JP2004289185A - 多層拡張ドレイン構造を有する高電圧縦型トランジスタ - Google Patents

多層拡張ドレイン構造を有する高電圧縦型トランジスタ Download PDF

Info

Publication number
JP2004289185A
JP2004289185A JP2004205957A JP2004205957A JP2004289185A JP 2004289185 A JP2004289185 A JP 2004289185A JP 2004205957 A JP2004205957 A JP 2004205957A JP 2004205957 A JP2004205957 A JP 2004205957A JP 2004289185 A JP2004289185 A JP 2004289185A
Authority
JP
Japan
Prior art keywords
region
conductivity type
voltage transistor
high voltage
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004205957A
Other languages
English (en)
Other versions
JP4564793B2 (ja
Inventor
Donald Ray Disney
レイ ディズニー ドナルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Integrations Inc
Original Assignee
Power Integrations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Integrations Inc filed Critical Power Integrations Inc
Publication of JP2004289185A publication Critical patent/JP2004289185A/ja
Application granted granted Critical
Publication of JP4564793B2 publication Critical patent/JP4564793B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】 低いオン抵抗特性を有し、オフ状態において高電圧を維持する高電圧トランジスタを提供する。
【解決手段】 低いオン抵抗特性を有し、オフ状態において高電圧を維持する高電圧トランジスタは、多層拡張ドレイン構造の近傍に一又は二以上のソース領域が配置されており、この構造は、一又は二以上の誘電体層によってフィールドプレート部材から分離された拡張されたドリフト領域を含んでいる。フィールドプレート部材は最も低い回路ポテンシャルにおいて、トランジスタはオフ状態においてドレインに印加される高電圧を維持する。層状の構造は、種々の方法で製造することができる。MOSFET構造は、ソース領域近傍のデバイスに組み込まれるか、あるいはMOSFET構造を省略して、スタンドアロンのドリフト領域を有する高電圧トランジスタ構造を製造することができる。
【選択図】 図1

