New! View global litigation for patent families

US5386136A - Lightly-doped drain MOSFET with improved breakdown characteristics - Google Patents

Lightly-doped drain MOSFET with improved breakdown characteristics Download PDF

Info

Publication number
US5386136A
US5386136A US07697356 US69735691A US5386136A US 5386136 A US5386136 A US 5386136A US 07697356 US07697356 US 07697356 US 69735691 A US69735691 A US 69735691A US 5386136 A US5386136 A US 5386136A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
region
layer
transistor
drift
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07697356
Inventor
Richard K. Williams
Michael E. Cornell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SILICONIX INCORPORATED A Corp OF
Vishay-Siliconix
Original Assignee
Vishay-Siliconix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/126Power FETs

Abstract

An LDD lateral DMOS transistor is provided in a lightly-doped epitaxial layer of a first conductivity above a substrate of the same conductivity. A highly-doped buried layer of the first conductivity is provided under the LDD lateral DMOS transistor to relieve crowding of electrical equipotential distribution beneath the silicon surface. In one embodiment, a gate plate is provided above the gate and the gate-edge of the drift region. An optional N-well provides further flexibility to shape electric fields beneath the silicon surface. The buried layer can also reduce the electric field in a LDD lateral diode and improves cathode-to-anode reversed-recovery characteristics.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to metal semiconductor (MOS) field effect devices, and relates specifically to lateral double-diffused MOS (DMOS) field effect transistors.

2. Description of Related Art

Lateral double-diffused metal-oxide-semiconductor (lateral DMOS) transistors of the type having a lightly-doped drain (LDD) region (or "LDD lateral DMOS transistors") are often found in high-voltage integrated circuits. Among these LDD lateral DMOS devices, the self-isolated devices are especially desirable because of their relative ease of integration with low-voltage devices, which are often used to perform logic functions. The self-isolated devices are so described because, for N-channel devices, each transistor's N+ drain and source regions are separated from the N+ drain and source regions of other transistors by the reverse-biased PN-junction formed between each of these drain and source regions and the p-type substrate. Because of self-isolation, the self-isolated DMOS devices occupy less area and are relatively less costly than either the junction-isolated LDD lateral DMOS devices or the dielectric-isolated LDD lateral DMOS devices. An overview of the various types of LDD lateral DMOS devices discussed above can be found in "Power Integrated Circuits--A Brief Overview" by B. Baliga, IEEE Transactions on Electron Devices, Vol. ED-33, No. 12, December 1986, pp. 1936-9.

FIG. 1 is a cross section of an N-channel LDD lateral DMOS transistor 100 showing the double-diffused N+ source region 102 and P-body region 103. The P-body and source regions 103 and 102 are commonly connected by conductor 120, which connects the P-body region 108 via the P+ contact region 101. The drain of transistor 100 is formed by the N- LDD or drift region 122 and the N+ contact region 107. Transistor 100 is controlled by the voltage of gate 109, which is situated above the gate oxide 110 and enclosed by insulation layer 121. Optionally, a deep P+ region 104 can be formed to provide a good contact to the P- substrate 105. This deep P+ region 104 does not significantly impact the breakdown voltage of transistor 100, nor increases the parasitic capacitance associated with the transistor 100. An optional N-well 106 can also be formed to provide a "deep" drain region suitable for longer-drift high-voltage devices requiring a higher breakdown voltage. Transistor breakdown often occurs at the high electric field associated with the edge of the drift region 122 next to the N+ contact region 107 ("drain-edge"), if the drift region 122 is very lightly doped. Alternatively, breakdown is more likely to occur at the edge of the drift region 122 next to the gate 109 ("gate-edge"), if the drift region 122 is relatively more heavily doped. A higher dopant concentration in the drift region 122 reduces the on-resistance of the transistor 100, thereby allowing a higher saturation current. However, a breakdown at the surface near the gate-edge of drift region 122 may leave an amount of charge in the gate oxide 110, resulting in reliability problems and an unstable breakdown voltage.

