WO2016119087A1 - 一种气液混合装置 - Google Patents

一种气液混合装置 Download PDF

Info

Publication number
WO2016119087A1
WO2016119087A1 PCT/CN2015/000320 CN2015000320W WO2016119087A1 WO 2016119087 A1 WO2016119087 A1 WO 2016119087A1 CN 2015000320 W CN2015000320 W CN 2015000320W WO 2016119087 A1 WO2016119087 A1 WO 2016119087A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
generator
liquid mixing
bubble
Prior art date
Application number
PCT/CN2015/000320
Other languages
English (en)
French (fr)
Inventor
于小波
陈达理
邓煜宝
张伟
Original Assignee
于小波
陈达理
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 于小波, 陈达理 filed Critical 于小波
Publication of WO2016119087A1 publication Critical patent/WO2016119087A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • the invention relates to the field of preparation of special aqueous solutions, in particular to a gas-liquid mixing device for agriculture.
  • a solution formed by mixing gas and liquid such as ozone water is required for watering, and a large amount of non-capable gas is dissolved in the liquid in the form of bubbles, such as air, ozone, oxygen, and the like.
  • the rising speed of a bubble in water is proportional to the square of the diameter of the bubble.
  • the macroscopic bubble visible to the naked eye stays in the water of 1 meter for less than 2 seconds, and the non-receptive gas immediately after the bubble bursts.
  • the liquid overflows and overflows from the liquid to the air. Therefore, the larger the bubble diameter, the shorter the holding time of the gas component in the gas-liquid mixed solution, and the lower the probability of occurrence of the action, resulting in low efficiency of the conventional macroscopic bubble.
  • the ultra-fine bubble gas-liquid mixing technology represented by micro-nano bubble generation technology has the characteristics of low cost, small volume and high efficiency, and has gradually become the most promising gas-liquid. Hybrid technology.
  • the ultra-microbubble gas-liquid mixing technology due to the ultra-microbubble gas-liquid mixing technology, microbubbles are generated by internal high-speed swirling, and the gas-liquid mixing ratio is increased. Once the ultra-microbubble gas-liquid mixing device is removed, the microbubbles immediately begin to rupture, and the gas in the water body quickly overflows. Therefore, the gas-liquid mixed solution prepared by the ultra-fine bubble gas-liquid mixing technology is extremely unstable, and the concentration of the gas substance in the solution is greatly reduced within a few minutes at normal temperature.
  • Such a solution needs long-term stability for agricultural control of pests and diseases, contaminated soil repair, and the like.
  • the application of gas-liquid mixed solution is ineffective, which seriously restricts the application and promotion of green environmental protection pesticide replacement technologies such as ozone water and high oxygen-enriched water.
  • the invention provides a gas-liquid mixing device, which can magnetize a water body, realize the generation of a large number of magnetized micro-bubbles, improve gas dissolution efficiency, and ensure that the prepared gas-liquid mixed solution has a magnetized water effect, and ensures that the system
  • the prepared gas-liquid mixed solution has a longer concentration half life.
  • a gas-liquid mixing device includes a casing, a bubble generator is disposed in the casing, and a magnet is disposed between the bubble generator and the casing.
  • the magnetic strength of the magnet is 1000-800,000 gauss.
  • the bubble generator is one of the following devices: a microbubble generator, a nanobubble generator, a microbubble generator, and a micro/nano foam generator.
  • system further includes a water cooling mechanism, and the water outlet of the water cooling mechanism is connected to the water inlet of the bubble generator through a pipeline.
  • the water cooling mechanism includes one or more direct current cooling water devices.
  • the magnetization of the water body is realized by a magnet coated outside the bubble generator.
  • the molecular structure of the magnetized water body is changed, and the dissolution rate of the gas is greatly improved. Since the magnetization and the mixing are simultaneously performed, the change of the water molecules can be ensured.
  • the gas can be filled at the first time, so that the gas dissolution rate reaches the highest value.
  • the magnetized water After the treatment by the bubble generator, the magnetized water has a stronger molecular gap and has a stronger adsorption capacity for the gas in the water body, so that the mixed solution still maintains a relatively stable concentration after being separated from the bubble generator, once the tiny The bubble ruptures at normal temperature, and the gas component contained therein is also immediately adsorbed by the magnetized water body having a large molecular gap, so that the gas component does not leave the water body, and the gas in the water body after the mixed solution is detached from the bubble generator is avoided. The component quickly overflows the water body and the concentration drops rapidly.
  • the water temperature can be maintained at around 35 degrees Celsius to ensure the best dissolution effect.
  • Embodiment 1 is a block diagram showing the principle of Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of the present invention.
  • the design principle of the present invention is:
  • Nanobubbles have the characteristics of small bubble size, large specific surface area, high adsorption efficiency, and slow rise in water. Micro-nano bubbles are introduced into the water to effectively separate solid impurities in water, rapidly increase the oxygen concentration in water, kill harmful bacteria in water, and reduce the coefficient of friction at the solid-liquid interface, thereby improving air-floating water technology, water aeration, ozone water disinfection and micro- Applications in the field of nanobubble drag reduction have higher efficiency than macrobubbles, and the application prospects are broader.
  • the magnet On the outside of the nano-scale bubble generator, the magnet is coated to realize simultaneous magnetization of the water while the liquid and gas enter the nanobubble generator.
  • Water is a weak magnetic property, which is difficult from the moment the water leaves the magnetic field.
  • Long-term magnetic the supersaturated solubility of magnetized water to gas decreases with time, on the other hand, the retention time of gas magnetization is more transient, and gas magnetization can only be completed in bubbles of micro-nano diameter.
  • the gas-liquid mixing pump, the jet, the static mixer and the like have a relatively long preparation time and a large bubble diameter, and it is difficult to realize the synchronous magnetization of the liquid and the gas, and the nanobubble generator generates a nanobubble with a short process and bubbles.
  • the smaller diameter makes it possible to use a liquid and gas synchronous magnetization.
  • the effective gas-liquid mixing ratio of the existing nanobubble generator gas-liquid mixing device can be increased by more than 80%, and the concentration half-life of the gas-liquid mixed solution is delayed by 236.2%, which greatly improves the existing Gas-liquid mixing performance of a gas bubble mixing device for nanobubble generators.
  • a gas-liquid mixing device as shown in FIG. 1 includes a casing 1 in which a bubble generator 3 is disposed, and a magnet 2 is disposed between the bubble generator 3 and the casing 1.
  • the magnetic strength of the magnet 2 is 1000-80,000 gauss.
  • the bubble generator is one of the following devices: a microbubble generator, a nanobubble generator, and a microbubble generation , micro-nano foam generator. Their working principles are:
  • the liquid is ejected through the nozzle, and the gas is sucked into the receiving chamber by the suction pipe, and the gas is sucked into the liquid due to the viscous action between the jet boundary layer and the receiving chamber gas.
  • the interaction between the jet and the gas and the surface roughness of the nozzle cause the surface of the jet to form a wave.
  • the jet ruptures and becomes a liquid droplet.
  • the droplet collides with the compressed gas at a high speed and pulverizes the gas.
  • the microbubbles are formed, and at this time, the droplets are re-polymerized into a bubble-containing emulsion mixture.
  • the formed bubbles have a diameter of 100 ⁇ m to 500 ⁇ m and a dissolution efficiency of 15 to 20%.
  • the effective ozone solution concentration achieved by the invention is 10-20 PPM, and in the case of 35 ° C, the half-life of the ozone solution concentration is 20 minutes, but the preparation flow rate is small, and the preparation cost is high.
  • the nanobubble generator mainly shears and breaks the gas by high-speed shearing, stirring, etc., and mixing in the water body can stably generate a large number of micro-bubbles.
  • the nanobubble generator has lower energy consumption and higher efficiency of microbubbles, and does not cause secondary pollution to the water body.
  • the formed bubbles have a diameter of 1 nm to 50 nm and a dissolution efficiency of 80 to 100%.
  • the effective ozone solution concentration achieved by the present invention is 40-80 PPM, and at 35 ° C, the ozone solution concentration half-life is 120 minutes.
  • Nanobubbles have the characteristics of small bubble size, large specific surface area, high adsorption efficiency, and slow rise in water. Micro-nano bubbles are introduced into the water to effectively separate solid impurities in water, rapidly increase the oxygen concentration in water, kill harmful bacteria in water, and reduce the coefficient of friction at the solid-liquid interface, thereby improving air-floating water technology, water aeration, ozone water disinfection and micro- Applications in the field of nanobubble drag reduction have higher efficiency than macrobubbles, and the application prospects are broader.
  • the water-gas mixture formed by the nanobubble generator is allowed to stand for at least 120 minutes from turbidity to clarification.
  • the nanobubble generator needs to use high-power high-speed motor to achieve high-speed shear mixing, and the manufacturing requirements of the equipment are high. Processing is more difficult and costly.
  • the microbubble generator mainly dissolves the air in the water by pressurization, and then releases the gas under reduced pressure, and the air is released again from the water to generate a large amount of fine bubbles.
  • the use of the dissolved gas method produces fine bubbles, which consume less energy and have a large yield.
  • the dissolution efficiency can reach 40 to 60%, and the obtained microbubbles have a diameter of 5 ⁇ m to 30 ⁇ m.
  • the microbubble generator has lower requirements on equipment and simple processing.
  • the difficulty of this method is to improve the gas release efficiency of the dissolved gas through the flow channel design and system control, the stability performance is poor, the efficiency of generating microbubbles is low, and the power consumption is large. It is not conducive to promotion in actual production.
  • the high-speed rotation of the diffused air impeller forms a vacuum zone in the water.
  • the gas on the liquid surface enters the water through the gas pipe to fill and cut, and the micro-bubbles are generated, and spirally rises to the water surface, and the gas also enters the water. .
  • the formed bubbles have a diameter of 0.01 to 1.6 ⁇ m and a dissolution efficiency of 50 to 70%.
  • the effective ozone solution concentration achieved by the present invention is 30-45 PPM, and in the case of 35 ° C, the ozone solution concentration half-life is 50 minutes.
  • the use of the micro-nano foam generating device has the characteristics of low cost, small volume, low energy consumption, and large flow rate, but it is easy to cause blockage of the pipe, and the concentration and stability are poor.
  • Embodiment 1 The working process of Embodiment 1 is:
  • the first step after the external water pump is started, the water body is sent to the water magnetization mechanism through the pipeline at a certain flow rate; the magnetic field magnetic field line formed by the external magnet of the water magnetization mechanism is in the process of the water body passing through the water magnetization mechanism at a flow rate of 0.5-3.5 meters per second.
  • the vertical cutting is carried out at a certain flow rate through the water body of the plastic inner tube of the water magnetization mechanism to complete the magnetization of the water body, and the magnetized water is formed into the water inlet port of the bubble generating mechanism.
  • the magnetic field strength formed by the external magnet of the water magnetization mechanism is required to reach 0.1-1.8 Tesla.
  • Step 2 According to the water flow in the pipeline, the bubble generator simultaneously inhales a certain amount of gas and enters the bubble.
  • the magnetized water of the generator is gas-liquid mixed, and the bubble generator rotates the mixture at a high speed to generate minute bubbles, thereby completing the gas-liquid mixing.
  • the gas sucked by the bubble generator includes ozone, oxygen, chlorine, air, and any one or more mixed gases.
  • a gas-liquid mixing device as shown in FIG. 2, comprising a casing 1 and a water cooling mechanism 4, wherein the casing 1 is provided with a bubble generator 3, and the bubble generator 3 is disposed between the casing 1 and the casing 1.
  • the bubble generator is one of the following devices: a microbubble generator, a nanobubble generator, a microbubble generator, a micro/nano foam generator.
  • the water cooling mechanism may be a DC cooling water device or a plurality of DC cooling water devices connected in series.
  • the water temperature is controlled between 0-45 degrees Celsius before magnetizing the water, especially as accurate as 35 degrees Celsius, so as to achieve better dissolution.
  • the patent can realize the effective gas-liquid mixing ratio of the existing gas-liquid mixing device by more than 52%, and the concentration half-life of the gas-liquid mixed solution is delayed by 124.5%, which greatly improves the gas-liquid mixing of the existing gas-liquid mixing device. performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种气液混合装置,包括壳体(1),壳体(1)内设有气泡发生器(3),气泡发生器(3)与壳体(1)之间设有磁铁(2)。通过包覆在气泡发生器(3)外的磁铁(2)实现对水体的磁化,经过磁化的水体分子结构发生改变,磁化和混合同时进行,提高气体的溶解率。

Description

一种气液混合装置 技术领域
本发明涉及特种水溶液的制取领域,具体地说是用于农业的一种气液混合装置。
背景技术
在农业生产中,需要臭氧水等气液混合形成的溶液进行浇灌,大量非易容性气体溶于液体是以气泡形式存在,如空气、臭氧、氧气等。根据Stokes定律,气泡在水中的上升速度与气泡直径的平方成正比,通常情况下肉眼可见的宏观气泡在1米深的水中所停留的时间不超2秒,气泡破灭后非易容性气体立即溢出液体,从液面向空气中溢出,故而气泡直径越大气液混合溶液中气体成分的保持时间越短,发生作用的概率越低,导致传统宏观气泡效率低下。
这几年的实验研究发现,当气泡尺度减小到微米甚至纳米级别时,气泡在水中停留时间变长,从而气液混合溶液中气体成分的保持时间越长,发生作用的概率越长,效率大幅提升,并且气泡的比表面积大增加,其表面特性占主导地位,气体成分溶于液体的效率大幅提高,气液混合溶液中气体成分的浓度大幅提升,效率可提高70%以上。
目前,在现有气液混合技术中,以微纳米气泡生成技术为代表的超微气泡气液混合技术,具有成本低、体积小、效率高的特点,已逐渐成为最有发展潜力的气液混合技术。但是由于超微气泡气液混合技术是通过内部高速回旋产生微小气泡,实现增加气液混合比例,一旦脱离超微气泡气液混合装置,微小气泡立刻开始破裂,水体中的气体随之迅速溢出,所以超微气泡气液混合技术制取的气液混合溶液极其不稳定,在常温下几分钟内溶液中气体物质浓度即大幅减少,这样的溶液对于农业防治病虫害、污染土壤修复等大量需要长期稳定气液混合溶液的应用是无效的,严重制约了臭氧水、高富氧水等绿色环保型农药替代技术的应用推广。
发明内容
本发明提供了一种气液混合装置,该系统可对水体进行磁化处理,实现大量磁化微气泡的产生,提高气体溶解效率,同时保证所制取的气液混合溶液具有磁化水效果,保证所制取的气液混合溶液具有较长的浓度半衰期。
本发明采用以下技术方案:一种气液混合装置,包括壳体,所述壳体内设有气泡发生器,所述的气泡发生器与壳体之间设有磁铁。
进一步的,所述磁铁的磁力强度为1000-80000高斯。
进一步的,所述的气泡发生器为以下装置中的一种:微气泡发生器、纳米气泡发生器、微小气泡发生器、微纳米泡沫发生器。
进一步的,该系统还包括水冷却机构,所述水冷却机构的出水口通过管路连接气泡发生器的进水口。
进一步的,所述的水冷却机构包括一个或多个直流冷却水设备。
本发明的有益效果是:
1、通过包覆在气泡发生器外的磁铁实现对水体的磁化,经过磁化的水体分子结构发生改变,其对气体的溶解率大幅提高,由于磁化和混合同时进行,可以保证在水分子发生变化的同时,气体就能在第一时间填充,从而使得气体的溶解率达到最高值。
2、经过气泡发生器的处理,磁化水具有了更强的分子间隙,对水体中的气体具有更强的吸附能力,使混合溶液在脱离气泡发生器后,仍然保持较稳定的浓度,一旦微小气泡在常温下破裂,其中含有的气体成分也会被立即被具有较大分子间隙的磁化水体所吸附,使气体成分不会脱离水体,避免造成混合溶液在脱离气泡发生器后,水体中的气体成分迅速溢出水体,浓度迅速下降的情况。
3、经过磁化处理后的水体,对植物、动物生长具有很大的促进生长的作用。
4、经过冷却处理后,特别是在夏季温度较高的时候,能够维持水温在35摄氏度附近,保证最佳的溶解效果。
附图说明
图1为本发明实施例1的原理结框图;
图2为本发明实施例2的原理结构图。
图中:1壳体,2磁铁,3气泡发生器,4水冷却机构。
具体实施方式
本发明的设计原理为:
纳米气泡具有气泡尺寸小、比表面积大、吸附效率高、在水中上升速度慢等特点。在水中通入微纳米气泡,可有效分离水中固体杂质、快速提高水体氧浓度、杀灭水中有害病菌、降低固液界面摩擦系数,从而在气浮净水技术、水体增氧、臭氧水消毒和微纳气泡减阻等领域中应用中比宏观气泡有更高的效率,应用前景也更为广阔。
在纳米级气泡发生器外侧,包覆磁铁,将实现在液体与气体进入纳米气泡发生器的同时进行同步水体磁化处理,水是一种弱磁质,从水离开磁场的那一刻起,就不易长期带磁了,磁化水对气体的过饱和溶解度能力是随时间下降的,另一方面气体磁化的保持时间更加短暂,并且只能在直径为微纳米级的气泡中完成气体磁化。
气液混合泵、射流器、静态混合器等气液混合方式制取时间都比较长,气泡直径较大,很难实现液体与气体同步磁化,而纳米气泡发生器产生纳米气泡的过程短、气泡直径更加微小,使得采用液体与气体同步磁化成为可能。
液体与气体同步磁化,极大的提升了气液混合的效率,延长了所制取气液混合溶液浓度的半衰期。
通过实验证明,采用本专利可实现对现有纳米气泡发生器气液混合装置的有效气液混合比例提升80%以上,所制取气液混合溶液的浓度半衰期延迟236.2%,大幅提高了现有纳米气泡发生器气液混合装置的气液混合性能。
实施例1
如图1所示的一种气液混合装置,包括壳体1,所述壳体1内设有气泡发生器3,所述的气泡发生器3与壳体1之间设有磁铁2。所述磁铁2的磁力强度为1000-80000高斯。所述的气泡发生器为以下装置中的一种:微气泡发生器、纳米气泡发生器、微小气泡发生 器、微纳米泡沫发生器。它们的工作原理分别为:
1)微气泡发生器:
工作原理:
液体通过喷嘴喷出,气体由吸气管吸入接受室,由于射流边界层与接受室气体间的粘滞作用,气体被吸入液体中。射流与气体的相互作用和喷嘴表面粗糙度等影响,使射流表面形成波状,随着这种表面波的发展,导致射流破裂而成为液滴液体,液滴以高速冲撞压缩气体,并将气体粉碎成微小气泡,此时液滴又重新聚合成为含气泡的乳状混合液。
使用效果:
形成的气泡直径为100μm到500μm,溶解效率可达15~20%。利用本发明实现的有效臭氧溶液浓度为10-20PPM,在35℃的情况下,所制取臭氧溶液浓度半衰期为20分钟,但是制取流量较小,制取成本较高。
2)纳米气泡发生器:
工作原理:
纳米气泡发生器主要通过高速剪切、搅拌等方式把气体反复剪切破碎,混合在水体中可以稳定的产生大量的微气泡。相比于气体气液混合方式,纳米气泡发生器具有能耗较低、微气泡发生效率较高,且不会对水体造成二次污染。
使用效果:
形成的气泡直径为1nm到50nm,溶解效率可达80~100%。利用本发明实现的有效臭氧溶液浓度为40-80PPM,在35℃的情况下,所制取臭氧溶液浓度半衰期为120分钟。
纳米气泡具有气泡尺寸小、比表面积大、吸附效率高、在水中上升速度慢等特点。在水中通入微纳米气泡,可有效分离水中固体杂质、快速提高水体氧浓度、杀灭水中有害病菌、降低固液界面摩擦系数,从而在气浮净水技术、水体增氧、臭氧水消毒和微纳气泡减阻等领域中应用中比宏观气泡有更高的效率,应用前景也更为广阔。
纳米气泡发生器形成的水气混合液静置情况下从浑浊到澄清时间至少为120分钟。但是纳米气泡发生器需要使用大功率高转速电机实现高速剪切搅拌,设备的制造要求较高, 加工难度较大,成本较高。
3)微小气泡发生器
工作原理:
微小气泡发生器主要通过加压使空气溶解在水里,然后减压释气,空气重新从水中释放出来,产生大量微细气泡。使用溶解释气法产生微细气泡,耗能较小,产量大。
使用效果:
溶解效率可达40~60%,得到的微气泡直径为5μm到30μm。微小气泡发生器对设备的要求较低,加工简单.但该方法的难点在于通过流道设计和系统控制提高溶气释气效率,稳定性能差,产生微气泡的效率较低、功耗较大,不利于在实际生产中推广使用。
4)微纳米泡沫发生器
工作原理:
利用散气叶轮的高速旋转在水中形成一个真空区,液面上的气体通过输气管进入水中去填充并切割,微气泡随之产生,并螺旋型地上升到水面,气体也随之进入了水中。
使用效果:
形成的气泡直径为0.01-1.6微米,溶解效率可达50~70%。利用本发明实现的有效臭氧溶液浓度为30-45PPM,在35℃的情况下,所制取臭氧溶液浓度半衰期为50分钟。
因此,使用微纳米泡沫发生装置,具有成本低廉,体积小、能耗低、制取流量大的特点,但是容易造成管道堵塞,制取浓度及稳定性较差。
实施例1的工作过程为:
第一步:外部水泵启动后,通过管道将水体以一定流速送至水磁化机构;水体在以每秒0.5-3.5米的流速经过水磁化机构过程中,水磁化机构外置磁铁形成的磁场磁力线垂直切割以一定流速通过水磁化机构塑料内管的水体,完成对水体的磁化,形成磁化水进入气泡生成机构进水端口。其中,所述水磁化机构外置磁铁形成的磁场强度要求达到0.1-1.8特斯拉。
第二步:根据管道内的水体流量,气泡生成器同时吸入一定流量的气体与进入气泡生 成器的磁化水进行气液混合,气泡生成器对混合液进行高速回旋至产生微小气泡,至此完成气液混合。所述气泡生成器吸入的气体包括臭氧、氧气、氯气、空气,其中任意一种或多种混合气体。所述气泡生成器同时吸入的气体流量与管道内的水体流量的流量控制比例关系为:水体流量/气体流量=N,85>N>1.25。
实施例2
如图2所示的一种气液混合装置,包括壳体1和水冷却机构4,所述壳体1内设有气泡发生器3,所述的气泡发生器3与壳体1之间设有磁力强度为1000-80000高斯的磁铁2;所述水冷却机构4的出水口通过管路连接气泡发生器的进水口。所述的气泡发生器为以下装置中的一种:微气泡发生器、纳米气泡发生器、微小气泡发生器、微纳米泡沫发生器。所述的水冷却机构可以是一个直流冷却水设备,也可以是多个串联的直流冷却水设备。
通过加装水冷却机构,在将水磁化之前将水温控制在0-45摄氏度之间,特别是可以尽量精确到35摄氏度,从而达到更好的溶解效果。
经过试验证明,采用本发明所制取的臭氧水溶液在35℃环境温度下的浓度半衰期达到5小时,而非本发明技术所制取的臭氧水溶液在同等条件下的最长浓度半衰期为5-10分钟。
采用本专利可实现对现有气液混合装置的有效气液混合比例提升52%以上,所制取气液混合溶液的浓度半衰期延迟124.5%,大幅提高了现有气液混合装置的气液混合性能。
除本发明所述的结构外,其余均为现有技术。
以上所述只是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视为本发明的保护范围。

Claims (5)

  1. 一种气液混合装置,其特征在于,包括壳体,所述壳体内设有气泡发生器,所述的气泡发生器与壳体之间设有磁铁。
  2. 根据权利要求1所述的一种气液混合装置,其特征在于,所述磁铁的磁力强度为1000-80000高斯。
  3. 根据权利要求1或2所述的一种气液混合装置,其特征在于,所述的气泡发生器为以下装置中的一种:微气泡发生器、纳米气泡发生器、微小气泡发生器、微纳米泡沫发生器。
  4. 根据权利要求3所述的一种气液混合装置,其特征在于,该装置还包括水冷却机构,所述水冷却机构的出水口通过管路连接气泡发生器的进水口。
  5. 根据权利要求4所述的一种气液混合装置,其特征在于,所述的水冷却机构包括一个或多个直流冷却水设备。
PCT/CN2015/000320 2015-01-29 2015-05-11 一种气液混合装置 WO2016119087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510044417.2A CN104587878A (zh) 2015-01-29 2015-01-29 一种气液混合装置
CN201510044417.2 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016119087A1 true WO2016119087A1 (zh) 2016-08-04

Family

ID=53114135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000320 WO2016119087A1 (zh) 2015-01-29 2015-05-11 一种气液混合装置

Country Status (2)

Country Link
CN (1) CN104587878A (zh)
WO (1) WO2016119087A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771042A (zh) * 2017-01-20 2017-05-31 广州三环保有限公司 一种带gps的环境监测供氧机
CN107720867A (zh) * 2017-11-22 2018-02-23 刘诗军 一种气浮机融气组件及其融气方法
CN109890492A (zh) * 2016-09-28 2019-06-14 夸图斯·保罗斯·博塔 纳米气泡发生器及产生纳米气泡的方法
CN112452228A (zh) * 2020-10-31 2021-03-09 李忠刚 一种环保型生物饲料加工成型设备及其使用方法
CN114159997A (zh) * 2020-12-04 2022-03-11 佛山市美的清湖净水设备有限公司 混气罐及具有其的净水器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104587878A (zh) * 2015-01-29 2015-05-06 于小波 一种气液混合装置
CN107081099A (zh) * 2016-02-14 2017-08-22 优尼克生技股份有限公司 包括二氧化氯气体的水溶液的制造设备及其制备方法
CN106995233A (zh) * 2017-05-09 2017-08-01 胡巍 一种有利于气体充分溶解的装置
CN108483402A (zh) * 2018-05-21 2018-09-04 佛山市顺德区美的洗涤电器制造有限公司 臭氧发生机构和组合式厨房电器
CN109502876B (zh) * 2019-01-02 2023-10-03 樊宝康 一种超磁化纳米气泡制水装置
CN109731525A (zh) * 2019-03-21 2019-05-10 南京金鲁溧城燃气有限公司 一种利用燃气混合装置混合的高清洁高热值的燃气
TWI757082B (zh) * 2021-02-03 2022-03-01 謝志欽 超微細氣泡產生裝置
CN113750830B (zh) * 2021-08-30 2023-06-20 扬州大学 一种气液两相强化混合制备纳米气泡分散液的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024881A (en) * 1998-08-11 2000-02-15 Just; Gerard A. Magnetic absorption treatment of fluid phases
CN101007244A (zh) * 2006-01-23 2007-08-01 中岛竹志 含微细气泡活性液体的制造方法以及使用该液体所实现的方法
CN101123872A (zh) * 2005-02-21 2008-02-13 松村荣治 臭氧水生成装置、用于臭氧水生成装置的气液混合结构、臭氧水生成方法以及臭氧水
JP2008142688A (ja) * 2006-12-11 2008-06-26 Katsuyuki Okumura 浴用、洗浄用等の微細気泡発生器及び装置
CN102847453A (zh) * 2012-08-28 2013-01-02 河海大学 用于灌溉的微气泡发生器
CN103381341A (zh) * 2012-05-04 2013-11-06 金青松 洗衣机用磁化微气泡生成装置
CN104324627A (zh) * 2014-11-21 2015-02-04 济南润土农业科技有限公司 一种臭氧水溶液制取装置
CN104587878A (zh) * 2015-01-29 2015-05-06 于小波 一种气液混合装置
CN204469645U (zh) * 2015-01-29 2015-07-15 于小波 一种气液混合装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291844B1 (ko) * 2005-02-21 2013-08-07 노부코 하기와라 가축 소독 방법, 가축 소독 장치, 가축 또는 가축육
US8403305B2 (en) * 2006-08-21 2013-03-26 Eiji Matsumura Gas/liquid mixing device
CN103521102B (zh) * 2013-10-16 2015-11-18 江苏大学 一种磁场强化气液传质的装置
CN203815844U (zh) * 2014-03-26 2014-09-10 任宗汉 高效水疗磁化喷嘴

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024881A (en) * 1998-08-11 2000-02-15 Just; Gerard A. Magnetic absorption treatment of fluid phases
CN101123872A (zh) * 2005-02-21 2008-02-13 松村荣治 臭氧水生成装置、用于臭氧水生成装置的气液混合结构、臭氧水生成方法以及臭氧水
CN101007244A (zh) * 2006-01-23 2007-08-01 中岛竹志 含微细气泡活性液体的制造方法以及使用该液体所实现的方法
JP2008142688A (ja) * 2006-12-11 2008-06-26 Katsuyuki Okumura 浴用、洗浄用等の微細気泡発生器及び装置
CN103381341A (zh) * 2012-05-04 2013-11-06 金青松 洗衣机用磁化微气泡生成装置
CN102847453A (zh) * 2012-08-28 2013-01-02 河海大学 用于灌溉的微气泡发生器
CN104324627A (zh) * 2014-11-21 2015-02-04 济南润土农业科技有限公司 一种臭氧水溶液制取装置
CN104587878A (zh) * 2015-01-29 2015-05-06 于小波 一种气液混合装置
CN204469645U (zh) * 2015-01-29 2015-07-15 于小波 一种气液混合装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890492A (zh) * 2016-09-28 2019-06-14 夸图斯·保罗斯·博塔 纳米气泡发生器及产生纳米气泡的方法
CN106771042A (zh) * 2017-01-20 2017-05-31 广州三环保有限公司 一种带gps的环境监测供氧机
CN107720867A (zh) * 2017-11-22 2018-02-23 刘诗军 一种气浮机融气组件及其融气方法
CN112452228A (zh) * 2020-10-31 2021-03-09 李忠刚 一种环保型生物饲料加工成型设备及其使用方法
CN112452228B (zh) * 2020-10-31 2022-08-16 陕西益佳尔生物药业有限公司 一种环保型生物饲料加工成型设备及其使用方法
CN114159997A (zh) * 2020-12-04 2022-03-11 佛山市美的清湖净水设备有限公司 混气罐及具有其的净水器
CN114159997B (zh) * 2020-12-04 2023-12-19 佛山市美的清湖净水设备有限公司 混气罐及具有其的净水器

Also Published As

Publication number Publication date
CN104587878A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2016119087A1 (zh) 一种气液混合装置
WO2016119086A1 (zh) 气液混合系统及方法
CN204469572U (zh) 气液混合系统
CN109304108B (zh) 微纳米气泡发生装置、方法及在染料废水处理上的应用
CN2841136Y (zh) 一种气水射混器
WO2009116711A2 (en) Apparatus of generating microbubbles
JP2014079743A (ja) 液体処理装置及び液体処理方法
JPWO2008023704A1 (ja) 気液混合装置
WO2010107077A1 (ja) マイクロバブル発生装置、活性汚泥の曝気処理システム及びバラスト水の殺菌処理システム
CN102755846A (zh) 微气泡溶气发生装置
CN206701176U (zh) 一种超声波微纳米气泡装置
CN205340713U (zh) 一种纳米级微小气泡水二级气液混合泵
KR102038132B1 (ko) 와류를 이용한 폭기장치
CN103342420B (zh) 一种高效节能射流曝气器
CN102963947A (zh) 加压溶解型微泡发生器
CN108083461A (zh) 一种微纳米增氧设备
CN202942819U (zh) 微泡发生器
CN209237735U (zh) 一种二次加压多级破碎的纳米气泡发生装置
CN204469645U (zh) 一种气液混合装置
CN207957920U (zh) 一种漂浮式纳米微气泡河湖污水处理装置
CN209237734U (zh) 一种碟形自吸式文丘里射流微纳气泡发生装置
CN109987726A (zh) 一种多级旋切破碎式微纳米气泡发生方法及装置
CN207126400U (zh) 一种微细气泡发生装置的气液混合部
CN205903779U (zh) 一种高级氧化法废气净化装置微纳米气泡发生系统
CN208038141U (zh) 一种微纳米增氧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879299

Country of ref document: EP

Kind code of ref document: A1