Description

本発明は、シリコン基板上に形成される半導体デバイスに、より具体的には、高圧に耐えることができる電界効果型半導体トランジスタ構造に関する。
高電圧電界効果トランジスタ(HVFET)は、半導体分野でよく知られている。HVFETは、最も多くの場合、デバイスが「オフ」状態のときに印加される高圧に耐える拡張ドレイン領域(extended drain region)を含むデバイス構造を有している。このタイプのHVFETは、オフラインの電力供給、モーター制御等のためのAC/DC変換器といった電力変換のアプリケーションにおいて一般的に使用されている。これらのデバイスは、「オン」状態での電流に対する抵抗を最小限にしつつ、高圧でのスイッチング及びオフ状態での高い遮断電圧を達成している。遮断電圧、言い換えると破壊電圧は、一般にVbdと表される。頭文字Rspは抵抗と表面積との積を表し、これは一般にデバイスのオン状態における性能を示す。拡張ドレイン領域を有する従来のHVFETであって、最上層の導電型が拡張ドレイン領域の導電型と反対であるものの例は、米国特許第4,811,075号において見ることができる。
従来からのHVFETでは、デバイスがオフのときにドレインに印加される高圧に耐えるために、拡張ドレイン領域は通常少なくドープされている。また、電界が大きい面積に広がるよう拡張ドレイン領域の長さも長くされ、これによりデバイスが高圧に耐えられるようにしている。しかしながら、デバイスがオン(すなわち導電状態)とされると、電流は拡張ドレイン領域を通って流れる。したがって、ドーピングの低下及び拡張ドレイン領域の長さの増大が結びつくと、これらはともにオン状態の抵抗を高くすることから、デバイスのオン状態の性能にとって有害な効果をもたらす。言い換えれば、従来からの高圧FETの設計には、VbdとRspの間にトレードオフがあるという特徴がある。
定量的な例として、代表的な従来技術の縦型HVFET(NMOS型)は、Vbdが600V程度、Rspが約16Ωmm2という値を有する。Rsp値が高くなるという犠牲を払いながらVbdを600Vを超えるまでに高めて拡張ドレインの長さを長くすると、デバイスの性能に影響を与えうる。反対に、拡張ドレインの長さを短くすると、オン状態の抵抗を16Ωmm2を下回るようにすることができるが、デバイス構造のこのような変化は、Vbdが600Vを下回る原因ともなりうる。
高いVbd電圧を維持するとともに小さいRsp値を有するようなデバイス構造については、米国特許第4,754,310号、同第5,438,215号、およびT. Fujihiraによる「Theory of Semiconductor Superjunction Devices」と題された論文(Jpn. J. Appl. Phys., Vol. 36, pp. 6254-6262, 1977年10月)において議論されている。このデバイス構造には、拡張ドレイン領域は、例えばPNPNP…というように異なる導電型の層が交互に現れる半導体材料が含まれている。一つの導電型の各層に高電圧が印加されるので、すべての層は互いに電荷キャリアが空乏状態となる。これにより、単層のデバイスと比較して、導電層のかなり高いドーピング濃度において高いVbdが可能となる。もちろん、高いドーピング濃度はトランジスタデバイスのRspを下げるので有利である。例えば、G. Deboyらによる「A new generation of high voltage MOSFETs breaks the limit line of silicon」(IEDM tech. Digest, pp. 683-685, 1998)と題する論文において、著者はVbdが600V、Rspが約4Ωmm2の縦型NMOSデバイスについて報告している。
高い電圧を達成するという問題についての別の方法が、S. Merchantらによる「Realization of High Breakdown Voltage in Thin SOI Devices」と題する論文(Proc. Intl. Symp. On Power Devices and Ics, pp.31-35, 1991)に開示されている。この論文は、半導体基板の上に配置された埋め込み酸化物層(buried oxide layer)の上部に設けられたシリコンの薄い層を有する拡張ドレイン領域について教示している。これを動作させると、高電圧において下にあるシリコン基板が薄いシリコンの層から電荷を奪う。著者は、上部のシリコン層が十分に薄く、埋め込み酸化物層が十分に厚ければ、Vbdの大きな値が得られると主張する。この方法を用いると、例えば、Vbdが600V、Rspが約8mm2というラテラルNMOSデバイスが得られる。
上記以外に当業者が関心を持つと思われる関連文献として、米国特許第6,184,555号、同第6,191,447号、同第6,075,259号、同第5,998,833号、同第5,637,898号、国際出願PCT/IB98/02060号(国際公開番号WO99/34449)、そしてT. Letavicらによる論文「High Performance Technology Based on Thin Layer Silicon-on-Insulator」(Proc. ISPSD, pp.49-52, 1997)などがある。
米国特許第4,811,075号 米国特許第4,754,310号 米国特許第5,438,215号 米国特許第6,184,555号 米国特許第6,191,447号 米国特許第6,075,259号 米国特許第5,998,833号 米国特許第5,637,898号 国際出願PCT/IB98/02060号(国際公開番号WO99/34449) T. Fujihira「Theory of Semiconductor Superjunction Devices」(Jpn. J. Appl. Phys., Vol. 36, pp. 6254-6262, 1977年10月) G. Deboy他「A new generation of high voltage MOSFETs breaks the limit line of silicon」(IEDM tech. Digest, pp. 683-685, 1998) S. Merchant他「Realization of High Breakdown Voltage in Thin SOI Devices」(Proc. Intl. Symp. On Power Devices and Ics, pp.31-35, 1991) T. Letavic他「High Performance Technology Based on Thin Layer Silicon-on-Insulator」(Proc. ISPSD, pp.49-52, 1997)
上述のデバイス構造は、オン状態の抵抗を相対的に低くして高いVbdを達成するが、いまだに、より低いオン状態の抵抗を達成しつつ更に高い電圧に耐えることができる高電圧トランジスタ構造に対する満たされない要求が存在する。
上記の課題を解決するために、第一の発明に係る縦型高電圧トランジスタは、
第一の導電型のドレイン領域を含み、
第一の導電型の少なくとも一つのソース領域を含み、
前記第一の導電型とは反対の第二の導電型のボディ領域を含み、そのうちの少なくとも一つはソース領域と隣接しており、
ドレイン領域から少なくとも一つのボディ領域へ向かう第一の方向において、平行に配置された第一の導電型からなる複数のドリフト領域を含み、これらのドリフト領域は前記第一の方向と直交する第二の方向において誘電体層により分離されており、
誘電体層内に配置された少なくとも一つのフィールドプレート部材を含み、この少なくとも一つのフィールドプレート部材はドリフト領域から完全に分離されており、そして、
少なくとも一つのフィールドプレート部材と少なくとも一つのボディ領域の間に配置された絶縁ゲートを含み、チャネル領域が前記少なくとも一つのボディ領域内において絶縁ゲートの近くにおいて前記少なくとも一つのソース領域と少なくとも一つのドリフト領域の間に規定されている、
ことを特徴とする。
第2の発明は、第一の発明において、さらに、少なくとも一つのソース領域と電気的に接続されたソース電極と、
ドレイン領域に電気的に接続されたドレイン電極と、
を含むものである。
第三の発明は、第一の発明において、前記高圧トランジスタは平坦な底面を有する半導体基板上に形成され、前記第一の方向は前記平坦な底面に直交し、前記第二の方向は前記平坦な底面と平行とする。
第四の発明は、第一の発明において、前記第一の導電型はn型とし、前記第二の導電型はp型とする。
第五の発明は、第一の発明において、前記第一の導電型はp型とし、前記第二の導電型はn型とする。
第五の発明は、第一の発明において、ドリフト領域は、その長さ方向が第一の方向であり、幅方向が第二の方向であり、長さは幅の5倍よりも長いものである。
第六の発明は、第一の発明において、チャネル領域の方向は第一の方向と平行とする。
第七の発明は、第一の発明において、前記少なくとも一つのフィールドプレート部材は、高い濃度にドープされたポリシリコンとする。
第九の発明は、第七の発明において、前記少なくとも一つのフィールドプレート部材は、ドリフト領域と平行な方向とされている。
第十の発明は、第一の発明において、前記誘電体層は二酸化ケイ素からなる。
第十一の発明は、第一の発明において、前記ドリフト領域は前記ドレイン領域の近傍で高く、前記少なくとも一つのボディ領域の近傍で低いドーピングを有する。
第十二の発明は、第一の発明において、各ドリフト領域は、線形的に変化するドーピングプロファイルを有する。
第十三の発明は、第一の発明において、ドリフト領域及び誘電体層はそれぞれ幅方向が第二の方向であり、誘電体層の幅は各ドリフト領域の幅よりも広いものとする。
第十四の発明は、第一の発明において、前記少なくとも一つのフィールドプレート部材は絶縁ゲートを超えて第一の方向に延在している。
上記の課題を解決するために、第十五の発明に係る縦型高電圧トランジスタは、
第一の導電型のドレイン領域を有し、
第一の導電型とは反対の第2の導電型の複数のボディ領域を有し、
第一の導電型の複数のドリフト領域を有し、各ドリフト領域はドレイン領域から一又は二以上のボディ領域に向かう第一の方向に延在しており、
第一の方向に延在する第一のフィールドプレート部材を含み、各フィールドプレート部材は第二の方向において離間し、誘電体層によってドリフト領域とは絶縁されており、
第一の導電型の複数のソース領域を含み、各ソース領域はボディ領域の一つに近接しており、
各ボディ領域の上に配置された少なくとも一つの絶縁ゲート部材を含み、これによりソース領域の一つからドリフト領域の一つへ向かう第二の方向に延在するチャネル領域を規定する、
ことを特徴とする。
第十六の発明は、第十五の発明において、さらに、
前記ドレイン領域と電気的に接続したドレイン電極と、
前記ソース領域と電気的に接続したソース電極と、
を含むことを特徴とする。
第十七の発明は、第十五の発明において、前記ドリフト領域は、その長さ方向が第一の方向であり、幅方向が第二の方向であり、長さは幅の5倍よりも長いものである。
第十八の発明は、第十五の発明において、前記ドリフト領域は実質的に平坦な底面を有する基板を含み、前記第一の方向は基板の底面に垂直な縦方向であり、前記第二の方向は基板の底面に平行な横方向である。
第十九の発明は、第十五の発明において、前記誘電体層は二酸化ケイ素からなる。
第二十の発明は、第十五の発明において、前記ドリフト領域はドレイン領域の近くにおいて高く、ボディ領域の近くにおいて低いドーピングを有する。
第二十一の発明は、第十五の発明において、ドリフト領域は、線形的に変化するドーピングプロファイルを有する。
上記の課題を解決するために、第二十二の発明に係る縦型高電圧トランジスタは、
基板を含み、
第一の導電型のソース領域を含み、
縦方向に延在してソース領域を基板と接続する第二の導電型のドリフト領域を含み、ドリフト領域は第一及び第二の側壁を有し、
第一及び第二の側壁にそれぞれ沿って配置された第一及び第二の誘電体層を含み、
それぞれ第一及び第二の誘電体層の近くで縦方向に延在する第一及び第二のフィールドプレート部材を含み、第一及び第二の誘電体層はそれぞれ第一及び第二の側壁から第一及び第二のフィールドプレート部材を絶縁し、第一及び第二のフィールドプレート部材は基板から絶縁され、第一及び第二の側壁と平行な方向とされており、
ソース領域と電気的に接続されたソース電極及び基板と電気的に接続されたドレイン電極を含み、
縦型高電圧トランジスタがオン状態で動作するときは、電流がソース電極からソース領域、ドリフト領域そして基板を通ってドレイン電極へ流れ、縦型高電圧トランジスタがオフ状態で動作するときは、ドリフト領域がピンチオフとされる、
ことを特徴とする。
第二十三の発明は、第二十二の発明において、前記ドリフト領域は半導体材料のエピタキシャル層からなる。
第二十四の発明は、第二十三の発明において、前記エピタキシャル層は線形的に変化するドーピングプロファイルを有している。
第二十五の発明は、第二十二の発明において、第一の導電型はn型とする。
第二十六の発明である回路は、低電圧トランジスタと第二十二の発明に係る縦型高電圧トランジスタが直列に接続され、低電圧トランジスタがオフのときに縦型高電圧トランジスタ内の電流が遮断されるようにしたことを特徴とする。
第二十七の発明は、第二十二の発明において、第一の導電型はn型であり、第二の導電型はp型である。
第二十八の発明は、第二十二の発明において、ソース領域の近傍において第一及び第二のフィールドプレート部材とドリフト領域の第一及び第二の側壁との間の間隔を狭くしたものである。
拡張ドレイン領域もしくはドリフト領域を有する高電圧電界効果トランジスタ及びこれを製造する方法について説明する。HVFETは固有のオン状態の低い抵抗を有し、オフ状態における高い電圧に耐える。以下の説明では、本発明の完全な理解が得られるよう、材料の種類、ドーピングのレベル、構造的特徴、プロセスの各ステップなどの多数の具体例について詳細に述べる。半導体技術における通常の知識を有する実務者であれば、これらの詳細な説明の多くの部分がなくても本発明が実施できること理解されるだろう。他の例では、発明の焦点をぼかすのを避けるために、周知の要素、技術、プロセスのステップについては詳しく説明していない。
