagaag acggcatacg agatgccaat cacacaggaa acagctatga ccatg 55
<210> 54
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 54
caagcagaag acggcatacg agatcagatc cacacaggaa acagctatga ccatg 55
<210> 55
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 55
caagcagaag acggcatacg agatacttga cacacaggaa acagctatga ccatg 55
<210> 56
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 56
caagcagaag acggcatacg agatgatcag cacacaggaa acagctatga ccatg 55
<210> 57
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 57
caagcagaag acggcatacg agattagctt cacacaggaa acagctatga ccatg 55
<210> 58
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 58
caagcagaag acggcatacg agatggctac cacacaggaa acagctatga ccatg 55
<210> 59
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 59
caagcagaag acggcatacg agatcttgta cacacaggaa acagctatga ccatg 55
<210> 60
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 60
cgacgtaaaa cgacggccag t 21
<210> 61
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 61
catggtcata gctgtttcct gtgtg 25
<210> 62
<211> 57
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<221> misc_feature
<222> (1)...(57)
<223> n = A,T,C or G
<400> 62
cgacgtaaaa cgacggccag tnnnnnnnnn nnnnnttacc gagaaagctc acaagaa 57
<210> 63
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 63
cacacaggaa acagctatga ccatgatgct aaggcgagga tgaaa 45
<210> 64
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 64
aatgatacgg cgaccaccga gatctacaca catcgcgacg taaaacgacg gccagt 56
<210> 65
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 65
aatgatacgg cgaccaccga gatctacacg cctaacgacg taaaacgacg gccagt 56
<210> 66
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 66
aatgatacgg cgaccaccga gatctacact ggtcacgacg taaaacgacg gccagt 56
<210> 67
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 67
aatgatacgg cgaccaccga gatctacaca ttggccgacg taaaacgacg gccagt 56
<210> 68
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 68
aatgatacgg cgaccaccga gatctacacg atctgcgacg taaaacgacg gccagt 56
<210> 69
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 69
aatgatacgg cgaccaccga gatctacact caagtcgacg taaaacgacg gccagt 56
<210> 70
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 70
aatgatacgg cgaccaccga gatctacacc tgatccgacg taaaacgacg gccagt 56
<210> 71
<211> 49
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 71
caagcagaag acggcatacg agatcacaca ggaaacagct atgaccatg 49
<210> 72
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 72
cgacgtaaaa cgacggccag t 21
<210> 73
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 73
cctaattccc cccatcctta c 21
<210> 74
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 74
actggccgtc gttttacgtc g 21
<210> 75
<211> 77
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 75
ggttacaggc tcatgatgta acctctgtgt cttggtgtaa ctttaaaaca tatttttgcc 60
attaccaagc tggtatc 77
<210> 76
<211> 77
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 76
ggttacaggc tcatgatgta acctctgtgt cttggtgsaa ctttaaaaca tatttttgcc 60
attaccaagc tggtatc 77
<210> 77
<211> 55
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<221> misc_feature
<222> (1)...(55)
<223> n = A,T,C or G
<400> 77
acactctttc cctacacgac gctcnnnnnn nnnnnnggtg agtctgtgca ggcat 55
<210> 78
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 78
ctcgagcact gtcctgactg agacgatacc agcttggtaa tggca 45
<210> 79
<211> 59
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 79
aatgatacgg cgaccaccga gatctacacc gtgatacact ctttccctac acgacgctc 59
<210> 80
<211> 48
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 80
caagcagaag acggcatacg agatctcgag cactgtcctg actgagac 48
<210> 81
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 引物和衔接头
<400> 81
acactctttc cctacacgac gctc 24
Claims (35)
1.提高核酸序列的测序准确度的方法,包括:
将独特识别符(UID)核酸序列与多个分析物核酸片段中每个的第一末端连接以形成独特识别的分析物核酸片段;
丰余地测定独特识别的分析物核酸片段的核苷酸序列;
基于UID将所述核苷酸序列分组以形成多个UID家族,其中所述UID家族中的每一个包含共享UID序列的核苷酸序列的成员;
在所述UID家族的成员之间比较所述核苷酸序列;和
当所述UID家族的成员的至少50%含有某核苷酸序列时,将该核苷酸序列识别为准确代表分析物核酸片段。
2.权利要求1所述的方法,其中在所述丰余地测定的步骤之前,扩增所述独特识别的分析物核酸片段。
3.权利要求1所述的方法,其中当所述家族的成员的至少70%含有所述序列时识别所述核苷酸序列。
4.权利要求1所述的方法,其中当所述家族的成员的至少90%含有所述序列时识别所述核苷酸序列。
5.权利要求1所述的方法,其中当所述家族的成员的100%含有所述序列时识别所述核苷酸序列。
6.权利要求1所述的方法,其中所述连接步骤通过聚合酶链反应进行。
7.权利要求1所述的方法,其中将第一通用引发位点与多个分析物核酸片段中每个的第二末端连接。
8.权利要求6所述的方法,其中进行至少两个循环的聚合酶链反应以便家族由独特识别的分析物核酸片段形成,所述独特识别的分析物核酸片段共享在所述第一末端上的UID和在第二末端上的第一通用引发位点。
9.权利要求7所述的方法,其中将所述UID共价地与第二通用引发位点连接。
10.权利要求9所述的方法,其中在所述丰余地测定的步骤之前,利用分别与所述第一和所述第二通用引发位点互补的一对引物扩增所述独特识别的分析物核酸片段。
11.权利要求9所述的方法,其中将所述UID与分析物核酸片段的5’末端连接和所述第二通用引发位点是所述UID的5’。
12.权利要求9所述的方法,其中将所述UID与分析物核酸片段的3’末端连接和所述第二通用引发位点是所述UID的3’。
13.权利要求1所述的方法,其中所述分析物核酸片段通过将剪切力施加给分析物核酸而形成。
14.权利要求6所述的方法,其中在所述丰余地测定的步骤之前,将所述独特识别的分析物核酸片段进行扩增,其中在所述扩增之前,将单链特异性外切核酸酶用于消化过多的引物,所述引物用于将所述UID与所述分析物核酸片段连接。
15.权利要求14所述的方法,其中在所述丰余地测定的步骤之前,将所述独特识别的分析物核酸片段进行扩增,其中在所述扩增之前,将所述单链特异性外切核酸酶灭活、抑制或去除。
16.权利要求15所述的方法,其中所述单链特异性外切核酸酶通过加热处理来灭活。
17.权利要求14所述的方法,其中用于所述扩增的引物包括一个或多个使它们抵抗外切核酸酶的化学修饰。
18.权利要求14所述的方法,其中用于所述扩增的引物包括一个或多个硫代磷酸键。
19.提高核酸序列的测序准确度的方法,包括:
利用至少两个用第一和第二引物的扩增循环将独特识别符(UID)序列与多个分析物DNA片段中每个的第一末端连接以形成独特识别的分析物DNA片段,其中扩增期间所述UID多于所述分析物DNA片段,其中所述第一引物包括:
·与期望的扩增子互补的第一段;
·含有所述UID的第二段;
·含有用于随后扩增的通用引发位点的第三段;
并且其中所述第二引物包括用于随后扩增的通用引发位点;其中每个扩增循环将一个通用引发位点与一条链连接;
扩增所述独特识别的分析物DNA片段;
测定所述独特识别的分析物DNA片段的核苷酸序列;
基于UID将所述核苷酸序列分组以形成多个UID家族,其中所述UID家族中的每一个包含共享UID序列的核苷酸序列的成员;
在所述UID家族的成员之间比较所述核苷酸序列;和
当所述UID家族的成员的至少50%含有某核苷酸序列时,将该核苷酸序列识别为准确代表分析物核酸片段。
20.权利要求19所述的方法,其中所述第二引物每个包括UID。
21.权利要求19所述的方法,其中当所述家族的成员的至少70%含有所述序列时识别所述核苷酸序列。
22.权利要求19所述的方法,其中当所述家族的成员的至少90%含有所述序列时识别所述核苷酸序列。
23.权利要求19所述的方法,其中所述UID包括2至4000个碱基。
24.权利要求19所述的方法,其中在所述扩增所述独特识别的分析物DNA片段的步骤之前,将单链特异性外切核酸酶用于消化过多的引物,所述引物用于将所述UID与所述分析物DNA片段连接。
25.权利要求24所述的方法,其中在所述扩增的步骤之前,将所述单链特异性外切核酸酶灭活、抑制或去除。
26.权利要求25所述的方法,其中所述单链特异性外切核酸酶通过加热处理而灭活。
27.权利要求24所述的方法,其中用于所述扩增步骤的引物包括一个或多个硫代磷酸键。
28.利用内源独特识别符(UID)序列提高DNA的测序准确度的方法,包括:
将衔接头寡核苷酸与分析物DNA片段的末端连接以形成衔接的片段,所述分析物DNA片段在30至2000个碱基范围内——包括30和2000个碱基,其中在所述连接之前片段的每个末端是所述片段的内源UID;
利用与所述衔接头寡核苷酸互补的引物扩增所述衔接的片段;
测定所述衔接的片段的核苷酸序列;
基于UID将所述核苷酸序列分组以形成多个UID家族,其中所述UID家族中的每一个包含共享UID序列的核苷酸序列的成员;
在所述UID家族的成员之间比较所述核苷酸序列;和
当所述UID家族的成员的至少50%含有某核苷酸序列时,将该核苷酸序列识别为准确代表分析物DNA片段。
29.权利要求28所述的方法,进一步包括:
通过利用与所述分析物DNA中选择的基因互补的捕获寡核苷酸来捕获所述片段的子集,富集代表一个或多个选择的基因的片段。
30.权利要求28所述的方法,进一步包括:
通过扩增与选择的基因互补的片段而富集代表一个或多个选择的基因的片段。
31.权利要求29或30所述的方法,其中所述连接步骤在所述富集步骤之前。
32.权利要求28所述的方法,其中所述片段通过剪切而形成。
33.权利要求2、19或28所述的方法,其中在所述扩增之前,将所述分析物核酸片段或分析物DNA片段用亚硫酸氢盐处理以将未甲基化的胞嘧啶碱基转化成尿嘧啶。
34.权利要求1、19或28所述的方法,进一步包括以下步骤:比较代表第一分析物核酸或DNA片段的家族的数目与代表第二分析物核酸或DNA片段的家族的数目,以测定所述多个分析物核酸或DNA片段中第一分析物核酸或DNA片段与第二分析物核酸或DNA片段的相对浓度。
35.独特识别符(UID)核酸序列用于提高核酸测序准确度的用途,其中所述提高包括:
将独特识别符(UID)核酸序列与多个分析物核酸片段中每个的第一末端连接以形成独特识别的分析物核酸片段;
丰余地测定独特识别的分析物核酸片段的核苷酸序列;
基于UID将所述核苷酸序列分组以形成多个UID家族,其中所述UID家族中的每一个包含共享UID序列的核苷酸序列的成员;
在所述UID家族的成员之间比较所述核苷酸序列;和
当所述UID家族的成员的至少50%含有某核苷酸序列时,将该核苷酸序列识别为准确代表分析物核酸片段。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811425636.5A CN110016499B (zh) | 2011-04-15 | 2012-04-12 | 安全测序系统 |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161476150P | 2011-04-15 | 2011-04-15 | |
US61/476,150 | 2011-04-15 | ||
US201161484482P | 2011-05-10 | 2011-05-10 | |
US61/484,482 | 2011-05-10 | ||
CN201280029284.6A CN103748236B (zh) | 2011-04-15 | 2012-04-12 | 安全测序系统 |
PCT/US2012/033207 WO2012142213A2 (en) | 2011-04-15 | 2012-04-12 | Safe sequencing system |
CN201811425636.5A CN110016499B (zh) | 2011-04-15 | 2012-04-12 | 安全测序系统 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280029284.6A Division CN103748236B (zh) | 2011-04-15 | 2012-04-12 | 安全测序系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110016499A CN110016499A (zh) | 2019-07-16 |
CN110016499B true CN110016499B (zh) | 2023-11-14 |
Family
ID=47009955
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811425636.5A Active CN110016499B (zh) | 2011-04-15 | 2012-04-12 | 安全测序系统 |
CN201280029284.6A Active CN103748236B (zh) | 2011-04-15 | 2012-04-12 | 安全测序系统 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280029284.6A Active CN103748236B (zh) | 2011-04-15 | 2012-04-12 | 安全测序系统 |
Country Status (8)
Country | Link |
---|---|
US (13) | US9476095B2 (zh) |
EP (4) | EP2697397B1 (zh) |
CN (2) | CN110016499B (zh) |
AU (1) | AU2012242847B2 (zh) |
DK (1) | DK3246416T3 (zh) |
ES (1) | ES2625288T3 (zh) |
PL (2) | PL3246416T3 (zh) |
WO (1) | WO2012142213A2 (zh) |
Families Citing this family (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100022414A1 (en) | 2008-07-18 | 2010-01-28 | Raindance Technologies, Inc. | Droplet Libraries |
US10081839B2 (en) | 2005-07-29 | 2018-09-25 | Natera, Inc | System and method for cleaning noisy genetic data and determining chromosome copy number |
US10083273B2 (en) | 2005-07-29 | 2018-09-25 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US11111543B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US11111544B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US9424392B2 (en) | 2005-11-26 | 2016-08-23 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
EP4190448A3 (en) | 2006-05-11 | 2023-09-20 | Bio-Rad Laboratories, Inc. | Microfluidic devices |
US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
WO2008097559A2 (en) | 2007-02-06 | 2008-08-14 | Brandeis University | Manipulation of fluids and reactions in microfluidic systems |
US8592221B2 (en) | 2007-04-19 | 2013-11-26 | Brandeis University | Manipulation of fluids, fluid components and reactions in microfluidic systems |
US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
US8583380B2 (en) | 2008-09-05 | 2013-11-12 | Aueon, Inc. | Methods for stratifying and annotating cancer drug treatment options |
US9394567B2 (en) | 2008-11-07 | 2016-07-19 | Adaptive Biotechnologies Corporation | Detection and quantification of sample contamination in immune repertoire analysis |
US9528160B2 (en) | 2008-11-07 | 2016-12-27 | Adaptive Biotechnolgies Corp. | Rare clonotypes and uses thereof |
US9365901B2 (en) | 2008-11-07 | 2016-06-14 | Adaptive Biotechnologies Corp. | Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia |
US8628927B2 (en) | 2008-11-07 | 2014-01-14 | Sequenta, Inc. | Monitoring health and disease status using clonotype profiles |
GB2488700B (en) | 2008-11-07 | 2013-05-29 | Sequenta Inc | Methods for monitoring disease conditions by analysis of the full repertoire of CDR3 sequences of an individual |
US8748103B2 (en) | 2008-11-07 | 2014-06-10 | Sequenta, Inc. | Monitoring health and disease status using clonotype profiles |
US9506119B2 (en) | 2008-11-07 | 2016-11-29 | Adaptive Biotechnologies Corp. | Method of sequence determination using sequence tags |
ES2568509T3 (es) | 2009-01-15 | 2016-04-29 | Adaptive Biotechnologies Corporation | Perfilado de la inmunidad adaptativa y métodos para la generación de anticuerpos monoclonales |
US9085798B2 (en) | 2009-04-30 | 2015-07-21 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
KR20120044941A (ko) | 2009-06-25 | 2012-05-08 | 프레드 헛친슨 켄서 리서치 센터 | 적응 면역의 측정방법 |
US10017812B2 (en) | 2010-05-18 | 2018-07-10 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
EP2473638B1 (en) | 2009-09-30 | 2017-08-09 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US9315857B2 (en) | 2009-12-15 | 2016-04-19 | Cellular Research, Inc. | Digital counting of individual molecules by stochastic attachment of diverse label-tags |
US8835358B2 (en) | 2009-12-15 | 2014-09-16 | Cellular Research, Inc. | Digital counting of individual molecules by stochastic attachment of diverse labels |
US9399797B2 (en) | 2010-02-12 | 2016-07-26 | Raindance Technologies, Inc. | Digital analyte analysis |
US8535889B2 (en) | 2010-02-12 | 2013-09-17 | Raindance Technologies, Inc. | Digital analyte analysis |
SI2556171T1 (sl) | 2010-04-05 | 2016-03-31 | Prognosys Biosciences, Inc. | Prostorsko kodirane biološke analize |
US10787701B2 (en) | 2010-04-05 | 2020-09-29 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
US20190300945A1 (en) | 2010-04-05 | 2019-10-03 | Prognosys Biosciences, Inc. | Spatially Encoded Biological Assays |
US9677118B2 (en) | 2014-04-21 | 2017-06-13 | Natera, Inc. | Methods for simultaneous amplification of target loci |
CA3037126C (en) | 2010-05-18 | 2023-09-12 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11939634B2 (en) | 2010-05-18 | 2024-03-26 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11332793B2 (en) | 2010-05-18 | 2022-05-17 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11326208B2 (en) | 2010-05-18 | 2022-05-10 | Natera, Inc. | Methods for nested PCR amplification of cell-free DNA |
US11339429B2 (en) | 2010-05-18 | 2022-05-24 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190010543A1 (en) | 2010-05-18 | 2019-01-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11322224B2 (en) | 2010-05-18 | 2022-05-03 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US10316362B2 (en) | 2010-05-18 | 2019-06-11 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11332785B2 (en) | 2010-05-18 | 2022-05-17 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11408031B2 (en) | 2010-05-18 | 2022-08-09 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US10179937B2 (en) | 2014-04-21 | 2019-01-15 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
EP2619327B1 (en) | 2010-09-21 | 2014-10-22 | Population Genetics Technologies LTD. | Increasing confidence of allele calls with molecular counting |
EP3572528A1 (en) | 2010-09-24 | 2019-11-27 | The Board of Trustees of the Leland Stanford Junior University | Direct capture, amplification and sequencing of target dna using immobilized primers |
EP2630263B2 (en) | 2010-10-22 | 2021-11-10 | Cold Spring Harbor Laboratory | Varietal counting of nucleic acids for obtaining genomic copy number information |
JP6328934B2 (ja) | 2010-12-22 | 2018-05-23 | ナテラ, インコーポレイテッド | 非侵襲性出生前親子鑑定法 |
EP3736281A1 (en) | 2011-02-18 | 2020-11-11 | Bio-Rad Laboratories, Inc. | Compositions and methods for molecular labeling |
US9260753B2 (en) | 2011-03-24 | 2016-02-16 | President And Fellows Of Harvard College | Single cell nucleic acid detection and analysis |
GB201106254D0 (en) | 2011-04-13 | 2011-05-25 | Frisen Jonas | Method and product |
EP2697397B1 (en) * | 2011-04-15 | 2017-04-05 | The Johns Hopkins University | Safe sequencing system |
EP3709018A1 (en) | 2011-06-02 | 2020-09-16 | Bio-Rad Laboratories, Inc. | Microfluidic apparatus for identifying components of a chemical reaction |
US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
US10385475B2 (en) | 2011-09-12 | 2019-08-20 | Adaptive Biotechnologies Corp. | Random array sequencing of low-complexity libraries |
AU2012325791B2 (en) | 2011-10-21 | 2018-04-05 | Adaptive Biotechnologies Corporation | Quantification of adaptive immune cell genomes in a complex mixture of cells |
EP2788509B1 (en) | 2011-12-09 | 2018-07-11 | Adaptive Biotechnologies Corporation | Diagnosis of lymphoid malignancies and minimal residual disease detection |
US9499865B2 (en) | 2011-12-13 | 2016-11-22 | Adaptive Biotechnologies Corp. | Detection and measurement of tissue-infiltrating lymphocytes |
PT2814959T (pt) * | 2012-02-17 | 2018-04-12 | Hutchinson Fred Cancer Res | Composições e métodos para a identificação exata de mutações |
ES2776673T3 (es) | 2012-02-27 | 2020-07-31 | Univ North Carolina Chapel Hill | Métodos y usos para etiquetas moleculares |
EP2820158B1 (en) | 2012-02-27 | 2018-01-10 | Cellular Research, Inc. | Compositions and kits for molecular counting |
EP3287531B1 (en) | 2012-02-28 | 2019-06-19 | Agilent Technologies, Inc. | Method for attaching a counter sequence to a nucleic acid sample |
JP6302847B2 (ja) | 2012-03-05 | 2018-03-28 | アダプティヴ バイオテクノロジーズ コーポレーション | 頻度が一致したサブユニットからの、対をなす免疫受容体鎖の決定 |
CA2867293C (en) | 2012-03-13 | 2020-09-01 | Abhijit Ajit PATEL | Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing |
ES2828661T3 (es) | 2012-03-20 | 2021-05-27 | Univ Washington Through Its Center For Commercialization | Métodos para reducir la tasa de error de la secuenciación de ADN masiva en paralelo mediante el uso de la secuenciación de secuencia consenso bicatenaria |
HUE029357T2 (en) | 2012-05-08 | 2017-02-28 | Adaptive Biotechnologies Corp | Preparations and devices for measuring and calibrating amplification distortion in multiplex PCR reactions |
EP2882870A4 (en) * | 2012-08-10 | 2016-03-16 | Sequenta Inc | HIGHLY SENSITIVE DETECTION OF MUTATIONS BY SEQUENCE TAGS |
CA2881783A1 (en) | 2012-08-13 | 2014-02-20 | The Regents Of The University Of California | Methods and systems for detecting biological components |
US20140100126A1 (en) | 2012-08-17 | 2014-04-10 | Natera, Inc. | Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data |
US20160040229A1 (en) | 2013-08-16 | 2016-02-11 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US11913065B2 (en) | 2012-09-04 | 2024-02-27 | Guardent Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
PL2893040T3 (pl) | 2012-09-04 | 2019-05-31 | Guardant Health Inc | Sposoby wykrywania rzadkich mutacji i wariantu liczby kopii |
US10876152B2 (en) | 2012-09-04 | 2020-12-29 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US20160002731A1 (en) | 2012-10-01 | 2016-01-07 | Adaptive Biotechnologies Corporation | Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization |
DK3511423T4 (da) | 2012-10-17 | 2024-07-29 | Spatial Transcriptomics Ab | Fremgangsmåder og produkt til optimering af lokaliseret eller rumlig detektion af genekspression i en vævsprøve |
AU2013338393C1 (en) | 2012-10-29 | 2024-07-25 | The Johns Hopkins University | Papanicolaou test for ovarian and endometrial cancers |
EP2914745B1 (en) | 2012-11-05 | 2017-09-06 | Rubicon Genomics, Inc. | Barcoding nucleic acids |
CN105531375B (zh) | 2012-12-10 | 2020-03-03 | 分析生物科学有限公司 | 靶向基因组分析的方法 |
US10870890B2 (en) | 2013-02-18 | 2020-12-22 | The Johns Hopkins University | TERT promoter mutations in urothelial neoplasia |
WO2014144495A1 (en) | 2013-03-15 | 2014-09-18 | Abvitro, Inc. | Single cell bar-coding for antibody discovery |
ES2980689T3 (es) | 2013-03-15 | 2024-10-02 | Guardant Health Inc | Métodos para la secuenciación de polinucleótidos libres de células |
SG11201508193TA (en) | 2013-04-17 | 2015-11-27 | Agency Science Tech & Res | Method for generating extended sequence reads |
LT3013983T (lt) | 2013-06-25 | 2023-05-10 | Prognosys Biosciences, Inc. | Erdviniai koduoti biologiniai tyrimai, naudojant mikrofluidinį įrenginį |
US9708657B2 (en) * | 2013-07-01 | 2017-07-18 | Adaptive Biotechnologies Corp. | Method for generating clonotype profiles using sequence tags |
AU2014312208B2 (en) | 2013-08-28 | 2019-07-25 | Becton, Dickinson And Company | Massively parallel single cell analysis |
US10262755B2 (en) | 2014-04-21 | 2019-04-16 | Natera, Inc. | Detecting cancer mutations and aneuploidy in chromosomal segments |
US10577655B2 (en) | 2013-09-27 | 2020-03-03 | Natera, Inc. | Cell free DNA diagnostic testing standards |
US11901041B2 (en) | 2013-10-04 | 2024-02-13 | Bio-Rad Laboratories, Inc. | Digital analysis of nucleic acid modification |
JP2017504307A (ja) | 2013-10-07 | 2017-02-09 | セルラー リサーチ, インコーポレイテッド | アレイ上のフィーチャーをデジタルカウントするための方法およびシステム |
WO2015083004A1 (en) * | 2013-12-02 | 2015-06-11 | Population Genetics Technologies Ltd. | Method for evaluating minority variants in a sample |
US11859246B2 (en) | 2013-12-11 | 2024-01-02 | Accuragen Holdings Limited | Methods and compositions for enrichment of amplification products |
EP3080298B1 (en) | 2013-12-11 | 2018-10-31 | AccuraGen Holdings Limited | Methods for detecting rare sequence variants |
US11286519B2 (en) | 2013-12-11 | 2022-03-29 | Accuragen Holdings Limited | Methods and compositions for enrichment of amplification products |
US9944977B2 (en) | 2013-12-12 | 2018-04-17 | Raindance Technologies, Inc. | Distinguishing rare variations in a nucleic acid sequence from a sample |
ES2822125T3 (es) | 2013-12-28 | 2021-04-29 | Guardant Health Inc | Métodos y sistemas para detectar variantes genéticas |
ES2741740T3 (es) | 2014-03-05 | 2020-02-12 | Adaptive Biotechnologies Corp | Métodos que usan moléculas sintéticas que contienen segmentos de nucleótidos aleatorios |
US10066265B2 (en) | 2014-04-01 | 2018-09-04 | Adaptive Biotechnologies Corp. | Determining antigen-specific t-cells |
US20150284715A1 (en) * | 2014-04-07 | 2015-10-08 | Qiagen Gmbh | Enrichment Methods |
EP3132059B1 (en) | 2014-04-17 | 2020-01-08 | Adaptive Biotechnologies Corporation | Quantification of adaptive immune cell genomes in a complex mixture of cells |
WO2015163778A1 (en) * | 2014-04-22 | 2015-10-29 | Chudakov Dmitry Mikhajlovich | Method to identify hot spot pcr and sequencing errors in highthroughput sequencing data |
EP3680333A1 (en) | 2014-04-29 | 2020-07-15 | Illumina, Inc. | Multiplexed single cell expression analysis using template switch and tagmentation |
EP2947156A1 (en) * | 2014-05-22 | 2015-11-25 | Qiagen GmbH | Optimization of sequencing reactions |
GB201409282D0 (en) | 2014-05-23 | 2014-07-09 | Univ Sydney Tech | Sequencing process |
WO2015200717A2 (en) | 2014-06-27 | 2015-12-30 | The Regents Of The University Of California | Pcr-activated sorting (pas) |
MX2017003382A (es) | 2014-09-15 | 2017-11-20 | Abvitro Llc | Secuenciacion de bibliotecas de nucleotidos de alto rendimiento. |
US9845507B2 (en) | 2014-09-30 | 2017-12-19 | Sysmex Corporation | Methods for detecting oncogenic mutations |
CN107107058B (zh) | 2014-10-22 | 2021-08-10 | 加利福尼亚大学董事会 | 高清晰度微液滴打印机 |
EP3212790B1 (en) | 2014-10-29 | 2020-03-25 | Adaptive Biotechnologies Corp. | Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from many samples |
US10246701B2 (en) | 2014-11-14 | 2019-04-02 | Adaptive Biotechnologies Corp. | Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture |
US10233490B2 (en) | 2014-11-21 | 2019-03-19 | Metabiotech Corporation | Methods for assembling and reading nucleic acid sequences from mixed populations |
EP3498866A1 (en) | 2014-11-25 | 2019-06-19 | Adaptive Biotechnologies Corp. | Characterization of adaptive immune response to vaccination or infection using immune repertoire sequencing |
EP3766986B1 (en) | 2014-12-31 | 2022-06-01 | Guardant Health, Inc. | Detection and treatment of disease exhibiting disease cell heterogeneity and systems and methods for communicating test results |
EP4112744A1 (en) | 2015-02-04 | 2023-01-04 | The Regents of the University of California | Sequencing of nucleic acids via barcoding in discrete entities |
US10421993B2 (en) | 2015-02-11 | 2019-09-24 | Paragon Genomics, Inc. | Methods and compositions for reducing non-specific amplification products |
EP3766988B1 (en) | 2015-02-19 | 2024-02-14 | Becton, Dickinson and Company | High-throughput single-cell analysis combining proteomic and genomic information |
ES2858306T3 (es) | 2015-02-24 | 2021-09-30 | Adaptive Biotechnologies Corp | Método para determinar el estado de HLA mediante secuenciación del repertorio inmunitario |
EP3262192B1 (en) | 2015-02-27 | 2020-09-16 | Becton, Dickinson and Company | Spatially addressable molecular barcoding |
WO2016160844A2 (en) | 2015-03-30 | 2016-10-06 | Cellular Research, Inc. | Methods and compositions for combinatorial barcoding |
EP3277294B1 (en) | 2015-04-01 | 2024-05-15 | Adaptive Biotechnologies Corp. | Method of identifying human compatible t cell receptors specific for an antigenic target |
EP4321627A3 (en) | 2015-04-10 | 2024-04-17 | 10x Genomics Sweden AB | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
WO2016172373A1 (en) | 2015-04-23 | 2016-10-27 | Cellular Research, Inc. | Methods and compositions for whole transcriptome amplification |
US10844428B2 (en) * | 2015-04-28 | 2020-11-24 | Illumina, Inc. | Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS) |
US11479812B2 (en) | 2015-05-11 | 2022-10-25 | Natera, Inc. | Methods and compositions for determining ploidy |
AU2016268089B2 (en) | 2015-05-22 | 2021-09-23 | Sigma-Aldrich Co. Llc | Methods for next generation genome walking and related compositions and kits |
WO2016196229A1 (en) | 2015-06-01 | 2016-12-08 | Cellular Research, Inc. | Methods for rna quantification |
CN107849600A (zh) * | 2015-06-09 | 2018-03-27 | 生命技术公司 | 用于分子标记的方法、系统、组合物、试剂盒、装置和计算机可读媒体 |
GB2539675B (en) | 2015-06-23 | 2017-11-22 | Cs Genetics Ltd | Libraries of multimeric barcoding reagents and kits thereof for labelling nucleic acids for sequencing |
US11286531B2 (en) | 2015-08-11 | 2022-03-29 | The Johns Hopkins University | Assaying ovarian cyst fluid |
EP4368715A3 (en) | 2015-08-28 | 2024-07-24 | Illumina, Inc. | Nucleic acid sequence analysis from single cells |
US10647981B1 (en) | 2015-09-08 | 2020-05-12 | Bio-Rad Laboratories, Inc. | Nucleic acid library generation methods and compositions |
WO2017044574A1 (en) | 2015-09-11 | 2017-03-16 | Cellular Research, Inc. | Methods and compositions for nucleic acid library normalization |
JP6560088B2 (ja) * | 2015-09-30 | 2019-08-14 | 富士フイルム株式会社 | プライマーの設計方法、dna増幅方法および解析方法 |
SG11201802864RA (en) | 2015-10-09 | 2018-05-30 | Accuragen Holdings Ltd | Methods and compositions for enrichment of amplification products |
WO2017083562A1 (en) | 2015-11-11 | 2017-05-18 | Resolution Bioscience, Inc. | High efficiency construction of dna libraries |
AU2016366231B2 (en) | 2015-12-08 | 2022-12-15 | Twinstrand Biosciences, Inc. | Improved adapters, methods, and compositions for duplex sequencing |
CN117174167A (zh) | 2015-12-17 | 2023-12-05 | 夸登特健康公司 | 通过分析无细胞dna确定肿瘤基因拷贝数的方法 |
WO2017117541A1 (en) * | 2015-12-31 | 2017-07-06 | Northeastern University | Sequencing methods |
WO2017132438A1 (en) * | 2016-01-29 | 2017-08-03 | The Johns Hopkins University | Bottleneck sequencing |
ES2882329T3 (es) | 2016-04-07 | 2021-12-01 | Univ Leland Stanford Junior | Diagnóstico no invasivo por secuenciación de ADN fuera de las células 5-hidroximetilado |
CN106555226B (zh) * | 2016-04-14 | 2019-07-23 | 大连晶泰生物技术有限公司 | 一种构建高通量测序文库的方法和试剂盒 |
US11384382B2 (en) | 2016-04-14 | 2022-07-12 | Guardant Health, Inc. | Methods of attaching adapters to sample nucleic acids |
WO2017181146A1 (en) | 2016-04-14 | 2017-10-19 | Guardant Health, Inc. | Methods for early detection of cancer |
CN109072480A (zh) | 2016-04-29 | 2018-12-21 | 生物辐射实验室股份有限公司 | 数字聚合酶保真度测定 |
CN109072288A (zh) | 2016-05-02 | 2018-12-21 | 赛卢拉研究公司 | 精确的分子条形编码 |
NZ747941A (en) | 2016-05-02 | 2023-04-28 | Encodia Inc | Macromolecule analysis employing nucleic acid encoding |
WO2017201102A1 (en) | 2016-05-16 | 2017-11-23 | Accuragen Holdings Limited | Method of improved sequencing by strand identification |
US10301677B2 (en) | 2016-05-25 | 2019-05-28 | Cellular Research, Inc. | Normalization of nucleic acid libraries |
EP4407625A3 (en) | 2016-05-26 | 2024-10-23 | Becton, Dickinson and Company | Molecular label counting adjustment methods |
US10640763B2 (en) | 2016-05-31 | 2020-05-05 | Cellular Research, Inc. | Molecular indexing of internal sequences |
US10202641B2 (en) | 2016-05-31 | 2019-02-12 | Cellular Research, Inc. | Error correction in amplification of samples |
US11708574B2 (en) | 2016-06-10 | 2023-07-25 | Myriad Women's Health, Inc. | Nucleic acid sequencing adapters and uses thereof |
WO2017217694A2 (ko) * | 2016-06-16 | 2017-12-21 | 한국한의학연구원 | 돌연변이 발생률의 측정 방법 |
KR101915701B1 (ko) | 2016-06-16 | 2018-11-07 | 한국한의학연구원 | 돌연변이 발생률의 측정 방법 |
WO2018031691A1 (en) | 2016-08-10 | 2018-02-15 | The Regents Of The University Of California | Combined multiple-displacement amplification and pcr in an emulsion microdroplet |
JP6966052B2 (ja) | 2016-08-15 | 2021-11-10 | アキュラーゲン ホールディングス リミテッド | 稀な配列変異体を検出するための組成物および方法 |
IL312894A (en) | 2016-08-25 | 2024-07-01 | Resolution Bioscience Inc | Methods for identifying changes in a genomic copy in DNA samples |
US10428325B1 (en) | 2016-09-21 | 2019-10-01 | Adaptive Biotechnologies Corporation | Identification of antigen-specific B cell receptors |
CN109791157B (zh) | 2016-09-26 | 2022-06-07 | 贝克顿迪金森公司 | 使用具有条形码化的寡核苷酸序列的试剂测量蛋白质表达 |
US9850523B1 (en) | 2016-09-30 | 2017-12-26 | Guardant Health, Inc. | Methods for multi-resolution analysis of cell-free nucleic acids |
WO2018064629A1 (en) | 2016-09-30 | 2018-04-05 | Guardant Health, Inc. | Methods for multi-resolution analysis of cell-free nucleic acids |
US11485996B2 (en) | 2016-10-04 | 2022-11-01 | Natera, Inc. | Methods for characterizing copy number variation using proximity-litigation sequencing |
JP7228510B2 (ja) | 2016-11-08 | 2023-02-24 | ベクトン・ディキンソン・アンド・カンパニー | 細胞標識分類の方法 |
JP7232180B2 (ja) | 2016-11-08 | 2023-03-02 | ベクトン・ディキンソン・アンド・カンパニー | 発現プロファイル分類の方法 |
US10011870B2 (en) * | 2016-12-07 | 2018-07-03 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
EP3571308A4 (en) | 2016-12-21 | 2020-08-19 | The Regents of The University of California | GENOMIC SEQUENCING OF SINGLE CELLS USING HYDROGEL-BASED DROPS |
GB201622219D0 (en) | 2016-12-23 | 2017-02-08 | Cs Genetics Ltd | Methods and reagents for molecular barcoding |
GB201622222D0 (en) | 2016-12-23 | 2017-02-08 | Cs Genetics Ltd | Reagents and methods for molecular barcoding of nucleic acids of single cells |
EP3568493B1 (en) | 2017-01-10 | 2021-03-24 | Paragon Genomics, Inc. | Methods and compositions for reducing redundant molecular barcodes created in primer extension reactions |
CN106701956A (zh) * | 2017-01-11 | 2017-05-24 | 上海思路迪生物医学科技有限公司 | ctDNA的数字化深度测序技术 |
ES2961580T3 (es) | 2017-01-13 | 2024-03-12 | Cellular Res Inc | Revestimiento hidrófilo de canales de fluidos |
EP3889962A1 (en) | 2017-01-18 | 2021-10-06 | Illumina, Inc. | Methods and systems for generation and error-correction of unique molecular index sets with heterogeneous molecular lengths |
EP3577232A1 (en) | 2017-02-01 | 2019-12-11 | Cellular Research, Inc. | Selective amplification using blocking oligonucleotides |
WO2018156418A1 (en) | 2017-02-21 | 2018-08-30 | Natera, Inc. | Compositions, methods, and kits for isolating nucleic acids |
WO2018175202A1 (en) | 2017-03-24 | 2018-09-27 | The Johns Hopkins University | Strand-specific detection of bisulfite-converted duplexes |
WO2018183942A1 (en) | 2017-03-31 | 2018-10-04 | Grail, Inc. | Improved library preparation and use thereof for sequencing-based error correction and/or variant identification |
WO2018204657A1 (en) | 2017-05-04 | 2018-11-08 | The Johns Hopkins University | Detection of cancer |
WO2018211497A1 (en) | 2017-05-14 | 2018-11-22 | Foresee Genomic Ltd | Dna construct for sequencing and method for preparing the same |
JP7536450B2 (ja) | 2017-06-05 | 2024-08-20 | ベクトン・ディキンソン・アンド・カンパニー | 単一細胞用のサンプルインデックス付加 |
US11542540B2 (en) | 2017-06-16 | 2023-01-03 | Life Technologies Corporation | Control nucleic acids, and compositions, kits, and uses thereof |
BR112019027179A2 (pt) * | 2017-06-19 | 2020-06-30 | Jungla Llc | interpretação de variantes genéticas e genômicas por meio de uma estrutura de aprendizagem profunda de mutação computacional e experimental integrada |
CN107164518A (zh) * | 2017-06-23 | 2017-09-15 | 广东腾飞基因科技股份有限公司 | 一种癌症相关基因突变高灵敏度检测方法和试剂盒 |
CN107217052A (zh) * | 2017-07-07 | 2017-09-29 | 上海交通大学 | 一种定量高通量测序文库的制备方法及其配套试剂盒 |
US11505826B2 (en) | 2017-07-12 | 2022-11-22 | Agilent Technologies, Inc. | Sequencing method for genomic rearrangement detection |
CA3072195A1 (en) | 2017-08-07 | 2019-04-04 | The Johns Hopkins University | Methods and materials for assessing and treating cancer |
US11447818B2 (en) | 2017-09-15 | 2022-09-20 | Illumina, Inc. | Universal short adapters with variable length non-random unique molecular identifiers |
US20190108311A1 (en) | 2017-10-06 | 2019-04-11 | Grail, Inc. | Site-specific noise model for targeted sequencing |
US10501739B2 (en) | 2017-10-18 | 2019-12-10 | Mission Bio, Inc. | Method, systems and apparatus for single cell analysis |
WO2019089836A1 (en) | 2017-10-31 | 2019-05-09 | Encodia, Inc. | Kits for analysis using nucleic acid encoding and/or label |
WO2019094651A1 (en) | 2017-11-08 | 2019-05-16 | Twinstrand Biosciences, Inc. | Reagents and adapters for nucleic acid sequencing and methods for making such reagents and adapters |
WO2019108555A1 (en) | 2017-11-28 | 2019-06-06 | Crail, Inc. | Models for targeted sequencing |
US11254980B1 (en) | 2017-11-29 | 2022-02-22 | Adaptive Biotechnologies Corporation | Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements |
WO2019118926A1 (en) | 2017-12-14 | 2019-06-20 | Tai Diagnostics, Inc. | Assessing graft suitability for transplantation |
WO2019126209A1 (en) | 2017-12-19 | 2019-06-27 | Cellular Research, Inc. | Particles associated with oligonucleotides |
EA202091673A1 (ru) | 2018-01-29 | 2021-02-03 | Ст. Джуд Чилдрен'С Рисерч Хоспитал, Инк. | Способ амплификации нуклеиновых кислот |
WO2019161031A1 (en) * | 2018-02-15 | 2019-08-22 | Papgene, Inc. | Barcoded molecular standards |
US11203782B2 (en) | 2018-03-29 | 2021-12-21 | Accuragen Holdings Limited | Compositions and methods comprising asymmetric barcoding |
GB2587939B (en) | 2018-04-02 | 2023-06-14 | Grail Llc | Methylation markers and targeted methylation probe panels |
US12024738B2 (en) | 2018-04-14 | 2024-07-02 | Natera, Inc. | Methods for cancer detection and monitoring |
US11230729B2 (en) | 2018-04-20 | 2022-01-25 | Inanna Diagnostics, Inc | Methods and devices for obtaining cellular and DNA material from human female reproductive system |
WO2019208827A1 (en) | 2018-04-27 | 2019-10-31 | Kao Corporation | Highly accurate sequencing method |
JP7407128B2 (ja) | 2018-05-03 | 2023-12-28 | ベクトン・ディキンソン・アンド・カンパニー | ハイスループットマルチオミクスサンプル解析 |
CN112243461B (zh) | 2018-05-03 | 2024-07-12 | 贝克顿迪金森公司 | 在相对的转录物末端进行分子条形码化 |
EP3794348A4 (en) | 2018-05-18 | 2022-03-09 | The Johns Hopkins University | CELL-FREE DNA FOR EVALUATION AND/OR TREATMENT OF CANCER |
WO2019241290A1 (en) | 2018-06-12 | 2019-12-19 | Accuragen Holdings Limited | Methods and compositions for forming ligation products |
CA3104922A1 (en) | 2018-06-22 | 2019-12-26 | Bluestar Genomics, Inc. | Hydroxymethylation analysis of cell-free nucleic acid samples for assigning tissue of origin, and related methods of use |
US11525159B2 (en) | 2018-07-03 | 2022-12-13 | Natera, Inc. | Methods for detection of donor-derived cell-free DNA |
JP7521812B2 (ja) | 2018-07-12 | 2024-07-24 | ツインストランド・バイオサイエンシズ・インコーポレイテッド | ゲノム編集、クローン増殖、および関連用途を特徴付けるための方法および試薬 |
EP3853383A1 (en) | 2018-09-19 | 2021-07-28 | Bluestar Genomics, Inc. | Cell-free dna hydroxymethylation profiles in the evaluation of pancreatic lesions |
CN113286881A (zh) | 2018-09-27 | 2021-08-20 | 格里尔公司 | 甲基化标记和标靶甲基化探针板 |
US10696994B2 (en) | 2018-09-28 | 2020-06-30 | Bioo Scientific Corporation | Size selection of RNA using poly(A) polymerase |
US11104941B2 (en) | 2018-09-28 | 2021-08-31 | Bioo Scientific Corporation | 5′ adapter comprising an internal 5′-5′ linkage |
US11639517B2 (en) | 2018-10-01 | 2023-05-02 | Becton, Dickinson And Company | Determining 5′ transcript sequences |
WO2020097315A1 (en) | 2018-11-08 | 2020-05-14 | Cellular Research, Inc. | Whole transcriptome analysis of single cells using random priming |
EP3894552A1 (en) | 2018-12-13 | 2021-10-20 | Becton, Dickinson and Company | Selective extension in single cell whole transcriptome analysis |
WO2020150356A1 (en) | 2019-01-16 | 2020-07-23 | Becton, Dickinson And Company | Polymerase chain reaction normalization through primer titration |
ES2945227T3 (es) | 2019-01-23 | 2023-06-29 | Becton Dickinson Co | Oligonucleótidos asociados con anticuerpos |
US11643693B2 (en) | 2019-01-31 | 2023-05-09 | Guardant Health, Inc. | Compositions and methods for isolating cell-free DNA |
WO2020167920A1 (en) | 2019-02-14 | 2020-08-20 | Cellular Research, Inc. | Hybrid targeted and whole transcriptome amplification |
US11965208B2 (en) | 2019-04-19 | 2024-04-23 | Becton, Dickinson And Company | Methods of associating phenotypical data and single cell sequencing data |
CN114072499B (zh) | 2019-04-30 | 2024-08-06 | Encodia公司 | 用于制备分析物的方法和相关试剂盒 |
CA3138806A1 (en) | 2019-05-22 | 2020-11-26 | Dalia Dhingra | Method and apparatus for simultaneous targeted sequencing of dna, rna and protein |
EP3748015A1 (en) | 2019-06-04 | 2020-12-09 | Sysmex Corporation | Method for analyzing nucleic acid sequence, apparatus for analyzing nucleic acid sequence, and program for analyzing nucleic acid sequence |
EP3748013A1 (en) * | 2019-06-04 | 2020-12-09 | Sysmex Corporation | Method for analyzing a nucleic acid sequence |
EP3748014A1 (en) * | 2019-06-04 | 2020-12-09 | Sysmex Corporation | Method for analyzing nucleic acid sequence, apparatus for analyzing nucleic acid sequence, and program for analyzing nucleic acid sequence |
US11667954B2 (en) | 2019-07-01 | 2023-06-06 | Mission Bio, Inc. | Method and apparatus to normalize quantitative readouts in single-cell experiments |
WO2021016239A1 (en) | 2019-07-22 | 2021-01-28 | Becton, Dickinson And Company | Single cell chromatin immunoprecipitation sequencing assay |
US20210032702A1 (en) * | 2019-07-31 | 2021-02-04 | The General Hospital Corporation | Lineage inference from single-cell transcriptomes |
EP4018003A1 (en) | 2019-08-28 | 2022-06-29 | Grail, LLC | Systems and methods for predicting and monitoring treatment response from cell-free nucleic acids |
EP4055187A4 (en) | 2019-11-06 | 2023-11-01 | The Board of Trustees of the Leland Stanford Junior University | METHOD AND SYSTEMS FOR ANALYZING NUCLEIC ACID MOLECULES |
EP4055160B1 (en) | 2019-11-08 | 2024-04-10 | Becton Dickinson and Company | Using random priming to obtain full-length v(d)j information for immune repertoire sequencing |
CN113122616A (zh) | 2019-12-30 | 2021-07-16 | 财团法人工业技术研究院 | 扩增和确定目标核苷酸序列的方法 |
CN115244184A (zh) | 2020-01-13 | 2022-10-25 | 贝克顿迪金森公司 | 用于定量蛋白和rna的方法和组合物 |
US12110541B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Methods for preparing high-resolution spatial arrays |
WO2021158925A1 (en) | 2020-02-07 | 2021-08-12 | 10X Genomics, Inc. | Quantitative and automated permeabilization performance evaluation for spatial transcriptomics |
US11211147B2 (en) | 2020-02-18 | 2021-12-28 | Tempus Labs, Inc. | Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing |
US11475981B2 (en) | 2020-02-18 | 2022-10-18 | Tempus Labs, Inc. | Methods and systems for dynamic variant thresholding in a liquid biopsy assay |
US11211144B2 (en) | 2020-02-18 | 2021-12-28 | Tempus Labs, Inc. | Methods and systems for refining copy number variation in a liquid biopsy assay |
US20240209414A1 (en) | 2020-03-11 | 2024-06-27 | Roche Sequencing Solutions, Inc. | Novel nucleic acid template structure for sequencing |
WO2021198401A1 (en) | 2020-04-03 | 2021-10-07 | F. Hoffmann-La Roche Ag | A method of detecting structural rearrangements in a genome |
US11661625B2 (en) | 2020-05-14 | 2023-05-30 | Becton, Dickinson And Company | Primers for immune repertoire profiling |
US10941453B1 (en) | 2020-05-20 | 2021-03-09 | Paragon Genomics, Inc. | High throughput detection of pathogen RNA in clinical specimens |
EP4163390A4 (en) | 2020-06-03 | 2024-08-07 | Tenk Genomics Inc | METHOD FOR ANALYZING THE TARGET NUCLEIC ACID OF A CELL |
EP4162083A1 (en) | 2020-06-08 | 2023-04-12 | F. Hoffmann-La Roche AG | Methods and compositions for detecting structural rearrangements in a genome |
US11932901B2 (en) | 2020-07-13 | 2024-03-19 | Becton, Dickinson And Company | Target enrichment using nucleic acid probes for scRNAseq |
WO2022109343A1 (en) | 2020-11-20 | 2022-05-27 | Becton, Dickinson And Company | Profiling of highly expressed and lowly expressed proteins |
CN116964221A (zh) | 2021-02-18 | 2023-10-27 | 豪夫迈·罗氏有限公司 | 阻止测序期间核酸模板穿过纳米孔的结构 |
US20220307077A1 (en) | 2021-03-24 | 2022-09-29 | Ambry Genetics Corporation | Conservative concurrent evaluation of dna modifications |
US11783912B2 (en) | 2021-05-05 | 2023-10-10 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for analyzing nucleic acid molecules |
CA3219822A1 (en) | 2021-05-21 | 2022-11-24 | 10K Genomics | Composition and method for analyzing target molecule from sample |
JP2024522177A (ja) | 2021-06-07 | 2024-06-11 | オーシャン ユニバーシティ オブ チャイナ | 試料のオミクス情報を分析するための製品および方法 |
EP4355898A1 (en) | 2021-06-18 | 2024-04-24 | CS Genetics Limited | Reagents and methods for molecular barcoding |
AU2022407332B2 (en) | 2021-12-07 | 2024-10-03 | Caribou Biosciences, Inc. | A method of capturing crispr endonuclease cleavage products |
US11680293B1 (en) | 2022-04-21 | 2023-06-20 | Paragon Genomics, Inc. | Methods and compositions for amplifying DNA and generating DNA sequencing results from target-enriched DNA molecules |
US12091715B2 (en) | 2022-04-21 | 2024-09-17 | Paragon Genomics, Inc. | Methods and compositions for reducing base errors of massive parallel sequencing using triseq sequencing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009152928A2 (de) * | 2008-05-28 | 2009-12-23 | Genxpro Gmbh | Verfahren zur quantitativen analyse von nukleinsäuren, marker dafür und deren verwendung |
WO2010127186A1 (en) * | 2009-04-30 | 2010-11-04 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
Family Cites Families (312)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA43460A (en) | 1893-07-03 | Robert Wellington Bigger | Furnace | |
CA57345A (en) | 1897-07-30 | 1897-09-04 | Francis Louis Becker | Upright piano-forte action |
CA62924A (en) | 1898-12-27 | 1899-03-25 | Azarie Mireault | Medicinal compound |
US6040166A (en) | 1985-03-28 | 2000-03-21 | Roche Molecular Systems, Inc. | Kits for amplifying and detecting nucleic acid sequences, including a probe |
US5308751A (en) * | 1992-03-23 | 1994-05-03 | General Atomics | Method for sequencing double-stranded DNA |
GB9323305D0 (en) | 1993-11-11 | 1994-01-05 | Medinnova Sf | Isoaltion of nucleic acid |
US5750341A (en) | 1995-04-17 | 1998-05-12 | Lynx Therapeutics, Inc. | DNA sequencing by parallel oligonucleotide extensions |
US5866330A (en) | 1995-09-12 | 1999-02-02 | The Johns Hopkins University School Of Medicine | Method for serial analysis of gene expression |
US6027890A (en) | 1996-01-23 | 2000-02-22 | Rapigene, Inc. | Methods and compositions for enhancing sensitivity in the analysis of biological-based assays |
WO1997034015A1 (en) | 1996-03-15 | 1997-09-18 | The Penn State Research Foundation | Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays |
US6361940B1 (en) | 1996-09-24 | 2002-03-26 | Qiagen Genomics, Inc. | Compositions and methods for enhancing hybridization and priming specificity |
EP0972081B1 (en) | 1997-04-01 | 2007-06-13 | Solexa Ltd. | Method of nucleic acid amplification |
CN1265156A (zh) | 1997-07-22 | 2000-08-30 | 拉普吉恩公司 | 核酸阵列上进行的扩增及其它酶反应 |
DE19736691A1 (de) | 1997-08-22 | 1999-02-25 | Michael Prof Dr Med Giesing | Verfahren zur Charakterisierung und Identifizierung disseminierter und metastasierter Krebszellen |
DE19813317A1 (de) | 1998-03-26 | 1999-09-30 | Roche Diagnostics Gmbh | Verbessertes Verfahren zur Primer Extension Präamplifikations-PCR |
US6576420B1 (en) | 1998-06-23 | 2003-06-10 | Regents Of The University Of California | Method for early diagnosis of, and determination of prognosis in, cancer |
ATE423314T1 (de) | 1998-06-24 | 2009-03-15 | Illumina Inc | Dekodierung von matrixartig-angeordneten sensoren durch mikropartikel |
US6787308B2 (en) | 1998-07-30 | 2004-09-07 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
AR021833A1 (es) | 1998-09-30 | 2002-08-07 | Applied Research Systems | Metodos de amplificacion y secuenciacion de acido nucleico |
US7510841B2 (en) | 1998-12-28 | 2009-03-31 | Illumina, Inc. | Methods of making and using composite arrays for the detection of a plurality of target analytes |
CA2299119C (en) | 1999-02-23 | 2013-02-05 | Qiagen Gmbh | A method of stabilizing and/or isolating nucleic acids |
US20060275782A1 (en) | 1999-04-20 | 2006-12-07 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
CA2374390A1 (en) | 1999-05-20 | 2000-12-14 | Illumina, Inc. | Combinatorial decoding of random nucleic acid arrays |
US6544732B1 (en) | 1999-05-20 | 2003-04-08 | Illumina, Inc. | Encoding and decoding of array sensors utilizing nanocrystals |
US20020119448A1 (en) * | 1999-06-23 | 2002-08-29 | Joseph A. Sorge | Methods of enriching for and identifying polymorphisms |
AU2246601A (en) | 1999-08-30 | 2001-04-10 | Illumina, Inc. | Methods for improving signal detection from an array |
US7211390B2 (en) | 1999-09-16 | 2007-05-01 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
US7244559B2 (en) | 1999-09-16 | 2007-07-17 | 454 Life Sciences Corporation | Method of sequencing a nucleic acid |
AU7733200A (en) | 1999-09-30 | 2001-04-30 | Qiagen Genomics, Inc. | Compositions and methods for reducing oligonucleotide hybridization and priming specificity |
US7582420B2 (en) | 2001-07-12 | 2009-09-01 | Illumina, Inc. | Multiplex nucleic acid reactions |
US6770441B2 (en) | 2000-02-10 | 2004-08-03 | Illumina, Inc. | Array compositions and methods of making same |
US7601497B2 (en) | 2000-06-15 | 2009-10-13 | Qiagen Gaithersburg, Inc. | Detection of nucleic acids by target-specific hybrid capture method |
DE10031236A1 (de) | 2000-06-27 | 2002-01-10 | Qiagen Gmbh | Verwendung von Carbonsäuren und anderen Additiven in Kombination mit kationischen Verbindungen zur Stabilisierung von Nukleinsäuren in biologischen Materialien |
ATE374835T1 (de) | 2000-06-30 | 2007-10-15 | Qiagen Gmbh | SIGNALAMPLIFIKATION MIT ßLOLLIPOPß- HYDRIDISIERUNGSPROBEN |
WO2002012897A2 (en) | 2000-08-09 | 2002-02-14 | Illumina, Inc. | Automated information processing in randomly ordered arrays |
WO2002016649A2 (en) | 2000-08-25 | 2002-02-28 | Illumina, Inc. | Probes and decoder oligonucleotides |
DE10063179A1 (de) | 2000-12-18 | 2002-06-20 | Bayer Ag | Verfahren zur spezifischen Detektion von Tumorzellen und ihren Vorstufen in Gebärmutterhalsabstrichen durch simultane Messung von mindestens zwei verschiedenen molekularen Markern |
EP2325336B1 (en) * | 2001-01-25 | 2014-06-11 | Luminex Molecular Diagnostics, Inc. | Polynucleotides for use as tags and tag complements |
WO2002099982A2 (en) | 2001-03-01 | 2002-12-12 | Illumina, Inc. | Methods for improving signal detection from an array |
AU2002360272A1 (en) * | 2001-10-10 | 2003-04-22 | Superarray Bioscience Corporation | Detecting targets by unique identifier nucleotide tags |
US7671349B2 (en) | 2003-04-08 | 2010-03-02 | Cymer, Inc. | Laser produced plasma EUV light source |
AU2003215240A1 (en) | 2002-02-14 | 2003-09-04 | Illumina, Inc. | Automated information processing in randomly ordered arrays |
US20040259105A1 (en) | 2002-10-03 | 2004-12-23 | Jian-Bing Fan | Multiplex nucleic acid analysis using archived or fixed samples |
US7822555B2 (en) | 2002-11-11 | 2010-10-26 | Affymetrix, Inc. | Methods for identifying DNA copy number changes |
US7704687B2 (en) | 2002-11-15 | 2010-04-27 | The Johns Hopkins University | Digital karyotyping |
US9487823B2 (en) | 2002-12-20 | 2016-11-08 | Qiagen Gmbh | Nucleic acid amplification |
US6977153B2 (en) | 2002-12-31 | 2005-12-20 | Qiagen Gmbh | Rolling circle amplification of RNA |
WO2004069849A2 (en) | 2003-01-29 | 2004-08-19 | 454 Corporation | Bead emulsion nucleic acid amplification |
WO2004081183A2 (en) | 2003-03-07 | 2004-09-23 | Rubicon Genomics, Inc. | In vitro dna immortalization and whole genome amplification using libraries generated from randomly fragmented dna |
US8043834B2 (en) | 2003-03-31 | 2011-10-25 | Qiagen Gmbh | Universal reagents for rolling circle amplification and methods of use |
US8150626B2 (en) | 2003-05-15 | 2012-04-03 | Illumina, Inc. | Methods and compositions for diagnosing lung cancer with specific DNA methylation patterns |
JP2007525963A (ja) | 2003-06-20 | 2007-09-13 | イルミナ インコーポレイテッド | 全ゲノム増幅および遺伝型決定のための方法および組成物 |
CA2537134C (en) * | 2003-09-02 | 2014-08-19 | Keygene N.V. | Ola-based methods for the detection of target nucleic acid sequences |
CA2541804A1 (en) | 2003-10-07 | 2005-04-21 | Millennium Pharmaceuticals, Inc. | Nucleic acid molecules and proteins for the identification, assessment, prevention, and therapy of ovarian cancer |
JP2007512020A (ja) | 2003-11-26 | 2007-05-17 | エッペンドルフ アクチェンゲゼルシャフト | 染色体外核酸のインビトロ増幅のための方法及び組成物 |
US20070275002A1 (en) | 2003-12-02 | 2007-11-29 | Van Der Werf Sylvie | Use Of Proteins And Peptides Encoded By The Genome Of A Novel Sars-Associated Coronavirus Strain |
US20050136405A1 (en) | 2003-12-17 | 2005-06-23 | James Linder | Novel method for the detection of cancer biomarkers in cervical specimens |
ES2743125T3 (es) | 2004-03-02 | 2020-02-18 | Univ Johns Hopkins | Mutaciones del gen de PIK3CA en cánceres humanos |
US7776531B1 (en) | 2004-03-25 | 2010-08-17 | Illumina, Inc. | Compositions and methods for stabilizing surface bound probes |
US7811759B2 (en) | 2004-04-20 | 2010-10-12 | Jian Han | Method for detecting ncRNA |
JP5149622B2 (ja) | 2004-05-20 | 2013-02-20 | クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド | 単一標識比較ハイブリダイゼーション |
US7745125B2 (en) | 2004-06-28 | 2010-06-29 | Roche Molecular Systems, Inc. | 2′-terminator related pyrophosphorolysis activated polymerization |
US7323310B2 (en) | 2004-08-31 | 2008-01-29 | Qiagen North American Holdings, Inc. | Methods and compositions for RNA amplification and detection using an RNA-dependent RNA-polymerase |
US20090088328A1 (en) | 2004-11-23 | 2009-04-02 | Quest Diagnostics Investments Incorporated | Microarray Quality Control |
US20060127918A1 (en) | 2004-12-14 | 2006-06-15 | Quest Diagnostics Investments Incorporated | Nucleic acid arrays |
US8021888B2 (en) | 2005-01-27 | 2011-09-20 | Quest Diagnostics Investments Incorporated | Rapid comparative genomic hybridization using acoustic surface waves |
PL1712639T3 (pl) | 2005-04-06 | 2009-02-27 | Maurice Stroun | Sposób diagnozowania nowotworu przez wykrywanie krążącego DNA i RNA |
CA2792443A1 (en) | 2005-04-18 | 2006-10-26 | Ryan Parr | Mitochondrial mutations and rearrangements as a diagnostic tool for the detection of sun exposure, prostate cancer and other cancers |
US20060263789A1 (en) * | 2005-05-19 | 2006-11-23 | Robert Kincaid | Unique identifiers for indicating properties associated with entities to which they are attached, and methods for using |
EP1896617B1 (en) | 2005-05-31 | 2013-01-02 | Life Technologies Corporation | Multiplex amplification of short nucleic acids |
WO2007145612A1 (en) * | 2005-06-06 | 2007-12-21 | 454 Life Sciences Corporation | Paired end sequencing |
US20060292576A1 (en) | 2005-06-23 | 2006-12-28 | Quest Diagnostics Investments Incorporated | Non-in situ hybridization method for detecting chromosomal abnormalities |
GB0514910D0 (en) | 2005-07-20 | 2005-08-24 | Solexa Ltd | Method for sequencing a polynucleotide template |
US20070020640A1 (en) | 2005-07-21 | 2007-01-25 | Mccloskey Megan L | Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis |
US7977108B2 (en) | 2005-07-25 | 2011-07-12 | Roche Molecular Systems, Inc. | Method for detecting a mutation in a repetitive nucleic acid sequence |
US9424392B2 (en) | 2005-11-26 | 2016-08-23 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US10081839B2 (en) | 2005-07-29 | 2018-09-25 | Natera, Inc | System and method for cleaning noisy genetic data and determining chromosome copy number |
ES2494922T3 (es) | 2005-09-01 | 2014-09-16 | Ausdiagnostics Pty Ltd. | Métodos para la amplificación, cuantificación e identificación de ácidos nucleicos |
US8076074B2 (en) | 2005-11-29 | 2011-12-13 | Quest Diagnostics Investments Incorporated | Balanced translocation in comparative hybridization |
CN101374963B (zh) | 2005-12-22 | 2014-06-04 | 凯津公司 | 用于基于aflp的高通量多态性检测的方法 |
US7702468B2 (en) | 2006-05-03 | 2010-04-20 | Population Diagnostics, Inc. | Evaluating genetic disorders |
US8768629B2 (en) | 2009-02-11 | 2014-07-01 | Caris Mpi, Inc. | Molecular profiling of tumors |
SG140505A1 (en) | 2006-09-05 | 2008-03-28 | Univ Singapore | Diagnostic biomolecule(s) |
US7754429B2 (en) | 2006-10-06 | 2010-07-13 | Illumina Cambridge Limited | Method for pair-wise sequencing a plurity of target polynucleotides |
WO2008045158A1 (en) | 2006-10-10 | 2008-04-17 | Illumina, Inc. | Compositions and methods for representational selection of nucleic acids fro complex mixtures using hybridization |
DE102006050037A1 (de) | 2006-10-24 | 2008-04-30 | Robert Bosch Gmbh | Ultraschallwandler |
EP2677309B9 (en) | 2006-12-14 | 2014-11-19 | Life Technologies Corporation | Methods for sequencing a nucleic acid using large scale FET arrays, configured to measure a limited pH range |
US7899626B2 (en) | 2007-01-10 | 2011-03-01 | Illumina, Inc. | System and method of measuring methylation of nucleic acids |
EP2121983A2 (en) | 2007-02-02 | 2009-11-25 | Illumina Cambridge Limited | Methods for indexing samples and sequencing multiple nucleotide templates |
AU2008221468A1 (en) | 2007-02-26 | 2008-09-04 | John Wayne Cancer Institute | Utility of B-RAF DNA mutation in diagnosis and treatment of cancer |
BRPI0809137A2 (pt) | 2007-03-23 | 2016-07-26 | Translational Genomics Res Inst | métodos de diagnosticar, câncer endometrial e pré-câncer classificar e tratar |
DE102007016707A1 (de) | 2007-04-04 | 2008-10-09 | Qiagen Gmbh | Verfahren zur Aufreinigung von Biomolekülen |
US8999634B2 (en) | 2007-04-27 | 2015-04-07 | Quest Diagnostics Investments Incorporated | Nucleic acid detection combining amplification with fragmentation |
DE102007025277A1 (de) | 2007-05-31 | 2008-12-04 | Qiagen Gmbh | Verfahren zur Stabilisierung einer biologischen Probe |
US20090105959A1 (en) | 2007-06-01 | 2009-04-23 | Braverman Michael S | System and method for identification of individual samples from a multiplex mixture |
US20100112590A1 (en) | 2007-07-23 | 2010-05-06 | The Chinese University Of Hong Kong | Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment |
US7507539B2 (en) | 2007-07-30 | 2009-03-24 | Quest Diagnostics Investments Incorporated | Substractive single label comparative hybridization |
US8871687B2 (en) | 2007-09-28 | 2014-10-28 | Quest Diagnostics Investments Incorporated | Nucleic acid sequencing by single-base primer extension |
EP2053132A1 (en) | 2007-10-23 | 2009-04-29 | Roche Diagnostics GmbH | Enrichment and sequence analysis of geomic regions |
WO2009058331A2 (en) | 2007-10-29 | 2009-05-07 | Vermilllion, Inc. | Biomarkers for the detection of early stage ovarian cancer |
US8093063B2 (en) | 2007-11-29 | 2012-01-10 | Quest Diagnostics Investments Incorporated | Assay for detecting genetic abnormalities in genomic nucleic acids |
US8211673B2 (en) * | 2008-02-04 | 2012-07-03 | Life Technologies Corporation | Composition and method for sequencing nucleic acid |
WO2009129505A2 (en) | 2008-04-17 | 2009-10-22 | Qiagen Gaithersburg, Inc. | Compositions, methods, and kits using synthetic probes for determining the presence of a target nucleic acid |
EP2283132B1 (en) | 2008-05-02 | 2016-10-26 | Epicentre Technologies Corporation | Selective 5' ligation tagging of rna |
US20100041048A1 (en) | 2008-07-31 | 2010-02-18 | The Johns Hopkins University | Circulating Mutant DNA to Assess Tumor Dynamics |
US9410956B1 (en) | 2008-08-01 | 2016-08-09 | University Of South Florida | Micro-RNA profiling in ovarian cancer |
CA2734428A1 (en) | 2008-08-18 | 2010-02-25 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Susceptibility to hsp90-inhibitors |
WO2010028098A2 (en) | 2008-09-03 | 2010-03-11 | The Johns Hopkins University | Pathways underlying pancreatic tumorigenesis and an hereditary pancreatic cancer gene |
WO2010028099A1 (en) | 2008-09-03 | 2010-03-11 | The Johns Hopkins University | Genetic alterations in isocitrate dehydrogenase and other genes in malignant glioma |
US8586310B2 (en) | 2008-09-05 | 2013-11-19 | Washington University | Method for multiplexed nucleic acid patch polymerase chain reaction |
US8383345B2 (en) * | 2008-09-12 | 2013-02-26 | University Of Washington | Sequence tag directed subassembly of short sequencing reads into long sequencing reads |
AU2009320213B2 (en) | 2008-10-27 | 2016-06-16 | Qiagen Gaithersburg Inc. | Fast results hybrid capture assay and system |
EP2350314B1 (en) | 2008-10-30 | 2015-06-03 | QIAGEN Gaithersburg, Inc. | Individually synthesized g-deficient primers to be used in whole genome amplification |
US8399221B2 (en) | 2008-11-04 | 2013-03-19 | Sabiosciences Corporation | Methods for detection and quantitation of small RNAs |
CN102439169B (zh) | 2008-11-13 | 2014-11-19 | 复旦大学 | 用于结肠直肠癌的微rna表达谱分析的组合物和方法 |
EP2193831A1 (de) | 2008-12-05 | 2010-06-09 | Qiagen GmbH | Parallel-Extraktion von unterschiedlichen Biomolekülen aus Formalin-fixiertem Gewebe |
JP2012516155A (ja) | 2009-01-27 | 2012-07-19 | キアゲン ゲーザーズバーグ | エンドポイント均一蛍光検出を用いた好熱性ヘリカーゼ依存性増幅技術 |
JP5457222B2 (ja) | 2009-02-25 | 2014-04-02 | エフ.ホフマン−ラ ロシュ アーゲー | 小型化ハイスループット核酸分析 |
US9347092B2 (en) | 2009-02-25 | 2016-05-24 | Roche Molecular System, Inc. | Solid support for high-throughput nucleic acid analysis |
EP2401607B1 (en) | 2009-02-25 | 2015-11-25 | Illumina, Inc. | Separation of pyrophosphate release and pyrophosphate detection |
US20120010091A1 (en) | 2009-03-30 | 2012-01-12 | Illumina, Inc. | Gene expression analysis in single cells |
DK2414547T3 (da) | 2009-04-02 | 2014-06-16 | Fluidigm Corp | Multiprimer-amplifikationsmetode til stregkodning af målnukleinsyrer |
EP2425240A4 (en) | 2009-04-30 | 2012-12-12 | Good Start Genetics Inc | METHOD AND COMPOSITION FOR EVALUATING GENETIC MARKERS |
JP5738278B2 (ja) | 2009-05-01 | 2015-06-24 | キアジェン ゲイサーズバーグ インコーポレイテッド | 試料中のrnaスプライシング形態を検出するための非標的増幅法 |
EP3546596B1 (en) | 2009-05-26 | 2022-05-11 | Quest Diagnostics Investments Incorporated | Use of a kit for detecting gene dysregulations |
US20130143747A1 (en) | 2011-12-05 | 2013-06-06 | Myriad Genetics, Incorporated | Methods of detecting cancer |
WO2010141955A2 (en) | 2009-06-05 | 2010-12-09 | Myriad Genetics, Inc. | Methods of detecting cancer |
US8409802B2 (en) | 2009-08-14 | 2013-04-02 | Roche Molecular Systems, Inc. | Format of probes to detect nucleic acid differences |
EP2467479B1 (en) | 2009-08-20 | 2016-01-06 | Population Genetics Technologies Ltd | Compositions and methods for intramolecular nucleic acid rearrangement |
LT2669387T (lt) | 2009-08-25 | 2016-10-25 | Illumina, Inc. | Polinukleotidų atrankos ir padauginimo būdai |
EP2473638B1 (en) | 2009-09-30 | 2017-08-09 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
EP2494069B1 (en) | 2009-10-30 | 2013-10-02 | Roche Diagniostics GmbH | Method for detecting balanced chromosomal aberrations in a genome |
SG10201407883PA (en) | 2009-12-07 | 2015-01-29 | Illumina Inc | Multi-sample indexing for multiplex genotyping |
US9238832B2 (en) | 2009-12-11 | 2016-01-19 | Roche Molecular Systems, Inc. | Allele-specific amplification of nucleic acids |
EP2513340B1 (en) | 2009-12-14 | 2016-06-29 | North Carolina State University | Mean dna copy number of chromosomal regions is of prognostic significance in cancer |
US8835358B2 (en) | 2009-12-15 | 2014-09-16 | Cellular Research, Inc. | Digital counting of individual molecules by stochastic attachment of diverse labels |
US10388403B2 (en) | 2010-01-19 | 2019-08-20 | Verinata Health, Inc. | Analyzing copy number variation in the detection of cancer |
ES2615728T3 (es) | 2010-01-29 | 2017-06-08 | Qiagen Gaithersburg, Inc. | Métodos y composiciones para una purificación y un análisis múltiple específico de secuencia de ácidos nucleicos |
CA2783665A1 (en) | 2010-03-03 | 2011-09-09 | OSI Pharmaceuticals, LLC | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors |
JP5847097B2 (ja) | 2010-03-05 | 2016-01-20 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 骨造成のための骨セメント系 |
US8951940B2 (en) | 2010-04-01 | 2015-02-10 | Illumina, Inc. | Solid-phase clonal amplification and related methods |
CN102241772B (zh) | 2010-05-12 | 2017-03-15 | 浙江数问生物技术有限公司 | 抗体与诊断试剂盒 |
US20130059741A1 (en) | 2010-05-13 | 2013-03-07 | Illumina, Inc. | Binding assays for markers |
US20190010543A1 (en) | 2010-05-18 | 2019-01-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10179937B2 (en) | 2014-04-21 | 2019-01-15 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
EP2572001A2 (en) | 2010-05-19 | 2013-03-27 | QIAGEN Gaithersburg, Inc. | Methods and compositions for sequence-specific purification and multiplex analysis of nucleic acids |
WO2011160206A1 (en) | 2010-06-23 | 2011-12-29 | Morin Ryan D | Biomarkers for non-hodgkin lymphomas and uses thereof |
US9029103B2 (en) | 2010-08-27 | 2015-05-12 | Illumina Cambridge Limited | Methods for sequencing polynucleotides |
WO2012034130A2 (en) | 2010-09-10 | 2012-03-15 | Qiagen | Methods and compositions for nucleic acid detection |
US8483969B2 (en) | 2010-09-17 | 2013-07-09 | Illuminia, Inc. | Variation analysis for multiple templates on a solid support |
EP2619327B1 (en) | 2010-09-21 | 2014-10-22 | Population Genetics Technologies LTD. | Increasing confidence of allele calls with molecular counting |
WO2012047899A2 (en) | 2010-10-04 | 2012-04-12 | The Johns Hopkins University | Novel dna hypermethylation diagnostic biomarkers for colorectal cancer |
EP2630263B2 (en) | 2010-10-22 | 2021-11-10 | Cold Spring Harbor Laboratory | Varietal counting of nucleic acids for obtaining genomic copy number information |
CN105243295B (zh) | 2010-11-30 | 2018-08-17 | 香港中文大学 | 与癌症相关的遗传或分子畸变的检测 |
PL3214091T3 (pl) | 2010-12-09 | 2019-03-29 | The Trustees Of The University Of Pennsylvania | Zastosowanie komórek T modyfikowanych chimerycznymi receptorami antygenowymi do leczenia nowotworów |
ES2791716T3 (es) | 2010-12-14 | 2020-11-05 | Univ Maryland | Células T que expresan al receptor de antígeno quimérico antietiqueta universal y métodos para el tratamiento del cáncer |
JP6328934B2 (ja) | 2010-12-22 | 2018-05-23 | ナテラ, インコーポレイテッド | 非侵襲性出生前親子鑑定法 |
US20150024952A1 (en) | 2010-12-28 | 2015-01-22 | Arlet Alarcon | Molecular profiling for cancer |
CA2823621C (en) | 2010-12-30 | 2023-04-25 | Foundation Medicine, Inc. | Optimization of multigene analysis of tumor samples |
WO2012095378A1 (en) | 2011-01-11 | 2012-07-19 | Roche Diagnostics Gmbh | High resolution melting analysis as a prescreening tool |
US9365897B2 (en) | 2011-02-08 | 2016-06-14 | Illumina, Inc. | Selective enrichment of nucleic acids |
US8728732B2 (en) | 2011-03-01 | 2014-05-20 | The Johns Hopkins University | Global DNA hypomethylation and biomarkers for clinical indications in cancer |
ES2472965T3 (es) | 2011-03-04 | 2014-07-03 | F. Hoffmann-La Roche Ag | Nuevo tipo de sondas universales para la detección de variantes gen�micas |
US8658572B2 (en) | 2011-03-18 | 2014-02-25 | Roche Nimblegen, Inc. | Whole proteome tiling microarrays |
EP2697397B1 (en) * | 2011-04-15 | 2017-04-05 | The Johns Hopkins University | Safe sequencing system |
US20140222443A1 (en) | 2011-06-07 | 2014-08-07 | Kathleen Danenberg | Molecular profiling for cancer |
DK2768972T3 (en) | 2011-09-23 | 2017-09-25 | Illumina Inc | Methods and Compositions for Nucleic Acid Sequencing |
US9410206B2 (en) | 2011-11-30 | 2016-08-09 | John Wayne Cancer Institute | Long noncoding RNA (lncRNA) as a biomarker and therapeutic marker in cancer |
EP2607495A1 (en) | 2011-12-23 | 2013-06-26 | Genomica S.A.U. | Method for detection of KRAS mutations |
ES2691404T3 (es) | 2012-01-31 | 2018-11-27 | SPEISER, Paul | Diagnóstico no invasivo del cáncer |
US20150011416A1 (en) | 2012-02-23 | 2015-01-08 | Qiagen Mansfield, Inc | Multimodal pcr target detection |
ES2776673T3 (es) | 2012-02-27 | 2020-07-31 | Univ North Carolina Chapel Hill | Métodos y usos para etiquetas moleculares |
CA2867293C (en) | 2012-03-13 | 2020-09-01 | Abhijit Ajit PATEL | Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing |
ES2828661T3 (es) | 2012-03-20 | 2021-05-27 | Univ Washington Through Its Center For Commercialization | Métodos para reducir la tasa de error de la secuenciación de ADN masiva en paralelo mediante el uso de la secuenciación de secuencia consenso bicatenaria |
EP4239081A3 (en) | 2012-03-26 | 2023-11-08 | The Johns Hopkins University | Rapid aneuploidy detection |
EP2653558B1 (en) | 2012-04-18 | 2015-10-07 | Roche Diagniostics GmbH | A method of detecting nucleic acid targets using a statistical classifier |
DK3428290T3 (da) | 2012-07-26 | 2022-07-04 | Illumina Inc | Sammensætninger og fremgangsmåder til amplifikation af nukleinsyrer |
WO2014020137A1 (en) | 2012-08-02 | 2014-02-06 | Qiagen Gmbh | Recombinase mediated targeted dna enrichment for next generation sequencing |
US8904664B2 (en) | 2012-08-15 | 2014-12-09 | Mimedx Group, Inc. | Dehydration device and methods for drying biological materials |
US20140066317A1 (en) | 2012-09-04 | 2014-03-06 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US20160040229A1 (en) | 2013-08-16 | 2016-02-11 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
PL2893040T3 (pl) | 2012-09-04 | 2019-05-31 | Guardant Health Inc | Sposoby wykrywania rzadkich mutacji i wariantu liczby kopii |
US10876152B2 (en) | 2012-09-04 | 2020-12-29 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
JP6324962B2 (ja) | 2012-09-18 | 2018-05-23 | キアゲン ゲーエムベーハー | 標的rna枯渇化組成物を調製するための方法およびキット |
WO2014062571A1 (en) | 2012-10-15 | 2014-04-24 | The Johns Hopkins University | Arid1b and neuroblastoma |
US20140128270A1 (en) | 2012-11-08 | 2014-05-08 | Roche Molecular Systems, Inc. | Method of improving microarray performance by strand elimination |
US9218450B2 (en) | 2012-11-29 | 2015-12-22 | Roche Molecular Systems, Inc. | Accurate and fast mapping of reads to genome |
WO2014089241A2 (en) | 2012-12-04 | 2014-06-12 | Caris Mpi, Inc. | Molecular profiling for cancer |
US9382581B2 (en) | 2012-12-13 | 2016-07-05 | Roche Molecular Systems, Inc. | Primers with modified phosphate and base in allele-specific PCR |
US9279146B2 (en) | 2012-12-21 | 2016-03-08 | Roche Molecular Systems, Inc. | Compounds and methods for the enrichment of mutated nucleic acid from a mixture |
WO2014113204A1 (en) | 2013-01-17 | 2014-07-24 | Personalis, Inc. | Methods and systems for genetic analysis |
US20140287937A1 (en) | 2013-02-21 | 2014-09-25 | Toma Biosciences, Inc. | Methods for assessing cancer |
CA2901293A1 (en) | 2013-03-15 | 2014-09-25 | Abbott Molecular Inc. | Detection of bisulfite converted nucleotide sequences |
UY35468A (es) | 2013-03-16 | 2014-10-31 | Novartis Ag | Tratamiento de cáncer utilizando un receptor quimérico de antígeno anti-cd19 |
US9792403B2 (en) | 2013-05-10 | 2017-10-17 | Foundation Medicine, Inc. | Analysis of genetic variants |
US9501449B2 (en) | 2013-09-10 | 2016-11-22 | Sviral, Inc. | Method, apparatus, and computer-readable medium for parallelization of a computer program on a plurality of computing cores |
EP3068883B1 (en) | 2013-11-13 | 2020-04-29 | Nugen Technologies, Inc. | Compositions and methods for identification of a duplicate sequencing read |
US9873908B2 (en) | 2013-11-27 | 2018-01-23 | Roche Molecular Systems, Inc. | Methods for the enrichment of mutated nucleic acid from a mixture |
JP6366719B2 (ja) | 2013-12-20 | 2018-08-01 | イルミナ インコーポレイテッド | 断片化したゲノムdna試料におけるゲノム連結性情報の保存 |
ES2822125T3 (es) | 2013-12-28 | 2021-04-29 | Guardant Health Inc | Métodos y sistemas para detectar variantes genéticas |
US9944924B2 (en) | 2014-01-16 | 2018-04-17 | Illumina, Inc. | Polynucleotide modification on solid support |
WO2015116868A2 (en) | 2014-01-29 | 2015-08-06 | Caris Mpi, Inc. | Molecular profiling of immune modulators |
US9670530B2 (en) | 2014-01-30 | 2017-06-06 | Illumina, Inc. | Haplotype resolved genome sequencing |
WO2015120177A1 (en) | 2014-02-07 | 2015-08-13 | Qiagen Sciences Llc | Pcr primers |
US10208338B2 (en) | 2014-03-03 | 2019-02-19 | Swift Biosciences, Inc. | Enhanced adaptor ligation |
EP3119197A1 (en) | 2014-03-18 | 2017-01-25 | Qiagen GmbH | Stabilization and isolation of extracellular nucleic acids |
CN115354076A (zh) | 2014-03-25 | 2022-11-18 | 奎斯特诊断投资股份有限公司 | 通过使用平均循环阈值的基因内差异表达(ide)检测基因融合 |
CN106462670B (zh) | 2014-05-12 | 2020-04-10 | 豪夫迈·罗氏有限公司 | 超深度测序中的罕见变体召集 |
US20170183742A1 (en) | 2014-05-27 | 2017-06-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
CN113584139B (zh) | 2014-06-03 | 2024-08-13 | 亿明达股份有限公司 | 使用对纳米颗粒或纳米颗粒附近锚定的系链检测事件的组合物,系统和方法 |
US10400277B2 (en) | 2014-06-10 | 2019-09-03 | Diacarta Ltd | DNA mutation detection employing enrichment of mutant polynucleotide sequences and minimally invasive sampling |
GB201410646D0 (en) | 2014-06-14 | 2014-07-30 | Illumina Cambridge Ltd | Methods of increasing sequencing accuracy |
US10017759B2 (en) | 2014-06-26 | 2018-07-10 | Illumina, Inc. | Library preparation of tagged nucleic acid |
WO2015198074A1 (en) | 2014-06-27 | 2015-12-30 | Illumina Cambridge Limited | Methods, applications and systems for processing and presenting gene sequencing information |
US10658073B2 (en) | 2014-08-15 | 2020-05-19 | QIAGEN Redwood City, Inc. | Methods and systems for interpretation and reporting of sequence-based genetic tests using pooled allele statistics |
EP3626834B1 (en) | 2014-07-15 | 2022-09-21 | Qiagen Sciences, LLC | Semi-random barcodes for nucleic acid analysis |
JP6803327B2 (ja) | 2014-08-06 | 2020-12-23 | ニューゲン テクノロジーズ, インコーポレイテッド | 標的化されたシークエンシングからのデジタル測定値 |
WO2016024346A1 (ja) | 2014-08-13 | 2016-02-18 | 株式会社東京精密 | プローバ及びプローブ検査方法 |
US10633694B2 (en) | 2014-09-12 | 2020-04-28 | Illumina, Inc. | Compositions, systems, and methods for detecting the presence of polymer subunits using chemiluminescence |
EP3212808B1 (en) | 2014-10-30 | 2022-03-02 | Personalis, Inc. | Methods for using mosaicism in nucleic acids sampled distal to their origin |
CN104531854B (zh) | 2014-11-10 | 2017-01-18 | 中国人民解放军第三〇七医院 | 检测西妥昔单抗治疗转移性结直肠癌耐药的试剂盒 |
SG11201703693UA (en) | 2014-11-11 | 2017-06-29 | Illumina Cambridge Ltd | Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid |
EP4112738B1 (en) | 2014-12-05 | 2024-07-24 | Foundation Medicine, Inc. | Multigene analysis of tumor samples |
ES2870097T3 (es) | 2014-12-15 | 2021-10-26 | Illumina Inc | Método de colocación molecular individual sobre un sustrato |
US10792299B2 (en) | 2014-12-26 | 2020-10-06 | Nitto Denko Corporation | Methods and compositions for treating malignant tumors associated with kras mutation |
EP3766986B1 (en) | 2014-12-31 | 2022-06-01 | Guardant Health, Inc. | Detection and treatment of disease exhibiting disease cell heterogeneity and systems and methods for communicating test results |
WO2016118719A1 (en) | 2015-01-23 | 2016-07-28 | Qiagen Sciences, Llc | High multiplex pcr with molecular barcoding |
SG11201706504RA (en) | 2015-02-10 | 2017-09-28 | Illumina Inc | Methods and compositions for analyzing cellular components |
US10815522B2 (en) | 2015-02-20 | 2020-10-27 | The Johns Hopkins University | Genomic alterations in the tumor and circulation of pancreatic cancer patients |
WO2016135300A1 (en) | 2015-02-26 | 2016-09-01 | Qiagen Gmbh | Efficiency improving methods for gene library generation |
WO2016140974A1 (en) | 2015-03-01 | 2016-09-09 | Novena Therapeutics Inc. | Process for measuring tumor response to an initial oncology treatment |
AU2016226210A1 (en) | 2015-03-03 | 2017-09-21 | Caris Mpi, Inc. | Molecular profiling for cancer |
CA3227242A1 (en) | 2015-03-16 | 2016-09-22 | Personal Genome Diagnostics Inc. | Systems and methods for analyzing nucleic acid |
US20180100859A1 (en) | 2015-03-24 | 2018-04-12 | Eutropics Pharmaceuticals, Inc. | Surrogate functional biomarker for solid tumor cancer |
US9828672B2 (en) | 2015-03-26 | 2017-11-28 | Lam Research Corporation | Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma |
CN116042833A (zh) | 2015-03-26 | 2023-05-02 | 奎斯特诊断投资股份有限公司 | 比对和变体测序分析管线 |
WO2016156529A1 (en) | 2015-03-31 | 2016-10-06 | Qiagen Gmbh | Efficiency improving ligation methods |
WO2016170147A1 (en) | 2015-04-22 | 2016-10-27 | Qiagen Gmbh | Efficiency improving ligation methods |
US10844428B2 (en) | 2015-04-28 | 2020-11-24 | Illumina, Inc. | Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS) |
CA2983833C (en) | 2015-05-01 | 2024-05-14 | Guardant Health, Inc. | Diagnostic methods |
WO2016181128A1 (en) | 2015-05-11 | 2016-11-17 | Genefirst Ltd | Methods, compositions, and kits for preparing sequencing library |
EP3303610B1 (en) | 2015-05-27 | 2024-05-08 | Quest Diagnostics Investments Incorporated | Compositions and methods for screening solid tumors |
IL293410B2 (en) | 2015-06-03 | 2024-01-01 | Illumina Inc | Compositions, systems and methods for sequencing polynucleotides using tethers anchored to polymerases attached to nanopores |
WO2016193490A1 (en) | 2015-06-05 | 2016-12-08 | Qiagen Gmbh | Method for separating dna by size |
US11104896B2 (en) | 2015-06-10 | 2021-08-31 | Qiagen Gmbh | Method for isolating extracellular nucleic acids using anion exchange particles |
US10590425B2 (en) | 2015-06-29 | 2020-03-17 | Caris Science, Inc. | Therapeutic oligonucleotides |
CN115261468A (zh) | 2015-07-06 | 2022-11-01 | 伊卢米纳剑桥有限公司 | 用于核酸扩增的样品制备 |
US10640823B2 (en) | 2015-07-08 | 2020-05-05 | Quest Diagnostics Investments Incorporated | Detecting genetic copy number variation |
WO2017015513A1 (en) | 2015-07-21 | 2017-01-26 | Guardant Health, Inc. | Locked nucleic acids for capturing fusion genes |
CA3176469A1 (en) | 2015-07-27 | 2017-02-02 | Illumina, Inc. | Spatial mapping of nucleic acid sequence information |
US11286531B2 (en) | 2015-08-11 | 2022-03-29 | The Johns Hopkins University | Assaying ovarian cyst fluid |
CA2984712A1 (en) | 2015-08-24 | 2017-03-02 | Qiagen Gmbh | Method for generating a rna-sequencing library |
US11302416B2 (en) | 2015-09-02 | 2022-04-12 | Guardant Health | Machine learning for somatic single nucleotide variant detection in cell-free tumor nucleic acid sequencing applications |
US20170058332A1 (en) | 2015-09-02 | 2017-03-02 | Guardant Health, Inc. | Identification of somatic mutations versus germline variants for cell-free dna variant calling applications |
IL258309B2 (en) | 2015-09-24 | 2023-03-01 | Caris Science Inc | Method, device and product of computer software for analyzing biological data |
US10577643B2 (en) | 2015-10-07 | 2020-03-03 | Illumina, Inc. | Off-target capture reduction in sequencing techniques |
US20180300449A1 (en) | 2015-10-10 | 2018-10-18 | Guardant Health, Inc. | Methods and applications of gene fusion detection in cell-free dna analysis |
US20170141793A1 (en) | 2015-11-13 | 2017-05-18 | Microsoft Technology Licensing, Llc | Error correction for nucleotide data stores |
EP4219747A3 (en) | 2015-11-20 | 2023-08-09 | PreAnalytiX GmbH | Method of preparing sterilized compositions for stabilization of extracellular nucleic acids |
CN117174167A (zh) | 2015-12-17 | 2023-12-05 | 夸登特健康公司 | 通过分析无细胞dna确定肿瘤基因拷贝数的方法 |
EP3402896B1 (en) | 2016-01-15 | 2021-03-31 | Ventana Medical Systems, Inc. | Deep sequencing profiling of tumors |
WO2017127741A1 (en) | 2016-01-22 | 2017-07-27 | Grail, Inc. | Methods and systems for high fidelity sequencing |
JP6876062B2 (ja) | 2016-01-26 | 2021-05-26 | ヴェンタナ メディカル システムズ, インク. | 自動ダイセクション、次世代シークエンシング、及び自動スライド染色装置を用いる、腫瘍のための予測診断ワークフロー |
WO2017132438A1 (en) | 2016-01-29 | 2017-08-03 | The Johns Hopkins University | Bottleneck sequencing |
EP3411505A4 (en) | 2016-02-02 | 2020-01-15 | Guardant Health, Inc. | DETECTION AND DIAGNOSIS OF CANCER EVOLUTION |
EP3423828A4 (en) | 2016-02-29 | 2019-11-13 | Foundation Medicine, Inc. | METHODS AND SYSTEMS FOR EVALUATING THE MUTATIONAL CHARGE OF A TUMOR |
WO2017181146A1 (en) | 2016-04-14 | 2017-10-19 | Guardant Health, Inc. | Methods for early detection of cancer |
AU2017249594B2 (en) | 2016-04-15 | 2023-08-24 | Natera, Inc. | Methods for lung cancer detection |
US20210222248A1 (en) | 2016-04-15 | 2021-07-22 | Roche Sequencing Solutions, Inc. | Detecting cancer driver genes and pathways |
US20170316149A1 (en) | 2016-04-28 | 2017-11-02 | Quest Diagnostics Investments Inc. | Classification of genetic variants |
CN116397007A (zh) | 2016-05-11 | 2023-07-07 | 伊鲁米那股份有限公司 | 使用argonaute系统的多核苷酸富集和扩增 |
US20190176153A1 (en) | 2016-05-18 | 2019-06-13 | Roche Sequencing Solutions, Inc. | Quantitative real time pcr amplification using an electrowetting-based device |
EP3464597B1 (en) | 2016-05-25 | 2022-08-03 | Caris Science, Inc. | Oligonucleotide probe selection method and uses thereof |
GB2568608B (en) | 2016-05-27 | 2022-10-12 | Personalis Inc | Personalized genetic testing |
US11299783B2 (en) | 2016-05-27 | 2022-04-12 | Personalis, Inc. | Methods and systems for genetic analysis |
EP3469079B1 (en) | 2016-06-13 | 2020-08-05 | Grail, Inc. | Enrichment of mutated cell free nucleic acids for cancer detection |
WO2018005811A1 (en) | 2016-06-30 | 2018-01-04 | Grail, Inc. | Differential tagging of rna for preparation of a cell-free dna/rna sequencing library |
AU2017292854B2 (en) | 2016-07-06 | 2023-08-17 | Guardant Health, Inc. | Methods for fragmentome profiling of cell-free nucleic acids |
US11821028B2 (en) | 2016-07-12 | 2023-11-21 | QIAGEN Sciences, LLP | Single end duplex DNA sequencing |
KR102475710B1 (ko) | 2016-07-22 | 2022-12-08 | 오레곤 헬스 앤드 사이언스 유니버시티 | 단일 세포 전체 게놈 라이브러리 및 이의 제조를 위한 조합 인덱싱 방법 |
CA3037917C (en) | 2016-09-22 | 2024-05-28 | Illumina, Inc. | Somatic copy number variation detection |
EP3299471B1 (en) | 2016-09-23 | 2019-10-23 | Roche Diagniostics GmbH | Methods for determining the amount of a nucleic acid of interest in an unprocessed sample |
WO2018057928A1 (en) | 2016-09-23 | 2018-03-29 | Grail, Inc. | Methods of preparing and analyzing cell-free nucleic acid sequencing libraries |
EP3519421A4 (en) | 2016-09-27 | 2020-06-03 | Caris Science, Inc. | OLIGONUCLEOTIDE PROBES AND THEIR USES |
WO2018064629A1 (en) | 2016-09-30 | 2018-04-05 | Guardant Health, Inc. | Methods for multi-resolution analysis of cell-free nucleic acids |
US10810213B2 (en) | 2016-10-03 | 2020-10-20 | Illumina, Inc. | Phenotype/disease specific gene ranking using curated, gene library and network based data structures |
RU2741807C2 (ru) | 2016-10-07 | 2021-01-28 | Иллюмина, Инк. | Система и способ вторичного анализа данных секвенирования нуклеотидов |
EP3535415A4 (en) | 2016-10-24 | 2020-07-01 | The Chinese University of Hong Kong | TUMOR DETECTION METHODS AND SYSTEMS |
US10822651B2 (en) | 2016-10-28 | 2020-11-03 | Grail, Inc. | Methods for single-stranded nucleic acid library preparation |
CN109844137B (zh) | 2016-10-31 | 2022-04-26 | 豪夫迈·罗氏有限公司 | 用于鉴定嵌合产物的条形码化环状文库构建 |
CA3040930A1 (en) | 2016-11-07 | 2018-05-11 | Grail, Inc. | Methods of identifying somatic mutational signatures for early cancer detection |
US20180135044A1 (en) | 2016-11-15 | 2018-05-17 | Personal Genome Diagnostics, Inc. | Non-unique barcodes in a genotyping assay |
KR102638152B1 (ko) | 2016-11-16 | 2024-02-16 | 일루미나, 인코포레이티드 | 서열 변이체 호출을 위한 검증 방법 및 시스템 |
US10011870B2 (en) | 2016-12-07 | 2018-07-03 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
EP4357455A3 (en) | 2016-12-12 | 2024-07-24 | Grail, LLC | Methods for tagging and amplifying rna template molecules for preparing sequencing libraries |
EP3559841A1 (en) | 2016-12-22 | 2019-10-30 | Grail, Inc. | Base coverage normalization and use thereof in detecting copy number variation |
JP7300989B2 (ja) | 2016-12-22 | 2023-06-30 | ガーダント ヘルス, インコーポレイテッド | 核酸分子を解析するための方法およびシステム |
WO2018119399A1 (en) | 2016-12-23 | 2018-06-28 | Grail, Inc. | Methods for high efficiency library preparation using double-stranded adapters |
EP3562961A4 (en) | 2016-12-28 | 2021-01-06 | Quest Diagnostics Investments LLC | COMPOSITIONS AND METHODS OF DETECTION OF CIRCULATING TUMOR DNA |
SG11201905640XA (en) | 2017-01-17 | 2019-08-27 | Illumina Inc | Oncogenic splice variant determination |
EP3889962A1 (en) | 2017-01-18 | 2021-10-06 | Illumina, Inc. | Methods and systems for generation and error-correction of unique molecular index sets with heterogeneous molecular lengths |
SG11201906397UA (en) | 2017-01-25 | 2019-08-27 | Univ Hong Kong Chinese | Diagnostic applications using nucleic acid fragments |
EP3929306A1 (en) | 2017-01-26 | 2021-12-29 | QIAGEN GmbH | Method for enriching template nucleic acids |
JP7256748B2 (ja) | 2017-03-23 | 2023-04-12 | ユニヴァーシティ オブ ワシントン | エラーが訂正された核酸配列決定への適用を伴う標的化核酸配列濃縮のための方法 |
EP3382978A1 (en) | 2017-03-31 | 2018-10-03 | Nagravision SA | Distributed denial of service analysis |
WO2018204657A1 (en) | 2017-05-04 | 2018-11-08 | The Johns Hopkins University | Detection of cancer |
CN110892222A (zh) | 2017-05-26 | 2020-03-17 | 诺维尔里斯公司 | 去涂层窑炉的流体温度控制系统及方法 |
CA3072195A1 (en) | 2017-08-07 | 2019-04-04 | The Johns Hopkins University | Methods and materials for assessing and treating cancer |
AU2018375785A1 (en) | 2017-11-30 | 2019-12-12 | Illumina, Inc. | Validation methods and systems for sequence variant calls |
CN108181992A (zh) | 2018-01-22 | 2018-06-19 | 北京百度网讯科技有限公司 | 基于手势的语音唤醒方法、装置、设备及计算机可读介质 |
EP3765017A4 (en) | 2018-03-15 | 2021-12-01 | The Board of Trustees of the Leland Stanford Junior University | METHOD USING NUCLEIC ACID SIGNALS TO INDICATE BIOLOGICAL ATTRIBUTES |
US20210292851A1 (en) | 2018-07-27 | 2021-09-23 | Roche Sequencing Solutions, Inc. | Method of monitoring effectiveness of immunotherapy of cancer patients |
-
2012
- 2012-04-12 EP EP12772013.4A patent/EP2697397B1/en not_active Revoked
- 2012-04-12 PL PL17154750.8T patent/PL3246416T3/pl unknown
- 2012-04-12 EP EP17154750.8A patent/EP3246416B1/en active Active
- 2012-04-12 ES ES12772013.4T patent/ES2625288T3/es active Active
- 2012-04-12 CN CN201811425636.5A patent/CN110016499B/zh active Active
- 2012-04-12 CN CN201280029284.6A patent/CN103748236B/zh active Active
- 2012-04-12 EP EP21173115.3A patent/EP3907299A1/en active Pending
- 2012-04-12 US US14/111,715 patent/US9476095B2/en active Active
- 2012-04-12 EP EP21173117.9A patent/EP3907297A1/en active Pending
- 2012-04-12 AU AU2012242847A patent/AU2012242847B2/en active Active
- 2012-04-12 PL PL12772013T patent/PL2697397T3/pl unknown
- 2012-04-12 WO PCT/US2012/033207 patent/WO2012142213A2/en active Application Filing
- 2012-04-12 DK DK17154750.8T patent/DK3246416T3/da active
-
2015
- 2015-07-30 US US14/814,030 patent/US9487829B2/en active Active
-
2016
- 2016-04-05 US US15/090,773 patent/US20160215333A1/en not_active Abandoned
- 2016-08-18 US US15/240,034 patent/US11180803B2/en active Active
-
2019
- 2019-05-21 US US16/417,817 patent/US11459611B2/en active Active
-
2021
- 2021-04-28 US US17/243,184 patent/US11773440B2/en active Active
- 2021-05-19 US US17/324,380 patent/US11453913B2/en active Active
- 2021-05-19 US US17/324,253 patent/US20210277467A1/en active Pending
-
2022
- 2022-06-10 US US17/837,591 patent/US20220316005A1/en active Pending
-
2023
- 2023-11-13 US US18/507,776 patent/US20240084381A1/en active Pending
- 2023-11-27 US US18/519,727 patent/US12006544B2/en active Active
-
2024
- 2024-03-22 US US18/613,979 patent/US20240263231A1/en active Pending
- 2024-06-10 US US18/738,910 patent/US20240309449A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009152928A2 (de) * | 2008-05-28 | 2009-12-23 | Genxpro Gmbh | Verfahren zur quantitativen analyse von nukleinsäuren, marker dafür und deren verwendung |
WO2010127186A1 (en) * | 2009-04-30 | 2010-11-04 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110016499B (zh) | 安全测序系统 | |
AU2014248511B2 (en) | Systems and methods for prenatal genetic analysis | |
JP5986572B2 (ja) | 固定化プライマーを使用した標的dnaの直接的な捕捉、増幅、および配列決定 | |
WO2016181128A1 (en) | Methods, compositions, and kits for preparing sequencing library | |
US10465241B2 (en) | High resolution STR analysis using next generation sequencing | |
US20200277654A1 (en) | Method for Detecting multiple DNA Mutations and Copy Number Variations | |
JP2022516307A (ja) | 多重コピー数変異検出および対立遺伝子比定量化のための定量的アンプリコン配列決定 | |
WO2023287876A1 (en) | Efficient duplex sequencing using high fidelity next generation sequencing reads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40008385 Country of ref document: HK |
|
GR01 | Patent grant | ||
GR01 | Patent grant |