JP2007529869A - 高繰返し数レーザを生成するプラズマeuv光源 - Google Patents

高繰返し数レーザを生成するプラズマeuv光源 Download PDF

Info

Publication number
JP2007529869A
JP2007529869A JP2007503939A JP2007503939A JP2007529869A JP 2007529869 A JP2007529869 A JP 2007529869A JP 2007503939 A JP2007503939 A JP 2007503939A JP 2007503939 A JP2007503939 A JP 2007503939A JP 2007529869 A JP2007529869 A JP 2007529869A
Authority
JP
Japan
Prior art keywords
target
plasma
droplet
light source
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007503939A
Other languages
English (en)
Other versions
JP2007529869A5 (ja
JP5139055B2 (ja
Inventor
ロバート ピー エイキンズ
リチャード エル サンドストロム
ウィリアム エヌ パートロ
イゴー ヴィー フォーメンコフ
トーマス ディー ステイガー
マーティン ジェイ アルゴッツ
ノーバート アール バウアリング
ロバート エヌ ジャックス
フレデリック エイ パレンシャット
ジュン ソン
Original Assignee
サイマー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイマー インコーポレイテッド filed Critical サイマー インコーポレイテッド
Publication of JP2007529869A publication Critical patent/JP2007529869A/ja
Publication of JP2007529869A5 publication Critical patent/JP2007529869A5/ja
Application granted granted Critical
Publication of JP5139055B2 publication Critical patent/JP5139055B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/20Selection of substances for gas fillings; Means for obtaining or maintaining the desired pressure within the tube, e.g. by gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lasers (AREA)

Abstract

【課題】レーザ生成プラズマと、パルスレーザビームによる照射のために照射サイトに送出された固形粒子又は液滴又は液滴に埋め込まれた固形粒子の形態の個別のターゲットとを用いるEUV光の発生のためのシステムを提供する。
【解決手段】選択パルス繰返し数で望ましいターゲット点火サイトに集束されるレーザパルスを供給するパルスレーザと、レーザパルス繰返し数に調整された選択間隔で個別のターゲットを供給するターゲット形成システムと、ターゲット形成システムと望ましいターゲット点火サイトとの中間にあるターゲットステアリングシステムと、ターゲットステアリングシステムがターゲットを望ましいターゲット点火サイトに向けることを可能にする、ターゲット形成システムとターゲットステアリングシステムとの間のターゲットの移動に関する情報を提供するターゲット追跡システムとを含むことができるEUV光源機器及び方法。ターゲット追跡システムは、レーザ発射制御信号の作成を可能にする情報を提供することができ、かつ、ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含んでそれぞれの点を通るターゲットの通過を検出するそれぞれ対向配置の光検出器を有する液滴検出器、又は座標軸に整列した複数の感光素子の線形アレイを含む検出器を含むことができ、光源からの光は、ターゲットの投射送出経路と交差し、そのうちの1つは、平面遮断検出装置を含むことができる。液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器、又は視野と視野を撮像するピクセルの2次元アレイとを有するカメラを含むことができる。機器及び方法は、点火時にターゲット点火サイトで又はその近くにプラズマ封じ込み場をもたらす静電プラズマ封じ込み機器を含むことができ、ターゲット追跡システムは、静電プラズマ封じ込み機器の制御を可能にする信号を提供する。機器及び方法は、低圧トラップを備えた中間壁を有してEUV光の通過を可能にして低圧トラップにわたる差圧を維持する容器を含むことができる。機器及び方法は、パルス駆動されてターゲット追跡システムからの出力を用いて制御することができるプラズマをターゲット点火サイトに閉じ込めるための磁場をターゲット点火サイトの近くに作り出す磁気プラズマ封じ込み機構を含むことができる。
【選択図】図1