図1は、本発明の一つの実施例に基づいた縦型nチャネル(例えばNMOS)HVFET20の断面を横から見た図である。なお、図中の各要素は描写的に描いてあり、分かり易さを期すため正確な縮尺では描かれていない点を理解されたい。例示した全ての拡散領域/ドープ領域について反対の導電型を用いれば、pチャネルトランジスタが実現されることが分かるだろう。さらに、この図は二つの別々のデバイスを示しているが、このようなトランジスタ構造を、環状、インターディジット形、あるいは繰り返し形式で一般に製造できることは、当業者であれば理解できるだろう。
図1のデバイス構造には絶縁ゲート型電界効果トランジスタ(IGFET)が含まれており、これはゲート30(例えばポリシリコンからなる)と、このゲート30を下の半導体領域から絶縁するゲート絶縁層29を有している。ゲート絶縁層29は、通常の二酸化ケイ素又はその他の適切な誘電体絶縁材料とすることができる。縦型HVFET20の拡張ドレイン領域は、P型ボディ領域26の間に配置され、N+基板21に向かって下に延びる二つ又は三つ以上の平行なN型ドリフト領域22を含んでいる。例として、図1には、P型ボディ領域26aと26bの間にあってゲート酸化物29aの下からN+基板21へ下向きに延びるドリフト領域22aが示してある。同様に、ドリフト領域22bは、ゲート酸化物29bからP型ボディ領域26cと26dの間を下へ向かってN+基板21へ延びている。
ソース電極32は、N+ソース領域27と電気的に接続されており、N+ソース領域27は、それぞれP型ボディ領域26内に配置されている。例えば、N+ソース領域27aはP型ボディ領域26a内に配置され、N+領域27bはP型ボディ領域27b内に配置され、といったようにである。これ以外の種々のソース電極の接続形態も可能であることは理解されるだろう。ゲート30直下のP型ボディ領域の部分(N+ソース領域27とドリフト領域22の間)は、トランジスタのIGFETチャネル領域となる。この特定の実施例では、ゲート領域は金属−酸化物半導体(MOS)であり、IGFETはNMOSトランジスタである。したがって、HVFET20のチャネル領域は、一方の端部がN+ソース領域27によって、他方の端部がN型ドリフト領域22によって規定され、そしてゲート酸化物29からN+基板21へ向かって下方へ垂直に延在する。絶縁層33は、ゲート30をソース電極32から隔てている。
複数のn型拡張ドレイン領域、別名ドリフト領域22は、横方向において、絶縁領域すなわち誘電体層28によって隔てられている。図1の実施例において、誘電体層28はP型ボディ領域26の下からN+基板21に向かって垂直下方へ、ドリフト領域22の全長にわたって延びている。誘電体層28には一例として二酸化ケイ素を用いるが、窒化シリコン等、他の誘電体材料を用いることも勿論可能である。各誘電体層28の中には、半導体基板21及びドリフト領域22から完全に絶縁された状態で、フィールドプレート部材24が配置されている。フィールドプレート部材24は、高濃度にドープされたポリシリコン、金属、金属合金などの材料から構成されている。図1の実施例に示したように、各フィールドプレート部材24はソース電極32と電気的に接続されている。これとは別に、フィールドプレート部材を別個の電極に接続することも可能である。ゲート30もまた、別個の電極(不図示)に接続されている。ドレイン電極31は、N+基板21の底部との電気的な接続を与えている。
図1の縦型NMOS高電圧トランジスタ20の拡張ドレイン領域は、複数のドープされた半導体材料(例えばn型)、絶縁材料(例えば二酸化ケイ素)、および導電材料(例えば高濃度にドープしたポリシリコン)を横方向に交互に並べたものから構成されている。オン状態において、ゲートには、電子のチャネルがPボディ領域26の表面に沿って形成されるだけの十分な電圧が印加される。これによって、ソース電極32、N+ソース領域27から、Pボディ領域26内に形成されたチャネル領域を通り、下のN型のドリフト領域22、N+基板21を通ってドレイン電極31に達する、電子電流のための経路が与えられる。
半導体技術の実務者であれば、従来からの縦型HVNMOSトランジスタにおいて、N型ドリフト領域が通常は非常に厚く(すなわち長く)低濃度にドープされており、これらのことがオン状態の高い抵抗に寄与することを理解するだろう。一方、図1のデバイス構造において、N型のドリフト領域におけるドーピングはかなり高く、オン状態の抵抗は劇的に低下する。HVFET20におけるオン状態の抵抗の低下は、多数の並列接続された拡張ドレイン領域もしくはドリフト領域を用いることによってなされる。
オフ状態では、ドレイン電極31及びソース電極32の間に高い電圧(例えば200V〜1200V)が印加される。電圧が高くなると、フィールドプレート領域24がドリフト領域22の両側に存在することによって、N型ドリフト領域は自由キャリアが空乏の状態となる。理想的には、ドリフト領域22におけるドーピングのプロファイルを、得られる電界がドレインからソースまでの経路に沿って近似的に一定となるよう調整する。例えばドーピング濃度を、N+基板21近傍において最も高くし、Pボディ領域26近傍において最も低くし、その間を線形的に変化させることができる。
N型ドリフト領域22及び酸化物層28の厚さは、早すぎる電子なだれ降伏が起こるのを防ぐよう設計すべきである。電子なだれ降伏は、ドリフト領域を相対的に細くすることによってイオン化経路を短くし、これにより電子なだれが起こる臨界電界を高くすることによって避けることができる。同様の観点で、酸化物層28の幅を相対的に広くすると、デバイス構造は同じ電界に対してより高い電圧に耐えることができるようになる。
例として、図1に基づいて製造される、高さ約50μm、幅約0.4〜0.8μmのドリフト領域、幅が大体3.0〜4.0μmの範囲である酸化物層を有するデバイスは、約800Vに耐えることができる。このようなデバイスでは、ドリフト領域におけるドーピングは、Pボディ領域近くの約5×1015cm-3程度からN+基板近傍における約1×1017cm-3程度まで線形的に変化する。またこのデバイスのオン状態の抵抗は、約1.0Ωcm2である。
この分野の実務者であれば、合計のセル・ピッチ(すなわち、フィールドプレート、酸化物層、ドリフト領域を併せた幅)が小さくなるように製造した場合には、各ドリフト領域の寄与がほぼ一定になることから、HVFET20の性能を改善できることが理解されるだろう。
ここで図2を参照する。図2は、本発明の他の実施例であるラテラルNMOS高電圧トランジスタ40を示している。図2のHVFET40は、図1のトランジスタ構造との関連で議論したのと同じ原理に基づいて動作するが、電流が、縦方向ではなく、ドリフト領域を通って横方向に流れるという点が、図1のトランジスタ構造とは異なる。図2の実施例では、フィールドプレート部材44が、酸化物層49によって半導体材料からは完全に絶縁されている点に注意すべきである。
この例では、フィールドプレート部材44aが、ちょうどソース電極46及びドレイン電極45の下において酸化物層49aの中に配置されている。フィールドプレート部材44bは、N型ドリフト領域42aの下で、かつN型ドリフト領域42bの上に配置されている。これらのフィールドプレート部材は、図の面以外のある部分でフィールドプレート電極と接続することができる。トランジスタの拡張ドレインを構成するN型ドリフト領域は、Pボディ領域48の下からN+ドレイン領域43に向かって横方向に延在している。N+ドレイン領域43は、ドリフト領域42a及び42bをドレイン電極45に接続している。
ソース電極46と電気的に接続されているN+ソース領域47は、Pボディ領域48に隣接して配置されている。HVFET40は、縦型MOSゲート構造12を利用しており、これはゲート55に接続するゲート電極56よりなる。この実施例においてゲート55は、ゲート電極56から縦方向に延びるポリシリコンの層よりなる。ゲート55は、Pボディ領域の下まで延在し、図示のように、酸化物層50に向かって下方へ延びている。ゲート55は、ゲート酸化物53によって、N+ソース領域47、Pボディ領域48、N型ドリフト領域42から絶縁されている。酸化物領域58は、ソース電極46からゲート電極56を分離している。
酸化物層50はN+基板41をゲート55、N型ドリフト領域42、そしてN+ドレイン領域43から絶縁している。図から分かるように、酸化物層50は、N+基板41上かつ領域42、43、55の下で、横方向に延在している。基板電極57は、N+基板41の底部との電気的な接続を与える。この基板は、ドリフト領域42bに対する底部フィールドプレートとして作用する。
HVFET40のオン状態、オフ状態における動作は、図1の実施例について述べたものと類似している。しかながらこの場合は、ソース電極及びドレイン電極は最上部に位置している。これは、電子が、N+ソース領域47を通って下へ流れ、ゲート酸化物53に隣接するPボディ領域48内に形成されるチャネル領域を通過して、N型ドリフト領域42を横方向に流れ、そしてドレイン電極へ達する前にN+ドレイン領域43を通って上方へ流れることを意味する。
図2は溝状のゲート構造を示しているが、平面状のゲート構造を用いることも可能である点に注意すべきである。加えて他の実施の形態においては、溝状のドレイン構造を用いることも可能である。さらに、図2の実施例は、横方向に延在する二つの平行なN型ドリフト領域42a及び42bからなる拡張ドレイン領域を示しているが、他の実施例ではこれより多くの平行なドリフト領域を用いることもできる。言い換えると、図2の実施例はただ二つのドリフト領域に限定されるのではなく、製造上制限される範囲内で任意の数のドリフト領域、酸化物領域、フィールドプレート領域を含めることができる。
図3A及び図3Bは、本発明に基づくラテラルHVFETの他の実施例を例示している。図3AはラテラルHVNMOSトランジスタ60の平面図であり、図3Bは、同じデバイスを、ドリフト領域62aを通る線A−A’で切り取った断面図である。(混乱を避けるため、図3Aには、ソース電極66、ドレイン電極65、ゲート75、ゲート酸化物73及び酸化物層79を示していない。これらのエレメントは図3Bの横から見た断面図に示してある。)
図3のラテラルデバイス構造は、図2に示したものと類似している。しかし、ドリフト、酸化物、フィールドプレート層の各領域を互い同士の上に向きを合わせて配置する(縦方向に)のではなく、図3の実施例では、これらの領域が横に並ぶように配置されている。図2の実施例とは異なり、N型ドリフト領域62、酸化物層69、およびフィールドプレート部材64のそれぞれは、その下の絶縁層70から、上にある基板表面へ向かって延びている。N型ドリフト領域62及びフィールドプレート部材64は、絶縁層70によってN+基板61から絶縁されている。一つの実施例として、層70を二酸化ケイ素から形成することができる。追加の電極77は、N+基板61への電気的な接続を与えている。
HVNMOSトランジスタ60の平らなゲート及びドレインの構成を、図3Bの側面図に例示する。これとは異なり、溝状のドレイン構造及び/又は溝状のゲート構造を用いることもできる。この実施例でゲート部材75は、Pボディ領域68の上に配置されており、ゲート酸化物73によって半導体基板から絶縁されている。ソース電極66は、Pボディ領域68の中に配置されたN+ソース領域67に接触している。Pボディ領域68それ自身は、N型ドリフト領域62の中に配置された状態で示されている。
N+ドレイン領域63は、N型ドリフト領域62の反対側に配置されており、ドレイン電極65と電気的に接続されている。
図2及び図3の実施例では、チップの最も低い電位すなわちグランドに接続されたフィールドプレート部材が示してある。ソースは、フィールドプレート部材(最低のチップ電位)につなぐか、あるいはソース領域をフローティング状態にしておくことができる。言い換えれば、図1〜図3の実施例は、ソースフォロアの構成には限定されない。本発明に係る各トランジスタ構造は、ドレイン、ソース、フィールドプレート部材、そして絶縁ゲート部材が、別々の回路端子に接続された4端子デバイスとして実施することができる。他の実施例として、フィールドプレート部材と絶縁ゲート部材を接続することもできる。
図4を参照する。同図には、本発明に基づいて構成された他の実施例である縦型HVNMOSトランジスタ80の横から見た断面を示している。図4に示したデバイス構造は、図1に示したものと類似しているが、平坦なゲートが溝状のゲート構造に置き換えられている点が異なる。図1の縦型デバイス構造におけるように、トランジスタ80は、複数の平行に配置されたN型ドリフト領域82を有しており、これはPボディ領域86からN+基板81に向かって下に延びている。各ドリフト領域82の両側は酸化物層88と接している。例えばN型ドリフト領域82aは、一方の側を酸化物層88aと、他方の側を酸化物層88bと境界を接している。
各酸化物層88の中には、ドリフト領域及び基板の半導体材料から完全に絶縁された状態で、フィールドプレート部材84が配置され、ソース電極92と電気的に接続されている。N型ドリフト領域82、酸化物層88、フィールドプレート部材84は、全体として横方向に延びる平行な層構造からなる。これはオン状態において電流が流れる方向に対して垂直な方向である。トランジスタ80がオン状態のとき、電流は、ドレイン電極91から平行なN型ドリフト領域82及びPボディ領域の側壁に形成されたMOSチャネルを通り、ソース電極92に向かって縦方向に流れる。
HVNMOSトランジスタ80の溝状のゲート構造は、フィールドプレート部材84とPボディ領域86の間に配置されたゲート部材90からなる。図4の実施例において、各Pボディ領域86の両側には、一対のN+ソース領域87が配置されている。各Pボディ領域86は、対応するN型ドリフト領域82の一方の端部に位置している。薄いゲート絶縁層89(例えば酸化物)は、各ゲート部材90(例えばポリシリコン)をPボディの半導体材料から絶縁している。
図4は、一例として、Pボディ領域86aの両側に沿って配置されたゲート部材90a及び90bを示している。N+ソース領域87a及び87bは、Pボディ領域86の中のゲート部材に近い両側に配置されており、87a及び87bの両領域はソース電極92と電気的に接続されている。Pボディ領域86aは、その一端がソース電極と、他端がドリフト領域82aと隣接している。トランジスタ80がオン状態のときは、電流がソース電極92からN+領域87を通り、Pボディ領域86を通り、下に向かってN型ドリフト領域82及びN+基板81を通ってドレイン電極91に流れるように、Pボディ領域86aの側面に沿って導通状態のチャネル領域が形成される。