FIG. 2 shows the electrical potential distribution when transistor 100 is in the "off" state. (In FIG. 2, the optional deep P+ region 104 and the optional N-well 106 are not shown). As shown in FIG. 2, high electric fields are indicated by the closely-spaced electrical equipotential lines "crowding" at the gate-edge of the drift region 122. The distribution of high electric fields at the gate edge lowers the breakdown voltage of transistor 100.

FIG. 3 illustrates one method in the prior art to relieve the crowding of electrical equipotential lines, and thereby increases the breakdown voltage of transistor 100. As shown in FIG. 3, a conductor 111, called a field plate, which is electrically connected either to the gate 109 or the source region 102, is situated above the gate-edge of the drift region 122. As shown in FIG. 3, the presence of the field plate 111 reduces the crowding of equipotentials at the gate-edge of the drift region 122 above the silicon surface, and hence lowers the electric field intensities at the gate-edge. The field plate 111 can be formed using polysilicon or metal. (When the field plate is electrically connected to the gate 109, the field plate is also known as the "gate plate"). However, there still remains high electric fields at the sidewalls (indicated by arrow A) of the N- drift region 122. Hence, the relief of electrical equipotential crowding using the gate plate approach is not satisfactory, particularly because reasonable and expected process variations in the doping concentration of the N- drift region 122 can exacerbate such field crowding.

Another method to increase breakdown voltage of a LDD lateral DMOS transistor is achieved by the reduced surface field (RESURF) technique, discussed in "High Voltage Thin Layer Devices (RESURF Devices)," by J. Appels et al, International Electron Device Meeting Technical Digest, December 1979, pp. 238-41. The RESURF technique provides the LDD lateral DMOS transistor in a lightly doped N- epitaxial layer on top of a P- substrate. In the RESURF technique, adjacent transistors are junction-isolated by P+ regions.

FIG. 4 shows a junction-isolated RESURF lateral DMOS transistor 200 having a field-shaping P+ buried layer 201. In FIG. 4, transistor 200 is fabricated in an N- epitaxial layer 206 formed on top of the P- substrate 205. Transistor 200 comprises the N+ source and drain regions 202 and 207, the P-body region 203, and gate 209, which is formed above a gate oxide layer 210 and enclosed in the insulator layer 221. The N+ source region 202 and the P-body region 203 are commonly connected by the metallization 220. In addition, transistor 200 is provided a field-shaping buried layer 201, which extends from the P+ isolation 204 and reaches horizontally underneath the gate region beyond the gate-edge of the drift region 222. In FIG. 4, in addition to the increased breakdown voltage due to the RESURF effects, the field-shaping P+ buried layer 201 enhances the breakdown voltage further by "uncrowding" the equipotential lines in the N- epitaxial layer 206 next to the gate region underneath 209. A similar transistor is disclosed in U.S. Pat. No. 4,300,150, entitled "lateral Double-diffused MOS transistor Device," by S. Colak, filed Jun. 16, 1980 and issued Nov. 10, 1981.

While RESURF lateral DMOS transistor 200 of FIG. 4 has its breakdown voltage enhanced, due to both the use of the RESURF technique and the field-shaping P+ buried layer 201, RESURF lateral DMOS transistor 200 is expensive from the packing density stand point because additional area is required by the P+ isolation region 204. In addition, the P+ isolation region 204 must be appropriately shaped, as shown in FIG. 4, to short the emitter-to-base junction of the high-gain parasitic vertical NPN transistor formed by the N+ source region 202, the P-body region 203, and the epitaxial region 206. Shorting the emitter-to-base junction prevents a phenomenon known as "common-emitter base-open breakdown voltage snap-back" ("BVCEO snapback"), which can destroy the device. In fabricating the P+ isolation region 204, care must be taken to ensure that the P+ diffusion penetrates the N- epitaxial layer into the P- substrate to ensure complete isolation.

Further, the P-body region 203 of RESURF lateral DMOS transistor 200 of FIG. 4 forms a reversed-bias junction with the N- epitaxial layer 206. Such reversed-biased junction increases the likelihood of punchthrough (barrier lowering) breakdown degradation in RESURF lateral DMOS transistor 200. As a result, the ability to integrate other bipolar or high voltage devices may be restricted by design considerations of the RESURF lateral DMOS transistor.

