JP2010500011A - 5’リン酸オリゴヌクレオチドの構造および使用 - Google Patents

5’リン酸オリゴヌクレオチドの構造および使用 Download PDF

Info

Publication number
JP2010500011A
JP2010500011A JP2009523199A JP2009523199A JP2010500011A JP 2010500011 A JP2010500011 A JP 2010500011A JP 2009523199 A JP2009523199 A JP 2009523199A JP 2009523199 A JP2009523199 A JP 2009523199A JP 2010500011 A JP2010500011 A JP 2010500011A
Authority
JP
Japan
Prior art keywords
oligonucleotide
rna
ifn
cells
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009523199A
Other languages
English (en)
Inventor
ガンサー ハートマン
ベイト ホーヌング
Original Assignee
ガンサー ハートマン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38875059&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2010500011(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP06021271A external-priority patent/EP1920775B1/en
Application filed by ガンサー ハートマン filed Critical ガンサー ハートマン
Publication of JP2010500011A publication Critical patent/JP2010500011A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/17Immunomodulatory nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

遊離したキャッピングされていない5'リン酸基を持つオリゴヌクレオチドは、RIG-Iによって認識され、I型IFN、IL-18、およびIL-1βの産生の誘導を引き起こす。細菌RNAもI型IFN産生を誘導する。抗ウイルス応答または抗細菌応答、特に、I型IFNおよび/またはIL-18および/またはIL-1βの産生をインビトロおよびインビボで誘導するために、ならびにウイルス感染、細菌感染、寄生虫感染、腫瘍、アレルギー、自己免疫疾患、免疫不全、および免疫抑制などの様々な障害および疾患を処置するために、5'リン酸オリゴヌクレオチドおよび細菌RNAを用いることができる。抗ウイルス応答、抗細菌応答、または抗腫瘍応答、特にI型IFNおよび/またはIL-18および/またはIL-1βの産生を標的細胞特異的な様式で誘導するために、一本鎖5'三リン酸RNAを用いることができる。