この分野の実務者であれば、図4に示した各Pボディ領域86の中に配置された一対のN+ソース領域87を、ソース電極92に隣接する領域86の全幅にわたって延在する単一のN+領域と置き換えることができることは容易に分かるだろう。この場合、Pボディ領域を、種々の場所においてソース電極に接続することができる(図の書面に垂直な方向で)。一つの実施例として、ソース電極92を、N+ソース87を通ってその下のPボディ領域86に接続するよう突き出すようにしてもよい。(図5K参照。)
図4の実施例における溝状のゲート構造は、図1に示したようなT字形の半導体領域がないため、潜在的に製造工程が簡単になるという利点がある。また、トランジスタ80の縦型HVNMOS構造は、Pボディ領域の間に形成されるJFET構造がないことからオン抵抗が低い。
図5A〜図5Kは、本発明の縦型高電圧トランジスタを製造するのに用いることができる種々の処理ステップを例示している。ここで説明する製造方法は、図5Kに示すデバイスの形成だけでなく、図4に示した縦型デバイス構造にも用いることができる。
図5Aは、N+基板100上にN型半導体材料のエピタキシャル層101を形成する最初の処理ステップ後の縦型高電圧トランジスタを示している。200Vから1000Vの範囲の印加電圧に耐えるためには、デバイス構造に、15μmから120μmの厚さのエピタキシャル層を設けるべきである。一例として、図5に示したデバイスのエピタキシャル層の厚さは40μmである。N+基板100は、完成後のデバイスの基板底部に配置されることになるドレイン電極へ流れる電流に対する抵抗を最小限に抑えるために高濃度にドープしてある。基板100は、例えばグラインディングやエッチングによって薄くすることができ、その底部表面上に金属を堆積させてトランジスタのオン抵抗を下げることができる。このような処理ステップが実行されるのは、上側の処理が完了してからである場合が多い。
エピタキシャル層101の厚さとドーピングは、主としてデバイスのVbdを決定する。ドーピングは、エピタキシャル層が形成されるときに行われる。最適なドーピングのプロファイルは、ドレイン(N+基板100に隣接する底部)からソース(上部)へ線形的に変化するものである。基板100の近くがより高い濃度となるようにすと、より一様な電界分布となる。線形的な変化は、エピタキシャル層101の上面より下のある点で停止するようにすることもできる。一例として、図5に示した実施例のドーピング濃度は、Pボディ領域近傍の2×1015cm-3から、N+基板100近傍の6×1016cm-3まである。
エピタキシャル層101が形成された後、層101の上面を適切にマスクして、エッチングにより深い溝を形成するかエピタキシャル層を貫通させる。図5Bは、エピタキシャル層101及び基板100の一部をエッチングした後のデバイス構造の断面を示している。エッチングされた溝部の横方向の幅は、後述のように、誘電層と導電性のリフィル(refill)層を併せた厚さで決まることが分かるだろう。
隣り合う溝部の間隔は、エピタキシャル層の材料の残っているメサ部分の必要とされる厚さによって決まるが、これはデバイスのブレークダウン電圧の必要条件によって調整される。このエピタキシャル材料のメサ部分が、最終的にこのデバイス構造のN型ドリフト領域を形成する。材料のこのメサ部分は、紙面に垂直な横方向にかなりの距離にわたって延在しうることを理解すべきである。図5の実施例では、単一のN型ドリフト領域からなる拡張ドレイン領域を有するデバイスを例示しているが、図5の縦型高電圧トランジスタは、平行に配置された複数のN型ドリフト領域から構成することもできることが分かるだろ。理想的には、N型ドリフト領域の横の厚さ(すなわち幅)は、Rspが低くVbdが高くなるようにするために、確実に製造できる範囲でできるだけ狭くすることが望ましい。もちろん、横方向の厚さを非常に厚くする方が製造は容易であるが、電流が大きなシリコン領域を通らなければならないので、横方向の厚さを非常に厚くするとデバイスの固有のオン抵抗が損なわれる。一つの実施例では、この厚さは大体0.4〜1.2μmの範囲である。この例では、メサの厚さは約1μmである。
図5Cは、図5Bの状態から、エッチングされた溝部を部分的に誘電体材料、例えば二酸化ケイ素で埋めた後のデバイス構造を示している。図示のように、図5の例では、酸化物領域102aがエッチングされたエピタキシャル領域101の一方の側をカバーし、酸化物領域102bがエピタキシャル領域101の他方の側をカバーしている。酸化物領域102はまた各溝部においてN+基板100の上面もカバーしている。
溝部への誘電材料の導入は、種々の周知の方法を用いて行うことができる。例えば、領域102を熱的に成長させたり、化学気相成長によって堆積させたり、あるいは液体の状態でスピンナを用いることもできる。誘電体層の厚さは、厚くなるほどVbdが高くなるので、エピタキシャル層材料101の与えられた厚さに対して、必要とされるブレークダウン電圧を与えるように設定することができる。しかしながら、誘電体層の厚さが厚くなると、トランジスタ構造のセルピッチが増し、高い固有のオン抵抗を示す。一つの実施例として、図5のデバイス構造では、酸化物層の横方向の厚さは4μmである。別のVbd性能を有するデバイスに対して、この厚さは2μm〜5μmの範囲とすることができる。
図5Dは、図5Cに続いて、溝部の残りの部分に導電性材料を充填し、その表面を平坦化してフィールドプレート領域103を形成したデバイス構造を示している。導電性材料としては、例えば高濃度にドープしたポリシリコン、金属(又は合金)あるいはシリサイドなどを単独で又は混合したものとすることができる。導電性領域103a及び103bは、このデバイスのフィールドプレート部材となる。最も多くの場合、フィールドプレート部材はデバイスの導電性やブレークダウン電圧の特性に直接寄与せずにシリコン領域を占めることになるので、フィールドプレート部材103a及び103bは、確実に製造できる範囲でできるだけ狭くすべきである。フィールドプレート部材103の横方向の厚さは、一つの実施例として大体0.5μm〜1.0μmである。表面の平坦化は、化学的機械的研磨などの従来からの技術によって実行することができる。
プロセスのこの時点で、デバイスの拡張ドレイン領域の形成は本質的に完了する。これ以降の処理ステップは、スタンドアロン高電圧デプレションモードMOSFETデバイス構造(図5G及び図6に示す)又は低電圧MOSFET構造(例えば図5K)高電圧FET、もしくは他の高電圧デバイスを製造するように適合させることができる。
図5Eは、図5Dに続いて、エピタキシャル層101の上面にN+ソース領域105の導入を行った後のデバイス構造の断面を横から見た図である。ソース領域105は、通常の堆積、拡散、インプランテーションの何れかの技術又はこれらを組み合わせて形成することができる。
N+ソース領域105の形成の後、このデバイスの上に層間絶縁層106が形成される。図5の実施例では、層間絶縁層106は、従来からの方法で堆積され、パターニングされた通常の二酸化ケイ素からなる。誘電体層106に開口部が形成され、そして導電層の材料(例えば金属、シリサイドetc.)が堆積され、パターニングされて図5Fに示す構造が作られる。この断面図において、ソース電極109はN+ソース領域105との電気的接続を与え、電極110a及び110bはそれぞれフィールドプレート部材103a、103bとの電気的接続を与える。
図5Gは、図5Fに続いて、N+基板100の底部にドレイン電極111の形成を行ったデバイス構造を示している。ドレイン電極111は、例えは金属スパッタリングなど従来からの技術を用いて形成することができる。前述のうように、ドレインのコンタクト抵抗を下げるために、まず基板の底部に、グラインディングやインプランテーションetc.などを行うこともできる。
図5Gのデバイスは、スタンドアロンのドリフト領域を有する完成後の高電圧トランジスタを示している。すなわち、図5Gのデバイスはエピタキシャル層の上に低電圧の直列MOSFET構造を含んでいない。代わりに、エピタキシャル層によって形成された拡張ドリフト領域それ自身が、Pボディ領域を含まずにMOSFETの機能を果たす。この分野の実務者であれば、ソース電極109からドレイン電極111まで電子が流れる連続したN型の経路が存在するために、このデバイス構造では電流が完全にはオフにならないことが分かるだろう。しかしながら、図5Gのデバイス構造における電流は、メサ状のエピタキシャル層101が高いドレイン電圧でピンチオフされたときに飽和する。
図6のデバイス構造は、図5Gのデバイスよりも低い電圧で拡張ドレイン領域のピンチオフに達する。これは、N型ドリフト領域の上部近くでフィールドプレート部材103とエピタキシャル層101の間隔を小さくすることによって達成され、これによって相対的に低い電圧で縦型ドリフト領域をピンチオフするための容量が高くなる。図6は、ピンチオフ電圧すなわち飽和電流を制御するために、酸化物領域102a及び102b内へ縦方向に延びる多段のフィールドプレート構造を示している。あるいはまた同様の結果となるように、フィールドプレート部材を単一のステップ、線形的に変化する縦方向の延長部分、あるいはその他のいくつかの断面形状からなるようにすることができる。
ある種の回路への応用に対しては、図5Gのスタンドアロン型のトランジスタ構造を普通の外部の低電圧スイッチングMOSFETと直列にして利用することが有利であることが、当業者であれば理解されるだろう。このような応用として、低電圧(例えば40V)MOSFETを、高電圧(例えば700V)のトランジスタデバイスにおける電流を完全にオフにするためのスイッチングの目的で用いることができるだろ。
ここで、絶縁ゲートMOS構造を含む縦型HVNMOSトランジスタの製造に用いることができる別の処理シーケンスを示した図5H〜図5Kを参照する。
絶縁ゲート構造の形成を行うための溝部112a及び112bが、エピタキシャル層101の両側の誘電体層それぞれに形成される。溝部112a及び112bの深さは、MOSFETのチャネルの意図する長さ及びフィールドプレートの形成を考慮して決められる深さで、N+ソース領域105の表面から延びている。この例では、溝部の深さは約1〜5μmである。この溝部112は、一例として、パターニングされたマスク層を半導体基板上に適切に塗布し、続いて酸化物層102に対して従来からのドライエッチング又はウェットエッチング技術を適用して形成される。
図5Jは、溝部112内にゲートの誘電体層116及びゲート部材113の形成を行った後のデバイスを示している。ゲートの誘電体層116a及び116bは、積層したN+ソース、Pボディ、及びエピタキシャル領域の側壁に、酸化物を成長させるか又は堆積させて形成することができる。デバイスのしきい値電圧によって、層116の厚さを決定する。一実施例として層116は、250〜1000オングストロームの厚さを有する二酸化ケイ素からなる。
この実施例において、誘電体層112の部分は、フィールドプレート部材103をゲート部材113から分離している。あるいは、溝部112によりフィールドプレート103の上部を露出させ、層116を形成したのと同じ処理ステップを用いてフィールドプレートの側壁に誘電体層を形成して、フィールドプレートをゲート部材から分離することもできる。
誘電体層116が溝部112の側壁に形成されたら、溝部の残りの部分を充填すべくドープしたポリシリコンなどの導電性材料を堆積させることができる。この実施例ではドープしたポリシリコンで、MOSトランジスタ構造のゲート部材113a及び113bを形成している。図5Jは、エピタキシャル領域101の上面上にPボディ領域107及びN+ソース領域105を導入したあとのデバイスを示している。領域107、105は、標準的なインプランテーション、堆積、熱拡散といった処理ステップのうちの一つ又はこれらを組み合わせて形成することができる。完成したデバイスにおいて、ゲート部材113に十分な電圧を印加すると、N+ソース領域105とエピタキシャル領域101の間のPボディ領域107の側壁部分に沿って導電性のチャネルが形成される。したがって、チャネルの長さはPボディ領域107の厚さによって決定され、図示した実施例では約0.5μm〜3.0μmであり、N+ソース領域105は大体0.1〜0.5μmの範囲である。チャネルの長さが短いとそれだけチャネル抵抗は低く、したがってデバイスのオン抵抗も低くなる。しかしながら、チャネルが短くなりすぎるとパンチスルーの問題が生じるということを理解すべきである。
図5Kは、続いて層間誘電体層106(例えば二酸化ケイ素、窒化シリコンetc.)が形成された完成後のHVFETを示している。この層を堆積させ、パターニングして、コンタクト開口を形成することができる。図示の実施例では、層106のエッチングに続いて、フィールドプレート、ゲート部材、N+及びPボディ領域のエッチングがなされる。これに続いて導電層(例えば金属、シリサイドetc.)の堆積が行われて、ソース電極109、ゲート電極115、そしてフィールドプレート電極110が形成され、これによってデバイスの各領域との電気的接続が与えられる。上で述べた選択的なエッチングステップによって、N+ソース領域をパターニングせずにソース電極をPボディ領域と接続させることができるので、処理が簡単化される。そして、導電層を基板100の底部に塗布して(グラインディング、エッチング、インプランティングetc.による選択的処理の後で)ドレイン電極111を形成することができる。
図5Kの断面図ではソース電極109はPボディ107まで延びているが、他の実施例では、この電極をソース領域105の上部表面まで延ばすだけとすることもできる。電極109は領域105を二つの分離したソース領域に分離していない。むしろ電極109は、領域105の部分のN+材料に囲まれるプラグ状に形成されている。
本発明の一実施例である縦型高電圧電界効果トランジスタ(HVFET)デバイス構造の断面を横から見た図である。 本発明に基づいて製造されたラテラルHVFETの一実施例の断面を横から見た図である。 本発明の他の実施例に基づいて製造されたラテラルHVFETの平面図である。 図3Aで線A−A’に沿って切り取って示したラテラルHVFETの断面を横から見た図である。 本発明に基づいて製造されたラテラルHVFETデバイス構造の別の実施例の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明のさらに別の実施例に基づいた製造プロセスの種々の段階から取り出したラテラルHVFETデバイス構造の断面を横から見た図である。 本発明に基づいて製造されたラテラルHVFETデバイス構造のさらに別の実施例の断面を横から見た図である。