Description

本発明は、レーザ生成プラズマと、パルスレーザビームによる照射のために照射サイトに送出された固形粒子又は液滴又は液滴に埋め込まれた固形粒子の形態の個別のターゲットとを用いるEUV光の発生のためのシステムに関する。
関連出願
本出願は、開示内容が引用により本明細書に組み込まれている、代理人整理番号第2003−0083−01号である2004年3月10日出願の「EUV光源のための集光器」という名称の現在特許出願中の出願に関連する2004年3月17日出願の「高繰返し数レーザ生成プラズマEUV光源」という名称の米国特許出願出願番号第10/803,526号に対する優先権を主張するものである。
LPPのEUV光源は、暫くの間議論の対象になっている。例えば益々小さくなる集積回路限界寸法リソグラフィに対する要件、及び数十ナノメートル(例えば、10から30)の範囲での益々短い波長の光源に対する付随要件、及び電力、繰返し数、及び線量安定性に対する要件及び同様の要件の全てを満たすこともできる機能可能なEUV光源の必要性として、例えばリソグラフィ光源として使用されるEUV光源の実際の要件はより明確になっている。一例として、電力要件が何であり得るかの何らかの指示が存在する。これを見る1つの方法は、システム要件のように見えるある一定のリソグラフィパラメータを組み込むレーザ生成プラズマ(LLP)システム、例えばTRW/CEOシステムの報告された性能を深プラズマ集束システム、様々な放電生成プラズマ(DPP)システムに対する提案と比較することである。TRW/CEOシステムの報告された数値を表Iに示している。
(表I)
Figure 2007529869
例えば集積回路製造施設で使用される一部のシステムでは、キロワット範囲の電力が必要であるが、やはりこの種の投射入力電力を必要とする例えばイオン注入機又は高速熱アニールシステムよりも製造当たりでEUV光源を用いる遥かに多くのスキャナが必要になる可能性が高い。EUV光源効率に対する提案に対する改善の明らかな必要性が存在する。
このようなEUV光源の全体的効率に決定的に重要な1つの分野は、集光器である。例えば、時間と共にデブリ堆積を制御することができないためにデブリが集光器の頻繁な交換を必要とする場合、中間焦点に所要光エネルギを送出する機能を妨げかつ光源の経済効率も下げる可能性がある、デブリ管理を含む集光器効率に関する多くの問題に対処すべきである。集光器システムに関する提案に対しては、代理人整理番号第2003−0083−01号である2004年3月10日出願の「EUV光源のための集光器」という名称の現在特許出願中の出願に説明されており、その開示内容は、引用により本明細書に組み込まれている。
例えば、10%の電気からレーザへの変換効率では、所要壁コンセント電力は、227,000Wになる。この値は、本質的には放電生成プラズマ(DPP)の場合と同じである。TRW/CEOもレーザからEUVへの効率を倍加するという定まった目的を達成することができる場合、所要壁コンセント電力は、113,500Wになる。勿論、この変換効率を上げる様々な方法が、恐らくDPPに適用されることになり、従って、DPP壁コンセント電力要件も半減することになる。
EUVリソグラフィ光源の設計、及び、例えば、ターゲット材料、集光器手法、放電生成プラズマ(DPP)、例えば、深プラズマ集束(DPF)、又はレーザ生成プラズマ(LPP)などの選択の背後にある原動力の1つは、例えば248nm駆動レーザを用いてLPP光源によって例えば生成された帯域外放射線のレベルに関するリソグラフィツール製造業者からの要件である。EUV多層膜ミラーは、UV領域に対して高い反射率を示し、かつ提案されたEUVフォトレジストの多くは、UV/DUVに敏感であるので、光源は、例えば130から400nmの範囲で多量の放射線を生成しないことが極めて重要である。248nm駆動レーザでは、赤外線駆動レーザとは対照的に、少量の散乱レーザ光でもEUV光源からの高レベルのUV放射線をもたらす場合がある。
関連の波長範囲及び例えば13.5nmでの帯域内エネルギに対する許容比率における製品EUV光源に対する帯域外放射線に関する現在企図されている完全な仕様を以下に示している。
(表)
Figure 2007529869
従って、例えば130nmと400nmの間の全ての放射線は、帯域内13.5nm放射線の1%未満でなければならない。従って、例えば帯域内EUV内への2%の寄与を仮定した場合、130から140nm帯域内への0.02%だけの変換効率も有するべきである。これは、LPP及びDPPのいずれにも非常に厳しい要件である。
例えば、開示内容が引用により本明細書に組み込まれている、H.Pant著「磁場における膨張レーザ生成プラズマの挙動」、Physica Scripta、T75巻(1998年)、104から111頁、Tillmack著「LPPの磁気封じ込み」、UCSD報告書、及びAbramova著「トルネードトラップ」に説明されているように、膨張レーザ生成プラズマの挙動及び/又はプラズマに与える磁場の影響は、モデル化されて研究されている。
米国特許出願出願番号第10/803,526号 米国特許第6,625,191号 米国特許第6,549,551号 米国特許第6,567,450号 米国特許出願出願番号第10/607,407号 米国特許出願出願番号第10/742,233号 米国特許出願出願番号第10/739,961号 米国特許出願出願番号第10/712,688号 米国特許出願出願番号第10/425,361号 米国特許出願出願番号第10/409,254号 H.Pant著「磁場における膨張レーザ生成プラズマの挙動」、Physica Scripta、T75巻(1998年)、104から111頁 Tillmack著「LPPの磁気封じ込み」、UCSD報告書 Abramova著「トルネードトラップ」 M.Orme他著「直接書込み技術としての帯電溶融金属液滴堆積」、MRS春季会議、サンフランシスコ(2001) Orme他著「毛細管流れ崩壊から形成された非従来的液滴流れの静電帯電及び偏向」、流体の物理学、第12巻、第9号(2000年9月)、2224から2235頁
選択パルス繰返し数で望ましいターゲット点火サイトに集束されるレーザパルスを供給するパルスレーザと、レーザパルス繰返し数に調整された選択間隔で個別のターゲットを供給するターゲット形成システムと、ターゲット形成システムと望ましいターゲット点火サイトとの中間にあるターゲットステアリングシステムと、ターゲットステアリングシステムがターゲットを望ましいターゲット点火サイトに向けることを可能にする、ターゲット形成システムとターゲットステアリングシステムとの間のターゲットの移動に関する情報を提供するターゲット追跡システムとを含むことができるEUV光源機器及び方法を開示する。ターゲット追跡システムは、レーザ発射制御信号の作成を可能にする情報を提供することができ、かつ、ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含んでそれぞれの点を通るターゲットの通過を検出するそれぞれ対向配置の光検出器を有する液滴検出器、又は座標軸に整列した複数の感光素子の線形アレイを含む検出器を含むことができ、光源からの光は、ターゲットの投射送出経路と交差し、そのうちの1つは、平面遮断検出装置を含むことができる。液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器、又は視野と視野を撮像するピクセルの2次元アレイとを有するカメラを含むことができる。機器及び方法は、点火時にターゲット点火サイトで又はその近くにプラズマ封じ込み場をもたらす静電プラズマ封じ込み機器を含むことができ、ターゲット追跡システムは、静電プラズマ封じ込み機器の制御を可能にする信号を提供する。機器及び方法は、低圧トラップを備えた中間壁を有してEUV光の通過を可能にして低圧トラップにわたる差圧を維持する容器を含むことができる。機器及び方法は、パルス駆動されてターゲット追跡システムからの出力を用いて制御することができるプラズマをターゲット点火サイトに閉じ込めるための磁場をターゲット点火サイトの近くに作り出す磁気プラズマ封じ込み機構を含むことができる。
ここで図1を参照すると、EUV光源、例えば本発明の実施形態の態様によるレーザ生成プラズマEUV光源20の全体的な広義の概念の概略図が示されている。光源20は、パルスレーザシステム22、例えば高電力及び高パルス繰返し数で作動するガス放電エキシマ又は分子フッ素レーザを含むことができ、例えば、米国特許第6,625,191号、米国特許第6,549,551号、及び米国特許第6,567,450号に示すように、MOPA構成レーザシステムとすることができる。光源20はまた、例えば、液滴、固形粒子、又は液滴内に含まれた固形粒子の形でターゲットを送出するターゲット送出システム24を含むことができる。ターゲットは、ターゲット送出システム24により、例えば、チャンバ26内に入れ、他に点火サイト又は火の玉の景色としても公知である照射サイト28に至るように送出することができる。ターゲット送出システム24の実施形態に関して以下でより詳細に説明する。
レーザパルスは、ターゲットの材料に従って生成されたX線の波長、点火中又は後にプラズマから放出されたデブリの種類及び量を含むある一定の特性を有するX線放出プラズマを形成する点火又は火の玉を作り出すために、ターゲット送出システム24によって生成されたターゲットの到着と共に以下により詳細に説明するように、適切に集束させた照射サイトにチャンバ26内の窓(図示せず)を通じてレーザ光軸55に沿ってパルスレーザシステム22から送出される。
光源はまた、集光器30、例えばレーザ光が照射サイト28に入るための開口を有する例えば先端を切った楕円の形態の反射体を含むことができる。集光器システムの実施形態に関して以下により詳細に説明する。集光器30は、例えば、照射サイト28に第1の焦点を有し、EUV光が光源から出力されて例えば集積回路リソグラフィツール(図示せず)に入力されるいわゆる中間点40(中間焦点40とも呼ばれる)に第2の焦点を有する楕円ミラーとすることができる。システム20はまた、ターゲット位置検出システム42を含むことができる。パルスシステム22は、例えば、発振器レーザシステム44と増幅器レーザシステム48とを有する例えば主発振器電力増幅器(MOPA)構成二重チャンバガス放電レーザシステムと、例えば、発振器レーザシステム44のための磁気反応器切換え式パルス圧縮及びタイミング回路50と、増幅器レーザシステム48のための磁気反応器切換式パルス圧縮及びタイミング回路52と、発振器レーザシステム44のためのパルス電力タイミングモニタリングシステム54と、増幅器レーザシステム48のためのパルス電力タイミングモニタリングシステム56とを含むことができる。システム20はまた、例えば、レーザビーム位置決めシステム66と共に、例えば、ターゲット位置検出フィードバックシステム62及び発射制御システム65も含むことができるEUV光源コントローラシステム60を含むことができる。
ターゲット位置検出システムは、ターゲット液滴の位置に対して、例えば、点火サイトに対して入力を供給し、かつこれらの入力をターゲット位置検出フィードバックシステムに供給する複数の液滴撮像器70、72、74を含むことができ、ターゲット位置検出フィードバックシステムは、例えば、ターゲット位置及び軌跡を計算することができ、ターゲット位置及び軌跡から液滴毎ではない場合は平均でターゲット誤差を計算することができ、ターゲット誤差は、次に、入力としてシステムコントローラ60に供給され、システムコントローラ60は、レーザビーム位置決めシステムが例えばレーザ位置及び方向変更器68の位置及び方向を制御する、例えば、レーザビームの焦点を異なる点火サイト28に変更するために使用することができる例えばレーザ位置及び方向補正信号を例えばレーザビーム位置決めシステム66に供給することができる。
撮像器72は、例えば、ターゲット送出機構92から望ましい点火サイト28へのターゲット液滴94の望ましい軌跡経路に整列した撮像線75に沿って例えば照準することができ、撮像器74及び76を望ましい点火サイト28前の経路に沿った何らかの点80で例えば望ましい軌跡経路だけと交差する交差撮像線76及び78に沿って例えば照準することができる。
ターゲット送出制御システム90は、システムコントローラ60からの信号に応答して、ターゲット送出機構92によって放出されたターゲット液滴94の放出点を例えば修正して望ましい点火サイト28に到着するターゲット液滴内の誤差を矯正することができる。
また、中間焦点40に又はその近くにあるEUV光源検出器100は、例えば、有効かつ効率的なLPPのEUV光生成に対する適正な場所及び時間にターゲット液滴を適正に割り込ませるために、レーザパルスのタイミング及び焦点などの事柄の誤差を示すことができるシステムコントローラ60にフィードバックを提供することができる。
ここで図1Aを参照すると、コントローラシステム60及び図1に示すような付随のモニタリング及び制御システム62、64、及び66の更に別の詳細が概略的に示されている。コントローラは、例えば、複数の位置信号134、136、クロックバス115でシステム構成要素にシステムクロック116によって供給されたシステムクロック信号と例えば相関付けられたターゲット位置検出フィードバックシステムからの軌跡信号136を受信することができる。コントローラ60は、例えば、システム時間における何らかの時点でターゲットの実際の位置を計算することができる到着前追跡及びタイミングシステム110と、例えば、何らかのシステム時間でのターゲット液滴の実際の軌跡を計算することができるターゲット軌跡計算システムと、点火が発生する空間及び時間における何らかの望ましい点と比較された時間的及び空間的誤差信号を計算することができる照射サイト時間的及び空間的誤差計算システム114とを有することができる。
コントローラ60は、次に、例えば時間的誤差信号140を発射制御システム64に、かつ空間誤差信号138をレーザビーム位置決めシステム66に供給することができる。発射制御システムは、共振充電器開始信号122を計算して、発振器レーザ44磁気反射体切換え式パルス圧縮及びタイミング回路50の共振充電器部分118に供給することができ、かつ、例えば共振充電器開始信号をPA磁気反射体切換え式パルス圧縮及びタイミング回路52の共振充電器部分120に供給することができ、これらの信号は、共に同じ信号とすることができ、かつ、トリガ信号130を発振器レーザ44反射体切換え式パルス圧縮及びタイミング回路50の圧縮回路部126に、トリガ信号133を増幅器レーザシステム48磁気反射体切換え式パルス圧縮及びタイミング回路52の圧縮回路部128に供給することができ、これらの信号は、同じ信号とすることができず、それぞれ、発振器レーザシステム及び増幅器レーザシステムのために、時間誤差信号140から及び光出検出装置54及び56からの入力から計算することができる。
空間誤差信号は、レーザビーム位置及び方向制御システム66に供給することができ、レーザビーム位置及び方向制御システム66は、例えば、発射点信号及び照準線信号をレーザビーム位置決め器に供給することができ、レーザビーム位置決め器は、例えば、発射時のレーザシステム増幅器48の出力部の位置とレーザ出力ビームの照準方向のいずれか又は両方を変更することによってレーザを位置決めすることができる。
ここで図2A及び図2Bを参照すると、それぞれ、集光器ミラー150内を見る集光器30の概略側面図と、図2Aの横断面線2Bに沿った回転対称集光器ミラー150配置の横断面図が示されている(ただし、横断面図は、図2Aのあらゆる半径方向の軸に沿って同じになる)。
図2Aに示すように、楕円集光ミラー150は、ミラーを見ると断面が円形であり、これは、ターゲット液滴94が焦点28にあるように設計された開始点に到達するのを妨げないように、殆ど楕円ミラー150の焦点28寄りになっているように図1Aに示されているミラーの最も大きい拡張部での横断面とすることができる。しかし、ターゲット液滴の焦点までの通過を可能にするために適切な穴をミラー(図示せず)に付加すると、ミラーは、中間焦点のために更に延びることができることを理解すべきである。また、楕円ミラーは、例えば、集束光学器械156を通じて、ミラー150を通って楕円ミラーの焦点にあることが望ましい点火サイト28に集束されるLPPレーザビームの進入を可能にするために、例えば、図2Aでは円形であると示めされる開口512を有することができる。また、開口152は、例えば、使用される制御システム種類によっては、開始点上でレーザビーム154の焦点の補正を行うようにビーム光路を修正するという要件(もしあれば)内でビームプロフィールに合わせて例えばほぼ矩形に作ることができる。
また、本発明の実施形態の態様によるデブリ遮蔽体180を図2A及び図2Bに示している。デブリ遮蔽体180は、望ましい点火サイトから半径方向に外方に延びかつデブリ遮蔽体180を通る狭い平面の半径方向に延びるチャンネル184を構成する例えばモリブデン製の例えば複数の薄箔で作られた複数の薄板で構成することができる。図2Aの図は、非常に概略的であり、縮尺通りではなく、実際には、チャンネルは、できるだけ肉薄なものである。箔板182は、照射サイト28上に集束されたレーザビーム155によってターゲット液滴94の点火によって形成されたプラズマから放出されたX線光の殆どを阻止しないようにチャンネル184よりもずっと肉薄に作ることができることが好ましい。
図2Bに見られるように、横断面にあるデブリ遮蔽体180内のチャンネル182の機能を見ることができる。単一の半径方向のチャンネルが図2Bに見られ、同じものは、集光器ミラー150の回転対称回転軸及びデブリ遮蔽体180のチャンネル内のデブリ遮蔽体180を通じて集光器30のどの断面にも見ることができる。照射サイト28から半径方向に外方に伝わる照射サイト28から放出されたEUV光の各光線190(及び他の光エネルギ)は、図2Bに示すように、必要に応じて集光器ミラー150反射面まで通して延びることができるデブリ遮蔽体180内のそれぞれのチャンネル182を通過することになる。光線190は、あらゆる入射角で楕円ミラー150の表面に当たり、図1に示す中間焦点40上に照らされる反射光線192として同じチャンネル180内で反射される。
ここで図3を参照すると、本発明の実施形態の態様によるターゲット形成/送出システム24の可能な実施形態が示されている。ターゲット送出システム24は、例えば、本体202及びキャップ204を有することができる例えばターゲット形成/送出機器200を含むことができ、本体202及びキャップ204は、例えば、比較的純粋な状態かつ例えば液体の形態で又は固体の形態でターゲット材料、例えばリチウム、例えば直径が約20μmの例えば比較的均一な半径の小球を収容することができる内部空洞206を例えば構成することができる。図3に示すように、原料は、液体の形態であるリチウムであり、これは、原料入力(図示せず)を通じて、例えば液体又は固体の形態で空洞206に供給することができ、例えばアルゴンとすることができる例えば加圧ガスのための原料を通じて錫とリチウムの間の質量及び速度の差異に基づいて、例えばターゲットとしての液体錫の場合には、例えば10psiから20psi、リチウムの場合は場合によっては遥かに小さい数値の例えば圧力下に維持することができる。
ターゲット形成/送出機器200はまた、例えば、本体202を環状に取り囲みかつ例えば本体を加熱して例えばリチウムの場合では約500℃又はそれよりも高い温度で材料を空洞内に維持することによって液体ターゲット材料、例えば液体リチウムを液体の形態に維持する役目をする加熱器、例えばカートリッジ加熱器210を有することができる。
例えばその下端での空洞206は、ノズル220内に開くことができ、ノズル220は、例えば固体ターゲット小球原料の代替的な実施形態ではノズル220の終端でのノズル開口部226の前で本質的に1つのターゲット小球のサイズまで狭窄化し、液体ターゲット材料を用いる実施形態の場合では、例えばターゲット液滴94に分離する役目をすることができる直径が約例えば20μmの流れ220を本質的に構成するサイズまで狭窄化する役目をすることができる狭窄化部分222を有することができる。
ターゲット液滴94の形成は、例えば摂動器226を通じて行うことができ、摂動器226は、例えばターゲット送出システムコントローラ90からの信号、例えば周期的信号、例えば図3に概略的に示すような正弦波の影響を受けると、ノズルを圧搾して、摂動不連続部を液体流れ224に追加することができ、最終的に流れ224から実際に形成されるターゲット液滴94のサイズ及び分布を例えば選択することができる。ターゲット送出コントローラは、全体システムコントローラ60から制御することができる。
全体システムコントローラ60はまた、例えば、望ましい点火サイトに対する例えば過去に送出された液滴の位置誤差に関して全体システムコントローラ60に供給される情報に基づいて、ターゲット送出システム位置コントローラ240を制御することができる。位置コントローラ240は、例えば、出力流れ224の軸線に直交する平面で、ターゲット形成/送出機器を移動させ、例えばその平面でノズル出力226の場所を調整することができる。これは、例えば緩やかな照準制御ループ及び高速照準制御ループが得られるように、又は例えば進路及び照準微制御を行うために、サーボモータ又は圧電アクチュエータ又はその両方の組合せによって行うことができる。
本出願人は、例えば約50μmの距離にわたって(より長い距離もプラズマ及びそのデブリからのノズルの保護に必要であると考えられる)望ましいターゲット模擬点火サイトに例えば20μm径の液滴を送出する場合、望ましいターゲット点火サイトに対する到着点において、約.25mmの誤差が発生する可能性があることを実験で注目した。本出願人は、これは、液滴がターゲット点までの適切な軌跡経路に対して斜めに、通常は真に垂直に(図3に例示するように)ターゲット形成機器200のノズルから初めに出るためであると考えている。本出願人はまた、これは、形成された状態で比較的一定の状態である可能性があるノズル全体にわたる温度の横方向の差異などのいくつかの影響による可能性があると考えている。この趣旨で、本出願人は、例えばターゲット点火サイトに対するターゲット到着位置の誤差を取り除くために、例えばこの液滴形成軸線傾斜誤差の影響を測定するターゲット位置誤差信号のフィードバックに基づいて、液滴形成軸線傾斜誤差から離れて等しくかつ対向してノズルを傾ける例えばターゲット形成システム92位置コントローラ240に組み込まれた傾き機構(図示せず)を提案する。これは、例えば圧電素子で行うことができ、圧電素子は、ターゲット点火サイトへの適切な飛行経路が得られるようにノズル出力時に液滴形成軸線誤差に対抗するために、例えばノズル内で5ステラジアンから10ステラジアンの傾きを導入しさえすればよいであろう。
全体的なシステムコントローラ60はまた、例えばアルゴン加圧ガスの圧力を制御するためにターゲット送出システム92信号(図示せず)を供給することができ、アルゴン加圧ガスは、点火サイト28に最終的に送出されるように、例えば最終的な液滴94のサイズ、液滴94の送出速度、液滴94の間隔、又は液滴94の形成/送出の何らかの他の作動パラメータを望ましい点火サイト28又は以下でより詳細に説明するターゲット追跡及びステアリングシステム350に合わせる役目をすることができる。
ここで図4A及び図4Bを参照すると、本発明の実施形態の態様による可能なターゲット追跡システム42の実施形態の態様が示されている。ターゲット追跡システム42は、例えば相対的な経済性が得られるように選択された例えばヘリウムネオン(HeNe)レーザ250を含むことができる。HeNeレーザは、例えば632nmから38nm波長/周波数で光のビーム256を生成することができ、例えばやはりレーザ光源22ビーム154が当たる光学器械252に送出することができ、例えばビーム154を本質的に100%透過することができ、例えば望ましい点火サイト28に集束されたビーム154の場合と同じ集束光学器械156を通じてビーム256の一部を反射することができる。
ターゲット追跡システム42はまた、例えば点火サイト28にある焦点を通過する光を例えば検出器262上に集束させることができる例えば別の集束光学器械260を含むことができる。検出器262は、HeNeレーザの帯域内であるがレーザ22の帯域内ではない光に感応するように選択された例えばフォトダイオード又はフォトダイオードのアレイ、例えばフォトダイオードの線形アレイとすることができる。検出器262は、例えば点火サイト28で又はその近くで例えばHeNeレーザからの光の経路内への液滴94の通過によって例えば選択的に感応するHeNeレーザ250の光が例えば検出器の1つ又はそれよりも多くのフォトダイオードに至る途中で遮断される度に、例えば高低を問わず出力信号を供給することができる。