Therefore, a self-isolated LDD lateral DMOS transistor having reduced peak electric field at the gate-edge of the drift region is highly desirable. Such transistor would allow a higher dopant concentration in the drift region without reliability or breakdown voltage degradation. Further, such self-isolated LDD lateral DMOS transistor provides the breakdown voltage and reliability characteristics without incurring the area penalty of the P+ isolation in a RESURF type lateral DMOS transistor, and allows the designer further freedom to select and use thicker epitaxial layers for other purposes, such as for providing a vertical NPN transistor.

SUMMARY OF THE INVENTION

In accordance with a structure and a method of the present invention, a self-isolated LDD lateral DMOS transistor is provided having reduced peak electric fields at the gate edge without the added area cost of a RESURF transistor. The self-isolated LDD lateral DMOS transistor is formed in a lightly-doped epitaxial layer having the same conductivity type as the conductivity types of the substrate, a double-diffused body region and a buried layer. The buried layer extends from a position substantially beneath the source region to a position substantially beneath the drift region.

In one embodiment, a conductive gate plate (which may be metal, doped polysilicon, or any other appropriate conductive material) is provided above the gate region of the self-isolated lateral DMOS transistor. In another embodiment, a deep body diffusion region is provided in the self-isolated DMOS transistor. In another embodiment, a deep drain diffusion region is provided in the self-isolated DMOS transistor. In yet another embodiment, the gate, the buried P+ layer and the drift regions of the self-isolated LDD lateral DMOS transistor form a substantially annular structure surrounding the drain region. In these embodiments, the buried layer, in conjunction with the structure or structures mentioned above, provides field-shaping flexibility to increase the breakdown voltage by relieving electric field crowding.

In another embodiment of the present invention, the drift and the buried P+ regions form a substantially annular structure surrounding the drain region. However, in this embodiment, only one portion of the drift region is bordered by the channel region; another portion of the drift region abuts an "inactive edge" formed by a field oxide layer and the drift region. A P+ buried layer underneath the inactive edge is provided to reduce the electric field intensity at the inactive edge.

In another embodiment of the present invention, a diode is formed by eliminating the active channel region of an LDD lateral DMOS transistor. The P+ buried layer reduces the electric fields at the drift/field oxide interface, and improves the cathode-to-anode reverse-recovery characteristics.

In another embodiment of the present invention, a field oxide region is formed over the drift region prior to formation of the gate. The gate is extended over the field oxide region so as to reduce the electric field intensity at the interface between the channel and the drift regions.

The present invention will be better understood upon consideration of the detailed description provided hereinbelow, in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a self-isolated LDD lateral DMOS transistor in the prior art.

FIG. 2 shows the electrical equipotential distribution for the self-isolated LDD lateral DMOS transistor of FIG. 1.

FIG. 3 shows the electrical equipotential distribution for a prior art self-isolated LDD lateral DMOS transistor having a gate plate.

FIG. 4 shows a prior art RESURF type lateral DMOS transistor having a buried P+ layer.

FIG. 5 shows a self-isolated LDD lateral DMOS transistor 500 with a field-shaping P+ buried layer 501, in accordance with an embodiment of the present invention.

FIG. 6 shows the electrical equipotential distribution for the self-isolated LDD lateral DMOS transistor 500 FIG. 5.

FIG. 7 shows a self-isolated LDD lateral DMOS transistor 600 with an N-well 606, in accordance with another embodiment of the present invention.

FIG. 8 compares the electric field distributions of the LDD lateral DMOS transistor of FIG. 1, the LDD lateral DMOS transistor of FIG. 2 (i.e. with a gate plate) and the LDD lateral DMOS transistor 500 of FIG. 5, provided in accordance with the present invention.

FIG. 9 shows high-voltage LDD lateral DMOS transistor 900 in accordance with the present invention integrated with low-voltage CMOS transistors 903 and 904 each using P+ and N+ buried layers to suppress the CMOS latch up phenomenon.