Claims (30)

  1. 第一の導電型のドレイン領域と、
    第一の導電型とは反対の第二の導電型の複数のボディ領域と、
    第一の導電型の複数のドリフト領域であって、それぞれがドレイン領域から一または二以上のボディ領域へ向かう第一の方向に延び、
    前記第一の方向へ延びる複数のフィールドプレート部材であって、それぞれが第二の方向において分離されており、かつ、誘電体層によってドリフト領域から絶縁されているフィールドプレート部材と、
    第一の導電型の複数のソース領域であって、それぞれがボディ領域の一つと隣接したソース領域と、
    各ボディ領域の上に配置され、これによりソース領域の一つからドリフト領域の一つへ向かう第二の方向に延びるチャネル領域を規定する、少なくとも一つの絶縁ゲート部材と、
    を含むことを特徴とする縦型高電圧トランジスタ。
  2. さらに、前記ドレイン領域と電気的に接続したドレイン電極、および前記ソース領域に電気的に接続したソース電極を含んでいる請求項1に記載の縦型高電圧トランジスタ。
  3. 前記ドリフト領域は、その長さ方向が前記第一の方向であり、幅方向が前記第二の方向であり、長さは幅の5倍よりも長いものである、請求項1に記載の縦型高電圧トランジスタ。
  4. 前記ドレイン領域は、実質的に平坦な底面を有する基板を含み、前記第一の方向は基板の底面に直交する方向であり、前記第二の方向は、基板の底面に平行な方向である、請求項1に記載の高電圧トランジスタ。
  5. 前記誘電体層は、二酸化ケイ素からなる請求項1に記載の縦型高電圧トランジスタ。
  6. 前記ドリフト領域は、前記ドレイン領域近傍でより高く、前記ボディ領域の近傍でより低いドーピングを有する、請求項1に記載の縦型高電圧トランジスタ。
  7. 前記ドリフト領域は、線型的に変化するドーピングプロファイルを有している請求項1に記載の縦型高電圧トランジスタ。
  8. 第一の導電型のドレイン領域と、
    第一の導電型のソース領域と、
    前記第一の導電型とは反対の第二の導電型であって、前記ソース領域に隣接するボディ領域と、
    前記ドレイン領域からボディ領域へ向かう第一の方向に延びるよう平行に配列された前記第一の導電型の複数のドリフト領域であって、前記ドレイン領域とボディ領域が前記第一の方向において少なくとも15ミクロンの距離だけ隔てられ、前記ドリフト領域の隣接するもの同士が前記第一の方向と直交する第二の方向において誘電体層によって分離されているドリフト領域と、
    前記誘電体層内に配置された高濃度の導電材料からなるフィールドプレート部材と、
    前記ボディ領域に隣接して配置された絶縁ゲートと、
    を含むことを特徴とする高電圧トランジスタ。
  9. 前記第一の導電型はn型であり、前記第二の導電型はp型である、請求項8に記載の高電圧トランジスタ。
  10. 前記フィールドプレート部材は、高い濃度にドープされたポリシリコンからなる、請求項8に記載の高電圧トランジスタ。
  11. 各ドリフト領域は、線形的に変化するドーピングプロファイルを有している、請求項8に記載の高電圧トランジスタ。
  12. 第一の導電型のドレイン領域と、
    第一の導電型のソース領域と、
    前記第一の導電型とは反対の第二の導電型であって、前記ソース領域に隣接するボディ領域と、
    前記ドレイン領域からボディ領域へ向かう第一の方向に延びるよう平行に配列された前記第一の導電型の複数のドリフト領域であって、前記ドリフト領域の隣接するもの同士が前記第一の方向と直交する第二の方向において誘電体層によって分離されているドリフト領域と、
    前記誘電体層内に配置されたフィールドプレート部材であって、その上部が、前記ボディ領域の最下端部よりも上に延びているフィールドプレート部材と、
    前記ボディ領域に隣接して配置された絶縁ゲートと、
    を含むことを特徴とする高電圧トランジスタ。
  13. さらに、前記ソース領域に電気的に接続したソース電極、および前記ドレイン領域と電気的に接続したドレイン電極を含んでいる請求項12に記載の高電圧トランジスタ。
  14. 平坦な底面を有する半導体基板上に作製され、前記第一の方向は前記平坦な底面に実質的に直交し、前記第二の方向は前記平坦な底面と実質的に平行である、請求項12に記載の高電圧トランジスタ。
  15. 前記第一の導電型はn型であり、前記第二の導電型はp型である、請求項12に記載の高電圧トランジスタ。
  16. 少なくとも一つの前記フィールドプレート部材は、高い濃度にドープされたポリシリコンからなる、請求項12に記載の高電圧トランジスタ。
  17. 前記ドリフト領域は、前記ドレイン領域近傍でより高く、前記ボディ領域の近傍でより低いドーピングを有する、請求項12に記載の高電圧トランジスタ。
  18. 第一の導電型のドレイン領域と、
    第一の導電型のソース領域と、
    前記第一の導電型とは反対の第二の導電型であって、前記ソース領域に隣接するボディ領域と、
    前記ドレイン領域からボディ領域へ向かう第一の方向に延びるよう平行に配列された前記第一の導電型の複数のドリフト領域であって、各ドリフト領域は前記第二の方向の幅と最大ドーピング濃度を有し、前記幅と前記最大ドーピング濃度の積が1×1013cm-2よりも小さく、かつ、前記ドリフト領域の隣接するもの同士が前記第一の方向と直交する第二の方向において誘電体層によって分離されているドリフト領域と、
    前記誘電体層内に配置されたフィールドプレート部材と、
    前記ボディ領域に隣接して配置された絶縁ゲートと、
    を含むことを特徴とする高電圧トランジスタ。
  19. さらに、前記ソース領域に電気的に接続したソース電極、および前記ドレイン領域と電気的に接続したドレイン電極を含んでいる請求項18に記載の高電圧トランジスタ。
  20. 平坦な底面を有する半導体基板上に作製され、前記第一の方向は前記平坦な底面に実質的に直交し、前記第二の方向は前記平坦な底面と実質的に平行である、請求項18に記載の高電圧トランジスタ。
  21. 前記第一の導電型はn型であり、前記第二の導電型はp型である、請求項18に記載の高電圧トランジスタ。
  22. 前記ドリフト領域は、前記ドレイン領域近傍でより高く、前記ボディ領域の近傍でより低いドーピングを有する、請求項18に記載の高電圧トランジスタ。
  23. 前記各ドリフト領域は、線型的に変化するドーピングプロファイルを有している請求項18に記載の高電圧トランジスタ。
  24. 第一の導電型のドレイン領域と、
    第一の導電型のソース領域と、
    前記第一の導電型とは反対の第二の導電型であって、前記ソース領域に隣接するボディ領域と、
    前記ドレイン領域からボディ領域へ向かう第一の方向に延びるよう平行に配列された前記第一の導電型の複数のドリフト領域であって、前記ドレイン領域とボディ領域が前記第一の方向において少なくとも15ミクロンの距離だけ隔てられ、前記ドリフト領域の隣接するもの同士が前記第一の方向と直交する第二の方向において誘電体層によって分離されているドリフト領域と、
    前記誘電体層内に配置され、前記ドレイン領域から電気的に分離されているフィールドプレート部材と、
    前記ボディ領域に隣接して配置された絶縁ゲートと、
    を含むことを特徴とする高電圧トランジスタ。
  25. 前記第一の導電型はn型であり、前記第二の導電型はp型である、請求項24に記載の高電圧トランジスタ。
  26. 前記フィールドプレート部材は金属又は合金からなる、請求項25に記載の高電圧トランジスタ。
  27. 第一の導電型のドレイン領域と、
    第一の導電型のソース領域と、
    前記第一の導電型とは反対の第二の導電型であって、前記ソース領域に隣接するボディ領域と、
    前記ドレイン領域からボディ領域へ向かう第一の方向に延びるよう平行に配列された前記第一の導電型の複数のドリフト領域であって、前記ドレイン領域とボディ領域が前記第一の方向において少なくとも15ミクロンの距離だけ隔てられ、前記ドリフト領域の隣接するもの同士が前記第一の方向と直交する第二の方向において誘電体層によって分離されているドリフト領域と、
    前記誘電体層内に配置され、かつ、隣接するドリフト領域から前記第二の方向において少なくとも2ミクロンの距離だけ離間しているフィールドプレート部材と、
    前記ボディ領域に隣接して配置された絶縁ゲートと、
    を含むことを特徴とする高電圧トランジスタ。
  28. 前記第一の導電型はn型であり、前記第二の導電型はp型である、請求項27に記載の高電圧トランジスタ。
  29. 前記フィールドプレート部材は金属又は合金からなる、請求項27に記載の高電圧トランジスタ。
  30. 前記フィールドプレート部材は、高い濃度にドープされたポリシリコンからなる、請求項27に記載の高電圧トランジスタ。
JP2004205957A 2001-09-07 2004-07-13 多層拡張ドレイン構造を有する高電圧縦型トランジスタ Expired - Fee Related JP4564793B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/948,930 US6573558B2 (en) 2001-09-07 2001-09-07 High-voltage vertical transistor with a multi-layered extended drain structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002258266A Division JP4436598B2 (ja) 2001-09-07 2002-07-31 多層拡張ドレイン構造を有する高電圧縦型トランジスタ

Publications (2)

Publication Number Publication Date
JP2004289185A true JP2004289185A (ja) 2004-10-14
JP4564793B2 JP4564793B2 (ja) 2010-10-20

Family

ID=25488403

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2002258266A Expired - Fee Related JP4436598B2 (ja) 2001-09-07 2002-07-31 多層拡張ドレイン構造を有する高電圧縦型トランジスタ
JP2004205957A Expired - Fee Related JP4564793B2 (ja) 2001-09-07 2004-07-13 多層拡張ドレイン構造を有する高電圧縦型トランジスタ
JP2009252241A Expired - Fee Related JP5403747B2 (ja) 2001-09-07 2009-11-02 多層拡張ドレイン構造を有する高電圧縦型トランジスタ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002258266A Expired - Fee Related JP4436598B2 (ja) 2001-09-07 2002-07-31 多層拡張ドレイン構造を有する高電圧縦型トランジスタ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009252241A Expired - Fee Related JP5403747B2 (ja) 2001-09-07 2009-11-02 多層拡張ドレイン構造を有する高電圧縦型トランジスタ

Country Status (4)

Country Link
US (7) US6573558B2 (ja)
EP (3) EP1528600B1 (ja)
JP (3) JP4436598B2 (ja)
AT (1) ATE551725T1 (ja)