Description

発明の分野
本発明は、免疫治療および薬物発見の分野に関する。本発明は、抗ウイルスまたは抗細菌応答、特に、I型IFN、IL-18、および/またはIL-1βの産生を誘導することができるオリゴヌクレオチド、ならびにそれらのインビトロ使用だけでなく治療的使用も提供する。
発明の背景
脊椎動物免疫系は、侵入する病原体をそれらの微生物核酸のある種の特徴に基づいて検出する異なる方法を確立した。微生物核酸の検出は、免疫系を変化させ、検出されたそれぞれの種類の病原体に対する防御に必要とされる適当な種類の免疫応答を開始する。ウイルス核酸の検出は、抗ウイルス防御のための重要なサイトカインである、IFN-αおよびIFN-βを含む、I型インターフェロン(IFN)の産生をもたらす。
IFN-αは、同定および商品化された最初の種類のインターフェロンであり;それは種々の腫瘍(例えば、有毛細胞白血病、皮膚T細胞性白血病、慢性骨髄性白血病、非ホジキンリンパ腫、AIDS関連カポジ肉腫、悪性メラノーマ、多発性骨髄腫、腎細胞癌腫、膀胱細胞癌腫、大腸癌腫、子宮頸部異形成)およびウイルス疾患(例えば、慢性B型肝炎、慢性C型肝炎)の処置において臨床的に広く用いられる。現在臨床的に使用されているIFN-α製品には、組換えタンパク質および高度に精製された天然タンパク質が含まれ、その両方ともが高い生産コストを有する。したがって、必要としている患者にIFN-αを提供するより経済的な方法に対する必要性がある。さらに、IFN-αは現在全身的に投与されており、幅広い範囲の副作用(例えば、疲労、インフルエンザ様の症状、下痢)を引き起こす。最も憂慮すべきことに、IFN-αは、命を脅かす感染症に対する感受性の増加、貧血、および出血の問題をもたらす骨髄機能の減少を引き起こす。したがって、より限局された(すなわち、標的特異的な)様式でIFN-αを提供して副作用の発生を低下させる方法に対する必要性がある。
受容体を介する病原体由来の核酸の検出は、外来遺伝物質が侵入しないように宿主ゲノムを守る手助けをする。タンパク質受容体-核酸リガンド相互作用を介してウイルス核酸を検出する生物学的システムの能力が、ゲノムの完全性を維持するためにおよび生存に重要である新たな図式が生まれつつある。
核酸認識に関与する多くの受容体タンパク質が進化した。最近の研究により、抗ウイルス防御のための最も重要なタンパク質受容体のうちの1つが、2つのカスパーゼ動員ドメイン(CARD)およびDExD/Hボックスヘリカーゼドメインを含むヘリカーゼファミリーのメンバーである、レチノイン酸誘導性タンパク質I(RIG-I)であることが示されている(M. Yoneyama et al., Nat Immunol 5, 730 (Jul, 2004))。RIG-Iを介する特定の組のRNAウイルス(フラビウイルス科、パラミクソウイルス科、オルソミクソウイルス科、およびラブドウイルス科)の認識(M. Yoneyama et al., Nat Immunol 5, 730 (Jul, 2004); R. Sumpter, Jr. et al., J Virol 79, 2689 (Mar, 2005); H. Kato et al., Nature 441, 101 (Apr 9, 2006))は、インビトロおよびインビボでの抗ウイルス宿主防御に極めて重要な役割を有する。ヘリカーゼファミリーの第二のメンバーである、MDA-5は、相互の組のRNAウイルス(ピコルナウイルス科)に対する抗ウイルス防御に関与する(H. Kato et al., Nature 441 (7089): 101-105, Apr 9, 2006)。
RIG-IおよびMDA-5に加えて、Toll様受容体(TLR)ファミリーの4つのメンバー、TLR3、TLR7、TLR9、およびTLR9も、ウイルス核酸認識に関与することが知られている。RIG-IおよびMDA-5は、それらの細胞内局在、発現パターン、シグナル伝達経路、およびリガンドがTLRと異なる。
RIG-IおよびMDA-5は細胞内受容体であるが、TLR3、TLR7、TLR8、およびTLR9はエンドソーム膜にある。
TLRは主にある種の規定された免疫細胞サブセットに発現する(すなわち、TLR9はPDCおよびB細胞に制限されている)が、RIG-IおよびMDA-5は免疫細胞および非免疫細胞の両方に発現する(H. Kato et al., Immunity 23, 19 (Jul, 2005))。
異なる発現プロファイルおよび細胞局在の他に、エンドソームのTLRおよび2つの細胞質受容体RIG-IおよびMDA-5のシグナル伝達が異なる。TLR3はTRIFおよび TLR7を介してシグナルを伝達し、TLR8およびTLR9はMyD88を介してシグナルを伝達するが、RIG-IはCARD含有アダプターである、IPS-1(T. Kawai et al., Nat Immunol 6, 981 (Oct, 2005))(MAVS(R. B. Seth et al., Cell 122, 669 (Sep 9, 2005))、VISA(L. G. Xu et al., MoI Cell 19, 727 (Sep 16, 2005))、またはCardif(E. Meylan et al., Nature 437, 1167 (Oct 20, 2005))としても公知)を動員する。IPS-1は、インターフェロン調節因子-3(IRF-3)およびIRF-7、I型インターフェロンの発現に必須の転写因子をリン酸化する、キナーゼTBK1およびIKK-iにシグナルを伝える。結果として、インビボでは、エンドソームおよび細胞質の核酸受容体は、異なるサイトカインパターンを誘導する。例えば、TLR3およびMDA-5の両方とも、ポリ(I:C)に応答したIL-12産生に寄与し、MDA-5はIFN-α誘導に関与するが、TLR3は関与しない(H. Kato et al., Nature 441, 101 (Apr 9, 2006))。
TLR3のリガンドは、ポリ(I:C)などの長いdsRNAであり(L. Alexopoulou, et al., Nature 413, 732 (Oct 18, 2001))、TLR7のリガンドは 、ssRNA(S. S. Diebold et al., Science 303, 1529 (Mar 5, 2004); F. Heil et al., Science 303, 1526 (Mar 5, 2004))およびある配列モチーフを持つ短いdsRNA(すなわち、免疫刺激性RNA、isRNA)であり(V. Hornung et al., Nat Med 11, 263 (Mar, 2005))、TLR9のリガンドは、CpG DNAである(A. M. Krieg et al., Nature 374, 546 (Apr 6, 1995); H. Hemmi et al., Nature 408, 740 (Dec 7, 2000))。
幾つかの研究において、長い二本鎖RNAは、MDA-5およびRIG-Iのリガンドであることが提案された(M. Yoneyama et al., Nat Immunol 5, 730 (Jul, 2004); H. Kato et al., Nature 441, 101 (Apr 9, 2006); S. Rothenfusser et al., J Immunol 175, 5260 (Oct 15, 2005))。長いdsRNAの合成模倣物はポリ(I:C)である。最近のデータにより、ポリ(I:C)はMDA-5のリガンドであるが、それはRIG-Iによっては認識されないことが示された(H. Kato et al., Nature 441, 101 (Apr 9, 2006))。他方、長いdsRNAは、RIG-Iを活性化するが、MDA-5を活性化しないことが分かった(H. Kato et al., Nature 441, 101 (Apr 9, 2006))。長いdsRNAとポリ(I:C)活性のこの不一致は、細胞質RNA認識には長いdsRNAに留まらないものがあることを示唆する。
一般に、区画化および異なる分子構造が、外来核酸の検出に寄与すると考えられている。エンドソームに局在するDNA(G. M. Barton et al., Nat Immunol 7, 49 (Jan, 2006))およびRNA(F. Heil et al., Science 303, 1526 (Mar 5, 2004))、または細胞質に局在するDNA(K. J. lshii et al., Nat Immunol 7, 40 (Jan, 2006))が認識され、したがって外来と解釈される。微生物DNA中のいわゆるCpGモチーフの頻度は、エンドソームでの自己および非自己DNAの区別をさらに改善する分子的特色としての役割を果たす。エンドソームでのRNA認識は配列依存的であるが(F. Heil et al., Science 303, 1526 (Mar 5, 2004); V. Hornung et al., Nat Med 11, 263 (Mar, 2005))、細胞質での自己および非自己のRNAの区別を改善する分子的基礎としての役割を果たす配列モチーフ(すなわち、自己RNAでよりもウイルスRNAで頻度の高いモチーフ)はこれまで定義されていない。その代わり、二本鎖性という分子的特徴が、自己および非自己のRNAの区別を可能にすると思われる。実際、エンドソームでは、長い二本鎖RNAおよびその模倣物ポリ(I:C)はTLR3によって認識されるが、一本鎖RNAは認識されない(L. Alexopoulou, et al., Nature 413, 732 (Oct 18, 2001))。細胞質では、たくさんの自己RNAが、非自己RNAの認識に関する我々の理解を複雑にしている。それにもかかわらず、細胞質中の長いdsRNAが非自己として検出されるという概念は、I型IFNの発見以来、一度も疑問視されたことがない。
RIG-IおよびMDA-5の非存在下とは違って、抗ウイルス防御は、TRLの非存在下で大部分が維持されており(A. Krug et al., Immunity 21, 107 (Jul, 2004); K. Tabeta et al., Proc Natl Acad Sci USA 101, 3516 (Mar 9, 2004); T. Delale et al., J Immunol 175, 6723 (Nov 15, 2005); K. Yang et al., Immunity 23, 465 (Nov, 2005))、抗ウイルス防御におけるRIG-IおよびMDA-5の決定的に重要な役割を強調している。
したがって、抗ウイルス応答、特にI型IFN応答を刺激することができるポリヌクレオチド/オリゴヌクレオチドを提供することが本発明の目的である。ウイルス感染などの疾患および障害の予防および処置のための抗ウイルス応答、特に、I型IFN産生を患者において誘導することができる薬学的組成物を提供することが本発明の別の目的である。腫瘍を処置するための薬学的組成物を提供することも本発明の目的である。
最近の研究により、インビトロで転写されたsiRNA(低分子干渉RNA)は、選択された細胞株からのI型IFNの産生を刺激するが、合成siRNAは刺激しないことが示された(D. H. Kim et al., Nat Biotechnol 22, 321 (Mar, 2004);米国特許第2006/0178334号)。しかしながら、この誘導の構造的要求性および生理学的関連性ならびに検出のメカニズムは不明瞭なままである。さらに、Kimらの研究において、インビトロで転写されたsiRNAは、それらのヌクレオチド配列とは関係なく、標的mRNAが存在するか否かとは無関係に、ウイルス感染した細胞および感染していない細胞の両方でI型IFN産生を誘導し、細胞死をもたらした。言い換えると、インビトロで転写されたsiRNAは、配列依存的でなくかつ標的細胞特異的でない様式でIFN産生を誘導し、結果的に細胞死を誘導した。配列および細胞の特異性の欠如は、そのようなインビトロで転写されたsiRNAの治療目的への使用を、排除しないまでも、大幅に制限する。
したがって、抗ウイルス応答、特に、I型IFN応答を、ヌクレオチド配列特異的でかつ標的細胞特異的な様式で誘導することができるポリヌクレオチド/オリゴヌクレオチドを提供することが本発明のさらなる目的である。そのようなポリヌクレオチド/オリゴヌクレオチドを、バイスタンダー(すなわち、健康であるか、感染していないか、または罹患していない)細胞に危害を加えることなく、ウイルス感染および腫瘍などの疾患および障害の処置に好都合に用いることができる。
本発明は、脊椎動物細胞における抗ウイルス、抗細菌、および/または抗腫瘍応答を誘導することができるオリゴヌクレオチドまたはその前駆体、ならびにインビトロおよびインビボでの、特に医療上のそれらの使用を提供する。
本発明はさらに、脊椎動物細胞における抗ウイルス、抗細菌、および/または抗腫瘍応答を誘導することができるオリゴヌクレオチドを調製するための方法を提供する。
本発明はまた、脊椎動物細胞における抗ウイルス、抗細菌、および/または抗腫瘍応答を誘導する能力を欠くオリゴヌクレオチドを調製するための方法を提供する。
インビトロ転写されたRNAはヒト単球における強力なIFN-α応答を誘導する。(A)PDCおよび単球を96ウェルプレート中にプレーティングし、200 ngのインビトロ転写されたRNA(2500ヌクレオチド)をトランスフェクトした。PDCにおけるTLR9またはTLR7を介するIFN-α誘導のためにCpG-A(3 μg/ml)およびR848(10 μM)を対照刺激として用いた。上清を刺激の24時間後に採取し、IFN-α産生をELISAで評価した。2人の独立のドナーのデータをまとめ、平均値 ± SEMとして表す。(B)pBluescript KSを用いて、インビトロ転写用の様々な長さのDNA鋳型を生成した(下のパネル)。トランスフェクション前に、インビトロ転写されたRNAを4% 変性アガロースゲルで解析した。その後、インビトロ生成されたRNAを、96ウェルプレート中にプレーティングされた精製したPDCおよび単球にトランスフェクトした。トランスフェクションの24時間後に、上清をIFN-α産生について解析した。2人の独立のドナーのデータをまとめ、平均値 ± SEMとして表す。(C)27-merのオリゴヌクレオチドを3'末端から3ヌクレオチドずつ徐々に短くすることによって、27〜9ヌクレオチドの範囲に及ぶ一組のRNAオリゴヌクレオチドを生成した。精製した単球にそれぞれのオリゴヌクレオチドをトランスフェクトし、刺激の24時間後にIFN-α産生を解析した。5人の独立したドナーのデータを27ヌクレオチドのオリゴヌクレオチドのIFN-α誘導レベル(5876 ± 1785 pg/ml)に対して標準化し、平均値 ± SEMとしてまとめた。(D)精製した単球に、異なるホモポリマーの3'尾部を持つ200 ngのインビトロ転写されたRNAをトランスフェクトした。tri-GFPsを陽性対照として含めた。トランスフェクションの24時間後、上清を回収し、IFN-α産生をELISAで評価した。4人の独立のドナーのデータをまとめ、平均値 ± SEMとして表す。 5'リン酸化されたRNAオリゴヌクレオチドはヒト単球における強力なIFN-αの誘導因子であるが、合成RNAオリゴヌクレオチドはヒト単球における強力なIFN-αの誘導因子ではない。(A)合成によって合成されたかまたは酵素によって転写されたRNA9.2(200 ng)を精製した単球またはPDCにトランスフェクトした。CpG-A(3 μg/ml)およびR848(10 μM)を、PDCにおけるTLR9またはTLR7を介するIFN-α誘導のための陽性対照刺激として含めた。2人(単球)または3人(PDC)の独立のドナーのデータをまとめ、平均値 ± SEMとして表す。(B)確立された抗GFP siRNAのセンス(tri-GFPs)およびアンチセンス(tri-GFPa)鎖を、インビトロ転写を用いて転写した。一本鎖の構成成分およびアニールしたdsRNA分子(全て200 ng)の両方を精製した単球にトランスフェクトした。さらに、dsRNA分子をRNアーゼT1とインキュベートし、両方の鎖から突出5'末端を除去した。2人の独立のドナーからのデータを平均値 ± SEMとして表す。(C)ウシ小腸アルカリホスフォターゼ(CIAP)を用いて、tri-GFPsおよびtri-GFPaを脱リン酸化した。その後、未処置かまたは脱リン酸化されたRNAオリゴヌクレオチドを単球およびPDCにトランスフェクトした。2人の独立のドナーからのデータをそれぞれの未処置の対照オリゴヌクレオチドに対して標準化し、平均値 ± SEMとして表す。 7-メチル-グアノシンキャッピングおよび真核生物特異的な塩基修飾は、5'三リン酸RNAによるIFN-α誘導を無効にする。(A)鋳型としてのpBKSに由来する様々な長さのRNA分子(27ヌクレオチド〜302ヌクレオチド)(表1B参照)を、キャップ類似体であるN-7メチルGpppG(m7GキャッピングされたRNA)の存在下かまたは標準的なNTP(キャッピングされていないRNA)を用いて転写した。精製した単球に、m7GキャッピングされているかまたはキャッピングされていないかのいずれかのRNA(各々200 ng)をトランスフェクトし、刺激の24時間後にIFN-α産生を評価した。各々のRNA転写物について、2人の独立のドナーのデータを、キャッピングされていないRNA値に対して標準化し、平均値 ± SEMとしてまとめた。それぞれのRNA転写物についての絶対値は、それぞれ、1401、2351、91、797、および2590 pg/mlであった。(B)&(C)tri-GFPおよびtri-GFPaを、ウリジン-5'-三リン酸、シュードウリジン-5'-三リン酸(Ψ)、2-チオウリジン-5'-三リン酸(s2U)(全てB)または 2'-O-メチルウリジン-5'-三リン酸(C)のいずれかの存在下で、インビトロ転写で合成した。その後、精製した単球およびPDCにそれぞれのオリゴヌクレオチドをトランスフェクトし、刺激の24時間後にIFN-α産生を評価した。各々のRNA転写物について、2人(B)または3人(C)の独立のドナーのデータを、ウリジン-5'-三リン酸の存在下で転写されたRNAオリゴヌクレオチドの値に対して標準化し、平均値 ± SEMとしてまとめた。 三リン酸を介するIFN-α誘導はRIG-Iを必要とするが、MDA5を必要としない。(A)HEK 293細胞に、pIFN-ベータ-Luc(300 ng)およびpSV-ベータ ガラクトシダーゼ(400 ng)の存在下で、RIG-I全長、RIG-IC、RIG-I K270A、または対応する空ベクター(各々全て200 ng)のいずれかをトランスフェクトした。さらに、何もなし、ポリI:C、合成RNA9.2s、tri-GFPs、またはtri-GFPa(全て200 ng)のいずれかを含めた。トランスフェクションの24時間後、pIFN-ベータ-Lucレポーター活性を評価した。3回のうち1回の代表的な実験からのデータを空ベクター条件に対して標準化し、2通りの平均値 ± SEMとして表す。(B)RIG-IもしくはMDA5のいずれかを欠いているマウス由来のMEFまたはそれぞれの野生型MEFに、tri-GFPsまたはtri-GFPdsをトランスフェクトした。さらに、MEFに1のM.O.IのEMCVを感染させた。刺激の24時間後、上清を回収し、IFN-β産生についてアッセイした。3回のうち1回の代表的な実験からのデータを表した。(C)さらに、HEK 293細胞に、pIFN-ベータ-Luc(300 ng)およびpSV-ベータ ガラクトシダーゼ(400 ng)の存在下で、RIG-I全長またはRIG-IC(各々200 ng)のいずれか、およびT7 RNAポリメラーゼまたは転写に欠陥のある点突然変異体T7 RNAポリメラーゼD812N(各々300 ng)をトランスフェクトした。さらに、何もなし、X8dt(T7 RNAポリメラーゼプロモーターがないpBKS骨格に基づくベクター)、またはpBKS(全て300 ng)を含めた。トランスフェクションの24時間後、pIFN-ベータ-Lucレポーター活性を評価した。(D)さらに、HEK 293細胞に、RIG-I全長またはRIG-IC(200 ng)のいずれかの存在下で、何もなしかまたはpBKS(300 ng)と共に、減少用量のT7 RNAポリメラーゼをトランスフェクトし、その一方でpIFN-ベータ-Luc(300 ng)およびpSV-ベータガラクトシダーゼ(400 ng)を含めた。トランスフェクションの24時間後、pIFN-ベータ-Lucレポーター活性を評価した。3回のうち1回の代表的な実験からのデータをRIG-IC/pBKS/T7 RNAポリメラーゼ(300 ng)条件に対して標準化し、2通りの平均値 ± SEMとして表す。 ウイルスRNAはその5'末端のリン酸化状況次第でRIG-IによるIFN誘導を誘導する。(A) Vero細胞に、レポータープラスミドp125-Lucの存在下で、空ベクター、RIG-I全長、またはRIG-ICのいずれかをトランスフェクトした。6時間後、細胞にモックを感染させるか、または3のMOIのRV SAD L16もしくはRV SAD ΔPLPを感染させるかのいずれかにした。p125-Lucレポーター活性をDNAトランスフェクションの48時間後に評価した。2通りで行なわれた2回の実験からの平均のデータを、平均倍数値(モック = 1) ± SEMとして示す。(B) HEK 293T細胞に、PEIをモックトランスフェクトするか、または感染していないBSR細胞から単離した1 μgのトータルRNAもしくはRV L16もしくはRV ΔPLPが感染したBSR細胞から単離したトータルRNAをトランスフェクトするかのいずれかにした。感染していないBSR細胞、SAD L16(BSR L16)が感染したBSR細胞、およびSAD ΔPLP(BSR dPLP)を感染させたBSR細胞のRNA単離物をCIAPでさらに処置し、しかるべくトランスフェクトした。トランスフェクションの48時間後、p125-Lucレポーター活性を評価した。データを、3通りの平均倍数値(モック = 1)± SEMとして示す。(C) モック、勾配によって精製されたビリオン(RV L16)から単離されたRNA、または精製されたビリオン由来のCIAP処置したRNAのいずれかを用いて、HEK 293T細胞を刺激した。陽性対照として、RV SAD L16 cRNAの5'末端リーダー配列(58 nt)に対応するインビトロ転写されたRNAオリゴヌクレオチドを用いて、HEK 293T細胞を刺激した。刺激の48時間後、p125- Lucレポーター活性を評価した。実験からのデータを3通りの平均倍数値(モック = 1)± SEMとして示す。 三リン酸RNAはRIG-Iに直接結合する。(A)HEK 293細胞に、全長RIG-I、RIG-I CARD2、またはRIG-I ΔHELIcを一過性にトランスフェクトした。トランスフェクションの36時間後、細胞を溶解し、表示されたRNAオリゴヌクレオチド(0.375 μg;右下のパネル)と2時間4℃で共インキュベートした。次に、ストレプトアビジン-アガロースビーズをさらに1時間添加した。ビーズを遠心分離によって回収し、4回連続で洗浄した。全ての洗浄工程の後、上清を回収し、4回の洗浄の後、ストレプトアビジン-アガロースビーズを遠心分離によって回収し、Laemmli緩衝剤中で煮沸した。2回のうち1回の代表的な実験について、インプット(A、左パネル)、最初の洗浄の上清(1、SN)(A、中央のパネル)、およびビーズに結合した分画(A、右のパネル)を表す(二回目、三回目、および四回目の洗浄の上清ではシグナルが見られないかまたはほとんど見られなかった;データは示さない)。全ての調製物を同じゲルで走らせ、膜を同じ時間露光させた。(B)Flag-アガロースビーズを用いてRIG-ICを免疫沈降し、その後Flagペプチドで溶出した。上の実験と類似して、表示されたRNAオリゴヌクレオチドを精製したRIG-ICに添加し、その後ストレプトアビジン-アガロースビーズと共インキュベートした。示した場合、RNアーゼT1を用いて、三リン酸基を含むオリゴヌクレオチドの5'部分を除去した。ビーズを4回連続で洗浄し、最初の上清およびビーズに結合した分画をウェスタンブロッティングで解析した。3回のうち1回の代表的な実験を示す。 単球における合成および三リン酸RNAオリゴヌクレオチドの取込みには差がない。(A)合成かまたはインビトロ転写された配列9.2sのRNAオリゴヌクレオチドにAlexa 647フルオロフォアで標識し、結果的にそれぞれ81および71の塩基:色素比になった。その後、精製した単球に標識RNAオリゴヌクレオチド(全て50 ng)をトランスフェクトした。トランスフェクションの2時間後、細胞を採取し、PBS中の10 mM EDTAで2回激しく洗浄した。蛍光標識オリゴヌクレオチドの取込みをフローサイトメトリーで評価した。未処置の単球を用いて陽性細胞の閾値レベルを設定した。2人の独立のドナーからのデータをまとめ、平均値 ± SEMとして表す。(B)1人の代表的なドナーからのヒストグラムプロットを表す。 グアノシン三リン酸で始まるRNAオリゴヌクレオチドのみがヒト単球における強力なIFN-α応答を誘導し、グアノシン二リン酸、グアノシン一リン酸、またはグアノシンで始まるRNAオリゴヌクレオチドは、ヒト単球における強力なIFN-α応答を誘導しない。グアノシンが最初に1つしかない24-merの RNAオリゴヌクレオチドをコードするT7 RNAポリメラーゼ鋳型を用いて、ATP、CTP、およびUTP、ならびにグアノシン、グアノシン5'-一リン酸、グアノシン5'-二リン酸、またはグアノシン5'-三リン酸のいずれかのみの存在下でインビトロ転写によってRNAオリゴヌクレオチドを生成した。その後、精製した単球に、それぞれのRNAオリゴヌクレオチド(全て200 ng)をトランスフェクトし、刺激の24時間後にIFN-α産生を解析した。2人の独立のドナーからのデータをまとめ、平均値 ± SEMとして表す。 原核生物RNAは単球におけるIFN-a産生を誘導するが、真核生物RNAは単球におけるIFN-a産生を誘導しない。大腸菌(E. coli)細菌株DH10BおよびヒトPBMCからトータルRNAを単離した。その後、単球に、大腸菌RNA、PBMC RNA、合成9.2s RNA、またはインビトロ転写された9.2s(全て200 ng)をトランスフェクトした。さらに、外来性にかまたはカチオン性脂質と複合体化した合成9.2s RNAと組み合わせてかのいずれかでLPS(100 ng/ml)を添加し、単球を刺激した。刺激の24時間後に、IFN-α産生を解析した。2人の独立のドナーからのデータをまとめ、平均値 ± SEMとして表す。 二本鎖三リン酸RNAオリゴヌクレオチドの3'突出は免疫刺激活性に影響を及ぼさない。精製した単球に、tri-27+2s、tri-27+2a、tri-27+Os、tri-27+0a、またはそれぞれの二本鎖オリゴヌクレオチドのいずれか(全て200 ng)をトランスフェクトした。刺激の24時間後に、IFN-α産生を解析した。3人の独立のドナーからのデータをまとめ、平均値 ± SEMとして表す。 三リン酸RNAを介するIFN-α誘導はエンドソームの成熟およびTLR7とは無関係である。(A)&(B)精製したPDC(A)および単球(B)を、2倍上昇する用量のクロロキン(39〜625 ng/ml)と前インキュベートし、その後細胞をCpG-A(3 μg/ml)で刺激するかまたは細胞に200 ngのtri-GFPaをトランスフェクトするかのいずれかにした。インキュベーションの24時間後、上清を回収し、IFN-α産生をELISAで評価した。2人の独立のドナーからのデータを平均値 ± SEMとしてまとめた。(C)TLR7ノックアウトマウス(TLR7 -/-)またはそれぞれの対照動物(TLR7 +/-)のいずれか由来の骨髄細胞からマウスMDCを発生させた。その後、BM-MDCに、200 ngのtri-GFPsをトランスフェクトするかまたはR848(10 μM)、CpG-B(3 μg/ml)、CpG-A(3 μg/ml)、もしくはポリI:C(25 μg/ml)のいずれかで刺激した。インキュベーションの24時間後、上清をIFN-αおよびIP-10産生について解析した。3回のうち1回の代表的な実験(2通りの平均 ± SEM)を表す。 5'アデノシンで始まる三リン酸転写物は、5'グアノシンで始まる三リン酸転写物よりもIFN-α産生の点で優れている。(A)精製した単球に、RNA9.2-0A、RNA9.2s-1G、またはRNA9.2s- 5A(全て200 ng)のいずれかをトランスフェクトし、刺激の24時間後に、IFN-α産生を解析した。2人の独立のドナーからのデータをまとめ、平均値 ± SEMとして表す。(B)AΦ6.5-35nまたはGΦ6.5-35n鋳型のいずれかに由来するRNA転写物を精製した単球にトランスフェクトし、トランスフェクションの24時間後にIFN-α誘導を評価した。3人の独立のドナーからのデータをまとめ、平均値 ± SEMとして表す。 アデノシンで始まる5'-三リン酸RNAオリゴヌクレオチドの5'配列がIFN-α誘導活性を決定する。配列(5'→3')の2番目、3番目、および4番目の位置の全てのあり得る塩基順列(A、C、G、およびU)を含むアデノシンで始まる三リン酸RNAオリゴヌクレオチドをインビトロ転写で生成した(表2参照)。その後、3人の独立のドナー由来の単球を単離し、それぞれのRNAオリゴヌクレオチドをトランスフェクトした。トランスフェクションの36時間後、上清をIFN-a産生について解析した。全てのオリゴヌクレオチドの得られたIFN-α誘導レベルを、全てのオリゴヌクレオチドの平均誘導レベル(= 100%)に対して標準化した。3人全てのドナーの得られた標準化された誘導レベルを平均値 ± SEMとしてまとめた。 5'脱リン酸化後、原核生物RNAはヒト単球におけるIFN-αを誘導するが、インビトロ転写されたRNAは誘導しない。tri-GFPaをインビトロ転写で調製し(A)、さらにトータルRNAを大腸菌細菌株DH10Bから単離した(B)。その後、それぞれのRNA調製物をCIAPで処置して5'末端を脱リン酸化し、精製した単球にトランスフェクトした(200 ngのRNA)。刺激の24時間後に、IFN-α産生を解析した。2人の独立のドナーからのデータを表す。 1つのRNA分子における強力な免疫刺激機能と効率的な遺伝子サイレンシング活性の組み合わせ。(a)B16細胞を24ウェルプレート中に播種した。50%のコンフルエンシーで、選択された化学合成siRNA(抗-Bcl-2 2.1、抗Bcl-2 2.2、および抗Bcl-2 2.3)を1.2 μg/ウェル(100 pmol)でLipofectamine 2000(2.0 μl)を用いてB16細胞にトランスフェクトした。トランスフェクションの48時間後、マウスBcl-2のタンパク質発現をウェスタンブロッティングで解析した。その後、siRNA抗Bcl-2 2.2(OH-2.2)をインビトロ転写し(3p-2.2と呼ぶ)、遺伝子サイレンシングを誘導するその能力について検討した。対照siRNAおよび非特異的な二本鎖3p-RNAである、3p-GCは、陰性対照としての役割を果たした。4回のうち1回の代表的な実験を示す。(b)RIG-Iの内在性発現を明らかにするために、B16細胞を3p-2.2(1.2 μg/ウェル)およびマウスIFN-β(1000 U/ml)で刺激した。6時間後、細胞を溶解し、RIG-Iの内在性発現についてウェスタンブロットで解析した。全長RIG-Iを過剰発現するHEK293細胞は陽性対照としての役割を果たした。2回のうち1回の代表的な実験を示す。(c)腫瘍細胞における一過性のIFN-β活性化をモニタリングするために、B16細胞を24ウェルプレート中に播種し、高分子量PEIまたはLipofectamine 2000を用いて表示された発現プラスミドをトランスフェクトした。24個の細胞をポリ(I:C)(200 ng/ウェル)、3p-2.2(200 ng/ウェル)、およびOH-2.2(200 ng/ウェル)で刺激した。IRF3-5Dは陽性対照としての役割を果たした。トランスフェクションの16時間後、マイクロプレートルミノメーター(LUMIstar, BMGLabtechnologies)でルシフェラーゼ活性について細胞を解析した。3回の独立の実験の平均 ± SEMとしてデータを示す(3p-2.2とOH-2.2とポリ(I:C)の間で*P<0.05;t-検定)。(d)B16細胞を24ウェルプレート中に播種し、合成siRNA(1O pmol)および記載したような表示された発現プラスミド(200 ng)を共トランスフェクトした。トランスフェクションの24時間後、細胞を3p-2.2で16時間刺激した。3回の独立の実験の平均 ± SEMとしてデータを示す(対照siRNA(siCO)+ 3p-2.2とRIG-I siRNA(siRIG-I)+ 3p-2.2の間で*P<0.05;t-検定)。(e)B16細胞に表示された発現プラスミドを24時間トランスフェクトし、3p-2.2で16時間刺激した。2回の独立の実験の平均 ± SEMとしてデータを示す(NS3-4A* + 3p-2.2対NS3-4A + 3p-2.2で*P<0.05;t-検定)。 3p-2.2のトランスフェクションは、腫瘍細胞でのCardif非依存的アポトーシスを直接誘発するが、初代細胞では誘発しない。マウスB16細胞を24ウェルプレート中に播種し、Lipofectamine(2.0 μl)を用いて3p-2.2(1.2 μg/ウェル)、OH-2.2 (1.2 μg/ウェル)、および対照siRNA(1.2 μg/ウェル)をトランスフェクトした。トランスフェクションの24時間後、アネキシン-V陽性細胞に対してゲートをかけることによりアポトーシスについてフローサイトメトリーで細胞を解析した。アネキシン-V陽性かつPI陽性の細胞(後期アポトーシス細胞または死細胞)は除外した。(a)4回の独立の実験のうち1回の代表的なFACS解析を示す。(b)B16細胞のアポトーシスの結果を、4回の独立の実験の平均 ± SEMとして示す(3p-2.2対OH-2.2および3p-2.2対対照siRNAでP**<0.01;t-検定)。(c)マウスB16細胞を24ウェルプレート中に播種し、pNS3-4AおよびpNS3-4A*を24時間トランスフェクトした。その後、細胞を洗浄し、3p-2.2で24時間刺激し、アポトーシス細胞の数をFACS解析で決定した。2回の独立の実験の平均 ± SEMとしてデータを示す。(d)ヒトPBMCにおけるアポトーシスの結果を、2回の独立の実験の平均 ± SEMとして示す。(e)B16細胞を、対照siRNA、3p-2.2、およびポリ(I:C)と24時間インキュベートし、免疫ブロッティングでカスパーゼ-1活性について評価した。α-チューブリンはローディング対照としての役割を果たした。3回のうち1回の代表的な実験を示す。 3p-2.2によるIFN-α産生はpDCでTLR7およびcDCでRIG-Iを必要としかつある免疫細胞サブセットに限られている。野生型、RIG-I欠損(a)、MDA5欠損(b)、およびTLR7欠損(c)マウスのGMCSFによって導き出されたcDCならびにTLR7欠損マウス(d)のFlt3-Lによって導き出されたpDCに、Lipofectamine 2000と複合体化した200 ngの3p-2.2、dsDNA(Sigma; dAdT)、ポリ(I:C)(Sigma)、およびCpG-A 2216(3 μg/ml)を96ウェルプレート中でトランスフェクトした。24時間後、上清中でELISAによってIFN-αを測定した。データは、2回の独立の実験の平均 ± SEMとして表す。(e)B細胞、NK細胞、およびCD 8 T細胞を、磁気による細胞分取を用いて野生型マウスの脾臓から精製し、200 ngの3p-2.2で刺激した。Flt3-Lによって誘導された骨髄培養由来の分取されたpDCおよび3p-2.2で刺激したGMCSFによって導き出されたcDCは陽性対照としての役割を果たした。データは、2回の独立の実験の平均 ± SEMとして表す。 カプセル化された3p-2.2はインビボでの全身性の免疫活性化を引き起こす。C57BL/6マウスに、jetPEI(商標)と複合体化した3p-2.2またはOH-2.2(50 μg/マウス)を含む200 μlを注射した。その後、複合体を眼窩後静脈に注射した。そうでないよう示さない限り、6時間後に血清を回収した。表示された時点で尾を切り取ることにより全血を得た。IFN-α(a)、IL-12p40(b)、およびIFN-γ(c)のサイトカインレベルをELISAで決定した。CpG1826は陽性対照としての役割を果たした。6回の独立の実験の平均 ± SEMとしてデータを示す;P**<0.01またはP*<0.05。(d-e)C57BL/6およびTLR7-/- マウスに、jetPEI(商標)(Biomol)と複合体化した3p-2.2およびOH-2.2(50 μg)を静注した。6時間後、マウスを屠殺し、IFN-α(d)、IL-12p40(e)、およびIFN-γ(f)産生についてELISAで血清を解析した。2回の独立の実験の平均 ± SEMとしてデータを示す。 インビボでの3p-2.2による免疫細胞サブセットの用量依存的活性化。C57BL/6マウスに、jetPEI(商標)と複合体化した200 μlの3p-2.2(25、50、または75 μg/マウス)を眼窩後静脈に注射した。そうでないよう示さない限り、6時間後に血清を回収した。(a)IFN-α、IL-12p40、およびIFN-γの血清サイトカインレベルをELISAで決定した。5回の独立の実験の平均 ± SEMとしてデータを示す。(b-c)C57BL/6マウスに、jetPEI(商標)と複合体を形成した200 μlの核酸(25、50、または75 μg/マウス)を注射した。注射の48時間後に脾臓細胞を単離し、pDC、mDC、NK細胞、CD4 T細胞、およびCD8 T細胞に対してフローサイトメトリーでCD86またはCD69発現を解析した。表面抗原染色を先に記載したように行なった。(b)50 μg 3p-2.2による刺激後の1回の代表的な実験のヒストグラム(灰色の棒、未刺激の対照マウス)。(c)異なる免疫細胞サブセットの3p-2.2による用量依存的活性化。2回の独立の実験の平均 ± SEMとしてデータを示す。 3p-2.2刺激はIFN-α血清レベルの増加を2日未満の間引き起こし、インビボでの中程度の血小板減少および白血球減少を誘導する。(a)C57BL/6マウスに、jetPEI(商標)と複合体化した50 μgの3p-2.2またはOH-2.2を注射した。そうでないよう示さない限り、注射後の12時間、24時間、および48時間後に、血清を回収した。IFN-αの血清レベルはELISAで決定した。2回の独立の実験の平均 ± SEMとしてデータを示す。(b)C57BL/6マウスに、jetPEI(商標)と複合体化した50 μgの3p-2.2を注射した。48時間後に血液を採集し、白血球(WBC)および血小板の測定用にEDTA血漿として処理した。血液細胞計数は、表示された時点でCentral Laboratory of the Department of Internal Medicine, University of Munichで行なった(3p-2.2とCpGの血小板計数の間でP**<0.01)。2回の独立の実験の平均 ± SEMとしてデータを示す。 カプセル化された3p-2.2の送達は、実験的に誘導したB16メラノーマ肺転移の縮小を結果的にもたらす。(a)治療レジメン:マウスに4x105 B16メラノーマ細胞を静脈内接種し、0日目に実験的に肺転移を誘導した。表示した通りに3、6、および9日目にjetPEI(商標)と複合体を形成した表示された核酸でマウスに静脈内処置した。接種の14日後、肉眼で見える肺の表面上のメラノーマ転移の数を解剖用の顕微鏡を援用して数えるかまたは肺重量を算出した。(b)5匹のC57BL/6マウスの群に4x105 B16を接種し、記載したように処置した。3、6、および9日目に各々jetPEI(商標)と複合体化した、50 μgのOH-2.2、50 μgの3p-2.2、50 μgの3p-GC(非特異的な二本鎖3p-RNA)、または50 μgのCpGオリゴヌクレオチドリガンドでマウスに静脈内処置した。対照群は、100 μlのグルコース、jetPEI(商標)と複合体を形成した5%または50 μgのポリAを受容した。14日後に肺の重量を測定することによって腫瘍成長を評価した。示されているのは、5匹の個々のマウスの肺重量である。平均の肺重量を柱で示す。健康マウスの肺重量は、0.2〜0.24 gの範囲であった(3p-2.2とポリA、OH-2.2、および3p-GCの間でP**<0.01;n=5;一般化されたマン-ホイットニー検定)。(c)単一用量の複合体化しているかまたは複合体化していないFITC標識siRNA(100 μg)を健康マウスまたは胆癌マウスに静注した。6時間後、マウスを屠殺し、肺を含む様々な組織を摘出し、RNA複合体の取込みについて解析した。その後、488nm-アルゴンおよび633nm-ヘリウム-ネオンレーザーを搭載したZeiss LSM510共焦点顕微鏡(Carl Zeiss, Germany)を用いて組織を解析した。100 μgのFITC標識siRNAの注射後の1回の代表的な実験を示す。 3p-2.2による腫瘍縮小のメカニズム。(a)4匹のC57BL/6マウスの群に4x105 B16メラノーマ細胞を静注し、実験的に肺転移を誘導した。3、6、および9日目にそれぞれ、50 μgの3p-2.2および50 μgのポリ(I:C)でマウスに静脈内処置した。ポリA処置した動物は、対照群としての役割を果たした。14日目に、肉眼で見える肺の表面上のメラノーマ転移の数を数えることによって腫瘍成長を評価した。示されているのは、個々のC57BL/6マウスにおける転移の数である。転移の平均数を横線で示す(3p-2.2処置したマウスとポリA処置したマウスの間でP*<0.05;n=4;一般化されたマン-ホイットニー検定)。(b)jetPEI(商標)と複合体化した3p-2.2のTLR7-/-マウスにおける腫瘍成長に対する効果(3p-2.2処置したマウスとポリA処置したマウスの間でP*<0.05;n=4;一般化されたマン-ホイットニー検定)。(c)jetPEI(商標)と複合体化した3p-2.2のIFNAR-/-マウスにおける腫瘍成長に対する効果(3p-2.2処置したマウスとポリA処置したマウスの間でP*>0.05;n=4;一般化されたマン-ホイットニー検定)。(d)C57BL/6野生型マウスにおけるjetPEI(商標)と複合体化した3p-2.2の治療的な抗腫瘍効能に対する抗体を介するCD8+ T細胞およびNK細胞の枯渇の効果。(e)3p-2.2およびポリ(I:C)で処置したIFNAR-/-マウスの転移性肺におけるBcl-2発現をフローサイトメトリーで解析した。2回の個々の実験からの平均 ± SEMとして結果を表す。 インビボでの3p-2.2による肺転移におけるアポトーシスの誘導 5匹のC57BL/6マウスの群に4x105 B16メラノーマ細胞を静注して、実験的に肺転移を誘導した。3、6、および9日目に、50 μgのポリA(a)、50 μgの3p-2.2(b)、または50 μgのCpG1826(C)でマウスに静脈内処置した。ポリA処置した動物は、対照群としての役割を果たした。14日目に、マウスを屠殺した時に、肺の試料を得た。組織標本を完全エタノール中で固定し、パラフィンに包埋した。アポトーシスは、トランスフェラーゼを介するdUTPニックエンド標識(TUNEL)法によって製造元の取扱説明書に従って検出した。5回のうち1回の代表的な実験を示す。 イノシン含有量は3pRNAのIFN-a誘導活性を増加させる。(A)ヒトPBMCから単球を調製し、RNAをトランスフェクトした。4x105 細胞を18時間培養し、ELISAでIFN-αを測定した。(B)野生型およびMDA-5-/-マウスからのマウス骨髄をGMCSFとインキュベートすることによってマウス樹状細胞を調製した。マウス樹状細胞(ウェル当たり2x105 細胞)に400 ngのRNAをトランスフェクトした。18時間後、上清中でELISAによってIFN-αを測定した。 合成一本鎖5'三リン酸RNAのIFN-α誘導活性。化学合成した一本鎖オリゴヌクレオチドを単独でまたはそれらの相補的アンチセンス鎖(AS)と一緒にLipofectamineを用いることによってPBMCにトランスフェクトし、クロロキン(Chl)の存在下または非存在下でインキュベートした。CpG2331は、PBMCにおけるIFN-α誘導についての陽性でかつクロロキン感受性の対照として用いた。
発明の詳細な説明
ウイルス感染の検出は、高等生物がそれらのゲノムの完全性を守るために必須である。TLRはウイルス核酸の認識に寄与するが、それらの適切な機能は、有効な抗ウイルス防御に大部分が必須ではないように思われる(A. Krug et al., Immunity 21, 107 (Jul, 2004); K. Tabeta et al., Proc Natl Acad Sci U S A 101, 3516 (Mar 9, 2004); T. Delale et al., J Immunol 175, 6723 (Nov 15, 2005); K. Yang et al., Immunity 23, 465 (Nov, 2005))。最近になって初めて、2つの細胞質ヘリカーゼ、MDA-5およびRIG-I(M. Yoneyama et al., Nat Immunol 5, 730 (Jul, 2004))が、ウイルス感染を制御するのに不可欠であることが明確になった。
本発明者らは、5'末端の三リン酸基と19ヌクレオチドの最適な最低限の長さとを有するRNAを、RIG-Iの特異的リガンドであると同定した。細胞にトランスフェクトされた外因性5'三リン酸RNAおよび内在性に形成された5'三リン酸RNAの両方が、RIG-Iを活性化した。ネガティブ鎖RNAウイルスから調製したゲノムRNAおよびウイルス感染した細胞から調製したRNAは、5'三リン酸依存的な様式で強力なIFN-α応答を誘発したが、非感染細胞由来のRNAは誘発しなかった。RIG-Iおよび5'三リン酸RNAの結合実験により、直接的な分子相互作用が明らかになった。
キャッピングされていない未修飾の5'三リン酸RNAは、真核細胞によって検出されるウイルス核酸の最初に明確に規定された分子構造である。ウイルスはそれらの生活環に起因してそれらの宿主細胞と同じ分子構成成分、すなわちタンパク質および核酸から構成され、ウイルスRNAと自己RNAの識別を可能にするような明確な分子構造が稀であることが予想されており、そのようなものの存在は疑問視されている。この点で、ウイルスは、真核生物には存在せずかつ細胞質膜にあるTLR4などのTLRによって高い信頼度で容易に認識される内毒素などの種々の分子を含む細菌とは異なっている。
今日まで、ウイルス核酸の特異的な分子的特色ではなく、エンドソームにおけるウイルス核酸の局在が、ウイルスの検出を可能にする主要な要因であると考えられていた。エンドソームでの(TLR7およびTLR8による)一本鎖RNAおよび(TLR7による)短い二本鎖RNAのTLRを介する認識は、配列依存的であることが分かっており、ウイルスおよび脊椎動物中のそのような配列モチーフの頻度は類似している(本発明者らによる未公表の観察)。これは、脊椎動物およびウイルスDNAの両方で抑制されているが細菌DNAでは抑制されていないCpGモチーフにさえも当てはまる(A. M. Krieg, Annu Rev Immunol 20, 709 (2002))。この見解は、TLR9のエンドソーム局在が自己DNAの認識を防止しかつウイルスDNAの検出を容易にすることを示す最近の研究によって支持される(G. M. Barton, J. C. Kagan, R. Medzhitov, Nat Immunol 7, 49 (Jan, 2006))。TLR9によるCpGモチーフ非依存的なDNAの認識が、他の研究者によって記載されている(J. Vollmer et al., Antisense Nucleic Acid Drug Dev 12, 165 (Jun, 2002))。
全てのプライマー非依存的なRNA転写物が5'三リン酸RNAとして最初に生成されるという事実を考慮すると、真核生物RNAがいかにしてRIG-Iの認識を逃れるのかという疑問が生じる。真核細胞の細胞質において、全てではないにせよ大部分の自己RNA種は、遊離した5'三リン酸末端を持たない。自己RNAが核を離れて細胞質に達する前に、RNAはさらに処理される。これは、真核生物における3つ全てのRNAポリメラーゼのRNA転写物にも当てはまる。
ポリメラーゼIは、成熟rRNA(18、5.8S、25〜28S rRNA)、2つの外部の転写されるスペーサー、および2つの内部の転写されるスペーサーの配列を含む大きいポリシストロン性の前駆体リボソームRNA(rRNA)を転写する。この一次転写物は、多くのエンドヌクレアーゼ分解およびエキソヌクレアーゼ分解による処理工程に供され、成熟rRNAを産生する。この成熟工程の最終的な結果は、ポリメラーゼIで転写される全てのrRNAの5'末端の一リン酸基である(M. Fromont-Racine et al., Gene 313, 17 (Aug 14, 2003))。
ポリメラーゼIIで転写されるメッセンジャーRNA(mRNA)および小さい核RNA(snRNA)は、キャッピングと呼ばれる過程によって新生RNAの5'三リン酸に付着する7'メチルグアノシン基を受ける(A. J. Shatkin, J. L. Manley, Nat Struct Biol 7, 838 (Oct, 2000))。したがって、細胞質への輸送時に、遊離した三リン酸基は、ポリメラーゼII転写物には見出されない。
ポリメラーゼIIIは、両方とも細胞質中に輸送される転移RNA(tRNA)およびrRNA 5S、ならびにU6 RNAを含むその他の小さいRNAを転写する。細胞質への輸送の前に、tRNAは、リボヌクレアーゼPによる5'末端からの様々なヌクレオチドの除去を含めて、核内でさらに成熟する。したがって、細胞質で見出すことができる全ての成熟tRNAは5'末端で処理され、5'一リン酸を結果的に生じる(S. Xiao et al. Annual review of biochemistry 71, 165 (2002))。リボソームRNA 5Sの5'末端のリン酸化状態は研究されておらず、現在未知である。U6 RNAは、転写後にγ-モノメチルリン酸(mpppG)キャップ構造を受ける(R. Singh, R. Reddy, PNAS 86, 8280 (Nov, 1989))。
遊離した5'三リン酸残基の欠如に加えて、真核生物RNAは、転写後にそのヌクレオシドおよびそのリボース骨格の重要な修飾を受ける。全てのヌクレオシド修飾の中で、シュードウリジン化は、rRNAならびにスプライシングされている小さい核RNA(snRNA)、tRNA、および小さい核小体RNA(snoRNA)などの小さく安定なRNAの間で普遍的であるように見えるRNAの最も一般的な転写後修飾の1つである。しかしながら、シュードウリジン化したヌクレオチドの頻度および位置は、系統発生学的に様々に異なる。興味深いことに、真核生物は、原核生物よりも遥かに多くのヌクレオシド修飾をそれらのRNA種内に含む。細胞RNAの主な構成成分であるヒトのリボソームRNAは例えば、大腸菌rRNAよりも10倍多いシュードウリジン(Ψ)および25倍多い2'-O-メチル化ヌクレオシドを含む(J. Rozenski et al. Nucleic acids research 27, 196 (Jan 1, 1999))。修飾ヌクレオシドの25%までを含む最も大きく修飾されるサブグループのRNAである真核生物tRNAについても、同じことが当てはまる。ヌクレオシド修飾およびリボース骨格の2'-O-メチル化を実行する宿主機構は核小体にあり、snoRNAおよび幾つかの関連タンパク質を含むRNA-タンパク質複合体(すなわち、snoRNP)からなる(W. A. Decatur, M. J. Fournier, J. Biol. Chem. 278, 695 (January 3, 2003))。
ウイルスRNAゲノムの核小体特異的なヌクレオシド修飾またはリボース2'-O-メチル化に関する情報は限られている。大部分のRNAウイルスは核で複製せず、修飾はそれらの標的の配列および構造に厳しく限定されているので、ウイルスRNAの広範囲の修飾は可能性が低いように思われる。
総合して、5'プロセッシングまたはキャッピングだけでなくヌクレオシド修飾またはリボース骨格メチル化などの真核生物RNAの転写後修飾も、細胞質起源のウイルスRNAと核で生成される自己RNAの区別のための分子的基礎を提供する。
真核細胞に感染するウイルスのmRNAはまた、7-メチルグアノシンキャップ構造をそれらの5'末端およびそれらの3'末端のポリ(A)尾部に共通して含む(Y. Furuichi, A. J. Shatkin, Adv Virus Res 55, 135 (2000))。ウイルスの中には、宿主転写機構を利用して、キャップおよびポリ(A)尾部を獲得するものもある。宿主転写機構に頼らないRNAウイルスは、それら自身のキャッピング酵素を産生するかまたは宿主mRNAの5'末端領域を奪うなど、その他のメカニズムを利用する。宿主転写系に対するウイルスのこれらの適応にもかかわらず、ウイルスRNA合成は、キャッピングされていない5'三リン酸末端を持つ一過性の細胞質RNA中間体を生じる。
ピコマウイルスファミリー(下記参照)などの注目すべき例外はあるが、ウイルスRNA依存性RNAポリメラーゼ(RdRp)は、特異的プライマーなしでデノボでポリメラーゼ活性を開始する(C. C. Kao, et al., Virology 287, 251 (Sep 1, 2001))。結果として、これらのRdRp依存的転写物は、キャッピングされていない5'三リン酸から始まる。(C型肝炎ウイルス、黄熱病ウイルス、日本脳炎ウイルス、およびデングウイルスを含む)フラビウイルス科のファミリーのポジティブ鎖RNAウイルスの複製について、これは非常に詳細に研究されており;これらのウイルスの全てがRIG-Iによって認識されると報告された(H. Kato et al., Nature 441, 101 (Apr 9, 2006); R. Sumpter, Jr. et al., J. Virol. 79, 2689 (March 1, 2005, 2005); T.-H. Chang et al., Microbes and Infection 8, 157 (2006))。セグメントになったネガティブ鎖RNAウイルス(NSV)は、mRNA転写に対してキャップが奪われたプライマーに依るが、プライマー非依存的なデノボのメカニズムによってゲノムおよび相補的なアンチゲノムRNA複製を開始し、5'三リン酸で始まる転写物を結果的に生じる(A. Honda, et al., Virus Res 55, 199 (Jun, 1998); G. Neumann, et al., Current topics in microbiology and immunology 283, 121 (2004))。パラミクソウイルスおよびラブドウイルスを含むセグメントになっていないゲノムを持つNSV(モノネガウイルス目)は、複製および転写の両方をデノボで開始し、5'三リン酸RNAを細胞質中に生じる。全長複製産物であるvRNAおよびcRNA、ならびに転写の開始の間に多量に合成される短いリーダーRNAの両方とも、それらの5'三リン酸を維持するが(R. J. Colonno, A. K. Banerjee, Cell 15, 93 (1978))、ウイルスがコードするmRNA転写物は、それらの5'末端でキャッピングおよびキャップメチル化によってさらに修飾される。その結果、NSV由来のゲノムRNAそれ自体が、複製および推定されるdsRNA形成を必要とせずにIFN応答を誘発することが予期される。この考えと一致して、生きたウイルスだけでなく、NSVビリオン、この場合VSVから精製されたRNAもまた、RIG-Iに依存して強いI型インターフェロン応答を誘発することが示されている(H. Kato et al., Nature 441, 101 (Apr 9, 2006))。
本発明者らは、ウイルスRNA分離株の脱リン酸化がIFN応答を完全に無効にすることを証明し、それによって5'三リン酸部分が認識に必要であることを示すことによって、これらの観察を確認しかつ拡張した。RV感染細胞の場合、全長RNAは恒久的に核タンパク質(N)内に封入され、RNAがRNアーゼなどの小さい細胞分子にさえ接近できない直線状でらせん状の核タンパク質-RNA複合体(RNP)を形成する。同様に、リーダーRNAは、Nによってカプセル化されることが報告されている(Blumberg DM & Kolakofsky D, J Virol. 1981 Nov;40(2):568-76; Blumberg BM et al. Cell 1981 Mar;23(3):837-45)。RIG-Iによる生きたNSVの効果的な認識は、直線状のN-RNA複合体の末端の三リン酸がNタンパク質によって完全には保護されていないこと、またはウイルス転写の開始段階で、新たに合成されたNタンパク質のレベルが完全な保護には不十分であることを示唆している可能性がある。この点で、欠陥のある干渉(DI)粒子RNAを含むNSVストックがIFNの強力な誘導因子であることに留意するのは興味深いことである(Strahle L et al. 2006, Virology 351(1):101-11)。DIは、複製のための末端プロモーターのみを含みかつヘルパーウイルスタンパク質の低下した発現の条件下でたくさんの5'三リン酸末端を提供する。
他方、ピコルナウイルス様スーパーグループ(ピコルナウイルス、ポティウイルス、コモウイルス、カリシウイルス、およびその他のウイルス)の全てのウイルスは、ポジティブ鎖およびネガティブ鎖両方のRNA産生のためのプライマーとしてタンパク質を専ら利用するRdRpを用いており:このタンパク質プライマーは、前駆体RdRpの一部でありかつ開始複合体の伸張が起こる時に切り離されて、通常ウイルスゲノム連結タンパク質(VPg)として知られる、5'ゲノム連結タンパク質になる(Y. F. Lee, et al., Proc Natl Acad Sci U S A 74, 59 (Jan, 1977))。したがって、ピコルナウイルスの生活環の間に、キャッピングされていない三リン酸化された5'末端は存在しない。その結果、RIG-Iが、フラビウイルスおよびNSVの検出には関与するが、最近の研究で確認された、ピコルナウイルスの検出には関与しないことが予期される(H. Kato et al., Nature 441, 101 (Apr 9, 2006))。
本発明より前に、長い二本鎖RNAは、ウイルス感染の間に生じるが、正常細胞には存在しない唯一の規定された核酸構造であると考えられた。長い二本鎖RNA模倣物であるポリ(I:C)がI型IFNを誘導するという考えは、I型IFN研究の初期にまで遡る(M. Absher, W. R. Stinebring, Nature 223, 715 (Aug 16, 1969))。二本鎖RNA依存性タンパク質キナーゼ(PKR)がIFN-α誘導に関与すると考えられたが(S. D. Der, A. S. Lau, Proc Natl Acad Sci U S A 92, 8841 (Sep 12, 1995))、ポリ(I:C)で誘導されるI型IFNはPKR欠損マウスで損なわれないことをWeissmannのグループが証明した(Y. L. Yang et al., Embo J 14, 6095 (Dec 15, 1995))。他の研究者は、ポリ(I:C)で誘導されるI型IFNが、PKRに部分的に依存するが、TLR3には依存しないことを見出した(S. S. Diebold et al., Nature 424, 324 (Jul 17, 2003))。他方、TLR3は、長いdsRNAに特異的に結合しかつ結合によってI型IFNを誘導することが証明された最初の受容体であった(L. Alexopoulou, et al., Nature 413, 732 (Oct 18, 2001))。TLR3は、(CMVの場合)ウイルス感染の間、活性化されるが(K. Tabeta et al., Proc Natl Acad Sci U S A 101, 3516 (Mar 9, 2004))、(RSVの場合)ウイルス除去には必要とされないことが分かった(B. D. Rudd et al., J lmmunol 176, 1937 (Feb 1, 2006))。
多くの研究により、ヘリカーゼMDA-5およびRIG-IがdsRNAを認識することが示唆された(M. Yoneyama et al., Nat Immunol 5, 730 (Jul, 2004); S. Rothenfusser et al., J Immunol 175, 5260 (Oct 15, 2005); J. Andrejeva et al., Proc Natl Acad Sci U S A 101, 17264 (Dec 7, 2004))。しかしながら、本発明者らは、RNAの二本鎖形成がRIG-I-RNA相互作用には必要とされないこと、およびdsRNAがRIG-I活性化に十分でないことを見出した。本発明者らはさらに、MDA-5が5'三リン酸RNA認識に関与しないことを見出した。MDA-5が長いdsRNA模倣物であるポリ(I:C)によって活性化されるという説得力のある証拠はあるが、天然の長いdsRNAによるMDA-5の活性化は依然として論争の的である(H. Kato et al., Nature 441, 101 (Apr 9, 2006))。総合すると、TLR3はこれまで、天然の長いdsRNA分子の結合によるI型IFN産生をもたらす唯一の受容体であるが、インビボでのI型IFN産生およびウイルス除去に対するTLR3の寄与はわずかであると思われる。
DNAおよびRNAウイルス両方の複製が、細胞質での中間体dsRNAの形成と関連することが広く仮定されている。最近の研究により、ポジティブ鎖RNAウイルス、dsRNAウイルス、およびDNAウイルスについての中間体dsRNAの形成が確認されているが、NSVについては確認されていない(F. Weber, et al., J Virol 80, 5059 (May, 2006))。しかしながら、内在性dsRNAの形成が、真核細胞で生理学的に起こる。健常な真核細胞では、dsRNAはマイクロRNA(miRNA)および前駆体miRNAの形態で存在する。前駆体miRNAは70ヌクレオチドのdsRNAステムループ構造であり、これは核から細胞質へと絶えず輸送されて、多数の標的遺伝子を転写後に調節する22ヌクレオチドのmiRNAへとさらに処理される(B. R. Cullen, Mol Cell 16, 861 (Dec 22, 2004))。したがって、dsRNAは、I型IFN応答を誘導することなく、正常で健康な真核細胞中に存在する。したがって、細胞質中のdsRNAそれ自体は、ウイルスに特異的なものではない。
ダイサーを介する長いdsRNAの切断によって生成されるsiRNAなどの短いdsRNAは、非免疫細胞でI型IFN応答を誘発しないという良い証拠がある(V. Hornung et al., Nat Med 11, 263 (Mar, 2005); D. H. Kim et al., Nat Biotechnol 22, 321 (Mar, 2004); S. M. Elbashir et al., Nature 411, 494 (May 24, 2001))。最近の研究により、ダイサー切断産物の3'末端の2ヌクレオチド突出は短いdsRNAの免疫認識の欠如に不可欠であることが示唆されている(J. T. Marques et al., Nat Biotechnol 24, 559 (May, 2006))。同じ研究で、合成による平滑末端の短いdsRNAはRIG-Iによって認識されることが提示された。RIG-Iが平滑末端の短いdsRNAの受容体であるという結論は、RIG-I過剰発現細胞を用いる実験および平滑末端の短いdsRNAによる刺激の最高点でRIG-I特異的なsiRNA(2ヌクレオチドの3'突出を持つ短いdsRNA)を用いる実験に基づいている。RIG-I欠損細胞は、この研究で検討されなかった。
短いdsRNAだけでなくssRNAの5'三リン酸非依存的な認識も、高度に特殊化した免疫細胞のサブセットである形質細胞様樹状細胞(PDC)のエンドソーム区画で生じることがよく知られている。PDCは、わずか2つの機能性TLR、RNAの検出のためのTLR7、およびDNAの検出のためのTLR9を持つ。ヒトでは、TLRによって誘導されるIFN-α誘導は、大部分がPDCに限られている。PDCがウイルス感染の間のIFN-αの初期誘導に関与することが報告されている(A. Krug et al., Immunity 21, 107 (Jul, 2004))。しかしながら、PDCを枯渇することは、ウイルス感染後の宿主生存に何ら主な影響を与えない(T. Delale et al., J Immunol 175, 6723 (Nov 15, 2005))。これらのデータに基づき、PDCは初期の抗ウイルス免疫応答に寄与するが、主な抗ウイルス活性は、RIG-Iおよび/またはMDA-5による細胞質性のウイルスの認識に基づくという概念が現れつつある。ウイルスがRIG-Iおよび/またはMDA-5の認識を逃れる状況では、PDCおよびTLRを介するウイルス認識がより決定的な役割を果たす可能性がある。したがって、PDCは、ウイルス感染細胞でウイルス複製が起こる前のウイルス粒子に対する見張りとしての役割を果たし、かつウイルスがRIG-Iおよび/またはMDA-5認識を逃れた場合のバックアップ戦略としての役割を果たす可能性がある。
5'三リン酸RNA特異的な抗ウイルス応答の有効性は、5'三リン酸RNAによる刺激によって、ヒト初代単球が大量のIFN-αを産生するという本発明者らの知見によって例証されている。マウス(S. S. Diebold et al., Nature 424, 324 (Jul 17, 2003))とは違い、ヒト骨髄細胞は、核酸の刺激によって相当な量のIFN-αを産生することが以前に示されていない。5'三リン酸RNAを用いて、現在初めて、細胞のウイルス感染の実際の模倣物でありかつ通常はIFN-αを作らない免疫細胞、非免疫細胞、および腫瘍細胞を含む任意の細胞種類でIFN-αを誘導することができる分子が利用可能である。
本発明より前に、同様の種類の応答を誘導するための唯一の方法は、弱毒化した複製ウイルスを用いることであった。しかしながら、弱毒化したウイルスは、免疫抑制された患者でウイルス感染および疾患を引き起こす場合があり、かつ突然変異が結局ウイルスをより病原性があるように復帰させる可能性がある。5'三リン酸RNAは、それらの強力な免疫の刺激に関して弱毒化された複製ウイルスを模倣する潜在的可能性を有する。この点で、5'三リン酸RNAは、慢性ウイルス感染および腫瘍などの確立された疾患の予防および/または処置のためのワクチン、治療的ワクチン、または免疫治療の開発で用いることができる完璧な生物学的死分子であるように思われる。
さらに、本発明者らは、5'三リン酸RNAが腫瘍細胞におけるI型IFN産生だけでなく、腫瘍細胞のアポトーシスも誘導することを見出した。腫瘍細胞は、5'三リン酸RNAによって誘導されるアポトーシスに対して非腫瘍細胞よりも感受性がある。したがって、5'三リン酸RNAは、腫瘍治療のための理想的な候補である。
先行技術において、5'三リン酸RNAは、一本鎖であれまたは二本鎖であれ、転写物を必ず5'Gで始めるT7、T3、およびSP6などのバクテリオファージRNAポリメラーゼを用いたインビトロ転写によって、通常通りに生成された(Maitra U et al. (1980) PNAS 77(7):3908-3911; Stump WT & Hall KB (1993) Nucleic Acids Research 21(23):5480-5484)。当技術分野における確立された慣習とは対照的に、本発明者らは、5'Aで始まる5'三リン酸RNAが、I型IFN応答を誘導するのにより強力であることを見出した。
さらに、本発明者らは、5'三リン酸RNAの5'配列がその有効性に影響を及ぼすことを見出した。対照的に、5'三リン酸RNAの3'配列は、3'末端にポリA、ポリU、ポリC、またはポリGを持つ短い5'三リン酸RNAオリゴヌクレオチドが同様の活性を有したので、ほとんど影響を有さなかった。
その上、本発明者らは、5'三リン酸RNAのI型IFN誘導活性が増加するイノシン含有量と共に増加することを見出した。
さらに、短いオリゴヌクレオチドと対照的に、長い5'三リン酸RNAは、異なるレベルの活性を示した。これは、5'三リン酸末端のRIG-Iに対する接近可能性に影響を及ぼす可能性がある長いRNA分子の二次構造形成によって説明される可能性がある。
遊離したキャッピングされていない5'三リン酸基がI型IFN産生を誘導できるだけでなく、遊離したキャッピングされていない5'一リン酸基および二リン酸基もそうであることが本発明者らによって後に発見された。したがって、本発明は、少なくとも1つの遊離したキャッピングされていない5'末端のリン酸基を持つオリゴヌクレオチド/ポリヌクレオチド(すなわち、5'リン酸オリゴヌクレオチド/ポリヌクレオチド)の使用、特に、治療的使用を提供する。
Kim DHら(2004, Nature Biotech. 22(3):321-325)および米国特許第2006/0178334号は、インビトロ転写された一本鎖5'三リン酸RNAおよび一本鎖ウイルスRNAが、選択された細胞株でI型IFN産生を誘導し、かつI型IFNを誘導する一本鎖5'三リン酸RNAを化学合成から得ることも可能であることを教示しているが、驚くべきことに、本発明者らは、化学合成された5'三リン酸RNAは、それ自体でI型IFN誘導活性を全く有さないことを見出した。それどころか、二本鎖構造の形成が必要とされた。3'末端の折り返しまたはその他の分子内もしくは分子間の二本鎖形成が原因で、インビトロ転写された一本鎖RNAおよび一本鎖ウイルスRNAは、二本鎖構造を含む可能性が高く、それはアンチセンス鎖(すなわち、相補鎖)の非存在下でI型IFNを誘導するそれらの能力を説明する。
この驚くべき知見は、配列および細胞特異的な様式でI型IFNを誘導する可能性を広げた。このアプローチにおいて、その配列が組織または細胞特異的なRNAと相補的である一本鎖5'リン酸RNA、特に、5'三リン酸RNAを化学合成し、かつ細胞、組織、器官、または生物全体にインビトロ、インビボ、またはエクスビボで導入することができる。
組織または細胞特異的なRNAの一例は、疾患/障害関連遺伝子のmRNAである。疾患/障害関連遺伝子を発現しないかまたは疾患/障害関連遺伝子を任意の著しい程度までは発現しない健常な細胞に導入した場合、一本鎖5'リン酸RNAは一本鎖のままであり、RIG-Iによって認識されるかまたはI型IFNを誘導することができない。対照的に、疾患/障害関連遺伝子を発現するかまたは疾患/障害関連遺伝子を上昇したレベルで発現する罹患細胞に導入する場合、一本鎖5'リン酸RNAは疾患/障害関連遺伝子のmRNAに結合し、RIG-Iによって認識される二本鎖構造を形成し、I型IFN産生をもたらす。
組織または細胞特異的なRNAの別の例は、マイクロRNA(miRNA)である。マイクロRNA(miRNA)は、ヘアピンまたはステムループ構造を有する約21〜23ヌクレオチド長の一本鎖分子であり;それらは、遺伝子のmRNAに一部相補的であり、遺伝子の発現を調節する。miRNAは、組織、細胞、および/または発生段階特異的な様式で発現し、かつ癌および心疾患などのある種の疾患/障害と関連することが知られている。
このように、細胞にとって通常は細胞毒性があるI型IFN応答は、罹患細胞でのみ誘導されるが、健常なバイスタンダー細胞では誘導されず、いかなる健常なバイスタンダー細胞にも害を与えることなく罹患細胞の効果的な根絶をもたらす。
本発明で有用な一本鎖5'リン酸RNAは、遺伝子サイレンシング活性を保有することができる。しかしながら、本発明で有用な一本鎖5'三リン酸RNAは、いかなる遺伝子サイレンシング活性も保有する必要がない。一本鎖5'リン酸RNAが標的の内在性RNAに結合することができる、すなわち、標的の内在性RNAとの配列相補性を有する限り、それは標的細胞特異的な様式でI型IFNを誘導するのに有用である。ある状況下では、遺伝子サイレンシング活性がある一本鎖5'リン酸RNAを用いることが望ましい場合がある。例えば、I型IFN産生を誘導しかつ同時に腫瘍細胞の増殖能を低下させるために腫瘍細胞でオンコジーンに対するアンチセンスRNAを用いることが望ましい場合がある。その他の状況下では、遺伝子サイレンシング活性がない一本鎖5'リン酸RNAを用いることが望ましい場合がある。遺伝子サイレンシング活性を欠く一本鎖5'リン酸RNAは、その標的mRNAへの結合時に細胞機構によって効果的に認識されかつ分解されるようにはならないと考えられる。結果として、遺伝子サイレンシング活性を欠く一本鎖5'リン酸RNAは、長い細胞内半減期を有する可能性がある。
さらに、5'三リン酸RNAは、IL-18およびIL-1β産生を誘導することができることが分かっている。任意の理論に束縛されるわけではないが、5'三リン酸は、インフラマソーム(inflammasome)によって認識され、IL-18およびIL-1βの産生をもたらすと考えられている。したがって、5'三リン酸RNAは、これらのそれぞれのサイトカインの誘導によって緩和され得る疾患および/または状態の処置に有用である可能性がある。疾患および/または状態には、アレルギー、悪性および良性の腫瘍、ウイルス感染、細菌感染(特に、細胞内細菌感染)、免疫不全、ならびに(細胞毒性のある化学治療による骨髄抑制を含む)免疫抑制が含まれるが、これらに限定されない。
5'三リン酸オリゴヌクレオチドがRIG-Iに対する効果的なリガンドであり、したがってI型IFN、IL-18および/またはIL-1βを誘導するのに効果的であるためには、ある種の構造的特色が必要とされるので、例えば、化学修飾した5'三リン酸RNA、短過ぎて最適なシグナル伝達ができない高濃度の5'三リン酸RNA、二本鎖部分が短過ぎて最適なシグナル伝達ができない高濃度の5'三リン酸RNA、標的細胞内の任意の細胞mRNAとの配列相補性を欠く高濃度の一本鎖5'三リン酸RNAを用いることによって、RIG-I活性化ならびにI型IFN、IL-18および/またはIL-1βの誘導を阻害することが可能である。そのようなオリゴヌクレオチドは、シグナル伝達を開始することなくRIG-Iに結合することによるか、または該サイトカインを誘導することができる5'三リン酸RNAを徹底的に希釈することによるかのいずれかで、I型IFN、IL-18および/またはIL-1βの誘導に対する阻害的効果を有する。
そのような阻害的5'三リン酸オリゴヌクレオチドは、I型IFN、IL-18および/またはIL-1の上昇したレベルと関連する疾患または状態の処置に有用である可能性がある。疾患には、関節リウマチおよび通風などの自己免疫疾患、ならびに炎症性疾患が含まれるが、これらに限定されない。
本発明者らの別の驚くべき知見は、インビトロ転写されたRNA、遊離した5'リン酸基を持つ化学合成されたRNA、およびウイルスRNAに加えて、細菌RNAがI型IFN応答を誘導するのに非常に強力であることである。インビトロ転写されたRNAおよびウイルスRNAと同様に、細菌RNAは、5'三リン酸を含みかつ真核細胞特異的な修飾を欠く。さらにより驚くべきことに、細菌RNAのIFN誘導活性は、インビトロ転写されたRNAの場合のように、5'三リン酸の存在に完全に起因するわけではないことが分かった。したがって、5'三リン酸に加えて、細菌RNAは、真核細胞によって認識されかつI型IFN産生を誘導するその能力の原因となるさらなる分子的特色を含む。
本発明者らのこの驚くべき知見は、抗ウイルス応答および/または抗細菌応答を誘導することができ、かつウイルス感染、細菌感染(特に、細胞内細菌感染)、腫瘍、アレルギー、自己免疫疾患、および免疫不全などの疾患の処置に有用である薬学的組成物の開発に新たな場を開拓する。
細菌RNAは、その安全性プロファイルのために、弱毒化ウイルスおよびウイルスRNAよりも治療薬剤として好都合である。弱毒化ウイルスがウイルス感染および疾患を引き起こす可能性があり、ウイルスRNAが真核生物ゲノムに組み入れられて望まない遺伝子変化を引き起こす可能性があるのに対し、細菌RNAは不活性でありかついかなる望ましくない疾患または状態も引き起こさない。
さらに、細菌RNAは、非常に低コストで大量に生産することができる。したがって、弱毒化ウイルス、ウイルスRNA、またはインビトロ転写されたRNAよりも細菌RNAを治療薬剤として用いる方が、ずっと経済的である。
定義
本明細書で用いる場合、「1つの(a)」および「1つの(an)」は、単数形の個体だけでなく、実在物の群または種も指す。
オリゴヌクレオチド
本明細書で用いる場合、「オリゴヌクレオチド」という用語は、複数の連結されたヌクレオシド単位から形成されたポリヌクレオチドを指し、「オリゴヌクレオチド」および「ポリヌクレオチド」は同義的に用いられる。そのようなオリゴヌクレオチドは、ゲノムDNAまたはcDNAを含む既存の核酸源から得ることができるが、好ましくは化学合成、インビトロおよびインビボの転写を含む合成法によって産生される。好ましい態様において、各々のヌクレオシド単位には、複素環塩基およびペントフラノシル、トレハロース、アラビノース、2'-デオキシ-2'-置換アラビノース、2'-0-置換アラビノース、またはヘキソース糖基が含まれる。ヌクレオシド残基は、数々の公知のヌクレオシド間連結のいずれかによって互いに共役することができる。そのようなヌクレオシド間連結には、ホスホジエステル、ホスホロチオエート、ホスホロジチオエート、ピロホスフェート、アルキルホスホネート、アルキルホスホノチオエート、ホスホトリエステル、ホスホロアミデート、シロキサン、カルボネート、カルボアルコキシ、アセトアミデート、カルバメート、モルフォリノ、ボラノ、チオエーテル、架橋されたホスホロアミデート、架橋されたメチレンホスホネート、架橋されたホスホロチオエート、およびスルホンヌクレオシド間連結が含まれるが、これらに限定されない。「オリゴヌクレオチド」という用語はまた、1つまたは複数の立体特異的なヌクレオシド間連結(例えば、(Rp)-もしくは(Sp)-ホスホロチオエート、アルキルホスホネート、またはホスホトリエステル連結)を包含する。
本発明のオリゴヌクレオチドは、天然のヌクレオシド、修飾されたヌクレオシド、またはその混合物を含むことができる。本明細書で用いる場合、「修飾されたヌクレオシド」という用語は、修飾された複素環塩基、修飾された糖部分、またはその組み合わせを含むヌクレオシドである。幾つかの態様において、修飾されたヌクレオシドは、非天然のピリミジンまたはプリンヌクレオシドである。幾つかの態様において、修飾されたヌクレオシドは、2'-置換リボヌクレオシド、アラビノヌクレオシド、または 2'-デオキシ-2'-置換アラビノシドである。
本明細書で用いる場合、「2'-置換リボヌクレオシド」または「2'-置換アラビノシド」という用語には、2'-置換リボヌクレオシドまたは2'-O-置換リボヌクレオシドを生成するようペントース部分の2'位の水酸基が置換されているリボヌクレオシドまたはアラビノシドが含まれる。好ましくは、そのような置換は、1〜6個の飽和炭素原子もしくは不飽和炭素原子を含む低級アルキル基を伴うか、または6〜10個の炭素原子を有するアリール基を伴い、そのようなアルキル、もしくはアリール基は、置換されていなくてもよいし、または例えば、ハロ基、水酸基、トリフルオロメチル基、シアノ基、ニトロ基、アシル基、アシルオキシ基、アルコキシ基、カルボキシル基、カルボアルコキシ基、もしくはアミノ基で置換されていてもよい。2'-O -置換リボヌクレオシドまたは2'-O-置換アラビノシドの例として、2'-O-メチルリボヌクレオシドまたは2'-O-メチルアラビノシドおよび2'-O-メトキシエチルリボヌクレオシドまたは2'-O-メトキシエチルアラビノシドが含まれるが、これらに限定されない。
「2'-置換リボヌクレオシド」または「2'-置換アラビノシド」という用語には、2'-水酸基が1〜6個の飽和炭素原子もしくは不飽和炭素原子を含む低級アルキル基と交換されているか、またはアミノ基もしくはハロ基と交換されているリボヌクレオシドまたはアラビノシドも含まれる。そのような2'-置換リボヌクレオシドまたは2'-置換アラビノシドの例として、2'-アミノ、2'-フルオロ、2'-アリル、および2'-プロパルギルリボヌクレオシドまたはアラビノシドが含まれるが、これらに限定されない。
「オリゴヌクレオチド」という用語には、ハイブリッドおよびキメラのオリゴヌクレオチドが含まれる。「キメラオリゴヌクレオチド」は、複数の種類のヌクレオシド間連結を有するオリゴヌクレオチドである。そのようなキメラオリゴヌクレオチドの1つの好ましい例は、ホスホロチオエート、ホスホジエステル、またはホスホロジチオエート領域およびアルキルホスホネートまたはアルキルホスホノチオエート連結などの非イオン性連結を含むキメラオリゴヌクレオチドである(例えば、米国特許第5,635,377号および第5,366,878号参照)。
「ハイブリッドオリゴヌクレオチド」は、複数の種類のヌクレオシドを有するオリゴヌクレオチドである。そのようなハイブリッドオリゴヌクレオチドの1つの好ましい例は、リボヌクレオチドまたは2'-置換リボヌクレオチド領域、およびデオキシリボヌクレオチド領域を含む(例えば、米国特許第5,652,355, 6,346,614号および第6,143,881号参照)。
本明細書で考察したRNAオリゴヌクレオチドには、他の様式で修飾されていないRNAだけでなく、(例えば、有効性を向上させるために)修飾されているRNA、およびヌクレオシド代用物のポリマーも含まれる。
修飾されていないRNAとは、核酸の構成要素、すなわち、糖、塩基、およびリン酸部分が、自然界で生じるもの、好ましくはヒトの体内で自然に生じるものと同じであるかまたは本質的に同じである分子を指す。当技術分野は、稀であるかまたは普通ではないが天然に存在するRNAを、修飾されたRNAと称しており、例えば、Limbach et al. 1994, Nucleic Acids Res 22: 2183-2196を参照されたい。(これらが典型的に転写後修飾の結果であることが明らかであるので)多くの場合修飾されたRNAと呼ばれるそのような稀であるかまたは普通ではないRNAは、本明細書で用いる場合、修飾されていないRNAという用語の範囲内にある。
本明細書で用いる場合の修飾されたRNAとは、核酸の構成要素、すなわち、糖、塩基、およびリン酸部分の1つまたは複数が、自然界で生じるものと異なっており、好ましくはヒトの体内で生じるものと異なっている分子を指す。それらは修飾された「RNA」と称されるが、それらには勿論、修飾が理由でRNAではない分子が含まれると考えられる。
ヌクレオシド代用物とは、ハイブリダイゼーションがリボリン酸骨格で見られるものと実質的に同様であるように、リボリン酸骨格が、塩基を正しい空間的関係性に提示させる非リボリン酸構築物、例えば、リボリン酸骨格の非電荷性模倣物と交換されている分子である。
そうでないと示さない限り、本明細書で列挙した核酸配列は全て、5'から3'方向にある。
本発明のRNAオリゴヌクレオチドは、一本鎖(ssRNA)、二本鎖(dsRNA)、または部分的二本鎖(部分的dsRNA)であることができる。
一本鎖RNAオリゴヌクレオチドは、自己相補的配列を含んでもよくかつヘアピンを形成する。例えば、
Figure 2010500011
自己相補的配列は、パリンドローム配列であってもよい。例えば、
Figure 2010500011
である。
二本鎖RNAオリゴヌクレオチドは、一方または両方の鎖の5'または3'末端に1ヌクレオチドまたは2ヌクレオチドの突出を有してもよい。
部分的二本鎖のRNAオリゴヌクレオチドは、同じかまたは異なる長さの2つの鎖を含んでもよく、鎖の少なくとも1つは、相補的配列の外側にヌクレオチドを含む。例えば、
Figure 2010500011
である。
一本鎖RNAオリゴヌクレオチドの長さは、オリゴヌクレオチドに含まれるヌクレオチドの数である。
二本鎖または部分的二本鎖のオリゴヌクレオチドの場合、オリゴヌクレオチドの長さは、個々の鎖の長さである。言い換えれば、部分的二本鎖のオリゴヌクレオチドは、2つの長さを有することができる。
増強されたヌクレアーゼ抵抗性
ヌクレアーゼ抵抗性および/または標的に対する結合親和性の増加のために、オリゴヌクレオチドは、例えば、2'-修飾リボース単位および/またはホスホロチオエート連結および/またはピロホスフェート連結を含むことができる。例えば、2'ヒドロキシル基(OH)を、多数の異なる「オキシ」もしくは「デオキシ」置換基で修飾するかまたはこの置換基と交換することができる。
「オキシ」-2'水酸基修飾の例として、アルコキシまたはアリールオキシ(OR、例えば、R = H、アルキル、シクロアルキル、アリール、アラルキル、ヘテロアリール、または糖);ポリエチレングリコール(PEG)、O(CH2CH2O)nCH2CH2OR;2'ヒドロキシルが、例えば、メチレン架橋によって同じリボース糖の4'炭素に接続されている「ロックされた」核酸(LNA);O-AMINEおよびアミノアルコキシ、O(CH2)nAMINE(例えば、AMINE = NH2;アルキルアミノ、ジアルキルアミノ、ヘテロシクリル、アリールアミノ、ジアリールアミノ、ヘテロアリールアミノ、またはジヘテロアリールアミノ、エチレンジアミン、ポリアミノ)が含まれる。メトキシエチル基(MOE)(OCH2CH2OCH3、PEG誘導体)のみを含むオリゴヌクレオチドは、強固なホスホロチオエート修飾で修飾されたものに匹敵するヌクレアーゼ安定性を示すことは注目に値する。
「デオキシ」修飾には、水素(すなわち、部分的dsRNAの突出部分に特に関連があるデオキシリボース糖);ハロ(例えば、フルオロ);アミノ(例えば、NH2;アルキルアミノ、ジアルキルアミノ、ヘテロシクリル、アリールアミノ、ジアリールアミノ、ヘテロアリールアミノ、ジヘテロアリールアミノ、またはアミノ酸);NH(CH2CH2NH)nCH2CH2-AMINE(AMINE = NH2;アルキルアミノ、ジアルキルアミノ、ヘテロシクリルアミノ、アリールアミノ、ジアリールアミノ、ヘテロアリールアミノ、またはジヘテロアリールアミノ)、-NHC(O)R(R = アルキル、シクロアルキル、アリール、アラルキル、ヘテロアリール、また糖)、シアノ;メルカプト;アルキル-チオ-アルキル;チオアルコキシ;ならびに任意で例えば、アミノ官能基で置換されていてもよい、アルキル、シクロアルキル、アリール、アルケニル、およびアルキニルが含まれる。
好ましい置換基は、2'-メトキシエチル、2'-OCH3、2'-O-アリル、2'-C-アリル、および2'-フルオロである。
ヌクレアーゼ抵抗性を最大化するために、1つまたは複数のリン酸連結修飾(例えば、ホスホロチオエート)と組み合わせて2'修飾を用いることができる。いわゆる「キメラ」オリゴヌクレオチドとは、2つまたはそれより多くの異なる修飾を含むオリゴヌクレオチドである。
オリゴヌクレオチド骨格にフラノース糖を含めることによって、エンドヌクレアーゼ分解による切断を減少させることもできる。3'カチオン性基を含めることによって、または3'末端のヌクレオシドを3'-3'連結で逆向きにすることによって、オリゴヌクレオチド薬剤をさらに修飾することができる。別の代替として、アミノアルキル基、例えば、3' C5-アミノアルキルdTで3'末端を遮断することができる。その他の3'コンジュゲートは、3'-5'エキソヌクレアーゼ分解による切断を阻害することができる。理論に束縛されるわけではないが、ナプロキセンまたはイブプロフェンなどの3'コンジュゲートは、エキソヌクレーゼがオリゴヌクレオチドの3'末端に結合するのを立体的に遮断することによって、エキソヌクレーゼによる切断を阻害する可能性がある。小さいアルキル鎖、アリール基、または複素環コンジュゲートもしくは修飾糖(D-リボース、デオキシリボース、グルコースなど)でさえも、3'-5'エキソヌクレーゼを遮断することができる。
同様に、5'コンジュゲートは、5'-3'エキソヌクレーゼ分解による切断を阻害することができる。理論に束縛されるわけではないが、ナプロキセンまたはイブプロフェンなどの5'コンジュゲートは、エキソヌクレーゼがオリゴヌクレオチドの5'末端に結合するのを立体的に遮断することによって、エキソヌクレーゼによる切断を阻害する可能性がある。小さいアルキル鎖、アリール基、または複素環コンジュゲートもしくは修飾糖(D-リボース、デオキシリボース、グルコースなど)でさえも、5'-3'エキソヌクレーゼを遮断することができる。
自己相補的配列を含みかつヘアピン構造を形成する一本鎖RNAオリゴヌクレオチドは、そうでない一本鎖オリゴヌクレオチドと比較して増強されたヌクレアーゼ抵抗性を有する。
テザー(Tethered)リガンド
本発明のRNAオリゴヌクレオチドには、テザーリガンドを含むオリゴヌクレオチドも含まれる。その薬理学的特性を含むRNAオリゴヌクレオチドの特性は、リガンド、例えばテザーリガンドの導入によって影響を与えられ、その特性を好みに合わせることができる。
リガンドを、共有結合かまたは非共有結合で、好ましくは共有結合で、介在テザーを介して直接的にまたは間接的にのいずれかで、RNAオリゴヌクレオチドに共役させてもよい。好ましい態様において、リガンドを、介在テザーを介してオリゴヌクレオチドに付着させる。
好ましい態様において、リガンドは、それが組み入れられるRNAオリゴヌクレオチドの分布、標的化、または寿命を変化させる。好ましい態様において、リガンドは、選択された標的、例えば、分子、細胞もしくは細胞型、細胞もしくは器官の区画、組織、器官、または身体の部位に対する増強された親和性を提供する。
好ましいリガンドは、輸送、ハイブリダイゼーション、および特異性の特性を改善することができ、かつ結果として得られる天然もしくは修飾オリゴヌクレオチド、または本明細書で記載したモノマーおよび/もしくは天然もしくは修飾リボヌクレオチドの任意の組み合わせを含むポリマー分子のヌクレアーゼ抵抗性を改善する可能性もある。
多種多様なリガンドを用いてもよい。リガンドとして、オリゴヌクレオチドの特異的な標的化を可能にする薬剤;オリゴヌクレオチド分布のモニタリングを可能にする診断的な化合物または受容体群;架橋薬剤;ヌクレアーゼ抵抗性を付与する部分;および天然または異常なヌクレオ塩基が含まれてもよい。一般的な例として、親油性分子、脂質、レクチン、ステロイド(例えば、ウバオール、ヘシゲニン(hecigenin)、ジオスゲニン)、テルペン(例えば、トリテルペン、例えば、サルササポゲニン、フリーデリン、エピフリーデラノール(epifriedelanol)誘導体化リトコール酸)、ビタミン、炭水化物(例えば、デキストラン、プルラン、キチン、キトサン、イヌリン、シクロデキストリン、またはヒアルロン酸)、タンパク質、タンパク質結合剤、インテグリン標的化分子、ポリカチオン性のもの、ペプチド、ポリアミン、およびペプチド模倣物が含まれる。
リガンドは、天然分子または組換え分子または合成ポリマー、例えば、合成ポリアミノ酸などの合成分子であってもよい。ポリアミノ酸の例として、ポリL-リジン、ポリL-アスパラギン酸、ポリL-グルタミン酸、スチレン-無水マレイン酸コポリマー、ポリ(L-ラクチド-コ-グリコリド) コポリマー、ジビニルエーテル-無水マレイン酸コポリマー、N-(2-ヒドロキシプロピル)メトアクリルアミドコポリマー(HMPA)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリウレタン、ポリ(2-エチルアクリル酸)、N-イソプロピルアクリルアミドポリマー、またはポリホスファジンが含まれるが、これらに限定されない。ポリアミンの例として、ポリエチレンイミン、ポリリジン、スペルミン、スペルミジン、ポリアミン、シュードペプチド-ポリアミン、ペプチド模倣物ポリアミン、デンドリマーポリアミン、アルギニン、アミジン、プロタミン、カチオン性部分、例えば、カチオン性脂質、カチオン性ポルフィリン、ポリアミンの第四級塩、またはアルファヘリックスペプチドが含まれる。
リガンドは、標的基、例えば、細胞または組織の標的基、例えば、チロトロピン、メラノトロピン、サーファクタントタンパク質A、ムチン炭水化物、グリコシル化されたポリアミノ酸、トランスフェリン、ビスホスホネート、ポリグルタメート、ポリアスパルテート、またはRGDペプチドもしくはRGDペプチド模倣物を含むこともできる。
リガンドは、タンパク質、例えば、糖タンパク質、脂質タンパク質、例えば、低密度リポタンパク質(LDL)、またはアルブミン、例えば、ヒト血清アルブミン(HSA)、またはペプチド、例えば、共リガンドに対する特異的親和性を有する分子、または抗体、例えば、癌細胞、内皮細胞、または骨細胞などの特殊化した細胞型に結合する抗体であることができる。リガンドはまた、ホルモンおよびホルモン受容体を含んでもよい。それらは、コファクター、多価ラクトース、多価ガラクトース、N-アセチル-ガラクトサミン、N-アセチル-グルコサミン、多価マンノース、または多価フコースなどの非ペプチド種を含むこともできる。リガンドは、例えば、リポ多糖、p38 MAPキナーゼの活性化因子、またはNF-κBの活性化因子であることができる。
リガンドは、例として、例えば、細胞の細胞骨格を破壊することによって、例として、細胞の微小管、微小フィラメント、および/または中間系フィラメントを混乱させることによって、オリゴヌクレオチド薬剤の細胞内への取込みを増加させることができる薬物などの物質であることができる。薬物は、例えば、タキソン、ビンクリスチン、ビンブラスチン、サイトカラシン、ノコダゾール、ジャプラキノリド(japlakinolide)、ラトランクリンA、ファロイジン、スウィンホライドA、インダノシン、またはマイオサービン(myoservin)であってよい。
ある態様において、リガンドは、脂質または脂質に基づく分子である。そのような脂質または脂質に基づく分子は、好ましくは、血清タンパク質、例えば、ヒト血清アルブミン(HSA)に結合する。HAS結合リガンドは、標的組織、例えば、肝臓の実質細胞を含む、肝臓組織へのコンジュゲートの分布を可能にする。HSAに結合することができるその他の分子もリガンドとして用いることができる。例えば、ネプロキシンまたはアスピリンを用いることができる。脂質または脂質に基づくリガンドは、(a)コンジュゲートの分解に対する抵抗性を増加させ、(b)標的の細胞もしくは細胞膜への標的化もしくは輸送を増加させることができ、かつ/または(c)血清タンパク質、例えば、HSAへの結合を調整するのに用いることができる。
脂質に基づくリガンドを用いて、コンジュゲートの標的組織への結合を調節することができる。例えば、より強くHSAに結合する脂質または脂質に基づくリガンドは、腎臓に標的化される可能性が高くなく、したがって身体から排除される可能性が高くないと考えられる。比較的弱くHSAに結合する脂質または脂質に基づくリガンドを用いて、コンジュゲートを腎臓に標的化することができる。
別の態様において、リガンドは、標的細胞、例えば、増殖細胞に摂取される、例えば、ビタミンまたは栄養物などの部分であることができる。これらは、例えば、悪性または非悪性型、例えば、癌細胞の望まない細胞増殖を特徴とする障害を処置するのに特に有用である。例示的なビタミンには、ビタミンA、E、およびKが含まれる。その他の例示的なビタミンには、Bビタミン、例えば、葉酸、B12、リボフラビン、ビオチン、ピリドキサル、または癌細胞によって摂取されるその他のビタミンもしくは栄養物が含まれる。
別の態様において、リガンドは、細胞透過薬剤、好ましくはヘリックス性の(helical)細胞透過薬剤である。好ましくは、薬剤は両親媒性である。例示的な薬剤は、tatまたはアンテナペディアなどのペプチドである。薬剤が、ペプチジル模倣物、インバートマー(invertomer)、非ペプチドまたはシュードペプチド連結、およびD-アミノ酸の使用を含むペプチドである場合、それを修飾することができる。ヘリックス性の薬剤は、好ましくは、アルファ-ヘリックス性の薬剤であり、それは好ましくは親油性および疎油性の相を有する。
好ましい態様において、リガンドは、標的化されるべき細胞に存在する部分に特異的である抗体またはその断片である。本部分は、タンパク質、炭水化物構造体、ポリヌクレオチド、またはその組み合わせであってもよい。本部分は、分泌されるか、(例えば、細胞外もしくは細胞内の表面で)形質膜と関連しているか、細胞質にあるか、細胞内器官(例えば、ER、ゴルジ複合体、ミトコンドリア、エンドソーム、リソソーム、分泌小胞)と関連しているか、または核にあってもよい。抗体は、モノクローナルまたはポリクローナルであってよい。抗体は、キメラまたはヒト化されたものであってもよい。抗体は、単鎖抗体であってもよい。抗体断片は、Fab断片、F(ab')2断片、またはインタクト抗体の抗原結合特異性を保持する任意の断片であってもよい。
免疫刺激活性
本明細書で用いる場合、「免疫刺激活性」とは、分子または組成物などの薬剤が、免疫応答を誘導する能力を指す。ある態様において、免疫刺激活性は、I型IFN誘導活性、特にIFN-α誘導活性を指す。
本明細書で用いる場合、「免疫応答を誘導する」とは、B細胞活性化、T細胞活性化、ナチュラルキラー細胞活性化、抗原提示細胞(例えば、B細胞、樹状細胞、単球、およびマクロファージ)の活性化、サイトカイン産生、ケモカイン産生、特異的細胞表面マーカー発現、特に、共刺激分子の発現のうちの1つまたは複数の増加を開始させるかまたは引き起こすことを意味する。ある局面において、そのような免疫応答は、PDC(形質細胞様樹状細胞)および/または単球などの細胞における、I型IFN(IFN-αおよび/またはIFN-β)、特にIFN-αの産生を伴う。
本明細書で用いる場合、「I型IFN誘導活性」には、IFN-α誘導活性および/またはIFN-β誘導活性が含まれる。
本明細書で用いる場合、「IFN-α誘導活性」とは、分子または組成物などの薬剤が、IFN-αを産生することができる細胞からIFN-α産生を誘導する能力を指す。IFN-αを産生することができる細胞には、末梢血単核球(PBMC)(例えば、B細胞、樹状細胞(骨髄樹状細胞および形質細胞様樹状細胞)、マクロファージ、単球、ナチュラルキラー細胞、顆粒球)、内皮細胞、ならびに細胞株が含まれるが、これらに限定されない。
本明細書で用いる場合、「IFN-β誘導活性」とは、分子または組成物などの薬剤が、IFN-βを産生することができる細胞からIFN-β産生を誘導する能力を指す。PBMC、骨髄樹状細胞、単球、PDC、繊維芽細胞などの任意の体細胞が、IFN-βを産生することができる。
抗ウイルス応答
本明細書で用いる場合、「抗ウイルス応答」とは、ウイルスを排除するかまたは無力にすることを目的とした、ウイルスによる感染時の細胞、組織、または生物による応答を指す。典型的な抗ウイルス応答には、I型IFN、MIP1-a、MCP、RANTES、IL-8、IL-6、IP-10、およびIFN-γの産生が含まれるが、これらに限定されない。
抗細菌応答
抗細菌応答とは、細菌を排除するかまたは無力にすることを目的とした、細菌による感染時の細胞、組織、または生物による応答である。典型的な抗細菌応答には、受容体を介するアポトーシスかまたはTNFもしくはTRAILによるサイトカインを介するアポトーシスのいずれかによるT細胞またはNK細胞を介する感染細胞の排除、マクロファージまたは単球による食作用が含まれるが、これらに限定されない。
抗細菌応答、特に、I型およびII型IFN産生を、免疫細胞または非免疫細胞で誘導してもよい。免疫細胞には、末梢血単核球(PBMC)、形質細胞様樹状細胞(PDC)、骨髄樹状細胞(MDC)、B細胞、マクロファージ、単球、ナチュラルキラー細胞、NKT細胞、CD4+ T細胞、CD8+ T細胞、顆粒球が含まれるが、これらに限定されない。非免疫細胞には、とりわけ、腫瘍細胞、上皮細胞、内皮細胞、および繊維芽細胞が含まれる。
障害/疾患関連の遺伝子、RNA、および抗原
本明細書で用いる場合、「障害/疾患関連遺伝子」とは、障害/疾患で発現するかまたは過剰発現し、かつ正常な健常細胞では発現しないかまたは低下した量で発現する遺伝子を指す。例えば、突然変異体CF遺伝子は、嚢胞性線維症患者で発現するが、嚢胞性線維症のない個人では発現せず;ErbB2(またはHer2)は、正常な乳房細胞と比較して乳癌細胞で過剰発現し;ウイルス遺伝子またはウイルスによって誘導された宿主遺伝子は、感染細胞で発現するが、非感染細胞では発現しない。障害/疾患関連遺伝子の遺伝子産物は、本明細書において「障害/疾患関連抗原」と称する。「障害/疾患関連RNA」とは、罹患細胞に存在するかまたは上昇したレベルで存在し、かつ正常な健常細胞では存在しないかまたは低下したレベルで存在するRNA分子を指す。障害/疾患関連RNAは、mRNA、miRNA、またはrRNAもしくはtRNAなどのその他の非コードRNAであってもよい。
哺乳類
本明細書で用いる場合、「哺乳類」という用語には、ラット、マウス、ネコ、イヌ、ウマ、ヒツジ、ウシ(cattle)、ウシ(cow)、ブタ、ウサギ、非ヒト霊長類、およびヒトが含まれるが、これらに限定されない。
オリゴヌクレオチドおよびその前駆体
本発明は、抗ウイルス応答、特に、I型IFN産生を誘導することができるオリゴヌクレオチドを提供し、オリゴヌクレオチドは、5'末端に少なくとも1つ、好ましくは少なくとも2つ、およびより好ましくは少なくとも3つのリン酸基を含み、リン酸基は任意のキャップ構造または修飾を含まず、オリゴヌクレオチドは、5'末端に少なくとも1つ、好ましくは少なくとも2つ、3つ、4つ、5つ、より好ましくは少なくとも6つ、7つ、8つ、9つ、10、11、さらにより好ましくは少なくとも12、13、14、15、16、17、最も好ましくは少なくとも18、19、20、21のリボヌクレオチドを含み、かつオリゴヌクレオチドは、少なくとも12、好ましくは少なくとも18、より好ましくは少なくとも19、さらにより好ましくは少なくとも20、および最も好ましくは少なくとも21ヌクレオチド長である。
本発明のオリゴヌクレオチドは、一本鎖、ヘアピン構造を形成することができる自己相補的配列を含む一本鎖、二本鎖、または部分的二本鎖であってもよい。
オリゴヌクレオチドが、一本鎖、自己相補的配列を含む一本鎖、または二本鎖である場合、オリゴヌクレオチドの長さは、一本鎖の長さである。
オリゴヌクレオチドが部分的二本鎖である場合、オリゴヌクレオチドの長さは、より長い鎖の長さである。したがって、本発明のオリゴヌクレオチドには、鎖の少なくとも1つの長さが、少なくとも12、18、19、20、または21ヌクレオチド長である部分的二本鎖が含まれる。
本発明のオリゴヌクレオチドにおいて、5'末端の少なくとも1つのリボヌクレオチドは、一リン酸、二リン酸、または三リン酸の形態の少なくとも1つの5'リン酸基を含む。二本鎖または部分的二本鎖のオリゴヌクレオチドの場合、鎖の少なくとも1つは、少なくとも1つの5'リン酸基を含む。両方の鎖が5'リン酸基を含む場合、リン酸基の数は、2つの鎖上で同じであってもよいしまたは異なっていてもよい。したがって、本発明のオリゴヌクレオチドは、一リン酸、二リン酸、および/または三リン酸の形態の1つ、2つ、3つ、4つ、5つ、または6つの5'リン酸基を含んでもよい。部分的二本鎖のオリゴヌクレオチドの場合、少なくとも1つの5'リン酸基を含む5'末端の少なくとも1つのリボヌクレオチドは、長い鎖かまたは短い鎖のいずれかの上にあることができ、少なくとも長い鎖の長さは、少なくとも12、18、19、20、または21ヌクレオチド長である。
本発明のオリゴヌクレオチドにおいて、5'末端の少なくとも2つ、3つ、4つ、5つ、6つ、7つ、8つ、9つ、10、11、12、13、14、15、16、17、18、19、20、21のリボヌクレオチドが同じ鎖の上にある。
ある態様において、5'リン酸基の少なくとも1つは、三リン酸に含まれない。別の態様において、オリゴヌクレオチドは、5'末端の一リン酸および二リン酸より選択される少なくとも1つの基を含み、一リン酸および/または二リン酸は、任意のキャップまたは修飾を含まない。
ある態様において、オリゴヌクレオチドの5'末端の最初のリボヌクレオチドは、A、U、C、およびGより選択されるリボヌクレオチドを含む。好ましい態様において、オリゴヌクレオチドの5'末端の最初のリボヌクレオチドは、A、C、およびUより選択されるリボヌクレオチドを含む。より好ましい態様において、オリゴヌクレオチドの5'末端の最初のリボヌクレオチドは、AおよびCより選択されるリボヌクレオチドを含む。最も好ましい態様において、5'末端の最初のリボヌクレオチドは、アデニン(A)を含む。
好ましい態様において、オリゴヌクレオチドの5'末端の最初の4つのヌクレオチドの配列は、全ての配列が5'→3'方向にある、
Figure 2010500011
より選択される。
より好ましい態様において、オリゴヌクレオチドの5'末端の最初の4つのヌクレオチドの配列は、全ての配列が5'→3'方向にある、
Figure 2010500011
より選択される。
さらにより好ましい態様において、オリゴヌクレオチドの5'末端の最初の4つのヌクレオチドの配列は、全ての配列が5'→3'方向にある、AAGU、AAAG、AUGG、AUUA、AACG、AUGA、AGUU、AUUG、AACAより選択される。
最も好ましい態様において、オリゴヌクレオチドの5'末端の最初の4つのヌクレオチドの配列は、全ての配列が5'→3'方向にある、AAGU、AAAG、AUGG、AUUAより選択される。
その他の態様において、上で列記した5'の4-ヌクレオチド配列の最初のヌクレオチドは、Aの代わりに、U、C、またはGである。
好ましい態様において、オリゴヌクレオチドは、少なくとも1つ、2つ、3つ、4つ、5つ、好ましくは少なくとも6つ、7つ、8つ、9つ、10、より好ましくは少なくとも11、12、13、14、15、さらにより好ましくは16、17、18、19、20、および最も好ましくは少なくとも21、22、23、24、25のイノシン(I)を含む。ある態様において、オリゴヌクレオチド中のアデノシン(A)および/またはグアノシン(G)の少なくとも1、2、3、4、5%、好ましくは少なくとも10、15、20、25、30、より好ましくは少なくとも35、40、45、50、55、60%、さらにより好ましくは少なくとも70、80、または90%をイノシン(I)と交換する。
本発明のオリゴヌクレオチドは、RNAオリゴヌクレオチドまたはキメラRNA-DNAオリゴヌクレオチドであってもよい。キメラRNA-DNAオリゴヌクレオチドは、リボヌクレオチドおよびデオキシリボヌクレオチドの両方を含む。リボヌクレオチドおよびデオキシリボヌクレオチドは、同じ鎖の上にあってもよいし、または異なる鎖の上にあってもよい。
ある態様において、オリゴヌクレオチド(RNAまたはキメラRNA-DNA)は、ホスホロチオエート骨格を含む。好ましい態様において、少なくとも1つ、好ましくは少なくとも2つ、より好ましくは少なくとも3つ、さらにより好ましくは少なくとも4つのヌクレオチドがホスホロチオエートである。
好ましい態様において、本発明のオリゴヌクレオチドは、シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、特に2'-フルオリン-dCTP、2'-フルオリン-dUTP, 2'-O-メチル化CTP、2'-O-メチル化UTPなどの任意の修飾を含まない。
幾つかの態様において、オリゴヌクレオチドは、遺伝子サイレンシング活性を有する。ある態様において、オリゴヌクレオチドは、RNA干渉(RNAi)において活性があるか、またはRNAi分子である。RNAi分子は、siRNA(低分子干渉RNA、二本鎖)、shRNA(小さいヘアピンRNA、ヘアピン構造を持つ一本鎖)、またはmiRNA(マイクロRNA、ヘアピン構造を持つ一本鎖)であってもよい。
好ましい態様において、RNAオリゴヌクレオチドは一本鎖RNAオリゴヌクレオチドであり、これは生理学的条件、特に、細胞内の生理学的条件下で、それ自体で任意の分子内または分子間の二本鎖構造を形成することができる任意の配列を含まず、かつssRNAのヌクレオチド配列は標的細胞内のRNAと相補的である。
ある態様において、RNAは、組織、細胞、および/または発生段階に特異的な様式で発現する。好ましい態様において、RNAは、疾患/障害関連RNAである。ある態様において、疾患/障害関連RNAは、疾患/障害関連遺伝子のmRNAである。別の態様において、疾患/障害関連RNAは、miRNAである。疾患/障害関連RNAは、内在性の細胞RNA、ウイルスRNA、細菌、真菌、または寄生虫などの侵入する微生物または生物由来のRNAであってもよい。
相補性の程度は、好ましくは、少なくとも50%、60%、70%、より好ましくは少なくとも75%、80%、85%、90%、さらにより好ましくは少なくとも95%、96%、97%、98%、99%、および最も好ましくは100%である。当技術分野において用いられる場合、2つのオリゴヌクレオチド/ポリヌクレオチドの間の「相補性の程度」という用語は、2つのオリゴヌクレオチドの重複する領域における相補的塩基のパーセンテージを指す。それらが水素結合を介した塩基対を形成することができる場合、2つの塩基は互いに相補的である。塩基対には、ワトソン-クリック塩基対およびゆらぎ塩基対の両方が含まれる。ワトソン-クリック塩基対には、A-T、C-G、A-Uが含まれ、ゆらぎ塩基対には、G-U、I-U、I-A、I-Cが含まれる。当業者は、手作業によるまたはBLASTなどの様々なエンジンによって自動的にのいずれかで、当技術分野における任意の公知の方法を用いて相補性の程度を決定することができる。例えば、ATCGは、CGATおよびCGATGGとの100%の相補性を有し、CGTTおよびCGTTGGとの75%の相補性を有する。好ましい態様において、本発明のオリゴヌクレオチドと標的細胞内の標的RNAの間の相補性は、オリゴヌクレオチドの全体の長さにわたって存在する。
「生理学的条件」という用語は、当技術分野において一般に理解されるのと同様に本明細書において用いられる。細胞内の生理学的条件は、細胞内で、すなわち、細胞質で通常見出されるイオン強度、浸透圧、塩濃度、pH、温度などのパラメーターを指す。細胞は、インビボ、インビトロ、またはエクスビボであってもよい。細胞は、健常細胞もしくは正常細胞、または罹患細胞もしくは異常細胞であってもよい。罹患細胞または異常細胞は、例えば、細菌またはウイルスに感染した細胞、腫瘍細胞、自己免疫細胞、炎症応答を有する細胞であってもよい。生理学的条件とは、インビボ、インビトロ、またはエクスビボの細胞の内側または外側の条件を指す。生理学的条件は、生きた生物、組織、もしくは細胞で見出されてもよく、または実験室で人為的に得られてもよい。生理学的条件の例は、150 ± 50 mM NaCl、pH 7.4 ± 0.8、および20 ± 20℃である。
当業者は、当技術分野における公知の方法を用いて、RNAオリゴヌクレオチドが任意の二本鎖構造を含むかどうかを容易に決定することができる。例えば、分光計を用いて、温度を増加させながら、二本鎖 対 一本鎖の吸収スペクトルを測定してもよい。ある種の態様において、二本鎖構造内部の塩基対形成の数は、少なくとも6、7、8、9、好ましくは少なくとも10、11、12、13、14、15、より好ましくは少なくとも16、17、18、19、20、21、さらにより好ましくは少なくとも22、23、24、25である。塩基対には、ワトソン-クリック塩基対およびゆらぎ塩基対の両方が含まれる。ワトソン-クリック塩基対には、A-T、C-G、A-Uが含まれ、ゆらぎ塩基対には、G-U、I-U、I-A、I-Cが含まれる。
ssRNAオリゴヌクレオチドは、化学合成で生成してもよい。
ある態様において、ssRNAオリゴヌクレオチドは、いかなる遺伝子サイレンシング活性も有さない。
別の態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を有する。
本発明はまた、本発明のオリゴヌクレオチドの前駆体を提供する。
本明細書で用いる場合、本発明の「オリゴヌクレオチドの前駆体」とは、プロセッシングされて本発明のオリゴヌクレオチドを生成することができる任意の分子を指す。本発明のオリゴヌクレオチドの前駆体には、本発明のRNAオリゴヌクレオチドの合成用の鋳型としての役割を果たすことができるDNAまたはRNA分子、酵素で切断されて本発明のオリゴヌクレオチドを産生することができるRNAまたはRNA-DNAキメラ分子が含まれるが、これらに限定されない。
本発明のオリゴヌクレオチドまたはその前駆体はまた、TLRによって認識されるモチーフまたは分子シグネチャーを含んでもよい。例えば、5'リン酸を持つ(30塩基より長い)長いdsRNAは、RIG-IおよびTLR3両方のリガンドとしての役割を果たすことができる。5'リン酸を持つssRNAとCpGを含むssDNAとを含むキメラRNA-DNAオリゴヌクレオチドは、RIG-IおよびTLR9両方のリガンドとしての役割を果たすことができる。5'リン酸および規定された配列モチーフを持つssRNAまたはdsRNA(S. S. Diebold et al., Science 303, 1529 (Mar 5, 2004); F. Heil et al., Science 303, 1526 (Mar 5, 2004); V. Hornung et al., Nat Med 11, 263 (Mar, 2005);国際公開公報第03/086280号;欧州特許出願第05020020.3号)は、RIG-IおよびTLR7両方のリガンドとしての役割を果たすことができる。5'三リン酸およびGUに富むモチーフを持つssRNA(国際公開公報第03/086280号、欧州特許出願第05 020 019.5号)は、RIG-IおよびTLR8両方のリガンドとしての役割を果たすことができる。
ある態様において、本発明のオリゴヌクレオチドまたはその前駆体は、
Figure 2010500011
からなる群より選択される4ヌクレオチド(4mer)モチーフのうちの少なくとも1つ、好ましくは少なくとも2つ、より好ましくは少なくとも3つ、さらにより好ましくは少なくとも4つ、さらにより好ましくは少なくとも5つ、および最も好ましくは少なくとも6つを含み、
モチーフのヌクレオチド配列は5'→3'であり、
オリゴヌクレオチドまたはその前駆体は、12〜64、好ましくは12〜50、より好ましくは14〜40、さらにより好ましくは16〜36、および最も好ましくは18〜25ヌクレオチド長である。
ある態様において、4merモチーフは、4merモチーフのうちのNo.1〜19、No.1〜18、No.1〜17、No.1〜16、好ましくは、No.1〜15、No.1〜14、No.1〜13、No.1〜12、より好ましくは、No.1〜11、No.1〜10、No.1〜9、No.1〜8、No.1〜7、さらにより好ましくは、No.1〜6、No.1〜5、No.1〜4、No.1〜3、最も好ましくは、No.1〜2からなる群より選択される。
本発明のオリゴヌクレオチドまたはその前駆体は、同じ4merモチーフのうちの1つもしくは複数のコピー、または異なる4merモチーフのうちの1つもしくは複数のコピーを含んでもよい。
別の態様において、本発明のオリゴヌクレオチドまたはその前駆体は、
Figure 2010500011
からなる群より選択される4ヌクレオチド(4mer)モチーフのうちの少なくとも1つ、好ましくは少なくとも2つ、より好ましくは少なくとも3つ、さらにより好ましくは少なくとも4つ、さらにより好ましくは少なくとも5つ、および最も好ましくは少なくとも6つを含み、
モチーフのヌクレオチド配列は5'→3'であり、
オリゴヌクレオチドまたはその前駆体は、12〜64、好ましくは12〜50、より好ましくは14〜40、さらにより好ましくは16〜36、および最も好ましくは18〜30ヌクレオチド長である。
ある態様において、4merモチーフは、上で列記した4merモチーフのうちのNo.1〜11、好ましくはNo.1〜10、No.1〜9、No.1〜8、より好ましくはNo.1〜7、No.1〜6、No.1〜5、No.1〜4、さらにより好ましくは、No.1〜3、No.1〜2からなる群より選択され、最も好ましくは、4merモチーフは、UCGUである。
本発明のオリゴヌクレオチドまたはその前駆体は、同じ4merモチーフのうちの1つもしくは複数のコピー、または異なる4merモチーフのうちの1つもしくは複数のコピーを含んでもよい。
本発明のオリゴヌクレオチドまたはその前駆体を用いて、大量のI型IFN、特に、IFN-α、IL-18、および/またはIL-1βを、インビボおよび/またはインビトロで生成することができる。該サイトカインを、脊椎動物の異なる種に由来する免疫細胞および非免疫細胞の両方を含む異なる細胞源から、多量に生成することができる。
本発明のオリゴヌクレオチドおよびその前駆体を、化学合成、インビトロ転写、およびインビボ転写を含むがこれらに限定されない合成法で、調製してもよい。インビトロ転写では、T7ポリメラーゼ、T3ポリメラーゼ、SP6ポリメラーゼなどのバクテリオファージポリメラーゼ、ウイルスポリメラーゼ、および大腸菌RNAポリメラーゼを含むがこれらに限定されないポリメラーゼを用いてもよい。インビボ転写は、ウイルスに感染した細胞、またはファージに感染していないかもしくは感染しているかのいずれかである細菌で達成してもよい。
さらに、本発明のオリゴヌクレオチドまたはその前駆体、特に、RNAオリゴヌクレオチドを、オリゴヌクレオチドまたはその前駆体の安定性および/もしくは活性を増強しかつ/またはオリゴヌクレオチドまたはその前駆体の送達を容易にする1つまたは複数の親油性基と、共有結合または非共有結合で連結してもよい。
本明細書で用いる場合、「親油性」または「親油性基」という用語は、脂質に対する親和性を有する任意の化合物または化学的部分を広範に指す。親油性基は、芳香族性、脂肪族性、または脂環性の特徴を有する化合物、およびその組み合わせを含む多くの異なる種類の化合物を包含する。
具体的な態様において、親油性基は、ステロイド(例えば、ステロール)または分岐脂肪族炭化水素などの脂肪族性、脂環性、または多脂環性の物質である。親油性基は通常、環式または非環式であり得る炭化水素鎖を含む。炭化水素鎖は、様々な置換基および/または酸素原子などの少なくとも1つのヘテロ原子を含んでもよい。そのような親油性の脂肪族部分には、飽和脂肪酸または不飽和脂肪酸、ワックス(例えば、脂肪酸および脂肪族ジアミドの一価アルコールエステル)、テルペン(例えば、C10テルペン、C15セスキテルペン、C20ジテルペン、C30トリテルペン、およびC40テトラテルペン)、ならびにその他の多脂環性炭化水素が含まれるが、これらに限定されない。
水酸基(例えば、-CO-CH2-OH)などのRNAオリゴヌクレオチドに存在するかまたはRNAオリゴヌクレオチドに導入された官能基を介する方法を含む当技術分野において公知の任意の方法で、親油性基を付着させてもよい。RNAオリゴヌクレオチドおよび親油性基のコンジュゲーションは、例えば、水酸基とアルキル基R-、アルカノイル基RCO-、または置換カルバモイル基KNHCO-の間のエーテルまたはカルボキシルもしくはカルバモイルエステル連結の形成を通じて生じてもよい。アルキル基Rは、環式(例えば、シクロヘキシル)または非環式(直鎖もしくは分岐、および飽和もしくは不飽和)であってもよい。アルキル基Rは、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、もしくはオクタデシル基などであってもよい。好ましくは、親油性基を末端ヌクレオチドの5'水酸基にコンジュゲートする。好ましい態様において、親油性基は、12-ヒドロキシドデコン酸ビスデシルアミドである。
別の態様において、親油性基は、ステロールなどのステロイドである。ステロイドは、ペルヒドロ-1,2-シクロペンタノフェナントレン環系を含む多環式化合物である。ステロイドには、胆汁酸(例えば、コール酸、デオキシコール酸、およびデヒドロコール酸)、コルチゾン、ジゴキシゲニン、テストステロン、コレステロール、およびコルチゾンなどのカチオン性ステロイドが含まれるが、これらに限定されない。
好ましい態様において、親油性基は、コレステロールまたはその誘導体である。「コレステロール誘導体」とは、例えば、置換基の置換、付加、または除去によってコレステロールから派生した化合物を指す。当技術分野において公知の任意の方法で、ステロイドをRNAオリゴヌクレオチドに付着させてもよい。好ましい態様において、親油性基は、コレステリル(6-ヒドロキシヘキシル)カルバメートである。
別の態様において、親油性基は、芳香族部分である。この文脈において、「芳香族」という用語は、単環芳香族および多環芳香族の炭化水素を広範に指す。芳香族基には、任意で置換されていてもよい1〜3個の芳香環を含むC6-C14アリール部分;そのどちらかが独立に、任意で置換されていてもよくまたは置換されていなくてもよい、アルキル基に共有結合で連結されたアリール基を含む「アラルキル」または「アリールアルキル」基;および「ヘテロアリール」基が含まれるが、これらに限定されない。本明細書で用いる場合、「ヘテロアリール」という用語は、5〜14個の環原子、好ましくは5、6、9、または10個の環原子を有し;環状の配置で共有された6、10、または14個のπ電子を有し;かつ炭素原子に加えて、窒素(N)、酸素(O)、および硫黄(S)からなる群より選択される1〜約3個のヘテロ原子を有する基を指す。
本明細書で用いる場合、「置換された」アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、または複素環基は、1〜約4個、好ましくは1〜約3個、より好ましくは1個または2個の非水素置換基を有する基である。好適な置換基には、ハロ基、ヒドロキシ基、ニトロ基、ハロアルキル基、アルキル基、アルカリル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、アミノ基、アシルアミノ基、アルキルカルバモイル基、アリールカルバモイル基、アミノアルキル基、アルコキシカルボニル基、カルボキシ基、ヒドロキシアルキル基、アルカンスルホニル基、アレンスルホニル基、アルカンスルホンアミド基、アレンスルホンアミド基、アラルキルスルホンアミド基、アルキルカルボニル基、アシルオキシ基、シアノ基、およびウレイド基が含まれるが、これらに限定されない。
親油性基を、共有結合で直接的または間接的にリンカーを介してオリゴヌクレオチドまたはその前駆体に連結することができる。共有結合による連結は、ホスホジエステル基を含んでもよいしまたは含まなくてもよい。リンカーは様々な長さであってもよい。リンカーの好ましい長さは当業者に公知でありかつ実験的に決定されてもよい。
ある態様において、親油性基を、オリゴヌクレオチドまたはその前駆体の少なくとも1つの鎖の3'末端に共有結合で連結する。
さらに、本発明のオリゴヌクレオチドまたはその前駆体を固体支持体に共役してもよい。「共役された」とは、オリゴヌクレオチドまたはその前駆体が、共有結合または非共有結合で、直接的または間接的に、固体支持体に連結されていることを意味する。好適な固体支持体には、シリコンウエハース、ポリスチレン、ポリプロピレン、ポリグリシジルメトアクリレート、置換ポリスチレン(例えば、アミノ化またはカルボキシル化されたポリスチレン、ポリアクリルアミド、ポリアミド、ポリ塩化ビニルなど)のような合成ポリマー支持体、ガラス、アガロース、ニトロセルロース、ナイロン、およびゼラチンナノ粒子が含まれるが、これらに限定されない。固体支持体は、オリゴヌクレオチド、とりわけ16ヌクレオチド長未満の短いオリゴヌクレオチドの安定性および活性を増強させてもよい。
オリゴヌクレオチドコンジュゲート
本発明はまた、本発明のオリゴヌクレオチドおよび本オリゴヌクレオチドにコンジュゲートされた抗原を含む、抗ウイルス応答、特に、I型IFN産生を誘導することができるオリゴヌクレオチドコンジュゲートを提供する。好ましい態様において、抗原を、5'三リン酸を持つその5'末端以外の位置でオリゴヌクレオチドにコンジュゲートする。幾つかの態様において、抗原はワクチン効果を生み出す。
抗原は、好ましくは、疾患/障害関連抗原より選択される。障害は、例えば、癌、免疫障害、代謝障害、または感染であってもよい。抗原は、タンパク質、ポリペプチド、ペプチド、炭水化物、またはその組み合わせであってもよい。
本発明のオリゴヌクレオチドを共有結合で抗原に連結してもよいし、または他の方法でそれを抗原と機能的に関連させる。本明細書で用いる場合、「機能的に関連させる」という用語は、オリゴヌクレオチドおよび抗原両方の活性を維持する任意の関連を指す。そのような機能的な関連の非限定的な例として、同じリポソームまたはその他のそのような送達ビヒクルもしくは試薬の一部であることが含まれる。オリゴヌクレオチド薬剤を抗原と共有結合で連結する態様において、そのような共有結合による連結は、好ましくは、オリゴヌクレオチドが抗ウイルス応答を誘導する能力に干渉しないオリゴヌクレオチド上の任意の位置にある。
薬学的組成物
本発明は、上記のオリゴヌクレオチドまたはその前駆体の1つまたは複数および薬学的に許容される担体を含む薬学的組成物を提供する。
本発明はまた、細菌RNAおよび薬学的に許容される担体を含む薬学的組成物を提供する。
本明細書で用いる場合、「細菌RNA」とは、トータルRNA、mRNA、リボソームRNA、ファージRNA、miRNA、構造RNA、および酵素RNAを含むが、これらに限定されない、細菌から単離される任意のRNA種を指す。細菌RNAは、細菌にとって内在性であってもよいし、または細菌に導入された外来性DNAに由来してもよい。細菌RNAは、任意の長さであることができる。細菌RNA調製物は、単一のヌクレオチド配列を持つ単一のRNA種、複数のヌクレオチド配列を持つ単一のRNA種、または複数のヌクレオチド配列を持つ複数のRNA種を含んでもよい。細菌RNAは、天然のヌクレオチドならびにイノシン三リン酸およびイノシンなどの細胞内で変換されたヌクレオチド、骨格および塩基に対する任意の公知の修飾、ならびに5'末端の一リン酸基、二リン酸基、または三リン酸基を含む、当分野で公知の任意の種類のヌクレオチドおよび塩基を含んでもよい。細菌RNAは、一本鎖または二本鎖であってもよい。細菌RNAは、RNAおよびDNAのヘテロ二重鎖を含んでもよい。細菌RNAは、異なる種類の細菌から単離されたRNAの混合物から構成されてもよい。
好ましい態様において、細菌RNAは、真核生物の遺伝子コード配列に対して50%、60%、70%、80%、85%、90%、95%、もしくは99%を上回って相補的であるかまたは100%相補的であるヌクレオチド配列を有さない。言い換えれば、細菌RNAは、好ましくは、いかなる遺伝子サイレンシング活性もRNA干渉(RNAi)活性も有さない。
相補性という用語は、当業者によって十分に理解されている。例えば、AはTに相補的であり、GはCに相補的であり、5'-AG-3'は、5'-CT-3'に相補的である。
2つのヌクレオチド配列間の相補性の程度は、2つのヌクレオチド配列の重複する領域における相補的塩基のパーセンテージである。相補性の程度は、手作業によるかまたはBLASTなどの様々なエンジンによって自動的に決定することができる。例えば、ATCGは、CGATおよびCGATGGとの100%の相補性を有し、CGTTおよびCGTTGGとの75%の相補性を有する。さらに、RNAオリゴヌクレオチドまたはポリヌクレオチドと公共データベース(例えば、EMBL、GeneBank)中に存在する任意の配列の間の相補性の程度は、BLASTプログラムによって決定することができる。
好ましい態様において、本発明の薬学的組成物はさらに、オリゴヌクレオチドもしくはその前駆体または細菌RNAの、細胞内への、特に、細胞の細胞質内への送達を容易にする薬剤を含む。
ある態様において、送達薬剤は、オリゴヌクレオチドまたはその前駆体との複合体を形成し、かつオリゴヌクレオチドもしくはその前駆体の細胞内への送達を容易にする複合体形成剤である。ある態様において、複合体形成剤は、ポリマー、好ましくはカチオン性ポリマーである。好ましい態様において、複合体形成剤は、カチオン性脂質である。別の好ましい態様において、複合体形成剤は、ポリエチレンイミン(PEI)(K. Wu et al., Brain Research 1008(2):284-287 (May 22, 2004); B. Urban-Klein et al. Gene Therapy 12(5):461-466 (2005))である。複合体形成剤の追加の例として、コラーゲン誘導体(Y Minakuchi et al. Nucleic Acids Research 32(13):e109 (2004))、ならびにリポソーム(M. Sioud, D. Sorensen, Biochem Biophys Res Commun 312(4): 1220-1225 (2003); PY Chien et al. Cancer Gene Therapy 12(3):321-328 (2005))、ビロソーム(J de Jonge et al. Gene Therapy, 13:400- 411 (2006))、SNALP(JJ Rossi, Gene Therapy 13:583-584 (2006))、SICOMATRIX(登録商標)(CSL Limited)(I. D. Davis et al. PNAS 101 (29): 10697-10702 (July 20, 2004); MJ Pearse, D. Drane, Adv Drug Deliv Rev 57(3):465-474 (Jan 10, 2005))、およびポリ(D,L-ラクチド-コ-グリコリド)コポリマー(PLGA)ミクロスフィア(A. Khan et al. J Drug Target 12(6):393-404 (2004))などの生体分解性ミクロスフィアが含まれるが、これらに限定されない。
ポリエチレンイミン(PEI)は、直線状または分岐状であることができる。好ましい態様において、PEIは、インビボでの低毒性を持つアニオン性オリゴヌクレオチドの効果的でかつ再現性のある送達のために、PolyPlus-transfectionによって開発された直線状PEIであるin vivo-jetPEI(商標)である。好ましい投与のインビボ経路には、静脈内、脳内、および腹腔内の経路が含まれるが、これらに限定されない。
ビロソームは、好適な界面活性剤によるウイルス膜の可溶化、超遠心分離によるヌクレオカプシドの除去、および界面活性剤の抽出を通じたウイルスエンベロープの再構成によって、膜エンベロープ化ウイルス、特に、インフルエンザウイルスから調製される再構成されたウイルスエンベロープである。典型的には、ビロソームは、ウイルス脂質および(インフルエンザビロソームの場合、ヘマグルチニン(HA)およびノイラミニダーゼ(NA)などの)ウイルス糖タンパク質を含み、サイズおよび形態がネイティブなウイルス粒子に似ており、かつネイティブなウイルス粒子の標的特異性および融合性活性を保持する。
SNALPは、安定な核酸脂質粒子(Stable-Nucleic-Acid-Lipid Particle)を表し、かつ拡散性ポリエチレングリコール(PEG)でコーティングされたカチオン性でかつ融合性の脂質の混合物から構成された脂質二重層を含む。SNALPは、120ナノメーターの直径サイズ範囲にあり、封入された核酸を血清ヌクレアーゼから保護し、かつ核酸の細胞エンドソームへの取込みおよびその後の細胞質への放出を可能にする。
ISCOMATRIX(登録商標)は、規定された条件下でサポニン、コレステロール、およびリン脂質から作られ、かつ典型的には直径40 nmのかごの様な構造を形成する。ISCOMATRIX(登録商標)は、積み荷(例えば抗原)送達を容易にし、かつ免疫系、すなわち細胞性および体液性両方の免疫応答を刺激するという二重の能力を有する。
別の態様において、送達薬剤は、ウイルス、好ましくは複製欠損ウイルスである。ある態様において、本発明で記載したオリゴヌクレオチドは、ウイルスカプセルに含まれている。別の態様において、本発明で記載したオリゴヌクレオチドの前駆体は、ウイルスカプセルに含まれているウイルスベクターに含まれる。ある態様において、ウイルス粒子は、本発明で記載したオリゴヌクレオチドへの前駆体のプロセッシングに必要とされる酵素または酵素をコードする核酸を含む。別の態様において、前駆体を含むウイルスを、本発明で記載したオリゴヌクレオチドへの前駆体のプロセッシングに必要とされる酵素または酵素をコードする核酸と併せて投与する。
好適なウイルスには、上気道上皮およびその他の細胞を標的化するポリミクソウイルス(polymyxovirus)、肝細胞を標的化するB型肝炎ウイルス、上皮細胞およびその他の細胞を標的化するインフルエンザウイルス、多くの異なる細胞型を標的化するアデノウイルス、上皮および扁平上皮細胞を標的化するパピローマウイルス、ニューロンを標的化するヘルペスウイルス、CD4+ T細胞および樹状細胞ならびにその他の細胞を標的化するHIVなどのレトロウイルス、ならびに種々の細胞を標的化する修飾ワクシニアアンカラが含まれるが、これらに限定されない。ウイルスをそれらの標的特異性に基づいて選択してもよい。
ある態様において、ウイルスは、腫瘍溶解性ウイルスである。腫瘍溶解性ウイルスは、腫瘍細胞を標的化しかつ感染した腫瘍細胞の溶解を引き起こす。腫瘍溶解性ウイルスの例として、天然の野生型ニューカッスル病ウイルス(A. Phuangsab et al. Cancer Lett 172:27-36 (2001))、レオウイルス(MC Coffey et al. Science 282:1332-1334 (1998))および水疱性口内炎ウイルス(VSV)(DF Stojdl et al. Nat Med 6:821-825 (2000))の弱毒化株、単純ヘルペスウイルス1型(HSV-1)、アデノウイルス、ポックスウイルス、および麻疹ウイルスの遺伝子改変突然変異体(Chiocca EA Nat Rev Cancer 2:938-950 (2002); Russell SJ Cancer Gene Ther 9:961-966 (2002); HJ Zeh, DL Bartlett Cancer Gene Ther 9:1001-1012 (2002))が含まれるが、これらに限定されない。
送達薬剤によって送達することに加えて、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAは、エレクトロポレーション、ショック波による投与(Tschoep K et al., J Mol Med 2001; 79:306-13)、超音波トリガーによるトランスフェクション、および金粒子を用いる遺伝子銃送達などの物理的な手段を介して細胞内に送達することができる。
本発明の薬学的組成物はさらに、オリゴヌクレオチドもしくはその前駆体または細菌RNA、特に、RNAオリゴヌクレオチドを安定化する薬剤などの別の薬剤、例えば、オリゴヌクレオチド薬剤と複合体化してiRNPを形成するタンパク質を含んでもよい。またその他の薬剤には、キレート剤、(例えば、Mg2+などの二価カチオンを除去するための)例えば、EDTA、塩、RNアーゼ阻害剤(例えば、RNAsinなどの広い特異性のRNアーゼ阻害剤)などが含まれる。
製剤化された組成物は、種々の状態を想定することができる。幾つかの例では、組成物は、少なくとも部分的に結晶性であり、均一に結晶性であり、かつ/または無水(例えば、80、50、30、20、もしくは10%未満の水分)である。別の例では、オリゴヌクレオチド薬剤は、水性相中に、例えば、水を含む溶液中にあり、この形態は吸入による投与のための好ましい形態である。
水性相または結晶性組成物を、送達ビヒクル、例えば、(特に水性相用の)リポソーム、または粒子(結晶性組成物に適切であることができるような微粒子)の中に組み入れることができる。一般に、オリゴヌクレオチド組成物を、意図される投与の方法と適合するように製剤化する。
本発明によって包含される薬学的組成物を、静脈内、筋肉内、腹腔内、皮下、経皮、気道(エアロゾル)、眼球、直腸、膣、ならびに(口腔内および舌下を含む)局所への投与を含む経口または非経口の経路を含むがこれらに限定されない、当技術分野において公知の任意の手段で投与してもよい。好ましい態様において、薬学的組成物を、静脈内または腹腔内の注入または注射によって投与する。薬学的組成物を、実質内に、髄腔内に、および/または定位注射によって投与することもできる。
経口投与用に、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAは一般に、錠剤もしくはカプセルの形状で、粉末もしくは顆粒として、または水性溶液もしくは懸濁として提供されると考えられる。
経口使用のための錠剤には、不活性希釈剤、崩壊剤、結合剤、潤滑剤、甘味剤、芳香剤、着色剤、および防腐剤などの薬学的に許容される賦形剤と混合した活性成分が含まれてもよい。好適な不活性希釈剤には、炭酸ナトリウムおよび炭酸カルシウム、リン酸ナトリウムおよびリン酸カルシウム、ならびにラクトースが含まれ、一方でコーンスターチおよびアルギン酸は好適な崩壊剤である。結合剤には、スターチおよびゼラチンが含まれてもよく、一方で、潤滑剤は、存在する場合には、通常ステアリン酸マグネシウム、ステアリン酸、またはタルクであると考えられる。所望の場合、消化管での吸収を遅延させるために、錠剤をモノステアリン酸グリセリルまたはジステアリン酸グリセリルなどの材料でコーティングしてもよい。
経口使用のためのカプセルには、活性成分が固形希釈剤と混合されている硬いゼラチンカプセル、および活性成分が水またはピーナッツ油、液体パラフィン、もしくはオリーブ油などの油と混合されている軟らかいゼラチンカプセルが含まれる。
筋肉内、腹腔内、皮下、および静脈内使用のために、本発明の薬学的組成物は一般に、適当なpHおよび等張性に緩衝化され滅菌された水性の溶液または懸濁として提供されると考えられる。好適な水性ビヒクルには、リンガー溶液および等張の塩化ナトリウムが含まれる。本発明による水性懸濁液には、セルロース誘導体、アルギネートナトリウム、ポリビニルピロリドン、およびトラガカントゴムなどの懸濁剤、ならびにレシチンなどの湿潤剤が含まれてもよい。水性懸濁液に好適な防腐剤には、エチルp-ヒドロキシベンゾエートおよびn-プロピルp-ヒドロキシベンゾエートが含まれる。
薬学的組成物はまた、インプラントおよびマイクロカプセル化された送達系を含む、制御された放出製剤などの身体からの速やかな排出からオリゴヌクレオチドもしくはその前駆体または細菌RNAを保護するためのカプセル化された製剤を含むことができる。エチレン酢酸ビニル、ポリ無水物、ポリグリコール酸、コラーゲン、ポリオルソエステル、およびポリ乳酸などの生体分解性で、生体適合性のポリマーを用いることができる。そのような製剤の調製のための方法は、当業者に明白であると考えられる。材料は、Alza CorporationおよびNova Pharmaceuticals社から市販で入手することもできる。(感染細胞に標的化されるウイルス抗原に対するモノクローナル抗体入りのリポソームを含む)リポソーム懸濁液を薬学的に許容される担体として用いることもできる。これらは、例えば、米国特許第4,522,811号;PCT刊行物国際公開公報第91/06309号;および欧州特許出願第A-43075号に記載されたような当業者に公知の方法によって調製することができる。
一般に、オリゴヌクレオチドもしくはその前駆体または細菌RNAの好適な用量は、1日につきレシピエントのキログラム体重当たり0.001〜500ミリグラム(例えば、キログラム当たり約1マイクログラム〜キログラム当たり約500ミリグラム、キログラム当たり約100マイクログラム〜キログラム当たり約100ミリグラム、キログラム当たり約1ミリグラム〜キログラム当たり約75ミリグラム、キログラム当たり約10マイクログラム〜キログラム当たり約50ミリグラム、またはキログラム当たり約1マイクログラム〜キログラム当たり約50マイクログラム)の範囲にあると考えられる。薬学的組成物を1日に1回投与してもよく、またはオリゴヌクレオチドもしくはその前駆体もしくは細菌RNAを、1日の全体にわたって適当な間隔で2回、3回、4回、5回、6回、もしくはそれより多くのサブ用量として投与してもよい。その場合、各サブ用量に含まれるオリゴヌクレオチドもしくはその前駆体または細菌RNAは、1日分全体の投薬を達成するために、対応してより少なくなければならない。例えば、数日の期間にわたるオリゴヌクレオチド薬剤または細菌RNAの徐放性をもたらす従来の徐放性製剤を用いて、投薬単位を数日にわたる送達用に処方することもできる。徐放性製剤は当技術分野において周知である。本態様において、投薬単位は、対応する複数の日用量を含む。
当業者は、対象の感染または疾患/障害の重症度、以前の処置、全般的な健康、および/または年齢、ならびに存在するその他の疾患/障害を含むがこれらに限定されないある種の因子が、対象を効果的に処置するのに必要とされる投薬量および時機に影響を与え得ることを正しく理解すると考えられる。その上、治療的有効量の組成物による対象の処置は、1回の処置または一連の処置を含む可能性がある。従来の方法論を用いるかまたは適当な動物モデルを用いたインビボ実験に基づいて、本発明で記載した個々のオリゴヌクレオチドもしくはその前駆体または細菌RNAについての有効投薬量およびインビボ半減期の推定を行なうことができる。
本発明のオリゴヌクレオチドもしくはその前駆体または細菌RNAおよび薬学的組成物の毒性および治療的有効性は、例えば、LD50(集団の50%にとって致死的な用量)およびED50(集団の50%において治療的に有効な用量)を決定するための、細胞培養または実験動物における標準的な薬学的手順によって決定することができる。毒性と治療効果の間の用量比が治療指数であり、それはLD50/ED50比として表すことができる。高い治療指数を示すオリゴヌクレオチド薬剤または細菌RNAが好ましい。
細胞培養アッセイおよび動物研究から得られるデータを、ヒトでの使用のための投薬量の範囲を定式化するのに用いることができる。本発明の組成物の投薬量は、好ましくは、毒性をほとんど伴わないかまたは全く伴わないED50を含む循環濃度の範囲内にある。投薬量は、利用される投薬形態および利用される投与の経路によってこの範囲内で様々に異なってもよい。本発明の方法で用いる任意のオリゴヌクレオチド薬剤または細菌RNAについて、治療的有効用量を細胞培養アッセイから最初に推定することができる。用量は、細胞培養で決定されるようなIC50(すなわち、症状の最大半量の阻害を達成する試験オリゴヌクレオチド薬剤の濃度)を含むオリゴヌクレオチド薬剤または細菌RNAの循環血漿濃度範囲を達成するよう動物実験で定式化してもよい。そのような情報を用いて、ヒトで有用な用量をより正確に決定することができる。血漿中のレベルを、例えば、高性能液体クロマログラフィーで測定してもよい。
投与する医師は、当技術分野において公知であるかまたは本明細書で記載した標準的な有効性の尺度を用いて観察される結果に基づいて、本発明の薬学的組成物の投与の量および時機を調整することができる。
本発明の薬学的組成物を用いて、大量のI型IFN、特に、IFN-α、IL-18、および/またはIL-1βを、インビトロおよび/またはインビボで生成することができる。I型IFN、特に、IFN-α、IL-18、および/またはIL-1βを、脊椎動物の異なる種に由来する免疫細胞および非免疫細胞の両方を含む、異なる細胞源から多量に生成することができる。
本発明の薬学的組成物は、脊椎動物、特に、哺乳類における疾患および/または障害を予防および/または処置するために、医学および/または獣医学の診療で用いることができる。疾患および/または障害には、感染、腫瘍、アレルギー、多発性硬化症、および免疫障害が含まれるが、これらに限定されない。
複合調製物
本発明は、同時、別々、または連続的な投与用である、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAおよび薬学的活性薬剤を含む複合調製物を提供する。
薬学的活性薬剤には、免疫刺激性RNAオリゴヌクレオチド、免疫刺激性DNAオリゴヌクレオチド、サイトカイン、ケモカイン、成長因子、抗生物質、抗血管新生因子、化学治療薬剤、抗ウイルス剤、抗細菌剤、抗真菌剤、抗寄生虫剤、抗体、および遺伝子サイレンシング剤が含まれるが、これらに限定されない。
本発明の複合調製物は、1つまたは複数の薬学的活性薬剤を含んでもよい。複数の薬学的活性薬剤は、上で例示したものと同じかまたは異なる範疇のものであってもよい。
ある態様において、複合調製物は、同時、別々、または連続的な投与用である、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAおよび免疫賦活剤を含む。ある態様において、複合調製物はさらに、抗ウイルス剤および/または抗腫瘍剤を含む。
別の態様において、複合調製物は、同時、別々、または連続的な投与用である、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAおよび抗ウイルス剤および/または抗細菌剤および/または抗腫瘍剤を含む。ある態様において、複合調製物はさらに、免疫賦活剤を含む。
本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAおよび薬学的活性薬剤は、同じまたは別々の組成物中に含まれてもよい。別々の組成物は、同時または連続的に投与してもよい。
本発明の複合調製物はさらに、レチノイン酸および/またはI型IFNを含んでもよい。レチノイン酸および/またはI型IFNは、例えば、内皮細胞、上皮細胞、繊維芽細胞、免疫細胞、および腫瘍細胞を含む、大部分の細胞型におけるRIG-I発現を上方調節することが知られている。
免疫賦活剤は、分子または組成物などの免疫応答を誘導することができる薬剤である。免疫賦活剤には、IFN-αまたはIL-12を誘導することができるRNAオリゴヌクレオチドなどの免疫刺激性RNAオリゴヌクレオチド(Heil F et al. 2004, Science 303: 1526-1529; Sioud M et al. 2005, J Mol Biol 348: 1079-1090; Homung V et al. 2005, Nat Med 11: 263-270; Judge AD et al. 2005, Nat Biotechnol 2005. 23: 457-462; Sugiyama et al. 2005, J Immunol 174:2273-2279; Gitlin L et al. 2006, PNAS 103(22):8459-8464;欧州特許出願第05020020.3号および第05020019.5号)(例えば、ポリ(I:C))ならびにIFN-α(例えば、国際公開公報第01/22990号、国際公開公報第03/101375号参照)、I型IFNおよびIL-12などのサイトカイン、IP-10、MIP1-α、MCP、RANTES、IL-8などのケモカイン、ならびにIL-3、GMCSF、GSCF、MCSFなどの成長因子を誘導することができるCpG含有またはCpG非含有DNAオリゴヌクレオチドなどの免疫刺激性DNAオリゴヌクレオチドが含まれるが、これらに限定されない。
ある態様において、免疫賦活剤は、I型IFN、MIP1-a、MCP、RANTES、IL-8、およびIL-6の産生などの抗ウイルス応答を誘導することができる。
抗ウイルス剤は、ウイルス感染の予防および処置に有用である薬剤である。抗ウイルス剤には、(アシクロビル、ガンシクロビル、リバビリン、ラミブジンなどのような)ヌクレオシド類似体、(リトナビルなどのような)プロテアーゼ阻害剤、(タキソール、カルボプラチン、シクロホスファミド、メトトレキサート、アザチプリン、5-フルオロウラシルなどのような)細胞毒性薬剤が含まれるが、これらに限定されない。
別の態様において、免疫賦活剤は、I型および/またはII型IFN産生などの抗細菌応答を誘導することができる。
抗細菌剤は、細菌感染、特に細胞内細菌感染の予防および処置に有用である薬剤である。抗細菌剤には、アミノグリコシド、カルバペネム、セファロスポリン、糖ペプチド、マクロリド、モノバクタム、ペニシリン、ポリペプチド、キノロン、スルホンアミド、テトラサイクリンが含まれるが、これらに限定されない。
抗腫瘍剤は、腫瘍または癌の予防および処置に有用である薬剤である。抗腫瘍剤には、(シスプラチン、ドキソルビシン、タキソール、カルボプラチン、シクロホスファミド、メトトレキサート、アザチプリン、5-フルオロウラシルなどのような)化学治療薬剤、(バソスタチンおよび抗VEGF抗体などの)抗血管新生因子、ならびにハーセプチン(登録商標)、リツキサン(登録商標)、グリーベック(登録商標)、およびイレッサ(登録商標)などのその他の抗癌薬剤が含まれるが、これらに限定されない。
遺伝子サイレンシング剤は、遺伝子の発現を下方調節することができる薬剤である。遺伝子は、タンパク質、rRNA、tRNA、またはmiRNAをコードしてもよい。遺伝子サイレンシング剤の例として、アンチセンスRNA、(siRNA、shRNA、miRNAなどの)RNAi分子、および(miRNAに相補的であるコレステロールがコンジュゲートされたssRNAである)アンタゴミア(antagomir)が含まれるが、これらに限定されない。
好ましい態様において、本発明の複合調製物はさらに、先に記載したようなオリゴヌクレオチド送達薬剤を含む。その他の好ましい態様において、オリゴヌクレオチドもしくはその前駆体または細菌RNAを、先に記載したような物理的手段によって送達してもよい。
薬学的パッケージ
本発明は、本発明の薬学的組成物または複合調製物および使用のための取扱説明書を含む薬学的パッケージを提供する。
抗ウイルス応答を誘導するためのオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用
本出願は、脊椎動物、特に、哺乳類で、抗ウイルス応答、特に、I型IFN産生、IL-18産生、および/またはIL-1β産生を誘導するための薬学的組成物の調製のための本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用を提供する。
抗ウイルス応答は、ウイルスを排除するかまたは無力にすることを目的とした、ウイルスによる感染時の細胞、組織、または生物による応答である。典型的な抗ウイルス応答には、I型IFN、MIP1-a、MCP、RANTES、IL-8、IL-6、IP-10、およびIFN-γの産生が含まれるが、これらに限定されない。
抗ウイルス応答、特に、I型IFN、IL-18、および/またはIL-1βの産生を、免疫細胞または非免疫細胞で誘導してもよい。免疫細胞には、末梢血単核球(PBMC)、形質細胞様樹状細胞(PDC)、骨髄樹状細胞(MDC)、B細胞、CD4+ T細胞、CD8+ T細胞、マクロファージ、単球、ナチュラルキラー細胞、NKT細胞、顆粒球が含まれるが、これらに限定されない。非免疫細胞には、繊維芽細胞、内皮細胞、上皮細胞、および腫瘍細胞が含まれるが、これらに限定されない。
抗ウイルス応答、特に、I型IFN、IL-18、および/またはIL-1βの産生の誘導は、腫瘍、感染、および免疫障害などの様々な障害および/または疾患の予防および処置を補助し得る。
好ましい態様において、RNAオリゴヌクレオチドは、生理学的条件、特に、細胞内の生理学的条件下で、それ自体で任意の分子内または分子間の二本鎖構造を形成することができる任意の配列を含まない一本鎖RNAオリゴヌクレオチドであり、ssRNAのヌクレオチド配列は、ウイルス感染細胞でウイルスによって誘導されるウイルスRNAまたは細胞RNAに相補的である。
相補性の程度は、好ましくは、少なくとも50%、60%、70%、より好ましくは少なくとも75%、80%、85%、90%、さらにより好ましくは少なくとも95%、96%、97%、98%、99%、および最も好ましくは100%である。
ある態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を有する。別の態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を欠く。
ある態様において、ssRNAオリゴヌクレオチドおよびその相補鎖を、好ましくは標的細胞特異的な様式で、細胞内に別々に送達する。
別の態様において、シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、特に2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPより選択される1つまたは複数の修飾を含み、かつ本発明で記載したRNAオリゴヌクレオチドに相補的であるヌクレオチド配列を有する一本鎖RNAオリゴヌクレオチドを用いて、RNAオリゴヌクレオチドを不活性化して、抗ウイルス応答を休止させてもよい。
ある態様において、薬学的組成物はさらに、先に記載したような送達薬剤を含む。また、オリゴヌクレオチドもしくはその前駆体または細菌RNAを、先に記載したような物理的手段によって送達してもよい。別の態様において、薬学的組成物はさらに、先に記載したようなオリゴヌクレオチドもしくはその前駆体または細菌RNAを安定化する薬剤などの別の薬剤を含む。
ある態様において、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを、抗ウイルス応答を誘導することができる免疫賦活剤、抗ウイルス剤、および遺伝子サイレンシング剤より選択される少なくとも1つの薬剤と組み合わせて用いる。さらなる態様において、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを、レチノイン酸および/またはI型IFNと組み合わせて用いる。
脊椎動物には、魚類、両生類、鳥類、および哺乳類が含まれるが、これらに限定されない。
哺乳類には、ラット、マウス、ネコ、イヌ、ウマ、ヒツジ、ウシ(cattle)、ウシ(cow)、ブタ、ウサギ、非ヒト霊長類、およびヒトが含まれるが、これらに限定されない。好ましい態様において、哺乳類はヒトである。
抗細菌応答を誘導するためのオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用
本出願は、脊椎動物、特に哺乳類で、抗細菌応答、特に細胞内細菌に対する応答を誘導するための薬学的組成物の調製のための本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用を提供する。
細胞内細菌には、マイコバクテリア(結核)、クラミジア、マイコプラズマ、リステリア、および黄色ブドウ球菌(staphylococcus aureus)などの通性細胞内細菌が含まれるが、これらに限定されない。
抗細菌応答は、細菌を排除するかまたは無力にすることを目的とした細菌による感染時の細胞、組織、または生物による応答である。典型的な抗細菌応答には、受容体を介するアポトーシス、またはTNFもしくはTRAILによるサイトカインを介するアポトーシスのいずれかによる、T細胞またはNK細胞を介する感染細胞の排除、マクロファージまたは単球による食作用が含まれるが、これらに限定されない。
ある態様において、抗細菌応答は、I型IFN、II型IFN、IL-18、および/またはIL-1βの産生を含む。
抗細菌応答、特に、I型IFN、II型IFN、IL-18、および/またはIL-1βの産生を、免疫細胞または非免疫細胞で誘導してもよい。免疫細胞には、末梢血単核球(PBMC)、形質細胞様樹状細胞(PDC)、骨髄樹状細胞(MDC)、B細胞、マクロファージ、単球、ナチュラルキラー細胞、NKT細胞、CD4+ T細胞、CD8+ T細胞、顆粒球が含まれるが、これらに限定されない。非免疫細胞には、とりわけ腫瘍細胞、上皮細胞、内皮細胞、および繊維芽細胞が含まれる。
抗細菌応答、特に、I型IFN、II型IFN、IL-18、および/またはIL-1βの産生の誘導は、腫瘍、感染、および免疫障害などの様々な障害および/または疾患の予防および処置を補助し得る。
好ましい態様において、RNAオリゴヌクレオチドは、生理学的条件、特に、細胞内の生理学的条件下で、それ自体で任意の分子内または分子間の二本鎖構造を形成することができる任意の配列を含まない一本鎖RNAオリゴヌクレオチドであり、かつssRNAのヌクレオチド配列は、細菌感染細胞で細菌によって誘導される細菌RNAまたは細胞RNAに相補的である。
相補性の程度は、好ましくは、少なくとも50%、60%、70%、より好ましくは少なくとも75%、80%、85%、90%、さらにより好ましくは少なくとも95%、96%、97%、98%、99%、および最も好ましくは100%である。
ある態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を有する。別の態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を欠く。
ある態様において、ssRNAオリゴヌクレオチドおよびその相補鎖を、好ましくは標的細胞特異的な様式で、細胞内に別々に送達する。
別の態様において、シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、特に2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPより選択される1つまたは複数の修飾を含みかつ本発明で記載したRNAオリゴヌクレオチドに相補的であるヌクレオチド配列を有する一本鎖RNAオリゴヌクレオチドを用いて、RNAオリゴヌクレオチドを不活性化して、抗細菌応答を休止させてもよい。
ある態様において、薬学的組成物はさらに、先に記載したような送達薬剤を含む。また、オリゴヌクレオチドもしくはその前駆体または細菌RNAを、先に記載したような物理的手段によって送達してもよい。別の態様において、薬学的組成物はさらに、先に記載したようなオリゴヌクレオチドもしくはその前駆体または細菌RNAを安定化する薬剤などの別の薬剤を含む。
ある態様において、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを、抗細菌応答を誘導することができる免疫賦活剤、抗細菌剤、および遺伝子サイレンシング剤より選択される少なくとも1つの薬剤と組み合わせて用いる。さらなる態様において、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを、レチノイン酸および/またはI型IFNと組み合わせて用いる。
脊椎動物には、魚類、両生類、鳥類、および哺乳類が含まれるが、これらに限定されない。
哺乳類には、ラット、マウス、ネコ、イヌ、ウマ、ヒツジ、ウシ(cattle)、ウシ(cow)、ブタ、ウサギ、非ヒト霊長類、およびヒトが含まれるが、これらに限定されない。好ましい態様において、哺乳類はヒトである。
アポトーシスを誘導するためのオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用
本出願は、脊椎動物、特に哺乳類で、インビトロおよびインビボにおけるアポトーシスを誘導するための薬学的組成物の調製のための本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用を提供する。
好ましい態様において、アポトーシスを腫瘍細胞で誘導する。
アポトーシスの誘導は、細胞、例えば腫瘍の過剰増殖および/または障害されているアポトーシスによって引き起こされる疾患/障害を有する個体にとって治療的に有益であってもよい。
抗腫瘍応答を誘導するためのオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用
本出願は、脊椎動物、特に哺乳類で、抗腫瘍応答を誘導するための薬学的組成物の調製のための本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用を提供する。
腫瘍は、良性または悪性であってもよい。
抗腫瘍応答は、I型IFN誘導および/または腫瘍細胞アポトーシスを含む。
好ましい態様において、RNAオリゴヌクレオチドは、生理学的条件、特に、細胞内の生理学的条件下で、それ自体で任意の分子内または分子間の二本鎖構造を形成することができる任意の配列を含まない一本鎖RNAオリゴヌクレオチドであり、かつssRNAのヌクレオチド配列は、腫瘍特異的RNAに相補的である。
腫瘍特異的RNAは、腫瘍特異的抗原のmRNAであってもよい。腫瘍特異的RNAは、miRNAであってもよい。
相補性の程度は、好ましくは、少なくとも50%、60%、70%、より好ましくは少なくとも75%、80%、85%、90%、さらにより好ましくは少なくとも95%、96%、97%、98%、99%、および最も好ましくは100%である。
ある態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を有する。別の態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を欠く。
ある態様において、ssRNAオリゴヌクレオチドおよびその相補鎖を、好ましくは標的細胞特異的な様式で、細胞内に別々に送達する。
別の態様において、シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、特に2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPより選択される1つまたは複数の修飾を含み、かつ本発明で記載したRNAオリゴヌクレオチドに相補的であるヌクレオチド配列を有する一本鎖RNAオリゴヌクレオチドを用いて、RNAオリゴヌクレオチドを不活性化して、抗腫瘍応答を休止させてもよい。
疾患/障害を処置するためのオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用
本発明は、医学および/または獣医学の診療において、脊椎動物、特に哺乳類で、疾患/障害を予防および/または処置するための薬学的組成物の調製のための本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用を提供する。
疾患/障害には、感染、腫瘍、アレルギー、多発性硬化症、および免疫障害が含まれるが、これらに限定されない。
感染には、ウイルス感染、細菌感染、炭疽、寄生虫感染、真菌感染、およびプリオン感染が含まれるが、これらに限定されない。
ウイルス感染には、C型肝炎、B型肝炎、単純ヘルペスウイルス(HSV)、HIV-AIDS、ポリオウイルス、脳心筋炎ウイルス(EMCV)、および天然痘ウイルスによる感染が含まれるが、これらに限定されない。阻害のために標的化することができる(+)鎖RNAウイルスの例として、ピコルナウイルス、カリシウイルス、ノダウイルス、コロナウイルス、アルテリウイルス、フラビウイルス、およびトガウイルスが含まれるが、これらに限定されない。ピコルナウイルスの例として、エンテロウイルス(ポリオウイルス1)、ライノウイルス(ヒトライノウイルス1A)、ヘパトウイルス(A型肝炎ウイルス)、カルジオウイルス(脳心筋炎ウイルス)、アフトウイルス(口蹄疫ウイルスO)、およびパレコウイルス(ヒトエコウイルス22)が含まれる。カリシウイルスの例として、ベシクロウイルス(ブタ水疱疹ウイルス)、ラゴウイルス(ウサギ出血病ウイルス)、「ノーウォーク様ウイルス」(ノーウォークウイルス)、「サッポロ様ウイルス」(サッポロウイルス)、および「E型肝炎様ウイルス」(E型肝炎ウイルス)が含まれる。ベータノダウイルス(シマアジ神経壊死ウイルス)は、代表的なノダウイルスである。コロナウイルスには、コロナウイルス(ニワトリ伝染性気管支炎ウイルス)およびトロウイルス(ベルンウイルス)が含まれる。アルテリウイルス(ウマ動脈炎ウイルス)は、代表的なアルテリウイルスである。トガウイルスには、アルファウイルス(シンドビスウイルス)およびルビウイルス(風疹ウイルス)が含まれる。最後に、フラビウイルスには、フラビウイルス(黄熱病ウイルス)、ペスチウイルス(ウシ下痢ウイルス)、およびヘパシウイルス(C型肝炎ウイルス)が含まれる。
ある種の態様において、ウイルス感染は、慢性B型肝炎、慢性C型肝炎、HIV感染、RSV感染、HSV感染、VSV感染、CMV感染、およびインフルエンザ感染より選択される。
ある態様において、予防および/または処置されるべき感染は、ウイルスおよび/または細菌によって引き起こされる上気道感染である。別の態様において、予防および/または処置されるべき感染は、トリインフルエンザである。
細菌感染には、連鎖球菌、ブドウ球菌、大腸菌、シュードモナスが含まれるが、これらに限定されない。
ある態様において、細菌感染は、細胞内細菌感染である。細胞内細菌感染は、マイコバクテリア(結核)、クラミジア、マイコプラズマ、リステリア、および黄色ブドウ球菌などの通性細胞内細菌による感染を指す。
寄生虫(parasitic)感染には、寄生虫(worm)感染、特に、腸内寄生虫感染が含まれるが、これらに限定されない。
腫瘍には、良性腫瘍および悪性腫瘍(すなわち、癌)の両方が含まれる。
癌には、胆道癌、脳腫瘍、乳癌、子宮頸癌、絨毛腫、大腸癌、子宮内膜癌、食道癌、胃癌、上皮内新生物、白血病、リンパ腫、肝癌、肺癌、メラノーマ、骨髄腫、神経芽腫、口腔癌、卵巣癌、膵癌、前立腺癌、直腸癌、肉腫、皮膚癌、精巣癌、甲状腺癌、および腎癌が含まれるが、これらに限定されない。
ある種の態様において、癌は、有毛細胞白血病、慢性骨髄原性白血病、皮膚T細胞白血病、慢性骨髄性白血病、非ホジキンリンパ腫、多発性骨髄腫、濾胞性リンパ腫、悪性メラノーマ、扁平上皮癌腫、腎細胞癌腫、前立腺癌腫、膀胱細胞癌腫、乳房癌腫、卵巣癌腫、非小細胞肺癌、小細胞肺癌、肝細胞癌腫、基底細胞腫、大腸癌腫、子宮頸部異形成、およびカポジ肉腫(AIDS関連および非AIDS関連)より選択される。
アレルギーには、呼吸アレルギー、接触アレルギー、および食物アレルギーが含まれるが、これらに限定されない。
免疫障害には、自己免疫疾患、免疫不全、および免疫抑制が含まれるが、これらに限定されない。
自己免疫疾患には、糖尿病、関節炎(関節リウマチ、若年性関節リウマチ、骨関節炎、乾癬性関節炎を含む)、多発性硬化症、脳脊髄炎、重症筋無力症、全身性エリテマトーデス、自己免疫性甲状腺炎、皮膚炎(アトピー性皮膚炎および湿疹様皮膚炎を含む)、乾癬、シェーグレン症候群、クローン病、アフタ性潰瘍、虹彩炎、結膜炎、角結膜炎、潰瘍性大腸炎、喘息、アレルギー性喘息、皮膚エリテマトーデス、強皮症、膣炎、直腸炎、薬疹、癩逆転反応(leprosy reversal reaction)、癩性結節性紅斑、自己免疫性ブドウ膜炎、アレルギー性脳脊髄炎、急性壊死性出血性脳症、特発性両側性進行性知覚神経性聴力喪失、再生不良性貧血、赤芽球ろう、特発性血小板減少症、多発性軟骨炎、ヴェーゲナー肉芽腫症、慢性活性肝炎、スティーブンス-ジョンソン症候群、特発性スプルー、扁平苔癬、グレーブス病、サルコイドーシス、原発性胆汁性肝硬変、後部ブドウ膜炎、および間隙性肺線維症が含まれるが、これらに限定されない。
免疫不全には、自然免疫不全、(AIDSを含む)獲得性免疫不全、(移植で用いられる免疫抑制剤および癌を処置するために用いられる化学治療薬剤によって誘導されるような)薬物誘導性の免疫不全、長期血液透析、外傷、または外科手術によって引き起こされる免疫抑制が含まれるが、これらに限定されない。
免疫抑制には、細胞毒性のある化学治療による骨髄抑制が含まれるが、これらに限定されない。
ある態様において、薬学的組成物は、腫瘍ワクチンである。本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAは、RIG-Iへの結合を通じて腫瘍細胞アポトーシスを誘導し、腫瘍細胞によるI型IFN、IL-18、および/もしくはIL-1βの産生を誘導し、直接的および/もしくは間接的にNK細胞、NKT細胞、およびγδ T細胞などの自然免疫のエフェクター細胞を活性化し、かつ/または直接的および/もしくは間接的にサプレッサーT細胞を不活性化し、それによって腫瘍細胞の成長阻害および/または破壊をもたらしてもよい。
また、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAなどのRIG-Iリガンドで刺激されている腫瘍細胞を、腫瘍ワクチンとして用いてもよい。
好ましい態様において、RNAオリゴヌクレオチドは、生理学的条件、特に、細胞内の生理学的条件下で、それ自体で任意の分子内または分子間の二本鎖構造を形成することができる任意の配列を含まない一本鎖RNAオリゴヌクレオチドであり、かつssRNAのヌクレオチド配列は、疾患/障害関連RNAに相補的である。
ある態様において、疾患/障害関連RNAは、疾患/障害関連遺伝子のmRNAである。別の態様において、疾患/障害関連RNAは、miRNAである。疾患/障害関連RNAは、内在性の細胞RNA、ウイルスRNA、細菌、真菌、または寄生虫などの侵入する微生物または生物由来のRNAであってもよい。
相補性の程度は、好ましくは、少なくとも50%、60%、70%、より好ましくは少なくとも75%、80%、85%、90%、さらにより好ましくは少なくとも95%、96%、97%、98%、99%、および最も好ましくは100%である。
ある態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を有する。別の態様において、ssRNAオリゴヌクレオチドは、遺伝子サイレンシング活性を欠く。
ある態様において、シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、特に2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPより選択される1つまたは複数の修飾を含み、かつssRNAオリゴヌクレオチドに相補的であるヌクレオチド配列を有する一本鎖RNAオリゴヌクレオチドを用いて、ssRNAオリゴヌクレオチドを不活性化して、I型IFN誘導を休止させてもよい。
ある種の態様において、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを、免疫賦活剤、抗ウイルス剤、抗生物質、抗真菌剤、抗寄生虫剤、抗腫瘍剤、サイトカイン、ケモカイン、成長因子、抗血管新生因子、化学治療剤、抗体、および遺伝子サイレンシング剤などの1つまたは複数の薬学的活性薬剤と組み合わせて用いる。複数の薬学的活性薬剤は、同じかまたは異なる範疇のものであってもよい。
好ましい態様において、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを、予防的および/または治療的であることができる抗ウイルスワクチンまたは抗細菌ワクチンまたは抗腫瘍ワクチンと組み合わせて用いる。
その他の態様において、薬学的組成物は、感染、腫瘍、多発性硬化症、および免疫不全などの疾患/障害の1つまたは複数の予防的または治療的な処置と組み合わせて用いるためのものである。例えば、癌の処置には、外科手術、化学治療、放射線治療、ネオアジュバント治療、温熱切除、および凍結切除が含まれるが、これらに限定されない。
さらなる態様において、本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを、レチノイン酸および/またはI型IFNと組み合わせて用いる。レチノイン酸および/またはI型IFNは、例えば内皮細胞、上皮細胞、繊維芽細胞、免疫細胞、および腫瘍細胞を含む大部分の細胞型で、RIG-I発現を上方調節することが知られている。
ある態様において、薬学的組成物はさらに、先に記載したような送達薬剤を含む。また、オリゴヌクレオチドもしくはその前駆体または細菌RNAを、先に記載したような物理的手段によって送達してもよい。別の態様において、薬学的組成物はさらに、先に記載したようなオリゴヌクレオチドもしくはその前駆体または細菌RNAを安定化する薬剤などの別の薬剤を含む。
薬学的組成物を、口、鼻、眼球、非経口(静脈内、皮内、筋肉内、腹腔内、および皮下を含む)、直腸、膣、または局所(口腔および舌下を含む)への投与用に製剤化してもよい。
好ましい態様において、薬学的組成物は、予防的な局部(例えば、粘膜、皮膚)使用または全身使用である。例えば、スプレー(すなわち、エアロゾル)調製物を用いて、鼻および肺の粘膜の抗ウイルス能力を強化してもよい。
脊椎動物には、魚類、両生類、鳥類、および哺乳類が含まれるが、これらに限定されない。
哺乳類には、ラット、マウス、ネコ、イヌ、ウマ、ヒツジ、ウシ(cattle)、ウシ(cow)、ブタ、ウサギ、非ヒト霊長類、およびヒトが含まれるが、これらに限定されない。好ましい態様において、哺乳類はヒトである。
アジュバントとしてのオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用
本発明は、脊椎動物、特に哺乳類で、少なくとも1つの抗原に対する免疫応答を誘導するためのワクチンの調製のための少なくとも1つの抗原と組み合わせた本発明に記載のオリゴヌクレオチドもしくはその前駆体または細菌RNAの使用を提供する。
少なくとも1つの抗原は、タンパク質、ポリペプチド、ペプチド、炭水化物、核酸、またはその組み合わせであってもよい。
少なくとも1つの抗原は、好ましくは疾患/障害関連抗原であり、それに対する免疫応答の発生が、疾患/障害の予防および/または処置に有益である。
オリゴヌクレオチドもしくはその前駆体または細菌RNAを、少なくとも1つの抗原と共有結合で連結するかまたは非共有結合で複合体化してもよい。ある態様において、オリゴヌクレオチドもしくはその前駆体または細菌RNAを、少なくとも1つの抗原と共有結合で連結する。別の態様において、アニオン性であるオリゴヌクレオチドもしくはその前駆体または細菌RNAおよびグルタミン酸残基のN末端またはC末端伸張によってアニオン性にしたタンパク質またはペプチドの抗原の両方を、カチオン性ポリマーと複合体化する。また別の態様において、ヌクレアーゼ抵抗性を増加させるためにオリゴヌクレオチドもしくはその前駆体または細菌RNAに組み入れられるホスホロチオエートが、抗原性のタンパク質またはペプチドのN末端に付加されたシステイン残基と複合体化する。さらなる態様において、少なくとも1つの抗原は、オリゴヌクレオチドまたはその前駆体も含むベクター、特にウイルスベクターによってコードされ得る。またさらなる態様において、少なくとも1つの抗原は、オリゴヌクレオチドもしくはその前駆体または細菌RNAをカプセル化するビロソームの一部であることができる。
また、オリゴヌクレオチドもしくはその前駆体または細菌RNAおよび少なくとも1つの抗原は、同時に投与される別々の組成物中に含まれてもよい。
ある態様において、ワクチンはさらに、先に記載したような送達薬剤を含む。また、オリゴヌクレオチドもしくはその前駆体または細菌RNAを、先に記載したような物理的手段によって送達してもよい。別の態様において、薬学的組成物はさらに、先に記載したようなオリゴヌクレオチドもしくはその前駆体または細菌RNAを安定化する薬剤などの別の薬剤を含む。
脊椎動物には、魚類、両生類、鳥類、および哺乳類が含まれるが、これらに限定されない。
哺乳類には、ラット、マウス、ネコ、イヌ、ウマ、ヒツジ、ウシ(cattle)、ウシ(cow)、ブタ、ウサギ、非ヒト霊長類、およびヒトが含まれるが、これらに限定されない。好ましい態様において、哺乳類はヒトである。
抗ウイルスおよび/または抗細菌応答を刺激するためのインビトロ法
本発明は、以下の工程を含む、細胞における抗ウイルス応答および/または抗細菌応答を刺激するためのインビトロ法を提供する:
(a)本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを複合体形成剤と混合する工程;ならびに
(b)RIG-Iおよび/またはインフラマソームの構成成分を発現する細胞を、(a)の混合物と接触させる工程。
好ましい態様において、抗ウイルス応答または抗細菌応答は、I型IFN、特に、IFN-α産生、II型IFN産生、IL-18産生、および/またはIL-1β産生を含む。
細胞には、初代免疫細胞、初代非免疫細胞、および細胞株が含まれるが、これらに限定されない。免疫細胞には、末梢血単核球(PBMC)、形質細胞様樹状細胞(PDC)、骨髄樹状細胞(MDC)、B細胞、マクロファージ、単球、ナチュラルキラー細胞、顆粒球、CD4+ T細胞、CD8+ T細胞、NKT細胞が含まれるが、これらに限定されない。非免疫細胞には、繊維芽細胞、内皮細胞、および上皮細胞が含まれるが、これらに限定されない。細胞株には、RIG-Iおよび/またはインフラマソームの構成成分を内在性に発現する細胞、ならびにRIG-Iおよび/またはインフラマソームの構成成分の発現を導く外来性DNAを含む細胞が含まれる。
Th1サイトカイン産生を刺激するためのインビトロ法
本発明は、以下の工程を含む、細胞におけるTh1サイトカインの産生を刺激するためのインビトロ法を提供する:
(a)本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAを複合体形成剤と混合する工程;ならびに
(b)Th1サイトカインを産生することができる細胞を、(a)の混合物と接触させる工程。
ある態様において、細胞は、RIG-Iおよび/またはインフラマソームの構成成分を発現する。
好ましい態様において、Th1サイトカインは、IL-18またはIL-1βである。
細胞には、免疫細胞および非免疫細胞が含まれるが、これらに限定されない。免疫細胞には、末梢血単核球(PBMC)、形質細胞様樹状細胞(PDC)、骨髄樹状細胞(MDC)、B細胞、マクロファージ、単球、ナチュラルキラー細胞、顆粒球、CD4+ T細胞、CD8+ T細胞、NKT細胞が含まれるが、これらに限定されない。好ましい態様において、細胞はマクロファージである。非免疫細胞には、繊維芽細胞、内皮細胞、および上皮細胞が含まれるが、これらに限定されない。
抗ウイルス応答および/または抗細菌応答および/または抗腫瘍応答を誘導することができるオリゴヌクレオチドを調製するための方法
本発明は、以下の工程を含む、抗ウイルスおよび/または抗細菌応答を誘導することができるオリゴヌクレオチドを調製するための方法を提供する:
(a)少なくとも1つのキャッピングされていない5'リン酸基をオリゴヌクレオチドに導入する工程;および
(b)細胞内で二本鎖構造を形成することができるヌクレオチド配列をオリゴヌクレオチドに導入する工程。
オリゴヌクレオチドは、一本鎖、二本鎖構造を形成することができる配列を含む一本鎖、または二本鎖であってもよい。二本鎖構造は、分子内もしくは分子間のいずれかでオリゴヌクレオチドそれ自体によって、または一本鎖オリゴヌクレオチドとオリゴヌクレオチドに相補的な配列を含むmRNAもしくはmiRNAなどの細胞のRNA分子の間で、細胞内で形成されてもよい。相補性の程度は、好ましくは、少なくとも50%、60%、70%、より好ましくは少なくとも75%、80%、85%、90%、さらにより好ましくは少なくとも95%、96%、97%、98%、99%、および最も好ましくは100%である。当業者は、BLASTなどの当技術分野における公知の方法を用いて相補性の程度を決定することができる。ある種の態様において、二本鎖構造内部の塩基対形成の数は、少なくとも6、7、8、9、好ましくは少なくとも10、11、12、13、14、15、より好ましくは少なくとも16、17、18、19、20、21、さらにより好ましくは少なくとも22、23、24、25である。塩基対には、ワトソン-クリック塩基対およびゆらぎ塩基対の両方が含まれる。ワトソン-クリック塩基対には、A-T、C-G、A-Uが含まれ、ゆらぎ塩基対には、G-U、I-U、I-A、I-Cが含まれる。
以下の工程の1つまたは複数を、本発明の抗ウイルスおよび/または抗細菌応答を誘導することができるオリゴヌクレオチドを調製するための方法に組み入れ、オリゴヌクレオチドの抗ウイルスおよび/または抗細菌応答誘導活性をさらに増強してもよい:
(c)5'末端にアデノシン(A)を有するオリゴヌクレオチドを調製する工程;
(d)5'末端に
Figure 2010500011
より選択される配列を有するオリゴヌクレオチドを調製する工程;および
(e)イノシン(I)をオリゴヌクレオチドに組み入れる工程。
好ましい態様において、抗ウイルス応答または抗細菌応答は、I型IFN、特に、IFN-α産生、II型IFN産生、IL-18産生、および/またはIL-1β産生を含む。
抗ウイルス応答誘導活性および抗細菌応答誘導活性がないオリゴヌクレオチドを調製するための方法
本発明はまた、以下の工程の1つまたは複数を含む、任意の抗ウイルス応答誘導活性および抗細菌応答誘導活性がないオリゴヌクレオチドを調製するための方法を提供する:
(a)全ての5'リン酸基をオリゴヌクレオチドから排除する工程;
(b)オリゴヌクレオチドの全ての5'一リン酸、二リン酸、または三リン酸をキャッピングする工程;
(c)細胞内で二本鎖構造を形成することができる任意のヌクレオチド配列をオリゴヌクレオチドから排除する工程;および
(d)シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、好ましくは2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPなどの修飾ヌクレオチドをオリゴヌクレオチドに組み入れる工程。
細胞内で二本鎖構造を形成することができるヌクレオチド配列には、同じオリゴヌクレオチド内(すなわち、分子内)か、2つの同じオリゴヌクレオチドの間(すなわち、分子間)か、またはオリゴヌクレオチドと標的細胞内のRNA(例えば、mRNA、miRNA)との間かの二本鎖構造の形成を可能にする配列が含まれる。
好ましい態様において、抗ウイルス応答または抗細菌応答は、I型IFN、特に、IFN-α産生、II型IFN産生、IL-18産生、および/またはIL-1β産生を含む。
遺伝子治療用のRNAを調製するための方法
本発明は、遺伝子治療で使用するためのRNAを調製するための方法を提供し、本方法は、RNAから5'一リン酸、二リン酸、もしくは三リン酸を排除する工程、および/またはシュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、好ましくは2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPなどの修飾ヌクレオチドをRNAに組み入れる工程を含む。本発明の方法によって調製されるRNAは、免疫刺激活性および/または抗ウイルス応答を誘導する能力を欠いており、したがって脊椎動物細胞における遺伝子移入に好適である。
遺伝子治療で有用なRNAには、関心対象の遺伝子の発現/翻訳を上方調節または下方調節するRNAが含まれる。前者の場合、RNAは、その発現に治療的価値がある(例えば、腫瘍抑制因子;嚢胞性線維症タンパク質)、関心対象のタンパク質をコードする。後者の場合、RNAは、その下方調節に治療的価値がある(例えば、オンコジーン)関心対象のタンパク質の発現に干渉する。後者の場合、RNAは、アンチセンスRNA、siRNA、shRNA、またはmiRNAであってもよい。
本発明で記載したオリゴヌクレオチドもしくはその前駆体または細菌RNAの有用性は、その他のRIG-Iリガンドにまで拡張してもよい。
本発明を以下の実施例によって例証する。
実施例
材料および方法
実施例1〜10
細胞培養
若い健康ドナーによって供与された全血からFicoll-Hypaque密度勾配遠心分離(Biochrom, Berlin, Germany)でヒトPBMCを調製した。Miltenyi Biotec(Bergisch-Gladbach, Germany)からの血液樹状細胞Ag(BCDA)-4 樹状細胞単離キットを用いてMACSでPDCを単離した。簡潔には、コロイド状の常磁性マイクロビーズに共役した抗BDCA-4 AbでPDCを標識し、磁気分離カラムに2回(LSカラム、次にMSカラム;Miltenyi Biotec)通した。単離されたPDC(系統陰性、MHC-II陽性、およびCD123陽性細胞)の純度は、95%を越えていた。単球の単離の前に、MACS(LDカラム;Miltenyi Biotec)でPDCを枯渇させ、その後単球単離キットII(Miltenyi Biotec)を用いて単球を単離した。プールした骨髄細胞をマウスGM-CSF(10 ng/ml;R&D Systems, Minneapolis, MN)の存在下でインキュベートすることによって、マウス骨髄由来の従来型の樹状細胞を発生させた。7日後、これらの培養は典型的には、90%よりも多くのcDC(CD11c+、CD11b+、B220-)を含んでいた。トリパンブルー排出で決定した場合、生存率は95%を越えていた。PDC(2.5*106細胞/ml)を除く、全ての細胞を、10%(v/v) FCS(Biochrom)、1.5 mM L-グルタミン、100 U/ml ペニシリン、および100 μg/ml ストレプトマイシン(全てSigma- Aldrich, Munich, Germanyから)を補充したRPMI 1640培養培地(Biochrom, Berlin, Germany)中で2*106細胞/mlの密度で培養した。PDC培養に追加で10 ng/ml IL-3(R&D Systems)を補充した。HEK 293細胞(ヒト胎児腎臓)を、10%(v/v) FCS(Biochrom)、1.5 mM L-グルタミン、100 U/ml ペニシリン、および100 μg/ml ストレプトマイシン(全てSigma- Aldrichから)を補充したRPMI 1640培養培地(Biochrom)中で維持した。Vero(アフリカミドリザル腎臓)およびHEK 293T(ヒト胎児腎臓)細胞を、抗生物質およびそれぞれ5%または10% 胎仔ウシ血清を補充したダルベッコ改変イーグル培地中で維持した。BSR細胞を、10% 新生仔ウシ血清、リン酸ブロス、アミノ酸、および抗生物質を添加したグラスゴー最小必須培地中で繁殖させた。
マウス
TLR7、RIG-I、およびMDA5欠損マウスは、以前に記載されている(Hemmi H et al. Nat. Immunol. 3:196, Feb, 2002; Kato H et al., Immunity 23:19, Jul, 2005; Kato H et al. Nature 441 (7089):101-105, Apr 9, 2006)。雌の野生型C57BL/6マウスは、Harlan-Winkelmann(Borchen, Germany)から購入した。マウスは、実験の開始時に6〜12週齢であった。動物研究は、地域の規制当局(Regierung von Oberbayern, Munich, Germany)によって承認された。
ELISA
IFN-αモジュールセット(Bender MedSystems, Graz, Austria)を用いて細胞培養上清中でヒトIFN-αを評価した。マウス IP-10 ELISAはBiosource(Solingen, Germany)から、マウスIFN-α ELISAはPBL Biomedical Laboratories(Piscataway, USA)から得た。全てのELISA手順を製造元の勧めに従って行なった。マウスIFN-αを以下のプロトコルに従って測定した:モノクローナルラット抗マウスIFN-α(クローンRMMA-1)を捕捉Abとして、検出用のポリクローナルウサギ抗マウスIFN-α血清(両方ともPBL Biomedical Laboratories)をHRPコンジュゲートされたロバ抗ウサギIgG(Jackson ImmunoResearch Laboratories)と共に二次試薬として用いた。マウスrIFN-A(PBL Biomedical Laboratories)を標準品(1 U/mlのIFN-α濃度)として用いた。
RNA
化学合成したRNAオリゴヌクレオチドは、Eurogentec(Leiden, Belgium)から購入した。インビトロ転写されたRNAは、Silencer siRNA構築キット(Ambion, Huntingdon, UK)を用いるかまたは以下のプロトコルに従って合成した:部分的に重複する一本鎖DNAオリゴヌクレオチドを用いて、二本鎖DNA鋳型をExo- Klenow(Fermentas)を用いて構築した。Opti mRNAキット(Curevac, Tubingen, Germany)の対照鋳型を用いて2500ヌクレオチドの転写物(図1)を生成した。40 bpより大きい鋳型は、pBluescript KSを鋳型として用いるPCRによって構築した(全てのインビトロ転写鋳型の詳細なリストについては、表1を参照されたい)。得られた鋳型は、T7 RNAポリメラーゼコンセンサスプロモーター、その後に転写されるべき関心対象の配列を含んだ。20 pmolのDNA鋳型を、40 mM Tris-HCl pH 8.0、10 mM DTT、2 mM スペルミジン-HCl(Sigma)および20 mM MgCl2を含む緩衝剤中で30 U T7 RNAポリメラーゼ、40 U RNアーゼ阻害剤、0.3 U 酵母無機ピロホスファターゼとインキュベートした。キャッピングされたRNAを、Opti mRNAキット(Curevac)を用いて転写した。ヌクレオシド修飾したRNAを転写するために、インビトロ転写反応の間、ウリジン-5'-三リン酸を、シュードウリジン-5'-三リン酸かまたは2-チオウリジン-5'-三リン酸(両方ともTriLink, San Diego, USA)のいずれかに交換した。2'-O-メチル化UTP(Trilink)の取込みのために、T7 R&DNA(商標)ポリメラーゼ(Eipcentre, Madison, USA)を用いた。このポリメラーゼは、2'-O-メチルなどの2'-置換基を持つNTPの取込みを可能にする1塩基の活性部位突然変異を有する。インビトロ転写を終夜37℃で実行した。DNA鋳型をDNアーゼI(Fermentas)を用いて消化し、その後Roche高純度RNA単離キット(Roche Applied Science, Mannheim, Germany)を用いて以下の修正を行なってRNAを精製した:結合緩衝剤は、70% エタノール中の2.0 M グアニジンチオシアネートであり、洗浄緩衝剤は、70% エタノール中の100 mM NaCl、4.5 mM EDTA、10 mM Tris HClで置換した。溶出後、Mini Quick Spin(商標)Oligo Column(Roche)にRNAを通すことによって、余分な塩およびNTPを除去した。RNAのサイズおよび完全性をゲル電気泳動でチェックした。
(表1A)インビトロ転写鋳型の生成用のDNAオリゴヌクレオチド
Figure 2010500011
Figure 2010500011
対応する鎖
Figure 2010500011
(表1B)pBKSをPCR鋳型として用いるインビトロ転写鋳型の生成用のPCRプライマー
フォワードプライマー
Figure 2010500011
バックワードプライマー
Figure 2010500011
RNA単離
大腸菌株DH10BおよびヒトPBMC由来のRNAを、Trizol(登録商標)試薬(Invitrogen, Karlsruhe, Germany)を用いて製造元のプロトコルに従って単離した。CIAP処理を以下のように行なった:10 μgのインビトロ転写されたRNA、15 μgの細胞RNA、または1.5 μgのウイルスRNAを、30 Uのウシ小腸アルカリホスファターゼ(CIAP)(Stratagene, La Jolla, USA)を用いて、3時間37℃で50 mM Tris-HCl、0.1 mM EDTAを含む緩衝剤中で、10 UのRNアーゼ阻害剤(RNAguard(商標);Amersham-Biosciences)の存在下で処理した。CIAP処理後、RNeasy Miniキットを用いてRNAを浄化した。
細胞抽出物
細胞ライセートを、Meisterら(G. Meister et al., Mol Cell 15, 185 (Jul 23, 2004))に従って少し修正をして調製した。高分子量(25 kDa)ポリエチレンイミン(PEI; Sigma, 40.872-7)を用いて、HEK293細胞にトランスフェクトした。80〜90%のコンフルエンシーで、1.5:1のPEI:DNA比で細胞にトランスフェクトした。トランスフェクションの24〜36時間後、細胞を採取し、5ペレット用量の10 mM KCl、1.5 mM MgCl2、0.5 mM ジチオスレイトール、10 mM HEPES-NaOH(pH 7.9)、0.5 mM PMSFに細胞ペレットを再懸濁し、10分間氷上でインキュベートした。その後、細胞を洗浄し、細胞ペレットを2ペレット用量の上記の緩衝剤に再懸濁し、ダウンシング(douncing)によってホモジェナイズした。2.000 gで10分間の遠心分離によって、細胞ライセートから細胞核を除去した。上清を微量遠心分離チューブに移し、2.000 gで10分間の遠心分離および30分間20.000 gでのさらなる遠心分離によってさらに浄化し、細胞質抽出物を得た。その後、抽出物のKClの濃度を2 M KClの添加によって100 mMまで上げ、グリセロールを10%のパーセンテージまで添加した。FLAGタグ付きRIG-IC複合体の精製のために、細胞質抽出物をFLAG M2アガロースビーズ(Sigma)中でインキュベートした。FLAG M2アガロースビーズを 0.1 M グリシン(pH 3.5)で1回洗浄し、1 M Tris-HCl(pH 8.0)で洗浄することによって平衡化した。その後、ビーズを緩衝剤C(0.1 M KCl、5 mM MgCl2、10% グリセロール、10% Tween20、10 mM β-メルカプトエタノール、0.2 mM PMSF、および20 mM Tris-HCl [pH 8.0])に再懸濁し、細胞質抽出物と4時間4℃で回転させながらインキュベートした。ビーズを回収し、0.1% NP40を補充した洗浄緩衝剤(300 mM NaCl、5 mM MgCl2、50 mM Tris-HCl [pH 7.5])中で2回洗浄した。その後、0.2 μg/ml 3xFLAGペプチド(Sigma)を含む洗浄緩衝剤中で2時間10℃でビーズを振盪することによって親和性結合した複合体を溶出し、遠心分離後に溶出物を回収した。
リガンド結合実験
4O U RNアーゼ阻害剤(Fermentas)、0.5 mM PMSFの存在下で洗浄緩衝剤中に100 μlの最終容量で2時間4℃で回転させながら、全細胞ライセートまたは25 μl RIG-IC溶出物を0.375 μg ビオチン化RNAとインキュベートした。50 μl ストレプトアビジンコーティングされたビーズ(Pierce, Rockford, USA; 20347)をさらに1時間室温で回転させながら添加した。その後、ビーズを0.1% NP40を補充した洗浄緩衝剤中で4回洗浄した。さらなる免疫ブロット解析用に、上清およびビーズをLaemli緩衝剤中で溶解した。
ウェスタンブロッティング
ウェスタンブロッティング用に、試料をSDS-PAGEで分離し、ニトロセルロース膜(Amersham-Biosciences, UK)にセミドライ式電気ブロッティングで移した。一次抗体として、モノクローナル抗Flag抗体(Sigma)を用いた。二次抗体として、ペルオキシダーゼがコンジュゲートされた抗マウス抗体(Amersham-Biosciences)を用いた。結合した抗体は、増強された化学発光システム(ECL)によって製造元のプロトコル(Amersham-Biosciences)に従って可視化した。
レポーターアッセイ
トランスフェクションの12〜16時間前に、HEK 293細胞を48ウェルプレート中に播種した。80%のコンフルエンシーで、300 ngのレポータープラスミド(pIFNβ-luc)、500 ngの(ラウス肉腫ウイルスβ-ガラクトシダーゼを発現する)標準化プラスミド、および示された発現プラスミドが合計で1.5 μg DNA/ウェルになるように、PEIを用いてHEK 293細胞にトランスフェクトした。トランスフェクションの24時間後に、培養培地を吸引し、10 mM EDTAを含む0.5ml PBS中で細胞を1回洗浄した。その後、50 μl ルシフェラーゼ溶解緩衝剤(10% グリセロール、1% Triton-X、2 mM EDTA、25 mM TrisHCl [pH 7.8]、2 mM DTT)中で細胞を溶解した。20 μlの各試料を20 μlのLuciferase Detection Reagent(Promega)と混合し、マイクロプレートルミノメーター(LUMIstar, BMGLabtechnologies)でルシフェラーゼ活性について解析した。ベータ-ガラクトシダーゼ活性を測定するために、10 μl ライセートを100 μlの溶液1(1% Galacton-Plus [TROPIX]、0.1% 0.1 M MgCl2、20% 0.5 M リン酸 [pH 8]、78.9% H2O)と20分間インキュベートし、その後50 μlの溶液2を添加した(20% 1 M NaOH、10% Emerald [TROPIX] 70% H2O)。ルシフェラーゼ活性値を同じ抽出物のベータ-ガラクトシダーゼ活性に対して標準化した。ウイルス感染を伴う実験についてのレポーターアッセイ(図5)は、以下のように行なった:トランスフェクションの12〜18時間前に、HEK 293TまたはVero細胞を24ウェルプレート中に播種した。80%のコンフルエンシーで、ホタルルシフェラーゼをコードする400 ngのレポータープラスミド(p125-Luc)および標準化用のCMV制御されたウミシイタケルシフェラーゼをコードする2 ngのプラスミド(pRL-CMV、Promega)を、表示されている場合には400 ngのRIG発現プラスミドの空ベクターと一緒にLipofectamine 2000(Invitrogen)を用いて細胞にトランスフェクトした。DNAトランスフェクションの6時間後、細胞にPEIを用いて表示された量のRNAを感染させるかまたはトランスフェクトするかのいずれかにした。DNAトランスフェクションの48時間後、細胞抽出物を調製し、Dual Luciferase Reporter System(Promega)でアッセイした。ルシフェラーゼ活性は、供給元の取扱説明書に従ってLuminometer(Berthold)で測定した。
プラスミド
pIFN-ベータ-Lucは、T. Maniatisにより親切に提供された。RIG-I CARD2は、S. Rothenfusserにより親切に提供された。p125-Luc、RIG-I全長、RIG-IC、RIG-I K270A、および空の対照ベクターは、T. Fujita(M. Yoneyama et al., Nat Immunol 5, 730 (Jul, 2004))により親切に提供された。RIG-I Δヘリカーゼ_C(AS 655-734)は、以下のPCRプライマー対を用いたループアウトPCRによってRIG-I全長から構築した:
Figure 2010500011
pSC6-T7-NEOは、M. Billeter F.(Radecke et al., Embo J 14, 5773 (Dec 1, 1995))により親切に提供された。T7 D812Nは、以下のPCRプライマー対を用いた部位特異的突然変異によってpSC6-T7-NEOから構築した:
Figure 2010500011
RIG-I Δヘリカーゼ_CおよびT7 RNA D812Nは、シークエンシングによって確認した。
ウイルスストック
組換えRV SAD L16(Schnell MJ et al., 1994, EMBO J. 13(18):4195-4203)をwt RVとして用いた。cDNAのクローニング、プロモーターから最も遠位の遺伝子位置由来のPをコードする、組換え SAD ΔPLPウイルスの回収、およびウイルス繁殖は、以前に記載された(K. Brzozka, et al. Journal of virology 79, 7673 (Jun, 2005))。
非感染細胞由来または1のMOIのRVに2日間感染させた細胞由来のトータルRNAの単離のために、製造元の取扱説明書に従ってRNeasy minikit(QIAGEN, Hilden, Germany)を用いた。RV粒子RNAの単離のために、SW32Tiで2時間4℃、27,000 rpmでの超遠心分離によって、ビリオンを無細胞上清からペレット化した。RNAをRNeasy minikitでペレットから単離した。
実施例11〜16
培地および試薬
10%(v/v)熱不活化FCS(Invitrogen Life Technologies)、3 mM L-グルタミン、0.01 M HEPES、100 U/ml ペニシリン、および100 μg/ml ストレプトマイシン(全てSigma-Aldrichから)を補充したRPMI 1640(Biochrom)および10% ウシ胎仔血清(FCS)、3 mM L-グルタミン、100 U/ml ペニシリン、および100 μg/ml ストレプトマイシンを補充したダルベッコ改変イーグル培地(PAN, Aidenbach, Germany)を用いた。CpG ODN(Coley Pharmaceutical Group)は、小文字がホスホロチオエート(PT)連結、大文字が塩基の3'のホオスホジエステル(PD)連結を示す;
Figure 2010500011
ポリイノシン:ポリシチジン酸(ポリ(I:C))は、Sigma-Aldrichから購入した。NK細胞およびCD8 T細胞の枯渇のために、IL-2受容体β鎖特異的mAb TMβ1およびmAb RmCD8-2を記載された通りに用いた(Ralph Mocikat, GSF-lnstitut fur Molekulare Immunologie, Munich, Germanyの親切な贈与品)。組換えマウスIFNβは、Europa Bioproducts社で購入した。In vivo-jetPEI(商標)(#201-50)は、Biomol GmbH(Hamburg, Germany)で購入した。
RNA
化学合成したRNAオリゴヌクレオチドは、Eurogentec(Leiden, Belgium)またはMWG-BIOTECH AG(Ebersberg, Germany)から購入した(全ての化学合成RNAオリゴヌクレオチドの詳細なリストについては、表3を参照されたい)。インビトロ転写されたRNAは、製造元の取扱説明書に従ってmegashort scriptキット(Ambion, Huntingdon, UK)を用いて合成された(全てのインビトロ転写鋳型の詳細なリストについては、表4を参照されたい)。得られた鋳型は、T7 RNAポリメラーゼコンセンサスプロモーター、その後に転写されるべき関心対象の配列を含んだ。インビトロ転写された二本鎖RNAの生成のために、センスおよびアンチセンス鎖のDNA鋳型を、6時間別々の反応で転写させた。T7 RNAポリメラーゼで転写するために、過剰なGを センスおよびアンチセンス鎖の両方に添加した。その後、反応物を混合し、組み合わせた反応物を終夜37℃でインキュベートした。DNA鋳型を、DNアーゼ1(Ambion)を用いて消化し、その後フェノールクロロホルム抽出およびエタノール沈殿を用いてRNAを精製した。溶出後、Mini Quick Spin(商標)Oligo Column(Roche)にRNAを通すことによって、余分な塩およびNTPを除去した。RNAの完全性をゲル電気泳動でチェックした。
細胞
マウス骨髄樹状細胞および形質細胞様樹状細胞のFlt3-リガンド(Flt3-L)で誘導した混合培養を記載された通りに成長させた(3)。FLT-3リガンドで誘導した骨髄培養由来の形質細胞様DC をB220マイクロビーズ(Miltenyi Biotec)で分取した。プールした骨髄細胞をマウスGM-CSF(10 ng/ml; R&D Systems, Minneapolis, MN)の存在下でインキュベートすることによって従来型の樹状細胞(cDC)を発生させた。7日後、これらの培養は、典型的には80%よりも多くのcDC(CD11c+、CD11b+、B220-)を含んでいた。幾つかの実験については、野生型マウスの脾臓からB細胞を、マウスB細胞単離キットおよびCD19マイクロビーズ(Milteny Biotec)を用いたMACS で単離した。手を付けていないNK細胞およびCD 8 T細胞を、NK細胞単離およびCD8 T細胞単離キット(Mileny Biotec)を用いて脾臓から分取した。トリパンブルー排出で決定した場合、全ての細胞の生存率は95%を越えており、FACSで解析した場合、純度は>90%であった。10% 胎仔ウシ血清(FCS)、4 mM L-グルタミン、および10-5 M メルカプトエタノールを補充したRPMI(PAN, Aidenbach, Germany)中でマウス初代細胞を養殖した。マウスB16細胞(H-2b)は、Thomas Tutingの親切な贈与品であり、10% 胎仔ウシ血清(FCS)、2 mM L-グルタミン、100 U/ml ペニシリン、および100 μg/ml ストレプトマイシンを補充したダルベッコ改変イーグル培地(PAN, Aidenbach, Germany)中で養殖した。
細胞培養
全ての細胞を2*106細胞/mlの密度で培養し、それぞれ、24ウェルの平底プレート中に播種した。そうでないように示さない限り、細胞を、3 μg/ml CpG-B-DN 1826および/またはCpG-ODN 2216、1 μM R848と24時間インキュベートした。RNAをLipofectamine 2000と共に製造元のプロトコル(Invitrogen)に従ってトランスフェクトした。そうでないように示さない限り、本発明者らは、200 ngの核酸を0.5μlのLipofectamineと共にトランスフェクトした。24時間後、上清を酵素連結免疫吸着アッセイ(ELISA)によるサイトカイン分泌の解析用に回収し、細胞をフローサイトメトリー解析用に採取した。
サイトカイン測定
培養上清および血清中の マウスIFN-γおよびIL-12p40の濃度を、ELISAで製造元の取扱説明書(BD PharMingen, San Diego, CA)に従って決定した。マウスIFN-αは、マウスIFN-α ELISAキット(PBL Biomedical Laboratories, PBL #42100-2, New Brunswick, NJ)を用いて解析した。幾つかの実験については、マウスIFN-αを以下のプロトコルに従って測定した:モノクローナルラット抗マウスIFN-α(クローンRMMA-1)を捕捉抗体として、検出用のポリクローナルウサギ抗マウスIFN-α血清(両方ともPBL Biomedical Laboratories)をHRPコンジュゲートされたロバ抗ウサギIgG(Jackson ImmunoResearch Laboratories)と共に二次試薬として用いた。マウスrIFN-α(PBL Biomedical Laboratories)を標準品(1 U/mlのIFN-α濃度)として用いた。
トランスフェクションおよびレポーターアッセイ
5'三リン酸siRNAによる一過性のIFN-β活性化をモニタリングするために、マウスB16細胞を24ウェルプレート中に播種した。70%のコンフルエンシーで、200 ngのレポータープラスミド(pIFNβ-luc DAM/DCM)、200 ngの(ウミシイタケルシフェラーゼを発現する)標準化プラスミド、および表示された発現プラスミドが合計で1.5 μg DNA/ウェルになるように、PEIを用いてB16細胞にトランスフェクトした。高分子量(25 kDa)ポリエチレンイミン(PEI; Sigma, 40.872-7)を1.5:1のPEI:DNA比で用いて、B16細胞にトランスフェクトした。幾つかの実験について、本発明者らは、表示された発現プラスミドと共に合成siRNAを共トランスフェクションするためにLipofectamine 2000(Invitrogen)を製造元のプロトコルに従って用いた。トランスフェクションの16時間後、培養培地を吸引し、細胞を0.5 ml PBSで1回洗浄し、次に異なるリガンドで表示された時点で刺激した。上清を回収し、1OmM EDTAを含む0.5ml PBSで細胞をもう一度洗浄した。その後、細胞を100μlのPromega溶解緩衝剤(Promega, #1531)で溶解した。20 μlの各試料を20 μlのLuciferase Detection Reagent(Luciferase Assay Kit, Biozym Scientific GmbH, Oldendorf, Germany)と混合し、マイクロプレートルミノメーター(LUMIstar, BMGLabtechnologies)でルシフェラーゼ活性について解析した。ウミシイタケルシフェラーゼ活性を測定するために、20 μlライセートを20 μlのウミシイタケ基質(コエレンテラジン (Promega, #2001))とインキュベートした。ルシフェラーゼ活性値を同じ抽出物のウミシイタケ活性に対して標準化した。
プラスミド
IFN-β-Lucレポータープラスミド、野生型pPME-myc NS3-4A(NS3-4A)、pPME-myc MutNS3- 4A(NS3-4A*;不活性化するセリン139からAlaへの突然変異を含む)は、T. ManiatisおよびJ. Chenにより親切に提供された。RIG-I全長、RIG-IC、RIG-I K270A、および空の対照ベクターは、T. Fujita(Yoneyama M et al. (2004) Nat. Immunol. 5(7):730-737)により親切に提供された。ウミシイタケルシフェラーゼトランスフェクション効率化ベクター(phRLTK)は、Promegaから購入した。
ウェスタンブロッティング
ウェスタンブロッティング用に、試料をSDS-PAGEで分離し、ニトロセルロース膜(Amersham-Biosciences, UK)にセミドライ式電気ブロッティングで移した。一次抗体として、ポリクローナルラット抗RIG-1抗体(Kremer博士の親切な贈与品)、ポリクローナルウサギ抗Bcl-2(Santa Cruz, sc-7382)およびウサギ抗カスパーゼ-1(Santa Cruz, sc-7148)抗体を用いた。二次抗体として、ペルオキシダーゼがコンジュゲートされた抗マウスまたは抗ウサギ抗体(Amersham-Biosciences)を用いた。結合した抗体は、増強された化学発光システム(ECL)によって製造元のプロトコル(Amersham-Biosciences)に従って可視化した。
フローサイトメトリー
表示した時点で、表面抗原染色を先に記載したように行なった。B220、CD11c、NK1.1、CD4、CD8、CD69、CD86に対する蛍光標識モノクローナル抗体(mAb)および適当なアイソタイプ対照抗体をBD Pharmingen(Heidelberg, Germany)から購入した。フローサイトメトリーのデータは、2つのレーザー(488-および635-nmの波長で励起)を搭載したBecton Dickinson FACSCaliburで取得した。データは、Cellquestソフトウェア(Becton Dickinson, Heidelberg, Germany)を用いて解析した。転移性の肺におけるB16メラノーマ細胞のBcl-2発現を明らかにするために、IFNAR-欠損マウスの肺転移から1細胞懸濁を調製した。2% PFAおよびサポニンを用いて細胞を固定および透過処理し、コンジュゲートされていない特異的なウサギTRP-1 Ab(Thomas Tutingの親切な寄贈品)と20分間氷上でインキュベートした。その後、細胞を洗浄し、ヤギ抗ウサギFITC Ab(Santa Cruz; sc-2012)と20分間インキュベートした。再度、細胞を洗浄し、PEコンジュゲートされたBcl-2-Ab(Santa Cruz, sc-7382-PE)を細胞に添加した。インキュベーションの20分後、細胞をフローサイトメトリーで解析した。
アポトーシス細胞および死細胞の定量化
FITC標識アネキシン-V(Roche)およびヨウ化プロピジウム(BD Biosciences)で染色することにより、付着細胞および上清細胞を解析した。アネキシン-V染色は、製造元の取扱説明書に従って行なった。ヨウ化プロピジウムを0.5 mg/mlの最終濃度まで添加し、フローサイトメトリーおよびCellQuestソフトウェア(Becton Dickinson, Heidelberg, Germany)によって細胞を解析した。
共焦点顕微鏡法
jetPEI(Biomol)と複合体化したFITC標識RNA(100 μg)をC57BL/6マウスに静注した。6時間後、マウスを屠殺し、RNA複合体の取込みについて所望の臓器を解析した。簡潔には、転移性の肺または罹患していない肺の切片を顕微鏡スライドに移し、アセトン中で10分間固定した。TOPRO-3(Molecular Probes)を用いて、核の対比染色を行なった。洗浄工程をTris緩衝化生理食塩水中で行ない、細胞をVectarshield Mounting Medium(Vector Laboratories)中で標本にした。その後、488nm-アルゴンおよび633nm-ヘリウム-ネオンレーザーを搭載したZeiss LSM510共焦点顕微鏡(Carl Zeiss, Germany)を用いて、細胞を解析した。
マウス
RIG-I、MDA-5、TLR7の欠損マウスを記載された通りに樹立した(Kato et al. (2006) Nature 441 :101 ; Akira S et al. (2004) C R Biol. 327(6):581-9)。IFNAR欠損マウスは、Ulrich Kalinkeの親切な寄贈品であった。メスのC57BL/6マウスをHarlan-Winkelmann(Borchen, Germany)から購入した。マウスは、実験の開始時に6〜12週齢であった。動物研究は、地域の規制当局(Regierung von Oberbayern, Munich, Germany)によって承認された。
マウス実験
インビボ実験のために、本発明者らは、製造元のプロトコルに従って事前にjetPEIと複合体化した核酸を含む200 μlをC57BL/6マウスに注射した。簡潔には、10 μlのin vivo jetPEIを50 μgの核酸と10/1のN:P比で5% ブドウ糖溶液中で混合し、15分間インキュベートした。その後、複合体を眼窩後静脈中に注射した。そうでないように示さない限り、血清は6時間後に採集した。表示された時点での尾の切り落としによって全血を得た。30分間37℃での凝固およびその後の遠心分離によって全血から血清を調製し、-20℃で保存した。サイトカインレベルはELISAで決定した。
肺におけるB16メラノーマの生着ならびにインビボにおけるCD8 T細胞およびNK細胞の枯渇
肺転移の誘導のために、本発明者らは、4x105 B16メラノーマ細胞を表示されたマウスの尾静脈に注射した。3日目、6日目、および9日目に、本発明者らは、記載したような事前にjetPEIと複合体化した核酸(各々50 μg)を含む200 μlをマウスに注射した。その後、複合体を眼窩後静脈中に注射した。刺激の14日後、肺の表面上の肉眼で見えるメラノーマ転移の数を、解剖用の顕微鏡を援用して数えるか、または大きい腫瘍量の場合には、肺の重さを決定した。NK細胞およびCD8 T細胞の枯渇を、記載された通りに行なった{Adam, 2005 #49; Mocikat, 2003 #50}。簡潔には、腫瘍刺激の4日前(1 mg)、ならびに2日後(0.2 mg)および14日後(0.1 mg)に、TMβ1 mAbを腹腔内に与えた。CD8 T細胞を中和するために、腫瘍播種の1日前(0.5 mg)および4日前(0.1 mg)、ならびに4日後(0.1 mg)および14日後(0.1 mg)に、mAb RmCD8-2を腹腔内注射した。実験は、4〜5匹のマウスの群で行ない、2〜4回繰り返した。
組織病理学的解析
マウスを屠殺する時に、肺の試料を得た。組織標本を完全エタノール中で固定し、パラフィンに包埋した。アポトーシスは、トランスフェラーゼを介するdUTPニックエンド標識(TUNEL)法によって製造元の取扱説明書(Boehringer Roche, Mannheim, Germany)に従って検出した。簡潔には、脱パラフィン化しかつ再水和した切片を、1xテーリング緩衝剤、1 mM CoCl_2、1 μlの10x DIG DNA標識混合液、および200単位のターミナルトランスフェラーゼを含むテーリング混合液(50 μlの総容量まで再蒸留水を添加)と1時間37℃でインキュベートした。tris緩衝化生理食塩水中で洗浄した後、切片をアルカリホスファターゼがコンジュゲートされた抗ジゴキシゲニン抗体(10% 胎仔ウシ血清中で1:250に希釈)と1時間室温でインキュベートした。ニトロブルーテトラゾリウム/5-ブロモ-4-クロロ-3-インドリルリン酸で反応を可視化した。
実施例1.ヒト初代単球におけるIFN-α産生を刺激するインビトロ転写されたRNA
ヒト免疫系におけるIFN-α産生は、大部分はPDCに限定されていると考えられている。ヒト初代単球におけるIFN-α産生は、これまで報告されていない。以前の研究で示されたように(V. Hornung et al., J Immunol 168, 4531 (May 1, 2002); I. B. Bekeredjian-Ding et al., J Immunol 174, 4043 (Apr 1, 2005))、単球はTLR2、TLR4、TLR6、およびTLR8を発現するが、TLR3、TLR7、またはTLR9を発現せず、かつTLR2/6、TLR4、TLR8リガンドに応答してIL-6を産生するが、TLR3、TLR7、またはTLR9リガンドに応答してIL-6を産生しない(I. B. Bekeredjian-Ding et al., J Immunol 174, 4043 (Apr 1, 2005))。単球は、その両方ともPDCでIFN-αを誘導する、CpG-A ODN 2216(A. Krug et al., Eur J Immunol 31, 2154 (Jul, 2001))およびR848を含む検討した全てのTLRリガンドでの刺激によってIFN-αを産生しなかった(図1およびデータは示さない)。本発明者らは、RNA中のモチーフパターンまたは配列が、単球でIFN-αを誘導する長いRNA分子中に存在する可能性があるという仮説を立てた。
化学合成によって100ヌクレオチドよりも大きいssRNAを生成するのは実行不可能であるので、インビトロ転写を用いて、長いssRNA分子を生成した。RNA転写物を単球およびPDCにトランスフェクトしかつIFN-α産生をELISAで評価した。
本発明者らは、2500ヌクレオチド長のRNA分子は、初代ヒト単球で強いIFN-α応答を刺激するが、TLR9リガンドCpG-A ODN 2216またはTLR7/8リガンドR848は、該応答を刺激しないということを見出した(図1A)。
異なる長さ(27〜302ヌクレオチド)の一組のssRNA分子を生成するのに用いた鋳型は、5'末端で同一であったのに対し、3'末端は徐々に短くされていた。結果として、この組のssRNA分子は、5'末端の配列が同一であった。単球でのIFN-a誘導は、(27ヌクレオチド〜302ヌクレオチドの)異なる長さのインビトロ転写されたRNA分子を用いた場合にも見られた(図1B)。
次に、3'配列の長さが、5'リン酸RNAのIFN-α誘導活性に影響を与えるかどうかを検討した。27〜9ヌクレオチドの範囲に及ぶ5'三リン酸RNAオリゴヌクレオチドを3'末端から27-merオリゴヌクレオチドを(3ヌクレオチドずつ)徐々に短くすることによって生成した。27、24、および21ヌクレオチド長のRNAオリゴヌクレオチドが、単球におけるIFN-αの強力な誘導因子であったのに対し、より短い配列については活性の急落が観察された(図1C)。これによって、インビトロ転写されたRNAが単球でIFN-αを誘導するのに、21塩基の最低限の長さを有さなければならないことが示唆された。
図1Bで提示した結果は、3'配列が5'三リン酸RNAのIFN-α誘導活性に影響し得ることを示唆すると解釈し得るので、3'配列(21ヌクレオチド)が、ポリG(tri-ポリG)、ポリA(tri-ポリA)、ポリC(tri-ポリC)、またはポリU(tri-ポリU)のホモポリマーのいずれかである、31-mer(すなわち、31ヌクレオチド長)の5'三リン酸RNAオリゴヌクレオチドを生成した。5'末端の10塩基は、これらのオリゴヌクレオチドについて同一であった。4つ全てのRNAオリゴヌクレオチドが、単球におけるIFN-α誘導の点で等しく強力であることが分かった(図1D)。
これらの結果により、5'三リン酸RNAが認識されるのには最低限の長さが必要であることが示された。これらの結果により、インビトロ転写されたRNAオリゴヌクレオチドの3'配列が、IFN-α誘導活性に対する強い影響を有さないことが示唆されたものの、より大きいRNA分子でのデータ(図1B)によって、二次構造形成のあり得る影響が暗に示された。
さらに、これらの結果により、特異的な配列モチーフよりもむしろ全てのインビトロ転写されたRNA分子が共有する分子的特徴が、単球におけるIFN-α誘導の原因であることが示された。
実施例2.ヒト初代単球におけるIFN-α誘導に必要であるインビトロ転写されたRNAの5'三リン酸部分
一般に、RNAのインビトロ転写には、バクテリオファージT7 DNA依存性RNAポリメラーゼが用いられる。合成RNAまたは真核生物mRNAとは異なり、T7 RNAポリメラーゼによって生成されるRNAは、RNA分子の5'末端にキャッピングされていない三リン酸基を含む。5'三リン酸の配列非依存的な寄与を検討するために、合成およびインビトロ転写されたバージョンの免疫刺激性ssRNAオリゴヌクレオチド9.2s(isRNA9.2s、19ヌクレオチド)によるIFN-α誘導を比較した。isRNA9.2sは、以前の研究でPDCにおけるIFN-α産生の強力な刺激であると同定された(V. Hornung et al., Nat Med 11, 263 (Mar, 2005))。
インビトロ転写されたバージョンのisRNA9.2sのみが、単球におけるIFN-α産生を強く誘導し、合成isRNA9.2sは誘導しなかった(図2A、上のパネル)。IFN-α誘導活性のこの相違は、異なるトランスフェクション効率によるものではなかった(図7)。単球とは対照的に、PDCは、インビトロ転写されたisRNA9.2sおよび合成isRNA9.2sの両方に応答してIFN-αを産生した(図2A 下のパネル)。
次に、インビトロ転写を用いて、5'位に1ヌクレオチドの突出があるdsRNAオリゴヌクレオチドを生成した。2つの一本鎖オリゴヌクレオチド(tri-GFPs、tri-GFPa)および二本鎖オリゴヌクレオチド(tri-GFPds)は、単球において同程度のレベルのIFN-αを誘導した(図2B)。G残基で一本鎖RNAを特異的に分解するエンドリボヌクレアーゼである、RNアーゼT1によるdsRNA(tri-GFPds)の(5'三リン酸を含む)5'突出の切断は、IFN-α誘導活性を完全に無効にした(図2B)。その上、ウシ小腸アルカリホスファターゼ(CIAP)を用いてインビトロ転写された一本鎖RNAオリゴヌクレオチドの5'末端を脱リン酸化した場合、単球においてIFN-α応答の完全な無効化が観察された(図2C)。対照的に、TLR7を介して一本鎖RNAオリゴヌクレオチドを検出することが知られている、PDCは、オリゴヌクレオチドを脱リン酸化した場合にIFN-α産生の減少を示さなかった(図2C)。
グアノシン-5'-三リン酸を持つオリゴヌクレオチドとは異なり、グアノシン-5'-二リン酸、グアノシン-5'-一リン酸、またはグアノシン-5'-ヒドロキシルを含むよう生成されたインビトロ転写されたRNAは、単球においてIFN-αを誘導しなかった(図8)。
まとめると、これらのデータにより、5'三リン酸が単球におけるインビトロ転写されたRNAのIFN-α誘導活性の原因であり、かつ5'三リン酸がssRNAおよびdsRNAの両方にIFN-α誘導活性を付与することが示された。
実施例3.5'三リン酸RNAを介するIFN-α誘導を無効にする7-メチルグアノシンキャッピングおよび真核生物特異的な塩基修飾
真核細胞では、7'メチルグアノシンが、キャッピングと呼ばれる過程によって新生mRNA転写物の5'三リン酸に付着する。キャッピングは、ヌクレアーゼに対する真核生物RNAの安定性を向上させかつリボソームタンパク質のmRNAへの結合を増強する。
5'三リン酸RNAのIFN-α誘導活性に対するキャッピングの影響を調べた。キャッピングされたRNAは、インビトロ転写反応物中に合成キャップ類似体、N-7メチルGpppG、を含めることによってインビトロ転写で生成することができる。(典型的にはN-7メチルGpppG:GTPの4:1混合物として)N-7メチルGpppGおよびGTPの両方がインビトロ転写の間存在することが必要でありかつ両方ともT7 RNAポリメラーゼによって取込まれるので、全ての転写物のうちのおよそ80%がインビトロ転写後にキャッピングされる。およそ20%のキャッピングされていないRNAおよび80%のキャッピングされたRNAを含む、合成キャップ類似体の存在下で転写される様々な長さのRNAは、キャッピングされていないインビトロ転写されたRNA(100% キャッピングされていない)と比較した場合、単球においてIFN-α産生を誘導することに関してはるかに活性が低いことが分かった(図3A)。
5'キャッピングの他に、真核生物のRNAは、RNA転写物の様々なヌクレオシドの修飾および2'ヒドロキシル位置の骨格リボースのメチル化を含む幾つかのその他の転写後成熟工程を経る。この点に関して、成熟した真核生物のRNAにはたくさんあるが、原核生物またはウイルスのRNAにはないヌクレオシド修飾の取込みは、TLRシステムによって仲介されるRNA誘発性の炎症応答の完全な無効化をもたらすことができることが以前に示されている(K. Kariko, et al. Immunity 23, 165 (Aug, 2005))。この現象が、5'三リン酸RNA誘発性のIFN-α応答についても当てはまるかどうかを検討するために、それぞれのヌクレオシドまたはリボースが修飾されたNTPと置換した様々なNTPを用いたインビトロ転写によってRNAオリゴヌクレオチドを生成した。
ウリジン(U)の代わりにシュードウリジン(Ψ)かまたは2-チオウリジン(s2U)のいずれかを置換した場合に、IFN-α産生の著しい減少が見られた(図3B)。UTPの代わりに2'-O-メチル化UTPを5'三リン酸RNAオリゴヌクレオチドに取込ませた場合に、類似の結果が得られた(図3C)。これらの結果と一致して、5'キャップを欠きかつそれぞれのヌクレオシドおよびリボース修飾が少ない原核生物のRNAのトランスフェクションは、単球における強いIFN-α応答を結果的にもたらしたのに対し、真核生物のRNAは、IFN-α誘導の点で完全に不活性であった(図9)。
単独かまたは合成RNAと組み合わせたリポ多糖(LPS)は、単球におけるIFN-α産生に寄与しなかった(図9)。
それはエンドヌクレアーゼダイサーの天然の切断産物中に生じるので、5'三リン酸RNA二重鎖における2ヌクレオチドの3'突出の存在のような構造的特色は、5'三リン酸RNAオリゴヌクレオチドの免疫刺激活性に干渉しなかった(図10)。
全体的に見ると、これらの結果により、成熟真核生物のRNA種で一般に見出される転写後修飾が、5'三リン酸RNAオリゴヌクレオチドの免疫刺激活性を抑制し、それによって自己および非自己RNAの区別に利用することができる分子構造をもたらしていることが示された。
実施例4.エンドソームの成熟と無関係である5'三リン酸RNAオリゴヌクレオチドによるIFN-α誘導
TLRのファミリーの中で、TLR3、TLR7、TLR8、およびTLR9は、核酸を検出することが知られている。多くの研究によって、一本鎖RNAが、両方ともエンドソーム膜にある、TLR7およびTLR8によって認識されることが示唆されている。CpG-DNAと同様に、TLR7/8による一本鎖RNAの認識は、エンドソームの成熟を阻害する、クロロキンによって遮断することができる。本発明者らは、PBMCにおいて、増加濃度のクロロキンはCpG-AによるIFN-α誘導を阻害するが、5'三リン酸RNAによるIFN-α誘導を阻害せず(図12A);さらに、クロロキンが、単離された単球における5'三リン酸RNA誘導性のIFN-α産生に影響を及ぼさない(図12B)ことを見出した。CpG-Aは、TLR9を欠くためにクロロキンがあってもなくても単球において不活性である(図12B)。
ヒトのシステムと類似して、マウス骨髄細胞および骨髄樹状細胞は、5'三リン酸RNAのトランスフェクションによって大量のIFN-αを産生した。TLR7-/-マウス(図12C)またはLPS2 -/-マウス(データは示さない)からの骨髄由来骨髄樹状細胞におけるIFN-αおよびIP-10誘導は、野生型マウスにおけるIFN-α誘導のレベルと同程度であった。
全体的に見ると、これらのデータにより、5'三リン酸RNAの認識はエンドソームの成熟を必要としないこと、およびTLR3、TLR7/8、またはTLR9は関与しないことが示唆された。
実施例5.RIG-Iを必要とするが、MDA5を必要としない外来性および内在性5'三リン酸RNAによるI型IFN誘導
以前の研究で、本発明者らは、TLR7を介する合成の免疫刺激性RNAの認識は、エンドソーム送達を可能にしかつヌクレアーゼ分解に対する保護を付与するカチオン性ポリマーとの複合体化を必要とするが、細胞質へのRNAのトランスフェクションを必要としないことを見出した。合成isRNAとは対照的に、5'三リン酸RNAは、カチオン性脂質によって細胞質中にトランスフェクトされた場合にのみ単球におけるIFN-αを誘導したのに対し、カチオン性ペプチドとの複合体化は十分ではなかった(データは示さない)。これらの観察と一致して、5'三リン酸RNAを介するIFN-α誘導は、エンドソームの成熟もTLR7(図11)もTLR3(データは示さない)も必要としなかった。これらの結果により、5'三リン酸RNAの受容体は、細胞質にあり、エンドソーム区画にはないことが示された。
RIG-IおよびMDA-5はRNAウイルスの認識に関与する細胞質タンパク質であり(H. Kato et al., Nature 441, 101 (Apr 9, 2006));RIG-IおよびMDA-5の両方とも、dsRNA認識に関与すると考えられている。本発明における5'三リン酸RNAはssRNAとして活性があったが、RIG-IまたはMDA-5が5'三リン酸認識に関与しているかどうかは明らかにされていなかった。
RIG-Iのドミナントネガティブ変異体の効果に焦点を当てるために、IFN-βプロモーターの制御下でレポータールシフェラーゼを発現するHEK 293細胞を単球の代わりに用いた。予期した通り、RIG-Iを一過性にトランスフェクトしたHEK 293細胞は、ポリ(I:C)または合成isRNA(RNA9.2s)に応答しなかった(図4A)。しかしながら、予期しなかったことに、一本鎖5'三リン酸RNA(tri-GFPsおよびtri-GFPa)は、RIG-I発現HEK 293細胞におけるレポーター発現を強く活性化した。全長RIG-Iを発現するHEK 293細胞のみが、5'三リン酸RNAに応答し;N末端のCARDドメインを欠く切断されたRIG-IまたはATPアーゼ活性がないRIG-I 270KA突然変異体を発現するHEK 293細胞は、応答しなかった。
RIG-Iが5'三リン酸RNAの認識に必要とされることを確認するために、RIG-I-/- MEFにおける5'三リン酸RNAの活性を検討した。野生型MEFが、5'三リン酸RNA刺激に応答して大量のIFN-β(図4B)およびIL-6(データは示さない)を産生したのに対し、RIG-I-/- MEFでは応答が検出されなかった(図4B)。MDA-5 -/- MEFにおける5'三リン酸RNAに対する応答は、野生型MEFと同様であった。
まとめると、これらのデータにより、RIG-Iは5'三リン酸RNAの認識に必要とされているが、MDA-5は必要とされていないという証拠および5'三リン酸RNAの認識が初代単球などの免疫細胞に限定されていないという証拠がもたらされた。
5'三リン酸RNAはRIG-Iによって認識されるので、T7 RNAポリメラーゼの細胞質での過剰発現による内在性の5'三リン酸RNAの形成がI型IFN経路を誘発するはずであるという仮説が立てられている。この仮説を検討するために、リバースジェネッティックスによるアプローチの文脈でインビボ転写されたcDNAから組換えネガティブ鎖RNAウイルス(NSV)を生成するのに広く用いられている、システム(F. Radecke et al., Embo J 14, 5773 (Dec 1, 1995))を利用した。このシステムにより、細胞質に発現したT7 RNAポリメラーゼによる細胞内での鋳型依存的なRNAの直接的転写が可能になる。
実際、外来性に添加される5'三リン酸RNAの非存在下で、野生型RIG-Iおよび野生型T7 RNAポリメラーゼの共発現によって、I型IFN応答が強く誘導された(図4C)。野生型RIG-Iおよび突然変異形態のT7 RNAポリメラーゼ(T7 D812N)の組み合わせまたは突然変異体RIG-I(RIG-IC)および野生型T7 RNAポリメラーゼの組み合わせを発現させた場合、I型IFN応答は検出されなかった。
高い発現のレベルの時に、鋳型非依存的な、T7 RNAポリメラーゼを介するI型IFN誘導が見られ(図4C:鋳型なしおよびX8dT);T7 RNAポリメラーゼプロモーターを含む鋳型の存在は、転写依存的なI型IFN誘導を増強することができた(図4C:pBKS)。T7 RNAポリメラーゼをより低いレベルで発現させた場合、完全な鋳型依存的なI型IFN誘導を見ることができた(図4D;100 ng T7 RNAポリメラーゼ)。
これらの結果により、外来性に添加される5'三リン酸RNAだけでなく、内在性に生成される5'三リン酸RNAもRIG-Iによって認識されることが示され、かつ外来性に添加される5'三リン酸RNA調製物中の汚染物がI型IFNの誘導に関与するのではないことが確認された。
実施例6.哺乳類のネガティブ鎖RNAウイルス由来のゲノム三リン酸RNAを直接検出するRIG-I
特徴として、全てのNSVは、プライマー非依存的な様式でのウイルスRNA複製を開始し、ウイルスゲノム(vRNA)またはアンチゲノム(cRNA)の5'末端の三リン酸部分の存在を結果的にもたらす。その上、例えばパラミクソウイルスおよびラブドウイルスを含む、セグメント化されていないゲノムを持つNSV(モノネガウイルス目)の場合、RNA転写によって、vRNAの3'末端が鋳型となる、リーダーRNAとして知られる、大量の短い(およそ60 nt)5'三リン酸RNAが生み出される(S. P. Whelan, et al. Current topics in microbiology and immunology 283, 61 (2004))。RIG-Iによるウイルス感染の認識におけるNSV 5'三リン酸RNAの重要性を評価するために、プロトタイプラブドウイルスである、狂犬病ウイルス(RV)を用いた。
野生型RV(SAD L16)は、IFN誘導の強力なアンタゴニストである、ホスホプロテインPをコードしており、したがって上皮細胞の感染時のそれ程のIFN発現を誘導しない。対照的に、小さいP(SAD ΔPLP)を発現するよう遺伝子改変されたRV突然変異体は、IFNの効率的な誘導因子である(K. Brzozka, et al. Journal of virology 79, 7673 (Jun, 2005); K. Brzozka, et al. Journal of virology 80, 2675 (Mar, 2006))。RIG-IがRV感染の認識に関与することを確認するために、Vero細胞に、トランスフェクトされたRIG-IまたはRIG-IC(RIG-Iのドミナントネガティブ切断突然変異体)の非存在下または存在下で、IFN誘導性RVである、SAD ΔPLPを感染させた。SAD ΔPLP感染は、RIG-Iの過剰発現によってさらに増強されかつRIG-ICによって強く抑制され得る強力なIFN応答を誘発した(図5A)。
これらの結果により、RIG-Iは、その他のNSV、VSV、およびインフルエンザについて観察された(H. Kato et al., Nature 441, 101 (Apr 9, 2006))のと同様に、RV感染時のIFN応答の開始に必要とされることが示された。
RV RNAそれ自体がRIG-Iによって認識されるのかまたはウイルス複製がRIG-Iによって認識されるのかということに取り組むために、RNAをRV感染BSR細胞から単離し、その後HEK 293T細胞にトランスフェクトした。RV感染細胞由来のRNAは強力なIFN-β応答を誘導したが、非感染細胞由来のRNAは誘導しなかった(図5B)。その上、トランスフェクション前に、単離されたRNAをCIAPで脱リン酸化すると、観察されたIFN-β産生は完全に無効になり(図5B)、5'三リン酸基が認識に必要とされることを示した。
NSVおよびNSV感染細胞のRNAは感染性であるとは考えられておらずかつ複製周期の開始を可能にしない。RV SAD L16感染細胞由来のRNAが、IFN-β誘導の点でRV SAD ΔPLP感染細胞由来のRNAと同等に強力であるという事実により、それぞれのRNA分離株のトランスフェクションによって生産的な翻訳および複製がほとんど全くまたは全く開始されなかったことが示された。
それでもなお、RVの複製がI型IFN応答を誘発するのに必要であったことを完全に排除するために、ビリオン由来の全長RNAを単離し、I型IFN発現を誘導するその能力について評価した。200 ngの精製されたRV RNAのトランスフェクションは、HEK 293T細胞におけるI型IFN誘導を効果的に刺激しかつゲノムRV RNAの脱リン酸化は、IFN応答を完全に無効にした。58ヌクレオチド長のRVリーダーRNAに対応するインビトロ転写されたssRNAによって、ウイルスssRNAの認識およびウイルスssRNAによる強力なI型IFN誘導が確認された。
全体的に見ると、これらの結果により、RIG-Iは、複製とは無関係にRV由来のゲノムRNAを直接認識しかつRNAの5'末端が脱リン酸化された場合、この認識は無効になることが示された。
実施例7.RIG-Iに直接結合する5'三リン酸RNA
RIG-Iが5'三リン酸RNAの認識に必要とされるという事実は、RIG-Iが5'三リン酸RNAの受容体であるという何の証拠ももたらさない。5'三リン酸RNAの受容体を同定するために、インビトロ結合アッセイを実行し、5'三リン酸RNAがRIG-I、またはRIG-IのRNA結合ドメインであるRIG-ICをプルダウンする能力を検討した。
3'末端のビオチンタグが付いたRNAオリゴヌクレオチドを生成し、全長RIG-I、RIG-I CARD2(RIG-Iの二番目のCARD)、またはRIG-I Δヘリカーゼ_C(予測されたヘリカーゼスーパーファミリーc末端ドメインが欠けているRIG-I)を過剰発現するHEK 293細胞由来の全細胞ライセートとインキュベートした。その後、ストレプトアビジンビーズを用いて、5'三リン酸RNAオリゴヌクレオチド上のビオチンタグをプルダウンした。
ビオチン化された5'三リン酸オリゴヌクレオチド(tri-G-AC-U-Bio)が、全長RIG-Iを免疫沈降することができるのに対し(図6A、三番目のパネル、真ん中の部分)、それは、切断されたバージョンのRIG-I、CARD2、およびRIG-I Δヘリカーゼ_Cをプルダウンするのにはあまり効果的ではなかった(図6A、三番目のパネル、左および右の部分)。ビオチン化されていない対照RNAオリゴヌクレオチド(tri-G-AC-U)は、RIG-Iを免疫沈降しなかった。精製されたRIG-ICも、5'三リン酸RNAオリゴヌクレオチドによって効率的にプルダウンされた(図6B、二番目のレーン)。RIG-Iとのインキュベーション前に、RNAオリゴヌクレオチドの最初の5'三リン酸基を酵素的に除去した場合、共沈殿は見られなかった(図6B、四番目のレーン)。
これらの結果により、5'三リン酸RNAは全長RIG-IまたはRIG-ICに直接結合すること、すなわち、RIG-Iは5'三リン酸RNAの認識に関与する直接的な受容体であることが示された。
実施例8.IFN-α産生を誘導する点で5'グアノシン三リン酸RNAオリゴヌクレオチドよりも優れている5'アデノシン三リン酸RNAオリゴヌクレオチド
古典的なインビトロ転写系は、T7 RNAポリメラーゼコンセンサスプロモーターを利用している(J. J. Dunn, F. W. Studier, J Mol Biol 166, 477 (Jun 5, 1983))。このプロモーターの下での転写は、GTPによって開始されかつ効率的な転写のためにRNAの5'末端に2つまたはそれより多くの連続するグアノシンを通常必要とする。それにもかかわらず、5' ATPで始まるT7 RNAポリメラーゼ用のプロモーター系を用いることが可能である(F. Huang et al. Biochemistry 39, 15548 (Dec 19, 2000))。この系を用いて、5'三リン酸RNAオリゴヌクレオチドのI型IFN誘導活性における最初の5'グアノシンの役割を評価した。それが5'アデノシンで始まるので、RNA9.2s(RNA9.2s-0A)を参照オリゴヌクレオチドとして用いた。
RNA9.2s-0A(5' ATP)を、対応するヒトTLR9 mRNAの1塩基下流にずれている、RNA9.2s-1G(5' GTP)と比較すると、後者はおよそ25%のIFN-α誘導の低下を示した(図12、上のパネル)。ヒトTLR9 mRNAのさらに4塩基下流の、5'アデノシンで始まる別の19-merオリゴヌクレオチドを転写することができた(RNA9.2s-5A)。RNA9.2s-5Aは、IFN-α誘導の点でRNA9.2-0Aに匹敵した。
第二の組の実験はこれらの知見を裏付けた:インビトロ転写された35-mer RNAオリゴヌクレオチドAΦ6.5-35n(5' ATP)のGΦ6.5-35n(5' GTP)との比較により、これらのオリゴヌクレオチドは配列において97%よりも大きい相同性を共有するにもかかわらず、アデノシンで始まる転写物のI型IFNを誘導する際の明瞭な優位性が明らかにされた(図12、下のパネル)。
まとめると、これらの知見により、5'アデノシンで始まるRNA転写物はIFN-α誘導の点で5'グアノシンで始まるRNA転写物よりも強力であることが示された。さらなるデータにより、5'末端の4つ全てのあり得る塩基のうち、最も高いIFN-α誘導活性は、Aが5'末端にある場合に見られ、次いでC、U、およびGである(図25)ことが示されている。
実施例9.その5'ヌクレオチド配列に依存するアデノシンで始まる5'三リン酸RNAオリゴヌクレオチドのIFN-a誘導活性
配列(5'→3')の2番目、3番目、および4番目の位置の全てのあり得る塩基順列(A、C、G、およびU)を持つアデノシンで始まる三リン酸RNAオリゴヌクレオチド(表2)をインビトロ転写によって生成した。その後、3人の独立のドナー由来の単球を単離し、それぞれのRNAオリゴヌクレオチドをトランスフェクトした。トランスフェクション36時間後、上清をIFN-α産生について解析した。全てのオリゴヌクレオチドの得られたIFN-α誘導レベルを、全てのオリゴヌクレオチドの平均の誘導レベル(= 100%)に対して標準化した。3人全てのドナーの得られた標準化された誘導レベルを平均値 ± SEMとしてまとめた(図13)。
同一の3'配列を有するが、2番目、3番目、および4番目の位置に異なるヌクレオチドを有する、アデノシンで始まる、インビトロ転写されたRNAオリゴヌクレオチドは、異なるレベルのIFN-α誘導活性を有することが図13から明らかである。最も高いIFN-α誘導活性を付与する5'の4-ヌクレオチド配列には、
Figure 2010500011
が含まれる。
(表2)
全てのオリゴは2番目、3番目、および4番目の位置以外に同じ配列
Figure 2010500011
を共有する。
Figure 2010500011
Figure 2010500011
Figure 2010500011
実施例10.5'三リン酸の存在にほんの一部だけ依存する細菌RNAのIFN-α誘導活性
図9で示した通り、トータルの細菌RNAは単球からIFN-α誘導活性を誘導することができる。
細菌RNAのIFN-α誘導活性が5'三リン酸の存在に起因するのかどうかを明らかにするために、大腸菌細菌株DH10BからトータルRNAを単離し、5'末端を脱リン酸化するためにCIAPで処理するかまたは処理しないかのいずれかにし、その後精製した単球にトランスフェクトした(200 ngのRNA)。刺激の24時間後にIFN-α産生を解析した。
対照として、tri-GFPaをインビトロ転写で調製し、5'末端を脱リン酸化するためにCIAPで処理するかまたは処理しないかのいずれかにし、その後精製した単球にトランスフェクトした(200 ngのRNA)。刺激の24時間後にIFN-α産生を解析した。
実施例2および図2Cで先に示した通り、インビトロ転写されたRNAオリゴヌクレオチドからの5'三リン酸の除去は、オリゴヌクレオチドが単球からIFN-αを誘導する能力をほぼ完全に無効にする(図14B)。対照的に、トータルの細菌RNAからの5'三リン酸の除去は、単球から誘導されるIFN-αの量を30%未満低下させた(図14A)。
したがって、5'三リン酸は、細菌RNAがIFN-αを誘導する能力の原因となる分子的特色のうちの1つにすぎない。
実施例11.1つのRNA分子中での効率的な遺伝子サイレンシング活性と強力な免疫刺激機能の組み合わせ
本発明者らは、マウスBcl-2を標的化する幾つかの配列を同定し、その後マウスBcl-2 mRNAの異なる部分を標的化する3つの合成siRNA(抗Bcl-2.1、抗Bcl-2.2、抗Bcl-2.3)を生成した(全ての化学合成RNAオリゴヌクレオチドの詳細なリストについては表3を参照されたい)。
(表3)化学的に合成したRNA配列
Figure 2010500011
B16メラノーマ細胞での異なる抗Bcl-2-siRNAおよび対照siRNAのトランスフェクションの後、本発明者らは、細胞ライセートのウェスタンブロッティングによってBcl-2の下方調節を明らかにした(図15a、上のパネル)。異なるsiRNAは、標的下方調節における異なる効率を示した。単一用量の抗Bcl-2.2(これからOH-2.2と呼ぶ)によるB16メラノーマ細胞の処理は、対照siRNAと比較してトランスフェクション48時間後のBcl-2発現の効率的な下方調節を結果的にもたらした(図15a、上のパネル)。この特異的なBcl-2の低下は、18時間後に既に観察され、少なくとも72時間持続し、かつ細胞内Bcl-2のFACS解析で確認された(データは示さない)。
その後、抗Bcl-2.2はインビトロ転写され、そのため5'三リン酸を持った(これから3p-2.2と呼ぶ;全てのインビトロ転写鋳型の詳細なリストについては表4を参照されたい)。
(表4)インビトロ転写用のDNA鋳型
Figure 2010500011
Bcl-2発現を低下させるその能力について3p-2.2を検討した(図15a)。3p-2.2 siRNAによるB16細胞のトランスフェクションはまた、Bcl-2の効率的な下方調節を結果的にもたらした。重要なことに、この特異的なBcl-2の低下は、非特異的な3p-siRNA(3p-GC)または合成の対照siRNAでは観察されなかった。
抗RIG-I抗体を用いて、本発明者らは次に、刺激前後のB16細胞における内在性RIG-Iの発現をウェスタンブロットで明らかにした(図15b)。興味深いことに、B16細胞におけるRIG-I発現は、外来性のIFN-β(1000 U/ml)によって強く上方調節され、かつ3p-2.2 siRNAによって同様の程度まで上方調節された。
トランスフェクトされた3p-2.2のB16細胞における免疫刺激能を調べるために、本発明者らは、IFN-βプロモーター活性化をモニタリングした(図15c)。驚いたことに、3p-2.2によるB16細胞の刺激は、IFN-βプロモーターによって駆動されるレポーター遺伝子(ウミシイタケルシフェラーゼ)の誘導を著しく増強し、ポリ(I:C)またはOH-2.2は増強しなかった(pIFNβ-luc;3p-2.2とOH-2.2とポリ(I:C)の間で*P<0.05)。
これにより、本発明者らは、B16細胞におけるRIG-IおよびそのCARD含有アダプタータンパク質、Cardif(Kawai T et al. (2005) Nat. Immunol. 6(10): 981-988 ; Meylan E et al (2005) Nature 437(7062): 1167-72; Seth R et al. (2005) Cell 122(5): 669-82; Xu L et al. (2005) Mol Cell 19(6): 727-40)の寄与をさらに評価するよう促された。
マウスRIG-Iを標的化する合成siRNA(表3参照)は、3p-2.2依存的なIFN-βプロモーター活性化を著しく低下させ(図15d;対照siRNA(siCO)+ 3p- 2.2とRIG-I siRNA(siRIG-I)+ 3p-2.2の間で*P<0.05)、3p-2.2誘導性シグナル伝達におけるRIG-Iの明瞭な役割を示した。
NS3-4Aは、Cardifを特異的に切断し、それによってCardifを不活性化することができるC型肝炎ウイルス(HCV)の多機能セリンプロテアーゼである(Chen Z et al. (2007) J Virol. 81 (2):964-76; Meylan E et al (2005) Nature 437(7062): 1167-72)。B16細胞におけるNS3-4Aの発現が、3p-2.2によるIFN-βプロモーター活性化を大いに低下させたのに対し、不活性形態のNS3-4A*の発現は、IFN-βプロモーター活性化に対して何の効果も有さなかった(図15e;NS3-4A* + 3p-2.2 対 NS3-4A + 3p-2.2で*P<0.05)。
総合すると、これらの結果により、B16細胞は3p-2.2による刺激によってRIG-Iを上方調節することならびにRIG-IおよびCardifはB16メラノーマ細胞における3p-2.2誘導性の免疫刺激に不可欠であることが示されている。さらに、本発明者らは、3p-2.2がマウスメラノーマ細胞におけるBcl-2の効率的な遺伝子サイレンシングを誘導することを示している。
実施例12.Cardif非依存的アポトーシスを腫瘍細胞で直接誘発するが、初代細胞では誘発しない3p-2.2のトランスフェクション
3p-RNAへの長時間にわたる曝露の後、B16細胞の顕微鏡による評価により、対照siRNAまたはOH-2.2をトランスフェクトしたB16細胞と比較して細胞数の低下が明らかにされた。本発明者らは、3p-2.2のトランスフェクションによる細胞死の増加が、生存しているB16細胞の低下に寄与しているという仮説を立てた。
観察された細胞死の原因となるメカニズムの輪郭を描くために、アポトーシスの表現型についてアネキシン-Vおよびヨウ化プロピジウム染色でB16細胞を解析した。トランスフェクション24時間後、アポトーシス細胞の数の著しい増加が、対照siRNA(1.06%)と比較して3p-2.2(14%)で観察された(図16a)。行なわれた全ての実験において、3p-2.2で処理したB16細胞のおよそ15%(15.62% ± 1.01;平均% ± SEM)がアネキシン-Vについて陽性であり;アポトーシス細胞の数は、対照siRNAで処理した細胞でおよそ4倍少なかった(図16b;2.93% ± 1.12)。OH-2.2による処理も、アポトーシス細胞の数を増加させたが(5.63% ± 0.66)、3p-2.2よりも著しく少ない程度であった(図16b)。
標的特異的でない3p-RNAを用いてB16だけでなくその他のメラノーマ細胞株でも同様の実験を実行し、3p-RNAがsiRNAを介する遺伝子サイレンシングとは無関係に細胞死を誘導することを示す、同様の結果を得た(データは示さない)。
観察された細胞死に関係のある細胞内経路を同定するために、本発明者らはまず、B16細胞でNS3-4Aおよび不活性形態のNS3-4A*を発現させ、アポトーシスについてアネキシン-Vおよびヨウ化プロピジウム染色で解析した(図16c)。これらの実験で、3p-2.2のさらなるトランスフェクション後に、何らアポトーシスの変化は観察されず(不活性形態について8.3% ± 0.5および活性形態について7.3% ± 0.67)、3p-RNA誘導性のアポトーシスは、Cardif非依存的であることを示した。
最近の研究によって、RIG-I依存性ウイルスおよびインビトロ転写されたRNAは、インフラマソームの重要な構成成分である、カスパーゼ-1を活性化することがさらに報告された(Kanneganti TD et al. (2006) Nature 440(7081):233-6)。カスパーゼ-1も、アポトーシス過程に関与することが示唆されている(Cuesta N (2007) J Immunol. 178(6): 3602-11; Henry T et al. 2007 J Exp Med 204(5):987-94)。したがって、本発明者らは、ウェスタンブロットを用いてB16細胞におけるカスパーゼ-1活性化を解析した。これらの実験で、細胞に3p-2.2およびポリ(I:C)をトランスフェクトした場合に、サブユニットp10を活性化するためのプロカスパーゼ-1の切断の増加が観察された(図16d)。しかしながら、カスパーゼ-1を標的化する2つの機能性siRNAを用いて、本発明者らは、アポトーシスのいかなる変化も検出することができず(データは示さない)、カスパーゼ-1は3p-2.2を介するアポトーシスに関与していないことを示唆した。
次いで、本発明者らは、3p-2.2を介する細胞死が腫瘍細胞に制限されているかどうかという問題に取り組んだ。3p-2.2、対照siRNA、およびOH-2.2による刺激後に、ヒト初代細胞である、PBMCを、アポトーシスについてアネキシン-Vおよびヨウ化プロピジウム染色で解析した。興味深いことに、3p-2.2によるアポトーシスの誘導は、ヒトPBMCで観察されなかった(図16d)。さらに、アネキシン-Vによるヒト繊維芽細胞およびヒトケラチン生成細胞の染色により、3p-2.2によるトランスフェクション後の細胞死の増加がないことが明らかにされた(データは示さない)。総合すると、これらの結果により、3p-2.2はメラノーマ細胞ではアポトーシスを誘導するが、初代細胞では誘導しないことが示されている。
実施例13.pDCではTLR7およびcDCではRIG-Iを必要とする3p-2.2によるIFN-α産生
最近の研究によって、ニューカッスル病ウイルス(NDV)、センダイウイルス(SeV)、および水疱性口内炎ウイルス(VSV)を含む、幾つかのRNAウイルスへの曝露による従来型のDC(cDC)におけるIFN-αおよびIFN-β両方の誘導は、RIG-Iによって調節されていることが示された(Kato H et al. (2005) Immunity 23(1): 19-28)。対照的に、形質細胞様DC(pDC)は、NDVなどのウイルスの認識にTLR7を優先的に用いるが、RIG-Iを用いることなく、I型IFNの誘導を引き起こす。
本発明者らは、3p-2.2による刺激後の野生型、RIG-I、TLR7、およびMDA5欠損cDCのIFN応答をELISAで調べた(図17a、b、c)。予期した通り、3p-2.2刺激されたRIG-l欠損マウス由来のcDCによるIFN-α産生は、完全に無効にされた(図17a)。3p-2.2刺激されたMDA5欠損(図17b;野生型 対 MDA5-/-:2509 ± 96 対 2333 ± 178;pg/ml ± SEM)およびTLR7欠損(図17c;野生型 対 TLR7-/-;771 ± 324 対 881 ± 355;U/ml ± SEM)マウス由来のcDCによるIFN-α産生は大部分が正常であった。これらの結果により、3p-2.2によるIFN-αの誘導はcDCにおいてRIG-Iによって調節されることが示されている。
次いで、本発明者らは、磁気ビーズを用いて野生型およびTLR7欠損マウスのFlt3-Lで誘導されたBM由来DC(Flt3-L-DC)からpCDを精製し、IFN-α分泌について検討した。野生型pDCは、3p-2.2に応答してIFN-αを産生した(図17d)。対照的に、TLR7欠損pDCは、3p-2.2に応答して正常に機能しないIFN-α産生を示した(図17d)。
本発明者らはまた、腹腔マクロファージにおけるIFN-α誘導を観察した(データは示さない)。
次に、本発明者らは、精製した異なる免疫細胞サブセットの3p-2.2に対する感受性を調べた。cDCおよびpDCと比較して、B細胞、NK細胞、およびCD8 T細胞は、3p-2.2での刺激に対して低いIFN-α産生によって弱く応答した(cDC 2357 ± 437;pDC 3036 ± 354;NK細胞 94 ± 2,07、B細胞、およびCD8 T細胞 0;U/ml ± SEM)。
これらの観察により、cDCおよびpDCは、主にRIG-IおよびTLRシステムを利用して 3p-2.2を認識することが示されている。しかしながら、養子免疫系の細胞は、3p-RNAに対していかなる大きい程度にもIFN-α産生によって応答しない。
実施例14.全身性の免疫活性化をインビボで引き起こす複合体化した3p-2.2
インビボでの3p-2.2を介する応答の生物学的関連性についての洞察を得るために、本発明者らは、jetPEI(商標)と複合体化した3p-2.2でマウスを刺激し、IFN-α、IL-12p40、およびIFN-γを含む血清サイトカインを測定した(図18a、b、c)。6時間後、3p-2.2は、CpG 1826またはOH-2.2よりも著しく高いレベルのIFN-αを誘導した(図18a;3p-2.2とOH-2.2、CpG 1826、jetPEI(商標)、およびPBSの間でP**<0.01)。3p-2.2およびOH-2.2の両方とも、著しいIL-12p40産生を誘導した(図18b;3p-2.2とjetPEI(商標)およびPBSの間でP**<0.01)。さらに、3p-2.2は、高レベルのIFN-γ産生をインビボで誘導した(図18c;3p-2.2とOH-2.2の間でP**<0.01;3p-2.2とjetPEI(商標)およびPBSの間でP*<0.05)。
本発明者らは次に、3p-2.2の投与後のTLR7欠損マウスにおける血清サイトカインレベルを調べた。IFN-α(図18d)、IL-12p40(図18e)、およびIFN-γ(図18f)の産生は、野生型マウスと比較して3p-2.2のトランスフェクション後のTLR7欠損マウスで一部減少したに過ぎなかった(IFN-α:野生型 対 TLR7-/-、885 ± 89 対 406 ± 181;IL-12p40:5635 ± 1662 対 2609 ± 973;IFN-γ:1881 ± 259 対 1599 ± 259)。対照的に、IFN-α、IL-12p40、およびIFN-γの産生は、OH-2.2による刺激後のTLR7欠損マウスで激しく損なわれた(IFN-α:野生型 対 TLR7-/-、207 ± 100 対 0;IL-12p40:1444 ± 19 対 553 ±147;IFN-γ:926 ± 30 対 107 ± 35)。さらに、野生型マウスにおける3p-2.2の静脈内投与により、血清サイトカインの産生が用量依存的な様式で増強された(図19a)。
3p-2.2の免疫刺激能をインビボでさらに特徴付けるために、本発明者らは、3p-2.2の注射の48時間後に野生型マウスを屠殺し、脾臓細胞を単離し、異なる免疫細胞サブセット上の共刺激分子の表面発現をフローサイトメトリーで解析した。図19bおよび19cで示した通り、3p-2.2は、用量依存的な様式でCD69およびCD86発現の増加に反映されるように骨髄樹状細胞および形質細胞様樹状細胞を活性化するだけでなく、NK細胞、CD4+、およびCD8+ T細胞上のCD69発現もインビボで上方調節した。
本発明者らはその後、3p-2.2およびOH-2.2によって誘導されるIFN-α産生の時間経過をインビボで調べた。本発明者らの先のインビボのデータと一致して、3p-2.2は、その合成カウンターパートであるOH-2.2よりも多い量のIFN-αを誘導した。刺激48時間後、3p-2.2またはOH-2.2の投与後のサイトカインプロファイルは、中程度の白血球減少(図20b)および血小板減少(図20c)を反映した。血小板減少は、3p-2.2で処理したマウスよりもCpG処理したマウスで明白であった(3p-2.2とCpGの血小板総数の間でP**<0.01)。
まとめると、これらの観察により、3p-2.2は、異なる免疫細胞サブセットを強力に活性化し、用量依存的かつTLR7非依存的な様式で血清サイトカインの産生をインビボで増強することが示されている。
実施例15.実験的に誘導したB16メラノーマ肺転移の縮小を結果的にもたらすカプセル化した3p-2.2の送達
本発明者らは、B16メラノーマ肺転移に対する3p-2.2の抗腫瘍活性をインビボで評価した。5匹のマウスの群にまずB16メラノーマ細胞を静脈内に投与し、その後図21aに図示したスケジュールに従ってポリA、OH-2.2、3p-GC、または3p-2.2で処理した。jetPEI(商標)と複合体化したポリA(非刺激性の19-mer RNA分子;表3)は、陰性対照の役割を果たした。jetPEI(商標)と複合体化したCpG 1826は、陽性対照の役割を果たした。14日目に、マウスを屠殺し、肺を摘出した。その後、解剖用の顕微鏡を用いて肺転移を数えるか、または大きい腫瘍量の場合には、重さを量って腫瘍質量を決定した。
OH-2.2で処理したマウスは、ポリA処理した対照群と比較して肺転移の顕著でない縮小を示した(図21b)。重要なことに、3p-2.2による処理は、OH-2.2およびポリA処理した群と比較して相当なパーセンテージのマウスにおける肺転移の縮小をもたらした(3p-2.2とポリA、OH-2.2の間でP**<0.01)。予期した通り、CpG 1826は肺転移の著しい縮小を促進することができたが、3p-2.2よりも少ない程度であった。興味深いことに、ウリジンを全く含まない非特異的な二本鎖5'三リン酸RNAである、3p-GC(表4参照)の投与も、肺転移を縮小したが、3p-2.2よりも著しく少ない程度であった(3p-2.2と3p-GCの間でP**<0.01)。
これらのデータにより、免疫刺激に加えて、3p-2.2は直接的な抗腫瘍活性をインビボで仲介することが示唆された。
最近、PEIと複合体化したsiRNAの腹腔内適用は、注射の部位から離れた所で移植された腫瘍細胞における優先的な取込みをもたらすことが示された(Aigner A et al. (2006) J Biomed Biotechnol 2006(4):71659; Grzelinski M et al. (2006) Hum Gene Ther. 17(7):751-66; Urban-Klein B et al. (2005) Gene Ther. 2005 Mar;12(5):461-6)。
本発明者らは、静脈内投与後にjetPEI(商標)と複合体化したsiRNAの細胞への取込みを共焦点顕微鏡法で調べようとした。B16細胞をC57BL/6マウスに静注し、腫瘍接種の14日後に、単一用量のFITC標識siRNA(100 μg)を眼窩後に注射した。6時間後、マウスを屠殺し、肺を含む様々な組織を摘出した。予期した通り、複合体化していないsiRNAの場合、健康なマウスまたは肺転移があるマウスの肺で、取込みは観察されず、FITC標識siRNAの速やかでかつ完全な分解が示された(図21c、上のパネル、-PEI)。対照的に、PEIとの複合体化によって、インタクトのsiRNAが肝臓および脾臓を含む幾つかの組織中で大量に検出された(データは示さない)。かなりの量のFITC標識siRNAが健康なマウスの肺で検出されたが、罹患したマウスの肺転移よりも少ない程度であった(図21c、下のパネル、+PEI)。
総合すると、B16メラノーマ転移は、3p-2.2を受容した全てのマウスで著しく縮小したが、OH-2.2処理したマウスでは縮小しなかった。さらに、インビボでの腫瘍細胞におけるFITC標識siRNAの直接的な取込みは、免疫刺激に加えて3p-2.2の直接的な抗腫瘍効果を暗に示している。
実施例16.3p-2.2によるB16メラノーマ転移の縮小の原因となるメカニズム
B16メラノーマ転移の縮小の原因となるメカニズムをインビボでさらに調べるために、本発明者らは、野生型、TLR7、およびIFNAR(I型IFN受容体)欠損マウスにB16細胞を静脈内に投与し、これらのマウスをポリA、3p-2.2、またはポリ(I:C)で処理した。3p-2.2によるB16メラノーマ転移の縮小が、対照の野生型マウスと匹敵する程度にTLR7欠損マウスで観察された(図22a、b)。対照的に、3p-2.2の抗腫瘍活性は、IFNAR欠損マウスで減少しており(図22c)、3p-2.2を介する抗腫瘍応答におけるI型IFNの著しい関与が示唆された。
次に、本発明者らは、3p-2.2誘導性の抗腫瘍応答におけるNK細胞およびCD8 T細胞の役割を調べた。TMβ1-mAbを用いてNK細胞を枯渇させた場合、3p-2.2を介する転移の縮小は無効になった(図22d)。したがって、3p-2.2を介する腫瘍抑制は、大部分はエフェクターNK細胞を頼りにしている。対照的に、肺転移の数は、マウスの抗CD8 mAb(RmCD8-2 mAb)による処理によって著しくは変化せず、CD8+ T細胞を介する腫瘍抑制はこのモデルでは最小限度であることが示唆された。
3p-2.2の直接的な抗腫瘍活性をインビボで評価するために、本発明者らは、IFNAR欠損マウスの肺転移におけるBcl-2発現をFACS解析で解析し、3p-2.2、CpG、およびポリAで処理したマウスの肺におけるTUNEL染色を行なった。図22eに見られるように、3p-2.2による処理は、B16メラノーマ転移におけるBcl-2発現の顕著ではない下方調節を結果的にもたらしたが、ポリ(I:C)はもたらさなかった。さらに、3p-2.2は、肺細胞の中でのかなりの量のアポトーシスを引き起こしたが、ポリAはアポトーシスを引き起こさず、CpGはより少ない程度にアポトーシスを引き起こした(図23)。
総合すると、これらの観察により、3p-2.2はNK細胞依存的かつIFNAR依存的な様式で肺転移を縮小することが示されている。さらに、3p-2.2誘導性のBcl-2の下方調製および肺転移におけるアポトーシス性腫瘍細胞の増加も、インビボでの3p-2.2の直接的な抗腫瘍効果を暗に示している。
実施例17.インビトロおよびインビボでの5'三リン酸化RNAを用いたRIG-I刺激によるHBV複製の阻害
ここで本発明者らは、24ヌクレオチド長の3p-siRNA(表5)が、HBV特異的な複製マーカーの低下をインビトロおよびインビボでもたらす、RIG-Iによる認識を介した抗ウイルスIFN-α応答を誘導したことを示している。
(表5)
Figure 2010500011
12O nMの3p-siRNAを、100のMOIでのHBV感染の3日後にHBVの複製を可能にするHepG2-H1.3細胞および初代ヒト肝細胞にトランスフェクトした。HBV複製マーカーに対する3p-siRNAの効果を、未処理の細胞と比較してトランスフェクション後の3日目および6日目に解析した。
感染したHepG2-H1.3細胞では、I型IFNおよび2'-5'-オリゴアデニル酸シンセターゼ(2'-5'-OAS)の発現は、トランスフェクションの3日後に誘導された。HBV子孫は、トランスフェクションの6日後に>95%減少した。HBeAgレベルは約40%、HBsAgレベルは約50%低下した。同じ結果がHBV感染ヒト肝細胞で得られた。
3p-siRNAを(H Schaller, Heidelberg, Germanyに提供された)HBV1.3トランスジェニックマウスに静注した場合、アラニンアミノトランスフェラーゼ(ALT)レベルは正常範囲のままであり、RIG-Iリガンドの細胞毒性の不在を反映していた。INF-αおよび2'-5'-OASは3時間後に強く誘導され、それによってモック処理したマウスと比較したd6でのHBV RNAの60%低下が説明される可能性が極めて高い。HBVウイルス血症およびHBeAgレベルはd6で約50%低下し、かつHBsAgレベルは約15%低下した。
総合すると、5'三リン酸を持つRNAオリゴヌクレオチドでRNAヘリカーゼRIG-Iを誘発することは、HBVに対する重大な抗ウイルス効果を有する。好ましくは、siRNA、shRNA、またはアンチセンスRNAを、ヌクレオチド2656-3182にわたるHBVゲノムの領域を標的化するよう設計し、抗ウイルス剤として用いてもよい。あるいは、HBVゲノムのヌクレオチド1272-3183を標的化してもよい。
実施例18.5'三リン酸RNAの活性を増加させるイノシン含有量
イノシンは、ヒポキサンチンおよびリボースから構成されている、ヌクレオシドである。ある種の状況下で、イノシンは、アデノシンの代わりにRNA中に存在する。ADAR(RNAに作用するアデノシンデアミナーゼ)は、アデノシンを脱アミノ化してイノシンにする(Palladino MJ et al. (2000) Cell 102(4): 437-49)。ADARの重要な機能は、mRNAの転写後修飾である(Gerber AP and Keller W (2001) Trends Biochem Sci 26(6): 376-84)。さらに細胞質で、dsRNA中のアデノシンは、ADARによって脱アミノ化されて、イノシンになる(Bass BL and Weintraub H (1988) Cell 55(6): 1089-98)。ウイルスdsRNAの場合、アデニンはイノシンに交換され、I:UおよびI:C塩基対形成を結果的に生じる可能性がある。
5'三リン酸RNAのIFN-α誘導活性に対するイノシン含有量の寄与を検討するために、2つの異なるdsRNA断片(AおよびB、両方ともTaylorウイルス、プラスミドpEL39に由来:断片A位置4473〜5006および4499〜5034;断片B位置10953〜519および26〜548)をインビトロ転写で調製した。この目的のために、インビトロ転写の間にグアノシン含有量の60%をイノシンに交換した。ヒト単球は、細胞質受容体の刺激によってのみIFN-αを産生するが、TLRの刺激によっては産生しない。
精製したヒト初代単球にdsRNAをトランスフェクトした。18時間後、IFN-αを上清中でELISAによって決定した。本発明者らは、イノシンの存在がAおよびB断片両方の活性を増加させ、ヒト単球でIFN-αを誘導することを見出した(図24A)。イノシンによって、断片AおよびBの活性は両方とも、ポリ(I:C)の活性よりも高かった。
500 bpのdsRNA断片について、RIG-IおよびMDA-5の両方が生物学的活性に寄与すると予期されている。したがって、本発明者らは、MDA-5-/-マウス由来の骨髄樹状細胞におけるdsRNA断片のIFN-α誘導活性を検討した。MDA-5-/-マウスに由来する樹状細胞において、IFN-α誘導活性は、グアノシンの60%をイノシンに交換した場合に、4倍よりも大きく増加した(図24B)。これらのデータは、RNAがイノシンを含む場合に、5'三リン酸RNAのRIG-I刺激活性が強く増加するという明瞭な証拠を提供している。
実施例19.IFN-α産生を誘導することができず、二本鎖であることが必要とされる5'三リン酸を持つ一本鎖RNA
インビトロ転写で生成されたRNAにおいて、3'末端の長さおよび塩基組成は化学的に規定されていない。特に、3'末端は折り返され、ポリメラーゼが部分的に二本鎖のRNAを生成するのを可能にする場合がある。5'三リン酸RNAのIFN-α誘導活性に対する3'末端の寄与を解析しかつ二本鎖RNAの寄与を正確に規定するために、合成5'三リン酸RNA(表6)を記載された通りに調製した(Ludwig J (1981) Acta Biochim Biophys Acad Sci Hung. 16:131-3)。そのような合成5'三リン酸RNAを用いることによって、二本鎖形成を結果的に生じる3'末端の制御されない伸張を排除する。
(表6)化学合成されたssRNAオリゴヌクレオチド
Figure 2010500011
インビトロ転写で生成されたisRNA9.2(Hornung V et al. (2005) Nat Med 11 (3):263-70)を陽性対照(IVT2-3PRNA)として用いた。CpG2331はTLR9リガンドである。
Lipofectamin(0.5 μl、0.2 μgオリゴヌクレオチド)を用いることによってオリゴヌクレオチドをPBMC(ウェル当たり400,000細胞)にトランスフェクトした。4 μgのトータルRNAを20 μlの緩衝剤(最終5O mM Tris/HCI pH 7,5 10O mM NaCl)中で70%まで加熱し、その後40℃まで冷却することによって相補鎖のハイブリダイゼーションを行なった。クロロキンを用いてTLRを介する核酸認識を遮断した(2.5 μg/ml)。24時間後、IFN-α(hIFN-α)を上清中でELISAによって測定した。
化学合成されたssRNAオリゴヌクレオチドのうちのどれもPBMCでIFN-αを誘導せず、インビトロ転写された対照配列(IVT2-3PRNA)のみが PBMCでIFN-αを誘導した。しかしながら、対応するアンチセンス鎖とハイブリダイズさせた場合、全てのオリゴヌクレオチドがIFN-αを誘導した(図25)。最も強いIFN-α誘導は、3P-A/ASについて見られた。全てではないが大部分のオリゴヌクレオチドが5'末端に三リン酸基を含む同じ配列は、より低い活性を示した。5'末端の4つ全てのあり得る塩基のうち、最も高いIFN-α誘導活性は、Aが5'末端にある場合に見られ、次いでC、U、およびGであった(図25)。5'三リン酸のない対照(HO-G/AS)は、IFN-αを誘導しなかった。クロロキンに対して感受性があるTLR9リガンドCpG2331もIFN-αを誘導した。5'三リン酸オリゴヌクレオチドの活性は、クロロキンによって低下せず、IFN-α誘導がTLRとは無関係であることが確認された。
これらの結果により、アンチセンス鎖の存在が5'三リン酸RNAのIFN-α誘導活性に必要とされることが示されている。5'三リン酸RNAオリゴヌクレオチドの生成にインビトロ転写を用いた場合、おそらくは3'末端における二本鎖構造の存在のために、アンチセンス鎖の付加は必要とされない。したがって、「一本鎖」および二本鎖両方が活性のあるインビトロ転写によるか、または合成もしくは非合成であることができかつ5'三リン酸末端を含む必要がない相補鎖と共に、一本鎖5'三リン酸RNAを生成するための完全に合成的なアプローチを用いることによって、活性のあるRIG-Iリガンドを生成することができる。
実施例20.5'三リン酸を持つ合成一本鎖RNAによる標的特異的なIFN-αの誘導
HepG2-H1.3細胞および初代ヒト肝細胞にHBVを100のMOIで感染させるかまたはモックを感染させる。感染の3日後に、5'三リン酸を持ちかつHBV1.1、1.2、1.3、およびHCV対照のアンチセンス鎖のヌクレオチド配列(表5)を有する化学合成された一本鎖RNAを、HBV感染細胞およびモック感染細胞にトランスフェクトする。IFN-αの誘導をELISAで決定しかつHBV感染の程度を、トランスフェクション6日後のHBV感染細胞の数、HBeAgレベル、およびHBsAgレベルによって決定する。

Claims (31)

  1. 脊椎動物におけるウイルス感染、細菌感染、寄生虫感染、腫瘍、多発性硬化症、アレルギー、自己免疫疾患、免疫抑制、および免疫不全からなる群より選択される疾患および/または障害を予防および/または処置するためのオリゴヌクレオチドまたはその前駆体であって、
    オリゴヌクレオチドが、少なくとも1つ、好ましくは少なくとも3つ、より好ましくは少なくとも6つのリボヌクレオチドを5'末端に含み、
    オリゴヌクレオチドが、少なくとも1つ、好ましくは少なくとも2つ、およびより好ましくは少なくとも3つのリン酸基を5'末端に含み、かつリン酸基がキャップまたは修飾をいずれも含まず、
    オリゴヌクレオチドが、少なくとも12、好ましくは少なくとも18、およびより好ましくは少なくとも20、さらにより好ましくは少なくとも21ヌクレオチド長である、
    オリゴヌクレオチドまたはその前駆体。
  2. オリゴヌクレオチドが二本鎖構造を形成することができる配列をいずれも含まない一本鎖であり、かつオリゴヌクレオチドのヌクレオチド配列が疾患または障害関連のRNAと相補的である、請求項1記載のオリゴヌクレオチドまたはその前駆体。
  3. 5'のキャッピングされていないリン酸基のうちの少なくとも1つが三リン酸に含まれない、請求項1または2記載のオリゴヌクレオチドまたはその前駆体。
  4. 少なくとも1つのイノシン(I)を含む、請求項1〜3のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  5. オリゴヌクレオチドの5'末端の最初のリボヌクレオチドが、A、C、Uより選択されるリボヌクレオチド、好ましくはAおよびCより選択されるリボヌクレオチド、および最も好ましくはAを含む、請求項1〜4のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  6. オリゴヌクレオチドの5'末端の最初の4ヌクレオチドの配列が、
    Figure 2010500011
    より選択され、配列が5'→3'方向にある、請求項1〜5のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  7. オリゴヌクレオチドが、シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、特に2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPなどの修飾を含まない、請求項1〜6のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  8. オリゴヌクレオチドまたはその前駆体が、
    Figure 2010500011
    からなる群より選択される4ヌクレオチド(4 mer)モチーフのうちの少なくとも1つ、好ましくは少なくとも2つ、より好ましくは少なくとも3つ、さらにより好ましくは少なくとも4つ、さらにより好ましくは少なくとも5つ、および最も好ましくは少なくとも6つを含み、
    モチーフのヌクレオチド配列が5'→3'であり、かつ
    オリゴヌクレオチドが、12〜64、好ましくは12〜50、より好ましくは14〜40、さらにより好ましくは16〜36、および最も好ましくは18〜25ヌクレオチド長である、
    請求項1〜7のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  9. オリゴヌクレオチドまたはその前駆体が、
    Figure 2010500011
    からなる群より選択される4ヌクレオチド(4 mer)モチーフのうちの少なくとも1つ、好ましくは少なくとも2つ、より好ましくは少なくとも3つ、さらにより好ましくは少なくとも4つ、さらにより好ましくは少なくとも5つ、および最も好ましくは少なくとも6つを含み、
    モチーフのヌクレオチド配列が5'→3'であり、かつ
    オリゴヌクレオチドまたはその前駆体が、12〜64、好ましくは12〜50、より好ましくは14〜40、さらにより好ましくは16〜36、および最も好ましくは18〜30ヌクレオチド長である、
    請求項1〜8のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  10. 複合体形成剤をさらに含む、請求項1〜9のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  11. ウイルスベクターに含まれる、請求項1〜9のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  12. 免疫賦活剤、抗ウイルス剤、抗細菌剤、抗腫瘍剤、および遺伝子サイレンシング剤より選択される少なくとも1つの薬剤、ならびに/または抗腫瘍治療と組み合わせて使用するための、請求項1〜11のいずれか一項記載のオリゴヌクレオチドまたはその前駆体。
  13. レチノイン酸および/またはI型IFNと組み合わせて使用するための、請求項12記載のオリゴヌクレオチドまたはその前駆体。
  14. 脊椎動物において腫瘍細胞のアポトーシスを誘導し、抗ウイルス応答を誘導し、抗細菌応答を誘導し、かつ/または抗腫瘍応答を誘導するための、請求項1〜13のいずれか一項で定義した通りのオリゴヌクレオチドまたはその前駆体。
  15. 抗ウイルス応答、抗細菌応答、および/または抗腫瘍応答が、I型IFN産生、IL-18産生、および/またはIL-1β産生を含む、請求項14記載のオリゴヌクレオチドまたはその前駆体。
  16. 脊椎動物において少なくとも1つの抗原に対する免疫応答を誘導するための、請求項1〜13のいずれか一項で定義した通りのオリゴヌクレオチドまたはその前駆体および少なくとも1つの抗原。
  17. オリゴヌクレオチドまたはその前駆体が、少なくとも1つの抗原と共有結合によって連結している、請求項16記載のオリゴヌクレオチドまたはその前駆体および少なくとも1つの抗原。
  18. 脊椎動物におけるウイルス感染、細菌感染、寄生虫感染、腫瘍、多発性硬化症、アレルギー、自己免疫疾患、免疫抑制、および免疫不全からなる群より選択される疾患および/または障害を予防および/または処置するための医薬の調製用の、請求項1〜13のいずれか一項で定義した通りのオリゴヌクレオチドまたはその前駆体の使用。
  19. 脊椎動物において腫瘍細胞のアポトーシスを誘導し、抗ウイルス応答を誘導し、抗細菌応答を誘導し、かつ/または抗腫瘍応答を誘導するための医薬の調製用の、請求項1〜13のいずれか一項で定義した通りのオリゴヌクレオチドまたはその前駆体の使用。
  20. 抗ウイルス応答、抗細菌応答、および/または抗腫瘍応答が、I型IFN産生、IL-18産生、および/またはIL-1β産生を含む、請求項19記載の使用。
  21. 請求項1〜13のいずれか一項で定義した通りのオリゴヌクレオチドまたはその前駆体を含む、薬学的組成物。
  22. 請求項1〜13のいずれか一項で定義した通りのオリゴヌクレオチドまたはその前駆体と、免疫賦活剤、抗ウイルス剤、抗細菌剤、抗腫瘍剤、および遺伝子サイレンシング剤より選択される少なくとも1つの薬剤とを含む複合調製物であって、オリゴヌクレオチドまたはその前駆体および少なくとも1つの薬剤が同時投与、分離投与、または連続投与用である、複合調製物。
  23. 薬剤がレチノイン酸およびI型IFNの少なくとも1つである、請求項22記載の複合調製物。
  24. 請求項21記載の薬学的組成物または請求項22もしくは23記載の複合調製物と、使用のための取扱説明書とを含む、薬学的パッケージ。
  25. (a)請求項1〜9のいずれか一項で定義した通りのオリゴヌクレオチドまたはその前駆体を複合体形成剤と混合する工程;ならびに
    (b)RIG-Iおよび/またはインフラマソーム(inflammasome)の構成成分を発現する細胞を(a)の混合物と接触させる工程
    を含む、細胞における抗ウイルス応答および/または抗細菌応答および/または抗腫瘍応答を刺激するためのインビトロ法。
  26. オリゴヌクレオチドが一本鎖であり、かつ細胞が該オリゴヌクレオチドのヌクレオチド配列に相補的であるヌクレオチド配列を含むmRNAを含む、請求項25記載の方法。
  27. (a)少なくとも1つのキャッピングされていない5'一リン酸、二リン酸、および/または三リン酸をオリゴヌクレオチドに導入する工程;ならびに
    (b)細胞内で二本鎖構造を形成することができるヌクレオチド配列をオリゴヌクレオチドに導入する工程
    を含む、抗ウイルス応答および/または抗細菌応答および/または抗腫瘍応答を誘導することができるオリゴヌクレオチドを調製するための方法。
  28. (c)5'末端にアデノシン(A)を持つオリゴヌクレオチドを調製する工程;および/または
    (d)5'末端に
    Figure 2010500011
    より選択される配列を有するオリゴヌクレオチドを調製する工程;および/または
    (e)オリゴヌクレオチドにイノシン(I)を導入する工程
    をさらに含む、請求項27記載の方法。
  29. (a)オリゴヌクレオチドから全ての5'リン酸基を排除する工程;ならびに/または
    (b)オリゴヌクレオチドの全ての5'一リン酸、二リン酸、および三リン酸をキャッピングする工程;ならびに/または
    (c)細胞内で二本鎖構造を形成することができる任意のヌクレオチド配列をオリゴヌクレオチドから排除する工程;ならびに/または
    (d)シュードウリジン、2-チオウリジン、2'-フルオリン-dNTP、2'-O-メチル化NTP、好ましくは2'-フルオリン-dCTP、2'-フルオリン-dUTP、2'-O-メチル化CTP、2'-O-メチル化UTPなどの修飾されたヌクレオチドをオリゴヌクレオチドに組み入れる工程
    を含む、抗ウイルス応答誘導活性および抗細菌応答誘導活性を持たないオリゴヌクレオチドを調製するための方法。
  30. 抗ウイルス応答、抗細菌応答、および/または抗腫瘍応答が、I型IFN産生、IL-18産生、および/またはIL-1β産生を含む、請求項25〜29のいずれか記載の方法。
  31. 脊椎動物におけるウイルス感染、細菌感染、寄生虫感染、腫瘍、多発性硬化症、アレルギー、自己免疫疾患、免疫抑制、および免疫不全からなる群より選択される疾患および/または障害を予防および/または処置するための細菌RNA。
JP2009523199A 2006-08-08 2007-08-08 5’リン酸オリゴヌクレオチドの構造および使用 Pending JP2010500011A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06016578 2006-08-08
EP06021271A EP1920775B1 (en) 2006-10-10 2006-10-10 5'Triphosphate oligonucleotide induces anti-viral response
PCT/EP2007/007024 WO2008017473A2 (en) 2006-08-08 2007-08-08 Structure and use of 5' phosphate oligonucleotides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014110956A Division JP2014207906A (ja) 2006-08-08 2014-05-29 5’リン酸オリゴヌクレオチドの構造および使用

Publications (1)

Publication Number Publication Date
JP2010500011A true JP2010500011A (ja) 2010-01-07

Family

ID=38875059

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2009523199A Pending JP2010500011A (ja) 2006-08-08 2007-08-08 5’リン酸オリゴヌクレオチドの構造および使用
JP2014110956A Withdrawn JP2014207906A (ja) 2006-08-08 2014-05-29 5’リン酸オリゴヌクレオチドの構造および使用
JP2016153542A Withdrawn JP2016189790A (ja) 2006-08-08 2016-08-04 5’リン酸オリゴヌクレオチドの構造および使用
JP2017241327A Active JP6748629B2 (ja) 2006-08-08 2017-12-18 5’リン酸オリゴヌクレオチドの構造および使用
JP2019003193A Active JP7071299B2 (ja) 2006-08-08 2019-01-11 5’リン酸オリゴヌクレオチドの構造および使用
JP2020199297A Active JP7108011B2 (ja) 2006-08-08 2020-12-01 5’リン酸オリゴヌクレオチドの構造および使用

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2014110956A Withdrawn JP2014207906A (ja) 2006-08-08 2014-05-29 5’リン酸オリゴヌクレオチドの構造および使用
JP2016153542A Withdrawn JP2016189790A (ja) 2006-08-08 2016-08-04 5’リン酸オリゴヌクレオチドの構造および使用
JP2017241327A Active JP6748629B2 (ja) 2006-08-08 2017-12-18 5’リン酸オリゴヌクレオチドの構造および使用
JP2019003193A Active JP7071299B2 (ja) 2006-08-08 2019-01-11 5’リン酸オリゴヌクレオチドの構造および使用
JP2020199297A Active JP7108011B2 (ja) 2006-08-08 2020-12-01 5’リン酸オリゴヌクレオチドの構造および使用

Country Status (14)

Country Link
US (3) US20100178272A1 (ja)
EP (3) EP2056845B1 (ja)
JP (6) JP2010500011A (ja)
AU (1) AU2007283022B2 (ja)
CA (1) CA2660232C (ja)
CY (1) CY1119608T1 (ja)
DK (1) DK2056845T3 (ja)
ES (2) ES2911034T3 (ja)
HU (1) HUE037173T2 (ja)
LT (1) LT2056845T (ja)
PL (1) PL2056845T3 (ja)
PT (1) PT2056845T (ja)
SI (1) SI2056845T1 (ja)
WO (1) WO2008017473A2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520197A (ja) * 2010-02-26 2013-06-06 メモリアル スローン−ケタリング キャンサー センター miRNAに関連する癌を検出および処置するための方法および組成物およびmiRNAインヒビターおよび標的
JP2014500230A (ja) * 2010-08-30 2014-01-09 スプリング バンク ファーマシューティカルズ,インコーポレイテッド 治療薬としてオリゴヌクレオチド類縁体の設計
JP2014511692A (ja) * 2011-04-08 2014-05-19 バイオ−ラッド ラボラトリーズ インコーポレーティッド 非特異的活性が低下したpcr反応混合物
KR20150059792A (ko) * 2012-09-27 2015-06-02 라이니쉐 프리드리히-빌헬름스-유니베르지탯트 본 신규한 rig-i 리간드 및 이를 제조하는 방법
WO2015099153A1 (ja) * 2013-12-26 2015-07-02 味の素株式会社 養魚用飼料
JP2021512123A (ja) * 2018-02-02 2021-05-13 ユニバーシティ オブ ワシントンUniversity of Washington トリパタイトモチーフ含有蛋白質16(trim16)シグナル伝達を誘導するための組成物及び方法

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178272A1 (en) * 2006-08-08 2010-07-15 Klinische Pharmakologie Structure and use of 5'phosphate oligonucleotides
EP2338499A1 (en) 2006-10-10 2011-06-29 Gunther Hartmann 5' triphosphate oligonucleotide induces anti-viral response
US20120177610A1 (en) 2007-09-19 2012-07-12 Kieu Hoang Manufacturing and Purification Processes of Complex Protein found in Fraction IV to make a separated Apo, Transferrin , and Alpha 1 Anti strepsin (A1AT) or A combined Transferrin / Apo/Human Albumin/A1AT and all new found proteins
CN101424640B (zh) 2007-11-02 2012-07-25 江苏命码生物科技有限公司 血清中微小核糖核酸的检测方法和用于检测的试剂盒、生物芯片及其制作和应用方法
EP2297323A1 (en) 2008-05-21 2011-03-23 Hartmann, Gunther 5' triphosphate oligonucleotide with blunt end and uses thereof
JP2017006144A (ja) * 2008-05-21 2017-01-12 ライニッシュ フリードリッヒ−ウィルヘルムズ−ユニバーシタット ボン 平滑末端を有する5’三リン酸オリゴヌクレオチドおよびその使用
HUE026153T2 (en) 2008-05-21 2016-05-30 Rheinische Friedrich-Wilhelms-Universität Bonn Blunt-ended 5'-triphosphate oligonucleotide and its use
WO2010002851A1 (en) * 2008-06-30 2010-01-07 Alnylam Pharmaceuticals, Inc. Silencing and rig-1 activation by dual function oligonucleotides
WO2010085665A2 (en) * 2009-01-23 2010-07-29 Cedars-Sinai Medical Center Targeted delivery system
WO2010105819A1 (en) * 2009-03-17 2010-09-23 Gunther Hartmann Tlr7 ligand and uses thereof
EP2506879A4 (en) * 2009-12-01 2014-03-19 Protiva Biotherapeutics Inc PREPARATIONS OF SNALP CONTAINING ANTIOXIDANTS
WO2011114346A1 (en) 2010-03-18 2011-09-22 Chetan Balar Chitin and related compounds for use in treating bacterial and viral infections
US20120009130A1 (en) * 2010-05-06 2012-01-12 Nanoaxis Viral Therapy and Prophylaxis Using Nanotechnology Delivery Techniques
CN101892241B (zh) * 2010-07-09 2013-01-09 电子科技大学 一种草鱼白细胞介素1β基因和蛋白及其重组表达方法
EP2508530A1 (en) 2011-03-28 2012-10-10 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
WO2013012875A2 (en) * 2011-07-18 2013-01-24 Mount Sinai School Of Medicine Bacterial rnas as vaccine adjuvants
US20140286998A1 (en) 2011-10-31 2014-09-25 Riboxx Gmbh Double-Stranded RNA For Immunostimulation
WO2013097965A1 (en) 2011-12-30 2013-07-04 Riboxx Gmbh Triphosphate-containing double-stranded rna for immunostimulation
TW201335181A (zh) * 2012-01-31 2013-09-01 Kieu Hoang 55種新發現的蛋白質之序列及其應用
WO2014124433A1 (en) * 2013-02-11 2014-08-14 Oregon Health & Science University 5'-triphosphate oligoribonucleotides
EP2983804A4 (en) 2013-03-15 2017-03-01 Moderna Therapeutics, Inc. Ion exchange purification of mrna
US10077439B2 (en) * 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
EP2971033B8 (en) 2013-03-15 2019-07-10 ModernaTX, Inc. Manufacturing methods for production of rna transcripts
SI3019619T1 (sl) 2013-07-11 2021-12-31 Modernatx, Inc. Sestave, ki zajemajo sintetične polinukleotide, ki kodirajo proteine, pozvezane s crispr, in sintetične sgrna, ter metode uporabe
CN111593414A (zh) 2013-08-05 2020-08-28 特韦斯特生物科学公司 从头合成的基因文库
US10457946B2 (en) * 2013-09-16 2019-10-29 St. Jude Children's Research Hospital, Inc. Methods for overcoming glucocorticoid resistance and for determining glucocorticoid resistance potential in cancer
WO2015091578A1 (en) * 2013-12-16 2015-06-25 Riboxx Gmbh Double-stranded polyc:poly(g/i) rna for immunostimulation and cancer treatment
WO2015196128A2 (en) 2014-06-19 2015-12-23 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
US9670489B2 (en) * 2014-07-14 2017-06-06 Kaohsiung Medical University Method for treating and/or preventing myopia
WO2016011222A2 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Circular polynucleotides
US9790509B2 (en) 2014-07-18 2017-10-17 Oregon Health & Science University 5′-triphosphate oligoribonucleotides
WO2016126882A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
CA2975855A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
WO2017049286A1 (en) 2015-09-17 2017-03-23 Moderna Therapeutics, Inc. Polynucleotides containing a morpholino linker
EA201890763A1 (ru) 2015-09-18 2018-08-31 Твист Байосайенс Корпорейшн Библиотеки вариантных олигонуклеиновых кислот и их синтез
CN113604546A (zh) 2015-09-22 2021-11-05 特韦斯特生物科学公司 用于核酸合成的柔性基底
KR101842679B1 (ko) 2015-10-15 2018-03-28 한국과학기술원 Rna 올리고뉴클레오티드 및 이를 포함하는 면역 활성제
KR101899057B1 (ko) * 2015-10-15 2018-09-14 한국과학기술원 Rna 올리고뉴클레오티드를 포함하는 암 치료용 약학 조성물
KR101881502B1 (ko) 2015-10-15 2018-07-25 한국과학기술원 Rna 올리고뉴클레오티드를 포함하는 항바이러스제
WO2017065369A1 (ko) * 2015-10-15 2017-04-20 한국과학기술원 Rna 올리고뉴클레오티드 및 이를 포함하는 면역 활성제
WO2017065405A1 (ko) 2015-10-15 2017-04-20 한국과학기술원 Rna 올리고뉴클레오티드를 포함하는 항바이러스제
EP3384077A4 (en) 2015-12-01 2019-05-08 Twist Bioscience Corporation FUNCTIONALIZED SURFACES AND THEIR PREPARATION
JP6854340B2 (ja) 2016-08-22 2021-04-07 ツイスト バイオサイエンス コーポレーション デノボ合成された核酸ライブラリ
KR102217487B1 (ko) 2016-09-21 2021-02-23 트위스트 바이오사이언스 코포레이션 핵산 기반 데이터 저장
CA3047128A1 (en) 2016-12-16 2018-06-21 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
KR20190119107A (ko) 2017-02-22 2019-10-21 트위스트 바이오사이언스 코포레이션 핵산 기반 데이터 저장
EP3595674A4 (en) 2017-03-15 2020-12-16 Twist Bioscience Corporation BANKS OF VARIANTS OF IMMUNOLOGICAL SYNAPSE AND THEIR SYNTHESIS
WO2018172546A1 (en) 2017-03-24 2018-09-27 Rigontec Gmbh Method for designing rig-i ligands
JP2020512843A (ja) 2017-04-14 2020-04-30 トルニネ, インコーポレイテッド 免疫調節ポリヌクレオチド、その抗体コンジュゲート、及びそれらの使用方法
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
CA3066744A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
EP3681906A4 (en) 2017-09-11 2021-06-09 Twist Bioscience Corporation GPCR-BINDING PROTEINS AND THEIR SYNTHESIS
US10894242B2 (en) 2017-10-20 2021-01-19 Twist Bioscience Corporation Heated nanowells for polynucleotide synthesis
KR20200106067A (ko) 2018-01-04 2020-09-10 트위스트 바이오사이언스 코포레이션 Dna 기반 디지털 정보 저장
AU2019255370B2 (en) 2018-04-19 2023-11-02 Checkmate Pharmaceuticals, Inc. Synthetic RIG-I-like receptor agonists
WO2019222706A1 (en) 2018-05-18 2019-11-21 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
EP3938506A4 (en) 2019-02-26 2022-12-14 Twist Bioscience Corporation VARIANT NUCLEIC ACID LIBRARIES FOR OPTIMIZATION OF ANTIBODIES
KR20210143766A (ko) 2019-02-26 2021-11-29 트위스트 바이오사이언스 코포레이션 Glp1 수용체에 대한 변이체 핵산 라이브러리
WO2020225779A1 (en) * 2019-05-09 2020-11-12 Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rig-i agonists for cancer treatment and immunotherapy
AU2020298294A1 (en) 2019-06-21 2022-02-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
WO2020260547A1 (en) 2019-06-27 2020-12-30 Rigontec Gmbh Design method for optimized rig-i ligands
JP2022544412A (ja) 2019-08-14 2022-10-18 キュアバック アーゲー 免疫賦活特性が減少したrna組み合わせおよび組成物
EP4110830A1 (en) 2020-02-28 2023-01-04 Tallac Therapeutics, Inc. Transglutaminase-mediated conjugation
EP3909612A1 (en) 2020-05-12 2021-11-17 Life Science Inkubator Betriebs GmbH & Co. KG Composition of nanoparticles
CA3203424A1 (en) * 2020-12-30 2022-07-07 Robert Michael Dudley Template directed immunomodulation for cancer therapy
IL309662A (en) 2021-07-02 2024-02-01 Univ Yale Compositions and methods for treating cancer
WO2023034864A1 (en) 2021-08-31 2023-03-09 Yale University Compositions and methods for treating cancers
US20230303719A1 (en) 2022-03-03 2023-09-28 Yale University Humanized 3e10 antibodies, variants, and antigen binding fragments thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535043A (ja) * 2000-03-10 2003-11-25 ダイナバックス テクノロジーズ コーポレイション 免疫調節ポリヌクレオチド配列を用いてウイルス感染症を予防および治療する方法
WO2005005632A2 (fr) * 2003-07-02 2005-01-20 Commissariat A L'energie Atomique PETITS ARN INTERFERENTS SPECIFIQUES DES SOUS-UNITES α, α' ET β DE LA PROTEINE KINASE CK2 ET LEURS APPLICATIONS
JP2005526778A (ja) * 2002-03-15 2005-09-08 アストラル,インコーポレイテッド 免疫調節性非コードrnaモチーフを用いて抗体及び主要組織適合性クラスi拘束性又はクラスii拘束性t細胞の応答を開始或いは増強させるための組成物及び方法

Family Cites Families (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534017A (en) 1967-03-14 1970-10-13 Kyowa Hakko Kogyo Kk Process for the preparation of nucleoside-5'-diphosphates and triphosphates and mono- and oligo-nucleotidyl-nucleoside-5'-diphosphates and triphosphates
US4210746A (en) 1978-08-10 1980-07-01 National Research Development Corporation Nucleotide inhibitor of protein synthesis
US4285605A (en) 1979-07-02 1981-08-25 International Business Machines Corporation Escapement mechanism and backspace mechanism for a moving paper carriage typewriter having dual pitch capability
FR2471785A1 (fr) * 1979-12-21 1981-06-26 Fabre Sa Pierre Preparations immunostimulantes a base d'arn ribosomaux et procede de preparation des arn
DE3023787A1 (de) 1980-06-25 1982-01-21 Studiengesellschaft Kohle mbH, 4330 Mülheim Verfahren zur erhoehung der inkorporation und der expression von genetischem material in die kerne von intakten zellen mit hilfe von liposomen
EP0081099A3 (en) 1981-12-04 1983-08-10 Sloan-Kettering Institute For Cancer Research Capped oligonucleotide anti-viral agents
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US5194428A (en) 1986-05-23 1993-03-16 Worcester Foundation For Experimental Biology Inhibition of influenza virus replication by oligonucleotide phosphorothioates
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
DE68925278T2 (de) 1988-02-26 1996-09-19 Worcester Found Ex Biology Hemmung von htlv-iii durch exogene oligonukleotide
JP2976436B2 (ja) 1988-04-27 1999-11-10 味の素株式会社 新規オリゴリボヌクレオチド誘導体及び抗ウイルス剤への使用
DE68929306T2 (de) 1988-04-27 2002-05-02 Isis Pharmaceutical Inc H-Phosphonat Ribonucleotid-Derivate
DE3907562A1 (de) 1989-03-09 1990-09-13 Bayer Ag Antisense-oligonukleotide zur inhibierung der transaktivatorzielsequenz (tar) und der synthese des transaktivatorproteins (tat) aus hiv-1 und deren verwendung
EP0472648A4 (en) 1989-05-18 1992-09-16 Microprobe Corporation Crosslinking oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
WO1991006309A1 (en) 1989-11-03 1991-05-16 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US5149797A (en) 1990-02-15 1992-09-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of rna and production of encoded polypeptides
CA2078659A1 (en) 1990-03-21 1991-09-22 David J. Ecker Reagents and methods for modulating gene expression through rna mimicry
US5292875A (en) 1990-04-20 1994-03-08 Lynx Therapeutics, Inc. Method of synthesizing sulfurized oligonucleotide analogs
US5166195A (en) 1990-05-11 1992-11-24 Isis Pharmaceuticals, Inc. Antisense inhibitors of the human immunodeficiency virus phosphorothioate oligonucleotides
IL99069A (en) 1990-08-09 1998-08-16 Genta Inc Methyphosphonate oligonucleotides associated with psoralen
BR9106747A (pt) 1990-08-14 1993-07-20 Isis Pharmaceuticals Inc Oligonucleotideo ou analogo de oligonucleotideo e processo para tratamento de um animal suspeito de estar infectado por virus da influenza
US5271941A (en) 1990-11-02 1993-12-21 Cho Chung Yoon S Antisense oligonucleotides of human regulatory subunit RI.sub.α of cAMP-dependent protein kinases
CA2105864A1 (en) 1991-03-27 1992-09-28 Eric T. Kool Single-stranded, circular oligonucleotides
DE4110085A1 (de) 1991-03-27 1992-10-01 Boehringer Ingelheim Int 2'-o-alkyl-oligoribonukleotide, verfahren zu deren herstellung und deren verwendung als antisense-oligonukleotide
US5646267A (en) 1991-08-05 1997-07-08 Polish Academy Of Sciences Method of making oligonucleotides and oligonucleotide analogs using phospholanes and enantiomerically resolved phospholane analogues
US6369209B1 (en) 1999-05-03 2002-04-09 Isis Pharmaceuticals, Inc. Oligonucleotides having A-DNA form and B-DNA form conformational geometry
US7119184B2 (en) 1991-08-12 2006-10-10 Isis Pharmaceuticals, Inc. Oligonucleotides having A-DNA form and B-DNA form conformational geometry
ATE221127T1 (de) 1991-10-15 2002-08-15 Isis Pharmaceuticals Inc Über chirale phosphoratome gebundene oligonukleotide
NZ244820A (en) 1991-10-25 1994-01-26 Isis Pharmaceuticals Inc Oligonucleotide inhibitor of epstein-barr virus.
FR2685346B1 (fr) 1991-12-18 1994-02-11 Cis Bio International Procede de preparation d'arn double-brin, et ses applications.
US5644048A (en) 1992-01-10 1997-07-01 Isis Pharmaceuticals, Inc. Process for preparing phosphorothioate oligonucleotides
JPH08500481A (ja) 1992-05-11 1996-01-23 リボザイム・ファーマシューティカルズ・インコーポレーテッド ウイルスの複製を阻害するための方法および薬剤
US5606049A (en) 1992-06-03 1997-02-25 Genta Incorporated Method of preparing 2'-O-methyl cytidine monomers useful in oligomer synthesis
TW244371B (ja) 1992-07-23 1995-04-01 Tri Clover Inc
US6346614B1 (en) 1992-07-23 2002-02-12 Hybridon, Inc. Hybrid oligonucleotide phosphorothioates
EP1223173B1 (en) 1992-07-23 2005-07-13 Isis Pharmaceuticals, Inc. Novel 2'-O-alkyl nucleosides and phosphoramidites processes for the preparation and uses thereof
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
IL108206A0 (en) 1993-01-06 1994-04-12 Univ Johns Hopkins Oligomers having improved stability at acid ph
DK0677056T3 (da) 1993-01-25 1996-08-05 Hybridon Inc Oligonukleotid-alkylphosphonater og -alkylphosphonothioater
AU6632094A (en) 1993-04-19 1994-11-08 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
FR2705099B1 (fr) 1993-05-12 1995-08-04 Centre Nat Rech Scient Oligonucléotides phosphorothioates triesters et procédé de préparation.
JPH09500787A (ja) 1993-07-19 1997-01-28 ジェン−プローブ・インコーポレイテッド 蛋白生産、細胞増殖および/または感染症病原体の増殖に対するオリゴヌクレオチド阻害の促進
JPH0799976A (ja) 1993-09-30 1995-04-18 Takeda Chem Ind Ltd 修飾オリゴヌクレオチド
US5801235A (en) 1994-05-25 1998-09-01 Hybridon, Inc. Oligonucleotides with anti-cytomegalovirus activity
EP0760666A1 (en) 1994-05-27 1997-03-12 HYBRIDON, Inc. Use of oligonucleotide phosphorothioate for depleting complement and for reducing blood pressure
US5866699A (en) 1994-07-18 1999-02-02 Hybridon, Inc. Oligonucleotides with anti-MDR-1 gene activity
EP0779893B1 (en) 1994-09-07 2001-06-27 Hybridon, Inc. Oligonucleotide prodrugs
GB2293088B (en) 1994-09-16 1998-02-04 Alliedsignal Ltd Guide loop height adjustment for vehicle passenger seat belts
US5591721A (en) 1994-10-25 1997-01-07 Hybridon, Inc. Method of down-regulating gene expression
JPH08154687A (ja) 1994-12-12 1996-06-18 Yamanouchi Pharmaceut Co Ltd アンチセンスオリゴヌクレオチド及び抗ウイルス剤
WO1996018736A2 (en) 1994-12-13 1996-06-20 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of arthritic conditions, induction of graft tolerance and reversal of immune responses
AU4514696A (en) 1994-12-22 1996-07-10 Hybridon, Inc. Synthesis of stereospecific oligonucleotide phosphorothioates
US6111095A (en) * 1995-06-07 2000-08-29 Merck & Co., Inc. Capped synthetic RNA, analogs, and aptamers
GB9511720D0 (en) * 1995-06-09 1995-08-02 Isis Innovation Oligonucleotide phosphorylation method and products
US20040234999A1 (en) 1996-04-02 2004-11-25 Farrar Gwenyth Jane Genetic suppression and replacement
US6127535A (en) 1997-11-05 2000-10-03 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into oligonucleotides
EP1626086A2 (en) 1998-04-20 2006-02-15 Ribozyme Pharmaceuticals, Inc. Double-stranded nucleic acid molecules with novel chemical compositions capable of modulating gene expression
EP1493818A3 (en) 1998-04-29 2006-02-15 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into ribozymes
AU751480B2 (en) 1998-04-29 2002-08-15 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into ribozymes
US6562798B1 (en) 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
US6344323B1 (en) * 1998-09-16 2002-02-05 Vitagenix, Inc. Compositions and methods for inhibiting cox-2 expression and treating cox-2 associated disorders by using cox-2 antisense oligonucleotides
JP2004512810A (ja) 1999-08-31 2004-04-30 サーナ・セラピューティクス・インコーポレイテッド 核酸に基づく遺伝子発現の調節剤
IL148844A0 (en) 1999-09-27 2002-09-12 Coley Pharm Group Inc Methods related to immunostimulatory nucleic acid-induced interferon
DE10013600A1 (de) 2000-03-18 2002-01-10 Aventis Res & Tech Gmbh & Co Reaktive Monomere für die Oligonucleotid- und Polynucleotidsynthese, modifizierte Oligonucleotide und Polynucleotiden und ein Verfahren zu deren Herstellung
US6686461B1 (en) 2000-03-22 2004-02-03 Solulink Bioscience, Inc. Triphosphate oligonucleotide modification reagents and uses thereof
US20030077609A1 (en) 2001-03-25 2003-04-24 Jakobsen Mogens Havsteen Modified oligonucleotides and uses thereof
US6900308B2 (en) 2001-07-16 2005-05-31 Isis Pharmaceuticals, Inc. α-modified nucleoside triphosphates
WO2003012052A2 (en) 2001-07-30 2003-02-13 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Specific inhibition of gene expression by small double stranded rnas
FR2832154B1 (fr) 2001-11-09 2007-03-16 Centre Nat Rech Scient Oligonucleotides inhibiteurs et leur utilisation pour reprimer specifiquement un gene
US20030203868A1 (en) 2002-02-06 2003-10-30 Bushman Frederic D. Inhibition of pathogen replication by RNA interference
EP1485395A4 (en) 2002-02-28 2011-04-13 Biota Scient Management NUCLEOTIDE MIMETICS AND PRODRUGS THEREOF
JP4846200B2 (ja) 2002-04-04 2011-12-28 コーリー ファーマシューティカル ゲーエムベーハー 免疫賦活性g、u含有オリゴリボヌクレオチド
JP2006500910A (ja) 2002-04-18 2006-01-12 アキュイティ ファーマシューティカルズ、インク. Cnsと眼の標的遺伝子を特異的に調節するための手段と方法及びその同定法
CN1665930A (zh) 2002-04-26 2005-09-07 独立行政法人产业技术总合研究所 具有RNAi效应的茎环RNA分子的表达系统
CA2388049A1 (en) 2002-05-30 2003-11-30 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
US7700758B2 (en) 2002-08-12 2010-04-20 New England Biolabs, Inc. Methods and compositions relating to gene silencing
US7109316B2 (en) 2002-08-23 2006-09-19 Ce Healthcare Bio-Sciences Corp. Oligonucleotide tagged nucleoside triphosphates (OTNTPs) for genetic analysis
CA2501065A1 (en) 2002-09-04 2004-03-18 Johnson & Johnson Research Pty Ltd Methods using dsdna to mediate rna interference (rnai)
AU2003270348B2 (en) 2002-09-11 2010-08-26 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US7250496B2 (en) 2002-11-14 2007-07-31 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
EP2305813A3 (en) 2002-11-14 2012-03-28 Dharmacon, Inc. Fuctional and hyperfunctional sirna
US7790867B2 (en) 2002-12-05 2010-09-07 Rosetta Genomics Inc. Vaccinia virus-related nucleic acids and microRNA
US7696334B1 (en) 2002-12-05 2010-04-13 Rosetta Genomics, Ltd. Bioinformatically detectable human herpesvirus 5 regulatory gene
US20130130231A1 (en) 2002-11-26 2013-05-23 Isaac Bentwich Bioinformatically detectable group of novel viral regulatory genes and uses thereof
PT1581812E (pt) 2003-01-06 2008-09-22 Wyeth Corp Composições e métodos para diagnóstico e tratamento de cancros do cólon
WO2004074441A2 (en) 2003-02-19 2004-09-02 Government Of The United States Of America Represented By The Secretary Department Of Health And Human Services Amplification or overexpression of mll septin-like fusion (msf) and septin9 and methods related thereto
CN1176937C (zh) 2003-02-21 2004-11-24 复旦大学附属中山医院 一种双链rna及其用途
US20040261149A1 (en) 2003-02-24 2004-12-23 Fauquet Claude M. siRNA-mediated inhibition of gene expression in plant cells
CA2518898A1 (en) 2003-03-12 2004-09-23 Vasgene Therapeutics, Inc. Nucleic acid compounds for inhibiting angiogenesis and tumor growth
US7381410B2 (en) 2003-03-12 2008-06-03 Vasgene Therapeutics, Inc. Polypeptide compounds for inhibiting angiogenesis and tumor growth
JP4755972B2 (ja) 2003-03-21 2011-08-24 サンタリス ファーマ アー/エス 短鎖干渉RNA(siRNA)アナログ
US20040220130A1 (en) 2003-03-24 2004-11-04 Robbins Paul D. Compact synthetic expression vector comprising double-stranded DNA molecules and methods of use thereof
US8969543B2 (en) 2003-04-03 2015-03-03 Bioneer Corporation SiRNA-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof
US20050042641A1 (en) 2003-05-27 2005-02-24 Cold Spring Harbor Laboratory In vivo high throughput selection of RNAi probes
JP2006526394A (ja) 2003-06-03 2006-11-24 ベニテック オーストラリア リミテッド 二本鎖核酸
EP1637597A4 (en) 2003-06-06 2006-07-19 Dainippon Sumitomo Pharma Co NUCLEIC INFUSION PROCESS
CN102604957B (zh) 2003-06-11 2015-10-07 艾德拉药物股份有限公司 稳定的免疫调节寡核苷酸
JP4842821B2 (ja) * 2003-09-15 2011-12-21 プロチバ バイオセラピューティクス インコーポレイティッド ポリエチレングリコール修飾脂質化合物およびその使用
EP1747284A4 (en) 2004-02-06 2009-03-11 Wyeth Corp DIAGNOSTICS AND THERAPEUTICS OF CANCER
US20050182005A1 (en) 2004-02-13 2005-08-18 Tuschl Thomas H. Anti-microRNA oligonucleotide molecules
US20070265220A1 (en) 2004-03-15 2007-11-15 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded RNA
AU2005222965B8 (en) 2004-03-15 2010-07-01 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded RNA
WO2006073458A2 (en) * 2004-04-30 2006-07-13 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a c5-modified pyrimidine
MXPA06012605A (es) 2004-05-04 2006-12-15 Nastech Pharm Co Composiciones y metodos para mejorar el suministro de acidos nucleicos en celulas y para modificar la expresion de genes objetivo en celulas.
US20060035815A1 (en) 2004-05-04 2006-02-16 Nastech Pharmaceutical Company Inc. Pharmaceutical compositions for delivery of ribonucleic acid to a cell
WO2005108573A2 (en) 2004-05-12 2005-11-17 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method to induce rnai in prokaryotic organisms
CA2572439A1 (en) 2004-07-02 2006-01-12 Protiva Biotherapeutics, Inc. Immunostimulatory sirna molecules and uses therefor
WO2006016574A1 (ja) 2004-08-12 2006-02-16 Kumamoto University RNAiを利用した抗腫瘍剤
EP1657306B1 (en) 2004-11-16 2011-04-13 QIAGEN GmbH Gene silencing using sense DNA and antisense RNA hybrid constructs coupled to peptides facilitating the uptake into cells
US8003619B2 (en) 2004-12-09 2011-08-23 Alnylam Pharmaceuticals, Inc. Method of stimulating an immune response and inhibiting expression of a gene using an oligonucleotide
EP1838144B1 (en) 2005-01-07 2016-08-31 Oregon State University Method to trigger rna interference
US20100015041A1 (en) 2005-01-18 2010-01-21 Caltagirone Gaetano T Class of Supramolecular Drug Molecules and Methods of Identification and Use Thereof
US20060178334A1 (en) * 2005-02-04 2006-08-10 City Of Hope Double-stranded and single-stranded RNA molecules with 5 ' triphosphates and their use for inducing interferon
EP1857119B1 (en) 2005-02-07 2011-11-23 Takeda Pharmaceutical Company Limited Screening for a compound promoting binding between fbl2 and amyloid precursor protein or its c-terminal fragments alpha and beta
JP4645234B2 (ja) 2005-03-03 2011-03-09 和光純薬工業株式会社 架橋剤、それを用いた架橋方法、遺伝子発現調節方法および遺伝子機能調査方法
CA2603730A1 (en) 2005-03-31 2006-10-05 Calando Pharmaceuticals, Inc. Inhibitors of ribonucleotide reductase subunit 2 and uses thereof
AU2006235489A1 (en) 2005-04-12 2006-10-19 Intradigm Corporation Composition and methods of RNAi therapeutics for treatment of cancer and other neovascularization diseases
US7893244B2 (en) 2005-04-12 2011-02-22 Intradigm Corporation Composition and methods of RNAi therapeutics for treatment of cancer and other neovascularization diseases
US20070066521A1 (en) 2005-04-13 2007-03-22 Fauquet Claude M Short RNA-binding proteins
WO2006119643A1 (en) 2005-05-12 2006-11-16 Replicor Inc. Anti-ocular angiogenesis molecules and their uses
WO2006122409A1 (en) 2005-05-16 2006-11-23 Replicor Inc. Antimicrobial molecules and their uses
EP1888749B1 (en) * 2005-06-01 2014-10-15 Polyplus Transfection Oligonucleotides for rna interference and biological applications thereof
WO2006130949A1 (en) 2005-06-08 2006-12-14 Replicor Inc. Anti amyloid-related disease molecules and their uses
ES2435774T3 (es) 2005-07-07 2013-12-23 Yissum Research Development Company, Of The Hebrew University Of Jerusalem Agentes de ácido nucleico para la regulación negativa de H19, y métodos de uso del mismo
AU2006280600B2 (en) 2005-08-17 2012-01-19 Bioneer Corporation Sirna-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof
EP1934359A2 (en) 2005-09-08 2008-06-25 Nastech Pharmaceutical Company Inc. Pharmaceutical compositions for delivery of ribonucleic acid to a cell
EP1764107A1 (en) 2005-09-14 2007-03-21 Gunther Hartmann Compositions comprising immunostimulatory RNA oligonucleotides and methods for producing said RNA oligonucleotides
WO2007031322A1 (en) 2005-09-14 2007-03-22 Gunther Hartmann Compositions comprising immunostimulatory rna oligonucleotides and methods for producing said rna oligonucleotides
EP1764108A1 (en) 2005-09-14 2007-03-21 Gunther Hartmann Compositions comprising immunostimulatory RNA oligonucleotides and methods for producing said RNA oligonucleotides
WO2007038788A2 (en) 2005-09-29 2007-04-05 The Cleveland Clinic Foundation Small interfering rnas as non-specific drugs
EP1948674A4 (en) 2005-11-02 2009-02-04 Protiva Biotherapeutics Inc MODIFIED SIRNA MOLECULES AND APPLICATIONS THEREOF
EP2641970B1 (en) 2005-11-17 2014-12-24 Board of Regents, The University of Texas System Modulation of gene expression by oligomers targeted to chromosomal DNA
CA2634046A1 (en) 2005-12-12 2007-06-21 The University Of North Carolina At Chapel Hill Micrornas that regulate muscle cell proliferation and differentiation
EP1973574B1 (en) 2005-12-30 2014-04-02 Institut Gustave Roussy Use of inhibitors of scinderin and/or of ephrin-a1 for treating tumors
EP2004141A2 (en) 2006-03-17 2008-12-24 Novosom AG An efficient method for loading amphoteric liposomes with nucleic acid active substances
KR20120115412A (ko) 2006-04-07 2012-10-17 이데라 파마슈티칼즈, 인코포레이티드 Tlr7 및 tlr8에 대한 안정화된 면역 조절성 rna〔simra〕 화합물
EP2032714B1 (en) 2006-06-01 2011-03-16 TriLink BioTechnologies Chemically modified oligonucleotide primers for nucleic acid amplification
JP2010507361A (ja) 2006-07-31 2010-03-11 キュアバック ゲーエムベーハー 具体的には免疫刺激剤/アジュバントとしての、一般式(I):GlXmGn、または一般式(II):ClXmCnで表される核酸
US20100178272A1 (en) * 2006-08-08 2010-07-15 Klinische Pharmakologie Structure and use of 5'phosphate oligonucleotides
JP5407862B2 (ja) 2006-10-04 2014-02-05 サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) siRNAおよび脂質性4,5−二置換2−デオキシストレプタミン環アミノグリコシド誘導体を含む組成物ならびにその用途
EP2338499A1 (en) 2006-10-10 2011-06-29 Gunther Hartmann 5' triphosphate oligonucleotide induces anti-viral response
WO2008045576A2 (en) 2006-10-12 2008-04-17 Yijia Liu Compositions and methods of rnai therapeutics for treatment of cancer and other neovascularization diseases
CN101190944A (zh) 2006-12-01 2008-06-04 北京诺赛基因组研究中心有限公司 人类新细胞因子及其用途
WO2008080091A2 (en) 2006-12-21 2008-07-03 Vical Incorporated Activation of rig-i pathway
JP2010512786A (ja) 2006-12-21 2010-04-30 イントラダイム コーポレイション ガンを処置するための抑制性ポリヌクレオチドの組成物および方法
WO2008087642A2 (en) 2007-01-16 2008-07-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nucleic acid constructs and methods for specific silencing of h19
US9249423B2 (en) 2007-02-02 2016-02-02 Yale University Method of de-differentiating and re-differentiating somatic cells using RNA
WO2008099396A1 (en) 2007-02-15 2008-08-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of h19-silencing nucleic acid agents for treating restenosis
WO2008102728A1 (ja) 2007-02-19 2008-08-28 Kyoto University 核酸導入用導電性基板および核酸導入方法
MY173854A (en) 2007-03-13 2020-02-25 Malaysian Palm Oil Board Expression regulatory elements
US7880063B2 (en) 2007-04-06 2011-02-01 Stine Seed Farm, Inc. Soybean cultivar 6342078
EP2134740A2 (en) 2007-04-09 2009-12-23 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
CN101088565A (zh) 2007-04-17 2007-12-19 华东师范大学 miRNA-34a的用途
WO2008134593A1 (en) 2007-04-25 2008-11-06 President And Fellows Of Harvard College Molecular circuits
KR101531934B1 (ko) 2007-05-01 2015-06-29 산타리스 팔마 에이/에스 Tnf 슈퍼패밀리 수용체에 대한 스플라이스 스위칭 올리고머 및 질병 치료에 있어서의 그의 용도
AU2008262478C1 (en) 2007-05-29 2014-06-19 Aldevron, L.L.C. Vectors and methods for genetic immunization
US20090123467A1 (en) 2007-07-31 2009-05-14 The Johns Hopkins University Polypeptide-Nucleic Acid Conjugate for Immunoprophylaxis or Immunotherapy for Neoplastic or Infectious Disorders
US8367815B2 (en) 2007-08-28 2013-02-05 California Institute Of Technology Modular polynucleotides for ligand-controlled regulatory systems
US20110082185A1 (en) 2007-09-17 2011-04-07 Ludwig Institute For Cancer Research Ltd. Cancer-testis gene silencing agents and uses thereof
CN103242444A (zh) 2007-10-11 2013-08-14 大学健康网络 调节SIRPα-CD47相互作用以增加造血干细胞植入和用于此的化合物
CA2702039A1 (en) 2007-10-12 2009-04-23 Intradigm Corporation Therapeutic sirna molecules for reducing vegfr1 expression in vitro and in vivo
DE102007052114B4 (de) 2007-10-30 2011-01-05 T2Cure Gmbh Verfahren zur Modulation der Funktion, des Wachstums oder der Differenzierung einer Zelle
EP2217705A2 (en) 2007-11-05 2010-08-18 Baltic Technology Development, Ltd. Use of oligonucleotides with modified bases in hybridization of nucleic acids
WO2009060281A2 (en) 2007-11-06 2009-05-14 Coley Pharmaceutical Gmbh Immune stimulatory oligoribonucleotide analogs containing modified oligophosphate moieties
US8735567B2 (en) 2007-11-06 2014-05-27 Patrick Y. Lu Multi-targeted RNAi therapeutics for scarless wound healing of skin
AU2008321253B2 (en) 2007-11-12 2014-01-16 Masaryk Memorial Cancer Institute Therapeutic applications of p53 isoforms in regenerative medicine, aging and cancer
US8357501B2 (en) 2007-11-29 2013-01-22 Molecular Health Gmbh Tissue protective erythropoietin receptor (NEPOR) and methods of use
CA2802984C (en) 2007-11-29 2016-04-12 Molecular Health Gmbh Use of eph-b4 and ephrin-a1 for predicting negative physiological response to the treatment with erythropoietin
GB0725321D0 (en) 2007-12-31 2008-02-06 Syntaxin Ltd Delivery vehicles
EP2548960B1 (en) 2008-01-31 2018-01-31 CureVac AG Nucleic acids comprising formula (nugixmgnv)a and derivatives thereof as an immunostimulating agents/adjuvant
HUE026153T2 (en) 2008-05-21 2016-05-30 Rheinische Friedrich-Wilhelms-Universität Bonn Blunt-ended 5'-triphosphate oligonucleotide and its use
EP2297323A1 (en) 2008-05-21 2011-03-23 Hartmann, Gunther 5' triphosphate oligonucleotide with blunt end and uses thereof
CA2635187A1 (en) 2008-06-05 2009-12-05 The Royal Institution For The Advancement Of Learning/Mcgill University Oligonucleotide duplexes and uses thereof
WO2009151600A2 (en) 2008-06-10 2009-12-17 Tufts University Smad proteins control drosha-mediated mirna maturation
CN101632833B (zh) 2008-07-25 2013-11-06 上海市计划生育科学研究所 一种前列腺癌相关的基因及其用途
EP2344514A2 (en) 2008-09-02 2011-07-20 Alnylam Pharmaceuticals Inc. Synthetic methods and derivatives of triphosphate oligonucleotides
WO2011028218A1 (en) 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Process for triphosphate oligonucleotide synthesis
WO2010042742A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010042755A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010042751A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010042749A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
CN102264898B (zh) 2008-10-23 2013-10-16 国立大学法人东京大学 微小rna的功能抑制方法
WO2010062502A1 (en) 2008-11-03 2010-06-03 University Of Utah Research Foundation Carriers for the delivery of nucleic acids to cells and methods of use thereof
AU2010218147A1 (en) 2009-02-26 2011-10-20 The Government Of The United States Of America As Represented By The Secretary Of The Dept. Of Health & Human Services MicroRNAs in never-smokers and related materials and methods
WO2010118263A1 (en) 2009-04-08 2010-10-14 University Of Massachusetts Single-nucleotide polymorphism (snp) targeting therapies for the treatment of huntington's disease
WO2010120874A2 (en) 2009-04-14 2010-10-21 Chimeros, Inc. Chimeric therapeutics, compositions, and methods for using same
US20100323018A1 (en) 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof
ATE554749T1 (de) 2009-07-09 2012-05-15 Marina Biotech Inc Nachahmung von lipoproteinstrukturen
WO2011008857A1 (en) 2009-07-14 2011-01-20 Northeastern University SiRNA PHOSPHOLIPID CONJUGATE
WO2011011716A1 (en) 2009-07-23 2011-01-27 The Trustees Of Princeton University Inhibitors of mtor kinase as anti-viral agents
EP2327783A1 (en) 2009-11-27 2011-06-01 Universitätsklinikum Freiburg Pharmaceutical composition comprising miRNA-100 and its use in the modulation of blood vessel growth
DE202009015670U1 (de) 2009-11-30 2011-04-14 Mcairlaid's Vliesstoffe Gmbh & Co. Kg Absorptionskörper zur Auflage auf Wunden
US20110247091A1 (en) 2010-03-26 2011-10-06 The Governors Of The University Of Alberta Transgenic Cells and Chickens Expressing RIG-I
WO2011133559A2 (en) 2010-04-19 2011-10-27 University Of Georgia Research Foundation, Inc. Alpha tubulin acetyltransferase
EP2385120A1 (en) 2010-05-04 2011-11-09 Justus-Liebig- Universitat Giessen Use of anti-miRNA antisense oligonucleotides for the treatment of pulmonary hypertension
WO2011140285A2 (en) 2010-05-04 2011-11-10 Sirnaomics, Inc. Combinations of tgfbeta and cox-2 inhibitors and methods for their therapeutic application
DE102010020880A1 (de) 2010-05-18 2011-11-24 Wabco Gmbh Überströmventil und Drucklufteinrichtung für Kraftfahrzeuge
CN101974529B (zh) 2010-09-21 2013-04-03 南京大学(苏州)高新技术研究院 含自由三磷酸基团的TGF-β特异性siRNA及其应用
WO2012056440A1 (en) 2010-10-28 2012-05-03 Nanodoc Ltd. COMPOSITIONS AND METHODS FOR ACTIVATING EXPRESSION BY A SPECIFIC ENDOGENOUS miRNA
WO2012056441A1 (en) 2010-10-28 2012-05-03 Nanodoc Ltd. Compositions and methods for specific cleavage of exogenous rna in a cell
CN102475892A (zh) 2010-11-22 2012-05-30 大连创达技术交易市场有限公司 作为制备抗癌药物的反义miRNA-210的用途
EP3695850A1 (en) 2010-12-30 2020-08-19 Samyang Biopharmaceuticals Corporation Carrier for negatively charged drugs comprising a cationic lipid and a preparation method thereof
US8461224B2 (en) 2011-03-04 2013-06-11 National Health Research Institutes Single monomer derived linear-like copolymer comprising polyethylenimine and poly(ethylene glycol) for nucleic acid delivery
US20140212503A1 (en) 2011-03-17 2014-07-31 Hyukjin Lee Delivery system
EP2508530A1 (en) 2011-03-28 2012-10-10 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
JP2014520506A (ja) 2011-07-04 2014-08-25 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 核酸複合体
EP2551354A1 (en) 2011-07-25 2013-01-30 Universität Heidelberg Functionalization of RNA oligonucleotides
US20130189367A1 (en) 2011-07-29 2013-07-25 University Of Washington Through Its Center For Commercialization Nanovectors for targeted gene silencing and cytotoxic effect in cancer cells
WO2013020986A1 (de) 2011-08-08 2013-02-14 Universität Regensburg Polyanion-nanokomplexe für therapeutische anwendungen
WO2013053480A1 (de) 2011-10-11 2013-04-18 Secutech International Pte. Ltd. Zusammensetzung zur einbringung von nukleinsäuren in zellen
EP2765982A1 (de) 2011-10-11 2014-08-20 Hans Kosak Dimethylsulfoxid als lösungsmittel für nukleinsäuren
US20140286998A1 (en) 2011-10-31 2014-09-25 Riboxx Gmbh Double-Stranded RNA For Immunostimulation
AU2012340094A1 (en) 2011-11-17 2014-05-29 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Auto -recognizing therapeutic RNA/DNA chimeric nanoparticles (NP)
US9193971B2 (en) 2012-04-10 2015-11-24 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods for the treatment of nonalcoholic steatohepatitis
US20130302252A1 (en) 2012-05-11 2013-11-14 University Of Washington Through Its Center For Commercialization Polyarginine-coated magnetic nanovector and methods of use thereof
EP2712870A1 (en) 2012-09-27 2014-04-02 Rheinische Friedrich-Wilhelms-Universität Bonn Novel RIG-I ligands and methods for producing them
WO2014124433A1 (en) 2013-02-11 2014-08-14 Oregon Health & Science University 5'-triphosphate oligoribonucleotides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535043A (ja) * 2000-03-10 2003-11-25 ダイナバックス テクノロジーズ コーポレイション 免疫調節ポリヌクレオチド配列を用いてウイルス感染症を予防および治療する方法
JP2005526778A (ja) * 2002-03-15 2005-09-08 アストラル,インコーポレイテッド 免疫調節性非コードrnaモチーフを用いて抗体及び主要組織適合性クラスi拘束性又はクラスii拘束性t細胞の応答を開始或いは増強させるための組成物及び方法
WO2005005632A2 (fr) * 2003-07-02 2005-01-20 Commissariat A L'energie Atomique PETITS ARN INTERFERENTS SPECIFIQUES DES SOUS-UNITES α, α' ET β DE LA PROTEINE KINASE CK2 ET LEURS APPLICATIONS

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM DONG-HO, NATURE BIOTECHNOLOGY, vol. V22 N3, JPN5009011821, March 2004 (2004-03-01), US, pages 321 - 325, ISSN: 0002000884 *
MOLECULAR THERAPY, vol. 14, no. 4, JPN6011044909, 31 July 2006 (2006-07-31), pages 463 - 470, ISSN: 0002000885 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520197A (ja) * 2010-02-26 2013-06-06 メモリアル スローン−ケタリング キャンサー センター miRNAに関連する癌を検出および処置するための方法および組成物およびmiRNAインヒビターおよび標的
JP2014500230A (ja) * 2010-08-30 2014-01-09 スプリング バンク ファーマシューティカルズ,インコーポレイテッド 治療薬としてオリゴヌクレオチド類縁体の設計
JP2016164148A (ja) * 2010-08-30 2016-09-08 スプリング バンク ファーマシューティカルズ,インコーポレイテッド 治療薬としてオリゴヌクレオチド類縁体の設計
JP2014511692A (ja) * 2011-04-08 2014-05-19 バイオ−ラッド ラボラトリーズ インコーポレーティッド 非特異的活性が低下したpcr反応混合物
US9556423B2 (en) 2011-04-08 2017-01-31 Bio-Rad Laboratories, Inc. PCR reaction mixtures with decreased non-specific activity
KR20150059792A (ko) * 2012-09-27 2015-06-02 라이니쉐 프리드리히-빌헬름스-유니베르지탯트 본 신규한 rig-i 리간드 및 이를 제조하는 방법
JP2015532270A (ja) * 2012-09-27 2015-11-09 ライニッシェ フリードリッヒ ヴィルヘルムス ウニヴェルジテート ボン 新規のrig−iリガンドおよびそれらの生産方法
KR102182479B1 (ko) * 2012-09-27 2020-11-24 라이니쉐 프리드리히-빌헬름스-유니베르지탯트 본 신규한 rig-i 리간드 및 이를 제조하는 방법
WO2015099153A1 (ja) * 2013-12-26 2015-07-02 味の素株式会社 養魚用飼料
JP2021512123A (ja) * 2018-02-02 2021-05-13 ユニバーシティ オブ ワシントンUniversity of Washington トリパタイトモチーフ含有蛋白質16(trim16)シグナル伝達を誘導するための組成物及び方法
JP7409612B2 (ja) 2018-02-02 2024-01-09 ユニバーシティ オブ ワシントン トリパタイトモチーフ含有蛋白質16(trim16)シグナル伝達を誘導するための組成物及び方法

Also Published As

Publication number Publication date
ES2911034T3 (es) 2022-05-17
HUE037173T2 (hu) 2018-08-28
CA2660232A1 (en) 2008-02-14
SI2056845T1 (en) 2018-02-28
US20100178272A1 (en) 2010-07-15
JP2016189790A (ja) 2016-11-10
JP2014207906A (ja) 2014-11-06
CY1119608T1 (el) 2018-04-04
US20120288476A1 (en) 2012-11-15
JP2018082706A (ja) 2018-05-31
PT2056845T (pt) 2017-11-17
EP3342415B1 (en) 2022-01-26
AU2007283022B2 (en) 2011-07-28
LT2056845T (lt) 2017-11-27
PL2056845T3 (pl) 2018-01-31
EP2056845A2 (en) 2009-05-13
AU2007283022A1 (en) 2008-02-14
JP2019077709A (ja) 2019-05-23
CA2660232C (en) 2019-05-21
WO2008017473A2 (en) 2008-02-14
JP6748629B2 (ja) 2020-09-02
US10238682B2 (en) 2019-03-26
JP7108011B2 (ja) 2022-07-27
WO2008017473A3 (en) 2008-06-05
JP7071299B2 (ja) 2022-05-18
EP4082551A1 (en) 2022-11-02
ES2647452T3 (es) 2017-12-21
EP2056845B1 (en) 2017-10-11
EP3342415A1 (en) 2018-07-04
US9381208B2 (en) 2016-07-05
JP2021050214A (ja) 2021-04-01
US20160051573A1 (en) 2016-02-25
DK2056845T3 (da) 2017-11-27

Similar Documents

Publication Publication Date Title
JP7108011B2 (ja) 5’リン酸オリゴヌクレオチドの構造および使用
US10036021B2 (en) 5′ triphosphate oligonucleotide with blunt end and uses thereof
EP1920775B1 (en) 5'Triphosphate oligonucleotide induces anti-viral response
AU2018247308A1 (en) Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response
Yu et al. Recognition of nucleic acid ligands by toll-like receptors 7/8: importance of chemical modification
AU2011244863B2 (en) Structure and use of 5' phosphate oligonucleotides
JP2017006144A (ja) 平滑末端を有する5’三リン酸オリゴヌクレオチドおよびその使用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121130

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210331