FIG. 10a is a cross section of a self-isolated LDD lateral DMOS transistor 1000 having a partial inactive edge 1051 and a P+ buried layer 501 underneath the partial inactive edge, in accordance with the present invention.

FIG. 10b a top view of the self-isolated lateral DMOS transistor 1000 shown in FIG. 10a.

FIG. 11 is a cross-section of a self-isolated LDD diode 1100 having a p+ buried layer 501 underneath a drift region 522, the drift region 522 being formed beneath a field oxide layer 1050, in accordance with the present invention.

FIG. 12 is a cross section of a self-isolated LDD lateral DMOS transistor 1200 having a P+ buried layer 501 partially overlapped by the N- drift region 1222; the N- drift region 1222 being formed beneath a field oxide layer 250, in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 5 shows a cross section of an LDD lateral DMOS transistor 500 provided in accordance with one embodiment of the present invention. LDD lateral DMOS transistor 500 is a substantially annular structure in which the gate 509, the drift region 522 and the P+ buried layer 501 (see below) surround the drain region on all sides.

In this embodiment, as shown in FIG. 5, LDD lateral DMOS transistor 500 is formed in a lightly-doped P- epitaxial layer 512 on top of a P- substrate 505. The epitaxial layer 512 has a dopant (e.g. boron) concentration typically 1.0×1014 /cm3 to 5.0×1014 /cm3, although the dopant concentration can be as high as 8.0×1015 /cm3. The depth of the epitaxial layer is chosen according to the intended operational conditions of all devices in the integrated circuit. Likewise, the resistivity of the P- (e.g. boron-doped) substrate 505 is chosen with consideration of the intended maximum operational voltage of all devices integrated with transistor 500 in the integrated circuit. For up to 500 volts, a 30-50 ohms-cm resistivity can be used. However, for higher voltage operations (e.g. 1000 volts or higher), a higher resistivity, even up to several hundred ohms-cm, can be used.

The P- epitaxial layer 512 can be deposited by high temperature chemical vapor deposition, or any other suitable technique known in the art. Before forming the P- epitaxial layer 512, the P+ buried layer 501 is formed by conventional technique, such as ion implantation, near the surface of the P- substrate 505. In the course of forming the P- epitaxial layer 512, the P+ buried layer 501 back diffuses towards the surface of the P- epitaxial layer 512. Dependent upon the number of thermal cycles in the process, an initial dopant concentration is provided such that the final dopant concentration of the P+ buried layer 501 is in the order of 1016 /cm3. In this embodiment, a 5.0×1014 /cm2 implant dose of boron at 60 KeV provides the desirable final dopant concentration in the P+ buried layer 501. Since the back diffusion can be as much as 8 microns, this thickness limits the minimum depth the P- epitaxial layer 512 can be.

FIG. 5 shows a deep P+ region 504 which, though not necessary, provides a better contact between the P-body region 502 and the P- substrate 505. If ion implantation is used to form the deep P+ region 504, a boron dose in excess of 1015 /cm2 at 60 KeV can be used. Alternatively, the P+ region 504 can be formed using a P+ predeposition from a gaseous or solid boron source. The P-body region 503 determines the threshold voltage of the LDD lateral DMOS transistor 500. The implant dose (at 60 KeV) used to form the P-body region 503 ranges from 1.0×1013 /cm2 to 9.0×1013 /cm2, dependent upon the desired threshold voltage, with a typical dose of 5.0×1013 /cm2. The threshold voltage for common N+/P-body junction depths vary from 0.7 volts to 3.0 volts, depending on the net profile as determined by the interaction in the junction between N+ 502 and P-body region 503. In this embodiment, in the course of fabrication, the P-body region 503 down-diffuses as deep as 4 microns into the substrate. Unlike the RESURF type LDD lateral DMOS transistor, such as transistor 200 shown in FIG. 4, there is no reversed-bias junction in the vicinity of the P-body region 503. A reversed-bias junction is formed between the N+ drain 507 and the P- epitaxial layer 512, which is too far from the P-body region 503 to contribute to punchthrough breakdown degradation of the transistor 500.