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573550B2 (en) * 2000-01-28 2003-06-03 General Electronics Applications, Inc. Semiconductor with high-voltage components and low-voltage components on a shared die
US6853033B2 (en) * 2001-06-05 2005-02-08 National University Of Singapore Power MOSFET having enhanced breakdown voltage
US7786533B2 (en) * 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US7221011B2 (en) * 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6555873B2 (en) 2001-09-07 2003-04-29 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6635544B2 (en) * 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6747312B2 (en) 2002-05-01 2004-06-08 International Rectifier Corporation Rad hard MOSFET with graded body diode junction and reduced on resistance
US7423299B2 (en) 2003-05-13 2008-09-09 Nxp B.V. Semiconductor devices with a field shaping region
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
GB0314390D0 (en) * 2003-06-20 2003-07-23 Koninkl Philips Electronics Nv Trench field effect transistor structure
TWI243399B (en) * 2003-09-24 2005-11-11 Sanken Electric Co Ltd Nitride semiconductor device
TWI240439B (en) * 2003-09-24 2005-09-21 Sanken Electric Co Ltd Nitride semiconductor device and manufacturing method thereof
GB0327792D0 (en) * 2003-11-29 2003-12-31 Koninkl Philips Electronics Nv Trench insulated gate field effect transistor
US7683454B2 (en) * 2003-12-05 2010-03-23 Stmicroelectronics S.A. MOS power component with a reduced surface area
US20050121691A1 (en) * 2003-12-05 2005-06-09 Jean-Luc Morand Active semiconductor component with a reduced surface area
WO2005065385A2 (en) * 2003-12-30 2005-07-21 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
DE102004007197B4 (de) * 2004-02-13 2012-11-08 Infineon Technologies Ag Hochsperrendes Halbleiterbauelement mit niedriger Durchlassspannung
CN100576564C (zh) * 2004-03-15 2009-12-30 Nxp股份有限公司 锥形单元的金属氧化物半导体高电压器件结构
US7482654B2 (en) * 2004-04-20 2009-01-27 International Rectifier Corporation MOSgated power semiconductor device with source field electrode
DE102004024344B4 (de) * 2004-05-17 2010-04-15 Infineon Technologies Ag Verfahren zur Herstellung eines Leistungs-Halbleiterbauteils sowie Leistungs-Halbleiterbauteil
US7268395B2 (en) * 2004-06-04 2007-09-11 International Rectifier Corporation Deep trench super switch device
JP4959928B2 (ja) * 2004-09-07 2012-06-27 株式会社東芝 絶縁ゲート型半導体装置
DE102004044619B4 (de) * 2004-09-13 2009-07-16 Infineon Technologies Ag Kondensatorstruktur in Grabenstrukturen von Halbleiterbauteilen und Halbleiterbauteile mit derartigen Kondensatorstrukturen und Verfahren zur Herstellung derselben
DE102004046697B4 (de) * 2004-09-24 2020-06-10 Infineon Technologies Ag Hochspannungsfestes Halbleiterbauelement mit vertikal leitenden Halbleiterkörperbereichen und einer Grabenstruktur sowie Verfahren zur Herstellung desselben
DE102004054352B3 (de) * 2004-11-09 2006-02-16 Infineon Technologies Ag Verfahren zum Strukturieren von Kondensatorstrukturen in Halbleitergräben
JP4974454B2 (ja) * 2004-11-15 2012-07-11 株式会社豊田中央研究所 半導体装置
WO2006085267A2 (en) * 2005-02-08 2006-08-17 Nxp B.V. Semiconductor device with trench field plate
DE102005011967B4 (de) * 2005-03-14 2007-07-19 Infineon Technologies Ag Halbleiterbauelement mit Driftstrecke und Grabenstruktur sowie Verfahren zur Herstellung desselben
JP2006303287A (ja) * 2005-04-22 2006-11-02 Toshiba Corp 電力用半導体装置
JP2007019289A (ja) * 2005-07-08 2007-01-25 Sanken Electric Co Ltd 半導体素子
TWI251922B (en) * 2005-07-14 2006-03-21 Siliconware Precision Industries Co Ltd Multichip stack structure
DE102005035699B4 (de) * 2005-07-27 2010-09-16 Infineon Technologies Austria Ag Halbleiterleistungsbauelement mit Ladungskompensationsstruktur und Verfahren zur Herstellung desselben
DE102005048447B4 (de) * 2005-10-07 2007-07-19 Infineon Technologies Ag Halbleiterleistungsbauelement mit Ladungskompensationsstruktur und Verfahren zur Herstellung desselben
US7554153B2 (en) * 2006-03-07 2009-06-30 International Rectifier Corporation Power semiconductor device
US7521773B2 (en) * 2006-03-31 2009-04-21 Fairchild Semiconductor Corporation Power device with improved edge termination
US8093621B2 (en) 2008-12-23 2012-01-10 Power Integrations, Inc. VTS insulated gate bipolar transistor
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US7595523B2 (en) * 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US7859037B2 (en) * 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US8653583B2 (en) * 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7557406B2 (en) * 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US7875962B2 (en) * 2007-10-15 2011-01-25 Power Integrations, Inc. Package for a power semiconductor device
US7911023B2 (en) * 2007-11-06 2011-03-22 Denso Corporation Semiconductor apparatus including a double-sided electrode element and method for manufacturing the same
US9480254B2 (en) * 2008-05-08 2016-11-01 Aquatrols Corporation Of America Systemic mitigation of environmental stress on plants and the fruit thereof
GB2460471B (en) * 2008-05-31 2011-11-23 Filtronic Compound Semiconductors Ltd A field effect transistor and a method of manufacture thereof
US7964912B2 (en) 2008-09-18 2011-06-21 Power Integrations, Inc. High-voltage vertical transistor with a varied width silicon pillar
US8174067B2 (en) * 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8304829B2 (en) 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US20100155831A1 (en) * 2008-12-20 2010-06-24 Power Integrations, Inc. Deep trench insulated gate bipolar transistor
US7871882B2 (en) 2008-12-20 2011-01-18 Power Integrations, Inc. Method of fabricating a deep trench insulated gate bipolar transistor
US8227855B2 (en) * 2009-02-09 2012-07-24 Fairchild Semiconductor Corporation Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same
JP2010186760A (ja) * 2009-02-10 2010-08-26 Panasonic Corp 半導体装置および半導体装置の製造方法
US8148749B2 (en) * 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
US8049276B2 (en) 2009-06-12 2011-11-01 Fairchild Semiconductor Corporation Reduced process sensitivity of electrode-semiconductor rectifiers
US8207455B2 (en) * 2009-07-31 2012-06-26 Power Integrations, Inc. Power semiconductor package with bottom surface protrusions
US8115457B2 (en) * 2009-07-31 2012-02-14 Power Integrations, Inc. Method and apparatus for implementing a power converter input terminal voltage discharge circuit
US8207577B2 (en) * 2009-09-29 2012-06-26 Power Integrations, Inc. High-voltage transistor structure with reduced gate capacitance
US7893754B1 (en) 2009-10-02 2011-02-22 Power Integrations, Inc. Temperature independent reference circuit
US8634218B2 (en) * 2009-10-06 2014-01-21 Power Integrations, Inc. Monolithic AC/DC converter for generating DC supply voltage
US8310845B2 (en) * 2010-02-10 2012-11-13 Power Integrations, Inc. Power supply circuit with a control terminal for different functional modes of operation
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8252648B2 (en) * 2010-06-29 2012-08-28 Alpha & Omega Semiconductor, Inc. Power MOSFET device with self-aligned integrated Schottky and its manufacturing method
JP2012099601A (ja) * 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
US8357579B2 (en) * 2010-11-30 2013-01-22 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming integrated circuits
CN102184944B (zh) * 2011-04-29 2013-01-02 南京邮电大学 一种横向功率器件的结终端结构
US8742490B2 (en) * 2011-05-02 2014-06-03 Monolithic Power Systems, Inc. Vertical power transistor die packages and associated methods of manufacturing
US9679869B2 (en) 2011-09-02 2017-06-13 Skyworks Solutions, Inc. Transmission line for high performance radio frequency applications
US8492226B2 (en) 2011-09-21 2013-07-23 Globalfoundries Singapore Pte. Ltd. Trench transistor
US9054133B2 (en) 2011-09-21 2015-06-09 Globalfoundries Singapore Pte. Ltd. High voltage trench transistor
CN102332396A (zh) * 2011-10-27 2012-01-25 博嘉圣(福州)微电子科技有限公司 一种功率vdmosfet结构的设计方法
US9443972B2 (en) 2011-11-30 2016-09-13 Infineon Technologies Austria Ag Semiconductor device with field electrode
US8614482B2 (en) * 2011-12-30 2013-12-24 Force Mos Technology Co., Ltd. Semiconductor power device having improved termination structure for mask saving
US8587054B2 (en) 2011-12-30 2013-11-19 Force Mos Technology Co., Ltd. Trench MOSFET with resurf stepped oxide and diffused drift region
US8854065B2 (en) 2012-01-13 2014-10-07 Infineon Technologies Austria Ag Current measurement in a power transistor
US8704296B2 (en) * 2012-02-29 2014-04-22 Fairchild Semiconductor Corporation Trench junction field-effect transistor
US8946814B2 (en) * 2012-04-05 2015-02-03 Icemos Technology Ltd. Superjunction devices having narrow surface layout of terminal structures, buried contact regions and trench gates
US9054065B2 (en) 2012-04-30 2015-06-09 Skyworks Solutions, Inc. Bipolar transistor having collector with grading
US8653600B2 (en) 2012-06-01 2014-02-18 Power Integrations, Inc. High-voltage monolithic schottky device structure
CN104410373B (zh) 2012-06-14 2016-03-09 西凯渥资讯处理科技公司 包含相关系统、装置及方法的功率放大器模块
JP5802636B2 (ja) * 2012-09-18 2015-10-28 株式会社東芝 半導体装置およびその製造方法
US9437440B2 (en) * 2012-11-21 2016-09-06 Infineon Technologies Dresden Gmbh Method for manufacturing a semiconductor device
US9136379B2 (en) * 2013-04-26 2015-09-15 Alpha & Omega Semiconductor, Inc. Bottom source substrateless power MOSFET
TWI572040B (zh) 2013-06-21 2017-02-21 竹懋科技股份有限公司 溝槽型-垂直式雙擴散金氧半電晶體結構及其製造方法
US9455621B2 (en) 2013-08-28 2016-09-27 Power Integrations, Inc. Controller IC with zero-crossing detector and capacitor discharge switching element
KR20150030799A (ko) * 2013-09-12 2015-03-23 매그나칩 반도체 유한회사 반도체 소자 및 그 제조 방법
US9224854B2 (en) 2013-10-03 2015-12-29 Texas Instruments Incorporated Trench gate trench field plate vertical MOSFET
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
US9324784B2 (en) * 2014-04-10 2016-04-26 Semiconductor Components Industries, Llc Electronic device having a termination region including an insulating region
US9343528B2 (en) 2014-04-10 2016-05-17 Semiconductor Components Industries, Llc Process of forming an electronic device having a termination region including an insulating region
US9231049B1 (en) * 2014-06-20 2016-01-05 Infineon Technologies Austria Ag Semiconductor switching device with different local cell geometry
US9293533B2 (en) 2014-06-20 2016-03-22 Infineon Technologies Austria Ag Semiconductor switching devices with different local transconductance
US9349795B2 (en) * 2014-06-20 2016-05-24 Infineon Technologies Austria Ag Semiconductor switching device with different local threshold voltage
US9324823B2 (en) 2014-08-15 2016-04-26 Infineon Technologies Austria Ag Semiconductor device having a tapered gate structure and method
DE102014112379A1 (de) 2014-08-28 2016-03-03 Infineon Technologies Austria Ag Halbleitervorrichtung mit einer Abschlussmesa zwischen einer Abschlussstruktur und einem Zellfeld von Feldelektrodenstrukturen
JP6203697B2 (ja) 2014-09-30 2017-09-27 株式会社東芝 半導体装置およびその製造方法
JP6299581B2 (ja) 2014-12-17 2018-03-28 三菱電機株式会社 半導体装置
US9583482B2 (en) 2015-02-11 2017-02-28 Monolith Semiconductor Inc. High voltage semiconductor devices and methods of making the devices
US9478639B2 (en) 2015-02-27 2016-10-25 Infineon Technologies Austria Ag Electrode-aligned selective epitaxy method for vertical power devices
US10492834B2 (en) * 2015-03-11 2019-12-03 Warsaw Orthopedic, Inc. Surgical instrument system and method
DE102015108091A1 (de) * 2015-05-21 2016-11-24 Infineon Technologies Dresden Gmbh Transistoranordnung mit Leistungstransistoren und spannungslimitierenden Bauteilen
DE102015111210A1 (de) * 2015-07-10 2017-01-12 Infineon Technologies Dresden Gmbh Verfahren zum füllen eines grabens und halbleiterbauelement
JP6400545B2 (ja) 2015-09-11 2018-10-03 株式会社東芝 半導体装置
US9667154B2 (en) 2015-09-18 2017-05-30 Power Integrations, Inc. Demand-controlled, low standby power linear shunt regulator
US9973183B2 (en) 2015-09-28 2018-05-15 Power Integrations, Inc. Field-effect transistor device with partial finger current sensing FETs
US9602009B1 (en) 2015-12-08 2017-03-21 Power Integrations, Inc. Low voltage, closed loop controlled energy storage circuit
US9629218B1 (en) 2015-12-28 2017-04-18 Power Integrations, Inc. Thermal protection for LED bleeder in fault condition
US9983239B2 (en) 2016-05-13 2018-05-29 Power Integrations, Inc. Integrated linear current sense circuitry for semiconductor transistor devices
WO2018030990A1 (en) 2016-08-08 2018-02-15 Power Integrations, Inc. Integrated circuit fast temperature sensing of a semiconductor switching device
CN107768436A (zh) * 2017-10-20 2018-03-06 电子科技大学 一种沟槽栅电荷储存型igbt及其制造方法
CN107768434A (zh) * 2017-10-20 2018-03-06 电子科技大学 一种双向igbt及其制造方法
CN107681006A (zh) * 2017-11-01 2018-02-09 苏州凤凰芯电子科技有限公司 一种具有阶梯形氧化层的屏蔽栅mos结构
US10971624B2 (en) * 2018-03-19 2021-04-06 Macronix International Co., Ltd. High-voltage transistor devices with two-step field plate structures
CN110676321A (zh) * 2018-07-03 2020-01-10 无锡华润华晶微电子有限公司 沟槽mosfet及其制造方法
CN114503279A (zh) * 2019-08-12 2022-05-13 麦斯功率半导体股份有限公司 具选择性屏蔽式凹陷场效电板的高密度功率元件
US11316042B2 (en) 2020-01-31 2022-04-26 Power Integrations, Inc. Process and structure for a superjunction device
TWI802305B (zh) * 2022-03-03 2023-05-11 力晶積成電子製造股份有限公司 半導體結構以及埋入式場板結構的製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637898A (en) * 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
JP2000349288A (ja) * 1999-06-09 2000-12-15 Fuji Electric Co Ltd 縦型mosfet
JP2001044424A (ja) * 1999-07-29 2001-02-16 Toshiba Corp 高耐圧半導体装置
JP2001085688A (ja) * 1999-09-14 2001-03-30 Toshiba Corp 半導体装置及びその製造方法

