JP5612579B2 - 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体 - Google Patents

極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体 Download PDF

Info

Publication number
JP5612579B2
JP5612579B2 JP2011524841A JP2011524841A JP5612579B2 JP 5612579 B2 JP5612579 B2 JP 5612579B2 JP 2011524841 A JP2011524841 A JP 2011524841A JP 2011524841 A JP2011524841 A JP 2011524841A JP 5612579 B2 JP5612579 B2 JP 5612579B2
Authority
JP
Japan
Prior art keywords
laser
target material
light
plasma
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011524841A
Other languages
English (en)
Other versions
JPWO2011013779A1 (ja
Inventor
正人 守屋
正人 守屋
英行 林
英行 林
阿部 徹
徹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2011524841A priority Critical patent/JP5612579B2/ja
Publication of JPWO2011013779A1 publication Critical patent/JPWO2011013779A1/ja
Application granted granted Critical
Publication of JP5612579B2 publication Critical patent/JP5612579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/008Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)

Description

この開示は、極端紫外(EUV)光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体に関する。
一般的に、LPP(Laser−Produced Plasma:レーザ生成プラズマ)方式などのEUV(Extreme Ultraviolet:極端紫外線)光源装置には、たとえば100W以上の高出力が求められる場合がある。これに伴って、EUV光源装置に使用されるドライバレーザにも、10kW以上の高出力が求められる場合がある。このような場合、通常、ドライバレーザには、たとえばCOレーザなどの高出力が可能なレーザ光源が用いられていた。
ここで、ターゲットに照射されるレーザ光を出力するドライバレーザは、露光に必要な時だけ運転(バースト運転)できることが好ましい。
特開2003−224052号公報
概要
バースト運転中のドライバレーザからのレーザ光は、安定していることが好ましい。
この開示の一態様による極端紫外光源装置は、レーザ装置からのレーザ光をターゲット物質に照射して該ターゲット物質をプラズマ化し、該プラズマ化したターゲット物質から放射した極端紫外光を出力する極端紫外光源装置であって、前記極端紫外光を連続パルス発光する場合、前記レーザ装置に連続的にパルス出力させたレーザ光をターゲット物質に照射し、前記連続パルス発光を停止する場合、前記レーザ装置に前記レーザ光を連続的にパルス出力させつつ該レーザ光による前記ターゲット物質のプラズマ化を回避する制御を行うバースト制御部を備えてもよい。
また、この開示の他の態様による光源装置の制御方法は、レーザ装置からのレーザ光をターゲット物質に照射して該ターゲット物質をプラズマ化し、該プラズマ化したターゲット物質から放射した極端紫外光を出力する光源装置の制御方法であって、前記極端紫外光を連続パルス発光する場合、前記レーザ装置から連続的にパルス出力されたレーザ光をターゲット物質に照射し、前記連続パルス発光を停止する場合、前記レーザ装置に前記レーザ光を連続的にパルス出力させつつ該レーザ光による前記ターゲット物質のプラズマ化を回避することを含んでもよい。
また、この開示の他の態様によるプログラムを記録した記録媒体は、レーザ装置からのレーザ光をターゲット物質に照射して該ターゲット物質をプラズマ化し、該プラズマ化したターゲット物質から放射した極端紫外光を出力する光源装置を制御するためのプログラムを記録した記録媒体であって、前記極端紫外光を連続パルス発光する場合、前記レーザ装置に連続的にパルス出力させたレーザ光をターゲット物質に照射させ、前記連続パルス発光を停止する場合、前記レーザ装置に前記レーザ光を連続的にパルス出力させつつ該レーザ光による前記ターゲット物質のプラズマ化を回避させる制御を前記光源装置に実行させてもよい。
以上述べたことと、本開示のその他の目的、特徴、利点、並びに技術的かつ産業的意義については、以下の本開示を添付図面と照らし合わせて読めば、より一層理解できよう。
図1は、この開示の実施の形態1にかかるEUV光源装置の構成を示す模式図である。 図2は、この開示の実施の形態1の連続発光停止期間における動作を説明する模式図である。 図3は、この開示の実施の形態1の連続発光停止期間における動作を示すタイムチャートである。 図4は、この開示の実施の形態1によるバースト制御処理手順を示すフローチャートである。 図5は、この開示の実施の形態1の変形例1の連続発光停止期間における動作を説明する模式図である。 図6は、この開示の実施の形態1の変形例1にかかるEUV光源装置の構成を示す模式図である。 図7は、この開示の実施の形態1の変形例1の連続発光停止期間における動作を示すタイムチャートである。 図8は、この開示の実施の形態1の変形例1によるバースト制御処理手順を示すフローチャートである。 図9は、この開示の実施の形態1の変形例2の連続発光停止期間における動作を説明する模式図である。 図10は、この開示の実施の形態1の変形例2の連続発光停止期間における動作を示すタイムチャートである。 図11は、この開示の実施の形態1の変形例2によるバースト制御処理手順を示すフローチャートである。 図12は、この開示の実施の形態2にかかるEUV光源装置の構成を示す模式図である。 図13は、この開示の実施の形態2によるプリプラズマ照射でのEUV光の発生動作を説明する模式図である。 図14は、この開示の実施の形態2によるフラグメント照射でのEUV光の発生動作を説明する模式図である。 図15は、この開示の実施の形態2の連続発光停止期間における動作を説明する模式図である。 図16は、この開示の実施の形態2の連続発光停止期間における動作を示すタイムチャートである。 図17は、この開示の実施の形態2によるバースト制御処理手順を示すフローチャートである。 図18は、この開示の実施の形態2の変形例1の連続発光停止期間における動作を説明する模式図である。 図19は、この開示の実施の形態2の変形例1の連続発光停止期間における動作を示すタイムチャートである。 図20は、この開示の実施の形態2の変形例1によるバースト制御処理手順を示すフローチャートである。 図21は、この開示の実施の形態2の変形例2の連続発光停止期間における動作を説明する模式図である。 図22は、この開示の実施の形態2の変形例2の連続発光停止期間における動作を示すタイムチャートである。 図23は、この開示の実施の形態2の変形例2によるバースト制御処理手順を示すフローチャートである。 図24は、この開示の実施の形態2の変形例3の連続発光停止期間における動作を説明する模式図である。 図25は、この開示の実施の形態2の変形例3の連続発光停止期間における動作を示すタイムチャートである。 図26は、この開示の実施の形態2の変形例3によるバースト制御処理手順を示すフローチャートである。 図27は、この開示の実施の形態2の変形例4にかかるプリパルス光とレーザパルス光との集光点を略一致させる同軸照射を行うEUV光源装置の構成を示す模式図である。 図28は、この開示の実施の形態3の連続発光停止期間における動作を説明する模式図である。 図29は、この開示の実施の形態3の連続発光停止期間における動作を示すタイムチャートである。 図30は、この開示の実施の形態3の変形例1の連続発光停止期間における動作を説明する模式図である。 図31は、この開示の実施の形態3の変形例1の連続発光停止期間における動作を示すタイムチャートである。 図32は、この開示の実施の形態3の変形例2にかかるEUV光源装置の構成を示す模式図である。 図33は、この開示の実施の形態3の変形例2の連続発光停止期間における動作を説明する模式図である。 図34は、この開示の実施の形態3の変形例2の連続発光停止期間における動作を示すタイムチャートである。 図35は、この開示の実施の形態3の変形例2の連続発光停止期間における動作を示すタイムチャートである。 図36は、連続発光期間および連続発光停止期間に対する帯電電極および加速電圧機構のオンオフ制御パターンを示す図である。 図37は、この開示の実施の形態3の変形例3にかかるEUV光源装置の構成を示す模式図である。 図38は、この開示の実施の形態3の変形例3の連続発光停止期間における動作を説明する模式図である。 図39は、この開示の実施の形態3の変形例3の連続発光停止期間における動作を示すタイムチャートである。 図40は、この開示の実施の形態3の第2の変形例3の連続発光停止期間における動作を示すタイムチャートである。 図41は、この開示の実施の形態3の第3の変形例3の連続発光停止期間における動作を説明する模式図である。 図42は、この開示の実施の形態3の第3の変形例3の連続発光停止期間における動作を示すタイムチャートである。 図43は、この開示の実施の形態3の第4の変形例3の連続発光停止期間における動作を示すタイムチャートである。 図44は、連続発光期間および連続発光停止期間に対する帯電電極および偏向機構のオンオフ制御パターンを示す図である。 図45は、この開示の実施の形態3の変形例4にかかるEUV光源装置の構成を示す模式図である。 図46は、ドロップオンデマンド方式を適用したターゲット供給機構を示す模式図である。 図47は、この開示の各実施の形態およびその変形例における各種コントローラの概略構成例を示すブロック図である。
以下、図面を参照して、この開示を実施するための形態を説明する。なお、以下の説明において、各図は本開示の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎず、従って、本開示は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。また、各図では、構成の明瞭化のため、断面におけるハッチングの一部が省略されている。さらに、後述において例示する数値は、本開示の好適な例に過ぎず、従って、本開示は例示された数値に限定されるものではない。
実施の形態1
まず、本開示の実施の形態1について、図面を参照して詳細に説明する。以下の説明では、LPP方式によるEUV光源装置を例に挙げるが、これに限定されるものではなく、DPP方式やSR方式のEUV光源装置などであってもよい。また、本実施の形態1では、1段階のレーザ照射によってターゲット物質をプラズマ化するケースを例に挙げるが、これに限定されるものではなく、たとえば2段階以上のレーザ照射によってターゲット物質をプラズマ化するケースであってもよい。さらに、本実施の形態1は、レーザ装置やレーザ加工装置などにも適用されてもよい。
また、本開示では、「連続発光運転(期間)」、「連続発光停止運転(期間)」、「バースト運転(期間)」の各用語をそれぞれ次のように定義する。
1)連続発光運転(期間)とは、EUV光を連続して出力する運転(期間)をいう。
2)連続発光停止運転(期間)とは、EUV光の出力を停止する運転(期間)をいう。
3)バースト運転(期間)とは、連続発光運転と連続発光停止運転との交互運転(期間)をいう。
図1は、この開示の実施の形態1にかかる極端紫外(EUV)光源装置の概略構成例を示す模式図である。図1に示すように、LPP方式のEUV光源装置100では、たとえばドライバレーザ1から出力されたパルス状のレーザ光(以下、これをレーザパルス光という)L1が、EUVチャンバ10内に供給されたターゲット物質である錫(Sn)のドロップレット13に集光される。レーザパルス光L1の照射によってプラズマ化したターゲット物質からは、光Lが放射される。放射された光Lのうち、所望する波長帯域(たとえば13.5nm付近の波長帯域)のEUV光L10は、たとえばこの波長帯域を選択的に反射するEUV集光ミラーM3によって反射されることで露光装置20側に出力される。
また、図1に示す構成において、ドライバレーザ1は、レーザパルス光L1の種光を発振するオシレータ2と、オシレータ2から出力された種光を増幅するプリアンプ3およびメインアンプ4とを備えてもよい。オシレータ2には、たとえば半導体レーザなどの各種のレーザを用いることができる。オシレータ2から発振されたレーザパルス光は、たとえば2段に設けられた増幅器であるプリアンプ3およびメインアンプ4で増幅されてもよい。プリアンプ3およびメインアンプ4には、たとえばCOガスを含む混合ガスを増幅媒体とした増幅器を用いることができる。ドライバレーザ1から出力されたレーザパルス光L1は、たとえばミラーM1を含む光学系によってEUVチャンバ10へ導かれた後、EUVチャンバ10に設けられたウィンドウW1を介してEUVチャンバ10内に入る。
EUVチャンバ10内には、軸外放物面ミラーである集光ミラーM2と、反射面中央付近に貫通穴が形成されたEUV集光ミラーM3とが設けられてもよい。集光ミラーM2は、ウィンドウW1を介して入射したレーザパルス光L1を高反射する。高反射されたレーザパルス光L1は、EUV集光ミラーM3の貫通穴を通過した後、プラズマ生成サイトP10付近に集光する。ただし、集光ミラーM2は、EUVチャンバ10外に配置されてもよい。この場合、たとえばミラーM1を含む光学系で反射されたレーザパルス光L1は、集光ミラーM2で反射された後、ウィンドウW1およびEUV集光ミラーM3の貫通穴を通過してプラズマ生成サイトP10に集光する。
一方、EUVチャンバ10には、ターゲット物質をドロップレット13の形態で供給するターゲット供給部11が設けられてもよい。ターゲット供給部11は、たとえばEUVチャンバ10内のプラズマ生成サイトP10へ向けてドロップレット13を吐出する。ターゲット供給部11は、吐出したドロップレット13にプラズマ生成サイトP10付近でレーザパルス光L1が集光するように、ドロップレット13の吐出タイミング及び/または位置を調整してもよい。ただし、これに限らず、たとえばドライバレーザ1が、プラズマ生成サイトP10付近を通過するドロップレット13にレーザパルス光L1が集光するように、レーザパルス光L1の発振タイミング及び/または位置を調整してもよい。また、ターゲット物質は、ドロップレットの形態に限らず、ワイヤーまたはリボンやディスクなどの固体ターゲットの形態でEUVチャンバ10内に給されてもよい。この場合、EUVチャンバ10内には、ワイヤーまたはリボンやディスクを定期的またはオンデマンドで巡回または回転させる機構が設けられているのが望ましい。
ここで、ターゲット物質がSnである場合、レーザパルス光L1の集光によって生成されたプラズマからは、放射状に光Lが放出される。この光Lは、たとえば13.5nm付近の波長帯域のEUV光L10を含む。言い換えれば、ターゲット物質にSnを用いることで、レーザパルス光L1をたとえば2%〜4%程度の変換効率CE(conversion efficiency)でEUV光L10に変換することができる。プラズマから放射した光Lのうち、EUV光L10は、上述したように、焦点を持つEUV集光ミラーM3によって選択的に反射される。反射されたEUV光L10は、ピンホールPHの穴にその像が転写されるように集光する。その後、EUV光L10は、ピンホールPHの穴を通過して露光装置20側に出力される。
なお、レーザパルス光L1の光軸上には、プラズマの生成に寄与しなかったレーザ光を吸収するためのレーザダンパLDP1が設けられてもよい。また、ドロップレット13の軌道上には、プラズマにならなかったターゲット物質を回収するためのターゲット回収装置DP1が設けられてもよい。
EUV光源コントローラCは、EUV光源装置100を制御してもよい。EUV光源コントローラCは、たとえばレーザコントローラC2を介してドライバレーザ1の発振および/または増幅を制御してもよい。たとえば、EUV光源コントローラCは、レーザコントローラC2からオシレータ2に発振タイミング制御信号S2を出力してレーザパルス光L1の発振タイミングを制御してもよい。また、EUV光源コントローラCは、ターゲット供給部11にターゲット生成信号S4を出力して、ドロップレット13の吐出を制御してもよい。また、EUV光源コントローラCは、ミラーコントローラC3を介して集光ミラーM2の集光位置及び/または姿勢を制御してもよい。
ここで、撮像装置12は、たとえばプラズマ生成サイトP10付近を撮像する。撮像装置12による撮像結果は、たとえばEUV光源コントローラCに入力される。また、撮像結果がミラーコントローラC3に入力されてもよい。この撮像結果には、たとえば、プラズマ生成サイトP10付近でのドロップレット13の通過タイミングおよび通過軌跡やプラズマ生成サイトP10付近で生成されたプラズマなどが、撮像時刻や画像などの情報として含まれている。そこで、EUV光源コントローラCあるいはミラーコントローラC3は、撮像装置12による撮像結果をもとに、レーザパルス光L1がプラズマ生成サイトP10に集光するように、ミラーアクチュエータM2aにミラー駆動制御信号S3を出力して集光ミラーM2の向きを制御することができる。また、EUV光源コントローラCは、撮像装置12による撮像結果をもとに、レーザパルス光L1がプラズマ生成サイトP10付近でドロップレット13に照射されるように、ターゲット供給部11およびドライバレーザ1のタイミング制御を行う。
EUV光源コントローラCは、バースト制御部C1を有してもよい。バースト制御部C1は、露光装置20側からのバースト発光指示信号S1をもとに、EUV光L10をバースト発光させるバースト制御処理を行う。ここで、バースト発光とは、バースト運転での発光を意味する。このバースト運転とは、一定の周波数で連続的にパルス状のEUV光L10を出力する期間(連続発光期間)とEUV光の出力を停止する期間(連続発光停止期間)とを交互に繰り返すことである。露光装置20は、このバースト発光されたEUV光L10の平均エネルギーを用いて露光処理を行ってもよい。
この実施の形態1では、バースト制御部C1は、バースト運転の連続発光期間中、レーザパルス光L1がドロップレット13に照射するように、ドライバレーザ1がレーザパルス光L1を出力するタイミング(発振タイミング)を制御する。これに対し、連続発光停止期間中では、バースト制御部C1は、発振タイミング制御信号S2を変化させることで、レーザパルス光L1の発振タイミングをずらす制御を行う。レーザパルス光L1の発振タイミングをずらした状態では、レーザパルス光L1がドロップレット13に照射されないので、EUV光L10を含む光Lの生成を停止できる。
すなわち、図2(a)に示すように、連続発光期間中では、バースト制御部C1は、プラズマ生成サイトP10付近でレーザパルス光L1がドロップレット13に照射されるように、レーザパルス光L1の発振タイミングを制御する。これに対し、連続発光停止期間中では、図2(b)に示すように、バースト制御部C1は、レーザパルス光L1の発振タイミングを連続発光期間中の発振タイミングに対して期間Δt1分、シフトさせる。この時間的なずれにより、レーザパルス光L1がドロップレット13に照射されないため、EUV光L10を含む光Lの生成を停止することが可能となる。なお、発振タイミングのシフト方向は、タイミングを早める方向でも遅くする方向でもよい。すなわち、レーザパルス光L1がドロップレット13に照射されないように、レーザパルス光L1の発振タイミングがずらすことが出来ればよい。
ここで、図3に示したタイミングチャートおよび図4に示したフローチャートを参照して、この実施の形態1によるバースト制御処理について説明する。まず、EUV光源コントローラCは、ターゲット供給部11に対してドロップレット13の生成開始の処理を行う(ステップS101)。その後、EUV光源コントローラCは、撮像装置12によるプラズマ生成サイトP10付近の撮像結果をもとにドロップレット13の位置(軌道であってもよい)と速度とを計測する(ステップS102)。その後、EUV光源コントローラCは、ターゲット供給部11の駆動タイミング(たとえばターゲット生成信号S4の出力タイミング)からドロップレット13がプラズマ生成サイトP10に到着するまでの時間(プラズマ生成サイト到達時間)を予測し、予想されたプラズマ生成サイト到達時間に基づいてレーザパルス光L1の発振タイミングを制御する発振トリガタイミングを決定する(ステップS103)。
その後、EUV光源コントローラCのバースト制御部C1は、現在、連続発光期間T2中であるか否かを判断する(ステップS104)。連続発光期間T2中である場合(ステップS104,Yes)、バースト制御部C1は、ステップS103で決定された発振トリガタイミングでレーザパルス光L1を発振させる発振タイミング制御信号S2をオシレータ2に出力する(ステップS105)。これにより、ドライバレーザ1から出力されたレーザパルス光L1がドロップレット13に照射されてEUV光L10が生成される。
一方、連続発光期間T2中でない場合(ステップS104,No)、すなわち連続発光停止期間T1中である場合、バースト制御部C1は、ステップS103で決定された発振トリガタイミングを、たとえば期間Δt1遅くし(ステップS106:図3(d)参照)、このタイミングが変更された発振タイミング制御信号S2をオシレータ2に出力する(ステップS105)。この場合、レーザパルス光L1が期間Δt1遅れて発振されるため、ドロップレット13に照射されない。この結果、EUV光L10の発光が停止される。図3に示す例では、連続発光停止期間T1中、図3(e)のプラズマ生成タイミングt1aおよびt2aそれぞれでプラズマが発生しないため、図3(f)のEUV発光タイミングt1aおよびt2aでのEUV光L10の生成はない。
その後、EUV光源コントローラCは、露光装置20側から露光終了を示すバースト発光指示信号S1が入力されたか否かを判断し(ステップS107)、露光終了でない場合(ステップS107,No)、ステップS102に移行して、上述したバースト運転を継続して行う。一方、露光終了である場合(ステップS107,Yes)、EUV光源コントローラCは、ドロップレット13の生成を停止し(ステップS108)、本処理を終了する。
この実施の形態1のように、連続発光停止期間T1中、レーザパルス光L1の発振タイミングをずらすことでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の光学系が熱的に安定する。これにより、ドロップレット13に対して安定した位置及びエネルギーでレーザパルス光L1が照射される。この結果、安定したEUV光L10が出力される。
3)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の熱負荷変動を低減できる。これにより、ドライバレーザ1に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
なお、連続発光停止期間T1中にレーザパルス光L1の発振を停止させる場合、ドライバレーザ1に関して以下の課題が発生することがあった。
1)連続発光期間T2の先頭時に、光学素子などに急激な熱負荷変動が生じる。
2)連続発光期間T2と連続発光停止期間T1とのデューティ比が変更されたときにも急激な熱負荷変動が生じる。
3)これらが原因でレーザパルス光L1の集光状態が不安定になったり、エネルギー制御の追従性が悪くなる。その結果、安定したEUV発光が得られない。
これに対し、この実施の形態1では、バースト運転中、レーザパルス光L1が常に連続発振されているため、連続発光期間T2におけるレーザパルス光L1の集光状態を安定させ、エネルギー制御の追従性を良好にすることが可能となり、その結果、安定したEUV発光制御を行うことができる。
(実施の形態1の変形例1)
上述した実施の形態1では、レーザパルス光L1の発振タイミングをずらすことで、レーザパルス光L1を連続発振しつつEUV光L10の生成を停止した。ただし、これに限らず、たとえばレーザパルス光L1の光軸をずらすことで、レーザパルス光L1を連続発振しつつEUV光L10の生成を停止することも可能である。以下、このケースを、本実施の形態1の変形例1として説明する。
図5に示すように、本変形例1では、連続発光期間T2中は、レーザパルス光L1の光軸CIをプラズマ生成サイトP10に一致させる。これに対し、連続発光停止期間T1は、レーザパルス光L1の光軸CIを、光軸CIから光軸CIaにずらす。これにより、レーザパルス光L1のドロップレット13への照射が回避されるため、EUV光L10の生成が停止される。この場合も、ドライバレーザ1は、バースト運転中、連続発光運転されてもよい。なお、レーザパルス光L1の光軸CI上に配置されたレーザダンパLDP1の他に、光軸CIa上にレーザダンパLDP2を設けてもよい。
レーザパルス光L1の光軸ずらしは、図6に示すように、たとえばミラーコントローラC3を介してミラーアクチュエータM2aを駆動することで可能となる。ミラーアクチュエータM2aの駆動によって集光ミラーM2が方向A1方向に回転すると、レーザパルス光L1の光軸が、たとえば光軸CIから光軸CIaにずれる。なお、図6に示すように、たとえばミラーM1にミラーアクチュエータM1aを設け、このミラーアクチュエータM1aをミラー駆動制御信号S6によって駆動してレーザパルス光L1の光軸をずらすように構成してもよい。
図7(c)に示すように、連続発光停止期間T1を開始する時点t3から終了する時点t4までの間、ミラーアクチュエータM2aを駆動してレーザパルス光L1の光軸ずれを生じさせると、レーザパルス光L1がドロップレット13に照射されない。そのため、プラズマ生成タイミングt1aおよびt2aでプラズマが生成されない(図7(d)参照)。その結果、EUV発光タイミングt1aおよびt2aでEUV光L10が生成されない(図7(e)参照)。
ここで、図8に示すフローチャートを参照してこの実施の形態1の変形例1によるバースト制御処理について説明する。まず、EUV光源コントローラCは、ターゲット供給部11に対してドロップレット13の生成開始の処理を行う(ステップS201)。その後、EUV光源コントローラCは、撮像装置12によるプラズマ生成サイトP10付近の撮像結果をもとにドロップレット13の位置(軌道であってもよい)と速度とを計測する(ステップS202)。その後、EUV光源コントローラCは、プラズマ生成サイト到達時間を予測し、予想されたプラズマ生成サイト到達時間に基づいてレーザパルス光L1の発振トリガタイミングを決定する(ステップS203)。
その後、EUV光源コントローラCのバースト制御部C1は、現在、連続発光期間T2中であるか否かを判断する(ステップS204)。連続発光期間T2中である場合(ステップS204,Yes)、バースト制御部C1は、現在のレーザパルス光L1の光軸CIがずれておらず正常であるか否かを判断する(ステップS205)。その後、バースト制御部C1は、レーザパルス光L1の光軸ずれCIaがある場合(ステップS205,No)、レーザパルス光L1の光軸ずれCIaを戻した後(ステップS206)、ステップS203で決定された発振トリガタイミングでレーザパルス光L1を発振させる発振タイミング制御信号S2をオシレータ2に出力する(ステップS209)。これにより、ドライバレーザ1から出力されたレーザパルス光L1がドロップレット13に照射されてEUV光L10が生成される。
一方、連続発光期間T2中でない場合(ステップS204,No)、すなわち連続発光停止期間T1中である場合、バースト制御部C1は、現在のレーザパルス光L1の光軸CIがずれているか否かを判断する(ステップS207)。その後、バースト制御部C1は、レーザパルス光L1の光軸ずれCIaがない場合(ステップS207,No)、レーザパルス光L1の光軸ずれCIaを生じさせた後(ステップS208)、ステップS203で決定された発振トリガタイミングでレーザパルス光L1を発振させる発振タイミング制御信号S2をオシレータ2に出力する(ステップS209)。これにより、ドライバレーザ1から出力されたレーザパルス光L1がドロップレット13に照射されないため、EUV光L10の生成が停止する。
その後、EUV光源コントローラCは、露光装置20側から露光終了を示すバースト発光指示信号S1が入力されたか否かを判断し(ステップS210)、露光終了でない場合(ステップS210,No)、ステップS202に移行し、上述したバースト運転を継続して行う。一方、露光終了である場合(ステップS210,Yes)、EUV光源コントローラCは、ドロップレット13の生成を停止し(ステップS211)、本処理を終了する。
この実施の形態1の変形例1のように、連続発光停止期間T1中、レーザパルス光L1の光軸をずらすことでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の光学系が熱的に安定する。これにより、ドロップレット13に対して安定した位置及びエネルギーでレーザパルス光L1が照射される。この結果、安定したEUV光L10が出力される。
3)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の熱負荷変動を低減できる。これにより、ドライバレーザ1に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
(実施の形態1の変形例2)
また、レーザパルス光L1のフォーカスをずらすことで、レーザパルス光L1を連続発振しつつEUV光L10の生成を停止することも可能である。以下、このケースを、本実施の形態1の変形例2として説明する。
図9に示すように、連続発光期間T2中(図9(a)参照)は、レーザパルス光L1のフォーカスF1をプラズマ生成サイトP10に一致させる。これに対し、連続発光停止期間T1中(図9(b)参照)は、レーザパルス光L1のフォーカスF1の位置をたとえば光軸CI方向にずれたフォーカスF1aとする。これにより、ドロップレット13に照射されるレーザパルス光L1のエネルギー密度が低くなるため、ドロップレット13がプラズマ化することを回避できる。この結果、EUV光L10の生成が停止される。この場合も、ドライバレーザ1は、バースト運転中、連続発光運転されてもよい。
レーザパルス光L1のフォーカスずらしは、図10に示すように、たとえばミラーコントローラC3を介してミラーアクチュエータM1aおよびM2aを駆動することで可能となる。ミラーアクチュエータM1aおよびM2aの駆動によって集光ミラーM2とプラズマ生成サイトP10との距離が変化すると(図6参照)、レーザパルス光L1のフォーカスの位置が方向A2の方向にずれる。なお、図示していないアクチュエータにより、ドライバレーザ1から出力されたレーザビームの発散角を制御することによって、レーザパルス光L1のフォーカスF1をずらすように構成してもよい。
図10(c)に示すように、時点t3から時点t4までの連続発光停止期間T1を含む期間、ミラーアクチュエータM2aを駆動してレーザパルス光L1のフォーカスずれを生じさせる。すると、レーザパルス光L1がドロップレット13に照射されてもエネルギー密度が低いため、ドロップレット13がプラズマ化しない。そのため、プラズマ生成タイミングt1aおよびt2aでプラズマが生成されない(図10(d)参照)。その結果、EUV発光タイミングt1aおよびt2aでEUV光L10が生成されない(図10(e)参照)。
ここで、図11に示すフローチャートを参照してこの実施の形態1の変形例2によるバースト制御処理について説明する。まず、EUV光源コントローラCは、ターゲット供給部11に対してドロップレット13の生成開始の処理を行う(ステップS301)。その後、EUV光源コントローラCは、撮像装置12によるプラズマ生成サイトP10付近の撮像結果をもとにドロップレット13の位置(軌道であってもよい)と速度とを計測する(ステップS302)。その後、EUV光源コントローラCは、プラズマ生成サイト到達時間を予測し、予想されたプラズマ生成サイト到達時間に基づいてレーザパルス光L1の発振トリガタイミングを決定する(ステップS303)。
その後、EUV光源コントローラCのバースト制御部C1は、現在、連続発光期間T2であるか否かを判断する(ステップS304)。連続発光期間T2中である場合(ステップS304,Yes)には、バースト制御部C1は、現在のレーザパルス光L1のフォーカスF1がずれておらず正常であるか否かを判断する(ステップS305)。その後、バースト制御部C1は、レーザパルス光L1のフォーカスずれF1aがある場合(ステップS305,No)、レーザパルス光L1のフォーカスずれF1aを戻した後(ステップS306)、ステップS303で決定された発振トリガタイミングでレーザパルス光L1を発振させる発振タイミング制御信号S2をオシレータ2に出力する(ステップS309)。これにより、ドライバレーザ1から出力されたレーザパルス光L1がドロップレット13に照射されてEUV光L10が生成される。
一方、連続発光期間T2中でない場合(ステップS304,No)、すなわち連続発光停止期間T1である場合、バースト制御部C1は、現在のレーザパルス光L1のフォーカスF1がずれているか否かを判断する(ステップS307)。その後、バースト制御部C1は、レーザパルス光L1のフォーカスずれF1aがない場合(ステップS307,No)、レーザパルス光L1のフォーカスずれF1aを生じさせた後(ステップS308)、ステップS303で決定された発振トリガタイミングでレーザパルス光L1を発振させる発振タイミング制御信号S2をオシレータ2に出力する(ステップS309)。これにより、レーザパルス光L1の照射に対してドロップレット13がプラズマ化しないため、EUV光L10の生成が停止する。
その後、EUV光源コントローラCは、露光装置20側から露光終了を示すバースト発光指示信号S1が入力されたか否かを判断し(ステップS310)、露光終了でない場合(ステップS310,No)、ステップS302に移行し、上述したバースト運転を継続して行う。一方、露光終了である場合(ステップS310,Yes)、EUV光源コントローラCは、ドロップレット13の生成を停止し(ステップS311)、本処理を終了する。
この実施の形態1の変形例2のように、連続発光停止期間T1中、レーザパルス光L1のフォーカスF1をずらすことでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の光学系が熱的に安定する。これにより、ドロップレット13に対して安定した位置及びエネルギーでレーザパルス光L1が照射される。この結果、安定したEUV光L10が出力される。
3)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の熱負荷変動を低減できる。これにより、ドライバレーザ1に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
実施の形態2
つぎに、この開示の実施の形態2について、図面を参照して詳細に説明する。本実施の形態2では、2段階のレーザ照射によってターゲット物質をプラズマ化するケースを例に挙げる。なお、本実施の形態2は、レーザ装置やレーザ加工装置などにも適用されてもよい。
図12は、この開示の実施の形態2にかかるEUV光源装置200の概略構成例を示す模式図である。図12に示すように、この実施の形態2によるEUV光源装置200は、図1に示した構成に加えて、さらにプリパルスレーザ30を有する。このプリパルスレーザ30から出力されたプリパルス光LPは、ミラーM4を含む光学系およびEUVチャンバ10に設けられたウィンドウW2を介してEUVチャンバ10内に入る。その後、プリパルス光LPは、焦点を持つ集光ミラーM5によって反射されることで、プリプラズマ生成サイトP11付近を通過するドロップレット13に集光される。これにより、ドロップレット13の一部または全部からプリプラズマが生成される。そして、このプリプラズマPPにレーザパルス光L1を集光することによって、EUV光L10を放射するプラズマが生成される。本実施の形態2では、このようなEUV光源装置200において、バースト運転中、ドライバレーザ1を連続発光運転させた状態で、連続発光停止期間T1中にプリパルス光LPの発振を停止させる。これにより、EUV光L10の生成を停止することができる。プリパルス光LPの照射先には、プリパルス光LPを吸収するレーザダンパPDP1を設けてもよい。
なお、プリプラズマとは、ドロップレット13などのターゲット物質の集合の表面から発生した電子温度および/または電子密度が比較的低いプラズマ、あるいは中性粒子、または、電子温度および/または電子密度が比較的低いプラズマと中性粒子との混合状態を意味する。このプリプラズマPPの状態のターゲットにレーザパルス光L1を照射することによって、電子温度および/または電子密度の比較的高いプラズマにすることができる。電子温度および/または電子密度の比較的高いプラズマからは比較的多くのEUV光が得られることが知られている。つまりプリプラズマをレーザパルス光で更に加熱することにより、高い変換効率(CE)でEUV光L10を生成することができる。
ここで、図13に示すように、プリパルス光LPがプリプラズマ生成サイトP11付近を通過するドロップレット13に照射される。すると、プリパルス光LPの照射からドロップレット13が微小時間移動した後の位置に相当するプリプラズマ生成サイトP11aの近傍位置であるプラズマ生成サイトP20付近に、プリプラズマPPが生成される。そこで、本実施の形態2では、このプラズマ生成サイトP20付近に発生したプリプラズマPPにレーザパルス光L1を集光する。これにより、プリプラズマPPから、EUV光L10の発生源であるプラズマを生成する。このように、レーザパルス光L1をプラズマ状態に近いプリプラズマPPに照射してプラズマを生成することで、レーザパルス光L1からEUV光L10への変換効率(CE)を高めることができる。
なお、プリプラズマPPの代わりに、ドロップレット13を破壊することで生成されるターゲット物質の飛散物(フラグメント)群を、プラズマの生成に利用してもよい。ターゲット物質の飛散物(フラグメント)群の生成は、たとえば、プリプラズマ生成用のプリパルス光LPよりも低いパルスエネルギーのレーザパルス光をプリパルス光LPに用いればよい。図14に示すように、プリプラズマ生成用のプリパルス光よりも低いパルスエネルギーのプリパルス光LPをドロップレット13に照射すると(図14(a)参照)、ドロップレット13が破壊される。これにより、プリパルス光LPの進行方向にターゲット物質の粒子が飛散した飛散物による飛散空間FSが形成される。本実施の形態2では、この飛散空間FSにレーザパルス光L1を照射することで、EUV光L10の発生源であるプラズマが生成される(図14(b)参照)。この場合(フラグメント照射)であっても、プリプラズマPPにレーザパルス光L1を照射する場合(プリプラズマ照射)と同様に、たとえば1段階のレーザ照射によってドロップレット13からプラズマを生成する場合に比して、レーザパルス光L1からEUV光L10への変換効率(CE)を高めることができる。また、プリプラズマ照射およびフラグメント照射のいずれの場合も、同じ強度のEUV光L10を得る場合、レーザパルス光L1のパルスエネルギーを小さくすることができるため、ドライバレーザ1の小型化および低消費電力化を促進することができる。
この実施の形態2では、EUV光源コントローラCの制御のもと、レーザコントローラC2がプリパルスレーザ30の発振制御を行う。この際、バースト制御部C1は、図15(a)に示すように、連続発光停止期間T1中、プリパルス光LPの発振を停止させることで、プリプラズマPPまたは飛散空間FSが生成されないように制御する。その結果、図15(b)に示すように、レーザパルス光L1は、このプリプラズマPPが生成していないプラズマ生成サイトP20に照射されるか、または、図15(c)に示すように、フラグメントが生成していない飛散空間FSaに照射される。そのため、EUV光L10は生成しない。
たとえば、プリプラズマ照射の場合、図16において、連続発光期間T2中である場合、ドロップレット13がプリプラズマ生成サイトP11に到着したタイミングth1で(図16(a)参照)、プリパルス光発振トリガが発生し(図16(b)参照)、その後、プリプラズマPPがタイミングth1から遅れたタイミングth1bで生成される(図16(c))。このタイミングth1bでレーザパルス光発振トリガが発生し(図16(d)参照)、このタイミングth1bから遅れたタイミングth1aでプラズマが生成されて(図16(e)参照)、その結果、EUV光L10が発光する(図16(f)参照)。
一方、連続発光停止期間T1中である場合、プリパルス光発振トリガが発生しないため、プリプラズマPPが生成されない(図16(b)および(c)参照)。このため、レーザパルス光L1が発生していても、プラズマは生成されず、その結果、EUV光L10も発光しない(図16(d)〜(f)参照)。すなわち、ドライバレーザ1を連続発光運転した状態で、EUV光L10の発光を停止することができる。
ここで、図17に示したフローチャートを参照してこの実施の形態2によるバースト制御処理について説明する。まず、EUV光源コントローラCは、ターゲット供給部11に対してドロップレット13の生成開始の処理を行う(ステップS401)。その後、EUV光源コントローラCは、撮像装置12によるプリプラズマ生成サイトP11付近の撮像結果をもとにドロップレット13の位置(軌道であってもよい)と速度とを計測する(ステップS402)。その後、EUV光源コントローラCは、ターゲット供給部11の駆動タイミング(たとえばターゲット生成信号S4の出力タイミング)からドロップレット13がプリプラズマ生成サイトP11に到着するまでの時間(プリプラズマ生成サイト到達時間)を予測し、予想されたプリプラズマ生成サイト到達時間に基づいてプリパルス光LPおよびレーザパルス光L1の発振トリガタイミングを決定する(ステップS403)。
その後、EUV光源コントローラCのバースト制御部C1は、現在、連続発光期間T2中であるか否かを判断する(ステップS404)。連続発光期間T2中である場合(ステップS404,Yes)、バースト制御部C1は、プリパルス光LPを発振させ(ステップS405)、その後、レーザパルス光L1を発振させる(ステップS406)。これにより、プリパルス光LPがドロップレット13に照射されてプリプラズマPPが生成されるとともに、このプリプラズマPPにレーザパルス光L1が照射されて、EUV光L10が生成される。
一方、連続発光期間T2中でない場合(ステップS404,No)、すなわち連続発光停止期間T1中である場合、プリパルス光LPの発振を行わず、レーザパルス光L1のみの発振を行う(ステップS406)。これによって、EUV光L10は生成されない。
その後、EUV光源コントローラCは、露光装置20側から露光終了を示すバースト発光指示信号S1が入力されたか否かを判断し(ステップS407)、露光終了でない場合(ステップS407,No)、ステップS402に移行して、上述したバースト運転を継続して行う。一方、露光終了である場合(ステップS407,Yes)、EUV光源コントローラCは、ドロップレット13の生成を停止し(ステップS408)、本処理を終了する。
この実施の形態2のように、バースト発振期間中の連続発光停止期間T1中、プリパルス光LPの発振を停止させることでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の光学系が熱的に安定する。これにより、ドロップレット13に対して安定した位置及びエネルギーでレーザパルス光L1が照射される。この結果、安定したEUV光L10が出力される。
3)バースト運転中はドライバレーザ1を連続発光運転するため、ドライバレーザ1の熱負荷変動を低減できる。これにより、ドライバレーザ1に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
(実施の形態2の変形例1)
上述した実施の形態2では、プリパルス光LPを発振しないことで、EUV光L10の生成を停止した。ただし、これに限らず、たとえば実施の形態1のレーザパルス光L1と同じように、プリパルス光LPの発振タイミングをずらすことで(図18(a)参照)、レーザパルス光L1を連続発振しつつEUV光L10の生成を停止することも可能である。(図18(b)参照)。以下、このケースを、本実施の形態2の変形例1として説明する。
図19(b)に示すように、本変形例1では、連続発光停止期間T1中、プリパルス光LPの発振タイミングをΔt2遅らせる。これにより、プリプラズマ生成タイミングt1bおよびt2bでプリプラズマPPが生成されないため、たとえレーザパルス光発振タイミングt1bおよびt2bでレーザパルス光L1が発振されていても、EUV発光タイミングt1aおよびt2aでEUV光L10が発光しない。この場合、プリパルスレーザ30は、連続発光運転されているため、ドライバレーザ1と同様に、安定したプリパルス光LPを出力することができる。この結果、一層安定したEUV光L10を発光することができる。この変形例1では、プリパルス光LPの発振タイミングを早くしても同じような効果を得ることができる。
ここで、図20に示したフローチャートを参照してこの実施の形態2の変形例1によるバースト制御処理について説明する。まず、EUV光源コントローラCは、ターゲット供給部11に対してドロップレット13の生成開始の処理を行う(ステップS501)。その後、EUV光源コントローラCは、撮像装置12によるプリプラズマ生成サイトP11付近の撮像結果をもとにドロップレット13の位置(軌道であってもよい)と速度とを計測する(ステップS502)。その後、EUV光源コントローラCは、プリプラズマ生成サイト到達時間を予測し、予想されたプリプラズマ生成サイト到達時間に基づいてプリパルス光LPおよびレーザパルス光L1の発振トリガタイミングを決定する(ステップS503)。
その後、EUV光源コントローラCのバースト制御部C1は、現在、連続発光期間T2中であるか否かを判断する(ステップS504)。連続発光期間T2中である場合(ステップS504,Yes)、バースト制御部C1は、そのままプリパルス光LPを発振させ(ステップS505)、その後、レーザパルス光L1を発振させる(ステップS506)。これにより、レーザパルス光L1がプリパルス光LPの照射によって発生したプリプラズマPPに照射されて、EUV光L10が生成される。
一方、連続発光期間T2中でない場合(ステップS504,No)、すなわち連続発光停止期間T1である場合、プリパルス光LPの発振タイミングをずらした(ステップS507)後、プリパルス光LPを発振させ(ステップS505)、つづいて、レーザパルス光L1を発振させる(ステップS506)。この場合、プリパルス光LPおよびレーザパルス光L1ともに発振しているが、EUV光L10は発光しない。
その後、EUV光源コントローラCは、露光装置20側から露光終了を示すバースト発光指示信号S1が入力されたか否かを判断し(ステップS508)、露光終了でない場合(ステップS508,No)、ステップS502に移行し、上述したバースト運転を継続して行う。一方、露光終了である場合(ステップS508,Yes)、EUV光源コントローラCは、ドロップレット13の生成を停止し(ステップS509)、本処理を終了する。
この実施の形態2の変形例1のように、連続発光停止期間T1中、プリパルス光LPの発振のタイミングを変更することでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の光学系が熱的に安定する。安定したレーザパルス光L1およびプリパルス光LPの出力によって安定したEUV光L10を出力することができる。
3)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の熱負荷変動を低減できる。これにより、ドライバレーザ1およびプリパルスレーザ30に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
(実施の形態2の変形例2)
上述した実施の形態2の変形例1では、プリパルス光LPの発振タイミングを変更することで、プリパルス光LPおよびレーザパルス光L1を連続発振しつつEUV光L10の生成を停止した。これに対し、この実施の形態2の変形例2では、実施の形態1の変形例1におけるレーザパルス光L1と同じように、プリパルス光LPの光軸CI1を光軸CI1aにずらす(図21(a)参照)。この制御によっても、レーザパルス光L1が発振されていても、プリプラズマPPが発生しないため、EUV光L10の生成を停止できる(図21(b)参照)。なお、プリパルス光LPの光軸CI1上に配置されたレーザダンパPDP1の他に、光軸CI1a上にレーザダンパPDP2を設けてもよい。
図22(c)に示すように、時点t3から時点t4までの連続発光停止期間T1を含む期間、ミラーアクチュエータM5aを駆動してプリパルス光LPの光軸ずれを生じさせる(図12参照)。これにより、プリパルス光LPがドロップレット13に照射されないため、プリプラズマ生成タイミングt1bおよびt2bでプリプラズマPPが発生しない(図22(d)参照)。その結果、EUV発光タイミングt1aおよびt2aでEUV光L10が生成されない(図22(g)参照)。
ここで、図23に示すフローチャートを参照してこの実施の形態2の変形例2によるバースト制御処理について説明する。まず、EUV光源コントローラCは、ターゲット供給部11に対してドロップレット13の生成開始の処理を行う(ステップS601)。その後、EUV光源コントローラCは、撮像装置12によるプリプラズマ生成サイトP11の撮像結果をもとにドロップレット13の位置(軌道であってもよい)と速度とを計測する(ステップS602)。その後、EUV光源コントローラCは、プリプラズマ生成サイト到達時間を予測し、予想されたプリプラズマ生成サイト到達時間に基づいてプリパルス光LPおよびレーザパルス光L1の発振トリガタイミングを決定する(ステップS603)。
その後、EUV光源コントローラCのバースト制御部C1は、現在、連続発光期間T2中であるか否かを判断する(ステップS604)。連続発光期間T2中である場合(ステップS604,Yes)には、バースト制御部C1は、現在のプリパルス光LPの光軸CI1がずれておらず正常であるか否かを判断する(ステップS605)。その後、バースト制御部C1は、プリパルス光LPの光軸ずれがある場合(ステップS605,No)、プリパルス光LPの光軸ずれを戻した後(ステップS606)、ステップS603で決定された発振トリガタイミングでプリパルス光LPを発振させ(ステップS609)、さらにレーザパルス光L1を発振させる(ステップS610)。これにより、プリパルス光LPがドロップレット13に照射されてプリプラズマPPが生成されるとともに、このプリプラズマPPにレーザパルス光L1が照射されて、EUV光L10が生成される。
一方、連続発光期間T2中でない場合(ステップS604,No)、すなわち連続発光停止期間T1中である場合、現在のプリパルス光LPの光軸CI1がずれているか否かを判断する(ステップS607)。その後、バースト制御部C1は、プリパルス光LPの光軸ずれがない場合(ステップS607,No)、プリパルス光LPの光軸ずれを生じさせた後(ステップS608)、ステップS603で決定された発振トリガタイミングでプリパルス光LPを発振させ(ステップS609)、さらにレーザパルス光L1を発振させる(ステップS610)。この場合、プリパルスレーザ30から出力されたプリパルス光LPがドロップレット13に照射されないため、EUV光L10の生成が停止する。
その後、EUV光源コントローラCは、露光装置20側から露光終了を示すバースト発光指示信号S1が入力されたか否かを判断し(ステップS611)、露光終了でない場合(ステップS611,No)、ステップS602に移行し、上述したバースト運転を継続して行う。一方、露光終了である場合(ステップS611,Yes)、EUV光源コントローラCは、ドロップレット13の生成を停止し(ステップS612)、本処理を終了する。
この実施の形態2の変形例2のように、連続発光停止期間T1中、プリパルス光LPの光軸をずらすことでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の光学系が熱的に安定する。安定したレーザパルス光L1およびプリパルス光LPの出力によって安定したEUV光L10を出力することができる。
3)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の熱負荷変動を低減できる。これにより、ドライバレーザ1およびプリパルスレーザ30に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
(実施の形態2の変形例3)
また、実施の形態1の変形例2のレーザパルス光L1と同じように、プリパルス光LPのフォーカスF10をF10aにずらすことで(図24(a)参照)、レーザパルス光L1およびプリパルス光LPを連続発振しつつ、EUV光L10の生成を停止することも可能である(図24(b)参照)。以下、このケースを、本実施の形態2の変形例3として説明する。
図25(c)に示すように、時点t3から時点t4までの連続発光停止期間T1を含む期間、ミラーアクチュエータM5aとプリパルスレーザ30のミラーM4とを駆動してプリパルス光LPのフォーカスずれを生じさせる(図12参照)。その結果、プリパルス光LPのエネルギー密度が低下するため、プリパルス光LPの照射によってもドロップレット13からプリプラズマPPが生成されない。このため、プリプラズマ生成タイミングt1bおよびt2bでプリプラズマPPが発生せず(図25(d)参照)、これにより、EUV発光タイミングt1aおよびt2aでEUV光L10が生成されない(図25(g)参照)。
ここで、図26に示すフローチャートを参照してこの実施の形態2の変形例3によるバースト制御処理について説明する。まず、EUV光源コントローラCは、ターゲット供給部11に対してドロップレット13の生成開始の処理を行う(ステップS701)。その後、EUV光源コントローラCは、撮像装置12によるプリプラズマ生成サイトP11付近の撮像結果をもとにドロップレット13の位置(軌道であってもよい)と速度とを計測する(ステップS702)。その後、EUV光源コントローラCは、プリプラズマ生成サイト到達時間を予測し、予想されたプリプラズマ生成サイト到達時間に基づいてプリパルス光LPおよびレーザパルス光L1の発振トリガタイミングを決定する(ステップS703)。
その後、EUV光源コントローラCのバースト制御部C1は、現在、連続発光期間T2中であるか否かを判断する(ステップS704)。連続発光期間T2中である場合(ステップS704,Yes)には、現在のプリパルス光LPのフォーカスF10がずれておらず正常であるか否かを判断する(ステップS705)。その後、バースト制御部C1は、プリパルス光LPのフォーカスずれがある場合(ステップS705,No)、プリパルス光LPのフォーカスずれを戻した後(ステップS706)、ステップS703で決定された発振トリガタイミングでプリパルス光LPを発振させ(ステップS709)、さらにレーザパルス光L1を発振させる(ステップS710)。これにより、プリパルス光LPがドロップレット13に照射されてプリプラズマPPが生成されるとともに、このプリプラズマPPにレーザパルス光L1が照射されて、EUV光L10が生成される。
一方、連続発光期間T2中でない場合(ステップS704,No)、すなわち連続発光停止期間T1である場合、バースト制御部C1は、現在のプリパルス光LPのフォーカスF10がずれているか否かを判断する(ステップS707)。その後、バースト制御部C1は、プリパルス光LPのフォーカスずれがない場合(ステップS707,No)、プリパルス光LPのフォーカスずれを生じさせた後(ステップS708)、ステップS703で決定された発振トリガタイミングでプリパルス光LPを発振させ(ステップS709)、さらにレーザパルス光L1を発振させる(ステップS710)。この場合、プリパルス光LPの照射によってドロップレット13がプリプラズマ化しないため、EUV光L10の生成が停止する。
その後、EUV光源コントローラCは、露光装置20側から露光終了を示すバースト発光指示信号S1が入力されたか否かを判断し(ステップS711)、露光終了でない場合(ステップS711,No)、ステップS702に移行し、上述したバースト運転を継続して行う。一方、露光終了である場合(ステップS711,Yes)、EUV光源コントローラCは、ドロップレット13の生成を停止し(ステップS712)、本処理を終了する。
この実施の形態2の変形例3のように、連続発光停止期間T1中、プリパルス光LPのフォーカスF10をずらすことでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の光学系が熱的に安定する。安定したレーザパルス光L1およびプリパルス光LPの出力によって安定したEUV光L10を出力することができる。
3)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の熱負荷変動を低減できる。これにより、ドライバレーザ1およびプリパルスレーザ30に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
この実施の形態2およびその変形例では、プリパルス光PLを制御することによって、EUV光L10のバースト発光を可能にしていた。ただし、この実施の形態2およびその変形例に限定されることはない。たとえば、プリパルス光PLとレーザパルス光L1との両方の発振タイミングを変更する制御、両パルス光の光軸をずらす制御、または、両パルス光のフォーカス位置をずらす制御を行うことによって、EUV光L10のバースト発光を可能にしてもよい。この方式は、プリパルス光LPとレーザパルス光L1との集光点が略一致している場合に有効である。例えば、ターゲットであるドロップレットがマスリミテッド(約10μm径)の場合、プリパルス光LPの照射によって広がったターゲット物質の広がりは、元のドロップレットの位置に近い。この場合、プリパルス光LPをドロップレットに照射しないように制御したとしても、レーザパルス光L1がドロップレットに照射されるため、バースト制御が困難である。このような場合に上述した同時制御を行うことによって、EUV光L10のバースト発光が可能となる。
上述したプリパルス光LPとレーザパルス光L1との集光点を略一致させる同軸照射を行う装置の一例は、たとえば図27に示す構成によって実現される。図27は、この開示の実施の形態2の変形例4にかかるプリパルス光LPとレーザパルス光L1との集光点を略一致させる同軸照射を行うEUV光源装置の概略構成例を示す模式図である。
図27に示すEUV光源装置200Dでは、プリパルスレーザ30から出力されたプリパルス光LPは、ビームスプリッタM6を介して、レーザパルス光L1とほぼ同じ光軸でドロップレット13に照射される。一方、レーザパルス光L1もビームスプリッタM6を介して、プリパルス光LPとほぼ同じ光軸でプリプラズマPPに照射される。すなわち、プリパルス光LPおよびレーザパルス光L1は、ビームスプリッタM6、集光ミラーM2を介して同じ光軸で、それぞれドロップレット13またはプリプラズマPPに照射される。レーザダンパLDP1は、プリパルス光LP用のレーザダンパPDPとしても機能する。
このプリパルス光LPとレーザパルス光L1との同軸照射によって、集光ミラーM2をそれぞれの集光ミラーとして共用することができる。この結果、装置の簡易化および小型化を促進することができるとともに、集光ミラーM2の操作のみで、プリパルス光LPおよびレーザパルス光L1の光軸あるいはフォーカス位置を同時にずらすことができる。この集光ミラーM2の制御は、たとえばミラーコントローラC3から出力されるミラー駆動制御信号S3aによって行われる。
(実施の形態3)
つぎに、この開示の実施の形態3について説明する。この実施の形態3では、実施の形態2と同様に、プリパルスレーザ30を用いてプリパルス光LPを発振し、生成されたプリプラズマPPにレーザパルス光L1を照射することによって、EUV光L10を生成するEUV光源装置を例に挙げる。本実施の形態3では、このようなEUV光源装置において、バースト運転中、ドライバレーザ1およびプリパルスレーザ30を連続発光運転させた状態で、連続発光停止期間T1中にドロップレット13の吐出を停止させることで、EUV光L10の生成を停止させる。なお、本実施の形態3は、実施の形態1と同様に、プリパルス光LPを用いないEUV光源装置に適用してもよい。
本実施の形態3では、図28に示すように、連続発光停止期間T1中は、EUV光L10の発生源となるターゲット物質(ドロップレット13)が供給されないため、プリパルス光LPおよびレーザパルス光L1がプリプラズマ生成サイトP11およびプラズマ生成サイトP20に照射されたとしても、EUV光L10は生成されない。
この実施の形態3では、EUV光源コントローラCのバースト制御部C1が、ターゲット供給部11にターゲット生成信号S4を出力してドロップレット13の供給制御を行っており、特に、ドロップレット13の吐出期間と吐出停止期間とを制御している(図12または図27参照)。したがって、図29(a)に示すように、連続発光停止期間T1では、プリプラズマPPが生成されるタイミングtt1およびtt2においてドロップレット13の生成を指示するターゲット生成信号S4が出力されず、これにより、ドロップレット13が生成されない。この結果、連続発光停止期間T1中は、ドロップレット13がタイミングt1およびt2でプリプラズマ生成サイトP11に存在しないため(図29(b)参照)、たとえタイミングt1およびt2でプリパルス光発振トリガが発生して、プリパルス光LPが出力されても(図29(c)参照)、プリプラズマPPは発生しない。さらに、たとえタイミングt1bおよびt2bでレーザパルス光発振トリガが発生して(図29(e)参照)、レーザパルス光L1が出力されても、タイミングt1aおよびt2aでプラズマが生成しない(図29(f))。その結果、EUV光L10も生成されない(図29(g))。
この実施の形態3のように、連続発光停止期間T1中、ドロップレット13の吐出を停止させることでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の光学系が熱的に安定する。安定したレーザパルス光L1およびプリパルス光LPの出力によって安定したEUV光L10を出力することができる。
3)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の熱負荷変動を低減できる。これにより、ドライバレーザ1およびプリパルスレーザ30に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
4)連続発光停止期間T1中はドロップレットが吐出されないので、ドロップレットの消費量を低減できる。
(実施の形態3の変形例1)
上述した実施の形態3では、ドロップレット13の吐出を停止させることでEUV光L10の生成を停止した。ただし、これに限らず、ドロップレット13の生成タイミングをずらすことで、プリパルス光LPおよびレーザパルス光L1を連続発振しつつEUV光L10の生成を停止することも可能である。以下、このケースを、本実施の形態3の変形例1として説明する。
図30(a)に示すように、本変形例1では、連続発光停止期間T1中、ドロップレット13の発生タイミングを遅らせる。これにより、プリパルス光LPがドロップレット13に照射されないため、プリプラズマPPが発生しない。この結果、レーザパルス光L1を発振してもEUV光L10が生成されない。もちろん、ドロップレット13の発生タイミングを早くしても同じような効果を得ることができる。
図31(a)では、連続発光停止期間T1で、ターゲット生成信号S4の発生タイミングをΔt3分、遅らせている(ターゲット生成信号S4のtt1とtt2のタイミング)。この結果、タイミングt1およびt2にドロップレット13がプリプラズマ生成サイトP11に到着しないため(図31(b)参照)、プリパルス光発振トリガがタイミングt1およびt2で生成されても、プリパルス光LPがドロップレット13に照射されることはない。このため、タイミングt1bおよびt2bでのプリプラズマPPの発生はない(図31(d)参照)。その結果、タイミングt1bおよびt2bでレーザパルス光L1が照射されても(図31(e)参照)、タイミングt1aおよびt2aでのプラズマの発生はなく、これにより、EUV光L10の生成もない(図31(f)および(g)参照)。
この実施の形態3の変形例1のように、連続発光停止期間T1中、ドロップレット13の吐出タイミングをずらすことでEUV光L10の生成を停止した場合、以下の効果を期待できる場合がある。
1)EUVチャンバ10内の光学素子、たとえばEUV集光ミラーM3などへのダメージを低減する。この結果、EUV光源装置の寿命が延びる。
2)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の光学系が熱的に安定する。安定したレーザパルス光L1およびプリパルス光LPの出力によって安定したEUV光L10を出力することができる。
3)バースト運転中はドライバレーザ1およびプリパルスレーザ30を連続発光運転するため、ドライバレーザ1およびプリパルスレーザ30の熱負荷変動を低減できる。これにより、ドライバレーザ1およびプリパルスレーザ30に用いる光学素子などに対する熱負荷変動によるダメージが低減される。この結果、光学素子の寿命が延びる。
(実施の形態3の変形例2)
また、ドロップレット13を吐出後に加速あるいは減速することによっても、プリパルス光LPのドロップレット13への照射を回避して、EUV光L10の生成を停止することも可能である。以下、このケースを、本実施の形態3の変形例3として説明する。
図32に示すEUV光源装置300Aでは、ドロップレット13の軌道周辺であって、ターゲット供給部11の吐出端からプリパルス光LPの照射点までの間に、ターゲット供給部11側から、順次、帯電電極40と加減速機構50とが設けられる。帯電電極40は、帯電電圧コントローラC4によって帯電電圧が制御される。加減速機構50は、加減速コントローラC5によって加減速制御される。帯電電極40は、帯電された電極間を通過するドロップレット13を帯電する。加減速機構50は、軌道軸方向に対向する1対の電界発生電極あるいは磁界発生コイルによって実現され、帯電したドロップレット13を電界あるいは磁界によって加速または減速する。また、帯電コントローラC4および加減速コントローラC5は、EUV光源コントローラCに接続され、EUV光源コントローラC内のバースト制御部C1から制御の指示が与えられる。
たとえば、図33および図34に示すように、帯電電極40には、帯電電極コントローラC4から帯電電極用電圧印加信号S7が常時印加される。このため、連続発光停止期間T1中に吐出されたドロップレット13は、この帯電電極40によって正電荷に帯電されている(図34(b)参照)。さらに、連続発光停止期間T1中(期間t5およびt6間)、加減速機構50には、加減速コントローラC5から加速用電界印加信号S8が印加される(図34(c)参照)。そのため、帯電されたドロップレット13は、加減速機構50によって加速される。これにより、プリプラズマ生成サイトP11には、ドロップレット13が期間Δt4分、早く到着する(図34(d)参照)。この結果、プリパルス光LPは、プリプラズマ生成サイトP11でドロップレット13に照射されない(図33(a))。このため、プリプラズマPP生成タイミングt1bおよびt2bではプリプラズマPPが発生しない(図34(f)および図33(b))。これにより、レーザパルス光L1トリガがタイミングt1bおよびt2bで生成されても(図34(g))、タイミングt1aおよびt2aでのプラズマの発生はない(図34(h)参照)。その結果、EUV光L10の生成もない(図34(i))。
これによって、ドライバレーザ1およびプリパルスレーザ30を連続発光運転した状態で、連続発光停止期間T1中にEUV光L10の発光を停止させることができる。
なお、図35に示すように、帯電電極用電圧印加信号S7を連続発光停止期間T1中のみにオン状態としてドロップレット13を帯電し(図35((b)参照)、加速用電界印加信号S8を常時オン状態とすることで、帯電されたドロップレット13を加速するように構成してもよい(図35(c)参照)。さらに、帯電電極用電圧印加信号S7および加速用電界印加信号S8の双方を、連続発光停止期間T1中のみにオン状態とするように構成してもよい。
また、帯電電極用電圧印加信号S7を常時オン状態とし、連続発光期間T2中は加速用電界印加信号S8をオン状態とし、連続発光停止期間T1中は加速用電界印加信号S8をオフ状態としてもよい。この場合、連続発光停止期間T1では、帯電されたドロップレット13が減速される。さらに、加速用電界印加信号S8を常時オン状態とし、連続発光期間T2中は帯電電極用電圧印加信号S7をオン状態とし、連続発光停止期間T1中は帯電電極用電圧印加信号S7をオフ状態としてもよい。この場合、連続発光期間T2中のドロップレット13に比して、連続発光停止期間T1中のドロップレット13が減速される。この際、連続発光停止期間T1中、加速用電界印加信号S8をオフ状態としてもよい。すなわち、帯電電極用電圧印加信号S7および加速用電界印加信号S8を、連続発光期間T2中はオン状態とし、連続発光停止期間T1中はオフ状態としてもよい。この場合、連続発光期間T2中のドロップレット13に比して、連続発光停止期間T1中のドロップレット13が減速される。
これらをまとめると、連続発光期間T2および連続発光停止期間T1に対する帯電電極40および加減速機構50のオンオフ制御パターンとしては、図36に示すような6つの制御パターンa1〜a6を例示することができる。
また、加減速コントローラC5は、加速用電界印加信号S8に替えて減速用電圧印加信号を加減速機構50に印加して、帯電したターゲットを減速するように動作してもよい。
(実施の形態3の変形例3)
また、帯電されたドロップレット13に軌道ずれを生じさせることによって、プリパルス光LPがドロップレット13に照射させないように構成してもよい。以下、このケースを、本実施の形態3の変形例3として説明する。
図37に示すEUV光源装置300Cでは、加減速機構50に替えて偏向機構60が設けられるとともに、加減速コントローラC5に替えて偏向コントローラC6が設けられる。偏向コントローラC6は、偏向用電界印加信号S9を偏向機構60に印加することで、偏向機構60を通過する帯電したドロップレット13を軌道からずらす。
たとえば、図38および図39に示すように、帯電電極用電圧印加信号S7を常時印加することで帯電電極40を通過するドロップレット13を帯電しておくとともに(図39(b)参照)、連続発光停止期間T1中は、偏向用電界印加信号S9を偏向機構60に印加する(図39(c)参照)。この制御により、帯電したドロップレット13が偏向され、その軌道が少なくともプリプラズマ生成サイトP11を通過しない軌道にずれる(図38(a)参照)。これによって、プリプラズマ生成サイトP11に帯電したドロップレット13が到着しないため、ドロップレット13にプリパルス光LPが照射されることがない。その結果、レーザパルス光L1が発振されたとしても、EUV光L10が発光されることはない。なお、偏向されないドロップレット13を回収するターゲット回収装置DP1の他に、偏向されたドロップレット13を回収するターゲット回収装置DP2をさらに設けてもよい。
実施の形態3の変形例3では、ドライバレーザ1およびプリパルスレーザ30を連続発光運転した状態で、連続発光停止期間T1中にEUV光L10の発光を停止することができる。
なお、図40に示すように、帯電電極用電圧印加信号S7を連続発光停止期間T1中のみにオン状態としてドロップレット13を帯電し(図40((b)参照)、偏向用電界印加信号S9を常時オン状態とすることで、帯電されたドロップレット13を偏向するように構成してもよい(図40(c)参照)。もちろん、帯電電極用電圧印加信号S7および偏向用電界印加信号S9の双方を、連続発光停止期間T1中のみオン状態とするように構成してもよい。
また、上述した実施の形態3の変形例3では、連続発光停止期間T1中に、帯電したドロップレット13を偏向することでその軌道をずらしている。ただし、これに限定されず、図41に示すように、偏向された軌道C100上にプリプラズマ生成サイトP11を位置し、連続発光期間T2中は、常に帯電したドロップレット13を偏向させるように構成してもよい。この場合、連続発光停止期間T1中は、帯電したドロップレット13の偏向を行わない。これにより、帯電したドロップレット13が、プリプラズマ生成サイトP11の存在しない軌道C101a上を移動するため、ドロップレット13へのプリパルス光LPの照射を回避して、EUV光L10の生成を停止できる。
このようなドロップレット13の軌道偏向は、たとえば、図42に示すように、常時オンとする帯電電極用電圧印加信号S7を帯電電極40に印加するとともに(図42(b)参照)、連続発光停止期間T1中のみオフとする偏向用電界印加信号S9を偏向機構60に印加することによって実現できる(図42(c)参照)。
また、図43に示すように、連続発光停止期間T1中のみオフとする帯電電極用電圧印加信号S7を帯電電極40に印加するとともに(図43(b)参照)、常時オンとする偏向用電界印加信号S9を偏向機構60に印加することによっても実現できる(図43(c)参照)。この場合、連続発光停止期間T1中は、偏向電界印加信号S9が偏向機構60に印加されなくてもよい。
これらをまとめると、連続発光期間T2および連続発光停止期間T1に対する帯電電極40および偏向機構60のオンオフ制御パターンとしては、図44に示すような6つの制御パターンb1〜b6を例示することができる。
ここで、図45に示す本実施の形態3の変形例4によるEUV光源装置300Dのように、帯電電極40、加減速機構50、および偏向機構60の全てが設けられてもよい。この場合、帯電電極40、加減速機構50、および偏向機構60を適宜選択制御することで、連続発光停止期間T1中にドロップレット13の進行タイミング及び/または軌道をずらしてEUV光L10の発光を停止させるように構成してもよい。
なお、これら帯電電極40、加減速機構50、および偏向機構60は、ターゲット供給部11と独立した装置構成としてもよいし、一部あるいは全部を一体とする装置構成としてもよい。
また、上述した実施の形態3およびその変形例では、ターゲット供給部11の吐出口を圧電素子を用いて所定周期で連続して開閉し、これによって連続してドロップレット13を吐出する、いわゆるコンティニュアスジェット方式を例に挙げた。ただし、これに限定されず、ドロップレット13の吐出を任意のタイミングで開始および停止できる、いわゆるドロップオンデマンド方式を採用することも可能である。このドロップオンデマンド方式では、ターゲット供給部11の吐出口にオン/オフが可能な吐出用帯電電極が設けられる場合がある。このような場合、吐出用帯電電極をオンすることによって発生する静電力によって、吐出口からドロップレット13が引き出されて吐出される。
具体的には、このドロップオンデマンド方式を適用したターゲット供給機構は、図46に示すような構成となる。図46に示すように、ターゲット供給部11の吐出口には、吐出用帯電電極41が設けられ、EUV光源コントローラCから送られるパルス指令によってターゲット物質がドロップレット13として吐出される。この吐出されたドロップレット13の軌道上には、さらに加減速機構50に対応した加速電極51と偏向機構60に対応した偏向機構61とが順次設けられてもよい。
ターゲット供給部11には、溶融Snなどのターゲット物質である液体金属が充填されている。ここで、吐出用帯電電極41にパルス状の正の高電圧が印加されると、液体金属が静電力によってドロップレット13として外部に引き出される。この際、ドロップレット13は、正に帯電する。このように、吐出用帯電電極41は、帯電電極40としての機能も有する。なお、ドロップレット13を吐出する際、吐出されたドロップレット13が吐出口へ戻らないようにするために、ターゲット供給部11を正に帯電されておくとよい。吐出用帯電電極41から飛び出したドロップレット13は、クーロン力によって接地された円盤状の加速電極51へ向けて加速し、加速電極51の中央部に設けられた孔を通過する。そして、この加速されたドロップレット13は、偏向機構61によって偏向機構60と同様に偏向制御される。この偏向機構61は、例えば静電レンズなどによって実現され、静電的にドロップレット13の軌道を偏向する。
なお、EUVチャンバ10は、吐出されたドロップレット13の軌道に影響を与えないように接地されていてもよい。そして、ターゲット供給部11とEUVチャンバ10とは電気絶縁材42を介して接続される。これは、ターゲット供給部11とEUVチャンバ10との接続部近傍が接地状態であると、ドロップレット13が、吐出後にターゲット供給部11側に戻されてしまう可能性があるからである。
この場合、ドロップレット13が吐出される際、吐出用帯電電極41によってドロップレット13が常に帯電されるため、上述した制御パターンa1またはa4による偏向制御を適用することができる。
なお、上述した実施の形態1〜3およびそれらの変形例は、適宜組合せが可能である。たとえば、プリパルス光LPを用いる形態または例を、レーザパルス光L1のみを用いる形態または例に適用することもできる。
また、上述した各実施の形態およびその変形例における各種コントローラ(EUV光源コントローラC(バースト制御部C1を含む)、レーザコントローラC2、ミラーコントローラC3等)は、たとえば図47に示すような情報処理装置1000を用いて実現することができる。各種コントローラの動作は、たとえば、たとえばROMやCD−ROMやDVD−ROMやフラッシュメモリなどの記録媒体(書き込みまたは書き換え可能なものを含む)1002に記録されたプログラム1002aをCPU1001などの演算処理部が読み出して実行することで実現されてもよい。
1 ドライバレーザ
2 オシレータ
3 プリアンプ
4 メインアンプ
10 EUVチャンバ
11 ターゲット供給部
12 撮像装置
13 ドロップレット
20 露光装置
30 プリパルスレーザ
40 帯電電極
41 吐出用帯電電極
50 加減速機構
51 加速電極
60,61 偏向機構
100、100A、200、200D、300A、300C、300D EUV光源装置
1000 情報処理装置
1001 CPU
1002 記録媒体
1002a プログラム
M1,M4 ミラー
M2 集光ミラー
M2a,M5a ミラーアクチュエータ
M3 EUV集光ミラー
M5 集光ミラー
M6 ビームスプリッタ
W1,W2 ウィンドウ
C EUV光源コントローラ
C1 バースト制御部
C2 レーザコントローラ
C3 ミラーコントローラ
C4 帯電電圧コントローラ
C5 加減速コントローラ
C6 偏向コントローラ
LDP1,LPD2,PDP1,PDP2 レーザダンパ
DP1,DP2 ターゲット回収装置
CI レーザパルス光L1の光軸
CI1 プリパルス光LPの光軸
CIa ずれたレーザパルス光の光軸
CI1a すれたプリパルス光の光軸
C100 偏向した軌道
C101a プリプラズマ生成サイトの存在しない直線の軌道
F1 レーザパルス光のフォーカス位置
F1a ずれたレーザパルス光のフォーカス位置
FS 飛散空間
L 光
L10 EUV光
L1 レーザパルス光
LP プリパルス光
P10,P20 プラズマ生成サイト
P11、P11a プリプラズマ生成サイト
PP プリプラズマ
PH ピンホール
S1 バースト発光指示信号
S2 発振タイミング制御信号
S3,S3a,S6 ミラー駆動制御信号
S4 ターゲット生成信号
S5 プリパルスレーザ駆動制御信号
S7 帯電電極用電圧印加信号
S8 加速用電界印加信号
S9 偏向用電界印加信号

Claims (19)

  1. レーザ装置からのレーザ光をターゲット物質に照射して該ターゲット物質をプラズマ化し、該プラズマ化したターゲット物質から放射した極端紫外光を出力する極端紫外光源装置であって、
    前記極端紫外光を連続パルス発光する場合、前記レーザ装置に連続的にパルス出力させたレーザ光をターゲット物質に照射し、前記連続パルス発光を停止する場合、前記レーザ装置に前記レーザ光を連続的にパルス出力させつつ該レーザ光による前記ターゲット物質のプラズマ化を回避する制御を行うバースト制御部を備えることを特徴とする極端紫外光源装置。
  2. 前記ターゲット物質は、移動しており、
    前記バースト制御部は、前記連続パルス発光を停止する場合、前記レーザ光と前記ターゲット物質との相対的な位置をずらすことで該ターゲット物質のプラズマ化を回避することを特徴とする請求項1に記載の極端紫外光源装置。
  3. 前記バースト制御部は、前記レーザ光の光軸および/または前記ターゲット物質の軌道をずらすことで該レーザ光と該ターゲット物質との相対的な位置をずらすことを特徴とする請求項2に記載の極端紫外光源装置。
  4. 前記バースト制御部は、前記レーザ光の発振タイミングおよび/または前記ターゲット物質の供給タイミングをずらすことで前記レーザ光と該ターゲット物質との相対的な位置をずらすことを特徴とする請求項2に記載の極端紫外光源装置。
  5. 前記バースト制御部は、前記ターゲット物質を加速または減速することで前記レーザ光と該ターゲット物質との相対的な位置をずらすことを特徴とする請求項2に記載の極端紫外光源装置。
  6. 前記バースト制御部は、前記レーザ光の焦点をずらすことで該レーザ光が前記ターゲット物質に照射されるエネルギーを下げることを特徴とする請求項1に記載の極端紫外光源装置。
  7. 前記レーザ光は、前記ターゲット物質をプリプラズマ化または破片化する第1レーザ光と、該プリプラズマ化または破片化したターゲット物質をプラズマ化する第2レーザ光と、を含み、
    前記ターゲット物質は、移動しており、前記第1レーザ光が照射された後、前記第2レーザ光が照射されることでプラズマ化し、
    前記バースト制御部は、前記連続パルス発光を停止する場合、前記第1および/または第2レーザ光と前記ターゲット物質との相対的な位置をずらすことで該ターゲット物質の破片化またはプリプラズマ化、ならびにプラズマ化を回避することを特徴とする請求項1に記載の極端紫外光源装置。
  8. 前記バースト制御部は、前記第1および/または第2レーザ光の光軸および/または前記ターゲット物質の軌道をずらすことで該第1および/または第2レーザ光と該ターゲット物質との相対的な位置をずらすことを特徴とする請求項7に記載の極端紫外光源装置。
  9. 前記バースト制御部は、前記第1および/または第2レーザ光の発振タイミングおよび/または前記ターゲット物質の供給タイミングをずらすことで前記第1および/または第2レーザ光と該ターゲット物質との相対的な位置をずらすことを特徴とする請求項7に記載の極端紫外光源装置。
  10. 前記バースト制御部は、前記ターゲット物質を加速または減速することで前記第1および/または第2レーザ光と該ターゲット物質との相対的な位置をずらすことを特徴とする請求項7に記載の極端紫外光源装置。
  11. 前記バースト制御部は、前記連続パルス発光を停止する場合、前記第1レーザ光の発振を停止することを特徴とする請求項7に記載の極端紫外光源装置。
  12. 前記バースト制御部は、前記第1および/または第2レーザ光の焦点をずらすことで該第1および/または第2レーザ光が前記ターゲット物質に照射されるエネルギーを下げることを特徴とする請求項7に記載の極端紫外光源装置。
  13. 前記バースト制御部は、前記連続パルス発光を停止する場合、前記ターゲット物質の供給を停止することを特徴とする請求項1に記載の極端紫外光源装置。
  14. レーザ装置からのレーザ光をターゲット物質に照射して該ターゲット物質をプラズマ化し、該プラズマ化したターゲット物質から放射した極端紫外光を出力する光源装置の制御方法であって、
    前記極端紫外光を連続パルス発光する場合、前記レーザ装置から連続的にパルス出力されたレーザ光をターゲット物質に照射し、
    前記連続パルス発光を停止する場合、前記レーザ装置に前記レーザ光を連続的にパルス出力させつつ該レーザ光による前記ターゲット物質のプラズマ化を回避する
    ことを含むことを特徴とする光源装置の制御方法。
  15. レーザ装置からのレーザ光をターゲット物質に照射して該ターゲット物質をプラズマ化し、該プラズマ化したターゲット物質から放射した極端紫外光を出力する光源装置を制御するためのプログラムを記録した記録媒体であって、
    前記極端紫外光を連続パルス発光する場合、前記レーザ装置に連続的にパルス出力させたレーザ光をターゲット物質に照射させ、前記連続パルス発光を停止する場合、前記レーザ装置に前記レーザ光を連続的にパルス出力させつつ該レーザ光による前記ターゲット物質のプラズマ化を回避させる制御を前記光源装置に実行させるためのプログラムを記録した記録媒体。
  16. 前記ターゲット物質は、移動しており、
    前記制御は、前記連続パルス発光を停止する場合、前記レーザ光と前記ターゲット物質との相対的な位置をずらすことで該ターゲット物質のプラズマ化を回避させることを特徴とする請求項15に記載のプログラムを記録した記録媒体。
  17. 前記レーザ光は、前記ターゲット物質をプリプラズマ化または破片化する第1レーザ光と、該プリプラズマ化または破片化したターゲット物質をプラズマ化する第2レーザ光と、を含み、
    前記ターゲット物質は、移動しており、前記第1レーザ光が照射された後、前記第2レーザ光が照射されることでプラズマ化し、
    前記制御は、前記連続パルス発光を停止する場合、前記第1および/または第2レーザ光と前記ターゲット物質との相対的な位置をずらすことで該ターゲット物質の破片化またはプリプラズマ化、ならびにプラズマ化を回避させることを特徴とする請求項15に記載のプログラムを記録した記録媒体。
  18. 前記制御は、前記第1および/または第2レーザ光の焦点をずらすことで該第1および/または第2レーザ光が前記ターゲット物質に照射されるエネルギーを下げることを特徴とする請求項15に記載のプログラムを記録した記録媒体。
  19. 前記制御は、前記連続パルス発光を停止する場合、前記ターゲット物質の供給を停止させる請求項15に記載のプログラムを記録した記録媒体。
JP2011524841A 2009-07-29 2010-07-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体 Active JP5612579B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011524841A JP5612579B2 (ja) 2009-07-29 2010-07-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009177063 2009-07-29
JP2009177063 2009-07-29
PCT/JP2010/062854 WO2011013779A1 (ja) 2009-07-29 2010-07-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体
JP2011524841A JP5612579B2 (ja) 2009-07-29 2010-07-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014176405A Division JP5856258B2 (ja) 2009-07-29 2014-08-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体

Publications (2)

Publication Number Publication Date
JPWO2011013779A1 JPWO2011013779A1 (ja) 2013-01-10
JP5612579B2 true JP5612579B2 (ja) 2014-10-22

Family

ID=43529430

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011524841A Active JP5612579B2 (ja) 2009-07-29 2010-07-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体
JP2014176405A Active JP5856258B2 (ja) 2009-07-29 2014-08-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体
JP2015241546A Pending JP2016096148A (ja) 2009-07-29 2015-12-10 極端紫外光源装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014176405A Active JP5856258B2 (ja) 2009-07-29 2014-08-29 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体
JP2015241546A Pending JP2016096148A (ja) 2009-07-29 2015-12-10 極端紫外光源装置

Country Status (3)

Country Link
US (1) US8502178B2 (ja)
JP (3) JP5612579B2 (ja)
WO (1) WO2011013779A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653437B2 (en) * 2010-10-04 2014-02-18 Cymer, Llc EUV light source with subsystem(s) for maintaining LPP drive laser output during EUV non-output periods
DE102010047419B4 (de) * 2010-10-01 2013-09-05 Xtreme Technologies Gmbh Verfahren und Vorrichtung zur Erzeugung von EUV-Strahlung aus einem Gasentladungsplasma
US10966308B2 (en) * 2010-10-04 2021-03-30 Asml Netherlands B.V. EUV light source with subsystem(s) for maintaining LPP drive laser output during EUV non-output periods
JP5726587B2 (ja) * 2010-10-06 2015-06-03 ギガフォトン株式会社 チャンバ装置
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法
US8993976B2 (en) 2011-08-19 2015-03-31 Asml Netherlands B.V. Energy sensors for light beam alignment
WO2013029902A1 (en) * 2011-09-02 2013-03-07 Asml Netherlands B.V. Radiation source and lithographic apparatus
US9860966B2 (en) * 2012-05-21 2018-01-02 Asml Netherlands B.V. Radiation source
JP6099241B2 (ja) * 2012-06-28 2017-03-22 ギガフォトン株式会社 ターゲット供給装置
US9392678B2 (en) 2012-10-16 2016-07-12 Asml Netherlands B.V. Target material supply apparatus for an extreme ultraviolet light source
JP6010438B2 (ja) * 2012-11-27 2016-10-19 浜松ホトニクス株式会社 量子ビーム生成装置、量子ビーム生成方法、及び、レーザ核融合装置
TWI618453B (zh) * 2013-01-10 2018-03-11 Asml荷蘭公司 用以調整雷射光束脈衝時序以調節極端紫外光劑量之方法及系統
US8872122B2 (en) 2013-01-10 2014-10-28 Asml Netherlands B.V. Method of timing laser beam pulses to regulate extreme ultraviolet light dosing
US8872123B2 (en) 2013-01-10 2014-10-28 Asml Netherlands B.V. Method of timing laser beam pulses to regulate extreme ultraviolet light dosing
US8791440B1 (en) * 2013-03-14 2014-07-29 Asml Netherlands B.V. Target for extreme ultraviolet light source
JP6381520B2 (ja) * 2013-03-21 2018-08-29 ギガフォトン株式会社 極端紫外光生成装置及びパルスレーザ光の集光ビーム計測装置
JP6195474B2 (ja) * 2013-05-31 2017-09-13 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光生成システムにおけるレーザシステムの制御方法
JP6220879B2 (ja) 2013-08-27 2017-10-25 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光生成システム
JP6283684B2 (ja) * 2013-11-07 2018-02-21 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光生成装置の制御方法
JP6646576B2 (ja) * 2013-11-15 2020-02-14 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
JP6418966B2 (ja) 2015-01-29 2018-11-07 キヤノン株式会社 画像形成システム、画像形成装置、該システムの制御方法、及びプログラム
WO2017077584A1 (ja) * 2015-11-03 2017-05-11 ギガフォトン株式会社 極端紫外光生成装置
WO2017130323A1 (ja) * 2016-01-27 2017-08-03 ギガフォトン株式会社 ターゲット供給装置及び極端紫外光生成装置
WO2017154111A1 (ja) * 2016-03-08 2017-09-14 ギガフォトン株式会社 極端紫外光生成装置
WO2017208340A1 (ja) * 2016-05-31 2017-12-07 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光生成装置の制御方法
JP6845035B2 (ja) * 2017-02-15 2021-03-17 エーエスエムエル ネザーランズ ビー.ブイ. 極紫外放射源
WO2019092831A1 (ja) * 2017-11-09 2019-05-16 ギガフォトン株式会社 極端紫外光生成装置及び電子デバイスの製造方法
CN114355735A (zh) * 2022-01-20 2022-04-15 广东省智能机器人研究院 极紫外光产生方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317559A (ja) * 1999-03-10 1999-11-16 Nikon Corp レーザ制御方泡レーザ装置、露光方泡露光装置、及び半導体装置製造方法
JP2002217099A (ja) * 2001-11-26 2002-08-02 Nikon Corp エキシマレーザ制御装置及び露光システム
JP2003224052A (ja) * 2002-01-29 2003-08-08 Canon Inc プラズマ発光光源装置、露光装置およびその制御方法、これを用いたデバイスの製造方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2141621C3 (de) 1971-08-19 1976-01-02 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zum Herstellen von rohrförmigen Leitern, insbes. für supraleitende Kabel
US4969169A (en) * 1986-04-15 1990-11-06 Hampshire Instruments, Inc. X-ray lithography system
GB2195070B (en) * 1986-09-11 1991-04-03 Hoya Corp Laser plasma x-ray generator capable of continuously generating x-rays
IT1238333B (it) 1990-01-22 1993-07-12 Pirelli Cavi Spa Amplificatore ottico di potenza a fibra attiva drogata
US6567450B2 (en) 1999-12-10 2003-05-20 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
JP4656266B2 (ja) 1999-04-16 2011-03-23 戸田工業株式会社 磁性トナー用黒色磁性酸化鉄粒子粉末及びその製造法
JP2001015636A (ja) 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd 表面実装基板
US6304630B1 (en) 1999-12-24 2001-10-16 U.S. Philips Corporation Method of generating EUV radiation, method of manufacturing a device by means of said radiation, EUV radiation source unit, and lithographic projection apparatus provided with such a radiation source unit
US6724608B2 (en) * 2000-01-14 2004-04-20 Paul Hensley Method for plasma charging a probe
EP1296772B1 (en) * 2000-06-16 2009-09-09 Ati Properties, Inc. Method for spray forming, atomization and heat transfer
DE10045265A1 (de) 2000-09-13 2002-03-21 Zeiss Carl Vorrichtung zum Bündeln der Strahlung einer Lichtquelle
FR2814599B1 (fr) 2000-09-27 2005-05-20 Commissariat Energie Atomique Dispositif laser de forte puissance crete et application a la generation de lumiere dans l'extreme ultra violet
JP4877692B2 (ja) 2001-03-21 2012-02-15 株式会社小松製作所 注入同期式又はmopa方式のレーザ装置
US7598509B2 (en) * 2004-11-01 2009-10-06 Cymer, Inc. Laser produced plasma EUV light source
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
US7405416B2 (en) * 2005-02-25 2008-07-29 Cymer, Inc. Method and apparatus for EUV plasma source target delivery
US7491954B2 (en) * 2006-10-13 2009-02-17 Cymer, Inc. Drive laser delivery systems for EUV light source
US7439530B2 (en) * 2005-06-29 2008-10-21 Cymer, Inc. LPP EUV light source drive laser system
JP2003008119A (ja) 2001-06-26 2003-01-10 Komatsu Ltd 注入同期式又はmopa方式のレーザ装置
FR2837990B1 (fr) 2002-03-28 2007-04-27 Commissariat Energie Atomique Cavite laser de forte puissance crete et association de plusieurs de ces cavites, notamment pour exciter un generateur de lumiere dans l'extreme ultraviolet
US6792076B2 (en) * 2002-05-28 2004-09-14 Northrop Grumman Corporation Target steering system for EUV droplet generators
US6855943B2 (en) 2002-05-28 2005-02-15 Northrop Grumman Corporation Droplet target delivery method for high pulse-rate laser-plasma extreme ultraviolet light source
DE602004028446D1 (de) * 2003-03-18 2010-09-16 Koninkl Philips Electronics Nv Einrichtung und verfahren zur erzeugung von extrem-ultraviolett-und/oder weicher röntgenstrahlung mittels eines plasmas
DE10314849B3 (de) * 2003-03-28 2004-12-30 Xtreme Technologies Gmbh Anordnung zur Stabilisierung der Strahlungsemission eines Plasmas
US7217940B2 (en) * 2003-04-08 2007-05-15 Cymer, Inc. Collector for EUV light source
JP2004327213A (ja) * 2003-04-24 2004-11-18 Komatsu Ltd Euv光発生装置におけるデブリ回収装置
US6973164B2 (en) * 2003-06-26 2005-12-06 University Of Central Florida Research Foundation, Inc. Laser-produced plasma EUV light source with pre-pulse enhancement
US7003003B2 (en) 2003-07-21 2006-02-21 Coherent, Inc. Method and apparatus for providing multiple independently controllable beams from a single laser output beam
JP4223887B2 (ja) 2003-08-11 2009-02-12 株式会社小松製作所 2ステージレーザのパルスエネルギー制御装置及び2ステージレーザシステム
FR2859545B1 (fr) * 2003-09-05 2005-11-11 Commissariat Energie Atomique Procede et dispositif de lithographie par rayonnement dans l'extreme utraviolet
DE10352047A1 (de) 2003-11-07 2005-06-16 Oerlikon Contraves Pyrotec Ag Vorrichtung zur Bestimmung der Geschossgeschwindigkeit, insbesondere im Mündungsbereich eines Waffenrohres
JP4478440B2 (ja) * 2003-12-02 2010-06-09 キヤノン株式会社 ロードロック装置および方法
JP4535732B2 (ja) * 2004-01-07 2010-09-01 株式会社小松製作所 光源装置及びそれを用いた露光装置
JP2005197454A (ja) 2004-01-07 2005-07-21 Mitsubishi Electric Corp 冷却装置
US7164144B2 (en) 2004-03-10 2007-01-16 Cymer Inc. EUV light source
US7087914B2 (en) * 2004-03-17 2006-08-08 Cymer, Inc High repetition rate laser produced plasma EUV light source
US20050265407A1 (en) * 2004-05-14 2005-12-01 Braun Alan M Compact semiconductor-based chirped-pulse amplifier system and method
DE102004036441B4 (de) * 2004-07-23 2007-07-12 Xtreme Technologies Gmbh Vorrichtung und Verfahren zum Dosieren von Targetmaterial für die Erzeugung kurzwelliger elektromagnetischer Strahlung
DE102004037521B4 (de) 2004-07-30 2011-02-10 Xtreme Technologies Gmbh Vorrichtung zur Bereitstellung von Targetmaterial für die Erzeugung kurzwelliger elektromagnetischer Strahlung
JP4578883B2 (ja) * 2004-08-02 2010-11-10 株式会社小松製作所 極端紫外光源装置
JP4578901B2 (ja) * 2004-09-09 2010-11-10 株式会社小松製作所 極端紫外光源装置
KR100597668B1 (ko) 2004-11-22 2006-07-07 주식회사 네오엠텔 멀티미디어 콘텐츠의 갱신 및 재생이 가능한이동통신단말기 및 그 재생방법
JP5301165B2 (ja) * 2005-02-25 2013-09-25 サイマー インコーポレイテッド レーザ生成プラズマeuv光源
JP4875879B2 (ja) 2005-10-12 2012-02-15 株式会社小松製作所 極端紫外光源装置の初期アライメント方法
JP5156192B2 (ja) * 2006-01-24 2013-03-06 ギガフォトン株式会社 極端紫外光源装置
JP4885587B2 (ja) * 2006-03-28 2012-02-29 株式会社小松製作所 ターゲット供給装置
US7916307B2 (en) * 2006-12-22 2011-03-29 Lockheed Martin Corporation Pre-amplifier for detection lasers within laser ultrasonic inspection systems
JP5179776B2 (ja) 2007-04-20 2013-04-10 ギガフォトン株式会社 極端紫外光源用ドライバレーザ
JP2009091195A (ja) 2007-10-09 2009-04-30 Shin Etsu Chem Co Ltd 一酸化珪素の製造装置及び製造方法
JP5280066B2 (ja) * 2008-02-28 2013-09-04 ギガフォトン株式会社 極端紫外光源装置
JP2009246345A (ja) 2008-03-12 2009-10-22 Komatsu Ltd レーザシステム
JP5675127B2 (ja) * 2009-02-27 2015-02-25 ギガフォトン株式会社 レーザ装置および極端紫外光源装置
JP5765730B2 (ja) 2010-03-11 2015-08-19 ギガフォトン株式会社 極端紫外光生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317559A (ja) * 1999-03-10 1999-11-16 Nikon Corp レーザ制御方泡レーザ装置、露光方泡露光装置、及び半導体装置製造方法
JP2002217099A (ja) * 2001-11-26 2002-08-02 Nikon Corp エキシマレーザ制御装置及び露光システム
JP2003224052A (ja) * 2002-01-29 2003-08-08 Canon Inc プラズマ発光光源装置、露光装置およびその制御方法、これを用いたデバイスの製造方法

Also Published As

Publication number Publication date
US20120175533A1 (en) 2012-07-12
JP2015015251A (ja) 2015-01-22
US8502178B2 (en) 2013-08-06
JP5856258B2 (ja) 2016-02-09
WO2011013779A1 (ja) 2011-02-03
JPWO2011013779A1 (ja) 2013-01-10
JP2016096148A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP5856258B2 (ja) 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体
JP5073146B2 (ja) X線発生方法および装置
JP5454881B2 (ja) 極端紫外光源装置及び極端紫外光の発生方法
JP4885587B2 (ja) ターゲット供給装置
US7608846B2 (en) Extreme ultra violet light source device
JP4937643B2 (ja) 極端紫外光源装置
JP5597885B2 (ja) Lpp、euv光源駆動レーザシステム
EP2167193B1 (en) Laser produced plasma euv light source
JP2010103499A (ja) 極端紫外光源装置および極端紫外光生成方法
TWI643209B (zh) 用於形成極紫外光源的經定形標靶之方法、形成發射極紫外光的電漿之方法及極紫外光源
US20100213395A1 (en) Extreme ultraviolet light source apparatus
JP5666285B2 (ja) 再生増幅器、レーザ装置および極端紫外光生成装置
JP2008532293A (ja) プレパルスによるレーザ生成プラズマeuv光源
WO2015068230A1 (ja) 極端紫外光生成装置及び極端紫外光生成装置の制御方法
JPWO2016063409A1 (ja) 極端紫外光生成システム及び極端紫外光を生成する方法
WO2014126667A2 (en) System and method for adjusting seed laser pulse width to control euv output energy
CN108348763B (zh) 用于在lpp euv光源中控制源激光器激发的系统和方法
WO2017154528A1 (ja) 極端紫外光生成装置
JP2007258069A (ja) 極端紫外光源装置
JP2002139758A (ja) 光短波長化装置
US11366390B2 (en) Extreme ultraviolet light generation system and electronic device manufacturing method
WO2020003517A1 (ja) 極端紫外光生成装置、極端紫外光生成方法、及び電子デバイスの製造方法
JP2022007446A (ja) 極端紫外光生成システム及び電子デバイスの製造方法
WO2019092831A1 (ja) 極端紫外光生成装置及び電子デバイスの製造方法
WO2018016034A1 (ja) 極端紫外光生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140904

R150 Certificate of patent or registration of utility model

Ref document number: 5612579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250