The N+ source region 502 and the N+ drain region 507 are formed using conventional techniques with an implant dose of 5.0×1015 /cm2 or higher. In this embodiment, 50%-50% mixture of phosphorus and arsenic is used, although either dopant can be used without the other. Because of the benefits of the present invention (explained below), the drift region can be formed with a total implant dose (e.g. phosphorous) up to 4.0×1012 /cm2, which is approximately four times the dopant implant dose of drift regions attainable in the prior art. The on-resistance of this transistor 500 is therefore much reduced from that of LDD lateral DMOS transistors in the prior art.

An optional N-well 506 can also be provided. When provided, N-well 506 can be 3-12 microns deep, with a dopant concentration (e.g. phosphorous) between 1.0×1015 /cm3 to 2.0×1016 /cm3. If the N-well 506 is implanted, an implant dose (e.g. phosphorous) of 3.0-8.0×1012 /cm2 at 60-100 KeV can be used to provide a typical surface concentration of substantially 8.0×1015 /cm3. In addition to allowing integration with P-MOS transistors, the optional N-well 506 provides additional field-shaping flexibility (explained below).

An optional P+ region 513 (e.g. boron-doped) provides a source-P-body shunt and provides better contact to the P-body region 503. If the P+ region 513 is not provided, the P-body region 503 contacts the source/body contact 520 directly, or in combination with deep P+ region 504. The gate oxide 510 and the gate 509 of transistor 500 are formed using conventional method.

Significantly, in the structure shown in FIG. 5, unlike the RESURF type lateral DMOS transistor, there is not a high-gain parasitic vertical NPN transistor susceptible to BVCEO snapback. The BVCEO snapback phenomenon is discussed above in conjunction with the RESURF type DMOS transistor 200 of FIG. 4. In this embodiment, there is only a parasitic lateral NPN transistor having a long base (hence, lower gain) formed by the source and drain regions 502 and 507, and the P- epitaxial and P-body regions 512 and 503. Hence, transistor 500 is less likely to exhibit BVCEO snapback.

In this embodiment, an optional gate plate 511 (e.g. aluminum) is provided for reducing the electric field crowding on the silicon surface in the manner already discussed above in conjunction with the gate plate shown in FIG. 2. Significantly, if reduction of the electric field at the drain-edge of the drift region 522 is desired, the conducting material 508 at the drain contact region 507 can also be made to extend over the insulation layer 521 beyond the drain-edge of the drift region 522 forming a field plate.

The electrical equipotential distribution of transistor 500 is shown in FIG. 6. As shown in FIG. 6, the presence of the P+ buried layer 501 pushes the electrical equipotential lines beneath the silicon surface laterally further and more evenly in the direction of the drain contact region 507. In this manner, the crowding of electrical equipotentials indicated by arrow A in FIG. 3 is relieved by the presence of P+ buried layer 501. Hence, the breakdown voltage of LDD DMOS transistor 500 is enhanced by both the reduction of the electric fields at the gate-edge of the drift region 522, and by the shifting of the electric fields into the bulk silicon away from the surface charges. Because of this breakdown voltage enhancement, the dopant concentration in the drift region 522 can be increased up to four times over the prior art, correspondingly reducing the on-resistance of the transistor 500, thereby increasing LDD lateral DMOS transistor 500's ability to sustain a higher current. Furthermore, because the breakdown remains in the bulk, the avalanche breakdown voltage remains stable, and the charging of the overlying oxide 521 is minimized.

FIG. 7 shows in another embodiment of the present invention the electrical equipotential distribution of an LDD lateral DMOS transistor 600 having an N-well 606. For convenience of comparison, like structures of transistors 500 and 600, respectively, of FIGS. 5 and 7 are given the same reference numerals. FIG. 7 shows that N-well 606 also pushes the electrical equipotentials of transistor 600 further into the bulk silicon and away from the surface charges. Hence, controlling the depth of N-well 606 provides further field-shaping flexibility for tailoring transistor 600 to the desired breakdown characteristics. N-wells, such as N-well 606, are commonly used for operating voltages above 200 volts, but are less commonly used if the operating voltage is less than 200 volts. This is because desirable breakdown characteristics are more easily achieved at less than 200 volts. An N-well also reduces the on-resistance of the high voltage transistors.