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638867A (en) 1979-09-07 1981-04-14 Hitachi Ltd Insulated gate type field effect transistor
US4343015A (en) * 1980-05-14 1982-08-03 General Electric Company Vertical channel field effect transistor
JPS5712557A (en) 1980-06-25 1982-01-22 Sanyo Electric Co Ltd High dielectric resisting mos transistor
JPS5712558A (en) 1980-06-25 1982-01-22 Sanyo Electric Co Ltd Mos transistor having high withstand voltage
JPS5710975A (en) 1980-06-25 1982-01-20 Sanyo Electric Co Ltd High dielectric strength high transistor
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
US4626879A (en) 1982-12-21 1986-12-02 North American Philips Corporation Lateral double-diffused MOS transistor devices suitable for source-follower applications
US4738936A (en) * 1983-07-01 1988-04-19 Acrian, Inc. Method of fabrication lateral FET structure having a substrate to source contact
US4626789A (en) * 1983-08-19 1986-12-02 Hitachi, Ltd. Demodulating circuit for data signal
JPS6064471A (ja) 1983-09-19 1985-04-13 Nec Corp 高電圧絶縁ゲ−ト型電界効果トランジスタ
US4531173A (en) * 1983-11-02 1985-07-23 Motorola, Inc. Protective power foldback circuit for a power semiconductor
US4618541A (en) * 1984-12-21 1986-10-21 Advanced Micro Devices, Inc. Method of forming a silicon nitride film transparent to ultraviolet radiation and resulting article
JPS61168253A (ja) 1985-01-19 1986-07-29 Sharp Corp 高耐圧mos電界効果半導体装置
US4665426A (en) * 1985-02-01 1987-05-12 Advanced Micro Devices, Inc. EPROM with ultraviolet radiation transparent silicon nitride passivation layer
US4963951A (en) * 1985-11-29 1990-10-16 General Electric Company Lateral insulated gate bipolar transistors with improved latch-up immunity
US4764800A (en) 1986-05-07 1988-08-16 Advanced Micro Devices, Inc. Seal structure for an integrated circuit
US4769685A (en) 1986-10-27 1988-09-06 General Motors Corporation Recessed-gate junction-MOS field effect transistor
US4796070A (en) * 1987-01-15 1989-01-03 General Electric Company Lateral charge control semiconductor device and method of fabrication
US5010024A (en) 1987-03-04 1991-04-23 Advanced Micro Devices, Inc. Passivation for integrated circuit structures
US4811075A (en) 1987-04-24 1989-03-07 Power Integrations, Inc. High voltage MOS transistors
US4890144A (en) * 1987-09-14 1989-12-26 Motorola, Inc. Integrated circuit trench cell
JPH01112764A (ja) * 1987-10-27 1989-05-01 Nec Corp 半導体装置
US4926074A (en) * 1987-10-30 1990-05-15 North American Philips Corporation Semiconductor switch with parallel lateral double diffused MOS transistor and lateral insulated gate transistor
US4939566A (en) * 1987-10-30 1990-07-03 North American Philips Corporation Semiconductor switch with parallel DMOS and IGT
US4890146A (en) 1987-12-16 1989-12-26 Siliconix Incorporated High voltage level shift semiconductor device
US4922327A (en) 1987-12-24 1990-05-01 University Of Toronto Innovations Foundation Semiconductor LDMOS device with upper and lower passages
US4929987A (en) * 1988-02-01 1990-05-29 General Instrument Corporation Method for setting the threshold voltage of a power mosfet
US5025296A (en) * 1988-02-29 1991-06-18 Motorola, Inc. Center tapped FET
US5283201A (en) * 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5237193A (en) 1988-06-24 1993-08-17 Siliconix Incorporated Lightly doped drain MOSFET with reduced on-resistance
DE68926384T2 (de) * 1988-11-29 1996-10-10 Toshiba Kawasaki Kk Lateraler Leitfähigkeitsmodulations-MOSFET
US5072266A (en) * 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5008794A (en) 1989-12-21 1991-04-16 Power Integrations, Inc. Regulated flyback converter with spike suppressing coupled inductors
JP2877408B2 (ja) 1990-01-12 1999-03-31 株式会社東芝 導電変調型mosfet
JP2597412B2 (ja) 1990-03-20 1997-04-09 三菱電機株式会社 半導体装置およびその製造方法
US5040045A (en) * 1990-05-17 1991-08-13 U.S. Philips Corporation High voltage MOS transistor having shielded crossover path for a high voltage connection bus
US5126807A (en) * 1990-06-13 1992-06-30 Kabushiki Kaisha Toshiba Vertical MOS transistor and its production method
JP2991753B2 (ja) 1990-08-27 1999-12-20 松下電子工業株式会社 半導体装置及びその製造方法
US5072268A (en) 1991-03-12 1991-12-10 Power Integrations, Inc. MOS gated bipolar transistor
US5122848A (en) * 1991-04-08 1992-06-16 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5146298A (en) 1991-08-16 1992-09-08 Eklund Klas H Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US5164891A (en) 1991-08-21 1992-11-17 Power Integrations, Inc. Low noise voltage regulator and method using a gated single ended oscillator
US5258636A (en) * 1991-12-12 1993-11-02 Power Integrations, Inc. Narrow radius tips for high voltage semiconductor devices with interdigitated source and drain electrodes
US5270264A (en) 1991-12-20 1993-12-14 Intel Corporation Process for filling submicron spaces with dielectric
US5285367A (en) 1992-02-07 1994-02-08 Power Integrations, Inc. Linear load circuit to control switching power supplies under minimum load conditions
JP3435173B2 (ja) 1992-07-10 2003-08-11 株式会社日立製作所 半導体装置
US5294824A (en) * 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US5323044A (en) 1992-10-02 1994-06-21 Power Integrations, Inc. Bi-directional MOSFET switch
US5326711A (en) * 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
JP3076468B2 (ja) 1993-01-26 2000-08-14 松下電子工業株式会社 半導体装置
US5274259A (en) 1993-02-01 1993-12-28 Power Integrations, Inc. High voltage transistor
US5313082A (en) 1993-02-16 1994-05-17 Power Integrations, Inc. High voltage MOS transistor with a low on-resistance
DE4309764C2 (de) 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
US5349225A (en) * 1993-04-12 1994-09-20 Texas Instruments Incorporated Field effect transistor with a lightly doped drain
US5324683A (en) 1993-06-02 1994-06-28 Motorola, Inc. Method of forming a semiconductor structure having an air region
BE1007283A3 (nl) * 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
EP0646965B1 (en) * 1993-09-17 1999-01-07 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno An integrated device with a bipolar transistor and a MOSFET transistor in an emitter switching configuration
US5523604A (en) 1994-05-13 1996-06-04 International Rectifier Corporation Amorphous silicon layer for top surface of semiconductor device
US5494853A (en) 1994-07-25 1996-02-27 United Microelectronics Corporation Method to solve holes in passivation by metal layout
US5521105A (en) 1994-08-12 1996-05-28 United Microelectronics Corporation Method of forming counter-doped island in power MOSFET
US6075259A (en) 1994-11-14 2000-06-13 North Carolina State University Power semiconductor devices that utilize buried insulating regions to achieve higher than parallel-plane breakdown voltages
US5550405A (en) 1994-12-21 1996-08-27 Advanced Micro Devices, Incorporated Processing techniques for achieving production-worthy, low dielectric, low interconnect resistance and high performance ICS
US5656543A (en) 1995-02-03 1997-08-12 National Semiconductor Corporation Fabrication of integrated circuits with borderless vias
DE69602114T2 (de) * 1995-02-10 1999-08-19 Siliconix Inc. Graben-Feldeffekttransistor mit PN-Verarmungsschicht-Barriere
US5670828A (en) 1995-02-21 1997-09-23 Advanced Micro Devices, Inc. Tunneling technology for reducing intra-conductive layer capacitance
JP3291958B2 (ja) * 1995-02-21 2002-06-17 富士電機株式会社 バックソースmosfet
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US5659201A (en) 1995-06-05 1997-08-19 Advanced Micro Devices, Inc. High conductivity interconnection line
KR100188096B1 (ko) * 1995-09-14 1999-06-01 김광호 반도체 장치 및 그 제조 방법
JPH09153609A (ja) * 1995-11-29 1997-06-10 Nec Yamagata Ltd 縦型絶縁ゲート電界効果トランジスタ
US6097063A (en) * 1996-01-22 2000-08-01 Fuji Electric Co., Ltd. Semiconductor device having a plurality of parallel drift regions
JPH09266311A (ja) * 1996-01-22 1997-10-07 Fuji Electric Co Ltd 半導体装置及びその製造方法
EP0879481B1 (de) 1996-02-05 2002-05-02 Infineon Technologies AG Durch feldeffekt steuerbares halbleiterbauelement
DE19611045C1 (de) 1996-03-20 1997-05-22 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement
JPH09270513A (ja) * 1996-03-29 1997-10-14 Toyota Central Res & Dev Lab Inc 絶縁ゲート型半導体装置およびその製造方法
US5742076A (en) * 1996-06-05 1998-04-21 North Carolina State University Silicon carbide switching devices having near ideal breakdown voltage capability and ultralow on-state resistance
DE69739206D1 (de) * 1996-07-19 2009-02-26 Siliconix Inc Hochdichte-graben-dmos-transistor mit grabenbodemimplantierung
US5841166A (en) * 1996-09-10 1998-11-24 Spectrian, Inc. Lateral DMOS transistor for RF/microwave applications
US6207994B1 (en) 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6800903B2 (en) 1996-11-05 2004-10-05 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6168983B1 (en) 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
KR100228331B1 (ko) * 1996-12-30 1999-11-01 김영환 반도체 소자의 삼중웰 제조 방법
EP0856887B1 (en) * 1997-01-31 2004-04-28 SGS-THOMSON MICROELECTRONICS S.r.l. Process for forming a morphological edge structure to seal integrated electronic devices, and corresponding device
JP3393544B2 (ja) * 1997-02-26 2003-04-07 シャープ株式会社 半導体装置の製造方法
US6133607A (en) * 1997-05-22 2000-10-17 Kabushiki Kaisha Toshiba Semiconductor device
US5869875A (en) * 1997-06-10 1999-02-09 Spectrian Lateral diffused MOS transistor with trench source contact
US6054752A (en) * 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
KR19990006170A (ko) * 1997-06-30 1999-01-25 김영환 수평 바이폴라형 전계 효과 트랜지스터 및 그 제조 방법
US6194283B1 (en) * 1997-10-29 2001-02-27 Advanced Micro Devices, Inc. High density trench fill due to new spacer fill method including isotropically etching silicon nitride spacers
US6316807B1 (en) * 1997-12-05 2001-11-13 Naoto Fujishima Low on-resistance trench lateral MISFET with better switching characteristics and method for manufacturing same
WO1999034449A2 (en) 1997-12-24 1999-07-08 Koninklijke Philips Electronics N.V. A high voltage thin film transistor with improved on-state characteristics and method for making same
US6362064B2 (en) * 1998-04-21 2002-03-26 National Semiconductor Corporation Elimination of walkout in high voltage trench isolated devices
JP3211771B2 (ja) 1998-05-26 2001-09-25 日本電気株式会社 音声送受信装置
US6621121B2 (en) * 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6545316B1 (en) * 2000-06-23 2003-04-08 Silicon Wireless Corporation MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same
DE19854915C2 (de) 1998-11-27 2002-09-05 Infineon Technologies Ag MOS-Feldeffekttransistor mit Hilfselektrode
DE19905421B4 (de) * 1999-02-10 2005-07-28 Semikron Elektronik Gmbh Leistungshalbleiterbauelement mit reduzierter Millerkapazität
US6084277A (en) * 1999-02-18 2000-07-04 Power Integrations, Inc. Lateral power MOSFET with improved gate design
JP2000306922A (ja) * 1999-04-22 2000-11-02 Nippon Telegr & Teleph Corp <Ntt> 半導体装置の製造方法
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
GB9917099D0 (en) * 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
US6365932B1 (en) * 1999-08-20 2002-04-02 Denso Corporation Power MOS transistor
US6127703A (en) * 1999-08-31 2000-10-03 Philips Electronics North America Corporation Lateral thin-film silicon-on-insulator (SOI) PMOS device having a drain extension region
JP2001168334A (ja) * 1999-12-07 2001-06-22 Toyota Central Res & Dev Lab Inc パワー電界効果トランジスタ及びその製造方法
US6489653B2 (en) * 1999-12-27 2002-12-03 Kabushiki Kaisha Toshiba Lateral high-breakdown-voltage transistor
GB0003185D0 (en) * 2000-02-12 2000-04-05 Koninkl Philips Electronics Nv An insulated gate field effect device
US6781194B2 (en) * 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
US6649975B2 (en) * 2000-11-16 2003-11-18 Silicon Semiconductor Corporation Vertical power devices having trench-based electrodes therein
US6509220B2 (en) * 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6468847B1 (en) 2000-11-27 2002-10-22 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US6424007B1 (en) 2001-01-24 2002-07-23 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US6683346B2 (en) * 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
US6853033B2 (en) 2001-06-05 2005-02-08 National University Of Singapore Power MOSFET having enhanced breakdown voltage
JP4421144B2 (ja) 2001-06-29 2010-02-24 株式会社東芝 半導体装置
US6683344B2 (en) 2001-09-07 2004-01-27 Ixys Corporation Rugged and fast power MOSFET and IGBT
US7221011B2 (en) 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US6555873B2 (en) 2001-09-07 2003-04-29 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6573558B2 (en) 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6555883B1 (en) * 2001-10-29 2003-04-29 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US6552597B1 (en) * 2001-11-02 2003-04-22 Power Integrations, Inc. Integrated circuit with closely coupled high voltage output and offline transistor pair
US6614255B2 (en) * 2002-01-31 2003-09-02 Texas Instruments Incorporated Digital method of measuring driver slew rates for reduced test time
DE10214151B4 (de) * 2002-03-28 2007-04-05 Infineon Technologies Ag Halbleiterbauelement mit erhöhter Durchbruchspannung im Randbereich
US6583663B1 (en) 2002-04-22 2003-06-24 Power Integrations, Inc. Power integrated circuit with distributed gate driver
JP2004022700A (ja) 2002-06-14 2004-01-22 Sanyo Electric Co Ltd 半導体装置
US6865093B2 (en) 2003-05-27 2005-03-08 Power Integrations, Inc. Electronic circuit control element with tap element
US20060086974A1 (en) 2004-10-26 2006-04-27 Power Integrations, Inc. Integrated circuit with multi-length power transistor segments
US7135748B2 (en) 2004-10-26 2006-11-14 Power Integrations, Inc. Integrated circuit with multi-length output transistor segment
US7381618B2 (en) 2006-10-03 2008-06-03 Power Integrations, Inc. Gate etch process for a high-voltage FET
US7557406B2 (en) 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637898A (en) * 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
JP2000349288A (ja) * 1999-06-09 2000-12-15 Fuji Electric Co Ltd 縦型mosfet
JP2001044424A (ja) * 1999-07-29 2001-02-16 Toshiba Corp 高耐圧半導体装置
JP2001085688A (ja) * 1999-09-14 2001-03-30 Toshiba Corp 半導体装置及びその製造方法