検出器は、例えばHeNeレーザの波長に感応するフォトダイオードの線形アレイを含み、かつ点火サイト28を通じて例えば何らかの平面、例えば水平面(水平面が紙の平面と直交するように配向されると仮定して、図4Aに示すように水平に配向された)での例えば真の点火サイト28のいずれかの側を通るか又はその上でのターゲット液滴の通過を示す例えばアレイの横軸において、例えば横方向のアレイに向うか又は離れるか又はアレイを横切る方向でアレイ内の何らかの変位を判断するように分析することができる信号をコントローラ60又は何らかのフィードバックシステム、例えば位置フィードバックシステム62に供給することができることが理解されるであろう。
また、検出器262が例えば垂直方向に(図示のように)配向されたフォトダイオードの別の線形アレイを含む場合、アレイからの強度信号の何らかの分布を利用すると、例えば図4Aにおいて位置94a及び94aに例示するように、例えば点火サイトからの強度信号の横方向の変位を判断することができることも理解されるであろう。
変動する強度からの水平方向又は垂直方向のこのような誤差変位、又は例えばこのようなアレイ(水平方向又は垂直方向)における中央フォトダイオード以外への強度信号の変位を認識する機能を妨げると、位置94a又は94bのいずれかへの例えば図4に示すような液滴の変位は、例えば位置94a及び94bによって概略的であるが縮尺通りでなく示すように、例えば誤った位置にある液滴によってでさえも十分なHeNe光が検出器から妨げられた場合に、液滴94がターゲット上にあるという偽の表示を単に与える場合がある。次に、検出器262内のフォトダイオードの出力信号は、依然として液滴94が点火サイト28にあることを示す上述の低(又は高)信号であると解釈されるであろう。
図4Bを参照すると、例えば複数のこのような交差信号、例えば2つ又は3つの信号が液滴94が点火サイト28と交差したことを示すように要求することにより、追跡システム42におけるこのような誤差発生の可能性を緩和する役目をすることができる本発明の実施形態の態様による別の可能な配置が示されている。図4Bの実施形態は、図4Aに関して説明するように、ここでもまた、図4Aに示すように照射レーザビーム154集束光学器械156を通過するビーム256を組み込むことができる。この光学要素156を通過する1つの利点は、以下でより詳細に説明するように、例えば点火サイト28に集束されるように、例えば液滴が上述のようなターゲット送出システム92及び/又は以下に説明するようなターゲット追跡及びステアリングシステム350によってどこに送出されるのかに従って光学要素156を移動させるか、又は可能でありかつ有利であればレーザ22を移動させるか、又は以下でより詳細に説明するようなビームポインティング器具を用いることにより、以下でより詳細に説明するように、集束光学器械156を用いるフィードバックがあることを仮定すると、HeNeビーム256が常に望ましい点火サイト28に集束されるということである。
図4Bの実施形態はまた、例えば、それぞれ別の検出器、例えば262a及び262b上にそれぞれ集束される例えばHeNeレーザ、例えば256a及び256bから別の集束光学器械、例えば260a及び260bにレーザビームを例えば送出する例えば少なくとも1つの更に別のターゲット追跡レーザシステムを含むことができる。このようにすると、液滴94が例えば点火サイト28を撮像する更に別の角度から点火サイトを通過したことを示す2つ又はそれよりも多くの低(又は高)信号がフィードバックシステム62によって受信されるべきである。上述のように、それぞれの検出器262、262a、262bは、例えば望ましい点火サイトに関して液滴94の水平方向又は垂直方向又はその両方において位置誤差を判断するのに使用することができるこのようなアレイのフォトダイオード内の強度データを供給することができるフォトダイオードの線形アレイ又は直交する線形アレイを有することができる。これは、例えば集光器の焦点上の固定した望ましい点火サイトにターゲット液滴を送出する際のターゲット送出システム誤差のためにレーザ22が新しい点28’に集束された場合に、強度データを使用して何らかの固定された望ましい点火サイトと異なる点火サイト28’(図示せず)から液滴の位置誤差を検出することを可能にすることさえも可能である。
また、HeNeレーザビーム256、256a、又は256bの1つは、点火サイト28に到達する前に何らかの場所(図示せず)のターゲット液滴の通過を検出することができるように、図4に示すように紙の平面の上方にあるように配向することができることが理解されるであろう。これは、例えばフィードバックシステム62及び/又は主コントローラ60によって利用され、例えば3つの検出器262、262a、及び262bのうちの他の2つによって検出されるように、例えば点火サイト28の上方にある液滴経路内の位置から点火サイト28までの飛行時間を計算することができる。
例えば検出器、例えば262、262a、及び262bの応答時間、応答感度などの制限のために、先に参照した追跡システムは、十分に応答しない場合があり、又は十分なデータ又は少なくとも液滴単位で本発明の実施形態の態様によるターゲット追跡システム42の望ましい機能性の一部又は全てを達成するために十分に迅速に処理することができるデータを供給することができないであろう。
撮像装置及び検出器256、256a、及び256b、及び262、262a、及び262bの1つに例えば細長い円筒形レンズを設置すると、例えば図4aに示すように、例えば平面検出器面を点火サイトの面の上方に形成して、この平面を通る液滴94の通過を検出することができる。このような場合、図5に概略的に示すシステムを使用すると、図4A及び図4Bに関して説明したターゲット追跡システムの一部又は全ての態様を補うか又はその代用とすることができる。
レーザビーム256、256a、及び256bは、HeNeレーザと異なるレーザで生成することができ、又は例えば特定の周波数だけに感応するフォトダイオードを用いて、例えば検出器262、262a、及び262bの交差照射を排除することにより、検出器262、262a、及び262bで検出画像光を区別することができるように周波数倍増及び増強して、例えば高調波を取得することができる。
図5においては、可能な高解像度ターゲット追跡システム42が概略的に示されている。図5は、図1で例示する例えば3つの撮像カメラ、例えば70、72、及び74の視野270a、272a、及び274aの点火サイト周辺での交差を概略的に示すが、図5においては、カメラ視野の全ては互いに交差し、かつ例えば全て点火サイト28で交差することができるという変更が異なる点である。図5に示す例と同様に、視野の各々は、相互に直交することができる。また、図5は、視野の1つ、例えば270が、例えば撮像カメラ72内で検出器ピクセル270の例えば正方形アレイに延びることを示すものであり、撮像カメラは、例えば各々がデジタルカメラ技術分野が公知であるような電荷結合素子又はCMOS撮像集積回路又は単一チップCCD又はCMOS撮像器などによって形成された例えばピクセルの正方形アレイ270を使用する例えばデジタルカメラとすることができる。
撮像カメラ70、72、及び74は、例えば図4A及び図4Bに関して又は図9に関して先に説明したような平面交差検出器、又は例えば点火サイト28近くの例えばターゲット液滴の軌跡の計算のために点火サイト28の上方に視野を有して例えば飛行時間情報及び点火サイト28上方の位置決め情報を取得することを目的とした別のカメラで補うことができることが理解されるであろう。
このような機器を用いて、例えばアレイ270からのほぼ円形のピクセルグループによってかつ適切な画像処理ソフトウエアを用いて形成された例えば液滴94の画像を形成し、アレイにわたって液滴の「斑点」画像を追跡することができる。画像処理及び対象追跡の技術分野に携わる当業者は、3つの交差視野、例えば270a、272b、及び274aの全体にわたるこのような追跡では、点火サイト28に到達する前に液滴94の追跡を行うと共に、ターゲット液滴の実際の位置とターゲット点火サイト28の間の位置誤差を示す例えばフィードバックコントローラ62が誤差信号を生成することができる元になる情報を得ることができ、その情報は、特定の液滴に対してはその特定のターゲット液滴94のレーザビーム154の照準点に基づくものとすることができ、その特定のターゲット液滴94は、本出願で説明するように、例えばフィードバック制御、例えばレーザ集準システム68のために何らかの予め選択された望ましい点火サイト、例えば集光器焦点にある場合もない場合もあることを理解するであろう。
また、点火サイト28に照準することができるのは、2つのカメラだけであることが理解されるであろう。更に、カメラ、例えば70、72、及び74の感度は、一度に1つのピクセルのみがターゲット液滴の画像によって照らされ、及び/又は視野270a、272a、及び274aは、ターゲット液滴を見るために非常に高い解像度(低ピクセルピッチ)でありかつ視野が比較的小さいものとすることができる可能性があり、従って、例えば点火サイト28周辺でターゲット液滴の飛行を実質的に追跡する機能が小さくなり、点火サイトの上方でのターゲット液滴の検出の利用の方がターゲット追跡システム42の全体的な機能性に重要なものになる。
ターゲット追跡システム42の出力は、特に、点火サイト28で又はその近くでのターゲット液滴94に関する情報であることが望まれ、その理由は、点火サイト28から、ターゲット追跡フィードバック制御システム62が例えば現在選択されている照準点を予測点に移動させることができるように、例えば点火サイト28に到達する前の何らかの時点でのターゲット液滴位置及び軌跡、及び例えば点火サイト28への検出ターゲット液滴94の予測到着時間及びレーザビーム154の現在選択されている照準点に対するその到着時間での位置を示す情報を主コントローラ60に供給することができるからである。また、例えば点火サイトへのターゲット液滴到着の実際の観察、及び例えば点火サイト28でのレーザビーム154と特定のターゲット液滴98との相互作用、及び場合によっては点火サイト28から出るデブリの撮像も必要であろう。次に、上述の全てをシステムが使用すると、主コントローラ60が例えばターゲット形成/送出システム24によるターゲット液滴送出を及び/又はレーザビーム154の照射サイトの位置決めを例えば集束光学器械156を制御することにより、また、照射サイト28でのレーザビーム154の発射のタイミングを例えばMO及びPAレーザチャンバの磁気反射体切換式パルス圧縮及びタイミング回路50、52のパルス電力システム共振充電器の初期充電をトリガすることにより、及び例えばターゲット液滴94の到着に合わせて時間調節した点火サイト28でのビーム154内のレーザ光のパルスを送出するためにMO及びPAチャンバのそれぞれの発射のトリガを修正するように制御信号を生成する役目をすることができるように、例えば主コントローラ60に例えばフィードバックを生成することができる。ターゲット液滴94及びレーザ光156は、約10μm未満の組合せ位置誤差でその液滴94及びそのビーム156の特に指定された点火サイト28に到着しなければならず、その結果、レーザ光の集束パルス156は、例えばEUV光源システム20内の例えば反射面に例えば穴を作り、又は覆い、及び光学的に劣化及び/又は損傷するような例えば金属デブリの塊を回避するために、液滴のどこも何らかの選択されたレベルの強度よりも小さいパルス156内のエネルギの空間分布外にあることなく、ターゲット液滴94全体を照射する。システム20は、特に、約1マイクロ秒の精度のMOPA構成、例えばKrFのMOPAである場合、250マイクロ秒毎に一回、例えば4KHzの繰返し数で、及び10kHzの繰返し数の場合では100マイクロ秒毎に一回、例えばレーザ22の適切な発射をトリガするための50マイクロ秒のリードタイムを設ける必要があるであろう。液滴94は、例えば約20メートル/秒の速度で到着しかつ6Khzパルス繰返し数で約1mm分離されることになる。
何らかの種類のトリガ信号の何らかの発生から及びその時間の長さ及び他の要素、例えば計算時間、追跡装置、及び回路時間などのために、レーザパルスビーム154を生成するのにある程度の有限の時間が掛かるので、現在の技術では、液滴単位で、特により高い繰返し数で、例えば約4kHz又はそれよりも大きいものでこのようなトリガに対処することはできない。このような場合、検出システム42及びフィードバックコントローラ、例えば60、62は、例えば平均化、例えば一連の連続的な液滴、例えば液滴の最後のx個に関する位置決め及びタイミング情報に基づく例えばタイミング及び位置制御などに頼ると共に、そのようにして判断された平均化された位置からの例えばある程度の比較的緩やかに変動するずれの範囲内にあり続ける連続的な液滴に関する仮定を行わなければならないであろう。このような場合、システムには、依然として例えばレーザシステム22の発射制御に対して例えば点火サイトの上方での所定の液滴の位置/タイミングの検出が必要である場合がある。
ここで図6を参照すると、いくつかの本発明の実施形態の他の態様、例えば冷間フィンガ280、圧力遮蔽体290、及び真空ポンプ300を含む圧力インタフェースを含む特徴が概略的に示されている。冷間フィンガ280は、その一部だけが示されているが、例えば、開示内容が引用により本明細書に組み込まれている本出願の本出願人に譲渡された代理人整理番号第2003−0051−01号である2003年6月25日出願の「磁気回路素子を冷却する方法及び機器」という名称の現在特許出願中の米国特許出願出願番号第10/607,407号で示すように、各冷間フィンガ280を形成するために2つの部分を融着することによって行われる要領で例えば図示のように湾曲状態とすることができるマグネシウム被覆銅板で構成することができ、中間焦点40に向うほど長い距離を隔てて分離することができ、例えば熱交換器システム(図示せず)で、また、例えば冷間フィンガ280(やはり図示せず)の内側にあるマイクロチャンネルで水冷することができる。図6に部分的に概略的に示されているこれらの冷間フィンガは、容器26内の中間壁まで全体的に又は途中まで、中間焦点に集束されるEUV光の円錐部を除き容器26を通して延びることができる。これらの冷間フィンガは、容器26内でバッファガス、例えばアルゴンから膨張する時にプラズマ内で形成されたか又はプラズマで運ばれた原料原子をメッキする役目をし、その結果、これらの原子は、EUV光源内で光学面上にメッキされない。
また、EUV光の吸収を制限するために真空状態に維持することができる、例えば中間焦点の外側にあるEUV光源の外部との可能な境界面が示されている。しかし、EUV光が生成されるチャンバの他の部分における真空状態は、様々な理由でより高い真空状態に維持すべきである。境界面は、例えば圧力が印加されている介在壁282の一方の側にある容器26の部分から中間焦点を超えてハウジング、例えば真空ポンプ300によって真空に又は真空近くに維持されている他方の側までの圧力降下を維持しながら、例えば中間焦点へのEUVビームの透過を可能にするように設計することができる介在壁と圧力遮蔽体、すなわち差動排気トラップ290を含むことができる。差圧トラップは、開示内容が引用により本明細書に組み込まれている本出願の本出願人に譲渡された代理人整理番号第2003−0099−01号である2003年12月18日出願の「放電生成プラズマEUV光源」という名称の現在特許出願中の米国特許出願出願番号第10/742,233号に開示されている1つの形態のデブリ遮蔽体と同様に作製することができる。これは、中間焦点までの集光EUV光の通過のためのチャンネルを有するように作製することができるが、各チャンネルに対しては、サイズは、差動排気トラップにわたる圧力降下を持続することができるのに十分な小さいものである。また、こういう主旨で、差動排気トラップ290を作製することもでき、その方法は、例えば、ここでもまた先に参照した米国特許出願出願番号第10/742,233号で開示するように、例えば球の材料、例えばセラミック材の断面を用いて例えばレンズ及びメッシュスクリーンを通る光を集束させ、例えば球の一部を貫通する集束通路を穿設して圧力降下を持続しながらEUV光の通過を可能にするというものである。
ここで図6を参照すると、本発明の実施形態の態様によるフィードバック及び制御システムの態様がより詳細に示されている。
全2πステラジアンの多層集光器を用いて、幾何学的集光面積を5ステラジアンから2πステラジアンに大きくするために、レーザを生成してプラズマを作り出すためのレーザへの所要の入力電力を25%低減することができる。例えば、2.0%のレーザ/EUV光変換率(例えば、短い波長による二重効果を基本とする)、4%の電気/レーザ変換率、2πステラジアンの集光、及びTRW/CEOシステムと同じEUV透過率を仮定したKrFエキシマベースのLLP光源の場合、得られる電力は、227,272Wであり、これは、放電生成プラズマ(DPP)を用いた代替手法と遜色のないものである。例えば、(2.0%/1.0%)・(4.0%/3.0%)・(2πstr/5πstr)=3.3でこのような改善になり、例えば、現在公開されているTRW/CEOのLPPの結果で示されている値に優るものである。
このような可能なCEの結果を用いて、中間焦点で例えば100WのEUV光電力を満たすことを必要とするレーザ電力を以下のように見積ることができる。
(表)
Figure 2007529869
第1及び第2の縦列を合計すると、9,017Wのレーザ電力の場合、129WのEUVがIFで得られ、これは、例えば必要なレーザ電力が6,989Wに過ぎないことを意味する。縦列1及び3に同じことをすると、IFで100Wになるには所要量が単に5,636Wという結論になる。それでも多量のレーザ電力であるが、例えばTRWからの結果に説明されているような20,000Wから40,000Wの範囲ではない。第2の球形ミラーと他の方法で増大したレーザ電力との間の可能な経済的トレードオフが呈示されている。
本出願人は、例えばリチウムターゲット/KrF駆動LPPに関する状況を考察し、中間焦点の地点まで伝わる放射線の実質的に全ては(フォトダイオード検出器による実験でシミュレーションを実施)、帯域内13.5nm放射線かUV−Vis放射線であると最初に結論した。多層膜ミラー(MLM)集光器配置(やはり平坦なMLMでシミュレーションを実施)を使用したために帯域外EUVはない。また、40nmから130nmの間の領域では実質的な放射線はないように見える。更に、帯域内13.5nm放射線への変換効率は、UV−Vis領域の4.3倍のように見える。しかし、所要量は、130nmから400nmの範囲では帯域内13.5nmの1/100(1%)に過ぎず、本出願人の最初の実験による測定結果によれば、UV−Vis範囲での含有エネルギは、帯域内13.5nm放射線の22%である。しかし、この大部分は、120nmから9000nmの範囲内の他の光と共に中性リチウムから670で強い赤い線になるためのUV−Vis範囲のように見える。更に、本出願人による実験での測定対象は、EUV光源点の周りの全ての点からの放射線であり、一方、例えば本出願人によって企図された構成における真の光源は、楕円撮像ミラー及び中間焦点での開口を有すると考えられ、この後者は、例えばEUV光源点から離れた領域からの全ての放射線を阻止することができる。
例えば、MLM一次集光器を用いた全てのLPPシステムに対しては、10nmから40nmの範囲は、例えばグレージング入射集光器を用いたDPPシステムとは異なって、MLMの狭帯域反射率によって対処することができ、DPPシステムでは、例えば全てのEUV放射線は、中間焦点に再撮像され、従って、この範囲は、例えばスペクトルフィルタがなければ帯域外放射線に関しては問題になる恐れがあり、このスペクトルフィルタは、特に錫及びキセノンプラズマ源放出元素材料の場合には、例えばスペクトルフィルタなしでシステムを作動させることよりもCEを低減することができる。しかし、リチウムの場合はこれは当て嵌まらない可能性がある。同じことは、40nmから130nmの範囲に対しても言えるが、その理由は、LPPシステム内のMLM一次集光器もこの領域では反射率が低いからであるが、DPPにおけるグレージング入射集光器は、40nmから130nmの範囲で比較的高い反射率を有することができる。
130nmと400nmの間では、MLM一次集光器は、反射性が帯域内13.5nm放射線程度であり、従って、例えば、光源は、この波長範囲では帯域内エネルギとして100倍少ないエネルギを放射すべきである。この制約は、主として、殆どのEUVフォトレジストが13.5nmと同様にこの波長範囲に感受性であるという事実によるものである。露光ツール内のMLMは、帯域内13.5nmと同様程度に400nmから800nmの範囲の光を反射するが、フォトレジストは、感受性ではなく、従ってミラー加熱のみが問題となっている。従って、本発明のシステムは、13.5nmでの帯域内とこの範囲で等量に耐えることができる。800nmを超える波長に対して反射性が高いが、フォトレジストは、これらの波長には反応度が高くないので、800nmを超える範囲であれば、400nmから800nmの範囲と同じ制約になるように見える。YAGベースのLPPに対しては、1064nmがこの最終範囲に含まれ、従って、帯域内13.5nmに対する2%の変換効率が800nmを超える範囲で要件になる場合には、ポンプレーザの0.001%の散乱を有するだけで達成することができる。
以上からCE及び帯域内CEがそれほど重要である理由が明らかである。
本出願人の実験から比較を目的として固体錫とリチウムのターゲットに対して以下の結果が得られた。
(表)
Figure 2007529869
ここで図7Aから図7Cを参照すると、本発明の実施形態の態様によるプラズマ、例えばレーザ生成プラズマを静電気的に閉じ込めるための機器及び方法が示されている。図7Aに示すように、点火サイト28の近くに延びる細い針310を設置することができる。針310は、レーザビーム154集束光学器械156を通過するレーザ光154の入射パルスの方向と反対の方向から延びるように図7Aから図7Cに示されているが、当業者は、この特定の方位は例示的であるに過ぎず、針は、他の方向からも図示の点火サイト近傍まで延びることができることを認めるであろう。
針310に例えば高電圧、例えば負の高電圧312を供給し、かつレーザビーム154からの照射による点火サイトでのターゲット液滴の点火時に又は点火直後にターゲット液滴94の照射により生成されたプラズマ316の封じ込みを助けるために静電場が形成されるように、ターゲット液滴94及びレーザパルス154の点火サイト28への到着に負の高電圧パルスの供給を調整するために、例えば全体システムコントローラ60により又は例えばレーザトリガ制御の一部として針の制御を行うことができる。これは、いくつかの有用な結果を有し、例えば、プラズマ生成デブリが例えば集光器光学器械に到達するのを制限又は本質的に排除し、ターゲット液滴の材料のイオン化を増加させるほど十分に小さくプラズマを維持して結果的にCEを改善し、すなわち、全てレーザビーム154による照射中にプラズマ316のプラズマ密度を維持するのを助けることができる。
電圧は、約例えば1000とすることができ、これは、プラズマイオンの範囲である約1keVまでのエネルギのイオンを維持することができる場の生成に十分であるはずである。更に、例えば針310への負電荷を有する電子の導入によって場が形成され始める時に、場が静電場314を形成することがあったり又は迅速に消し去ったりするのを防止するのに十分なほど、ターゲット材料のイオン化によるプラズマ内の正電荷を針に引き付ける可能性がある。これに対処するために、本出願人は、プラズマ内に形成される正電荷イオンが、静電場が点火時又は点火後にプラズマの意図する封じ込みを行うのを妨げるのを防止するのに十分な負電荷を針310に迅速に放り込むように、電源312に比較的大きなコンデンサ、例えばコンデンサ列を例えば並列に設けてキャパシタンスを結合し、例えば100μF又はできる限り大きくすることを提案する。
本発明の実施形態の態様の上述の説明は、例示的なものに過ぎず、特許請求の範囲は、開示された実施形態に限定されないと考えるべきである。特許請求の範囲及び意図から逸脱することなく、多くの変更及び修正を開示された実施形態に行うことができる。図8Aは、点火後にプラズマを点火サイト28の近くに閉じ込める磁気機器及び方法を概略的に示している。図8Aは、例えば一対の棒磁石326、328によって確立された磁場320を示している。図8Bは、図8Cに示すレーザビーム、例えば154によってターゲットが照射された時に点火サイト28に形成されたプラズマを閉じ込める役目をするリング状磁石322の磁場を概略的に示す磁場線320を示している。図8Bはまた、共に例えば「Permag型NdFeB40」及び「Permag型SmCo22」という名称で例えば流動冷却流体、例えば水を収容する例えば冷却コイル324を使用する例えばリング状磁石322の形で「Dexter Corporation」によって製造された永久磁石、例えばネオジウム鉄ボロン磁石又はサマリウムコバルト磁石のための冷却の使用を示している。図8Cは、4極配置329によって確立された磁場320を概略的に示している。
ここで図8Aから図8Gを参照すると、本発明の実施形態の態様が概略的に示されている。磁場320はまた、例えば図8Dから図8Gの実施形態に示すようなパルス電流によって確立することができる。図8Dにおいては、紙の平面に流れ込みかつ331で紙の平面から出る電流によって示される電線のコイルの例えば中を流れる例えばパルス電流によって確立された磁場320を有する図8Bのリング状磁石の電気的均等物の概略図が示されている。同様に、図8Eは、いずれかの端部でより多くの巻線があるようにコイルを磁場発生器の長さ方向に分配することによってほぼ瓶形状の磁場が確立された実施形態を示している。同様に、図8Eにおいては、例えばコイル内の電流の流れの方向を一端から他端にかけて交互にする、すなわち、電流の流れを一端ではコイルを通る一方の方向に、他端では反対方向に伝播させることによってこれと同じ形状の磁場320を確立することができ、同様の目的で、例えば図8Gに概略的に示すように、ほぼ球形のコイル配置を用いることができる。
レーザ生成プラズマの領域に磁場を作り出すように例えば約1テスラの磁場を点火サイトの近隣に印加することにより、プラズマを少なくとも部分的には閉じ込めることができ、その理由は、プラズマのそれぞれの部分の近くにおける磁場形状及び強度次第で少なくとも一部の方向にプラズマの膨張を減速させることができるからである。このようなプラズマ封じ込みの促進は、特にレーザ照射の移動するターゲットに対してはいくつかの利点を有する可能性がある。例えば、放射イオンは、次により多くの放射サイクルを経て、従って放射線放出量を増加させる傾向がある。例えば、イオン膨張エネルギではなく放射線により多くのレーザエネルギを変換することができ、その結果、EUV光への入射レーザエネルギのCEが高くなる。
磁場及びそれを作り出すのに使用される機構318は、磁場の適切な部分内に点火サイトを包含し、ターゲット、例えば液滴及び照射レーザビームを点火サイトにアクセスさせるように好都合に配置することができる。レーザビームがターゲット液滴を照射及び点火した時に形成されたレーザプラズマ領域は、本発明の実施形態による磁場内にある。一般的に、磁場は、約1テスラとすることができるが、約0.2テスラと10テスラの間の範囲を本出願人は企図している。磁場の生成は、上述の永久磁石を用いて又は例えば上述のように導電コイルを流れる高(キロアンペア)パルス電流を利用して、上述のパルス法で行うことができる。このようなパルス生成磁場の生成は、例えばミリ秒の時間尺度で行い、例えば数十nsの例えば程度で入射レーザパルスによるターゲット液滴の照射時間を通じて本質的に一定のままであるようにすることができる。その時間中、例えば磁場線にわたるプラズマ膨張は減速され、磁場線に沿った運動は実質的には減速されず、正味の効果は、恐らくプラズマ不安定性を誘発し、これよりも例えばCEの増加の方が上回っている。
磁気圧力が高くなると、例えばプラズマ内の衝突回数が多くなり、それによって例えば磁場がない場合よりも少量かつ高温のプラズマを発生させることができる。その結果、ターゲット材料及びプラズマ特性に応じて、EUV及びその他のより多くの放射線が放出される。1つの可能な実施形態は、例えば図8Aに示すような横磁場を用いるというものである。別の実施形態は、例えばターゲット液滴伝播経路に沿って磁場線を生成し、かつ例えば点火サイト28の周辺での軸線方向の封じ込みに至ることができる点火サイト周り及びその近くで強いリング状磁石又は磁気コイルを用いるというものである。好ましい実施形態は、例えば横移動(例えば図8Cに示すターゲット液滴経路に対して)を伴うターゲットイオンが閉じ込められる例えば磁気トラップが形成される、例えば図8C、図8E、図8F、及び図8Gに示すような構成である。
本発明の実施形態の態様によれば、磁場生成機構、例えば永久磁石の極、例えば326、328は、例えば極間で約10mmの間隙を伴って比較的LPP近くでなければならないであろう。例えば極間の長い距離を通じて十分に高い磁場強度を作り出すことは、例えば不可能ではないにしても困難であると考えられる。このような近接接近構成要素が必要であることで、例えばLPPの最大の利点の1つ、すなわち、電極損耗又はこの場合は永久磁石損耗がないことが損われる可能性がある。本出願人は、例えば約50mmであると考えられる確実な位置安定性を保証するためのノズル位置を検証した。これらの構成要素、例えばノズル及び永久磁石に関する損耗の問題を緩和するために、本出願人は、例えば、全ての近接接近要素を例えばモリブデン又はルテニウムで被覆することにより、損耗は許すがその損耗が問題のない材料のものとすることを提案する。このようにすれば、例えば集光器ミラーに当たる可能性があるこれらの構成要素の材料が損耗しても、ミラー反射率は急速には劣化しないであろう。また、例えば、これらの2つの材料は、リチウムイオンによりスパッタリングに対して高い耐性を有することが予想される。
ここで図9を参照すると、6度のフィードバック及び制御、すなわち、ターゲット液滴を案内するための3軸制御及びレーザを案内するための3軸制御を行うフィードバック及び制御に関する本発明の実施形態の態様のブロック図が示されている。レーザビームは、例えば、ビームポインティング及び位置決め制御、例えば、代理人整理番号第2003−0082−01号である2003年12月17日出願の「ガス放電レーザ光源ビーム送出ユニット」という名称の現在特許出願中の出願番号第10/739,961号、代理人整理番号第2002−0039−06号である2002年11月12日出願の「ビーム送出を伴うレーザリソグラフィ光源」という名称の出願番号第10/712,688号、及び代理人整理番号第2003−0040−01号である2003年4月29日出願の「ビーム送出及びビームポインティング制御を伴うリソグラフィレーザ」という名称の第10/425,361号に説明されているような例えばレーザビーム送出ユニットで使用されるものを利用することによって案内することができることが理解されるであろう。図9は、本発明の実施形態の態様によって使用される様々な制御ループを概略的かつブロック図形式で示す図である。例えば、制御システム構成で使用することができる本発明の実施形態の態様によるEUV光源で利用することができる例えばいくつかの異なるアクチュエータがある。例えば、10KHzの繰返し数であれば、液滴は、100マイクロ秒毎に到着して、約10m/sから30m/sで移動することになり、その結果、レーザビームは、同じ速度で望ましいターゲット点火サイト地点を照射するように時間調節すべきである。レーザビームは、ターゲット液滴よりも若干大きくなるように集束させることができ、この液滴は、ある程度の照準精度、例えば±10μmで直径が約10μmから50μmとすることができるが、ビーム焦点サイズに組み込まれた許容誤差の程度が大きいほど液滴ターゲットを照射する電力が小さくなり、これは、二乗関数で減少する。しかし、液滴は、それが仮にも照射期間中に移動を続ける範囲では、数10分の1ナノメートルを移動するだけであることになる。
一組のアクチュエータは、例えばx軸磁場及びy軸磁場を含むことができ、x軸磁場及びy軸磁場の生成は、例えばターゲット、例えばリチウム液滴94をレーザビームで正しい交差点(望ましい点火サイト)に案内することができる磁場作成に使用される例えばターゲットステアリング及び加速機構360に含まれた例えば何組もの電極又はコイル(図示せず)によって行うことができる。これは、例えば一組の電極で実行することができるが、他の実施例では、これらの複数の組を用いてより良好な軌跡制御を行うことができる。更に、例えばターゲット、例えばリチウム液滴をz軸に沿って加速させるために使用される例えばz軸磁場を作り出す一組の電極(図示せず)がある場合がある。また、この照準及び加速機能は、液滴を例えばそれぞれのコイルのために又はそれぞれのコイルから離れるように偏向し、及び/又はコイルの長さ方向に加速させるように液滴の経路に配置された電気コイルで実行することができることが理解されるであろう。加速及び偏向は、当業技術で理解されるように開始が磁気的であるか、又は静電的であるとすることができる。ターゲットステアリングでは、開示内容が本明細書において引用により組み込まれている、M.Orme他著「直接書込み技術としての帯電溶融金属液滴堆積」、MRS春季会議、サンフランシスコ(2001)、及びOrme他著「毛細管流れ崩壊から形成された非従来的液滴流れの静電帯電及び偏向」、流体の物理学、第12巻、第9号(2000年9月)、2224から2235頁に説明されているような技術を使用することができる。
液滴は、例えば帯電リングをターゲット送出システム24のノズル220の周りに置くことにより、例えば帯電させることができる。液滴は小さいので、液滴全体にわたる電荷の分布は、比較的均一であると考えることができるが、電荷は、曲率が高い方の地点に蓄積される傾向があり、その結果、液滴の歪がある場合には、その歪によって電荷の分布が変わってしまう可能性がある。これに対処するために、本発明の実施形態の態様によれば、液滴をターゲット送出システム24とターゲットステアリング及び加速機構360との中間にある差動電荷分析器(図示せず)に通すことができ、ターゲットステアリング及び加速機構360は、例えば反対方向に液滴を偏向する一対の電極を含むことができ、偏向の差は、電荷不均一性の尺度である。この変位の差の検出は、本出願で説明するような検出器(図示せず)を用いて行うことができる。システム350が電荷不均一性の量を使用すると、ターゲットステアリング及び加速機構360内の液滴のx軸及びy軸での偏向及びz軸での加速も制御することができる。
本発明の実施形態の態様によれば、レーザビームシステム22、すなわち、MO44とPA48を収容する2チャンバエキシマレーザ光源は、例えば電圧制御モードで作動させることができ、制御システム350コントローラ362は、アクチュエータの役目をするMO及びPAに電圧指令を供給し、EUV光源20から出るエネルギを調節することができる。代替的に、MOPA22は、例えば一定エネルギモードで作動させることができ、その場合、制御システムは、例えばEUV光源20から出るエネルギを調節するのに使用されるアクチュエータとすることができるMOPAにエネルギ指令を供給することができる。制御システムは、例えば望ましい液滴点火サイトへのレーザパルスの到着時間を制御するために、レーザパルスを供給するアクチュエータの役目をするようにレーザシステム22にレーザトリガ信号を供給することができる。更に別の代案として、レーザの制御は、例えば、本出願人の譲受人によって販売されているMOPAレーザ製品、例えばXLAレーザモデルにおいてレーザタイミング制御システムで利用されるMOPAのTEMに直接に制御信号を発することによってコントローラ362から行うことができる。電圧制御及び出力エネルギ制御信号は、一斉に又は別々に指令することができる。
本発明の実施形態の態様によれば、追跡と共に及び/又は追跡に加えて、上述の位置検出器センサ、例えばいくつかの異なるセンサを例えば制御構成で使用されるように図9に示すEUV光源20制御システム350内で供給することができる。一例として、何組ものフォトセル、例えば第1のx軸フォトセルアレイ364と第2のx軸フォトセルアレイ365、及び第1のy軸フォトセルアレイ366と第2のy軸フォトセルアレイ367を例えば液滴経路に垂直方向に配置することができ、かつ、例えば液滴軌跡を判断するのに使用することができ、その方法は、例えばターゲット送出システム24を出た後にx及びyフォトセルアレイ364、366の地点での予測x軸及びy軸位置に照らして液滴のx及びyの位置を判断するか、又はアレイ364、366及びアレイ365、367での液滴のx及びy位置を検出して、両者間の距離が分った上で両者を比較するというものである。x及びyフォトアレイ364、366も、x及びyフォトセルアレイ365、367も、どちらも同一平面上でなくてもよいが、好都合に同一平面上にある場合もある。別の代案は、それぞれのアレイを利用して、例えばz平面交差指示として使用することができるセンサ364、365、366、及び/又は367への液滴到着時間を判断するというものである。これらの検出器364〜367は、上述のように、例えば側面撮像レーザによって実行することができる。これらの検出器は、例えば液滴通過毎に1回読み取ることができ、かつこれらの検出器は、出力として、フォトダイオードアレイが配向される軸線内での液滴中心の位置を示す長さが単に20個ほどのフォトダイオード(ピクセル)程度である可能性がある例えばフォトダイオード上の位置を示す例えばこれらの照射強度の逆数のピークを伴う例えば選択された期間にわたってアレイ内の各フォトセルによって検出された光の積算値を供給することができる。時間領域内のこのピーク、又は恐らくはフォトダイオードアレイからの統合信号のスペクトルの前縁又は後縁は、z平面交差時間も示すことができることが理解されるであろう。
それに加えて、代替的に、例えば1つ又はそれよりも多くのz軸レーザ、例えば上述のようなHeNeレーザを使用すると、例えば液滴が、ビーム、例えば730、372、373、374、又は376と交差する時間を測定することができ、このビームは、z軸の平面に、すなわち、ターゲット供給システム24から点火サイト28へのターゲット、例えばリチウムの液滴の移動に対して横送りの方向に配向された平面ビームを含むことができる。本発明の実施形態の態様によれば、複数のこのようなz軸検出面、例えば370、372、374、及び376を例えば液滴ステアリング及び加速機構360に包含された例えば磁場に印加されたパルスのタイミングを制御するのに使用することができる。磁場は、例えば液滴がそれぞれのビーム、例えば370、372の平面と交差した後に固定した間隔でパルス駆動させることができるであろう。更に、ビーム、例えば374、376を望ましい点火サイトに更に近づけて位置決めすることができる。このビーム374の交差を利用すると、例えば、ビーム交差後にプログラムされた間隔でレーザシステム22をトリガさせることができる。また、複数のz軸レーザ面、例えば370、372、及び3734の交差を利用すると、液滴速度を判断することができる。検出器364a、366a及び365a、367aを例えばステアリング及び加速機構360の下方での軌跡及び/又は速度検出に利用することができる。また、例えばレーザトリガに使用するのに必要な平面交差は1つだけとすることができ、MOPAレーザタイミング制御システム技術分野で十分に理解されているように、例えばレーザ制御システム46自体を使用すると、MOとPA間のタイミングを制御してこのようなトリガ信号の後に何らかの定められた時間間隔でターゲット94と同時に到着するように時間調節されたレーザパルスを点火サイト28に有効に送出することができることが理解されるであろう。
本発明の実施形態の態様によれば、例えば、液滴がx軸又はy軸のフォトセルアレイ、例えば364、366の平面を通過した時、電池は、フォトセルの出力部で各個々のフォトセル(図示せず)での光強度レベルを示す電圧パターンを供給するものであり、この情報を、例えばコントローラ362に供給することができる。次に、アルゴリズムをコントローラ362が用いると、例えば上述のようなx及びy平面においてこの情報を液滴位置に変えることができる。手頃な経費及び満足できる解像度による従来技術で利用可能なフォトセルアレイが与えられると、アルゴリズムは、レーザ波長及び帯域幅検出分野におけるこのようなフォトダイオードアレイ利用の分野で理解されているように、例えばアレイ、例えば364、366のフォトセル(図示せず)のピッチよりも高い測定精度を達成すべきであることになる。更に、本発明の実施形態の態様によれば、アルゴリズムはまた、例えばx及びy検出器、例えば364、366の出力を利用して、例えば2つの軸線内で液滴幅を検出することによって液滴サイズ及び液滴変形を測定可能にすることができる。
本発明の実施形態の態様によれば、例えば、位置制御の2つの可能な段階があるとすることができる。第1の段階において、x及びyフォトセルアレイ364、366、365、及び367を使用すると、例えば液滴軌跡と共に液滴ステアリング及び加速機構360内のx軸及びy軸の磁場電極に入る前の液滴のz平面での位置を判断することができる。次に、この情報をコントローラ362が使用すると、例えば現在の液滴及び恐らくは次のその後の液滴のために例えば電極(図示せず)で印加される磁場のサイズも調整することができる。第2の段階において、例えばx及びyフォトセル364a、366aを使用すると、例えば、液滴ステアリング及び加速機構内のx軸及びy軸の磁場を通過した後及び例えば望ましい点火サイトでのレーザビームとの交差直前の液滴の位置を判断することができる。この情報を使用すると、例えば連続発射のためにx及びyの磁場を調節して、例えば点火サイトに先に到着する液滴のあらゆる位置誤差に対して調節することができる。
また、z軸レーザ面検出器374、376、又はx軸及びy軸フォトセルアレイ364aと366a及び365aと367a、又はその組合せを用いると、例えば、液滴ステアリング及び加速機構360内のz軸磁場を出た後の例えば液滴速度及び軌跡を判断することができる。次に、これを利用すると、例えば望ましい点火サイトに到着する以前の発射における液滴の検出ターゲット位置/速度誤差に基づいて、例えば連続発射のためにz軸磁場を調節することができる。更に、例えば単一のフォトダイオード素子(ピクセル)を含むに過ぎない例えば一対の検出器(図示せず)は、1つのビームが望ましいターゲット点火サイト又は望ましいターゲット点火サイトに非常に近いところにある地点を通過し、1つのビームがそのすぐ上にある一対のビームによって照射されると、例えばこれらの2つのそれぞれの検出器(図示せず)の各々を阻止する液滴の後縁により、望ましいターゲット点火サイトのできるだけ近くでターゲット速度を検出することができる。これを利用すると、例えば以前の液滴ターゲットの点火によるプラズマ生成の影響、磁場の影響などのために、例えば望ましいターゲット点火サイト又は望ましいターゲット点火サイトの非常に近くでターゲット液滴内で発生する速度の変化を示すことができる。
また、例えばエキシマターゲット照射レーザのエネルギ設定値にディザを適用することができる。ディザ信号は、不規則信号又は周期的信号とすることができる。ディザは、例えばEUV出力エネルギと相関付けると、プラズマ形成レーザのエネルギ出力に対するEUV出力の感度を判断することができる。この情報を利用すると、例えばプラズマ形成レーザエネルギ制御ループ内の指令を一定の基準で決めてループ利得を一定に維持することができる。
本発明の実施形態の態様によれば、各々が同時に到着するように時間調節されたレーザパルスを望ましい点火サイトに供給する2つのレーザシステム22がある場合があり、その場合、液滴交差直前の地点への各レーザパルスの到着時間を測定することができる。この値を利用すると、例えば最終的なz軸レーザビーム面と交差する液滴に対する各レーザのトリガ時間を調節することができる。また、2つのレーザ22を使用した場合、独立したディザ信号をエキシマレーザ22の各トリガ時間に印加することができる。これらのディザのEUV出力との相関付けを例えば各エキシマレーザのトリガ時間に対するEUVエネルギの感度を決めるために行うことができる。次に、各エキシマレーザのトリガ時間を独立に調節し、感度をゼロにしてEUV効率を最大にすることができる。
本発明の実施形態の態様によれば、上述のセンサを使用して、ターゲット位置及び軌跡を判断し、かつレーザパルスの可能な経路内での望ましい点火サイトを予測してフィードバックを行い、レーザ位置決め及び集束光学器械(図示せず)へのレーザ22の照準又はレーザ位置決め及び集束光学器械(図示せず)の照準を制御し、又は予測した望ましい交差地点(予測した望ましい点火サイト)でのレーザビームパルスによるそれぞれの液滴の交差及び照射を引き起こすという目的で上述のようなビームポインティングを利用することができ、予測した望ましい交差地点は、例えば以前の点火サイトと異なるが、それでも集光EUV光から大幅にずれないように集光器30の焦点から満足できる距離内であると考えられる。これはまた、ターゲット点火サイトでの平均到着時間及び位置の緩やかなドリフトのシステム表示を補正するために比較的緩やかなフィードバックループで行うことができ、すなわち、発射毎ではない。従って、例えば容器内の作動環境、例えばバッファガス圧力の変化のために、望ましいターゲット点火サイトは、時間と共に若干移動し、例えば集光器30の焦点から約±10μm内に留まり、依然として満足できるレベルでEUV光を生成することができる。上述のシステムを使用してこの変化を時間と共に検出し、ステアリング機構が平均すると環境の変化のためにターゲット液滴を例えば集光器30の焦点での元のターゲット点火地点に向けることはできないと仮定して、レーザの焦点を新しい望ましいターゲット点火地点に向け直すことができる。
ターゲット送出はまた、代理人整理番号第2002−0030−01号である2003年4月8日出願の「極紫外線光源」という名称の現在特許出願中の米国特許出願出願番号第10/409,254号に開示されているもののような技術を利用して達成することができ、その開示内容は、引用により本明細書に組み込まれている。
ここで図10を参照すると、チャンバ容器26の壁内に形成されかつレーザビーム146が進入して点火地点28に到達する時に通過する入力窓380を含む本発明の実施形態の態様が示されている。窓380を例えば加熱すると、例えば窓上に付加された蒸発デブリにより、例えばリチウム、錫、又はキセノン原子をプラズマから除去することができる。窓380の加熱は、例えば加熱要素により、例えば窓380取付けフランジの金属本体に取り付けられた外部加熱取付具又は加熱ランプ382、例えばミラー384によって窓380上に反射させることができる例えば赤外線加熱ランプの使用により行うことができる。この384は、図10に示すように、例えばそのミラー384表面がパルスへの直接的な視線内にあることを避けるためにレーザプラズマから離れているとすることができる。これにより、例えばプラズマからこのミラー384の反射面上への粒子の影響を防止することができる。
当業者は、本発明の実施形態の上述の態様に多くの修正及び変更を行うことができ、特許請求の範囲は、開示した実施形態だけに限定されるものではなく、このような実施形態及びその均等物を含むように解釈すべきであることを認めるであろう。
本発明の態様によるレーザ生成プラズマEUV光源の全体的な広義の概念の概略図である。 本発明の実施形態の態様によるシステムコントローラの作動を概略的に示す図である。 本発明の実施形態による集光器の実施形態の方向に照射点火点から見た本発明の態様によるEUV光集光器の実施形態の側面図である。 図2Aの線2Bに沿った図2Aの実施形態の横断面図である。 本発明の実施形態の態様によるターゲット送出システムの可能な実施形態を概略的な形で示す図である。 実施形態の態様の概略側面図として本発明の実施形態の態様によるターゲット追跡システムの可能な実施形態を概略的に示す図である。 実施形態の態様の平面図として本発明の実施形態の態様によるターゲット追跡システムの可能な実施形態を概略的に示す図である。 本発明の実施形態の態様によるターゲット追跡システムの代替的な実施形態の態様の概略斜視図である。 デブリ収集のための冷間フィンガを含む本発明の実施形態の態様による横断面図である。 プラズマ、例えば本発明の実施形態の態様によるレーザ生成プラズマを静電気的に閉じ込めるための機器及び方法を示す図である。 プラズマ、例えば本発明の実施形態の態様によるレーザ生成プラズマを静電気的に閉じ込めるための機器及び方法を示す図である。 プラズマ、例えば本発明の実施形態の態様によるレーザ生成プラズマを静電気的に閉じ込めるための機器及び方法を示す図である。 本発明の実施形態の態様を概略的に示す図である。 本発明の実施形態の態様を概略的に示す図である。 本発明の実施形態の態様を概略的に示す図である。 本発明の実施形態の態様を概略的に示す図である。 本発明の実施形態の態様を概略的に示す図である。 本発明の実施形態の態様を概略的に示す図である。 本発明の実施形態の態様を概略的に示す図である。 フィードバック及び制御に関する本発明の実施形態の態様のブロック図である。 本発明の実施形態の態様を示す図である。
符号の説明
20 レーザ生成プラズマEUV光源
22 パルスレーザシステム
24 ターゲット送出システム
26 チャンバ
28 照射サイト

Claims (92)

  1. 望ましいターゲット点火サイトに集束させるレーザパルスを選択されたパルス繰返し数で供給するパルスレーザと、
    前記レーザパルス繰返し数に調整された選択された間隔で個別のターゲットを供給するターゲット形成システムと、
    前記ターゲット形成システムと前記望ましいターゲット点火サイトの中間にあるターゲットステアリングシステムと、
    前記ターゲット形成システムと前記ターゲットステアリングシステムの間のターゲットの移動に関する情報を提供し、該ターゲットステアリングシステムが該ターゲットを前記望ましいターゲット点火サイトに向けることを可能にするターゲット追跡システムと、
    を含むことを特徴とするEUV光源。
  2. 前記ターゲット追跡システムは、レーザ発射制御信号の作成を可能にする情報を提供する、
    ことを更に含むことを特徴とする請求項1に記載の機器。
  3. 前記ターゲット追跡システムは、
    前記ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含み、かつそれぞれ対向して配置された光検出器を有して該それぞれの点を通る該ターゲットの通過を検出する液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項1に記載の機器。
  4. 前記ターゲット追跡システムは、
    前記ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含み、かつそれぞれ対向して配置された光検出器を有して該それぞれの点を通る該ターゲットの通過を検出する液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項2に記載の機器。
  5. 前記ターゲット追跡システムは、
    視準光源を含む液滴検出器と、座標軸に整列した複数の感光素子の線形アレイを含む検出器と、
    を含み、
    前記光源からの光は、前記ターゲットの投射送出経路と交差する、
    ことを更に含むことを特徴とする請求項1に記載の機器。
  6. 前記ターゲット追跡システムは、
    視準光源を含む液滴検出器と、座標軸に整列した複数の感光素子の線形アレイを含む検出器と、
    を含み、
    前記光源からの光は、前記ターゲットの投射送出経路と交差する、
    ことを更に含むことを特徴とする請求項2に記載の機器。
  7. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項3に記載の機器。
  8. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項4に記載の機器。
  9. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項5に記載の機器。
  10. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項6に記載の機器。
  11. 前記液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器を含む、
    ことを更に含むことを特徴とする請求項3に記載の機器。
  12. 前記液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器を含む、
    ことを更に含むことを特徴とする請求項4に記載の機器。
  13. 前記ターゲット追跡システムは、
    視野を有するカメラと該視野を撮像するピクセルの2次元アレイとを含む液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項1に記載の機器。
  14. 前記ターゲット追跡システムは、
    視野を有するカメラと該視野を撮像するピクセルの2次元アレイとを含む液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項2に記載の機器。
  15. 点火時にターゲット点火サイト又はその近くで電気プラズマ封じ込み場をもたらす静電プラズマ封じ込み機器、
    を含むことを特徴とするレーザ生成プラズマEUV源。
  16. 前記静電プラズマ封じ込み機器の制御を可能にする信号を供給するターゲット追跡システム、
    を更に含むことを特徴とする請求項15に記載の機器。
  17. 容器と、
    EUV生成プラズマ発生器と、
    生成EUV光を前記容器の一端で中間焦点に集束させる集光器と、
    EUV光通路があり、かつ前記容器を第1の圧力の区域と第2の圧力の区域に分離する、前記プラズマ発生器と前記中間焦点の間の前記容器内の中間壁と、
    を含み、
    前記EUV開口部は、集束EUV光のための通路を含む低圧トラップをそこに有し、かつ前記第1の圧力と前記第2の圧力の間の差による該低圧トラップにわたる圧力降下を維持するように構成されている、
    ことを特徴とするEUV光源。
  18. 前記低圧トラップは、集束させた細い光通路が形成された中実球体の断面を含む、
    ことを更に含むことを特徴とする請求項17に記載の機器。
  19. ターゲットを規則的間隔で供給する個別のターゲット形成システムを有するEUV光源であって、
    ターゲット形成システムからのターゲットの追跡を示す出力を供給し、該出力がターゲット位置及び軌跡を含む第1のターゲット追跡システムと、
    ターゲットステアリングシステムと、
    ターゲット位置及び軌跡の出力を利用して入力を前記ターゲットステアリングシステムに提供し、該ターゲットステアリングシステムが前記ターゲットを望ましいターゲット点火サイトに案内することを可能にするフィードバック及び制御システムと、
    を含むことを特徴とするEUV光源。
  20. 前記ターゲットステアリングシステムからのターゲットの追跡を示す出力を供給する第2のターゲット追跡システム、
    を更に含み、
    前記フィードバック及び制御システムは、前記第2のターゲット追跡システムの出力を利用してレーザ発射制御信号を発生させる、
    ことを特徴とする請求項19に記載の機器。
  21. 前記ターゲットステアリングシステムは、ターゲット照準機構とターゲット加速機構を含む、
    ことを更に含むことを特徴とする請求項19に記載の機器。
  22. 前記ターゲットステアリングシステムは、ターゲット照準機構とターゲット加速機構を含む、
    ことを更に含むことを特徴とする請求項20に記載の機器。
  23. 前記第1及び第2のターゲット追跡システムは、前記ターゲット送出システムと前記ターゲットステアリングシステムの中間及び該ターゲットステアリングシステムと前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項19に記載の機器。
  24. 前記第1及び第2のターゲット追跡システムは、前記ターゲット送出システムと前記ターゲットステアリングシステムの中間及び該ターゲットステアリングシステムと前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項20に記載の機器。
  25. 前記第1及び第2のターゲット追跡システムは、前記ターゲット送出システムと前記ターゲットステアリングシステムの中間及び該ターゲットステアリングシステムと前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項21に記載の機器。
  26. 移動ターゲットプラズマ源とパルスレーザプラズマビーム形成機構とを含み、それぞれの該ターゲットと該パルスレーザビームが約±10μmの精度で望ましいターゲット点火サイトで交差してプラズマを生成するEUV光源であって、
    ターゲット点火サイトの近くに磁場を作り出してプラズマを該ターゲット点火サイトに封じ込める磁気プラズマ封じ込み機構、
    を含むことを特徴とするEUV光源。
  27. 移動ターゲットプラズマ源とパルスレーザプラズマビーム形成機構とを含み、それぞれの該ターゲットと該パルスレーザビームが、プラズマを生成するために約±10μmの精度で望ましいターゲット点火サイトで交差すべきであるEUV光源であって、
    実質的にプラズマの存在と同時にターゲット点火サイトの近くに磁場を作り出し、該プラズマの存在中に該プラズマを該ターゲット点火サイトに閉じ込めるパルス磁気プラズマ封じ込み機構、
    を含むことを特徴とするEUV光源。
  28. 前記磁気プラズマ封じ込み機構の制御を可能にする情報を提供するターゲット追跡システム、
    を更に含むことを特徴とする請求項26に記載の機器。
  29. 前記磁気プラズマ封じ込み機構の制御を可能にする情報を提供するターゲット追跡システム、
    を更に含むことを特徴とする請求項27に記載の機器。
  30. 望ましいターゲット点火サイトに集束させるレーザパルスを選択されたパルス繰返し数で供給するためのパルスレーザ手段と、
    前記レーザパルス繰返し数に調整された選択された間隔で個別のターゲットを形成するためのターゲット形成手段と、
    前記ターゲット形成手段と前記望ましいターゲット点火サイトの中間にあるターゲットステアリング手段と、
    前記ターゲット形成手段と前記ターゲットステアリング手段の間のターゲットの移動に関する情報を提供し、該ターゲットステアリング手段が該ターゲットを前記望ましいターゲット点火サイトに向けることを可能にするためのターゲット追跡手段と、
    を含むことを特徴とするEUV光源。
  31. 前記ターゲット追跡手段は、レーザ発射制御信号の作成を可能にする情報を提供するための手段を含む、
    ことを更に含むことを特徴とする請求項30に記載の機器。
  32. 前記ターゲット追跡手段は、
    前記ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含み、かつそれぞれ対向して配置された光検出器を有して該それぞれの点を通る該ターゲットの通過を検出する液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項30に記載の機器。
  33. 前記ターゲット追跡手段は、
    前記ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含み、かつそれぞれ対向して配置された光検出器を有して該それぞれの点を通る該ターゲットの通過を検出する液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項31に記載の機器。
  34. 前記ターゲット追跡手段は、
    視準光源を含む液滴検出器と、座標軸に整列した複数の感光素子の線形アレイを含む検出器と、
    を含み、
    前記光源からの光は、前記ターゲットの投射送出経路と交差する、
    ことを更に含むことを特徴とする請求項30に記載の機器。
  35. 前記ターゲット追跡手段は、
    視準光源を含む液滴検出器と、座標軸に整列した複数の感光素子の線形アレイを含む検出器と、
    を含み、
    前記光源からの光は、前記ターゲットの投射送出経路と交差する、
    ことを更に含むことを特徴とする請求項31に記載の機器。
  36. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項32に記載の機器。
  37. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項33に記載の機器。
  38. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項34に記載の機器。
  39. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項35に記載の機器。
  40. 前記液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器を含む、
    ことを更に含むことを特徴とする請求項32に記載の機器。
  41. 前記液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器を含む、
    ことを更に含むことを特徴とする請求項33に記載の機器。
  42. 前記ターゲット追跡手段は、
    視野を有するカメラと該視野を撮像するピクセルの2次元アレイとを含む液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項30に記載の機器。
  43. 前記ターゲット追跡手段は、
    視野を有するカメラと該視野を撮像するピクセルの2次元アレイとを含む液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項31に記載の機器。
  44. 点火時にターゲット点火サイト又はその近くで電気プラズマ封じ込み場をもたらす静電プラズマ封じ込み機器、
    を含むことを特徴とするレーザ生成プラズマEUV源。
  45. 前記静電プラズマ封じ込み機器の制御を可能にする信号を提供するための手段を含むターゲット追跡手段、
    を更に含むことを特徴とする請求項44に記載の機器。
  46. 容器と、
    EUV生成プラズマ発生手段と、
    生成EUV光を前記容器の一端で中間焦点に集束させる集光器と、
    EUV光通路があり、かつ前記容器を第1の圧力の区域と第2の圧力の区域に分離する、前記プラズマ発生器と前記中間焦点の間の前記容器内の中間壁と、
    を含み、
    前記EUV開口部は、集束EUV光のための通路を含む低圧トラップ手段と、前記第1の圧力と前記第2の圧力の間の差による該低圧トラップにわたる圧力降下を維持するための手段とをそこに有する、
    ことを特徴とするEUV光源。
  47. 前記低圧トラップ手段は、集束させた細い光通路が形成された中実球体の断面を含む、
    ことを更に含むことを特徴とする請求項46に記載の機器。
  48. ターゲットを規則的間隔で形成するための個別のターゲット形成手段を有するEUV光源であって、
    ターゲット形成手段からのターゲットの追跡を示す出力を供給し、該出力がターゲット位置及び軌跡を含む第1のターゲット追跡手段と、
    ターゲットステアリング手段と、
    ターゲット位置及び軌跡の出力を利用して入力を前記ターゲットステアリング手段に提供し、該ターゲットステアリング手段が前記ターゲットを望ましいターゲット点火サイトに案内することを可能にするフィードバック及び制御手段と、
    を含むことを特徴とするEUV光源。
  49. 前記ターゲットステアリングシステムからのターゲットの追跡を示す出力を供給する第2のターゲット追跡手段、
    を更に含み、
    前記フィードバック及び制御手段は、レーザ発射制御信号を発生させるために前記第2のターゲット追跡システムの出力を利用する、
    ことを特徴とする請求項48に記載の機器。
  50. 前記ターゲットステアリング手段は、ターゲット照準手段とターゲット加速手段を含む、
    ことを更に含むことを特徴とする請求項48に記載の機器。
  51. 前記ターゲットステアリング手段は、ターゲット照準手段とターゲット加速手段を含む、
    ことを更に含むことを特徴とする請求項49に記載の機器。
  52. 前記第1及び第2のターゲット追跡手段は、前記ターゲット送出システムと前記ターゲットステアリング機構の中間及び該ターゲットステアリング機構と前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項48に記載の機器。
  53. 前記第1及び第2のターゲット追跡手段は、前記ターゲット送出システムと前記ターゲットステアリング機構の中間及び該ターゲットステアリング機構と前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項49に記載の機器。
  54. 前記第1及び第2のターゲット追跡手段は、前記ターゲット送出システムと前記ターゲットステアリング機構の中間及び該ターゲットステアリング機構と前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項50に記載の機器。
  55. 移動ターゲットプラズマ源とパルスレーザプラズマビーム形成機構とを含み、それぞれの該ターゲットと該パルスレーザビームが約±10μmの精度で望ましいターゲット点火サイトで交差してプラズマを生成するEUV光源であって、
    ターゲット点火サイトの近くに磁場を作り出してプラズマを該ターゲット点火サイトに封じ込めるための磁気プラズマ封じ込み手段、
    を含むことを特徴とするEUV光源。
  56. 移動ターゲットプラズマ源とパルスレーザプラズマビーム形成機構とを含み、それぞれの該ターゲットと該パルスレーザビームが、プラズマを生成するために約±10μmの精度で望ましいターゲット点火サイトで交差すべきであるEUV光源であって、
    実質的にプラズマの存在と同時にターゲット点火サイトの近くに磁場を作り出し、該プラズマの存在中に該プラズマを該ターゲット点火サイトに閉じ込めるためのパルス磁気プラズマ封じ込み手段、
    を含むことを特徴とするEUV光源。
  57. 前記磁気プラズマ封じ込み機構の制御を可能にする情報を提供するターゲット追跡システム、
    を更に含むことを特徴とする請求項55に記載の機器。
  58. 前記磁気プラズマ封じ込み機構の制御を可能にする情報を提供するターゲット追跡システム、
    を更に含むことを特徴とする請求項56に記載の機器。
  59. 選択されたパルス繰返し数で望ましいターゲット点火サイトに集束させるレーザパルスを供給するパルスレーザを利用する段階と、
    前記レーザパルス繰返し数に調整された選択された間隔で個別のターゲットを形成する段階と、
    前記ターゲットの前記形成と前記望ましいターゲット点火サイトの中間でターゲットステアリングシステムを利用する段階と、
    前記ターゲット形成と前記ターゲットステアリングシステムの間のターゲットの移動に関する情報を提供し、かつ該ターゲットステアリングシステムが該ターゲットを前記望ましいターゲット点火サイトに向けることを可能にするためのターゲット追跡システムを利用する段階と、
    を含むことを特徴とするEUV光生成方法。
  60. レーザ発射制御信号の作成を可能にする情報を提供する前記ターゲット追跡システムを利用する段階、
    を更に含むことを特徴とする請求項59に記載の方法。
  61. 前記ターゲット追跡システムは、
    前記ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含み、かつそれぞれ対向して配置された光検出器を有して該それぞれの点を通る該ターゲットの通過を検出する液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項59に記載の方法。
  62. 前記ターゲット追跡システムは、
    前記ターゲットの投射送出経路上の点と交差するように向けられた視準光源を含み、かつそれぞれ対向して配置された光検出器を有して該それぞれの点を通る該ターゲットの通過を検出する液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項60に記載の方法。
  63. 前記ターゲット追跡システムは、
    視準光源を含む液滴検出器と、座標軸に整列した複数の感光素子の線形アレイを含む検出器と、
    を含み、
    前記光源からの光は、前記ターゲットの投射送出経路と交差する、
    ことを更に含むことを特徴とする請求項59に記載の方法。
  64. 前記ターゲット追跡システムは、
    視準光源を含む液滴検出器と、座標軸に整列した複数の感光素子の線形アレイを含む検出器と、
    を含み、
    前記光源からの光は、前記ターゲットの投射送出経路と交差する、
    ことを更に含むことを特徴とする請求項60に記載の方法。
  65. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項61に記載の方法。
  66. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項62に記載の方法。
  67. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項63に記載の方法。
  68. 前記液滴検出器の少なくとも1つは、平面遮断検出装置を含む、
    ことを更に含むことを特徴とする請求項64に記載の方法。
  69. 前記液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器を含む、
    ことを更に含むことを特徴とする請求項61に記載の方法。
  70. 前記液滴検出器は、各々が異なる光周波数で作動する複数の液滴検出器を含む、
    ことを更に含むことを特徴とする請求項62に記載の方法。
  71. 前記ターゲット追跡システムは、
    視野を有するカメラと該視野を撮像するピクセルの2次元アレイとを含む液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項59に記載の方法。
  72. 前記ターゲット追跡システムは、
    視野を有するカメラと該視野を撮像するピクセルの2次元アレイとを含む液滴検出器、
    を含む、
    ことを更に含むことを特徴とする請求項60に記載の方法。
  73. 点火時にターゲット点火サイト又はその近くに電気プラズマ封じ込み場を形成する静電プラズマ封じ込み機器を利用する段階、
    を含むことを特徴とするレーザ生成プラズマEUV光生成方法。
  74. 前記静電プラズマ封じ込み機器の制御を可能にする信号を供給するターゲット追跡システムを利用する段階、
    を更に含むことを特徴とする請求項73に記載の方法。
  75. EUV光通路があり、かつ容器を第1の圧力の区域と第2の圧力の区域に分離する中間壁を容器内に有するプラズマ生成容器を利用する段階と、
    集束EUV光のための通路を含む低圧トラップを前記壁に設け、前記第1の圧力と前記第2の圧力の間の差による該低圧トラップにわたる圧力降下を維持する段階と、
    を含むことを特徴とするEUV光生成方法。
  76. 前記低圧トラップは、集束させた細い光通路が形成された中実球体の断面を含む、
    ことを更に含むことを特徴とする請求項75に記載の方法。
  77. ターゲットを規則的な間隔で形成する個別のターゲット形成システムを利用するEUV光生成方法であって、
    ターゲット位置及び軌跡を含んでターゲット形成システムからのターゲットの追跡を示す出力を供給する第1のターゲット追跡システムを利用する段階と、
    ターゲットステアリングシステムを利用する段階と、
    前記ターゲット位置及び軌跡出力を利用して入力を前記ターゲットステアリングシステムに供給し、該ターゲットステアリングシステムが前記ターゲットを望ましいターゲット点火サイトに案内することを可能にするフィードバック及び制御システムを利用する段階と、
    を含むことを特徴とする方法。
  78. 前記ターゲットステアリングシステムからのターゲットの追跡を示す出力を供給する第2のターゲット追跡システムを利用する段階と、
    レーザ発射制御信号を発生させるために前記第2のターゲット追跡システムの前記出力を利用する前記フィードバック及び制御システムを利用する段階と、
    を更に含むことを特徴とする請求項77に記載の方法。
  79. 前記ターゲットステアリングシステムは、ターゲット照準機構とターゲット加速機構を含む、
    ことを更に含むことを特徴とする請求項77に記載の方法。
  80. 前記ターゲットステアリングシステムは、ターゲット照準手段とターゲット加速手段を含む、
    ことを更に含むことを特徴とする請求項78に記載の方法。
  81. 前記第1及び第2のターゲット追跡システムは、前記ターゲット送出システムと前記ターゲットステアリング機構の中間及び該ターゲットステアリング機構と前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項77に記載の方法。
  82. 前記第1及び第2のターゲット追跡システムは、前記ターゲット送出システムと前記ターゲットステアリング機構の中間及び該ターゲットステアリング機構と前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項78に記載の方法。
  83. 前記第1及び第2のターゲット追跡システムは、前記ターゲット送出システムと前記ターゲットステアリング機構の中間及び該ターゲットステアリング機構と前記望ましいターゲット点火サイトの中間にそれぞれx及びy軸位置検出器とz平面通過検出器を含む、
    ことを更に含むことを特徴とする請求項79に記載の方法。
  84. 移動ターゲットプラズマ源とパルスレーザプラズマビーム形成機構とを使用する段階を含み、それぞれの該ターゲットと該パルスレーザビームが約±10μmの精度で望ましいターゲット点火サイトで交差してプラズマを生成するEUV光生成方法であって、
    ターゲット点火サイトの近くに磁場を作り出してプラズマを該ターゲット点火サイトに封じ込める磁気プラズマ封じ込み機構を利用する段階、
    を含むことを特徴とする方法。
  85. 移動ターゲットプラズマ源とパルスレーザプラズマビーム形成機構とを使用する段階を含み、それぞれの該ターゲットと該パルスレーザビームが、プラズマを生成するために約±10μmの精度で望ましいターゲット点火サイトで交差すべきであるEUV光生成方法であって、
    実質的にプラズマの存在と同時にターゲット点火サイトの近くに磁場を作り出し、該プラズマの存在中に該プラズマを該ターゲット点火サイトに封じ込めるパルス磁気プラズマ封じ込み機構を利用する段階、
    を含むことを特徴とする方法。
  86. 前記磁気プラズマ封じ込み機構の制御を可能にする情報を提供するターゲット追跡システムを利用する段階、
    を更に含むことを特徴とする請求項84に記載の方法。
  87. 前記磁気プラズマ封じ込み機構の制御を可能にする情報を提供するターゲット追跡システムを利用する段階、
    を更に含むことを特徴とする請求項85に記載の方法。
  88. 多層反射面を含む集光器ミラーと、
    LPPのEUV光源に生成されたプラズマに十分近い近傍にある、該プラズマの影響によって腐食される少なくとも1つの構成要素と、
    前記多層反射面上にスパッタリングされた場合に該多層反射面を損傷しない、前記少なくとも1つの構成要素上のコーティングと、
    を含むことを特徴とする、LPPのEUV光源。
  89. 前記多層反射面は、前記少なくとも1つの構成要素と同じコーティングで被覆されている、
    ことを更に含むことを特徴とする請求項88に記載の機器。
  90. 前記多層反射面は、前記少なくとも1つの構成要素の前記コーティングと同じ材料の層を含む、
    ことを更に含むことを特徴とする請求項88に記載の機器。
  91. LPPのEUVチャンバと、
    LPPのEUV光源のためのプラズマを前記チャンバ内に生成するためにターゲットに向けられた駆動レーザビームを生成する駆動レーザと、
    前記駆動レーザビームが前記チャンバに入る時に通過する入力窓と、
    前記入力窓を加熱する加熱器要素と、
    を含むことを特徴とする、LPPのEUV光源。
  92. ターゲット液滴又は最終的にターゲット液滴を形成する液体の流れがターゲット形成軸線に沿って放出されるノズルを含むターゲット形成システムと、
    前記ノズルと望ましいターゲット点火サイトの近傍との中間にある該望ましいターゲット点火サイトへの照射ビームの到着に調整されたターゲット飛行経路における1つ又はそれよりも多くの位置で前記ターゲット液滴の位置を検出し、かつ該飛行経路の誤差及び/又は該照射ビームの到着時における該望ましいターゲット点火サイトに対する該ターゲット液滴の該位置の誤差を検出するターゲット追跡システムと、
    前記照射ビームの前記到着時の前記望ましいターゲット点火サイトに対するその後のターゲット液滴の位置の誤差を小さくするために、前記検出された誤差に基づいて前記ターゲット形成軸線を傾けるターゲット形成システム傾斜機構と、
    を含むことを特徴とする、LPPのEUV光源。
JP2007503939A 2004-03-17 2005-03-03 高繰返し数レーザを生成するプラズマeuv光源 Active JP5139055B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/803,526 2004-03-17
US10/803,526 US7087914B2 (en) 2004-03-17 2004-03-17 High repetition rate laser produced plasma EUV light source
PCT/US2005/007056 WO2005089130A2 (en) 2004-03-17 2005-03-03 A high repetition rate laser produced plasma euv light source

Publications (3)

Publication Number Publication Date
JP2007529869A true JP2007529869A (ja) 2007-10-25
JP2007529869A5 JP2007529869A5 (ja) 2008-04-17
JP5139055B2 JP5139055B2 (ja) 2013-02-06

Family

ID=34985273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007503939A Active JP5139055B2 (ja) 2004-03-17 2005-03-03 高繰返し数レーザを生成するプラズマeuv光源

Country Status (6)

Country Link
US (4) US7087914B2 (ja)
EP (1) EP1726028B1 (ja)
JP (1) JP5139055B2 (ja)
KR (1) KR101118995B1 (ja)
TW (2) TWI276270B (ja)
WO (1) WO2005089130A2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041436A (ja) * 2006-08-07 2008-02-21 Komatsu Ltd 極端紫外光源装置
JPWO2006049274A1 (ja) * 2004-11-08 2008-05-29 株式会社ニコン 露光装置および露光方法
JP2008211055A (ja) * 2007-02-27 2008-09-11 Nikon Corp 露光装置、デバイス製造方法、及び露光方法
JP2010003548A (ja) * 2008-06-20 2010-01-07 Komatsu Ltd 極端紫外光源装置及び極端紫外光の生成方法
JP2010062141A (ja) * 2008-08-04 2010-03-18 Komatsu Ltd 極端紫外光源装置
JP2011003887A (ja) * 2009-05-21 2011-01-06 Gigaphoton Inc チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法
WO2011027737A1 (ja) * 2009-09-01 2011-03-10 株式会社Ihi プラズマ光源
JP2012502414A (ja) * 2008-09-09 2012-01-26 エーエスエムエル ネザーランズ ビー.ブイ. 放射システムおよびリソグラフィ装置
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法
JP2013062146A (ja) * 2011-09-13 2013-04-04 Gigaphoton Inc 極端紫外光生成装置
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
US9480136B2 (en) 2013-04-30 2016-10-25 Ushio Denki Kabushiki Kaisha Extreme UV radiation light source device
JP2016537779A (ja) * 2013-11-15 2016-12-01 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
JP2017500556A (ja) * 2013-11-29 2017-01-05 カール・ツァイス・エスエムティー・ゲーエムベーハー 飛翔体の軌跡を求める際に使用する測定装置

Families Citing this family (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7856044B2 (en) 1999-05-10 2010-12-21 Cymer, Inc. Extendable electrode for gas discharge laser
US7491954B2 (en) * 2006-10-13 2009-02-17 Cymer, Inc. Drive laser delivery systems for EUV light source
US7897947B2 (en) * 2007-07-13 2011-03-01 Cymer, Inc. Laser produced plasma EUV light source having a droplet stream produced using a modulated disturbance wave
US7439530B2 (en) * 2005-06-29 2008-10-21 Cymer, Inc. LPP EUV light source drive laser system
US7405416B2 (en) * 2005-02-25 2008-07-29 Cymer, Inc. Method and apparatus for EUV plasma source target delivery
US7843632B2 (en) * 2006-08-16 2010-11-30 Cymer, Inc. EUV optics
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
US7916388B2 (en) 2007-12-20 2011-03-29 Cymer, Inc. Drive laser for EUV light source
US7372056B2 (en) * 2005-06-29 2008-05-13 Cymer, Inc. LPP EUV plasma source material target delivery system
US8653437B2 (en) 2010-10-04 2014-02-18 Cymer, Llc EUV light source with subsystem(s) for maintaining LPP drive laser output during EUV non-output periods
US7671349B2 (en) * 2003-04-08 2010-03-02 Cymer, Inc. Laser produced plasma EUV light source
US8654438B2 (en) 2010-06-24 2014-02-18 Cymer, Llc Master oscillator-power amplifier drive laser with pre-pulse for EUV light source
US7217940B2 (en) * 2003-04-08 2007-05-15 Cymer, Inc. Collector for EUV light source
US7193228B2 (en) * 2004-03-10 2007-03-20 Cymer, Inc. EUV light source optical elements
US20060146906A1 (en) * 2004-02-18 2006-07-06 Cymer, Inc. LLP EUV drive laser
JP2005235959A (ja) * 2004-02-18 2005-09-02 Canon Inc 光発生装置及び露光装置
US7164144B2 (en) * 2004-03-10 2007-01-16 Cymer Inc. EUV light source
JP4574211B2 (ja) * 2004-04-19 2010-11-04 キヤノン株式会社 光源装置、当該光源装置を有する露光装置
US20060020634A1 (en) * 2004-07-20 2006-01-26 International Business Machines Corporation Method, system and program for recording changes made to a database
JP4578901B2 (ja) * 2004-09-09 2010-11-10 株式会社小松製作所 極端紫外光源装置
JP5100990B2 (ja) * 2004-10-07 2012-12-19 ギガフォトン株式会社 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
JP2006128342A (ja) * 2004-10-28 2006-05-18 Canon Inc 露光装置、光源装置及びデバイス製造方法
US7109503B1 (en) * 2005-02-25 2006-09-19 Cymer, Inc. Systems for protecting internal components of an EUV light source from plasma-generated debris
US8093530B2 (en) * 2004-11-19 2012-01-10 Canon Kabushiki Kaisha Laser cutting apparatus and laser cutting method
JP4565194B2 (ja) * 2004-12-17 2010-10-20 国立大学法人大阪大学 極端紫外光・x線源用ターゲット及びその製造方法
US7196343B2 (en) * 2004-12-30 2007-03-27 Asml Netherlands B.V. Optical element, lithographic apparatus including such an optical element, device manufacturing method, and device manufactured thereby
EP1837897A4 (en) * 2005-01-12 2008-04-16 Nikon Corp EXTREME PLASMA LASER UV LIGHT SOURCE, TARGET MEMBER, METHOD FOR MANUFACTURING THE TARGET MEMBER, TARGET MEMBER DELIVERY METHOD, AND EXTREME UV EXPOSURE SYSTEM
US7445319B2 (en) * 2005-02-22 2008-11-04 Synergy Innovations, Inc. System and method for creating liquid droplet impact forced collapse of laser nanoparticle nucleated cavities for controlled nuclear reactions
DE102005014433B3 (de) * 2005-03-24 2006-10-05 Xtreme Technologies Gmbh Verfahren und Anordnung zur effizienten Erzeugung von kurzwelliger Strahlung auf Basis eines lasererzeugten Plasmas
US7999915B2 (en) * 2005-11-01 2011-08-16 Cymer, Inc. Laser system
US20090296755A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7746913B2 (en) * 2005-11-01 2010-06-29 Cymer, Inc. Laser system
US7643529B2 (en) 2005-11-01 2010-01-05 Cymer, Inc. Laser system
US7715459B2 (en) * 2005-11-01 2010-05-11 Cymer, Inc. Laser system
US20090296758A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7778302B2 (en) * 2005-11-01 2010-08-17 Cymer, Inc. Laser system
US7920616B2 (en) * 2005-11-01 2011-04-05 Cymer, Inc. Laser system
US7885309B2 (en) * 2005-11-01 2011-02-08 Cymer, Inc. Laser system
KR101238739B1 (ko) * 2005-11-01 2013-03-04 사이머 인코포레이티드 레이저 시스템
JP5156193B2 (ja) * 2006-02-01 2013-03-06 ギガフォトン株式会社 極端紫外光源装置
US8513629B2 (en) 2011-05-13 2013-08-20 Cymer, Llc Droplet generator with actuator induced nozzle cleaning
US20070215575A1 (en) * 2006-03-15 2007-09-20 Bo Gu Method and system for high-speed, precise, laser-based modification of one or more electrical elements
JP4885587B2 (ja) * 2006-03-28 2012-02-29 株式会社小松製作所 ターゲット供給装置
JP4954584B2 (ja) * 2006-03-31 2012-06-20 株式会社小松製作所 極端紫外光源装置
US8525138B2 (en) 2006-03-31 2013-09-03 Energetiq Technology, Inc. Laser-driven light source
US8536549B2 (en) * 2006-04-12 2013-09-17 The Regents Of The University Of California Light source employing laser-produced plasma
JP5156202B2 (ja) * 2006-07-10 2013-03-06 ギガフォトン株式会社 極端紫外光源装置
KR101312625B1 (ko) * 2006-11-03 2013-10-01 삼성전자주식회사 동작 추적 장치 및 방법
US8071963B2 (en) * 2006-12-27 2011-12-06 Asml Netherlands B.V. Debris mitigation system and lithographic apparatus
JP5358060B2 (ja) * 2007-02-20 2013-12-04 ギガフォトン株式会社 極端紫外光源装置
US8198611B2 (en) * 2007-04-02 2012-06-12 Globalfoundries Inc. Laser beam formatting module and method for fabricating semiconductor dies using same
US7763871B2 (en) * 2008-04-02 2010-07-27 Asml Netherlands B.V. Radiation source
US7655925B2 (en) * 2007-08-31 2010-02-02 Cymer, Inc. Gas management system for a laser-produced-plasma EUV light source
US7812329B2 (en) * 2007-12-14 2010-10-12 Cymer, Inc. System managing gas flow between chambers of an extreme ultraviolet (EUV) photolithography apparatus
US7795816B2 (en) * 2007-10-08 2010-09-14 Applied Materials, Inc. High speed phase scrambling of a coherent beam using plasma
US20090095924A1 (en) * 2007-10-12 2009-04-16 International Business Machines Corporation Electrode design for euv discharge plasma source
NL1036768A1 (nl) * 2008-04-29 2009-10-30 Asml Netherlands Bv Radiation source.
WO2009140270A2 (en) * 2008-05-13 2009-11-19 The Regents Of The University Of California System and method for light source employing laser-produced plasma
JP5758569B2 (ja) * 2008-06-12 2015-08-05 ギガフォトン株式会社 スラブ型レーザ装置
US8519366B2 (en) * 2008-08-06 2013-08-27 Cymer, Inc. Debris protection system having a magnetic field for an EUV light source
US9052615B2 (en) * 2008-08-29 2015-06-09 Gigaphoton Inc. Extreme ultraviolet light source apparatus
JP5587578B2 (ja) * 2008-09-26 2014-09-10 ギガフォトン株式会社 極端紫外光源装置およびパルスレーザ装置
JP5536401B2 (ja) * 2008-10-16 2014-07-02 ギガフォトン株式会社 レーザ装置および極端紫外光光源装置
JP2010123929A (ja) 2008-10-24 2010-06-03 Gigaphoton Inc 極端紫外光光源装置
EP2380411B1 (en) 2008-12-16 2015-04-15 Philips Deutschland GmbH Method and device for generating euv radiation or soft x-rays with enhanced efficiency
US8436328B2 (en) * 2008-12-16 2013-05-07 Gigaphoton Inc. Extreme ultraviolet light source apparatus
US8232537B2 (en) * 2008-12-18 2012-07-31 Asml Netherlands, B.V. Radiation source, lithographic apparatus and device manufacturing method
JP5322217B2 (ja) 2008-12-27 2013-10-23 ウシオ電機株式会社 光源装置
NL2003777A (en) * 2009-01-08 2010-07-13 Asml Netherlands Bv Laser device.
JP5474522B2 (ja) * 2009-01-14 2014-04-16 ギガフォトン株式会社 極端紫外光源システム
USRE45957E1 (en) 2009-03-27 2016-03-29 Cymer, Llc Regenerative ring resonator
US8014432B2 (en) * 2009-03-27 2011-09-06 Cymer, Inc. Regenerative ring resonator
US8138487B2 (en) * 2009-04-09 2012-03-20 Cymer, Inc. System, method and apparatus for droplet catcher for prevention of backsplash in a EUV generation chamber
US8304752B2 (en) * 2009-04-10 2012-11-06 Cymer, Inc. EUV light producing system and method utilizing an alignment laser
WO2010137625A1 (ja) 2009-05-27 2010-12-02 ギガフォトン株式会社 ターゲット出力装置及び極端紫外光源装置
JP2011023712A (ja) 2009-06-19 2011-02-03 Gigaphoton Inc 極端紫外光源装置
NL2004837A (en) * 2009-07-09 2011-01-10 Asml Netherlands Bv Radiation system and lithographic apparatus.
JP5612579B2 (ja) * 2009-07-29 2014-10-22 ギガフォトン株式会社 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体
US8000212B2 (en) * 2009-12-15 2011-08-16 Cymer, Inc. Metrology for extreme ultraviolet light source
US8173985B2 (en) * 2009-12-15 2012-05-08 Cymer, Inc. Beam transport system for extreme ultraviolet light source
JP2013519221A (ja) * 2010-02-09 2013-05-23 エーエスエムエル ネザーランズ ビー.ブイ. 放射源、リソグラフィ装置、およびデバイス製造方法
JP2013004258A (ja) * 2011-06-15 2013-01-07 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光の生成方法
US9113540B2 (en) 2010-02-19 2015-08-18 Gigaphoton Inc. System and method for generating extreme ultraviolet light
US9265136B2 (en) 2010-02-19 2016-02-16 Gigaphoton Inc. System and method for generating extreme ultraviolet light
JP5687488B2 (ja) 2010-02-22 2015-03-18 ギガフォトン株式会社 極端紫外光生成装置
JP2011192965A (ja) 2010-02-22 2011-09-29 Komatsu Ltd チャンバ装置、および極端紫外光生成装置
JP5701618B2 (ja) * 2010-03-04 2015-04-15 ギガフォトン株式会社 極端紫外光生成装置
WO2011116897A1 (en) * 2010-03-25 2011-09-29 Eth Zurich A beam line for a source of extreme ultraviolet (euv) radiation
WO2011116898A1 (en) * 2010-03-25 2011-09-29 Eth Zurich Steering device for controlling the direction and/or velocity of droplets of a target material and extreme euv source with such a steering device
US9072153B2 (en) * 2010-03-29 2015-06-30 Gigaphoton Inc. Extreme ultraviolet light generation system utilizing a pre-pulse to create a diffused dome shaped target
JP5765759B2 (ja) 2010-03-29 2015-08-19 ギガフォトン株式会社 極端紫外光生成装置および方法
US9072152B2 (en) 2010-03-29 2015-06-30 Gigaphoton Inc. Extreme ultraviolet light generation system utilizing a variation value formula for the intensity
US8263953B2 (en) 2010-04-09 2012-09-11 Cymer, Inc. Systems and methods for target material delivery protection in a laser produced plasma EUV light source
US9066412B2 (en) 2010-04-15 2015-06-23 Asml Netherlands B.V. Systems and methods for cooling an optic
WO2012031841A1 (en) * 2010-09-08 2012-03-15 Asml Netherlands B.V. Lithographic apparatus, euv radiation generation apparatus and device manufacturing method
US8462425B2 (en) 2010-10-18 2013-06-11 Cymer, Inc. Oscillator-amplifier drive laser with seed protection for an EUV light source
JP5802465B2 (ja) 2010-10-29 2015-10-28 ギガフォトン株式会社 ドロップレット生成及び検出装置、並びにドロップレット制御装置
US8810902B2 (en) 2010-12-29 2014-08-19 Asml Netherlands B.V. Multi-pass optical apparatus
RU2013139868A (ru) * 2011-01-28 2015-03-10 ЛОРЕНС ЛИВЕРМОР НЭШНЛ СЕКЬЮРИТИ, ЭлЭлСи Оконечная система транспортировки луча
US8399868B2 (en) * 2011-02-15 2013-03-19 Sematech Inc. Tools, methods and devices for mitigating extreme ultraviolet optics contamination
US8633459B2 (en) 2011-03-02 2014-01-21 Cymer, Llc Systems and methods for optics cleaning in an EUV light source
US8604452B2 (en) 2011-03-17 2013-12-10 Cymer, Llc Drive laser delivery systems for EUV light source
US9516730B2 (en) 2011-06-08 2016-12-06 Asml Netherlands B.V. Systems and methods for buffer gas flow stabilization in a laser produced plasma light source
KR20130015144A (ko) * 2011-08-02 2013-02-13 삼성디스플레이 주식회사 증착원어셈블리, 유기층증착장치 및 이를 이용한 유기발광표시장치의 제조 방법
US9516732B2 (en) 2011-09-02 2016-12-06 Asml Netherlands B.V. Radiation source
US9335637B2 (en) 2011-09-08 2016-05-10 Kla-Tencor Corporation Laser-produced plasma EUV source with reduced debris generation utilizing predetermined non-thermal laser ablation
JP6081711B2 (ja) * 2011-09-23 2017-02-15 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
JP6021454B2 (ja) 2011-10-05 2016-11-09 ギガフォトン株式会社 極端紫外光生成装置および極端紫外光生成方法
JP6125525B2 (ja) 2011-12-06 2017-05-10 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
US9279445B2 (en) 2011-12-16 2016-03-08 Asml Netherlands B.V. Droplet generator steering system
JP6174605B2 (ja) * 2012-02-22 2017-08-02 エーエスエムエル ネザーランズ ビー.ブイ. 燃料流生成器、ソースコレクタ装置、及び、リソグラフィ装置
US8598552B1 (en) * 2012-05-31 2013-12-03 Cymer, Inc. System and method to optimize extreme ultraviolet light generation
EP2870834B1 (en) 2012-07-06 2017-02-01 ETH Zürich Method for controlling an interaction between droplet targets and a laser and apparatus for conducting said method
JP6087105B2 (ja) * 2012-10-23 2017-03-01 ギガフォトン株式会社 極端紫外光生成装置
JP5567640B2 (ja) * 2012-11-05 2014-08-06 ギガフォトン株式会社 極端紫外光源装置
EP2951643B1 (en) * 2013-01-30 2019-12-25 Kla-Tencor Corporation Euv light source using cryogenic droplet targets in mask inspection
FR3002720B1 (fr) * 2013-02-27 2015-04-10 Ecole Polytech Dispositif de magnetisation de plasma laser par champ magnetique pulse
JP6168797B2 (ja) * 2013-03-08 2017-07-26 ギガフォトン株式会社 極端紫外光生成装置
US9699876B2 (en) * 2013-03-14 2017-07-04 Asml Netherlands, B.V. Method of and apparatus for supply and recovery of target material
US9000405B2 (en) * 2013-03-15 2015-04-07 Asml Netherlands B.V. Beam position control for an extreme ultraviolet light source
US8872144B1 (en) * 2013-09-24 2014-10-28 Asml Netherlands B.V. System and method for laser beam focus control for extreme ultraviolet laser produced plasma source
KR102214861B1 (ko) * 2013-03-15 2021-02-10 에이에스엠엘 네델란즈 비.브이. 극자외 광원을 위한 빔 위치 제어
WO2014192872A1 (ja) 2013-05-31 2014-12-04 ギガフォトン株式会社 極端紫外光生成システム
US9544984B2 (en) 2013-07-22 2017-01-10 Kla-Tencor Corporation System and method for generation of extreme ultraviolet light
GB2505315B (en) 2013-08-07 2014-08-06 Rofin Sinar Uk Ltd Optical amplifier arrangement
WO2015029137A1 (ja) * 2013-08-27 2015-03-05 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光生成システム
JP6513025B2 (ja) 2013-09-17 2019-05-15 ギガフォトン株式会社 極端紫外光生成装置
IL234729B (en) 2013-09-20 2021-02-28 Asml Netherlands Bv A light source operated by a laser and a method using a mode mixer
IL234727B (en) 2013-09-20 2020-09-30 Asml Netherlands Bv A light source operated by a laser in an optical system corrected for deviations and the method of manufacturing the system as mentioned
US9241395B2 (en) * 2013-09-26 2016-01-19 Asml Netherlands B.V. System and method for controlling droplet timing in an LPP EUV light source
US9497840B2 (en) * 2013-09-26 2016-11-15 Asml Netherlands B.V. System and method for creating and utilizing dual laser curtains from a single laser in an LPP EUV light source
US9301382B2 (en) 2013-12-02 2016-03-29 Asml Netherlands B.V. Apparatus for and method of source material delivery in a laser produced plasma EUV light source
JP6383736B2 (ja) * 2013-12-25 2018-08-29 ギガフォトン株式会社 極端紫外光生成装置
EP3143638B1 (en) 2014-05-15 2018-11-14 Excelitas Technologies Corp. Laser driven sealed beam lamp
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
JP6252358B2 (ja) * 2014-05-27 2017-12-27 ウシオ電機株式会社 極端紫外光光源装置
US9544986B2 (en) 2014-06-27 2017-01-10 Plex Llc Extreme ultraviolet source with magnetic cusp plasma control
US9155178B1 (en) * 2014-06-27 2015-10-06 Plex Llc Extreme ultraviolet source with magnetic cusp plasma control
US9609731B2 (en) 2014-07-07 2017-03-28 Media Lario Srl Systems and methods for synchronous operation of debris-mitigation devices
US9301381B1 (en) 2014-09-12 2016-03-29 International Business Machines Corporation Dual pulse driven extreme ultraviolet (EUV) radiation source utilizing a droplet comprising a metal core with dual concentric shells of buffer gas
US9392679B2 (en) * 2014-12-05 2016-07-12 Globalfoundries Inc. Method, apparatus and system for using free-electron laser compatible EUV beam for semiconductor wafer processing
CN104502624B (zh) * 2014-12-08 2017-11-21 天津大学 一种采用等离子体信号测定激光驱动飞片速度的装置
WO2016131583A1 (en) * 2015-02-19 2016-08-25 Asml Netherlands B.V. Radiation source
WO2016139022A1 (en) * 2015-03-03 2016-09-09 Asml Netherlands B.V. Radiation sensor apparatus
WO2016146400A1 (en) * 2015-03-18 2016-09-22 Asml Netherlands B.V. A radiation system and method
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
US10008378B2 (en) 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US9576785B2 (en) 2015-05-14 2017-02-21 Excelitas Technologies Corp. Electrodeless single CW laser driven xenon lamp
US9538628B1 (en) * 2015-06-11 2017-01-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method for EUV power improvement with fuel droplet trajectory stabilization
WO2017077614A1 (ja) 2015-11-05 2017-05-11 ギガフォトン株式会社 極端紫外光生成装置
JP6751138B2 (ja) * 2016-04-27 2020-09-02 ギガフォトン株式会社 極端紫外光センサユニット及び極端紫外光生成装置
US9941034B2 (en) 2016-05-10 2018-04-10 Honeywell Federal Manufacturing & Technologies, Llc Direct write dispensing apparatus and method
US9476841B1 (en) * 2016-06-14 2016-10-25 OOO “Isteq B.V.” High-brightness LPP EUV light source
US10149375B2 (en) * 2016-09-14 2018-12-04 Asml Netherlands B.V. Target trajectory metrology in an extreme ultraviolet light source
NL2020474A (en) * 2017-03-20 2018-09-21 Asml Netherlands Bv Lithographic system, euv radiation source, lithographic scanning apparatus and control system
CN107063403B (zh) * 2017-03-31 2021-01-15 上海大学 机械式水表计量精度自动检测装置及方法
US10524345B2 (en) * 2017-04-28 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Residual gain monitoring and reduction for EUV drive laser
US10585215B2 (en) 2017-06-29 2020-03-10 Cymer, Llc Reducing optical damage on an optical element
KR20230006608A (ko) * 2017-10-19 2023-01-10 사이머 엘엘씨 단일의 리소그래피 노광 패스로 복수의 에어리얼 이미지를 형성하는 방법
US11266002B2 (en) 2017-10-26 2022-03-01 Asml Netherlands B.V. System for monitoring a plasma
US10165664B1 (en) * 2017-11-21 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for decontaminating windows of an EUV source module
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same
WO2019186754A1 (ja) 2018-03-28 2019-10-03 ギガフォトン株式会社 極端紫外光生成システム及び電子デバイスの製造方法
US10568195B2 (en) * 2018-05-30 2020-02-18 Kla-Tencor Corporation System and method for pumping laser sustained plasma with a frequency converted illumination source
US10976674B2 (en) 2018-08-17 2021-04-13 Taiwan Semiconductor Manufacturing Co., Ltd. Method for detecting EUV pellicle rupture
KR20210035427A (ko) 2019-09-24 2021-04-01 삼성전자주식회사 극자외선 발생 장치
KR102120017B1 (ko) * 2019-10-10 2020-06-05 문상호 저주파 불면증 치료 장치
WO2022061154A1 (en) * 2020-09-18 2022-03-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Interleaved multi-pass optical amplifier
WO2023180017A1 (en) * 2022-03-23 2023-09-28 Asml Netherlands B.V. Euv light source target metrology
CN115151013B (zh) * 2022-08-31 2022-11-25 兰州大学 一种中子俘获照射系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098098A (ja) * 1998-09-21 2000-04-07 Nikon Corp X線発生装置
JP2000188198A (ja) * 1998-12-21 2000-07-04 Agency Of Ind Science & Technol レ―ザ―プラズマx線源装置
JP2001057298A (ja) * 1999-08-18 2001-02-27 Nikon Corp X線発生装置及びこれを備えた投影露光装置及び露光方法
JP2001215721A (ja) * 1999-11-18 2001-08-10 Cymer Inc 改善されたパルス電源システムを備えたプラズマ収束光源
JP2003518729A (ja) * 1999-12-23 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 極短波放射線を発生する方法、前記放射線によって装置を製造する方法、極短波放射線源装置およびこのような放射線源装置が装備されたリソグラフィ投影装置
JP2003229298A (ja) * 2002-02-04 2003-08-15 Nikon Corp X線発生装置及び露光装置
WO2003087867A2 (en) * 2002-04-10 2003-10-23 Cymer, Inc. Extreme ultraviolet light source
JP2003534631A (ja) * 2000-05-22 2003-11-18 プレックス・エルエルシー 中性ビームを制御することに基づく極紫外線源

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US219056A (en) * 1879-08-26 Improvement in batteries
US68012A (en) * 1867-08-20 James swan
US163313A (en) * 1875-05-18 Improvement in cigar-box trays
US100882A (en) * 1870-03-15 Improvement in combined carriage, cradle, swing, and baby-walker
US55364A (en) * 1866-06-05 Improvement in braces for bits
US6383A (en) * 1849-04-24 Machine fob
US168049A (en) * 1875-09-21 Improvement in gas apparatus
US2759106A (en) 1951-05-25 1956-08-14 Wolter Hans Optical image-forming mirror system providing for grazing incidence of rays
US3279176A (en) 1959-07-31 1966-10-18 North American Aviation Inc Ion rocket engine
US3150483A (en) 1962-05-10 1964-09-29 Aerospace Corp Plasma generator and accelerator
US3232046A (en) 1962-06-06 1966-02-01 Aerospace Corp Plasma generator and propulsion exhaust system
US3746870A (en) 1970-12-21 1973-07-17 Gen Electric Coated light conduit
US3969628A (en) 1974-04-04 1976-07-13 The United States Of America As Represented By The Secretary Of The Army Intense, energetic electron beam assisted X-ray generator
US4042848A (en) 1974-05-17 1977-08-16 Ja Hyun Lee Hypocycloidal pinch device
US3946332A (en) 1974-06-13 1976-03-23 Samis Michael A High power density continuous wave plasma glow jet laser system
US3961197A (en) 1974-08-21 1976-06-01 The United States Of America As Represented By The United States Energy Research And Development Administration X-ray generator
US3960473A (en) 1975-02-06 1976-06-01 The Glastic Corporation Die structure for forming a serrated rod
US4162160A (en) 1977-08-25 1979-07-24 Fansteel Inc. Electrical contact material and method for making the same
US4143275A (en) 1977-09-28 1979-03-06 Battelle Memorial Institute Applying radiation
US4203393A (en) 1979-01-04 1980-05-20 Ford Motor Company Plasma jet ignition engine and method
JPS5756668A (en) * 1980-09-18 1982-04-05 Nissan Motor Co Ltd Plasma igniter
US4364342A (en) * 1980-10-01 1982-12-21 Ford Motor Company Ignition system employing plasma spray
USRE34806E (en) * 1980-11-25 1994-12-13 Celestech, Inc. Magnetoplasmadynamic processor, applications thereof and methods
US4538291A (en) 1981-11-09 1985-08-27 Kabushiki Kaisha Suwa Seikosha X-ray source
US4633492A (en) 1982-09-20 1986-12-30 Eaton Corporation Plasma pinch X-ray method
US4504964A (en) 1982-09-20 1985-03-12 Eaton Corporation Laser beam plasma pinch X-ray system
US4536884A (en) 1982-09-20 1985-08-20 Eaton Corporation Plasma pinch X-ray apparatus
US4618971A (en) 1982-09-20 1986-10-21 Eaton Corporation X-ray lithography system
US4507588A (en) * 1983-02-28 1985-03-26 Board Of Trustees Operating Michigan State University Ion generating apparatus and method for the use thereof
DE3332711A1 (de) 1983-09-10 1985-03-28 Fa. Carl Zeiss, 7920 Heidenheim Vorrichtung zur erzeugung einer plasmaquelle mit hoher strahlungsintensitaet im roentgenbereich
JPS60125673A (ja) * 1983-12-13 1985-07-04 Canon Inc 液体噴射記録装置
JPS60175351A (ja) 1984-02-14 1985-09-09 Nippon Telegr & Teleph Corp <Ntt> X線発生装置およびx線露光法
US4561406A (en) * 1984-05-25 1985-12-31 Combustion Electromagnetics, Inc. Winged reentrant electromagnetic combustion chamber
US4837794A (en) 1984-10-12 1989-06-06 Maxwell Laboratories Inc. Filter apparatus for use with an x-ray source
US4626193A (en) 1985-08-02 1986-12-02 Itt Corporation Direct spark ignition system
US4774914A (en) * 1985-09-24 1988-10-04 Combustion Electromagnetics, Inc. Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark
CA1239487A (en) 1985-10-03 1988-07-19 National Research Council Of Canada Multiple vacuum arc derived plasma pinch x-ray source
CA1239486A (en) 1985-10-03 1988-07-19 Rajendra P. Gupta Gas discharge derived annular plasma pinch x-ray source
US4928020A (en) * 1988-04-05 1990-05-22 The United States Of America As Represented By The United States Department Of Energy Saturable inductor and transformer structures for magnetic pulse compression
DE3927089C1 (ja) 1989-08-17 1991-04-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5102776A (en) 1989-11-09 1992-04-07 Cornell Research Foundation, Inc. Method and apparatus for microlithography using x-pinch x-ray source
US5027076A (en) 1990-01-29 1991-06-25 Ball Corporation Open cage density sensor
US5175755A (en) * 1990-10-31 1992-12-29 X-Ray Optical System, Inc. Use of a kumakhov lens for x-ray lithography
US5126638A (en) 1991-05-13 1992-06-30 Maxwell Laboratories, Inc. Coaxial pseudospark discharge switch
US5142166A (en) 1991-10-16 1992-08-25 Science Research Laboratory, Inc. High voltage pulsed power source
JPH0816720B2 (ja) * 1992-04-21 1996-02-21 日本航空電子工業株式会社 軟x線多層膜反射鏡
US5317574A (en) * 1992-12-31 1994-05-31 Hui Wang Method and apparatus for generating x-ray and/or extreme ultraviolet laser
US5411224A (en) 1993-04-08 1995-05-02 Dearman; Raymond M. Guard for jet engine
US5313481A (en) 1993-09-29 1994-05-17 The United States Of America As Represented By The United States Department Of Energy Copper laser modulator driving assembly including a magnetic compression laser
US5459771A (en) * 1994-04-01 1995-10-17 University Of Central Florida Water laser plasma x-ray point source and apparatus
US5448580A (en) 1994-07-05 1995-09-05 The United States Of America As Represented By The United States Department Of Energy Air and water cooled modulator
US5504795A (en) 1995-02-06 1996-04-02 Plex Corporation Plasma X-ray source
JP3041540B2 (ja) 1995-02-17 2000-05-15 サイマー・インコーポレーテッド パルス電力生成回路およびパルス電力を生成する方法
US5830336A (en) 1995-12-05 1998-11-03 Minnesota Mining And Manufacturing Company Sputtering of lithium
US5963616A (en) 1997-03-11 1999-10-05 University Of Central Florida Configurations, materials and wavelengths for EUV lithium plasma discharge lamps
US6031241A (en) 1997-03-11 2000-02-29 University Of Central Florida Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications
JP3385898B2 (ja) * 1997-03-24 2003-03-10 安藤電気株式会社 可変波長半導体レーザ光源
US5936988A (en) 1997-12-15 1999-08-10 Cymer, Inc. High pulse rate pulse power system
US5866871A (en) 1997-04-28 1999-02-02 Birx; Daniel Plasma gun and methods for the use thereof
US6172324B1 (en) 1997-04-28 2001-01-09 Science Research Laboratory, Inc. Plasma focus radiation source
US6452199B1 (en) 1997-05-12 2002-09-17 Cymer, Inc. Plasma focus high energy photon source with blast shield
US6064072A (en) 1997-05-12 2000-05-16 Cymer, Inc. Plasma focus high energy photon source
US6744060B2 (en) 1997-05-12 2004-06-01 Cymer, Inc. Pulse power system for extreme ultraviolet and x-ray sources
US6566668B2 (en) 1997-05-12 2003-05-20 Cymer, Inc. Plasma focus light source with tandem ellipsoidal mirror units
US6586757B2 (en) 1997-05-12 2003-07-01 Cymer, Inc. Plasma focus light source with active and buffer gas control
US5763930A (en) 1997-05-12 1998-06-09 Cymer, Inc. Plasma focus high energy photon source
US6815700B2 (en) 1997-05-12 2004-11-09 Cymer, Inc. Plasma focus light source with improved pulse power system
US6580517B2 (en) * 2000-03-01 2003-06-17 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
US6567450B2 (en) 1999-12-10 2003-05-20 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6285743B1 (en) * 1998-09-14 2001-09-04 Nikon Corporation Method and apparatus for soft X-ray generation
JP2000091096A (ja) 1998-09-14 2000-03-31 Nikon Corp X線発生装置
US6031598A (en) * 1998-09-25 2000-02-29 Euv Llc Extreme ultraviolet lithography machine
US6307913B1 (en) * 1998-10-27 2001-10-23 Jmar Research, Inc. Shaped source of soft x-ray, extreme ultraviolet and ultraviolet radiation
US6333775B1 (en) * 1999-01-13 2001-12-25 Euv Llc Extreme-UV lithography vacuum chamber zone seal
US6549551B2 (en) 1999-09-27 2003-04-15 Cymer, Inc. Injection seeded laser with precise timing control
US6625191B2 (en) 1999-12-10 2003-09-23 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6493323B1 (en) * 1999-05-14 2002-12-10 Lucent Technologies Inc. Asynchronous object oriented configuration control system for highly reliable distributed systems
JP2001052653A (ja) * 1999-08-05 2001-02-23 Toshiba Corp 紫外線発生装置
JP4901041B2 (ja) * 1999-09-20 2012-03-21 ノードソン コーポレーション 紫外線を生成する装置および方法
US6317448B1 (en) * 1999-09-23 2001-11-13 Cymer, Inc. Bandwidth estimating technique for narrow band laser
US6831963B2 (en) * 2000-10-20 2004-12-14 University Of Central Florida EUV, XUV, and X-Ray wavelength sources created from laser plasma produced from liquid metal solutions
US6377651B1 (en) * 1999-10-11 2002-04-23 University Of Central Florida Laser plasma source for extreme ultraviolet lithography using a water droplet target
TWI246872B (en) * 1999-12-17 2006-01-01 Asml Netherlands Bv Radiation source for use in lithographic projection apparatus
TW502559B (en) 1999-12-24 2002-09-11 Koninkl Philips Electronics Nv Method of generating extremely short-wave radiation, method of manufacturing a device by means of said radiation, extremely short-wave radiation source unit and lithographic projection apparatus provided with such a radiation source unit
US6195272B1 (en) 2000-03-16 2001-02-27 Joseph E. Pascente Pulsed high voltage power supply radiography system having a one to one correspondence between low voltage input pulses and high voltage output pulses
US6647086B2 (en) * 2000-05-19 2003-11-11 Canon Kabushiki Kaisha X-ray exposure apparatus
US6904073B2 (en) 2001-01-29 2005-06-07 Cymer, Inc. High power deep ultraviolet laser with long life optics
US7180081B2 (en) 2000-06-09 2007-02-20 Cymer, Inc. Discharge produced plasma EUV light source
JP2002006096A (ja) 2000-06-23 2002-01-09 Nikon Corp 電磁波発生装置、これを用いた半導体製造装置並びに半導体デバイスの製造方法
US6576912B2 (en) 2001-01-03 2003-06-10 Hugo M. Visser Lithographic projection apparatus equipped with extreme ultraviolet window serving simultaneously as vacuum window
US20020090054A1 (en) 2001-01-10 2002-07-11 Michael Sogard Apparatus and method for containing debris from laser plasma radiation sources
US7190707B2 (en) 2001-01-29 2007-03-13 Cymer, Inc. Gas discharge laser light source beam delivery unit
US6804327B2 (en) 2001-04-03 2004-10-12 Lambda Physik Ag Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays
US7230964B2 (en) 2001-04-09 2007-06-12 Cymer, Inc. Lithography laser with beam delivery and beam pointing control
US6396900B1 (en) * 2001-05-01 2002-05-28 The Regents Of The University Of California Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application
DE10151080C1 (de) 2001-10-10 2002-12-05 Xtreme Tech Gmbh Einrichtung und Verfahren zum Erzeugen von extrem ultravioletter (EUV-)Strahlung auf Basis einer Gasentladung
JP2003124526A (ja) * 2001-10-11 2003-04-25 Taiwan Lite On Electronics Inc 白色光光源製造方法
US7016388B2 (en) 2002-05-07 2006-03-21 Cymer, Inc. Laser lithography light source with beam delivery
US6792076B2 (en) * 2002-05-28 2004-09-14 Northrop Grumman Corporation Target steering system for EUV droplet generators
DE10305701B4 (de) * 2003-02-07 2005-10-06 Xtreme Technologies Gmbh Anordnung zur Erzeugung von EUV-Strahlung mit hohen Repetitionsraten
US7217940B2 (en) 2003-04-08 2007-05-15 Cymer, Inc. Collector for EUV light source
US7002443B2 (en) 2003-06-25 2006-02-21 Cymer, Inc. Method and apparatus for cooling magnetic circuit elements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098098A (ja) * 1998-09-21 2000-04-07 Nikon Corp X線発生装置
JP2000188198A (ja) * 1998-12-21 2000-07-04 Agency Of Ind Science & Technol レ―ザ―プラズマx線源装置
JP2001057298A (ja) * 1999-08-18 2001-02-27 Nikon Corp X線発生装置及びこれを備えた投影露光装置及び露光方法
JP2001215721A (ja) * 1999-11-18 2001-08-10 Cymer Inc 改善されたパルス電源システムを備えたプラズマ収束光源
JP2003518729A (ja) * 1999-12-23 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 極短波放射線を発生する方法、前記放射線によって装置を製造する方法、極短波放射線源装置およびこのような放射線源装置が装備されたリソグラフィ投影装置
JP2003534631A (ja) * 2000-05-22 2003-11-18 プレックス・エルエルシー 中性ビームを制御することに基づく極紫外線源
JP2003229298A (ja) * 2002-02-04 2003-08-15 Nikon Corp X線発生装置及び露光装置
WO2003087867A2 (en) * 2002-04-10 2003-10-23 Cymer, Inc. Extreme ultraviolet light source

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623009B2 (ja) * 2004-11-08 2011-02-02 株式会社ニコン 露光装置および露光方法
JPWO2006049274A1 (ja) * 2004-11-08 2008-05-29 株式会社ニコン 露光装置および露光方法
JP2008041436A (ja) * 2006-08-07 2008-02-21 Komatsu Ltd 極端紫外光源装置
JP2008211055A (ja) * 2007-02-27 2008-09-11 Nikon Corp 露光装置、デバイス製造方法、及び露光方法
JP2010003548A (ja) * 2008-06-20 2010-01-07 Komatsu Ltd 極端紫外光源装置及び極端紫外光の生成方法
JP2010062141A (ja) * 2008-08-04 2010-03-18 Komatsu Ltd 極端紫外光源装置
JP2012502414A (ja) * 2008-09-09 2012-01-26 エーエスエムエル ネザーランズ ビー.ブイ. 放射システムおよびリソグラフィ装置
US9411250B2 (en) 2008-09-09 2016-08-09 Asml Netherlands B.V. Radiation system and lithographic apparatus
JP2011003887A (ja) * 2009-05-21 2011-01-06 Gigaphoton Inc チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法
WO2011027737A1 (ja) * 2009-09-01 2011-03-10 株式会社Ihi プラズマ光源
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法
JP2013062146A (ja) * 2011-09-13 2013-04-04 Gigaphoton Inc 極端紫外光生成装置
US9480136B2 (en) 2013-04-30 2016-10-25 Ushio Denki Kabushiki Kaisha Extreme UV radiation light source device
US9686846B2 (en) 2013-04-30 2017-06-20 Ushio Denki Kabushiki Kaisha Extreme UV radiation light source device
JP2016537779A (ja) * 2013-11-15 2016-12-01 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
US10588211B2 (en) 2013-11-15 2020-03-10 Asml Netherlands B.V. Radiation source having debris control
JP2017500556A (ja) * 2013-11-29 2017-01-05 カール・ツァイス・エスエムティー・ゲーエムベーハー 飛翔体の軌跡を求める際に使用する測定装置

Also Published As

Publication number Publication date
US7317196B2 (en) 2008-01-08
EP1726028A4 (en) 2010-12-08
JP5139055B2 (ja) 2013-02-06
KR20060125903A (ko) 2006-12-06
US7525111B2 (en) 2009-04-28
KR101118995B1 (ko) 2012-03-12
EP1726028B1 (en) 2014-05-21
TWI305477B (en) 2009-01-11
US20070029511A1 (en) 2007-02-08
US7361918B2 (en) 2008-04-22
US7087914B2 (en) 2006-08-08
WO2005089130A2 (en) 2005-09-29
TW200536217A (en) 2005-11-01
EP1726028A2 (en) 2006-11-29
TW200534750A (en) 2005-10-16
WO2005089130A3 (en) 2006-02-09
US20050205810A1 (en) 2005-09-22
US20050205811A1 (en) 2005-09-22
US20080197297A1 (en) 2008-08-21
TWI276270B (en) 2007-03-11

Similar Documents

Publication Publication Date Title
JP5139055B2 (ja) 高繰返し数レーザを生成するプラズマeuv光源
EP2870834B1 (en) Method for controlling an interaction between droplet targets and a laser and apparatus for conducting said method
US7335900B2 (en) Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby
US9241395B2 (en) System and method for controlling droplet timing in an LPP EUV light source
CN111587612A (zh) 控制液滴流中的液滴的聚结的装置和方法
JP2010123928A (ja) 極端紫外光光源装置
US11467498B2 (en) Extreme ultraviolet control system
US9665017B2 (en) Method for reducing contamination in extreme ultraviolet lithography light source
JP2010514157A (ja) 放射システムおよびリソグラフィ装置
US11452197B2 (en) Shock wave visualization for extreme ultraviolet plasma optimization
JP2018500591A (ja) ファセット付きeuv光学素子
CN111566563A (zh) 用于监测等离子体的系统
KR20160146476A (ko) 연료 액적 궤도의 안정화로 euv 파워를 향상시키는 방법
WO2016006100A1 (ja) 極端紫外光生成装置
US11153959B2 (en) Apparatus and method for generating extreme ultraviolet radiation
US20220124901A1 (en) Apparatus and method for generating extreme ultraviolet radiation
KR20220022472A (ko) 레이저 집속 모듈

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110315

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111129

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5139055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250