JP2012129560A - 露光装置、露光方法及びデバイス製造方法 - Google Patents

露光装置、露光方法及びデバイス製造方法 Download PDF

Info

Publication number
JP2012129560A
JP2012129560A JP2012080480A JP2012080480A JP2012129560A JP 2012129560 A JP2012129560 A JP 2012129560A JP 2012080480 A JP2012080480 A JP 2012080480A JP 2012080480 A JP2012080480 A JP 2012080480A JP 2012129560 A JP2012129560 A JP 2012129560A
Authority
JP
Japan
Prior art keywords
liquid
optical element
substrate
exposure apparatus
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012080480A
Other languages
English (en)
Inventor
Soichi Yamato
壮一 大和
Hiroyuki Nagasaka
博之 長坂
Tatsu Sugawara
龍 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35787091&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012129560(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012080480A priority Critical patent/JP2012129560A/ja
Publication of JP2012129560A publication Critical patent/JP2012129560A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask

Abstract

【課題】液体の液浸領域の状態を把握することができる露光装置を提供する。
【解決手段】露光装置EXは投影光学系PLを備えており、投影光学系PLは投影光学系PLの像面に最も近い第1光学素子LS1を有している。そして、露光装置EXは、投影光学系PLの像面側に設けられた透明部材64の上面65と第1光学素子LS1との間に第1液体LQ1の第1液浸領域LR1を形成する第1液浸機構1と、第1液浸領域LR1の状態を観察する観察装置60とを備えている。
【選択図】図1

Description

本発明は、液体を介して基板を露光する露光装置、露光方法及びデバイス製造方法に関するものである。
半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長はKrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。
また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。
R=k・λ/NA … (1)
δ=±k・λ/NA … (2)
ここで、λは露光波長、NAは投影光学系の開口数、k、kはプロセス係数である。(1)式、(2)式より、解像度Rを高めるために、露光波長λを短くして、開口数NAを大きくすると、焦点深度δが狭くなることが分かる。
焦点深度δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のフォーカスマージンが不足するおそれがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特許文献1に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たして液浸領域を形成し、液体中での露光光の波長が空気中の1/n(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。
国際公開第99/49504号
ところで、液浸法に基づく露光処理を良好に行うためには、液浸領域を所望状態にすることが不可欠である。そのため、液体の液浸領域の状態を把握し、液浸領域が所望状態であることを確認した後、露光処理を行うことが望ましい。
本発明はこのような事情に鑑みてなされたものであって、液体の液浸領域の状態を把握することができる露光装置及び露光方法並びにその露光装置及び露光方法を用いるデバイス製造方法を提供することを目的とする。
上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するものではない。
本発明の第1の態様に従えば、投影光学系(PL)と投影光学系(PL)の像面側に形成された液浸領域(LR1)の液体(LQ1)とを介して基板(P)を露光する露光装置において、投影光学系(PL)は、投影光学系(PL)の像面に最も近い第1光学素子(LS1)を有し、投影光学系(PL)の像面側に設けられた所定面(65)と第1光学素子(LS1)との間に液体(LQ1)の液浸領域(LR1)を形成する液浸機構(12,14など)と、液浸領域(LR1)の状態を観察する観察装置(60)とを備えた露光装置(EX)が提供される。
本発明の第2の態様に従えば、投影光学系(PL)と投影光学系(PL)の像面側に形成された液浸領域(LR2)の液体(LQ2)とを介して基板(P)を露光する露光装置において、投影光学系(PL)は、投影光学系(PL)の像面に最も近い第1光学素子(LS1)と、第1光学素子(LS1)に次いで像面に近い第2光学素子(LS2)とを有し、第1光学素子(LS1)と第2光学素子(LS2)との間に液体(LQ2)の液浸領域(LR2)を形成する液浸機構(32,34など)と、液浸領域(LR2)の状態を観察する観察装置(60)とを備えた露光装置(EX)が提供される。
また本発明の第3の態様に従えば、光学素子(LS1)と該光学素子の光射出側に形成された液浸領域(LR1)の液体(LQ1)とを介して基板(P)を露光する露光装置において、光学素子(LS1)の光射出側に配置された所定面(65)と光学素子(LS1)との間を液体で満たすための液浸機構(12,14など)と、光学素子(LS1)と所定面(65)との間の液体(LQ1)の状態を観察する観察装置(60)とを備えた露光装置(EX)が提供される。
本発明の第1〜第3の態様によれば、液浸領域の状態を観察する観察装置を設けたので、その観察装置の観察結果に基づいて、形成された液浸領域が所望状態であるか否かを確認することができる。そして、観察装置の観察結果に基づいて、形成された液浸領域が所望状態であると判断した後、例えば基板の露光を行うことで、液浸領域の液体を介して基板を良好に露光することができる。一方、観察装置の観察結果に基づいて、形成された液浸領域が所望状態でないと判断された場合には、液浸領域を所望状態にするための適切な処置、例えば液体の入れ替えを行うことができる。
本発明の第4の態様に従えば、上記態様の露光装置(EX)を用いるデバイス製造方法が提供される。
本発明の第4の態様によれば、形成された液浸領域が所望状態であることを確認した後に、その液浸領域の液体を介してデバイスを製造するための露光処理や計測処理などを良好に行うことができる。したがって、所望の性能を有するデバイスを提供することができる。
本発明の第5の態様に従えば、光学素子(LS1及び/またはLS2)の光射出側に形成された液浸領域(LR1及び/またはLR2)の液体(LQ1及び/またはLQ2)を介して基板(P)を露光する露光方法であって、前記液浸領域の液体を介して基板を露光することと、露光した基板(P)を未露光の基板(P)と交換すること、基板の交換中に、前記液浸領域の液体中の気体部分を検出することとを含む露光方法が提供される。
本発明の第5の態様によれば、液浸領域の液体中の気体部分を検出することで、液浸領域の状態を把握し、液浸領域に適宜必要な処置を施すことにより、良好な液浸領域を維持することができる。また、基板の交換時に気体部分の検出を行うので、気体部分の検出が露光動作に影響を及ぼすことがなく、露光装置の所望のスループットを維持することができる。なお、「液体中の気体部分」は液体中の気泡だけでなく、液体中の空隙(Void)も含む。
本発明の第6の態様に従えば、上記本発明の露光方法により基板を露光することと、露光した基板を現像することと、現像した基板を加工することを含むデバイスの製造方法が提供される。本デバイス製造方法は本発明の露光方法を採用しているので、所望の性能を有するデバイスを提供することができる。
本発明によれば、観察装置を使って液体の液浸領域が所望状態であることを確認し、基板を良好に露光することができる。
第1の実施形態に係る露光装置を示す概略構成図である。 基板ステージ及び計測ステージを上方から見た平面図である。 投影光学系先端近傍の拡大断面図である。 基板ステージと計測ステージとの間で第1液浸領域が移動する様子を説明するための図である。 露光手順の一例を示すフローチャート図である。 観察装置が液浸領域を観察している状態を示す図である。 第2の実施形態に係る露光装置を示す図である。 第3の実施形態に係る露光装置を示す図である。 観察装置による観察タイミングの一例を示すフローチャート図である。 第4実施形態に係る露光手順の一例を示すフローチャート図である。 第4実施形態に係る露光装置の要部を示す図である。 脱気装置の一例を示す図である。 照明光源を備えた観察装置を示す概略図である。 液浸領域を照明する照明装置の一例を示す概略図である。 液浸領域を照明する照明装置の一例を示す概略図である。 液浸領域を照明する照明装置の一例を示す概略図である。 液浸領域を照明する照明装置の一例を示す概略図である。 半導体デバイスの製造工程の一例を示すフローチャート図である。
以下、本発明の実施形態について図面を参照しながら説明する。
<第1の実施形態>
図1は第1の実施形態に係る露光装置EXを示す概略構成図である。図1において、露光装置EXは、マスクMを支持して移動可能なマスクステージMSTと、基板Pを保持する基板ホルダPHを有し、基板ホルダPHに基板Pを保持して移動可能な基板ステージPST1と、露光処理に関する計測を行う計測器を保持し、基板ステージPST1とは独立して移動可能な計測ステージPST2と、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンの像を基板ステージPST1に支持されている基板Pに投影する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。制御装置CONTには、露光処理に関する情報を表示する表示装置DYが接続されている。
本実施形態の露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、投影光学系PLを構成する複数の光学素子LS1〜LS7のうち、投影光学系PLの像面に最も近い第1光学素子LS1の下面T1と基板Pとの間を第1液体LQ1で満たして第1液浸領域LR1を形成する第1液浸機構1を備えている。第1液浸機構1は、第1光学素子LS1の下面T1と基板Pとの間に第1液体LQ1を供給する第1液体供給機構10と、第1液体供給機構10で供給された第1液体LQ1を回収する第1液体回収機構20とを備えている。第1液浸機構1の動作は制御装置CONTにより制御される。
また、投影光学系PLの像面側近傍、具体的には投影光学系PLの像面側端部の光学素子LS1の近傍には、第1液浸機構1の一部を構成するノズル部材70が配置されている。ノズル部材70は、基板P(基板ステージPST)の上方において投影光学系PLの先端部の周りを囲むように設けられた環状部材である。
また、露光装置EXは、第1光学素子LS1と、第1光学素子LS1に次いで投影光学系PLの像面に近い第2光学素子LS2との間を第2液体LQ2で満たして第2液浸領域LR2を形成する第2液浸機構2を備えている。第2光学素子LS2は第1光学素子LS1の上方に配置されており、第1光学素子LS1の上面T2は、第2光学素子LS2の下面T3と対向するように配置されている。第2液浸機構2は、第1光学素子LS1と第2光学素子LS2との間に第2液体LQ2を供給する第2液体供給機構30と、第2液体供給機構30で供給された第2液体LQ2を回収する第2液体回収機構40とを備えている。第2液浸機構2の動作は制御装置CONTにより制御される。
本実施形態における露光装置EXは、第1液浸領域LR1を基板P上の一部に局所的に形成する局所液浸方式を採用している。また、露光装置EXは、第2液浸領域LR2も、第1光学素子LS1の上面T2の一部に局所的に形成する。露光装置EXは、少なくともマスクMのパターン像を基板P上に転写している間、第1液浸機構1を使って、第1光学素子LS1とその像面側に配置された基板Pとの間に第1液体LQ1を満たして第1液浸領域LR1を形成するとともに、第2液浸機構2を使って、第1光学素子LS1と第2光学素子LS2との間に第2液体LQ2を満たして第2液浸領域LR2を形成する。
また、計測ステージPST2には、第1液浸領域LR1及び第2液浸領域LR2のそれぞれの状態を観察可能な観察装置60が設けられている。観察装置60は計測ステージ60の内部に設けられている。
本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、水平面内においてマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向(非走査方向)、X軸及びY軸方向に垂直で投影光学系PLの光軸AXと一致する方向をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。なお、ここでいう「基板」は半導体ウエハ上にレジストを塗布したものを含み、「マスク」は基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。
照明光学系ILは、露光光ELを射出する露光用光源、露光用光源から射出された露光光ELの照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、及び露光光ELによるマスクM上の照明領域を設定する視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。露光用光源から射出される露光光ELとしては、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においてはArFエキシマレーザ光が用いられる。
本実施形態においては、第1液体供給機構10から供給される第1液体LQ1、及び第2液体供給機構30から供給される第2液体LQ2として純水が用いられる。すなわち、本実施形態においては、第1液体LQ1と第2液体LQ2とは同一の液体である。純水はArFエキシマレーザ光のみならず、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。
マスクステージMSTは、マスクMを保持して移動可能であって、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微小回転可能である。マスクステージMSTはリニアモータ等を含んで構成されるマスクステージ駆動機構MSTDにより駆動される。マスクステージ駆動機構MSTDは制御装置CONTにより制御される。マスクステージMST上には移動鏡52が設けられている。また、移動鏡52に対向する位置にはレーザ干渉計53が設けられている。マスクステージMST上のマスクMの2次元方向の位置、及び回転角はレーザ干渉計53によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計53の計測結果に基づいてマスクステージ駆動機構MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。
投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影するものであって、基板P側の先端部に設けられた第1光学素子LS1を含む複数の光学素子LS1〜LS7で構成されており、これら複数の光学素子LS1〜LS7は鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4、1/5、あるいは1/8の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは、屈折素子と反射素子とを含む反射屈折系、反射素子を含まない屈折系、屈折素子を含まない反射系のいずれであってもよい。照明光学系ILより射出された露光光ELは、投影光学系PLに物体面側より入射し、複数の光学素子LS7〜LS1を通過した後、投影光学系PLの像面側より射出され、基板P上に到達する。具体的には、露光光ELは、複数の光学素子LS7〜LS3のそれぞれを通過した後、第2光学素子LS2の上面T4の所定領域を通過し、下面T3の所定領域を通過した後、第2液浸領域LR2に入射する。第2液浸領域LR2を通過した露光光ELは、第1光学素子LS1の上面T2の所定領域を通過した後、下面T1の所定領域を通過し、第1液浸領域LR1に入射した後、基板P上に到達する。
本実施形態においては、第1光学素子LS1は露光光ELを透過可能な無屈折力の平行平面板であって、第1光学素子LS1の下面T1と上面T2とはほぼ平行である。一方、第2光学素子LS2は屈折力(レンズ作用)を有している。なお、第1光学素子LS1が屈折力(レンズ作用)を有していてもよい。
基板ステージPST1は、基板Pを保持する基板ホルダPHを有しており、投影光学系PLの像面側において、ベースBP上で移動可能に設けられている。基板ステージPSTは基板ステージ駆動機構PSTD1により駆動される。基板ステージ駆動機構PSTD1は制御装置CONTにより制御される。基板ステージ駆動機構PSTD1は、例えばリニアモータやボイスコイルモータ等を含んで構成されており、基板ステージPST1をX軸、Y軸、及びZ軸方向、θX、θY、及びθZ方向のそれぞれに移動可能である。したがって、基板ステージPST1は、基板ホルダPHに保持されている基板PをX軸、Y軸、及びZ軸方向、θX、θY、及びθZ方向のそれぞれに移動可能である。
基板ステージPST1の側面には移動鏡54が設けられている。また、移動鏡54に対向する位置にはレーザ干渉計55が設けられている。基板ステージPST1上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計55によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計55の計測結果に基づいて、レーザ干渉計55で規定される2次元座標系内で、基板ステージ駆動機構PSTD1を介して基板ステージPST1を駆動することで基板ステージPST1に支持されている基板PのX軸方向及びY軸方向における位置決めを行う。
また、露光装置EXは、例えば特開平8−37149号公報に開示されているような、基板P表面の面位置情報を検出する斜入射方式のフォーカス検出系を有している。フォーカス検出系は、投影光学系PLの像面に対する基板P表面のZ軸方向における位置(フォーカス位置)を検出する。また、基板Pの表面における複数の各点での各フォーカス位置を求めることにより、フォーカス検出系は基板Pの傾斜方向の姿勢を求めることもできる。制御装置CONTは、フォーカス検出系の検出結果に基づいて、基板ステージ駆動機構PSTD1を介して基板ステージPST1を駆動し、基板PのZ軸方向における位置(フォーカス位置)及び、θX、θY方向における位置を制御して、基板Pの表面(露光面)を投影光学系PL及び液体LQを介して形成される像面に合わせ込む。また、特表2000−505958号(対応米国特許5,969,441)あるいは米国特許6,208,407に開示されているように、投影光学系PLから離れた位置で基板P表面の位置情報(凹凸情報)を計測してもよい。
なお、フォーカス検出系は液浸領域LR1の外側で液体LQ1を介さずに基板Pの表面位置を検出ものであってもよいし、液体LQ1を介して基板Pの表面位置を検出するものとの併用であってよい。
基板ステージPST1上には凹部50が設けられており、基板ホルダPHは凹部50に配置されている。そして、基板ステージPST1上のうち凹部50以外の上面51は、基板ホルダPHに保持された基板Pの表面とほぼ同じ高さ(面一)になるような平坦面となっている。基板ステージPST1の上面51は第1液体LQ1に対して撥液性を有している。基板Pの周囲に基板P表面とほぼ面一の上面51を設けたので、基板Pの表面の周縁領域を液浸露光するときにおいても、投影光学系PLの像面側に第1液体LQ1を保持して第1液浸領域LR1を良好に形成することができる。なお、第1液浸領域LR1を良好に維持することができるならば、基板ホルダPHに保持された基板Pの表面と上面51とに段差があってもよい。
計測ステージPST2は、露光処理に関する計測を行う各種計測器を搭載しており、投影光学系PLの像面側において、ベースBP上で移動可能に設けられている。計測ステージPST2は計測ステージ駆動機構PSTD2により駆動される。計測ステージ駆動機構PSTD2は制御装置CONTにより制御される。そして、制御装置CONTは、ステージ駆動機構PSTD1、PSTD2のそれぞれを介して、基板ステージPST1及び計測ステージPST2のそれぞれをベースBP上で互いに独立して移動可能である。計測ステージ駆動機構PSTD2は基板ステージ駆動機構PSTD1と同等の構成を有し、計測ステージPST2は、計測ステージ駆動機構PSTD2によって、基板ステージPST1と同様に、X軸、Y軸、及びZ軸方向、θX、θY、及びθZ方向のそれぞれに移動可能である。また、計測ステージPST2の側面には、レーザ干渉計57用の移動鏡56が設けられている。計測ステージPST2の2次元方向の位置、及び回転角はレーザ干渉計57によりリアルタイムで計測され、制御装置CONTはレーザ干渉計57の計測結果に基づいて、計測ステージPST2の位置を制御する。
投影光学系PLの像面側に配置されている計測ステージPST2上には開口部64Kが形成されており、その開口部64Kには透明部材64が配置されている。透明部材64は例えばガラス板によって構成されている。なお、透明部材64の材料は、後述する撮像素子に導かれる光の波長により、蛍石や石英などを適宜選択することができる。透明部材64の上面65は平坦面である。また、計測ステージPST2上のうち開口部64K以外の上面58も平坦面である。そして、計測ステージPST2の上面58と、開口部64Kに配置された透明部材64の上面65とはほぼ同じ高さ(面一)になるように設けられており、計測ステージPST2の上面58は透明部材64の上面65を含んだ構成となっている。なお、計測ステージPST2の上面58や透明部材64の上面65は液体LQに対して撥液性であることが望ましい。
また、透明部材64の上面65を含む計測ステージPST2の上面58は、基板Pの表面を含む基板ステージPST1の上面51に並んだ位置に設けられており、基板ステージPST1の上面51と計測ステージPST2の上面58とは、ほぼ同じ高さ位置となるように設けられている。
計測ステージPST2には、開口部64Kに接続する内部空間66が形成されている。
そして、計測ステージPST2の内部空間66には観察装置60が配置されている。観察装置60は、透明部材64の下側に配置された光学系61と、CCD等によって構成されている撮像素子63とを備えている。撮像素子63は、液体(LQ1、LQ2)や光学素子(LS1、LS2)などの光学像(画像)を透明部材64及び光学系61を介して取得可能である。撮像素子63は取得した画像を電気信号に変換し、その信号(画像情報)を制御装置CONTに出力する。また、観察装置60は、光学系61の焦点位置を調整可能な調整機構62を有している。また、観察装置60は、第1液浸領域LR1及び第2液浸領域LR2の全体を観察可能な視野を有している。撮像素子63は、例えば、電荷結合素子(CCD)を用いることができるが、それに限らず種々の素子を用いることができる。
なお、電荷結合素子もまた、それに入射する光(の波長)に高感度の素子を適宜選択することができる。
なお観察装置60の全部が計測ステージPST2の内部に配置されていてもよいが、例えば光学系61を構成する複数の光学素子のうち一部の光学素子や撮像素子63等が計測ステージPST2の外側に配置されていてもよい。また、調整機構62が省略された構成であってもよい。あるいは撮像素子63を省略して、光信号をそのまま光ファイバや導波管を通じて制御装置CONTに導いて、制御装置内で光信号のまま処理したり光電変換してもよい。あるいは、光信号をそのまま表示装置DYに導いて、表示装置DYで第1液浸領域LR1及び第2液浸領域LR2の状態を観測しても良い。
図2は基板ステージPST1及び計測ステージPST2を上方から見た平面図である。
図2において、計測ステージPST2の上面58には、計測器として、投影光学系PLを介したマスクMのパターンの像に対する基板Pのアライメント位置を規定するために、パターンの像の投影位置と不図示の基板アライメント系の検出基準とのXY平面内での位置関係(ベースライン量)を測定するための基準部材300が設けられている。その基準部材300には、基準マークPFMと基準マークMFMとが所定の位置関係で形成されている。基準マークPFMは、例えば特開平4−65603号公報に開示されているようなFIA(フィールド・イメージ・アライメント)方式の基板アライメント系により、投影光学系PL及び液体LQ1、LQ2を介さずに検出される。また基準マークMFMは、例えば特開平7−176468号公報に開示されているようなVRA(ビジュアル・レチクル・アライメント)方式のマスクアライメント系により、投影光学系PL及び液体LQ1、LQ2を介して検出される。また、上面58には、計測器として、例えば特開昭57−117238号公報に開示されているように照度ムラを計測したり、特開2001−267239号公報に開示されているように投影光学系PLの露光光ELの透過率の変動量を計測するためのムラセンサ400の一部を構成する上板401、特開2002−14005号公報に開示されているような空間像計測センサ500の一部を構成する上板501、及び特開平11−16816号公報に開示されているような照射量センサ(照度センサ)600の一部を構成する上板601が設けられている。これら基準部材300の上面や上板401、501、601の上面は、計測ステージPST2の上面58及び透明部材64の上面65とほぼ面一になっている。また、これら基準部材300の上面、上板401、501、601の上面も、計測ステージPST2の上面58及び透明部材64の上面65と同様、撥液性となっている。
この実施形態では、計測ステージPST2は露光処理に関する計測処理を行うための専用のステージであって、基板Pを保持しない構成となっており、基板ステージPST1は、露光処理に関する計測を行う計測器が搭載されていない構成となっている。なお、計測ステージPST2については、例えば特開平11−135400号公報においてより詳細に開示されている。
次に、図1及び図3を参照しながら、第1液浸機構1及び第2液浸機構2について説明する。図3は投影光学系PLの像面側先端部近傍を示す拡大断面図である。
第1液浸機構1の第1液体供給機構10は、投影光学系PLの第1光学素子LS1の像面側の第1空間K1に第1液体LQ1を供給するためのものであって、第1液体LQ1を送出可能な第1液体供給部11と、第1液体供給部11にその一端部を接続する第1供給管13とを備えている。第1供給管13の他端部はノズル部材70に接続されている。本実施形態においては、第1液体供給機構10は純水を供給するものであって、第1液体供給部11は、純水製造装置、供給する第1液体(純水)LQ1の温度を調整する温調装置、及び供給する第1液体LQ1中の気体成分を低減するための脱気装置等を備えている。
なお、所定の品質条件を満たしていれば、露光装置EXに純水製造装置を設けずに、露光装置EXが配置される工場の純水製造装置(用力)を用いるようにしてもよい。同様に、温調装置および脱気装置などをすべてを露光装置EXで備えている必要はなく、それらの少なくとも一部の代わりに露光装置EXが配置される工場などの設備を使用してもよい。
また、第1供給管13の途中には、第1液体供給部11から送出され、投影光学系PLの像面側に供給される単位時間あたりの液体量を制御するマスフローコントローラと呼ばれる流量制御器16が設けられている。流量制御器16による液体供給量の制御は制御装置CONTの指令信号の下で行われる。
第1液浸機構1の第1液体回収機構20は、投影光学系PLの像面側の第1液体LQ1を回収するためのものであって、第1液体LQ1を回収可能な第1液体回収部21と、第1液体回収部21にその一端部を接続する第1回収管23とを備えている。第1回収管23の他端部はノズル部材70に接続されている。第1液体回収部21は例えば真空ポンプ等の真空系(吸引装置)、回収された第1液体LQ1と気体とを分離する気液分離器及び回収した液体LQを収容するタンク等を備えている。なお真空系、気液分離器、タンクなどの少なくとも一部を露光装置EXに設けずに、露光装置EXが配置される工場などの設備を用いるようにしてもよい。
投影光学系PLの像面側近傍には環状部材であるノズル部材70が配置されている。ノズル部材70と投影光学系PLの鏡筒PKとの間には隙間が設けられており、ノズル部材70は投影光学系PLに対して振動的に分離されるように所定の支持機構で支持されている。ノズル部材70の下面70Aは、基板Pの表面(基板ステージPST1の上面51)と対向している。
ノズル部材70の下面70Aには、基板P上に第1液体LQ1を供給する第1供給口12が設けられている。第1供給口12はノズル部材70の下面70Aに複数設けられている。また、ノズル部材70の内部には、第1供給管13の他端部と第1供給口12とを接続する内部流路14が形成されている。内部流路14の一端部は第1供給管13の他端部に接続しており、内部流路14の他端部は、複数の第1供給口12のそれぞれに接続するように途中で分岐している。
更に、ノズル部材70の下面70Aには、基板P上の第1液体LQ1を回収する第1回収口22が設けられている。本実施形態において、第1回収口22は、ノズル部材70の下面70Aにおいて、第1供給口12を囲むように、投影光学系PLの光軸AXに対して第1供給口12の外側に環状に設けられている。また、ノズル部材70の内部には、第1回収管23の他端部と第1回収口22とを接続する内部流路24が形成されている。内部流路24は、環状の第1回収口22に応じて形成された環状流路24Kと、環状流路24Kの一部と第1回収管23の他端部とを接続するマニホールド流路24Mとを有している。また本実施形態においては、第1回収口22には多孔質体22Pが設けられている。なお、ノズル部材70の構成(供給口の位置、回収口の位置など)は、上述したものに限られず、各種構成のノズル部材を用いることができ、その一例が米国特許公開第2004/0165159号公報に開示されている。
第1液体供給部11及び第1液体回収部21の動作は制御装置CONTにより制御される。第1空間K1に第1液体LQ1の第1液浸領域LR1を形成する際、制御装置CONTは、第1液体供給部11より第1液体LQ1を送出し、第1供給管13、及びノズル部材70の内部流路14を介して、基板Pの上方に設けられている第1供給口12より基板P上に第1液体LQ1を供給する。また、第1空間K1の第1液体LQ1は、第1回収口22より回収され、ノズル部材70の内部流路24、及び第1回収管23を介して第1液体回収部21に回収される。
本実施形態においては、露光装置EXは、基板Pの露光中に、投影光学系PLの投影領域ARを含む基板P上の一部に、投影領域ARよりも大きく且つ基板Pよりも小さい第1液浸領域LR1を局所的に形成する局所液浸方式を採用している。ここで、ノズル部材70の下面70A、及び第1光学素子LS1の下面T1のそれぞれはほぼ平坦面であり、ノズル部材70の下面70Aと第1光学素子LS1の下面T1とはほぼ面一となっている。
これにより、所望の範囲内に第1液浸領域LR1を良好に形成することができる。また、第1光学素子LS1のうち第1液浸領域LR1の第1液体LQ1と接触する下面T1、及びノズル部材70のうち第1液浸領域LR1の第1液体LQ1と接触する下面70Aは、第1液体LQ1に対して親液性を有している。
第2液浸機構2の第2液体供給機構30は、第2液体LQ2を投影光学系PLの第2光学素子LS2と第1光学素子LS1との間の第2空間K2に供給するためのものであって、第2液体LQ2を送出可能な第2液体供給部31と、第2液体供給部31にその一端部を接続する第2供給管33とを備えている。第2液体供給部31は第1液体供給部11とほぼ同等の構成を有している。すなわち、第2液体供給部31は、純水製造装置、供給する第2液体(純水)LQ2の温度を調整する温調装置、及び供給する第2液体LQ2中の気体成分を低減するための脱気装置等を備えている。第2供給管33の他端部は、鏡筒PKの内部に形成された供給流路34の一端部に接続されている。また、供給流路34の他端部は鏡筒PKの内側(内部空間)に配置された供給部材35に接続されている。供給部材35には第2液体LQ2が流れる内部流路が形成されており、供給部材35の所定位置には前記内部流路に接続し、第2空間K2に対して第2液体LQ2を供給する第2供給口32が形成されている。すなわち、第2空間K2に対しては、温度調整され、脱気された第2液体LQ2が第2供給口32から供給される。なお、純水製造装置、温調装置、脱気装置などのすべてを露光装置EXに設けずに、それらの少なくとも一部の代わりに露光装置EXが設置される向上などの設備を利用してもよい。
また、第2供給管33の途中には、第2液体供給部31から送出され、第2空間K2に供給される単位時間あたりの液体量を制御する流量制御器(マスフローコントローラ)36が設けられている。流量制御器36による液体供給量の制御は制御装置CONTの指令信号の下で行われる。
第2液浸機構2の第2液体回収機構40は、投影光学系PLの第2光学素子LS2と第1光学素子LS1との間の第2空間K2の第2液体LQ2を回収するためのものであって、第2液体LQ2を回収可能な第2液体回収部41と、第2液体回収部41にその一端部を接続する第2回収管43とを備えている。第2液体回収部41は第1液体回収部21とほぼ同等の構成を有している。第2回収管43の他端部は、鏡筒PKの内部に形成された回収流路44の一端部に接続されている。回収流路44の他端部は鏡筒PKの内側(内部空間)に配置された回収部材45に接続されている。回収部材45には第2液体LQ2が流れる内部流路が形成されており、回収部材45の所定位置には前記内部流路に接続し、第2空間K2の第2液体LQ2を回収する第2回収口42が設けられている。本実施形態においては、回収部材45は第2液浸領域LR2を囲む環状部材であって、第2回収口42は、回収部材45のうち第2液浸領域LR2を向く面に複数設けられている。なお第2液浸機構2の構成は、上述のものに限られず、第1光学素子LS1と第2光学素子LS2との間の光路を第2液体LQ2で満たすことができれば、各種の構成を採用することができる。
第2液体供給部31及び第2液体回収部41の動作は制御装置CONTにより制御される。第2空間K2に第2液体LQ2の第2液浸領域LR2を形成する際、制御装置CONTは、第2液体供給部31より第2液体LQ2を送出し、第2供給管33、供給流路34、供給部材35の内部流路を介して、第2供給口32より第2空間K2に第2液体LQ2を供給する。また、第2空間K2の第2液体LQ2は、第2回収口42より回収され、回収部材45の内部流路、回収流路44、及び第2回収管43を介して第2液体回収部41に回収される。
なお、第1液体供給部11、及び第2液体供給部31の脱気装置としては、例えば国際公開第2004/053950号公報に開示されている装置を適用することができ、その構造については図12との関係で後に詳述する。
また本実施形態においては、露光装置EXは、第1光学素子LS1の上面T2のうち露光光ELが通過する領域AR’を含む一部の領域のみに第2液体LQ2の第2液浸領域AR’を局所的に形成する。
本実施形態においては、第1光学素子LS1の下面T1側の第1空間K1と、第1光学素子LS1と第2光学素子LS2との間の第2空間K2とは独立した空間である。制御装置CONTは、第1液浸機構1による第1空間K1に対する第1液体LQ1の供給動作及び回収動作と、第2液浸機構2による第2空間K2に対する第2液体LQ2の供給動作及び回収動作とを互いに独立して行うことができ、第1空間K1及び第2空間K2の一方から他方への液体(LQ1、LQ2)の出入りは生じない。
そして、第1光学素子LS1の下面T1側の第1空間K1、及び上面T2側の第2空間K2のそれぞれの光路空間を第1液体LQ1、及び第2液体LQ2で満たすことで、第2光学素子LS2の下面T3や第1光学素子LS1の上面T2での反射損失が低減され、大きな像側開口数を確保した状態で、基板Pを良好に露光することができる。
なお、本実施形態においては、第1光学素子LS1は、鏡筒PKに対して容易に取り付け・外し可能(交換可能)となっているため、第1光学素子LS1が汚染された場合には、清浄な第1光学素子LS1と交換することで、光学素子の汚染に起因する露光精度及び投影光学系PLを介した計測精度の劣化を防止できる。
また、図4に示すように、投影光学系PLの第1光学素子LS1の下に形成された第1液浸領域LR1は、基板ステージPST1上と計測ステージPST2上との間で移動可能となっている。第1液浸領域LR1を移動する際には、制御装置CONTは、ステージ駆動機構PSTD1、PSTD2を使って、基板ステージPST1と計測ステージPST2とを接触又は接近した状態で、基板ステージPST1と計測ステージPST2とをXY方向に一緒に移動し、第1液浸領域LR1を基板ステージPST1の上面と計測ステージPST2の上面との間で移動する。こうすることにより、基板ステージPST1と計測ステージPST2との隙間(ギャップ)からの第1液体LQ1の流出を抑えつつ、投影光学系PLの像面側の第1空間K1(光路空間)を第1液体LQ1で満たした状態で、基板ステージPST1上と計測ステージPST2上との間で第1液浸領域LR1を移動することができる。
したがって、例えば基板Pの交換などのために、基板ステージPST1が投影光学系PLの下から移動する場合には、第1液浸領域LR1は基板ステーPST1上から計測ステージPST2上へ移動し、投影光学系PLの第1光学素子LS1と計測ステージPST2の上面との間で第1液体LQ1を保持して、観察装置60、基準部材300、ムラセンサ400、空間像計測センサ500、照射量センサ600の少なくとも一つを用いた動作を第1液体LQ1を介して実行する。この場合、その動作の結果がその後の露光動作などに反映される。また、基板ステージPST1が投影光学系PLの下へ移動する場合には、第1液浸領域LR1は計測ステージPST2上から基板ステージPST1上に移動し、投影光学系PLの第1光学素子LS1と基板ステージPST1の上面(基板P表面含む)との間で第1液体LQ1を保持して、基板Pの露光動作などを実行する。
次に、上述した構成を有する露光装置EXを用いて基板Pを露光する手順について図5のフローチャート図、及び図6を参照しながら説明する。
まず、制御装置CONTは、投影光学系PLと計測ステージPST2上の透明部材64とを対向させた状態で、第1液浸機構1及び第2液浸機構2のそれぞれを駆動し、第1液浸領域LR1及び第2液浸領域LR2のそれぞれを形成する(ステップSA1)。これにより、図6に示すように、透明部材64の上面65を含む計測ステージPST2の上面58上に第1液浸領域LR1が形成される。
制御装置CONTは、観察装置60を使って、透明部材64上に形成された第1液浸領域LR1の状態を観察する(ステップSA2)。観察装置60は、透明部材64の上面65上の第1液浸領域LR1の状態を、透明部材64を介して観察する。なお、観察装置60が第1液浸領域LR1の状態を観察しているときには、計測ステージPST2はほぼ静止している。透明部材64の下側の内部空間66には観察装置60の光学系61が配置されており、撮像素子63は、透明部材64上にある第1液浸領域LR1を形成する第1液体LQ1の画像を透明部材64及び光学系61を介して取得する。観察装置60を使って第1液浸領域LR1の状態を観察するとき、制御装置CONTは、調整機構62を使って光学系61の焦点位置を第1液浸領域LR1のZ軸方向の位置に合わせる。したがって、撮像素子63は透明部材64上にある第1液浸領域LR1を形成している第1液体LQ1の画像を良好に取得可能である。また、観察装置60は、第1液浸領域LR1よりも大きい視野を有しているため、第1液浸領域LR1を形成する第1液体LQ1の画像を一括して取得可能である。
なお、第1液浸領域LR1の大きさは、第1液浸機構1による液体供給量や液体回収量によって変化する可能性があるが、観察装置60は予想される最大の第1液浸領域LR1が観察できる視野を有している。
撮像素子63で取得された第1液浸領域LR1に関する画像情報は制御装置CONTに出力される(ステップSA3)。制御装置CONTは、撮像素子63から出力された信号(画像情報)に基づいて、第1液浸領域LR1を形成している第1液体LQの画像を表示装置DYで表示する。
次に、制御装置CONTは、観察装置60を使って、第2液浸領域LR2の状態を観察する(ステップSA4)。観察装置60は、第1液浸領域LR1の第1液体LQ1、及び第1光学素子LS1を介して、第2液浸領域LR2を観察する。なお、観察装置60が第2液浸領域LR2の状態を観察しているときにも、計測ステージPST2はほぼ静止している。第2液浸領域LR2の状態を観察装置60を使って観察するとき、制御装置CONTは、調整機構62を使って光学系61の焦点位置を第2液浸領域LR2のZ軸方向の位置に合わせる。したがって、撮像素子63は第2液浸領域LR2を形成している第2液体LQ2の画像を良好に取得可能である。また、観察装置60は、第2液浸領域LR2よりも大きい視野を有しているため、第2液浸領域LR2を形成する第2液体LQ2の画像を一括して取得可能である。
撮像素子63で取得された第2液浸領域LR2に関する画像情報は制御装置CONTに出力される(ステップSA5)。制御装置CONTは、撮像素子63から出力された信号(画像情報)に基づいて、第2液浸領域LR2を形成している第2液体LQ2の画像を表示装置DYで表示する。
なおここでは、第1液浸領域LR1の状態を観察した後、第2液浸領域LR2の状態を観察しているが、第2液浸領域LR2の状態を観察した後、第1液浸領域LR1の状態を観察するようにしてもよい。
制御装置CONTは、ステップSA3、及びステップSA5において、撮像素子63から出力された信号を演算処理(画像処理)し、その処理結果に基づいて、第1、第2液浸領域LR1、LR2が所望状態であるか否かを判別する(ステップSA6)。制御装置CONTは、特に液体(LQ1、LQ2)にパーティクルや気体部分(気塊や気泡など)が存在していないか否かを判別する。例えば、制御装置CONTは、撮像素子63から出力を画素毎に明暗を判断し、孤立した画素または画素の集団を液体中の気泡の存在とみなして、そのような画素または画素集団の数から気泡の数や量を求めることができる。あるいは、制御装置CONTは、気泡の数や量が既知の複数の液体サンプルの画像データを制御装置CONTのメモリに記憶しておき、そのデータとの比較において気泡の数や量を判断してもよい。この場合に、画像データは画素の明部または暗部の平均面積や平均数を気泡の数や量に対応付けても良い。画像データや基準データは、制御装置のメモリに保存してよく、あるいは露光装置に別途設けたメモリに記憶してもよい。また同様にして、あるいは液体中の空隙の位置や大きさを検知することもできる。
例えば、第1液浸機構1が第1液浸領域LR1の形成動作を開始した直後(第1液体LQ1の供給を開始した直後)においては、第1液浸領域LR1が投影領域ARを十分に覆っていない状態(液切れ状態)が生じていたり、あるいは第1液体LQ1中に気泡が混入する等の不具合が発生する可能性が高くなる。また、第1液浸領域LR1の形成動作を開始した直後に限らず、第1液浸機構1の動作状態などに応じても、第1液浸領域LR1の状態が変動し、上記不具合が発生する可能性がある。そのような不具合が発生している状態の第1液浸領域LR1を介して露光処理や計測処理を行った場合、良好な露光精度や計測精度を得ることができなくなる。本実施形態においては、観察装置60を使って第1液浸領域LR1の状態を観察することで、第1液浸領域LR1に不具合が生じているか否かを把握することができる。同様に、第2液浸領域LR2においても、液切れ状態が生じたり、気泡が混入する等の不具合が発生する可能性があるが、観察装置60を使って第2液浸領域LR2の状態を観察することで、第2液浸領域LR2に不具合が生じているか否かを把握することができる。なお、本実施形態の観察装置60は、例えば径が0.1mm以上の気泡を観察(検出)できるが、観察装置60の観察(検出)能力は、露光装置EXで基板P上に形成されるパターンの線幅などに応じて決めればよく、例えば0.01mm以上の気泡を観察できるようにしてもよい。
第1、第2液浸領域LR1、LR2が所望状態であると判断した場合、制御装置CONTは、計測ステージPST2に搭載された各計測器を使って計測処理を行う(ステップSA7)。すなわち、制御装置CONTは、計測ステージPST2をXY方向に移動し、第1液浸領域LR1を透明部材64上から、基準部材300、上板401、上板501、及び上板601のうちいずれか1つの上に移動する。例えば、第1液浸領域LR1を透明部材64上から照度ムラセンサ400の上板401上に移動したときには、制御装置CONTは、投影光学系PL、第1液浸領域LR1の第1液体LQ1、及び第2液浸領域LR2の第2液体LQ2を介して、上板401上に露光光ELを照射し、露光光ELの照度ムラを照度ムラセンサ400を使って計測する。同様に、制御装置CONTは、第1液浸領域LR1を、基準部材300上、上板500上、及び上板600上に順次移動し、基準部材300、空間像計測センサ500、及び照射量センサ600のそれぞれを使った計測処理を行う。そして、上記各計測器を使った計測結果に基づいて、制御装置CONTは、投影光学系PLのキャリブレーション処理などを適宜行う。
なお、ステップSA7の各種計測動作と並行して、あるいは計測動作の前後に、基準部材300上の基準マークPFMが不図示の基板アライメント系により検出され、ベースライン量が決定される。
一方、第1液浸領域LR1及び第2液浸領域LR2のうち少なくともいずれか一方が所望状態でないと判断した場合、制御装置CONTは、上述した不具合(液切れ状態、気泡の混入など)が解消されるまで待ち時間を設けたり、上記の不具合を解消するために、所望状態でないと判断された液浸領域が形成された空間への液体供給を停止するとともに液体の回収を行い、再度液体を供給して、液浸領域を作り直す処置を講ずる。あるいは上記不具合を解消するために第1、第2液浸機構1、2の動作状態を変更するなどの適切な処置を講ずる(ステップSA8)。ここで、第1、第2液浸機構1、2の動作状態の変更とは、例えば第1、第2液浸機構1、2の第1、第2液体供給機構10、30による単位時間あたりの液体供給量の変更、第1、第2液体供給機構10、30に設けられている脱気装置の調整等を含む。そして、観察装置60を使って第1、第2液浸領域LR1、LR2の状態を再び観察し(ステップSA2、SA4)、上記不具合が解消されたことを確認した後、計測処理(ステップSA7)を行う。
計測ステージPST2を使った計測処理が完了した後、図4を参照して説明したように、制御装置CONTは、計測ステージPST2上に形成されている第1液体LQ1の第1液浸領域LR1を、基板Pを支持している基板ステージPST1上に移動する。そして、基板ステージPST1上に第1液浸領域LR1を移動した後、制御装置CONTは、投影光学系PL、第2液浸領域LR2の第2液体LQ2、及び第1液浸領域LR1の第1液体LQ1を介して、基板P上に露光光ELを照射して、その基板Pを露光する(ステップSA9)。
なお、表示装置DYに表示されている第1、第2液浸領域LR1、LR2の画像に基づいて、例えば作業者が、第1、第2液浸領域LR1、LR2が所望状態であるか否かを判断するようにしてもよい。この場合は、作業者などが次の動作を制御装置CONTへ指令する。
以上説明したように、第1、第2液浸領域LR1、LR2の状態を観察する観察装置60を設けたので、その観察装置60の観察結果に基づいて、形成された第1、第2液浸領域LR1、LR2が所望状態であるか否かを確認することができる。そして、観察装置60の観察結果に基づいて、形成された第1、第2液浸領域LR1、LR2が所望状態であると判断した後、基板Pの露光を行うことで、第1、第2液浸領域LR1、LR2の第1、第2液体LQ1、LQ2を介して基板Pを良好に露光することができる。一方、観察装置60の観察結果に基づいて、形成された第1、第2液浸領域LR1、LR2に気体(気泡)が混入している等、所望状態でないと判断した場合、このような状態の第1、第2液浸領域LR1、LR2を介して露光処理や計測処理を行った場合には良好な露光精度や計測精度を得ることができなくなる。そこで、制御装置CONTは、第1、第2液浸領域LR1、LR2を所望状態にするための適切な処置を施し、第1、第2液浸領域LR1、LR2が所望状態になったことを確認した後、第1、第2液浸領域LR1、LR2の第1、第2液体LQ1、LQ2を介して基板Pを露光することで、基板Pを良好に露光することができる。
また、第1液浸領域LR1は投影光学系PLとその投影光学系PLの像面側に配置された透明部材64との間に形成され、観察装置60は透明部材64を介して第1液浸領域LR1を観察するので、第1液浸領域LR1の状態を良好に観察できる。
<第2の実施形態>
図7は第2の実施形態を示す図である。以下の説明において、上述した第1の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略もしくは省略する。
図7に示すように、観察装置60を使って第2液浸領域LR2を観察するとき、制御装置CONTは、第1液浸領域LR1を形成せずに、第2液浸機構2を駆動して、第2液浸領域LR2のみを形成するようにしてもよい。この場合であっても、観察装置60は、第1光学素子LS1を介して第2空間K2の第2液浸領域LR2を観察できる。
また、第1液浸領域LR1の観察は、第2液浸領域LR2の観察の前、又は後に、第2液浸領域LR2を形成した状態あるいは第2液浸領域を形成しない状態で実行される。
<第3の実施形態>
図8は第3の実施形態を示す図である。図8において、観察装置60は基板ステージPST1の内部空間66’に設けられている。そして、基板ステージPST1の上面51の一部には、内部空間66’に接続するように開口部64K’が形成されており、その開口部64K’に透明部材64が配置されている。このように、透明部材64及び観察装置60を、基板Pを保持して移動可能な基板ステージPST1に設けてもよい。
なお、上述した各実施形態においては、観察装置60は第1、第2液浸領域LR1、LR2よりも大きい視野を有しているが、第1、第2液浸領域LR1、LR2よりも小さい視野を有していてもよい。その場合、投影光学系PLに対して、観察装置60が搭載された計測ステージPST2(あるいは基板ステージPST1)をXY方向に動かしながら、すなわち、第1、第2液浸領域LR1、LR2と観察装置60の視野とを相対的に移動しながら観察することにより、第1、第2液浸領域LR1、LR2それぞれの全域を良好に観察することができる。
また、観察装置60にズーム光学系を搭載して、液浸領域LR1を観察するときと液浸領域LR2を観察するときとで観察視野の大きさを変化させたり、液浸領域の一部分を拡大して観察するようにしてもよい。
なお上述した実施形態においては、観察装置60の撮像素子63で取得された画像情報に基づいて、制御装置CONTが表示装置DYに第1、第2液浸領域LR1、LR2の画像を表示させているが、観察装置60が、画像処理機能や表示装置DYを有した構成としてもよい。
また、上述の実施形態において、制御装置CONTは第1液浸機構1,2が第1液浸領域LR1,LR2の形成したときに、観察装置60を使って観察動作を実行するようにしているが、所定時間間隔毎、あるいは所定基板処理枚数毎に観察動作を実行するようにしてもよい。
また、基板Pの交換(例えば、露光した基板と未露光の基板の交換)中に、投影光学系PLの第1光学素子LS1と計測ステージPST2との間に液体LQ1が保持されている状態で観察動作を実行することもできる。この場合、基板Pの交換毎に観察装置60による観察動作を実行することもできるが、所定の基板処理枚数毎に観察動作を実行してもよい。図9は、観察装置60による観察のタイミングの一例を示すもので、4枚の基板の露光処理毎に観察装置60による観察動作を実行する手順を示すものである。なお、図9においては、図5のフローチャートで説明したステップSA9の露光(1枚目の基板の露光)に続く処理手順を示す。
ステップSA9で1枚目の基板の露光処理後、基準部材300を用いたベースライン量の計測が実行される(ステップSA10)。次に、2枚目の基板の露光処理が実行され(ステップSA11)、その後にムラセンサ400を用いた透過率の変動量の計測が実行される(ステップA12)。次に、3枚目の基板の露光処理が実行され(ステップSA13)、その後に、空間像計測センサ500を用いた像面位置計測が実行される(ステップSA14)。次に、4枚目の基板の露光処理が実行され(ステップSA15)、その後に観察装置60による液浸領域LR1の観察が実行される(ステップSA16)。次に、5枚の基板の露光処理が実行され(ステップSA17)、以降ステップSA10〜SA17が、繰り返し行われる。なお、図9のフローチャートは一例にすぎず、観察装置60、基準部材300、センサ400,500を用いた各動作の順番は適宜入れ替えることが可能でき、各動作の実行頻度も必要に応じて決定することができる。
なお、計測ステージPST2に搭載される計測部材や計測装置は、上述のものに限られず、各種計測部材や計測装置を必要に応じて搭載すればよい。例えば、国際公開第99/60361号パンフレット(対応US出願第09/714,183号)、特開2002−71514号、US特許第6650399号などに開示されている波面収差測定装置や、例えば特開昭62−183522号公報に開示されている反射部を計測ステージPST2に搭載してもよい。
また、上述の実施形態においては、基板ステージPST1の基板交換動作の前後において、基板ステージPST1及び計測ステージPST2の一方から他方へ第1液浸領域LR1を移動させるために、基板ステージPST1と計測ステージPST2とを接触又は接近させているが、その他の動作のときにも必要に応じて2つのステージを接触又は接近させてもよい。例えば、基板Pの露光を開始する前に基板P上の複数のアライメントマークを検出するアライメント処理が実行されるが、そのアライメント処理中に第1液浸領域LR1の一部が基板ステージPST1の上面51から外れるおそれがある場合には、第1液浸領域LR1を維持するために、2つのステージを接触又は接近させてもよい。また、基板Pの露光中に第1液浸領域LR1の一部が基板ステージPST1の上面51から外れるおそれがある場合には、第1液浸領域LR1を維持するために、2つのステージを接触又は接近させてもよい。このようにすることで、基板ステージPST1の上面51の面積が小さくても、第1液浸領域LR1を維持することができる。
なお、図9のフローチャートには明記していないが、各ステップ間においては、一方のステージ上から他方のステージ上への第1液浸領域LR1の移動が行われており、さらに、ステップSA10、SA12、SA14,SA16における各動作と並行して、露光された基板と次に露光される基板との交換動作が基板ステージPST1を使って実行されている。
また、観察装置60を用いた観察動作の度に、第1液浸領域LR1と第2液浸領域LR2を観察する必要はなく、どちらか一方を観察するようにしてもよい。
<第4実施形態>
第4実施形態について説明する。上述の実施形態においては、制御装置CONTは、観察装置60の観察結果に基づいて、液浸領域が所望状態であるか否かを判別し(図5のステップSA6)、液浸領域が所望状態でないと判断した場合、不具合を解消するための種々の処置を講じている(図5のステップSA8)が、本実施形態においては、液浸領域を形成する液体中に気泡などの気体部分がある場合、制御装置CONTは、その気体部分を低減又は消失させるための処置として、脱気された液体LQを所定時間供給する。すなわち、制御装置CONTは、計測ステージPST2に搭載された観察装置60の観察結果に基づいて、例えば第2液浸領域LR2を形成する第2液体LQ2中に気体部分があると判断したとき、脱気された第2液体LQ2を第1光学素子LS1と第2光学素子LS2との間の第2空間K2に所定時間供給するとともに、脱気された第2液体LQ2の供給量に応じて、第2空間K2から所定量の第2液体LQ2を回収するように、第2液浸機構2を制御する。上述のように、第2液浸機構2の第2液体供給部31は、第2液体LQ2中の気体成分を低減するための脱気装置を備えているため、制御装置CONTは、第2液体供給部31に設けられた脱気装置を使って第2液体LQ2を十分に脱気した後、第2液浸機構2を制御して、脱気された第2液体LQ2を第1光学素子LS1と第2光学素子LS2との間の第2空間K2に供給することができる。そして、十分に脱気された第2液体LQ2を第2空間K2に対して所定時間供給することにより、第2液浸領域LR2を形成する第2液体LQ2中の気体部分(気泡)を第2液体LQ2中に溶かし込んで低減又は消失させることができる。
図10は脱気された第2液体LQ2を所定時間供給する動作の一例を説明するためのフローチャート図である。ここでは、観察装置60による観察動作が第2液体LQ2を交換するときに実行される場合を例にして説明する。第2液体LQ2の交換とは、第1光学素子LS1と第2光学素子LS2との間の第2空間K2に第2液体LQ2が満たされている場合において、第2液浸機構2による第2空間K2に対する第2液体LQ2の供給動作と第2空間K2の第2液体LQ2の回収動作とを並行して行い、先に第2空間K2に満たされていた第2液体LQ2を第2空間K2より回収するとともに、所定温度に調整された清浄な新たな第2液体LQ2を第2空間K2に供給する動作を言う。
本実施形態においては、第2液浸領域LR2の第2液体LQ2の交換動作は、基板Pのロット毎(所定基板処理枚数毎)に行われるものとする。そして、基板Pの露光中においては、第1光学素子LS1と第2光学素子LS2との間の第2空間K2に第2液体LQ2が満たされるものの、第2液浸機構2による第2液体LQ2の供給動作及び回収動作は行われないものとする。こうすることにより、基板Pの露光中において、第2液浸機構2による液体供給動作及び回収動作に起因する振動の発生を防止することができる。そして、基板Pのロット毎(所定基板処理枚数毎)に第2液浸領域LR2の第2液体LQ2の交換動作を行うことで、第2空間K2を所望温度の第2液体LQ2で満たすことができる。
また、第2液浸領域LR2の第2液体LQ2を交換するときには、第2空間K2から第2液体LQ2を完全に除去することなく、常に第2空間K2に第2液体LQ2が満たされているように、先に第2空間K2に満たされている第2液体LQ2と新たな第2液体LQ2とを徐々に入れ換えることが好ましい。こうすることにより、第2液浸領域LR2の第2液体LQ2の交換に伴って、第2液浸領域LR2の第2液体LQ2中に気体部分(気泡)が生成されてしまうことを抑制することができる。
所定ロットの最終の基板Pの露光が完了した後(ステップSA18)、制御装置CONTは、第2液浸領域LR2の第2液体LQ2の交換を行う(ステップSA19)。制御装置CONTは、第2液浸領域LR2の第2液体LQ2の交換を行うために、第2液浸機構2による第2空間K2に対する第2液体LQ2の供給動作と第2空間K2の第2液体LQ2の回収動作とを並行して行う。また、所定ロットの最終の基板Pの露光が完了した後、制御装置CONTは、計測ステージPST2を投影光学系PLと対向する位置に移動し、計測ステージPST2に搭載された観察装置60で第2液浸領域LR2の第2液体LQ2を観察できる状態で第2液体LQ2の交換動作を開始する。
第2液浸領域LR2の第2液体LQ2の交換が完了した後、制御装置CONTは、観察装置60を使って、第2液浸領域LR2の状態を観察する。そして、制御装置CONTは、観察装置60の観察結果に基づいて、第2液浸領域LR2の第2液体LQ2中に気体部分(気泡)があるか否かを判別する(ステップSA20)。
ステップSA20において、第2液浸領域LR2を形成する第2液体LQ2中に気泡がないと判断した場合、制御装置CONTは、次のロットの基板Pの露光を実行する(ステップSA21)。
一方、ステップSA20において、第2液浸領域LR2を形成する第2液体LQ2中に気泡があると判断した場合、制御装置CONTは、脱気された第2液体LQ2を所定時間供給するように、第2液浸機構2を制御する(ステップSA22)。ここで、気泡を低減又は消失させるために第2空間K2に対して第2液体LQ2を供給するときの単位時間当たりの液体供給量と、第2液浸領域LR2の第2液体LQ2を交換するときの単位時間当たりの液体供給量とはほぼ同じであってもよいし、気泡を低減又は消失させるために第2空間K2に対して第2液体LQ2を供給するときの単位時間当たりの液体供給量が、第2液浸領域LR2の第2液体LQ2を交換するときの単位時間当たりの液体供給量よりも多くてもよい。
図11は、第2液浸領域LR2を形成する第2液体LQ2中に気泡があると判断された後、脱気された第2液体LQ2が第2空間K2に供給されている状態を示す図である。図11に示すように、制御装置CONTは、観察装置60で第2液浸領域LR2の状態を観察しつつ、第2液浸機構2の第2液体供給部31より、脱気された第2液体LQ2を第2空間K2に対して供給する。図11においては、第1液浸領域LR1は形成されていない。制御装置CONTは、観察装置60で第2液浸領域LR2の状態を観察しつつ、第2液浸領域LR2を形成する第2液体LQ2中の気泡の大きさ又は量が所定レベル以下になるまで、第2液体供給部31より十分に脱気された第2液体LQ2を第2空間K2に対して供給するとともに、第2液体回収部41により第2空間K2の第2液体LQ2を回収する。十分に脱気された第2液体LQ2を第2空間K2に所定時間供給し続けることにより、第2液浸領域LR2の第2液体LQ2中の気泡を低減又は消失させることができる。また、例えば気泡が第1光学素子LS1の上面T2や第2光学素子LS2の下面T3に付着している状態であっても、十分に脱気された第2液体LQ2を第2空間K2に所定時間供給し続けることにより、その気泡を消失させることができる。
気泡を低減又は消失させるために第2空間K2に供給される第2液体LQ2は、基板Pを露光するときに第2空間K2に満たされる液体と同じものである。本実施形態においては、第2液体供給部31に設けられた脱気装置38は、気泡を低減又は消失させるために第2空間K2に供給する第2液体LQ2の溶存気体濃度が5ppm以下となるように、第2液体LQ2を脱気する。更に具体的には、脱気装置38は、溶存酸素濃度5ppm以下、溶存炭酸ガス濃度5ppm以下、及び溶存窒素濃度5ppm以下の少なくとも一つの条件を満たすように第2液体LQ2の脱気を行う。第2空間K2に供給する第2液体LQ2の溶存気体濃度を5ppm以下に抑えることで、第2液浸領域LR2を形成する第2液体LQ2中の気泡を第2液体LQ2中に溶かして低減又は消失させることができる。
図12は脱気装置38の概略構成を示す断面図である。ハウジング171の内部に筒状の中空糸束172が所定空間173を介して収容されている。中空糸束172はストロー状の中空糸膜174の複数を平行に束ねたものであり、各中空糸膜174は、疎水性が高く気体透過性に優れた素材(例えば、ポリ4メチルペンテン1)で形成されている。ハウジング171の両端には真空キャップ部材175a、175bが固定されており、ハウジング171の両端外側に密閉空間176a、176bを形成している。真空キャップ部材175a、175bには不図示の真空ポンプに接続された脱気口177a、177bが設けられている。また、ハウジング171の両端には、中空糸束172の両端のみが密閉空間176a、176bに連結されるように封止部178a、178bが形成されており、脱気口177a、177bに接続された真空ポンプによりそれぞれの中空糸膜174の内側を減圧状態にすることができる。中空糸束172の内部には、所定の液体供給源に接続された管179が配置されている。管179には複数の液体供給穴180が設けられており、封止部178a、178b及び中空糸束172で囲まれた空間181に、液体供給穴180から液体LQが供給される。液体供給穴180から空間181に液体LQの供給を続けられると、液体LQは平行に束ねた中空糸膜174の層を横切るように外側へ向かって流れ、液体LQが中空糸膜174の外表面と接触する。前述したように中空糸膜174はそれぞれ、疎水性が高く気体透過性に優れた素材で形成されているので、液体LQは中空糸膜174の内側に入ることなく、各中空糸膜174の間を通って中空糸束172の外側の空間173に移動する。一方、液体LQ中に溶解している気体(分子)は、中空糸膜174の内側が減圧状態(20Torr程度)になっているので、各中空糸膜174の内側へ移動する(吸収される)。このように、中空糸膜174の層を横切る間に液体LQから除去(脱気)された気体成分は、矢印183で示すように、中空糸束172の両端から密閉空間176a、176b介して脱気口177a、177bから排出される。また、脱気処理された液体LQは、ハウジング151に設けられた液体出口182から第2供給管33(第2空間K2)に供給される。本実施形態においては、第2液体供給部31は、脱気装置38を使って、第2空間K2に供給する第2液体LQ2の溶存気体濃度を5ppm以下にする。
また、制御装置CONTは、観察装置60の観察結果に基づいて、第2液浸領域LR2の第2液体LQ2中の気泡の大きさや気泡の量を求めることができるため、第2液浸領域LR2の第2液体LQ2中の気泡の大きさ又は量に応じて、第2液体供給部31より脱気された第2液体LQ2を供給する時間を調整してもよい。制御装置CONTにはタイマーTMが接続されており、制御装置CONTはタイマーTMによって時間を管理することができ、時間を管理しつつ、脱気された第2液体LQ2を第2空間K2に対して所定時間供給することにより、第2液浸領域LR2を形成する第2液体LQ2中の気泡を低減又は消失させることができる。具体的には、気泡の大きさが大きかったりあるいは気泡の量が多い場合には、制御装置CONTは、脱気された第2液体LQ2を供給する時間を長くし、気泡の大きさが小さかったりあるいは気泡の量が少ない場合には、脱気された第2液体LQ2を供給する時間を短くする。こうすることにより、気泡の大きさが大きかったりあるいは気泡の量が多い場合には、その気泡を確実に低減又は消失させることができ、気泡の大きさが小さかったりあるいは気泡の量が少ない場合には、気泡が低減又は消失したにもかかわらず脱気された第2液体LQ2を供給し続けるといった無駄を省くことができる。
また、制御装置CONTは、第2液浸領域LR2の第2液体LQ2中の気泡の大きさ又は量に応じて、第2液体供給部31より脱気された第2液体LQ2を供給するときの単位時間当たりの液体供給量を調整することもできる。例えば、気泡の大きさが大きかったりあるいは気泡の量が多い場合には、制御装置CONTは、脱気された第2液体LQ2を供給するときの単位時間当たりの液体供給量を多くし、気泡の大きさが小さかったりあるいは気泡の量が少ない場合には、脱気された第2液体LQ2を供給するときの単位時間当たりの液体供給量を少なくする。
そして、脱気された第2液体LQ2を所定時間供給した後、観察装置60の観察結果に基づいて、第2液浸領域LR2を形成する第2液体LQ2中の気泡の大きさ又は量が所定レベル以下になったことを確認した後、次のロットの基板Pの露光を開始する。
なお本実施形態においては、制御装置CONTは、観察装置60で第2液浸領域LR2の状態を観察しつつ、脱気された第2液体LQ2を第2空間K2に所定時間供給しているが、脱気された第2液体LQ2を第2空間K2に供給している間、常に観察装置60を使って第2液浸領域LR2の状態を観察していなくてもよい。例えば第1の時点において、観察装置60を使って第2液浸領域LR2の状態を観察し、その観察装置60の観察結果に基づいて、第2液浸領域LR2を形成する第2液体LQ2中に気泡があると判断した後、制御装置CONTは、観察装置60の観察動作を行うことなく、第2液体供給部31より脱気された第2液体LQ2を所定時間供給するようにしてもよい。そして、所定時間経過後、第2の時点において、観察装置60を用いて第2液浸領域LR2の第2液体LQ2中の気泡が低減又は消失したか否かを確認することにより、制御装置CONTは、次のロットの基板を露光するか、あるいは脱気された第2液体LQ2の供給を更に継続するかを判断することができる。この場合においても、制御装置CONTは、第1の時点における観察装置60の観察結果に基づいて、第2液浸領域LR2中の気泡の大きさ又は量を求めることができるので、その気泡の大きさ又は量に応じて、脱気された第2液体LQ2を供給する供給時間を調整することができる。脱気された第2液体LQ2の供給時間を調整する場合、制御装置CONTは、タイマーTMをモニタしつつ供給時間を調整することができる。
なお本実施形態においては、第2液浸領域LR2の第2液体LQ2の交換が完了した後、観察装置60が第2液浸領域LR2の状態を観察しているが、もちろん、第2液浸領域LR2の第2液体LQ2の交換を行いつつ、観察装置60による第2液浸領域LR2の状態の観察を行うようにしてもよい。
なお、図11に示したように、観察装置60が計測ステージPST2に設けられている場合には、観察装置60の観察動作と、基板ステージPST1上の基板Pの交換動作(所定ロットの最終基板と次のロットの基板との交換動作)とを並行して行うことができる。
一方、第3実施形態で説明したように、観察装置60が基板ステージPST1に設けられていてもよい。この場合には、観察装置60の観察動作の前又は後に、基板ステージPST1上の基板Pの交換動作を行うことができる。また、図11では、観察装置60を使って第2液浸領域LR2の状態を観察しているときには第1液浸領域LR1は形成されていないが、第1液浸領域LR1が形成されていてもよい。この場合、観察装置60は、第1液浸領域LR1の第1液体LQ1を介して第2液浸領域LR2を観察する。一方、図11に示すように、観察装置60を使って第2液浸領域LR2の状態を観察しているときには、第1液浸領域LR1を形成しないことにより、第2液浸領域LR2を形成する第2液体LQ2中の気泡の有無をより高精度に観察することができる。
なお本実施形態においては、第2液浸領域LR2の第2液体LQ2の交換動作を、基板Pのロット毎(すなわちマスクステージMSTに対するマスクMの交換毎)に行っているが、所定時間間隔毎、あるいは所定基板処理枚数毎に行うようにしてもよい。
また本実施形態では、観察装置60による観察動作は、第2液浸領域LR2の第2液体LQ2の交換毎に行っているが、第2液浸領域LR2の第2液体LQ2の交換時以外のタイミングで行うようにしてもよい。例えば、第2液体LQ2が無い状態の第2空間K2に対して第2液体LQ2を供給するときに、観察装置60による観察を行うようにしてもよい。あるいは、1つのロットの途中であっても、基板ステージPST1上の基板Pの交換を行っているときには、投影光学系PLと計測ステージPST2とが対向するため、計測ステージPST2に観察装置60が設けられている構成の場合には、そのロットの途中の基板交換時に、第2液浸領域LR2の観察を行うことができる。そして、観察装置60の観察結果に基づいて、第2液浸領域LR2を形成する第2液体LQ2中に気泡があると判断したときには、制御装置CONTは、基板ステージPST1にロードされた基板Pの露光を行わずに、第2液浸領域LR2中の気泡を低減又は消失させるために、脱気された第2液体LQ2を第2空間K2に対して所定時間供給することができる。
なお本実施形態においては、第2液浸領域LR2の第2液体LQ2の交換動作は、ロット毎(あるいは所定時間間隔毎、所定基板処理枚数毎)に行われるが、基板Pの露光中においても、第2液浸機構2は、第2空間K2に対する第2液体LQ2の供給動作及び第2空間K2の第2液体LQ2の回収動作を常時行うようにしてもよい。この場合、基板Pの交換中などの非露光動作時に第2液浸領域LR2(第2液体LQ2)の状態を観察し、第2液体LQ2中に気泡があると判断したときには、制御装置CONTは、次の基板Pの露光を開始せずに、脱気された第2液体LQ2の供給動作と回収動作を行って、第2液体LQ2中の気泡を低減又は消失させる。このとき、気泡を低減又は消失させるために第2空間K2に対して脱気された第2液体LQ2を供給するときの単位時間当たりの液体供給量と、基板Pを露光するときに第2空間K2に対して第2液体LQ2を供給するときの単位時間当たりの液体供給量とは同じであってもよいし、気泡を低減又は消失させるために第2空間K2に対して脱気された第2液体LQ2を供給するときの単位時間当たりの液体供給量を、基板Pを露光するときに第2空間K2に対して第2液体LQ2を供給するときの単位時間当たりの液体供給量よりも多くしてもよい。
また、本実施形態においては、第2液浸領域を形成する第2液体LQ2中に気泡があると判断したときに、その気体部分を低減又は消失させるために脱気された第2液体LQ2を第2空間K2に所定時間供給するようにしているが、脱気された第2液体LQ2の液体供給時間を管理せずに、第2液浸領域LR2を形成する第2液体LQ2中に気泡があると判断したときに、脱気された第2液体LQ2を第2空間K2に供給しながら観察装置60で第2液浸領域LR2を形成する第2液体LQ2を連続的又は断続的に観察し、第2液体LQ2中の気体部分が露光や計測に影響のない程度に低減又は消失したと判断した時点で脱気された第2液体LQ2の供給停止、及び/又は露光光ELの照射を実行するようにしてもよい。
また、本実施形態においては、第2液浸領域LR2を形成する第2液体LQ2中に気泡があると判断したとき、脱気された第2液体LQ2を第2空間K2に所定時間供給しているが、制御装置CONTは、観察装置60の観察結果に基づいて、第1液浸領域LR1を形成する第1液体LQ1中に気泡があると判断したとき、脱気された第1液体LQ1を所定時間供給するように、第1液浸機構1を制御するようにしてもよい。第1液浸機構1の第1液体供給部11も脱気装置を備えているため、第1液浸機構1の第1液体供給部11は脱気された第1液体LQ1を供給可能である。
<第5の実施形態>
上述の各実施形態において、観察装置60を用いた観察動作を実行するときに、この実施形態で説明するように、液浸領域LR1、LR2を光源からの光で照明するようにしてもよい。この実施形態では種々の照明方法及びそのための装置・構造を説明する。例えば、照明光として、露光光ELを用いることができ、この場合には強度を低下させてもよい。また、透明部材64の材料として露光光ELの波長に応じて透明な材料(例えば蛍石や石英など)を適宜選択する。また、露光光ELの波長に応じて高感度な撮像素子や検出素子を用いることが好ましい。
図13に示すように、観察装置60に照明用の光源67を持たせてもよい。照明用の光源としては、例えばLED(白色LEDなど)やEL素子(無機ELシートなど)を用いることができる。また照明光の照明方法として暗視野照明法や明視野照明法を用いることができ、暗視野照明法と明視野照明法とを切換可能にすることもできる。この場合、例えば、明視野照明法を用いて空間K1,K2が液体LQ1、LQ2で十分に満たされているか否かを観察し、暗視野照明法を用いて液体LQ1、LQ2中に小さな気泡やパーティクルが混入していない否かを観察することができる。
また、図14に示すように、第2液浸領域LR2を照明するための照明装置68を、第2液浸領域LR2の上方、すなわち第2液浸領域LR2を挟んで観察装置60と対向する位置に配置し、第2液浸領域LR2に対して上方から照明光を照射するようにしてもよい。照明装置68は、例えばLED(白色LEDなど)やEL素子(無機ELシートなど)によって構成可能である。図14に示す照明装置68は、露光光ELの光路空間に対して進退可能に設けられており、制御装置CONTは、観察装置60を使って第2液浸領域LR2の観察を行う場合、照明装置68を露光光ELの光路空間に配置し、照明装置68より射出された照明光を、第2液浸領域LR2に対して上方から照射する。照射装置68から射出された照明光は、投影光学系PLの各光学素子を通過した後、第2空間K2の第2液浸領域LR2を照明することができる。そして、基板Pを露光するときなど、投影光学系PLに露光光ELを通過させる場合には、制御装置CONTは、照明装置68を露光光ELの光路空間より退避させる。図14に示す例では、照明装置68はマスクステージMST(マスクM)と投影光学系PLとの間に配置されるが、マスクステージMST(マスクM)の上方に配置されてもよい。
また、図15に示すように、照明装置68をマスクステージMSTの下面に取り付けてもよい。こうすることによっても、第2液浸領域LR2に対して上方から照明光を照射することができる。制御装置CONTは、観察装置60を使って第2液浸領域LR2の観察を行う場合、マスクステージMSTを駆動して、照明装置68を投影光学系PLの上方に配置し、照明装置68より射出された照明光を、投影光学系PLの各光学素子を介して、第2液浸領域LR2に対して上方から照射する。
また、図16に示すように、蛍光部材(蛍光板)69をマスクステージMSTで保持し、蛍光板69から発生した光(照明光)を、第2液浸領域LR2に対して上方から照射するようにしてもよい。マスクステージMSTには露光光ELを通過させるための開口部Kmが設けられているが、蛍光板69から発生した光はその開口部Kmを通過した後、投影光学系PLの各光学素子を介して、第2液浸領域LR2に照射される。蛍光板69を蛍光させるためには、例えば蛍光板69に露光光ELを照射すればよい。あるいは、マスクステージMSTの一部に開口部Kmとは別の蛍光板用開口部を設け、その蛍光板用開口部に蛍光板を固定するようにしてもよい。
なお、図14〜図16を参照して説明した照明光を使って第1液浸領域LR1を照明することも可能である。
また、図17に示すように、照明装置68をノズル部材70近傍に設け、その照明装置68より照明光を射出することにより、その照明光は第1液浸領域LR1を傾斜方向から照明することができる。図17に示す例では、照明装置68は、第1支持機構81を介して、露光装置EXのボディ(コラム)100の一部に支持されている。コラム100は投影光学系PLの鏡筒PKに設けられたフランジPFを支持している。また、コラム100は、第2支持機構82を介して、ノズル部材70を支持することができる。
また、上述の説明においては、透明部材64を介して液浸領域(LR1、LR2)を形成する液体(LQ1、LQ2)の状態を観察しているが、図17に示した照明装置68の替わりに観察装置(例えば、撮像装置や気泡検出器)を設けて、第1液浸領域LQ1を形成する第1液体LQ1を側方から観察するようにしてもよい。このような観察装置として、例えば、WO 2004/053958に開示されているような気泡検出器を用いてもよい。この気泡検出器は投影光学系の光軸から離れた位置に設置された投射系と検出系を有している。より具体的には、投射系と検出系は、投影光学系の投影領域を挟むように走査方向(X方向)に設けられており、投射系の複数の投射部から液浸領域に検出光が斜入射され、液浸領域に気泡が存在しない場合には液浸領域の底面または界面(本願では透明部材64の上面)で反射して受光系で受光される。液浸領域に気泡が存在する場合には、気泡により光が散乱するために、受光系とは異なる位置に設けられた別の受光系により光が受光され、その受光量に基づいて気泡の量が求められる(暗視野検出)。
また、計測ステージPST2が投影光学系PLと対向していない状態で第1液浸領域LQ1を形成する第1液体LQ1の状態を側方から観察(チェック)することができる観察装置を計測ステージPST2に設けてもよい。この場合、例えば、基板ステージPST1に保持されている基板Pの露光中にも、基板ステージPST1(基板P)上に形成されている第1液浸領域LR1の状態(液体LQ1中の泡の有無や液体LQ1の漏れ出しなど)を、計測ステージPST2に設けた観察装置を使ってチェックすることができる。
また、上述のした各実施形態においては、第1光学素子LS1の下面T1側の第1空間K1と上面T2側の第2空間K2のそれぞれを液体で満たした状態で使用される投影光学系PLを採用しているが、投影光学系PLの第1光学素子LS1の下面T1側の第1空間K1のみを液体で満たした状態で使用される投影光学系PLを採用することもできる。この場合、観察装置60による観察対象は第1液浸領域LR1のみとなる。
また、観察装置60を液浸領域LR1,LR2の観察だけでなく、投影光学系PLの第1光学素子LS1の下面T1の観察やノズル部材70の下面70Aや不図示の基板アライメント系の対物レンズ下面の観察に用いることもできる。この場合、観察装置60を用いて取得された画像から、第1光学素子LS1の下面T1、第1光学素子LS1の保持部、ノズル部材の下面70Aなどの汚染状態を確認したり、基板アライメント系の対物レンズ下面や基板アライメント系の筐体などに液体(水)が付着していないかどうかを確認することができる。
上述した各実施形態における液体LQは純水である。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等から供給される純水の純度が低い場合には、露光装置が超純水製造器を持つようにしてもよい。
上記実施形態において気泡を観測する場合に、撮像素子や透過率センサを用いる場合には、それらの素子やセンサの感度を向上させるために添加物を加えても良い。例えば、気泡液体の区別を明確にするために、液体中に色素を添加してもよい。この場合、露光光に対して吸収帯を持たない色素であることが望ましい。このような添加物を加えた液体を液浸状態を観測する場合に用い、実際の露光時には添加物を加えない純水を用いても良い。
そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.44と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約134nmに短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.44倍に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。
なお、液浸法において開口数を上げるためには、屈折率が高い液体、例えば屈折率が1.6以上の液体を用いることが考えられる。この場合、投影光学系PLの大きさ(径)を抑えるために、投影光学系の一部のレンズ(特に像面に近いレンズ)を高屈折率の材料で形成することが望ましい。例えば、投影光学系PL中の光学素子のうち第2液体LQ2に接する第2光学素子LS2を、CaO(酸化カルシウム)及びMgO(酸化マグネシウム)のうち少なくとも一方の材料で形成することのが好ましい。こうすることにより、実現可能なサイズのもとで、高い開口数を実現することができる。たとえばArFエキシマレーザ(波長193nm)を用いた場合にも、1.5程度、あるいはそれ以上の高い開口数を実現することが可能となる。
上述の各実施形態では、最も像面側(基板P側)に配置される第1光学素子LS1が屈折力を有しない平行平面板の形態であるが、この第1光学素子LS1が屈折力を有する場合には、この最も像面側に配置される第1光学素子LS1をCaO及びMgOのうち少なくとも一方の材料で形成することが好ましい。
すなわち、像面側に形成された液浸領域の液体を介して基板上に物体の像を投影する投影光学系が、最も像面側に配置されてCaO(酸化カルシウム)及びMgO(酸化マグネシウム)のうち少なくとも一方の材料で形成された第1光学素子を備えることが好ましい。また、像面側に形成された液浸領域の液体を介して基板上に物体の像を投影する投影光学系が、最も像面側に配置された第1光学素子と、第1光学素子の物体側に隣接して配置された第2光学素子とを備え、第1光学素子と第2光学素子との少なくとも一方が、CaO(酸化カルシウム)及びMgO(酸化マグネシウム)のうち少なくとも一方の材料で形成されることが好ましい。例えば、第1光学素子LS1及び第2光学素子LS2の一方をCaO(酸化カルシウム)で形成し、他方をMgO(酸化マグネシウム)で形成することができる。
なお、第1光学素子LS1が屈折力を有する場合、第1光学素子LS1と第2光学素子LS2との間の光路空間は第2液体LQ2で満たさなくてもよい。
また、CaO(酸化カルシウム)及びMgO(酸化マグネシウム)は露光光ELの波長(例えば193nm)において固有複屈折を有するが、固有複屈折の符号はCaO(酸化カルシウム)とMgO(酸化マグネシウム)とで互いに逆向きである。従って、投影光学系の像面側(基板P側)に近い光学素子のうちの1つをCaO又はMgOで形成した場合、当該光学素子の近傍の光学素子をMgO又はCaOで形成して、これらの光学素子の光軸方向の厚みを固有複屈折の影響を低減させるように定めることが好ましい。ここで、これらの光学素子の結晶方向がそろっていることが好ましい。また、CaOで形成された光学素子とMgOで形成された光学素子とが隣り合っていなくてもよい。
例えば第2光学素子LS2をMgO(又はCaO)で形成し、且つ第3光学素子LS3をCaO(又はMgO)で形成した場合を考えると、これらの第2光学素子LS2の光軸方向の厚みと第3光学素子LS3の光軸方向の厚みとを、CaO及びMgOが有する固有複屈折の値の逆数にほぼ比例するように定めることが好ましい。上述の場合、最も像面側(基板P側)の第1光学素子LS1を石英ガラスで形成することができる。
また、第1光学素子LS1が屈折力を有している場合には、第1光学素子LS1をMgO(又はCaO)で形成し、且つ第2光学素子LS2をCaO(又はMgO)で形成し、第1光学素子LS1の光軸方向の厚みと第2光学素子LS2の光軸方向の厚みとを、CaO及びMgOが有する固有複屈折の値の逆数にほぼ比例するように定めるようにしてもよい。
さて、CaO(酸化カルシウム)で光学素子を形成する場合には、当該光学素子の光学面上にMgO(酸化マグネシウム)を含む反射防止コートを形成することが好ましい。また、MgO(酸化マグネシウム)で光学素子を形成する場合には、当該光学素子の光学面上にCaO(酸化カルシウム)を含む反射防止コートを形成することが好ましい。
なお、上述したように液浸法を用いた場合には、投影光学系の開口数NAが0.9〜1.5になることもある。このように投影光学系の開口数NAが大きくなる場合には、従来から露光光として用いられているランダム偏光光では偏光効果によって結像性能が悪化することもあるので、偏光照明を用いるのが望ましい。その場合、マスク(レチクル)のライン・アンド・スペースパターンのラインパターンの長手方向に合わせた直線偏光照明を行い、マスク(レチクル)のパターンからは、S偏光成分(TE偏光成分)、すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出されるようにするとよい。投影光学系PLと基板P表面に塗布されたレジストとの間が液体で満たされている場合、投影光学系PLと基板P表面に塗布されたレジストとの間が空気(気体)で満たされている場合に比べて、コントラストの向上に寄与するS偏光成分(TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光学系の開口数NAが1.0を越えるような場合でも高い結像性能を得ることができる。また、位相シフトマスクや特開平6−188169号公報に開示されているようなラインパターンの長手方向に合わせた斜入射照明法(特にダイポール照明法)等を適宜組み合わせると更に効果的である。特に、直線偏光照明法とダイポール照明法との組み合わせは、ライン・アンド・スペースパターンの周期方向が所定の一方向に限られている場合や、所定の一方向に沿ってホールパターンが密集している場合に有効である。例えば、透過率6%のハーフトーン型の位相シフトマスク(ハーフピッチ45nm程度のパターン)を、直線偏光照明法とダイポール照明法とを併用して照明する場合、照明系の瞳面においてダイポールを形成する二光束の外接円で規定される照明σを0.95、その瞳面における各光束の半径を0.125σ、投影光学系PLの開口数をNA=1.2とすると、ランダム偏光光を用いるよりも、焦点深度(DOF)を150nm程度増加させることができる。
また、直線偏光照明と小σ照明法(照明系の開口数NAiと投影光学系の開口数NApとの比を示すσ値が0.4以下となる照明法)との組み合わせも有効である。
また、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、微細なライン・アンド・スペースパターン(例えば25〜50nm程度のライン・アンド・スペース)を基板P上に露光するような場合、マスクMの構造(例えばパターンの微細度やクロムの厚み)によっては、Wave guide効果によりマスクMが偏光板として作用し、コントラストを低下させるP偏光成分(TM偏光成分)の回折光よりS偏光成分(TE偏光成分)の回折光が多くマスクMから射出されるようになる。この場合、上述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスクMを照明しても、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。
また、マスクM上の極微細なライン・アンド・スペースパターンを基板P上に露光するような場合、Wire Grid効果によりP偏光成分(TM偏光成分)がS偏光成分(TE偏光成分)よりも大きくなる可能性もあるが、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、25nmより大きいライン・アンド・スペースパターンを基板P上に露光するような場合には、S偏光成分(TE偏光成分)の回折光がP偏光成分(TM偏光成分)の回折光よりも多くマスクMから射出されるので、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。
更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S偏光照明)だけでなく、特開平6−53120号公報に開示されているように、光軸を中心とした円の接線(周)方向に直線偏光する偏光照明法と斜入射照明法との組み合わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラインパターンだけでなく、複数の異なる方向に延びるラインパターンが混在(周期方向が異なるライン・アンド・スペースパターンが混在)する場合には、同じく特開平6−53120号公報に開示されているように、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影光学系の開口数NAが大きい場合でも高い結像性能を得ることができる。例えば、透過率6%のハーフトーン型の位相シフトマスク(ハーフピッチ63nm程度のパターン)を、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法(輪帯比3/4)とを併用して照明する場合、照明σを0.95、投影光学系PLの開口数をNA=1.00とすると、ランダム偏光光を用いるよりも、焦点深度(DOF)を250nm程度増加させることができ、ハーフピッチ55nm程度のパターンで投影光学系の開口数NA=1.2では、焦点深度を100nm程度増加させることができる。
更に、上述の各種照明法に加えて、例えば特開平4−277612号公報や特開2001−345245号公報に開示されている累進焦点露光法や、多波長(例えば二波長)の露光光を用いて累進焦点露光法と同様の効果を得る多波長露光法を適用することも有効である。
上述の各実施形態では、投影光学系PLの先端に光学素子LS1が取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。なお、投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露光光ELを透過可能な平行平面板であってもよい。
なお、液体LQの流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。
なお、上述した実施形態では、投影光学系PLと基板P表面との間は液体LQで満たされている構成であるが、例えば基板Pの表面に平行平面板からなるカバーガラスを取り付けた状態で液体LQを満たす構成であってもよい。
なお、上述した各実施形態の液体LQは水(純水)であるが、水以外の液体であってもよい、例えば、露光光ELの光源がFレーザである場合、このFレーザ光は水を透過しないので、液体LQとしてはFレーザ光を透過可能な例えば、過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体であってもよい。この場合、液体LQと接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体LQとしては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表面処理は用いる液体LQの極性に応じて行われる。
なお、上記各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
また、露光装置EXとしては、第1パターンと基板Pとをほぼ静止した状態で第1パターンの縮小像を投影光学系(例えば1/8縮小倍率で反射素子を含まない屈折型投影光学系)を用いて基板P上に一括露光する方式の露光装置にも適用できる。この場合、更にその後に、第2パターンと基板Pとをほぼ静止した状態で第2パターンの縮小像をその投影光学系を用いて、第1パターンと部分的に重ねて基板P上に一括露光するスティッチ方式の一括露光装置にも適用できる。また、スティッチ方式の露光装置としては、基板P上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置にも適用できる。
また、本発明は、特開平10−163099号公報、特開平10−214783号公報、特表2000−505958号公報などに開示されているツインステージ型の露光装置にも適用できる。ツインステージ型の露光装置の場合は、基板を保持する二つの基板ステージのそれぞれに観察装置60の少なくとも一部を設けてもよいし、一方の基板ステージのみに観察装置60の少なくとも一部を設けることもできる。
また上述の実施形態においては、計測ステージと基板ステージとを備えた露光装置に本発明を適用した場合について説明したが、計測ステージを備えずに、一つの基板ステージのみを備えた露光装置にも本発明を適用することができる。この場合は、上述の第3実施形態で説明したように、基板ステージに観察装置60の少なくとも一部が搭載される。
また、上述の各実施形態においては、基板ステージや計測ステージに透明部材64と光学系61と撮像素子63が搭載されているが、例えば特開平10−284412号公報に開示されているようにして、透明部材64をステージに配置するとともに、ステージとは分離して設けられた部材(例えばベースBP)に撮像素子63を配置して、透明部材64を介して撮像素子63で光を受けて、液浸領域(LR1、LR2)を形成する液体(LQ1、LQ2)の状態を観察するようにしてもよい。
また、図8に示した第3実施形態においては、基板ステージPST1に透明部材64と光学系61と撮像素子63が搭載されているが、透明部材64と第1送光系を基板ステージPST1に配置するとともに、第2送光系と撮像素子63を計測ステージPST2に搭載し、基板ステージPST1と計測ステージPST2とが所定の位置関係にある状態で、透明部材64を介して第1送光系に入射した光を第2送光系を介して撮像素子63で受光して、液浸領域(LR1、LR2)を形成する液体(LQ1、LQ2)の状態を観察するようにしてもよい。
また、上述の第4実施形態においては、撮像素子63を有する観察装置60を使って気泡(気体部分)を検出して、気泡が検出された場合に脱気した液体を流して気泡を低減または消滅させるようにしているが、気泡(気体部分)を検出する方式は撮像素子63を用いる方式に限られず、他の方式で気泡を検出して脱気した液体を流すようにしてもよい。
例えば、撮像素子に代えて受光素子を設置し、液浸領域に第5実施形態で例示したような方法で光を照射して液浸領域を透過した光の透過率を受光素子で検出することもできる。
この場合、気泡が許容範囲内である場合の透過率を予め基準値として求めておき、基準値に対する検出値を比較することで気泡量を判断することができる。なお、そのような受光素子の設置位置は、投影光学系の下方(光軸位置)に限らず、前述のWO 2004/053958に開示されている気泡検出器のように投影光学系の光軸から外れた位置に設置してもよい。
さらに、観察装置60の一部または全部を、計測ステージや基板ステージに対して脱着可能に構成することもできる。
また、第1液浸領域LR1の状態を側方から観察する観察装置を使っても良い。この場合、観察装置を露光装置EX内に配置してもよく(露光装置のパーツとしてもよく)、あるいは露光装置とは別のユニット(例えばオプショナルモジュール)であってもよい。
また、上述の実施形態においては、投影光学系PLと基板Pとの間に局所的に液体を満たす露光装置を採用しているが、本発明は、例えば、特開平6−124873号公報、特開平10−303114号公報、米国特許第5,825,043号などに詳細に開示されているような露光対象の基板の表面全体が液体で覆われる液浸露光装置にも適用可能である。
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6,778,257号公報に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスクを用いてもよい。
また、本発明の露光装置は投影光学系を持たないタイプの露光装置にも適用することができる。この場合、光源からの露光光が光学素子を通過して液浸領域に照射されることになる。国際公開第2001/035168号パンフレットに開示されているように、干渉縞を基板P上に形成することによって、基板P上にライン・アンド・スペースパターンを露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。
以上のように、本願実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図18に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工工程を含む)205、検査ステップ206等を経て製造される。なお、露光処理ステップには、図5、9及び10で説明した液浸領域の観察や処置などプロセスや基板の現像プロセスを含む。
1…第1液浸機構、2…第2液浸機構、38…脱気装置、51…基板ステージ上面、58…計測ステージ上面、60…観察装置、61…光学系、62…調整機構、63…撮像素子、64…透明部材、65…透明部材上面、300…基準部材、400…照度ムラセンサ、500…空間像計測センサ、600…照射量センサ、CONT…制御装置、DY…表示装置、EX…露光装置、LQ1…第1液体、LQ2…第2液体、LR1…第1液浸領域、LR2…第2液浸領域、LS1…第1光学素子、LS2…第2光学素子、P…基板、PL…投影光学系、PST1…基板ステージ、PST2…計測ステージ

Claims (36)

  1. 投影光学系と前記投影光学系の像面側に形成された液浸領域の液体とを介して基板を露光する露光装置において、
    前記投影光学系は、該投影光学系の像面に最も近い第1光学素子を有し、
    前記投影光学系の像面側に設けられた所定面と前記第1光学素子との間に液体の液浸領域を形成する液浸機構と、
    前記液浸領域の状態を観察する観察装置とを備えた露光装置。
  2. 前記観察装置は、前記投影光学系の像面側に配置された所定面を介して前記液浸領域の状態を観察する請求項1記載の露光装置。
  3. 前記所定面は透明部材の表面を含み、
    前記観察装置は前記透明部材を介して液浸領域を観察する請求項2記載の露光装置。
  4. 前記投影光学系の像面側で移動可能なステージを有し、
    前記ステージの上面は前記所定面を含む請求項2又は3記載の露光装置。
  5. 前記観察装置の少なくとも一部は前記ステージの内部に設けられている請求項4記載の露光装置。
  6. 前記ステージは前記基板を保持して移動可能である請求項4又は5記載の露光装置。
  7. 前記ステージは、互いに独立して移動可能な第1ステージ及び第2ステージを含み、
    前記第1ステージは前記基板を保持して移動し、前記第2ステージは露光処理に関する計測を行う計測器を保持して移動し、
    前記第2ステージの上面が前記所定面を含む請求項4又は5記載の露光装置。
  8. 前記投影光学系は、該投影光学系の像面に前記第1光学素子に次いで近い第2光学素子を有し、
    前記液浸機構は、前記第1光学素子と前記所定面との間に第1液浸領域を形成する第1液浸機構と、
    前記第1光学素子と前記第2光学素子との間に第2液浸領域を形成する第2液浸機構とを含み、
    前記観察装置は、前記第1液浸領域及び前記第2液浸領域のそれぞれを観察可能である請求項1〜7のいずれか一項記載の露光装置。
  9. 前記観察装置は、前記第1光学素子を介して前記第2液浸領域を観察する請求項8記載の露光装置。
  10. 前記観察装置は、該観察装置の光学系の焦点位置を調整可能な調整機構を有し、
    前記焦点位置を調整することで、前記第1液浸領域、及び前記第2液浸領域のそれぞれを観察する請求項8又は9記載の露光装置。
  11. 前記観察装置は、前記液浸領域よりも大きい視野を有する請求項1〜10のいずれか一項記載の露光装置。
  12. 前記観察装置は、前記液浸領域よりも小さい視野を有し、
    前記液浸領域と前記視野とを相対的に移動しながら観察する請求項1〜10のいずれか一項記載の露光装置。
  13. 前記観察装置は、前記液浸領域を形成する液体の画像を取得する請求項1〜12のいずれか一項記載の露光装置。
  14. 前記観察装置は、前記画像を表示する表示装置を含む請求項12記載の露光装置。
  15. 前記観察装置は、撮像素子を含む請求項13又は14記載の露光装置。
  16. 前記観察装置は、前記液浸領域を形成する液体中の気体の混入状態を観察する請求項1〜15のいずれか一項記載の露光装置。
  17. 前記液浸機構は、液体を脱気する脱気装置を有し、
    前記観察装置の観察結果に基づいて、前記液浸領域を形成する液体中に気体部分があると判断したとき、脱気された液体を供給するように前記液浸機構を制御する制御装置を有する請求項1〜16のいずれか一項記載の露光装置。
  18. 前記脱気装置は、溶存気体濃度5ppm以下となるように液体を脱気する請求項17記載の露光装置。
  19. 前記制御装置は、前記観察装置で前記液浸領域の状態を観察しつつ前記脱気された液体を供給する請求項17又は18記載の露光装置。
  20. 前記制御装置は、前記液浸領域中の気体部分の大きさ又は量に応じて前記脱気された液体を供給する時間を調整する請求項17〜19のいずれか一項記載の露光装置。
  21. 投影光学系と前記投影光学系の像面側に形成された液浸領域の液体とを介して基板を露光する露光装置において、
    前記投影光学系は、該投影光学系の像面に最も近い第1光学素子と、前記第1光学素子に次いで前記像面に近い第2光学素子とを有し、
    前記第1光学素子と前記第2光学素子との間に液体の液浸領域を形成する液浸機構と、
    前記液浸領域の状態を観察する観察装置とを備えた露光装置。
  22. 前記観察装置は、照明装置を含む請求項1〜21のいずれか一項記載の露光装置。
  23. 第1光学素子がCaO及びMgOの一方から形成されており、第2光学素子がCaO及びMgOの他方から形成されている請求項8〜21のいずれか一項に記載の露光装置。
  24. CaOから形成された光学素子の表面にMgOの反射防止コートを有し、MgOから形成された光学素子の表面にCaOの反射防止コートを有する請求項23に記載の露光装置。
  25. 光学素子と該光学素子の光射出側に形成された液浸領域の液体とを介して基板を露光する露光装置において、
    前記光学素子の光射出側に配置された所定面と前記光学素子との間を液体で満たすための液浸機構と、
    前記光学素子と前記所定面との間の液体の状態を観察する観察装置とを備えた露光装置。
  26. 投影光学系をさらに備え
    前記光学素子は、前記投影光学系の像面に最も近い光学素子である請求項25記載の露光装置。
  27. 請求項1〜26のいずれか一項記載の露光装置を用いるデバイス製造方法。
  28. 光学素子の光射出側に形成された液浸領域の液体を介して基板を露光する露光方法であって、
    前記液浸領域の液体を介して基板を露光することと、
    露光した基板を未露光の基板と交換すること、
    基板の交換中に、前記液浸領域の液体中の気体部分を検出することとを含む露光方法。
  29. 前記液浸領域の液体中に気体部分が検知された場合に、液浸領域中の気体部分を低減する処置を施すことを含む請求項28記載の露光方法。
  30. 前記処置が、脱気した液体を液浸領域に供給しつつ液浸領域の液体を回収することを含む請求項29記載の露光方法。
  31. 第1ステージ上で前記基板の露光及び交換を行い、第2ステージ上で液浸領域の液体中の気体部分の検出を行う請求項28〜30のいずれか一項記載の露光方法。
  32. さらに、第1ステージと第2ステージとの間で前記液浸領域を移動することを含む請求項31記載の露光方法。
  33. 前記光学素子が、露光の際に基板により近い順序で配置される第1光学素子と第2光学素子とを含み、第1光学素子と基板との間の第1空間及び第1光学素子と第2光学素子との間の第2空間の少なくとも一方の空間に液浸領域が形成される請求項28〜32のいずれか一項記載の露光方法。
  34. 第2空間に形成された液浸領域の液体中の気体部分を、第2空間に形成された液浸領域の液体の交換時に、検出することを含む請求項33記載の露光方法。
  35. 所定の枚数の基板の露光処理が完了する毎に、前記液浸領域の液体中の気体部分を検出する請求項28〜34のいずれか一項に記載の露光方法。
  36. 請求項28〜35のいずれか一項に記載の露光方法により基板を露光することと、
    露光した基板を現像することと、
    現像した基板を加工することを含むデバイスの製造方法。
JP2012080480A 2004-08-03 2012-03-30 露光装置、露光方法及びデバイス製造方法 Pending JP2012129560A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080480A JP2012129560A (ja) 2004-08-03 2012-03-30 露光装置、露光方法及びデバイス製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004227226 2004-08-03
JP2004227226 2004-08-03
JP2005079113 2005-03-18
JP2005079113 2005-03-18
JP2012080480A JP2012129560A (ja) 2004-08-03 2012-03-30 露光装置、露光方法及びデバイス製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011032385A Division JP5152356B2 (ja) 2004-08-03 2011-02-17 露光装置、及び観察方法

Publications (1)

Publication Number Publication Date
JP2012129560A true JP2012129560A (ja) 2012-07-05

Family

ID=35787091

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011032385A Expired - Fee Related JP5152356B2 (ja) 2004-08-03 2011-02-17 露光装置、及び観察方法
JP2012080480A Pending JP2012129560A (ja) 2004-08-03 2012-03-30 露光装置、露光方法及びデバイス製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011032385A Expired - Fee Related JP5152356B2 (ja) 2004-08-03 2011-02-17 露光装置、及び観察方法

Country Status (10)

Country Link
US (2) US8169591B2 (ja)
EP (5) EP2226682A3 (ja)
JP (2) JP5152356B2 (ja)
KR (3) KR101337007B1 (ja)
CN (3) CN101799636B (ja)
AT (1) ATE470235T1 (ja)
DE (1) DE602005021653D1 (ja)
HK (5) HK1104676A1 (ja)
TW (1) TWI460544B (ja)
WO (1) WO2006013806A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543767B2 (ja) * 2004-06-10 2010-09-15 株式会社ニコン 露光装置及びデバイス製造方法
EP2226682A3 (en) 2004-08-03 2014-12-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20080100811A1 (en) * 2004-12-07 2008-05-01 Chiaki Nakagawa Exposure Apparatus and Device Manufacturing Method
US8692973B2 (en) * 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
EP3079164A1 (en) * 2005-01-31 2016-10-12 Nikon Corporation Exposure apparatus and method for producing device
WO2006106832A1 (ja) 2005-03-30 2006-10-12 Nikon Corporation 露光条件の決定方法、露光方法及び露光装置、並びにデバイス製造方法
CN101410948B (zh) 2006-05-18 2011-10-26 株式会社尼康 曝光方法及装置、维护方法、以及组件制造方法
KR20090023335A (ko) 2006-05-22 2009-03-04 가부시키가이샤 니콘 노광 방법 및 장치, 메인터넌스 방법, 그리고 디바이스 제조 방법
EP2034515A4 (en) 2006-05-23 2012-01-18 Nikon Corp MAINTENANCE METHOD, EXPOSURE METHOD AND DEVICE AND COMPONENT MANUFACTURING METHOD
JP2008034801A (ja) * 2006-06-30 2008-02-14 Canon Inc 露光装置およびデバイス製造方法
JP5245825B2 (ja) 2006-06-30 2013-07-24 株式会社ニコン メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
WO2008059916A1 (fr) * 2006-11-15 2008-05-22 Nikon Corporation Appareil et procédé d'exposition et procédé de fabrication de dispositif
US20080158531A1 (en) * 2006-11-15 2008-07-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20080156356A1 (en) 2006-12-05 2008-07-03 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
KR100830586B1 (ko) 2006-12-12 2008-05-21 삼성전자주식회사 기판을 노광하는 장치 및 방법
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
JP2009031603A (ja) * 2007-07-27 2009-02-12 Canon Inc 投影光学系、露光装置及びデバイス製造方法
DE102007043896A1 (de) 2007-09-14 2009-04-02 Carl Zeiss Smt Ag Mikrooptik zur Messung der Position eines Luftbildes
JP2009086038A (ja) * 2007-09-27 2009-04-23 Canon Inc 投影光学系、露光装置及びデバイス製造方法
US8654306B2 (en) 2008-04-14 2014-02-18 Nikon Corporation Exposure apparatus, cleaning method, and device fabricating method
US20110008734A1 (en) * 2009-06-19 2011-01-13 Nikon Corporation Exposure apparatus and device manufacturing method
US9651873B2 (en) * 2012-12-27 2017-05-16 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
KR102410381B1 (ko) * 2015-11-20 2022-06-22 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 리소그래피 장치를 작동시키는 방법
WO2018007119A1 (en) * 2016-07-04 2018-01-11 Asml Netherlands B.V. An inspection substrate and an inspection method
CN107991843B (zh) * 2017-12-21 2023-07-21 浙江启尔机电技术有限公司 一种用于浸没式光刻机的微流道气液分离回收装置
US10690486B2 (en) 2018-07-03 2020-06-23 Amo Development, Llc Water-immersed high precision laser focus spot size measurement apparatus
JP7252322B2 (ja) 2018-09-24 2023-04-04 エーエスエムエル ネザーランズ ビー.ブイ. プロセスツール及び検査方法

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS5825607A (ja) * 1981-08-08 1983-02-15 Canon Inc 投影装置
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
DD206607A1 (de) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech Verfahren und vorrichtung zur beseitigung von interferenzeffekten
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPH0782981B2 (ja) 1986-02-07 1995-09-06 株式会社ニコン 投影露光方法及び装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
US4801352A (en) * 1986-12-30 1989-01-31 Image Micro Systems, Inc. Flowing gas seal enclosure for processing workpiece surface with controlled gas environment and intense laser irradiation
US4931050A (en) * 1988-04-13 1990-06-05 Shiley Infusaid Inc. Constant pressure variable flow pump
US5138643A (en) 1989-10-02 1992-08-11 Canon Kabushiki Kaisha Exposure apparatus
JP2897355B2 (ja) 1990-07-05 1999-05-31 株式会社ニコン アライメント方法,露光装置,並びに位置検出方法及び装置
JP2830492B2 (ja) 1991-03-06 1998-12-02 株式会社ニコン 投影露光装置及び投影露光方法
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JP3109852B2 (ja) 1991-04-16 2000-11-20 キヤノン株式会社 投影露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JP3246615B2 (ja) 1992-07-27 2002-01-15 株式会社ニコン 照明光学装置、露光装置、及び露光方法
JPH06188169A (ja) 1992-08-24 1994-07-08 Canon Inc 結像方法及び該方法を用いる露光装置及び該方法を用いるデバイス製造方法
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP3412704B2 (ja) 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US5528118A (en) 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5874820A (en) * 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
JP3555230B2 (ja) 1994-05-18 2004-08-18 株式会社ニコン 投影露光装置
US5559338A (en) * 1994-10-04 1996-09-24 Excimer Laser Systems, Inc. Deep ultraviolet optical imaging system for microlithography and/or microfabrication
US5623853A (en) * 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08330229A (ja) 1995-06-01 1996-12-13 Fujitsu Ltd 半導体結晶成長方法
JP3137174B2 (ja) 1995-09-08 2001-02-19 横河電機株式会社 Icテスタのテストヘッド
KR100228036B1 (ko) * 1996-02-09 1999-11-01 니시무로 타이죠 표면에너지 분포측정장치 및 측정방법
US5885134A (en) * 1996-04-18 1999-03-23 Ebara Corporation Polishing apparatus
JPH09320933A (ja) * 1996-05-28 1997-12-12 Nikon Corp 走査型露光装置
US5870223A (en) * 1996-07-22 1999-02-09 Nikon Corporation Microscope system for liquid immersion observation
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
CN1244021C (zh) 1996-11-28 2006-03-01 株式会社尼康 光刻装置和曝光方法
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
KR100512450B1 (ko) 1996-12-24 2006-01-27 에이에스엠엘 네델란즈 비.브이. 두개의물체홀더를가진이차원적으로안정화된위치설정장치와이런위치설정장치를구비한리소그래픽장치
US5959441A (en) * 1997-04-03 1999-09-28 Dell Usa, L.P. Voltage mode control for a multiphase DC power regulator
JPH10284412A (ja) 1997-04-10 1998-10-23 Nikon Corp 外部と光を授受するステージ装置及び投影露光装置
JPH10335236A (ja) 1997-05-28 1998-12-18 Nikon Corp 露光装置、その光洗浄方法及び半導体デバイスの製造方法
JPH10335235A (ja) 1997-05-28 1998-12-18 Nikon Corp 露光装置、その光洗浄方法及び半導体デバイスの製造方法
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
JPH11135428A (ja) * 1997-08-27 1999-05-21 Nikon Corp 投影露光方法及び投影露光装置
US6563565B2 (en) * 1997-08-27 2003-05-13 Nikon Corporation Apparatus and method for projection exposure
DE19744246A1 (de) 1997-10-07 1999-04-29 Hajo Prof Dr Suhr Verfahren und Vorrichtung zur Videomikroskopie disperser Partikelverteilungen
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
JPH11283903A (ja) * 1998-03-30 1999-10-15 Nikon Corp 投影光学系検査装置及び同装置を備えた投影露光装置
WO1999027568A1 (fr) * 1997-11-21 1999-06-03 Nikon Corporation Graveur de motifs a projection et procede de sensibilisation a projection
US6897963B1 (en) * 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
KR20010033118A (ko) * 1997-12-18 2001-04-25 오노 시게오 스테이지 장치 및 노광장치
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
US5997963A (en) * 1998-05-05 1999-12-07 Ultratech Stepper, Inc. Microchamber
US6819414B1 (en) 1998-05-19 2004-11-16 Nikon Corporation Aberration measuring apparatus, aberration measuring method, projection exposure apparatus having the same measuring apparatus, device manufacturing method using the same measuring method, and exposure method
AU3849199A (en) 1998-05-19 1999-12-06 Nikon Corporation Aberration measuring instrument and measuring method, projection exposure apparatus provided with the instrument and device-manufacturing method using the measuring method, and exposure method
DE19825518C2 (de) * 1998-06-08 2001-10-04 Fresenius Ag Vorrichtung zur Messung von Parameteränderungen an lichtdurchlässigen Objekten
JP2934726B2 (ja) 1998-08-20 1999-08-16 株式会社ニコン 投影露光方法
EP1018669B1 (en) 1999-01-08 2006-03-01 ASML Netherlands B.V. Projection lithography with servo control
EP1096351A4 (en) * 1999-04-16 2004-12-15 Fujikin Kk FLUID SUPPLY DEVICE OF THE PARALLEL BYPASS TYPE, AND METHOD AND DEVICE FOR CONTROLLING THE FLOW OF A VARIABLE FLUID TYPE PRESSURE SYSTEM USED IN SAID DEVICE
WO2001023935A1 (fr) 1999-09-29 2001-04-05 Nikon Corporation Procede et dispositif d'exposition par projection, et systeme optique de projection
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
JP2001267239A (ja) 2000-01-14 2001-09-28 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
TW588222B (en) * 2000-02-10 2004-05-21 Asml Netherlands Bv Cooling of voice coil motors in lithographic projection apparatus
US6472643B1 (en) 2000-03-07 2002-10-29 Silicon Valley Group, Inc. Substrate thermal management system
DE10011130A1 (de) 2000-03-10 2001-09-13 Mannesmann Vdo Ag Entlüftungseinrichtung für einen Kraftstoffbehälter
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
JP2001345245A (ja) 2000-05-31 2001-12-14 Nikon Corp 露光方法及び露光装置並びにデバイス製造方法
JP4692862B2 (ja) 2000-08-28 2011-06-01 株式会社ニコン 検査装置、該検査装置を備えた露光装置、およびマイクロデバイスの製造方法
EP1231513A1 (en) * 2001-02-08 2002-08-14 Asm Lithography B.V. Lithographic projection apparatus with adjustable focal surface
EP1231514A1 (en) 2001-02-13 2002-08-14 Asm Lithography B.V. Measurement of wavefront aberrations in a lithographic projection apparatus
US6937339B2 (en) 2001-03-14 2005-08-30 Hitachi Engineering Co., Ltd. Inspection device and system for inspecting foreign matters in a liquid filled transparent container
JP2002343706A (ja) * 2001-05-18 2002-11-29 Nikon Corp ステージ装置及びステージの駆動方法、露光装置及び露光方法、並びにデバイス及びその製造方法
JP2002365027A (ja) * 2001-06-07 2002-12-18 Japan Science & Technology Corp 表面観察装置
KR20030002514A (ko) 2001-06-29 2003-01-09 삼성전자 주식회사 웨이퍼가 장착될 척을 냉각시키기 위한 냉매 경로에서의냉매 누설을 감지할 수 있는 냉각 시스템
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
US7160429B2 (en) * 2002-05-07 2007-01-09 Microfabrica Inc. Electrochemically fabricated hermetically sealed microstructures and methods of and apparatus for producing such structures
CN100389480C (zh) 2002-01-29 2008-05-21 株式会社尼康 曝光装置和曝光方法
JP2005536775A (ja) 2002-08-23 2005-12-02 株式会社ニコン 投影光学系、フォトリソグラフィ方法および露光装置、並びに露光装置を用いた方法
US20040055803A1 (en) * 2002-09-24 2004-03-25 Patmont Motor Werks Variable speed transmission for scooter
CN101424881B (zh) 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
CN100470367C (zh) * 2002-11-12 2009-03-18 Asml荷兰有限公司 光刻装置和器件制造方法
JP3953460B2 (ja) 2002-11-12 2007-08-08 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ投影装置
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP2495613B1 (en) 2002-11-12 2013-07-31 ASML Netherlands B.V. Lithographic apparatus
EP1420299B1 (en) 2002-11-12 2011-01-05 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
EP1429188B1 (en) 2002-11-12 2013-06-19 ASML Netherlands B.V. Lithographic projection apparatus
FR2847670B1 (fr) 2002-11-26 2005-06-10 Sc2N Sa Detecteur par voie optique de la presence de bulles de gaz dans un liquide
JP4352874B2 (ja) * 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
CN1723541B (zh) 2002-12-10 2010-06-02 株式会社尼康 曝光装置和器件制造方法
US7948604B2 (en) * 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
DE10257766A1 (de) * 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Verfahren zur Einstellung einer gewünschten optischen Eigenschaft eines Projektionsobjektivs sowie mikrolithografische Projektionsbelichtungsanlage
JP4595320B2 (ja) * 2002-12-10 2010-12-08 株式会社ニコン 露光装置、及びデバイス製造方法
KR101101737B1 (ko) * 2002-12-10 2012-01-05 가부시키가이샤 니콘 노광장치 및 노광방법, 디바이스 제조방법
SG165169A1 (en) * 2002-12-10 2010-10-28 Nikon Corp Liquid immersion exposure apparatus
JP4232449B2 (ja) * 2002-12-10 2009-03-04 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
EP1571701A4 (en) 2002-12-10 2008-04-09 Nikon Corp EXPOSURE DEVICE AND METHOD FOR MANUFACTURING COMPONENTS
KR20050085235A (ko) 2002-12-10 2005-08-29 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4204964B2 (ja) 2002-12-23 2009-01-07 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
JP2004205698A (ja) 2002-12-24 2004-07-22 Nikon Corp 投影光学系、露光装置および露光方法
JP4488005B2 (ja) 2003-04-10 2010-06-23 株式会社ニコン 液浸リソグラフィ装置用の液体を捕集するための流出通路
CN101980087B (zh) * 2003-04-11 2013-03-27 株式会社尼康 浸没曝光设备以及浸没曝光方法
TWI612556B (zh) 2003-05-23 2018-01-21 Nikon Corp 曝光裝置、曝光方法及元件製造方法
US7213963B2 (en) * 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) * 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101674329B1 (ko) 2003-06-19 2016-11-08 가부시키가이샤 니콘 노광 장치 및 디바이스 제조방법
JP4343597B2 (ja) * 2003-06-25 2009-10-14 キヤノン株式会社 露光装置及びデバイス製造方法
JP2005019616A (ja) * 2003-06-25 2005-01-20 Canon Inc 液浸式露光装置
EP1494079B1 (en) 2003-06-27 2008-01-02 ASML Netherlands B.V. Lithographic Apparatus
JP3862678B2 (ja) * 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2466382B1 (en) * 2003-07-08 2014-11-26 Nikon Corporation Wafer table for immersion lithography
EP1500982A1 (en) * 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005010960A1 (ja) 2003-07-25 2005-02-03 Nikon Corporation 投影光学系の検査方法および検査装置、ならびに投影光学系の製造方法
US7061578B2 (en) * 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
JP4513299B2 (ja) * 2003-10-02 2010-07-28 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
JP2005136374A (ja) 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd 半導体製造装置及びそれを用いたパターン形成方法
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1528433B1 (en) 2003-10-28 2019-03-06 ASML Netherlands B.V. Immersion lithographic apparatus and method of operating the same
TWI361450B (en) 2003-10-31 2012-04-01 Nikon Corp Platen, stage device, exposure device and exposure method
JP2005191394A (ja) 2003-12-26 2005-07-14 Canon Inc 露光方法及び装置
JP2005209705A (ja) * 2004-01-20 2005-08-04 Nikon Corp 露光装置及びデバイス製造方法
CN100552879C (zh) * 2004-02-02 2009-10-21 尼康股份有限公司 载台驱动方法及载台装置、曝光装置、及元件制造方法
EP1768169B9 (en) 2004-06-04 2013-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP3190605B1 (en) * 2004-06-21 2018-05-09 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2226682A3 (en) 2004-08-03 2014-12-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7274883B2 (en) * 2005-03-22 2007-09-25 Marvell International Technology Ltd. Hybrid printer and related system and method

Also Published As

Publication number Publication date
EP1791164A1 (en) 2007-05-30
HK1243776B (zh) 2019-11-22
US20080084546A1 (en) 2008-04-10
EP3048485A1 (en) 2016-07-27
EP2226682A3 (en) 2014-12-24
US20120176589A1 (en) 2012-07-12
CN105204296A (zh) 2015-12-30
CN102998910A (zh) 2013-03-27
CN105204296B (zh) 2018-07-17
TWI460544B (zh) 2014-11-11
HK1104676A1 (en) 2008-01-18
EP3048485B1 (en) 2017-09-27
US8169591B2 (en) 2012-05-01
JP2011097121A (ja) 2011-05-12
US9063436B2 (en) 2015-06-23
KR20120007082A (ko) 2012-01-19
EP3258318A1 (en) 2017-12-20
KR20120128167A (ko) 2012-11-26
EP1791164A4 (en) 2008-12-10
EP1791164B2 (en) 2014-08-20
EP1791164B1 (en) 2010-06-02
HK1223688A1 (zh) 2017-08-04
TW200617615A (en) 2006-06-01
KR101230712B1 (ko) 2013-02-07
KR101354801B1 (ko) 2014-01-22
EP3267257A1 (en) 2018-01-10
EP2226682A2 (en) 2010-09-08
EP3258318B1 (en) 2019-02-27
WO2006013806A1 (ja) 2006-02-09
HK1212782A1 (zh) 2016-06-17
CN101799636A (zh) 2010-08-11
CN101799636B (zh) 2013-04-10
EP3267257B1 (en) 2019-02-13
KR101337007B1 (ko) 2013-12-06
JP5152356B2 (ja) 2013-02-27
ATE470235T1 (de) 2010-06-15
KR20070041553A (ko) 2007-04-18
HK1244064B (zh) 2019-11-29
DE602005021653D1 (de) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5152356B2 (ja) 露光装置、及び観察方法
US9599907B2 (en) Exposure apparatus and device manufacturing method
JP4655763B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP4720747B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP4555903B2 (ja) 露光装置及びデバイス製造方法
JP2010118714A (ja) 露光装置、露光方法及びデバイス製造方法
WO2005122220A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP4752375B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2006140459A (ja) 露光装置、露光方法及びデバイス製造方法
WO2006118189A1 (ja) 露光方法及び露光装置、並びにデバイス製造方法
WO2005106930A1 (ja) 露光方法、露光装置及びデバイス製造方法
JP5633533B2 (ja) ノズル部材、液浸露光装置、液浸露光方法、及びデバイス製造方法
JP2006332639A (ja) 露光方法及び露光装置、並びにデバイス製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130813