Also Published As

Publication number Publication date
EP1528600A2 (en) 2005-05-04
US6573558B2 (en) 2003-06-03
US7648879B2 (en) 2010-01-19
JP5403747B2 (ja) 2014-01-29
US20030197220A1 (en) 2003-10-23
EP2264778A2 (en) 2010-12-22
US7791132B2 (en) 2010-09-07
US6781198B2 (en) 2004-08-24
JP4436598B2 (ja) 2010-03-24
US7829944B2 (en) 2010-11-09
EP1291926A3 (en) 2004-02-04
US6882005B2 (en) 2005-04-19
JP2010034579A (ja) 2010-02-12
US20090061585A1 (en) 2009-03-05
EP1528600A3 (en) 2008-08-06
US20030047768A1 (en) 2003-03-13
JP4564793B2 (ja) 2010-10-20
JP2003179229A (ja) 2003-06-27
EP1291926A2 (en) 2003-03-12
EP2264778A3 (en) 2011-02-02
ATE551725T1 (de) 2012-04-15
US20050023571A1 (en) 2005-02-03
EP1528600B1 (en) 2012-03-28
US20030047769A1 (en) 2003-03-13
US20030047793A1 (en) 2003-03-13
US6787847B2 (en) 2004-09-07
US20100109077A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP4564793B2 (ja) 多層拡張ドレイン構造を有する高電圧縦型トランジスタ
JP5419913B2 (ja) 多層拡張ドレイン構造を有する高電圧トランジスタを作製する方法
JP5354808B2 (ja) 基板上に高電圧トランジスタを作製する方法
US7459366B2 (en) High-voltage vertical transistor with a multi-gradient drain doping profile
US8552496B2 (en) High-voltage vertical transistor with edge termination structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081201

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081226

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees