JP2011056511A - 気体混合液生成方法および気体混合液 - Google Patents

気体混合液生成方法および気体混合液 Download PDF

Info

Publication number
JP2011056511A
JP2011056511A JP2010255327A JP2010255327A JP2011056511A JP 2011056511 A JP2011056511 A JP 2011056511A JP 2010255327 A JP2010255327 A JP 2010255327A JP 2010255327 A JP2010255327 A JP 2010255327A JP 2011056511 A JP2011056511 A JP 2011056511A
Authority
JP
Japan
Prior art keywords
gas
liquid
ozone
gas mixture
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010255327A
Other languages
English (en)
Other versions
JP5681944B2 (ja
Inventor
Eiji Matsumura
栄治 松村
Nobuko Hagiwara
信子 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010255327A priority Critical patent/JP5681944B2/ja
Publication of JP2011056511A publication Critical patent/JP2011056511A/ja
Application granted granted Critical
Publication of JP5681944B2 publication Critical patent/JP5681944B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/053Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being magnetic or electromagnetic energy, radiation working on the ingredients or compositions for or during mixing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/784Diffusers or nozzles for ozonation

Abstract

【課題】 高溶解度・高濃度の気体混合液を効率よく簡単に生成することのできる気体混合液生成方法を提供する。
【解決手段】 被処理液を通過させるための配管(273)と、当該配管の途中に設けた気液混合装置(205)と、当該気液混合装置に気体を供給するための気体供給構造(203)と、を含めて構成した気液生成装置(201)において、当該気液混合装置には、内部に磁力を作用させるための磁石(243)を設けてある。被処理液と気体の双方に磁力を作用させることによって、高溶解度・高濃度気体混合液を効率よく簡単に生成する方法である。
【選択図】図12

Description

この発明は、液体に気体を混合する気体混合液生成方法および気体混合液に関するものである。
これまで知られている流体混合装置として、特許文献1に記載された装置(以下、適宜「第1従来装置」という)及び、特許文献2に記載された装置(以下、適宜「第2従来装置」という)がある。第1従来装置は、ベンチュリ管と、当該ベンチュリ管を通過する流体の流れに対して直交する磁力線を発生する装置と、を備え、ベンチュリ管を通過する流体に他の流体を混合するように構成されている。上記流体はいずれも導電性があるもの、すなわち、液体であることが特許文献1全体から明らかである。すなわち、第1従来装置は、ベンチュリ管内を流れる流体(液体)と他の流体(液体)に磁力線を貫通させることによってファラデーの電磁誘導の法則により流体に起電力を生じさせ、もって、その流体を活性化させて反応対象物との反応速度を上げさせる等を図らんとするものである。
特開2001−300278号(段落0001、0015、図1、2参照) 特開2003−175324号(段落0005、図2参照)
また、特許文献2には磁力を伴う気液混合装置(以下、適宜「第2従来装置」という)が開示されている。第2従来装置は、配水管中に磁性体によって円錐状に構成された複数の羽根と、当該複数の羽根下流端に形成されたオリフィス部と、オリフィス部下流に開口部が位置する気体供給管と、を有している。複数の羽根には配水管外部から電磁石の磁力が作用するように、さらに、この磁力によって複数の羽根が放射方向に移動してオリフィス径を調整可能に、構成されている。
しかしながら、上述した第1従来装置や第2従来装置では、効率よく気液混合を行うことはできない。第1従来装置はそもそも電磁誘導の法則により流体(液体)に起電力を生じさせるために磁力線を用いているのであるから気液混合、すなわち、気体と液体とを混合するための気液混合装置に対して適用の余地がない。液体と異なり気体は導電性を有しないからである。他方、第2従来装置によれば、磁性体の羽根によって磁気シールドされた中を液体が通過することになるので、羽根に囲まれた通路内を通過する液体に電磁石の磁力が貫通することは無いに等しい。さらに、第2従来装置の気体供給管の開口部が上述したようにオリフィス部下流に配されているので、そこを通過する気体及び開口部から噴出された気体に電磁石の磁力を積極的に及ぼし得る位置にない。したがって、電磁石は気液混合の効率向上のために何ら寄与しない。これらの点が、効率よく気液混合を行うことのできない理由であると推測される。本発明が解決しようとする課題は、効率よく気液を混合することのできる気液混合装置により気体混合液を生成する方法および気体混合液を提供することにある。
上述した発明者らは、通過する液体はもとより気泡にも磁力を作用させる方法によって、気液混合を極めて効率的かつ効果的に行いうることを知得した。本発明は、このような知得に基づいてなされたものである。発明の詳しい構成については、次項以下において改めて説明する。なお、何れかの請求項記載の発明を説明するに当たって行う用語の定義等は、その性質上可能な範囲において他の請求項記載の発明にも適用があるものとする。
(請求項1記載の発明の特徴)
請求項1記載の気液混合装置(以下、適宜「請求項1の装置」という)による気体混合液生成方法は、大径部の途中に小径部を有するベンチュリ管と、当該小径部内を通過する液体に気体を供給するための気体供給パイプと、少なくとも当該小径部内を通過する液体を、当該液体が含む当該気体の気泡とともに貫通可能な磁力線を発生する磁石と、を含めて構成した気液混合装置により気体混合液を生成する。
請求項1の方法によれば、外部から供給される液体と気体とを効率よく混合することができる。具体的には、次に示すように作用する。すなわち、大径部から小径部内に進入する液体(たとえば、水)には、ベルヌイの法則により圧力差(負圧)が生じ、その圧力差が気体供給パイプから供給される気体(たとえば、オゾンや水素)を液体内に引き込む。引き込まれた気体は気泡として液体内に含まれる。このとき、液体と気泡とが小径部内において乱気流的に攪拌される。特にこの攪拌状態にある気体と気泡に磁力線を貫通させることによって、磁力線貫通がない場合に比べ効率よく気液が混合される。磁力線を貫通させると混合効率が上昇することについての因果関係は現在解明中であるが、磁力というエネルギーを与えられることによって液体及び気泡(の中の気体)が活性化されるためであると推測できる。小径部近傍にある液体又は気体についても、同様に活性かされるものと考えられる。
(請求項2記載の発明の特徴)
請求項2記載の気液混合装置(以下、適宜「請求項2の装置」という)よる気体混合液生成方法は、液体の通過方向を長さ方向とする透磁性の筒体と、当該筒体を長さ方向に貫通する複数の大径路と、大径路各々の途中に形成した小径路と、当該小径路内を通過する液体に気体を供給するための気体供給路と、少なくとも当該小径路各々内を通過する液体を、当該液体が含む当該気体の気泡とともに貫通可能な磁力線を発生する磁石と、を含めて構成してある。さらに、当該大径路各々に対して液体を分岐供給可能な液供給構造と、当該大径路各々から排出される液体を集合受給可能な液受給構造と、当該大径路各々が有する気体供給路に対して気体を分岐供給可能な気体供給構造と、を含めて構成してなる気液混合装置により気体混合液を生成する。
請求項2の方法によれば、請求項1の方法と同じ機能を複数同時に実現することができる。すなわち、液供給構造を介して外部から供給される液体と、気体供給構造を介して外部から供給される気体とを効率よく混合することができるとともに、量的にも混合効率をよくすることができる。具体的には、次に示すように作用する。すなわち、大径路から小径路内に進入する液体(たとえば、水)には、ベルヌイの法則により圧力差(負圧)が生じ、その圧力差が気体供給路から供給される気体(たとえば、オゾンや水素)を液体内に引き込む。引き込まれた気体は気泡として液体内に含まれる。このとき、液体と気泡とが小径路内において乱気流的に攪拌される。この攪拌状態にある気体と気泡に磁力線を貫通させることによって、磁力線貫通がない場合に比べ効率よく気液が混合される。上記した気液混合作用が、複数の大径路(小径路)内で同時に行われるため混合効率を量的な面でよくすることができる。各大径路(各小径路)を通過した気液混合液は液受給構造によって集合させられ一括取り出し可能な状態になる。
(請求項3記載の発明の特徴)
請求項3記載の発明に係る気液混合装置(以下、適宜「請求項3の装置」という)による気体混合液生成方法には、請求項1の装置の基本構成を備えさせた上で、前記気体供給パイプ及び磁石が、当該気体供給パイプ内を通過する気体を磁力線が横断可能に構成してある。すなわち、気体供給パイプが透磁性部材により構成してあり、かつ、この透磁性パイプを抜け内部を通過する気体を横断可能な磁力線を発生するように磁石を構成してある。
請求項3の方法によれば、請求項1の気体混合液生成方法の作用効果に加え、混合効率を向上させることができる。推測ではあるが、気体供給パイプ内を通過する気体に磁気的エネルギーを付与することによって、混合後とともに混合前の気体が活性化されるためである。
(請求項4記載の発明の特徴)
請求項4記載の発明に係る気液混合装置(以下、適宜「請求項4の装置」という)による気体混合液生成方法には、請求項1乃至3いずれかの気液混合装置の基本構成を備えさせた上で、前記磁石が、一方の磁石片と他方の磁石片とを含む磁気回路によって構成してあり、当該一方の磁石片と当該他方の磁石片とを、当該一方の磁石から発生した磁力線が前記小径部を横断して当該他方の磁石片に到達可能に配してある。一方の磁石片と他方の磁石片との位置関係は、少なくとも小径部を挟んで両者対向させるのが一般的であるが、これに限る必要はない。
請求項4の方法によれば、磁気回路を構成することによって、一方の磁石片と他方の磁石片が発生する磁力線(磁束線)をベンチュリ管の少なくとも小径部に集中させ、当該箇所に強い磁場を発生させることができる。この結果、同じ強さの磁石を用いた場合であってもより強い磁力(磁場)を当該箇所に作用させることができる。作用させる磁力が強くなれば、その分、液体及び気泡の活性化が促進され気液混合の効率がさらに向上する。
(請求項5記載の発明の特徴)
請求項5記載の発明に係る気液混合装置(以下、適宜「請求項5の装置」という)による気体混合液生成方法には、請求項1乃至4いずれかの装置の基本構成を備えさせた上で、前記磁石の磁力が、3000〜20000ガウスに設定してある。
請求項5の方法によれば、請求項1乃至4いずれかの気体混合液生成方法の作用効果が、上記設定範囲の磁力をもった磁石によって実現することができる。磁力の強度を上記範囲に設定した理由は、その入手容易性にある。すなわち、本件発明に使用可能な磁石として、たとえば、ネオジュウム磁石があるが、このような磁石を市場調達しようとした場合に調達可能性が高く価格的にも使用可能なものとなると上記磁力範囲のものとなる。上記磁力範囲の磁石よりも強力な磁石が入手可能であれば、その磁石の使用を妨げる趣旨ではない。
(請求項6記載の発明の特徴)
請求項6記載の発明に係る気液混合装置(以下、適宜「請求項6の装置」という)による気液混合液生成方法には、請求項3乃至5いずれかの気液混合装置の基本構成を備えさせた上で、前記一方の磁石片と前記他方の磁石片との間の距離が、前記大径部の直径Dよりも短く設定してあることを特徴とする。
請求項6の方法によれば、請求項3乃至5いずれかの気体混合液生成方法の作用効果に加え、距離を短くすることによって、その分、磁力線の数を増やす(磁力を強める)ことができる。つまり、同じ磁石であっても、磁石間の距離の2乗に反比例して磁力が強まるから、仮に、距離を半分にすれば磁力は4倍になる。これを利用して、可及的に強い磁力を小径部内に及ぼさせようとしたものである。
(請求項7記載の発明の特徴)
請求項7記載の発明に係る気液混合装置(以下、適宜「請求項7の装置」という)による気体混合液生成方法には、請求項3乃至6いずれかの気液混合装置の基本構成を備えさせた上で、前記磁気回路と略同一構造を持つ他の磁気回路を少なくとも1個(すなわち、少なくとも合計2個)、前記磁気回路に対して前記小径部周方向に所定間隔を介して配してある。
請求項7の方法によれば、請求項3乃至6いずれかの気体混合液生成方法の作用効果に加え、液体及び気泡を貫かせる磁力線の量を、増設した他の磁気回路の分だけ増加させることができる。つまり、より強い磁力が、液体及び気泡に作用して気液混合を促進する。
(請求項8記載の発明の特徴)
請求項8記載の発明に係わる気体混合液(以下、適宜「請求項8の気体混合液」という)は、請求項1乃至7いずれか記載の気体混合液生成方法により生成してあり、含有する気体の気泡の粒径がナノメートル単位であることを特徴とする。
請求項8の気体混合液によれば、含有する気体の気泡の粒径がナノメートル単位であるため、気体が気泡が気体混合液の中に安定して滞留し容易に脱気しなく、高溶解度をもった高濃度の気体混合液を生成することができる。
本発明によれば、外部から供給される液体と、外部から供給される気体との混合を効率よく行うことができる。
オゾン水生成装置の第2変形例を示す概略構成図である。 気液混合装置の正面図である。 図13に示す気液混合装置の左側面図である。 図14に示す気液混合装置のX−X断面図である。 一部を省略した気液混合装置の平面図である。 溶解促進槽の縦断面図である。 気液混合装置の変形例を示す正面図である。 比較実験を行うための気体混合液生成装置の概略構成図である。 気液混合装置の斜視図である。 気液混合装置の分解斜視図である。 ベンチュリ管の斜視図である。 ベンチュリ管の正面図である。 図9に示す気液混合装置のA−A断面図である。 図9に示す気液混合装置のB−B断面図である。 磁気回路を2個備える気液混合装置の側面図である。 図15に示す気液混合装置の正面図である。 複数の大径路(小径路)を有する気液混合装置(請求項2)の縦断面図である。 図17に示す気液混合装置の横断面図である。
各図を参照しながら、本発明を実施するための最良の形態について説明する。図1は、気液混合装置を設置可能な気体混合液生成装置の概略構成図である。図2は、気液混合装置の正面図である。図3は、図2に示す気液混合装置の左側面図である。図4は、図3に示す気液混合装置のX−X断面図である。図5は、一部を省略した気液混合装置の平面図である。図6は、溶解促進槽の縦断面図である。図7は、比較実験を行うための気体混合液生成装置の概略構成図である。
(気液混合装置の設置例)
図1を参照しながら、気液混合装置を設置した気体混合液生成装置の概略構造について説明する。気体混合液生成装置201は、貯留タンク202と、気体の生成又は採取等を行い、さらに、必要に応じて圧搾等を行った後に供給するための気体供給構造203と、貯留タンク202から取り出した被処理液を貯留タンク202に戻すための循環構造204と、循環構造204の途中に設けた気液混合装置205及び溶解促進槽206と、貯留タンク202に付設した温度保持構造207と、から概ね構成してある。以下の説明は、説明の都合上、貯留タンク202、温度保持構造207、気体供給構造203、気液混合装置(気液混合構造)205、溶解促進槽206を行った後、最後に循環構造204について行う。なお、以下の説明における気体混合液は、これをオゾン水とする。オゾン水は、原水(被処理液)である水に、気体であるオゾンを混合して生成する。必要に応じて添加物を添加することを妨げないが、実施形態では、原水に添加物は添加していない。水以外の被処理液を用いる場合、及び/又は、オゾン以外の気体(たとえば、水素)を用いる場合は、その被処理液及び/又は気体の性質等に合わせた設計変更を適宜行うことができる。
(貯留タンク周辺の構造)
図1に示すように、貯留タンク202には取水バルブ202vを介して被処理液としての原水を注入可能に構成してある。貯留タンク202は取水した原水、及び、後述する循環構造204を介して循環させた被処理液又は気体混合液(オゾン水)を貯留するためのものである。貯留タンク202に貯留された被処理液(気体混合液)は、温度保持構造207によって、たとえば、5〜15℃の範囲に保持されるようになっている。上記範囲に温度設定したのは、オゾン溶解を効率よく行い、かつ、溶解させたオゾンを容易に脱気させないために適当であるからである。温度保持構造は、被処理液や気体が、これを必要としないのであれば、省略することも可能である。また、設置する場合の温度範囲は、被処理液や気体(気体群)の種類や性質、さらに、添加物の有無等を総合的に考慮して設定するとよい。温度保持構造207は、貯留タンク202から被処理液を取り出すためのポンプ211と、取り出した被処理液を冷却するための冷却機212と、から概ね構成してあり、貯留タンク202とポンプ211、ポンプ211と冷却機212、冷却機212と貯留タンク202の間は被処理液を通過させる配管213によって連結してある。上記構成によって、貯留タンク202に貯留された被処理液(原水及び/又はオゾン水)は、ポンプ211の働きによって貯留タンク202から取り出され、冷却機212に送られる。冷却機212は送られてきた被処理液を所定範囲の温度に冷却して貯留タンク202に戻す。ポンプ211は、図外にある温度計によって計測された貯留タンク202内の被処理液の温度が所定範囲を超え冷却の必要があるときにのみ作動するようになっている。貯留タンク202を設けた理由は、被処理液を一旦貯留することによって上記冷却を可能にするとともに、被処理液を安定状態に置き、これによって、被処理液に対するオゾン溶解を熟成類似の作用によって促進させるためである。なお、たとえば、寒冷地等において被処理液が凍結する恐れがある場合は、上記冷却機の代わりに、又は、上記冷却機とともにヒーター装置を用いて被処理液を加温するように構成することもできる。
(気体供給構造)
本実施形態における気体供給構造203は、オゾンを生成供給するための装置である。必要なオゾン量を供給可能なものであれば、気体供給構造203が作用するオゾン発生原理等に何ら制限はない。気体供給構造203によって生成されたオゾンは、気体供給管217の途中に設けた電磁バルブ218と逆止弁219を介して気液混合装置205に供給されるようになっている。被処理液に混合する気体が、たとえば、大気であれば、圧搾空気装置(コンプレッサー)等が、このオゾン供給構造の主要構成要素となる。複数種類の気体を混合する場合には、各気体を生成又は採取等する装置を用いる。
(気液混合装置)
図1乃至5を参照しながら気液混合装置205の詳細について説明する。気液混合装置205は、ベンチュリ管231と、オゾンを供給するための気体供給パイプ239と、磁気回路243と、により概ね構成してある。ベンチュリ管231と気体供給パイプ239とは、透磁性のある合成樹脂材により一体構成してある。ベンチュリ管231は、上流側(図2の向かって右側)から送られた被処理液を下流側(図2の向かって左側)へ通過させるためのパイプ状の外観を有している。ベンチュリ管231を長手方向に貫く中空部は、上流側から下流側に向かって上流側大経路232、絞り傾斜路233、小径路234、開放傾斜路235及び下流側大経路236の順に連通している(図4参照)。上流側大経路232は、軸線方向に対して50度前後の急角度をもって絞り方向に傾斜する絞り傾斜路233を介して小径路234に繋げられ、その後、開放傾斜路235によって同じく軸線方向に対して30度前後の緩やかな角度を持って開放される。開放傾斜路235は、上流側大経路232と同じ外径の下流側大経路236に繋がっている。他方、小径路234には、そこに気体供給パイプ239の開口端を臨ませてある。気体供給パイプ239の供給端には気体供給構造203と連通する気体供給管217が接続してある。小径路234の中、又は、その近傍は、被処理液の圧力変化によって真空又は真空に近い状態になるため、開口端に及んだオゾンは吸引され乱流化した被処理液内に散気される。なお、符号240は、ベンチュリ管231と気体供給パイプ239との間を補強するためのリブを示している。
ベンチュリ管231には、磁気回路243をネジ(図示を省略)固定してある。磁気回路243は、ベンチュリ管231を挟んで対向する一方の磁石片245及び他方の磁石片246と、一方の磁石片245と他方の磁石片246とを連結するとともに、ベンチュリ管231への磁石片取り付けの機能を有する断面U字状(図3参照)の連結部材248と、により構成してある。磁石片245と磁石片246とは、小径路234(図3では破線で示す。図5を併せて参照)及び/又はその近傍(特に、下流側)をその磁力線(磁界)が最も多く通過するように配するとよい。ただ、実際には、小径路234のみに磁力線を集中させることは技術的困難を伴うことから、小径路234及び小径路234の近傍の双方に磁力線を通過させることになろう。被処理液(水)とオゾン(気体)の双方に磁力を作用させることによって、被処理液に対して最も効率よくオゾンを溶解させることができると考えられるからである。磁石片245及び磁石片246は、7,000ガウス前後の磁力を持つネオジュウム磁石によって構成してある。磁力は強いほうがオゾン溶解効果が高いと思われるが、少なくとも3,000ガウス以上のものが望まれる。ここで、7,000ガウスの磁石を採用したのは、その調達容易性と経済性にある。7,000ガウス以上の磁力を持つ磁石(天然磁石、電磁石等)の採用を妨げる趣旨ではない。連結部材248は、磁束漏れを抑制して磁力作用が被処理液等にできるだけ集中するように、磁力透磁率(μ)の大きい部材(たとえば、鉄)によって構成してある。なお、磁気回路243とともに、又は、これに代えてベンチュリ管231の外側に1又は2以上の磁石231mを設けてもよい。磁気回路243と同様に被処理液及び気体に磁力を作用させるためである。被処理液(気体)に磁力を作用させるためである。磁石231mの磁力は、上記同様に少なくとも3,000ガウス以上が好ましい。
(気液混合装置の作用効果)
以上の構成により、上流側大経路232を通過した被処理液は、絞り傾斜路233を通過するときに圧縮されて水圧が急激に高まり、同時に通過速度も急激に上昇する。高圧・高速のピークは、小径路234に達したときである。小径路234を通過した被処理液は、開放傾斜路235の中で急激に減圧・減速し、後続する被処理液との衝突の衝撃等を受け乱流化する。その後、被処理液は下流側大経路236を抜け、気液混合装置205の外へ出る。散気されたオゾンは、被処理液の乱流に巻き込まれ大小様々な大きさの気泡となり攪拌作用を受ける。小径路234及び少なくともその下流を流れる被処理液(オゾン)には、上記攪拌作用とともに磁気回路243の働きによる磁力作用を受ける。すなわち、被処理液の水圧を圧力頂点(ピーク)に至るまで増圧させ当該圧力頂点に至った直後に減圧させるとともに当該圧力頂点に至った(及び/又は頂点に至った直後の)被処理液にオゾンを供給する、ことを磁界の中で行うことになる。攪拌作用と磁界の磁力作用が相乗効果を生み、その結果、被処理液にオゾンが溶解し高溶解度を持った高濃度オゾン水(気体混合液)が生成される。
(溶解促進槽)
図1及び6を参照しながら、溶解促進槽206について説明する。溶解促進槽206は、天板253と底板254とによって上下端を密閉した円筒状の外壁255によって、その外観を構成してある。天板253の下面には、その下面から垂下する円筒状の内壁256を設けてある。内壁256に囲まれた空間が、被処理液を貯留するための貯留室258となる。内壁256の外径は外壁255の外径よりも小さく設定してあり、これによって、内壁256と外壁255との間に所定幅の壁間通路259が形成される。他方、内壁256の下端は、底板254まで届かず、底板254との間に所定幅の間隙を形成する。この間隙は、下端連通路257として機能する。すなわち、内壁256が囲む貯留室258は、下端連通路257を介して壁間通路259と連通している。他方、内壁256の天板253の近傍には複数の連通孔256h,256h,・・を貫通させてあり、貯留室258と壁間通路259とは各連通孔256hを介しても連通している。底板254の上面略中央には、細長の揚液管261を起立させてある。揚液管261の中空部下端は、底板254を貫通する入液孔254hと連通し、中空部上端は、揚液管261上端に形成した多数の小孔261h,・・を介して貯留室258と連通している。揚液管261の上端は、内壁256が有する連通孔256hの位置よりも僅か下に位置させてある。外壁255の高さ方向上から略4分の1付近には、排液孔255hを貫通させてある。つまり、壁間通路259は、排液孔255hを介して外部と連通している。
天板253の略中央には、揚液孔253hを貫通させてある。揚液孔253hは、天板253の外部に配した気液分離装置265の内部に連通している。気液分離装置265は、揚液孔253hを介して貯留室258から押し上げられる被処理液と、この被処理液から脱気するオゾンとを分離排出するための脱気構造として機能する。気液分離装置265によって分離されたオゾンは、気体分解装置267によって分解して無害化した後に装置外部に放出するようになっている。本実施形態における被処理液に対するオゾン溶解度はきわめて高く、したがって、脱気するオゾンは極めて少ないが、より安全性を高めるためにオゾン分解装置267等を設けてある。たとえば、酸素や窒素のように無害の気体を放出するのであれば、気体分解装置267を省略してもよい。揚液管261によって貯留室258内に送り込まれた被処理液は、後続する被処理液に押されて下降する。下端に達した被処理液は下端連通路257を折り返して壁間通路259内を上昇し、排液孔255hを介して外部に排水される。また、一部の被処理液は気液分離装置265内に押し上げられる。この間、熟成類似の作用によってオゾンが被処理液に溶解して高溶解度のオゾン水を生成する。他方、溶解し切れなかったり、一旦は溶解したが脱気したオゾンがある場合に、そのオゾンは気液分離装置265内に上昇しそこで分離される。したがって、被処理液から溶解しきれないオゾンは、そのほとんどを排除することができる。この結果、溶解促進槽206を通過した被処理液のオゾン溶解度は、飛躍的に高くなっている。
(循環構造)
図1を参照しながら、循環構造について説明する。循環構造204は、気液混合装置205を通過した被処理液(既に原水からオゾン水になっている)を循環させて再度、気液混合装置205を通過させる機能を有している。再度、気液混合装置205を通過させるのは、既にオゾンを溶解させた被処理液に再度オゾンを注入することによって、オゾンの溶解度と濃度をさらに高めるためである。循環構造204は、ポンプ271を駆動源とし、貯留タンク202と溶解促進槽206を主要な構成要素とする。すなわち、ポンプ271は、貯留タンク202から配管270を介して取り出した被処理液を逆止弁272及び配管273を介して気液混合装置205に圧送する。圧送によって気液混合装置205を通過した被処理液は、配管274及び溶解促進槽206を抜け配管275を介して貯留タンク202に戻される。循環構造204は、上記した工程を必要に応じて繰り返して実施可能に構成してある。循環させる回数は、生成しようとするオゾン水のオゾン溶解度やオゾン濃度等を得るために自由に設定することができる。なお、符号276は、配管275の途中に設けたバルブを示している。バルブ276は、その開閉によって気液混合装置205の小径路234(図3参照)を通過させる被処理液の水圧を制御することを主目的として設けてある。
(実験例)
図1及び8を参照しながら、実験例について説明する。ここで、示す実験例は、背景技術の欄において説明した磁石の使用方法と本発明に係る磁石の使用方法の違いによって、オゾンの溶解度や濃度に著しい差が生じることを主として示すためのものである。本実験例では、本件発明に係る装置として図1に示す気体混合液生成装置(以下、「本件装置」という)を使用し、比較対象となる装置として図8に示す気体混合液生成装置(以下、「比較装置」という)を使用した。比較装置には、本件装置の構造と基本的に同じ構造を備えさせてあるが、磁気回路243の取付位置のみを異ならせてある。このため、図8では磁気回路を除き図1で使用する符号と同じ符号を使用し、図8に示す磁気回路には気液混合装置205の上流側にあるものに符号243aを、下流側にあるものに符号243bを、それぞれ付してある。整理すると、図1に示す本件装置は、磁気回路243と一体となった気液混合装置205を備え、図8に示す比較装置は、気液混合装置205の上流側配管に磁気回路243aを、同じく下流側配管に磁気回路243bを、それぞれ同時に又は選択的に取り付け取り外しできるように構成してある。被処理液は井戸水、気体はオゾンであり、気体混合液であるオゾン水を生成した。なお、気液混合装置205として、米国マジェーインジェクター社(MAZZEI INJECTOR CORPORATION)製のモデル384を、磁気回路には7000ガウスのものを、それぞれ使用した。
(濃度比較実験)
表1及び表2を参照しながら、濃度比較実験について説明する。表1は、オゾン水のオゾン濃度と濃度上昇時間との関係を示している。表2は、表1に示すオゾン水のオゾン濃度が生成装置の運転停止後にゼロになるまでに要する時間を示している。ゼロになるまでの時間が長ければ長いほどオゾン溶解度が高いことを示す。表1及び2において、記号「□」は本件装置を用いて生成したオゾン水(以下、「本件オゾン水」という)を、記号「×」は比較装置から磁気回路のみを取り外した気液混合装置を用いて生成したオゾン水(以下、「磁気なしオゾン水」という)を、記号「△」は比較装置において気液混合装置205と磁気回路243aとにより生成したオゾン水(以下、「上流側磁気オゾン水」という)を、記号「○」は比較装置において気液混合装置205と磁気回路243bとにより生成したオゾン水(以下、「下流側磁気オゾン水」という)を、そして、記号「◇」は比較装置において気液混合装置205と磁気回路243a及び磁気回路243bの双方とにより生成したオゾン水(以下、「両側磁気オゾン水」という)を、それぞれ示している。被処理液の温度は5℃、周囲湿度は36〜43%、周囲温度は17℃であった。
Figure 2011056511
Figure 2011056511
表1が示すように、生成装置運転開始後の生成時間35分で本件オゾン水はオゾン濃度20ppmに到達したが、同条件下において、磁気なしオゾン水はオゾン濃度8ppm前後、下流側磁気オゾン水はオゾン濃度11ppm前後、上流側磁気オゾン水はオゾン濃度12ppm前後、両側磁気オゾン水はオゾン濃度13ppm前後までしか上昇しなかった。このことから、まず、磁気回路を設けることにより設けない場合に比べてオゾン濃度を高められること、次に、同じ磁気回路を設けるとしても気液混合装置と一体化させた場合と気液混合装置以外の箇所に設けた場合とでは前者の方が後者よりも少なくとも7ppm高いオゾン水を生成可能であること、が分かった。つまり、オゾン濃度について本件オゾン水は、両側磁気オゾン水に比べて略54%((20−13)/13×100)高い、という結果を得た。
表2が示すように、オゾン濃度20ppmに達した本件オゾン水のオゾン濃度がゼロになるまでに32時間以上要したのに対し、比較対象となるオゾン水のうち最も長くかかった両側磁気オゾン水のオゾン濃度は13ppmからゼロになるまでの時間は略3.5時間しか要しなかった。したがって、本件オゾン水は両側磁気オゾン水に比べて10倍近い時間オゾンを含有していたことになる。換言すると、両側磁気オゾン水に比べて本件オゾン水は、同じ時間をかけて同量のオゾンを注入し溶解させたオゾンを10倍近い時間保持していたことになる。本件オゾン水のオゾン溶解度の高さを端的に示している。
(オゾン気泡の粒径測定実験)
表3及び表4を参照しながら、本件オゾン水が含有するオゾン気泡の粒径測定実験について説明する。表3及び表4は、本件オゾン水に含まれるオゾン気泡の粒径分布を示す(左側縦軸参照)。本測定実験では、オゾン濃度とオゾン濃度保持時間との関係から4種類の本件オゾン水を測定対象とした。まず、オゾン濃度を3ppmと14ppmの2種類とし、次に、各濃度それぞれ当該濃度に達した直後のオゾン水(以下、各々「3ppm直後オゾン水」「14ppm直後オゾン水」という)と、当該濃度に達した後その濃度を15分間維持させたオゾン水(以下、各々「3ppm維持オゾン水」「14ppm維持オゾン水」という)と、に分けた。つまり、「3ppm直後オゾン水」「3ppm維持オゾン水」「14ppm直後オゾン水」「14ppm維持オゾン水」の4種類が、本測定実験に係る測定対象である。ここで、本測定実験に使用した本件オゾン水の原水には、水道水を0.05μm(50nm)の微粒子絶対濾過の逆浸透膜で濾過して得た純水を用いた。本実験で純水を得るために使用した装置は、セナー株式会社製超純水装置(型名:Model・UHP)である。水道水には50nm以上の不純物(たとえば、鉄分やマグネシウム)が含まれているため、濾過してない原水から生成したオゾン水を測定対象としても、そこに含まれる不純物を測定してしまい測定誤差が生じかねないので、濾過によって予め不純物を取り除いておくことによってオゾンの気泡粒径の正しい測定ができるようにするためである。水道水以外の原水、たとえば、井戸水や河川水についても同じことがいえる。オゾン気泡の粒径測定に使用した測定器は、動的光散乱式粒径分布測定装置(株式会社堀場製作所(HORIBA,Ltd):型式LB500))である。原水から不純物を濾過せずともオゾン気泡の粒径を正しく測定できる手段があれば、その手段を用いて測定可能であることはいうまでもない。
Figure 2011056511
Figure 2011056511
まず、表3に基づいて、3ppm直後オゾン水と3ppm維持オゾン水について考察する。表3右端のグラフが3ppm直後オゾン水を示し、同じく左端のグラフが3ppm維持オゾン水を示している。3ppm直後オゾン水は、1.3μm(1300nm)〜6.0μm(6000nm)の粒径を持ったオゾン気泡を含有していることが分かった。他方、3ppm維持オゾン水は、0.0034nm(3.40nm)〜0.0050μm(5.00nm)の粒径を持ったオゾン気泡を含有していることが分かった。
次に、表4に基づいて14ppm直後オゾン水と14ppm維持オゾン水について考察する。表4右端のグラフが14ppm直後オゾン水を示し、同じく左端のグラフが14ppm維持オゾン水を示している。14ppm直後オゾン水は、2.3μm(2300nm)〜6.0μm(6000nm)の粒径を持ったオゾン気泡を含有していることが分かった。他方、14ppm維持オゾン水は、0.0034nm(3.40nm)〜0.0058μm(5.80nm)の粒径を持ったオゾン気泡を含有していることが分かった。
上記実験から明らかになった第1の点は、同じ濃度を持ったオゾン水であっても、当該濃度に達した直後のオゾン水(直後オゾン水)と当該濃度を所定時間維持したオゾン水(維持オゾン水)とでは含有されるオゾン気泡の粒径(以下、「気泡粒径」という)が異なるということである。3ppmオゾン水の場合、直後オゾン水の気泡粒径最小値は、維持オゾン水の気泡粒径最大値の、260倍(1300/5.0)の大きさを持っている。同様に14ppmオゾン水の場合は、約400倍(2300/5.8)の大きさを持っている。つまり、当該濃度を所定時間維持すること、すなわち、被処理液であるオゾン水を循環させることによって気泡粒径を小さくすることができるということである。気泡粒径50未満のオゾン気泡であれば安定して水溶液中に浮遊させることができる。本願発明に係るオゾン水生成方法によれば、オゾン気泡の粒径Rが、50nm未満(0<R<50nm)のオゾン気泡を含有するオゾン水、すなわち、溶解度の高いオゾン水を得られることが分かった。これが、実験から明らかになった第2の点である。なお、本実験によれば、オゾン気泡の粒径Rの実測最低値は3.4nmであり、それ以下の値は計測されていない。計測されないのは測定装置の測定能力の限界に起因すると思われる。他方、オゾン気泡の粒径Rは、濃度達成直後に比べ濃度維持後の方が小さくなっていることから、粒径小型化の延長線上には限りなくゼロに近い粒径Rを持ったオゾン気泡が存在しうることが容易に想像できる。
(pH測定実験)
なお、上記4種類のオゾン水、すなわち、「3ppm直後オゾン水」「3ppm維持オゾン水」「14ppm直後オゾン水」及び「14ppm維持オゾン水」についてpH測定実験を行った。その結果は、表5及び6に線グラフで示してある(右側縦軸参照)。いずれのオゾン水についても、オゾン溶解の前後においてpH7.3前後を示した。すなわち、オゾン溶解は原水のpHにほとんど変化を与えないことがわかった。井戸水や水道水は概ね中性(pH6.5〜7.5)を示すことから、気液混合方式によって生成した本件オゾン水は、pHを調整するための添加物を添加しなくても中性を示すことがわかった。もっとも、原水がアルカリ性である場合は、オゾン溶解がオゾン水のpHを変化させないことからアルカリ性のオゾン水が生成される場合もあり得よう。
上記実験結果を総括する。上記実験対象となった本件オゾン水は、何ら添加物を加えることなく原水にオゾンを混合させるという気液混合によって生成されたものである。さらに、オゾン溶解度が高いため常圧下においても容易にオゾンが脱気しない。したがって、無添加とオゾン脱気がない点で、たとえば、家畜や人体に散布しても安全である。また、オゾン濃度を極めて高くすることができるので、本件オゾン水を使用すれば、効率のより洗浄・殺菌効果等を得ることができる。さらに、ウエハー洗浄に代表される半導体洗浄や、衣類洗浄、ワクチン不活化等にも応用できる。
上記実験は、オゾン水についてのものであり、循環構造21を介して被処理水を循環させ繰り返しオゾン供給を行った結果であるが、循環構造21を用いずに気液混合装置205を1回だけ通過(ワンパス)させて生成したオゾン水も高溶解度であることが推測できる。また、被処理液を水とし気体を酸素とすることにより、養殖池の溶存酸素濃度を高めたり、水質の悪い河川や池等の浄化を行ったりすることが可能になる。さらに、上記酸素の代わりに水素を用いた気体混合液(水)を人畜が飲むことによって、体内の活性酸素の除去効果が期待できる。
(気液混合装置の変形例)
図9乃至17を参照する。図9は、気液混合装置の斜視図である。図10は、気液混合装置の分解斜視図である。図11はベンチュリ管の斜視図である。図12は、ベンチュリ管の正面図である。図13は、図9に示す気液混合装置のA−A断面図である。図14は、図9に示す気液混合装置のB−B断面図である。図15は、磁気回路を2個備える気液混合装置の側面図である。図16は、図15に示す気液混合装置の正面図である。図17は、複数の大径路(小径路)を有する気液混合装置(請求項2)の縦断面図である。図18は、図17に示す気液混合装置の横断面図である。
図9乃至14を参照しながら、気液混合装置の第1変形例について説明する。第1変形例に係る気液混合装置300は、先に述べた気液混合装置205と基本的に同じ構成を有している。すなわち、気液混合装置300は、ベンチュリ管301とベンチュリ管301から起立する気体供給パイプ303と、2対の磁気回路305,305と、から概ね構成してある。ベンチュリ管301と気体供給パイプ303とは、透磁性のある合成樹脂材により一体に構成してある。各磁気回路305は、図13及び14に示すように、2個の磁石片と磁力透磁率の大きい部材によって構成した連結部材によって構成してある。
図15及び16を参照しながら、気液混合装置の第2変形例について説明する。第2変形例に係る気液混合装置400は、上述した気液混合装置300の磁気回路のみを、さらに変形したものである。気液混合装置400に係る磁気回路405,405は、図14及び15に示すとおりである。
図17及び18を参照しながら、第3変形例に係る気液混合装置について説明する。第3変形例に係る気液混合装置500は、請求項2に対応するものであって、透磁性筒体501と大径路503群と小径路505群と、各大径路503(各小径路505)に対応して設けた各磁石507と、各大径路に液体を分岐供給するための液供給構造508と、各大径路503に気体を分岐供給するための気体供給路509と、から概ね構成してある。
この発明は、高溶解度・高濃度の気体混合液を効率よく生成することができ、簡単に洗浄・殺菌効果等を得ることにより、半導体洗浄や、衣類洗浄、ワクチン不活化等にも応用できるとともに、水質の悪い河川や池等の浄化を行ったり、体内の活性酸素の除去効果のある飲料として期待できる。
201 気体混合水生成装置
202 貯留タンク
203 気体供給構造
204 循環構造
205 気液混合装置
206 溶解促進槽
207 温度保持構造
231 ベンチュリ管
232 上流側大径路
233 絞り傾斜路
234 小径路
235 開放傾斜路
236 下流側大径路
239 気体供給パイプ
243 磁気回路
245 一方の磁石片
246 他方の磁石片
265 気液分離装置
267 気体分解装置

Claims (8)

  1. 大径部の途中に小径部を有する透磁性ベンチュリ管と、
    当該小径部内を通過する又は通過した液体に気体を供給するための気体供給パイプと、
    当該ベンチュリ管外部に設けた磁石と、を含めて構成してあり、
    当該磁石が、少なくとも当該小径部及び当該小径部近傍を貫通可能な磁力線を発生可能に構成した気液混合装置により気体混合液を生成する気体混合液生成方法。
  2. 液体の通過方向を長さ方向とする透磁性の筒体と、
    当該筒体を長さ方向に貫通する複数の大径路と、
    当該大径路各々の途中に形成した小径路と、
    当該小径路内を通過する液体に気体を供給するための気体供給路と、
    少なくとも当該小径路各々内を通過する液体を、当該液体が含む当該気体の気泡とともに貫通可能な磁力線を発生する磁石と、
    当該大径路各々に対して液体を分岐供給可能な液供給構造と、
    当該大径路各々から排出される液体を集合受給可能な液受給構造と、
    当該大径路各々が有する気体供給路に対して気体を分岐供給可能な気体供給構造と、を含めて構成してなる気液混合装置により気体混合液を生成する気体混合液生成方法。
  3. 前記気体供給パイプ及び磁石が、当該気体供給パイプ内を通過する気体を磁力線が横断可能に構成してある気液混合装置により気体混合液を生成することを特徴とする請求項1記載の気体混合液生成方法。
  4. 前記磁石が、一方の磁石片と他方の磁石片とを含む磁気回路によって構成してあり、当該一方の磁石片と当該他方の磁石片とを、当該一方の磁石から発生した磁力線が前記小径部を横断して当該他方の磁石片に到達可能に配してある気液混合装置により気体混合液を生成することを特徴とする請求項1乃至3いずれか記載の気体混合液生成方法。
  5. 前記磁石の磁力が、3000〜20000ガウスに設定してある気液混合装置により気体混合液を生成することを特徴とする請求項1乃至4いずれか記載の気体混合液生成方法。
  6. 前記一方の磁石片と前記他方の磁石片との間の距離が、前記大径部の直径Dよりも短く設定してある気液混合装置により気体混合液を生成することを特徴とする請求項3乃至5いずれか記載の気体混合液生成方法。
  7. 前記磁気回路と略同一構造を持つ他の磁気回路を少なくとも1個、前記磁気回路に対して前記小径部周方向に所定間隔を介して配してある気液混合装置により気体混合液を生成することを特徴とする請求項3乃至6いずれか記載の気体混合液生成方法。
  8. 請求項1乃至7いずれか記載の気体混合液生成方法により生成してあり、含有する気体の気泡の粒径がナノメートル単位であることを特徴とする気体混合液。
JP2010255327A 2006-08-21 2010-10-28 気体混合液生成方法および気体混合液 Active JP5681944B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255327A JP5681944B2 (ja) 2006-08-21 2010-10-28 気体混合液生成方法および気体混合液

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006224730 2006-08-21
JP2006224730 2006-08-21
JP2010255327A JP5681944B2 (ja) 2006-08-21 2010-10-28 気体混合液生成方法および気体混合液

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008530920A Division JP5283013B2 (ja) 2006-08-21 2007-08-21 気液混合装置

Publications (2)

Publication Number Publication Date
JP2011056511A true JP2011056511A (ja) 2011-03-24
JP5681944B2 JP5681944B2 (ja) 2015-03-11

Family

ID=39106789

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008530920A Active JP5283013B2 (ja) 2006-08-21 2007-08-21 気液混合装置
JP2010255327A Active JP5681944B2 (ja) 2006-08-21 2010-10-28 気体混合液生成方法および気体混合液

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008530920A Active JP5283013B2 (ja) 2006-08-21 2007-08-21 気液混合装置

Country Status (6)

Country Link
US (1) US8403305B2 (ja)
EP (1) EP2060319A4 (ja)
JP (2) JP5283013B2 (ja)
KR (1) KR101122979B1 (ja)
CN (1) CN101516489B (ja)
WO (1) WO2008023704A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080756A (ja) * 2013-10-22 2015-04-27 パナソニック株式会社 微小気泡発生装置および気泡径制御方法
JP6129390B1 (ja) * 2016-07-28 2017-05-17 株式会社カクイチ製作所 ナノバブル生成ノズル及びナノバブル生成装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2376140B1 (en) * 2008-12-16 2016-05-04 Oxy Solutions AS Improvements in oxygenation of a fluid
CN102400873B (zh) * 2010-09-09 2016-03-09 北京水创新能科技有限责任公司 一种液气能磁体增效装置
WO2012103602A1 (en) * 2011-01-31 2012-08-09 Katholieke Universiteit Leuven C02 dissolution
WO2012105536A1 (ja) * 2011-01-31 2012-08-09 独立行政法人国立高等専門学校機構 超微細気泡発生器
WO2013021473A1 (ja) * 2011-08-09 2013-02-14 Matsumura Eiji オゾン分子が高密度に溶存した分子水和オゾン水を用いた放射性物質に汚染された対象物の処理方法及び処理装置
JP5681910B2 (ja) * 2011-09-20 2015-03-11 パナソニックIpマネジメント株式会社 気体溶解装置
JP2013094696A (ja) * 2011-10-28 2013-05-20 Sharp Corp 溶解液生成装置およびオゾン水生成装置、並びに、それを備えた衛生器具用洗浄装置
JP2013248574A (ja) * 2012-05-31 2013-12-12 Yamaha Livingtec Corp 微細気泡発生装置
CN102921370B (zh) * 2012-11-08 2014-09-10 广西华纳新材料科技有限公司 文丘里管反应器
CN103170264A (zh) * 2013-04-12 2013-06-26 中国人民解放军军事医学科学院卫生装备研究所 一种气液混合装置
CN103214068B (zh) * 2013-05-15 2014-03-05 陕西师范大学 磁力耦合水力空化管式污水处理器
CN103224271B (zh) * 2013-05-15 2013-11-20 陕西师范大学 电磁场协同水力空化污水处理装置
JP6048841B2 (ja) * 2014-02-19 2016-12-21 独立行政法人国立高等専門学校機構 微細気泡発生器
CN103861485B (zh) * 2014-03-13 2016-05-11 潍坊市万有环保设备有限责任公司 一种臭氧与水的高效混合装置
JP2016002533A (ja) * 2014-06-19 2016-01-12 オーニット株式会社 原水に含まれる溶存酸素を原料としてオゾン水を製造するオゾン水の製造装置及びオゾン水の製造方法
DE102014012666B4 (de) * 2014-08-22 2016-07-21 Rithco Papertec Gmbh Vorrichtung und Verfahren zur Reinigung von verunreinigten Feststoff-Flüssigkeits-Gemischen und Verwendung der Vorrichtung und des Verfahrens
CN104624070A (zh) * 2015-01-29 2015-05-20 于小波 气液混合系统及方法
CN104587878A (zh) * 2015-01-29 2015-05-06 于小波 一种气液混合装置
CN106085527A (zh) * 2016-08-19 2016-11-09 钱维洁 闪蒸混空装置
US11918963B2 (en) * 2016-09-28 2024-03-05 Quartus Paulus Botha Nano-bubble generator and method of generating nano-bubbles using interfering magnetic flux fields
CN106694268A (zh) * 2017-02-08 2017-05-24 安徽鹰龙工业设计有限公司 一种基于液体磁化的高浓度气液两相混合雾化器
US10258952B2 (en) * 2017-03-31 2019-04-16 Larry John Dove Method for increasing gas components in a fluid
CN109210374B (zh) * 2017-06-30 2021-06-08 北京北方华创微电子装备有限公司 进气管路及半导体加工设备
CN207591642U (zh) * 2017-09-22 2018-07-10 乔登卫浴(江门)有限公司 一种微纳米气泡发生器及应用该发生器的喷淋装置
CN108215299B (zh) * 2017-11-24 2024-01-19 卓弢机器人盐城有限公司 一种环保粉料自动压片和下料装置
CN110877924A (zh) * 2018-08-31 2020-03-13 优氢科技股份有限公司 氢水产生器、微奈米氢气泡水产生装置及微奈米氢气泡水的制造方法及其应用
CN109157299B (zh) * 2018-11-05 2020-06-30 南京新隆医疗器械有限公司 湿性臭氧的制备方法及其在牙科治疗中的应用
CN110171041B (zh) * 2019-05-31 2021-05-04 重庆市丰泽室内套装门有限责任公司 木门表面敷平用供料机构
CN112387136A (zh) * 2019-08-16 2021-02-23 株式会社富士计器 公寓中的微细气泡液供给系统
JP7412200B2 (ja) * 2020-02-06 2024-01-12 株式会社荏原製作所 ガス溶解液製造装置
KR20220156602A (ko) * 2020-03-24 2022-11-25 몰레에르, 인크 나노 기포 생성 장치 및 방법
CN112023741B (zh) * 2020-08-28 2021-11-05 中南大学 一种两段式空化泡发生器
IT202000031424A1 (it) * 2020-12-18 2022-06-18 Bionaturae S R L Sistema di spruzzaggio in continuo di acqua ozonizzata con microbolle di dimensioni particolarmente ridotte
US11938437B2 (en) * 2021-02-04 2024-03-26 Transportation Ip Holdings, Llc Filter system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131800A (ja) * 1994-10-31 1996-05-28 Idec Izumi Corp 気液溶解混合装置
JPH1190453A (ja) * 1997-09-19 1999-04-06 Hydro Tec Product:Kk 磁気による流体処理器
JP2000202458A (ja) * 1998-03-17 2000-07-25 Tecchu Kaku イオン分離器
JP3071399U (ja) * 2000-02-29 2000-08-29 株式会社ビ−・シ−・オ− 浄水装置
WO2001097958A1 (fr) * 2000-06-23 2001-12-27 Ikeda, Yoshiaki Generateur de bulles d'air fines et dispositif de generation de bulles d'air fines muni de ce generateur
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置
JP2004267869A (ja) * 2003-03-06 2004-09-30 Kosuke Chiba 加圧式生物的排水浄化処理法
JP2006191979A (ja) * 2005-01-11 2006-07-27 Pentax Corp 内視鏡洗浄消毒装置
JP2006263505A (ja) * 2005-03-22 2006-10-05 Global Trust:Kk 水処理方法及び装置
JP2007136255A (ja) * 2005-11-14 2007-06-07 Chiken Kk ナノバブル発生装置
JP2008105008A (ja) * 2006-03-03 2008-05-08 Mg Grow Up:Kk 静止型流体混合装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672863B2 (ja) 1989-08-11 1997-11-05 名古屋電機工業 株式会社 車両検知方法
JPH06277476A (ja) 1993-03-26 1994-10-04 Permelec Electrode Ltd オゾン水製造方法
JP2972093B2 (ja) * 1994-09-29 1999-11-08 和泉電気株式会社 気液溶解混合装置
JP3071399B2 (ja) 1997-02-27 2000-07-31 レンフロージャパン株式会社 クランプ
US6896851B1 (en) 1998-08-11 2005-05-24 Mitsubishi Heavy Industries, Ltd. Wet type flue gas desulfurization equipment
US6178953B1 (en) * 1999-03-04 2001-01-30 Virgil G. Cox Magnetic fluid treatment apparatus for internal combustion engine and method thereof
SE0000344D0 (sv) * 2000-02-02 2000-02-02 Sudhir Chowdhury Disinfection of water
JP4412794B2 (ja) 2000-02-14 2010-02-10 幸子 林 造水用車両
JP2001300278A (ja) 2000-04-25 2001-10-30 Akio Tanaka 流体混合活性化装置
DE60108407T2 (de) * 2000-09-27 2006-04-06 Geir Corp., Edmond Vorrichtung und verfahren zur steigerung des sauerstoffgehalts in einer flüssigkeit
JP2002177962A (ja) * 2000-12-14 2002-06-25 Akio Tanaka 流体活性化システム
JP2002306086A (ja) 2001-04-13 2002-10-22 Mutsuo Ogura オゾンを利用した畜舎の脱臭装置および脱臭方法
JP2003019486A (ja) 2001-07-09 2003-01-21 Raizingu Kk オゾン水生成装置およびオゾン水生成方法
JP2003175324A (ja) 2001-12-12 2003-06-24 Yaskawa Electric Corp エジェクタ式気液混合装置
JP2003200174A (ja) * 2002-01-09 2003-07-15 Okazaki Toshio 殺菌水の製造装置並びに殺菌水を用いる歯科研削装置および殺菌水の製造方法
JP2004225691A (ja) * 2002-12-25 2004-08-12 Ryutaro Kishishita 液体燃料改質装置及びその改質方法
WO2005102940A1 (ja) * 2004-04-27 2005-11-03 Isao Furusawa 流体の活性化装置
JP2006198499A (ja) * 2005-01-19 2006-08-03 Tadashi Mochizai 水の殺菌方法および殺菌装置
JP3850027B1 (ja) 2005-02-21 2006-11-29 栄治 松村 家畜消毒方法及び家畜消毒装置
JP4187747B2 (ja) 2005-02-21 2008-11-26 栄治 松村 オゾン水生成装置、オゾン水生成方法及びオゾン水
EP1859675A4 (en) * 2005-02-21 2012-10-03 Nobuko Hagiwara DEVICE FOR PRODUCING OZONE WATER, STRUCTURE FOR MIXING GAS AND WATER FOR USE IN THE DEVICE, PRODUCTION METHOD FOR OZONE WATER AND OZONE WATER
JP2008153605A (ja) 2006-03-20 2008-07-03 Eiji Matsumura 基板洗浄方法及び基板洗浄装置
JP2007275893A (ja) * 2007-06-20 2007-10-25 Eiji Matsumura 気体混合液生成方法及び気体混合液
JP2009160508A (ja) 2007-12-28 2009-07-23 Eiji Matsumura オゾン水生成装置、オゾン水生成方法、オゾン水、オゾン水溶液、及びオゾン水またはオゾン水溶液

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131800A (ja) * 1994-10-31 1996-05-28 Idec Izumi Corp 気液溶解混合装置
JPH1190453A (ja) * 1997-09-19 1999-04-06 Hydro Tec Product:Kk 磁気による流体処理器
JP2000202458A (ja) * 1998-03-17 2000-07-25 Tecchu Kaku イオン分離器
JP3071399U (ja) * 2000-02-29 2000-08-29 株式会社ビ−・シ−・オ− 浄水装置
WO2001097958A1 (fr) * 2000-06-23 2001-12-27 Ikeda, Yoshiaki Generateur de bulles d'air fines et dispositif de generation de bulles d'air fines muni de ce generateur
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置
JP2004267869A (ja) * 2003-03-06 2004-09-30 Kosuke Chiba 加圧式生物的排水浄化処理法
JP2006191979A (ja) * 2005-01-11 2006-07-27 Pentax Corp 内視鏡洗浄消毒装置
JP2006263505A (ja) * 2005-03-22 2006-10-05 Global Trust:Kk 水処理方法及び装置
JP2007136255A (ja) * 2005-11-14 2007-06-07 Chiken Kk ナノバブル発生装置
JP2008105008A (ja) * 2006-03-03 2008-05-08 Mg Grow Up:Kk 静止型流体混合装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080756A (ja) * 2013-10-22 2015-04-27 パナソニック株式会社 微小気泡発生装置および気泡径制御方法
JP6129390B1 (ja) * 2016-07-28 2017-05-17 株式会社カクイチ製作所 ナノバブル生成ノズル及びナノバブル生成装置
WO2018020701A1 (ja) * 2016-07-28 2018-02-01 株式会社カクイチ製作所 ナノバブル生成ノズル及びナノバブル生成装置
JP2018015715A (ja) * 2016-07-28 2018-02-01 株式会社カクイチ製作所 ナノバブル生成ノズル及びナノバブル生成装置
CN109475828A (zh) * 2016-07-28 2019-03-15 株式会社水改质 纳米气泡生成喷嘴和纳米气泡生成装置
RU2729259C1 (ru) * 2016-07-28 2020-08-05 Аква Солюшн Ко., Лтд. Сопло, генерирующее нанопузырьки, и генератор нанопузырьков
US10874996B2 (en) 2016-07-28 2020-12-29 Aqua Solution Co., Ltd. Nanobubble generating nozzle and nanobubble generator

Also Published As

Publication number Publication date
WO2008023704A1 (fr) 2008-02-28
JP5283013B2 (ja) 2013-09-04
KR20090042981A (ko) 2009-05-04
JP5681944B2 (ja) 2015-03-11
EP2060319A4 (en) 2014-01-01
CN101516489A (zh) 2009-08-26
US8403305B2 (en) 2013-03-26
US20100301498A1 (en) 2010-12-02
JPWO2008023704A1 (ja) 2010-01-14
KR101122979B1 (ko) 2012-03-19
CN101516489B (zh) 2012-07-04
EP2060319A1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP5681944B2 (ja) 気体混合液生成方法および気体混合液
WO2006088207A1 (ja) オゾン水生成装置、オゾン水生成装置に用いる気液混合構造、オゾン水生成方法及びオゾン水
JP2007275893A (ja) 気体混合液生成方法及び気体混合液
JP4187747B2 (ja) オゾン水生成装置、オゾン水生成方法及びオゾン水
CN102992471B (zh) 液体处理装置
JP2016221513A (ja) 測定可能な、酸化性ラジカル又は、還元性ラジカルを有するウルトラファインバブル水及びウルトラファインバブル溶液。
JP2007326101A (ja) オゾン水処理方法
WO2016119087A1 (zh) 一种气液混合装置
JP2011088050A (ja) 生物活性水、生物活性水製造装置、生物活性化方法
JP2011152513A (ja) 気液混合液生成装置
JP2011066389A (ja) オゾン水処理方法及びオゾン水処理装置
WO2015146969A1 (ja) 水素含有水の製造方法、製造装置および水素水
JP2011088076A (ja) 気液混合液の生成方法及び気液混合液生成装置
JP2008192630A (ja) 電子・機械部品洗浄方法及び電子・機械部品洗浄装置
KR101191562B1 (ko) 배오존이 적은 고효율 오존 용해장치
JP2017131840A (ja) 溶存酸素増加装置
JP2007301487A (ja) オゾン水生成方法、オゾン水及びオゾン水生成装置
WO2010134551A1 (ja) 気液混合液
JP2009178702A (ja) 気液混合設備
JP2005111378A (ja) 汚水処理装置
JP2010269218A (ja) 気液混合液の生成方法
JP2007203277A (ja) 気液混合装置
KR20110029589A (ko) 포화액 생성기 및 이를 이용한 포화액 제조장치
JP2009220081A (ja) 気液混合溶解装置
JP2013208555A (ja) オゾン溶解装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5681944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250