FIG. 8 compares the electric field intensities along the silicon surface of (a) an LDD lateral DMOS transistor in the prior art similar to that shown in FIG. 1; (b) an LDD lateral DMOS transistor similar to the transistor in (a), but having a gate plate such as the gate plate 802 shown; and (c) an LDD lateral DMOS transistor having a P+ buried layer, such as P+ buried layer 801 shown in accordance with the present invention. In FIG. 8, the transistor in (a) is represented by the structure 800, minus the gate plate 802 and the P+ buried layer 801; the transistor in (b) is represented by the structure 800, minus the P+ buried layer 801; and the transistor in (c) is represented by the structure 800, with both the gate plate 802 and the P+ buried layer 801. All three transistors in (a) and (b) and (c) have the drain plate 804. The drain plate 804 modifies the field distribution at the drain-edge of the drift region 805, in the manner discussed above.

In FIG. 8, the electric field intensities along the surface of the silicon is plotted against the distance in the x-direction. As shown in FIG. 8, the curves labelled 820, 821 and 822 represent respectively the electric field intensity profiles of the transistors in (a), (b) and (c) described above. It is readily seen that in all three curves 820, 821 and 822, the electric field intensity peaks at the gate-edge (point x1) of the drift region 805, and approaches zero at the drain-edge (point x4) of the drift region 805. As expected, the highest electric field intensity at point x1 corresponds to the transistor in (a). In the transistor of (a), the electric field intensity (curve 820) rapidly falls off as the distance from the gate-edge of the drift region increases. The electric field in this instance, decreases at a rate which is moderated by the presence of the drain plate 804 between points x3 and x4. In the transistor of (b), the electric field intensity (curve 821) is more or less level for the region underneath the gate plate 802, and then decreases at a substantially constant rate similar to the rate of decrease shown in curve 820, as one moves beyond the extent of the gate plate 802 at point x2 towards point x4. As curves 820 and 821 illustrate, both the gate and the drain plates 802 and 804 have a levelling effect on the electric field intensity along the silicon surface under these plates. However, in accordance with the present invention and shown by the curve 822, transistor (c) having the P+ buried layer 801 has a substantially uniform electric field intensity profile along the entire length (x1 to x4) of the drift region 805.

In addition to the benefits discussed above, the P+ buried layer, such as P+ buried layer 501 of transistor 500 of FIG. 5, reduces the injected minority carrier lifetime, thereby improving the reverse-recovery characteristics in the diode formed by the drain 507, the P- epitaxial layer 512 and the P- substrate 505. Further, at the same time when the P+ buried layer 501 is formed, P+ buried layers can also be formed beneath the low-voltage NMOS transistors used to implement the circuits, such as logic circuits, integrated on the same semiconductor substrate. The buried layers under such low-voltage NMOS transistors reduce the integrated circuit's susceptibility to the CMOS latch-up condition.

FIG. 9 shows an LDD lateral DMOS transistor 901 formed in an annular fashion, integrated on the same substrate as two low-voltage CMOS transistors 903 and 904. In FIG. 9, the P+ buried layers 905 and 906 serve not only as field-shaping structures for transistor 901, but also as a latch-up suppressing structure for NMOS transistor 904. Hence, from a top view, the drift, drain, P-body, the various P+ buried regions, and other structures of LDD lateral DMOS transistor 901 are annular structures. For example, as shown in FIG. 9, the conductor 910 which connects both the P-body regions and source regions of LDD lateral DMOS transistor 901 is shown in FIG. 9 as annular.

FIG. 10a shows an LDD lateral DMOS transistor 1000, which is similar to transistor 500 of FIG. 5, except that in transistor 1000, only a portion of the drift region 522 borders an active channel region under the gate 1009. That is, unlike gate 509 of transistor 500, gate 1009 of transistor 1000 is not an annular structure surrounding the drain region 507. Again, for convenience of comparison, the same reference numerals in FIGS. 5 and FIGS. 10a denote structures which are functionally and structurally alike. Further, even though given different reference numerals, the source/bulk contact 1020, the P+ region 1013, and the P-body region 1003 of transistor 1000, are similar in function to corresponding source/bulk contact 520, the P+ region 513 and the P-body region 503 of transistor 500, and can be formed in substantially the same manner as described above for transistor 500.

As shown in FIG. 10a, a field oxide region 1050 is formed by a LOCOS process known in the art. This oxide region 1050, which is typically between 5000 Åto 2 microns thick, is formed prior to formation of gate 1009 and shown in FIG. 10a to abut the drift region 522 on the side of the drift region 522 away from the channel region. The interface 1051 between the drift region 522 and the field oxide region 1050 is known as the "inactive edge", and the interface 1052 between the drift region 522 and the channel region is known as the "active edge." As mentioned above, as in the gate-edge, dependent upon the resistivity of the drift region 522, an adverse high electric field may develop at the inactive edge 1051. This adverse high electric field may be further increased by the presence of P-type field dopant, or by stress-induced crystalline defects present at the interface between oxide region 1050 and the drift region 522. One source of such crystalline defects is the LOCOS field oxidation step mentioned above. Therefore, in accordance with the present invention there is provided underneath the inactive edge a portion of the P+ buried layer 501. This portion of the P+ buried layer 501 pushes the electrical equipotential lines away from the inactive edge 1051 and into the bulk silicon in substantially the same manner as provided by the P+ buried layer 501 underneath the active edge 1052 described above.

The top view of one possible layout of the transistor 1000 is shown in FIG. 10b. In FIG. 10b, the inactive edge 1051 and the active edge 1052 are shown to be on opposite sides of the drain region 507. The extent of the P+ buried layer 501, the drift region 522, and the optional gate plate 511 are indicated respectively by bidirectional arrows 1061, 1062 and 1063. Field oxide 1050 lies outside the solid rectangle, 1057. Gate 509, source/bulk contact 520, and the source region 502 are also indicated.

In the technology described above, a diode structure can result from eliminating the active gate from an LDD lateral DMOS transistor, such as transistor 1000 of FIG. 10a. Such a diode is shown in FIG. 11, giving the same reference numerals to corresponding structures in FIGS. 10a and 11. In FIG. 11, a diode is formed by the P substrate 505 (anode), the P-epitaxial layer 512 and the drain region 507 (cathode). The P substrate layer is connected in common with the source contact 1020, and the P+ region 1013. As in transistor 1000, the P+ buried layer 501 pushes the electrical equipotential lines away from the inactive edge 1051 and into the bulk silicon to relieve high electric field that can developed at the inactive edge. In addition, as mentioned above, the P+ buried layer 501 reduces the injected minority carrier lifetime, and thereby improves the cathode-to-anode reverse-recovery characteristics of the diode.

FIG. 12 is another embodiment of the present invention in an LDD lateral DMOS transistor 1200, in which a field oxide region 1250 is formed over the drift region 1222. Like transistor 500 of FIG. 5, transistor 1200 is a substantially annular structure having gate 1209, drift region 1222, and the P+ buried layer 501 surround the drain region 507. Again, for the convenience of comparison, like structures of the transistors 500 and 1200 (FIGS. 5 and 12) are given the same reference numerals. The like structures of transistors 500 and 1200 can be formed in substantially the same manner as described above for transistor 500. In addition, the drift region 1222 can be formed in the same manner as the drift region 522 of transistor 500. Of significance in transistor 1200 is the field oxide layer 1250 not found in transistor 500 of FIG. 5. This field oxide region 1250, which may be formed by the LOCOS process mentioned above, is distinguished from other available oxide layers in that it can be any thick oxide formed prior to the formation of gate 1209, thereby allowing an overlap of the gate 1209 to be formed over part of the field oxide 1250, as shown in FIG. 12. This overlap by the gate 1209 over the field oxide 1250 forms an effective gate plate to prevent high electric field at the interface 1251 between the channel region 1253 and the drift region 1222, thereby further enhancing the breakdown voltage of transistor 1200.

The above detailed description and the accompanying drawings are intended to illustrate the specific embodiments of the present invention and not intended to limit the present invention. Various modifications and variations within the scope of the present invention are possible. For example, it is within the ability of one of ordinary skill to provide P-channel analog of the N-channel LDD lateral DMOS transistor 500, by reversing the conductivity of all the relevant semiconductor regions, upon consideration of the above detailed description and the accompanying drawings. As another example, it is also known that the P+ body contact region 513 and the N+ contact region 502 may be separated electrically, allowing a low voltage reversed bias of a few volts to be impressed across the source-to-body junction without significantly altering the conduction or breakdown characteristics of the device. Such modification is within the scope of the present invention. The scope of the present invention is defined by the following claims.

Claims (18)

We claim:
1. A lateral DMOS transistor structure, comprising:
an epitaxial layer of a first conductivity formed on a surface of a substrate of said first conductivity;
a source region formed in said epitaxial layer, said source region having a conductivity opposite said first conductivity;
a body region of said first conductivity formed in said epitaxial layer adjacent said source region having a portion of said body region exposed on a surface of said epitaxial layer away from said surface of said substrate;
a drift region of said second conductivity formed in said epitaxial layer and spaced from said source and said body regions by an exposed portion of said epitaxial layer on the surface of said epitaxial layer away from said surface of said substrate, such that said exposed portion of said body region and said exposed portion of said epitaxial layer form a channel region between said source region and said drift region;
a drain region of said second conductivity formed in said epitaxial layer adjacent said drift region away from said channel region;
a gate region formed above said channel region; and
a buried layer of said first conductivity having a dopant concentration substantially higher than the dopant concentration of said substrate, and having a portion located underneath the interface between said channel and said drift regions.
2. A structure as in claim 1, further comprising a gate plate located above said gate region and extending over said interface between said channel and drift regions.
3. A structure as in claim 1, further comprising a drain plate located above said drain region and extending over the interface between said drift and drain regions.
4. A structure as in claim 1, further comprising a deep diffusion region of said first conductivity in said epitaxial layer and adjacent said body region.
5. A structure as in claim 1, further comprising a deep diffusion region of said second conductivity in said epitaxial layer and adjacent said drain region.
6. A structure as in claim 1, wherein said first conductivity is p-type and said second conductivity is n-type.
7. A structure as in claim 1, wherein said lateral DMOS transistor structure is substantially annular about said drain region.
8. A lateral DMOS transistor structure, comprising:
an epitaxial layer of a first conductivity formed on a surface of a substrate of first conductivity;
a gate region above said epitaxial layer, said gate region defining, on surface of said epitaxial layer, a channel region underneath said gate region;
a source region of a second conductivity opposite said first conductivity in said epitaxial layer having a portion exposed on the surface of said epitaxial layer adjacent said channel region;
a body region of said first conductivity formed in said channel region in said epitaxial layer adjacent said source region;
a drift region of said second conductivity formed in said epitaxial layer adjacent said channel region away from said body region;
a drain region of said second conductivity formed in said epitaxial layer adjacent said drift region;
an oxide region adjacent said drift region, being located away from the interface between said channel region and said drift region; and
a buried layer of said first conductivity having a dopant concentration substantially higher than the dopant concentration of said substrate and having a first portion located underneath the interface between said drift region and said oxide region.
9. A structure as in claim 8, wherein said buried layer having a second portion located underneath said interface between said channel region and said drift region.
10. A structure as in claim 8, further comprising a gate plate above said gate region extending over said interface between said channel region and said drift region and extending along the boundary of said drift region to provide a portion of said gate plate above the interface between said oxide region and said drift region.
11. A structure as in claim 8, further comprising a deep diffusion region of said first conductivity formed in said epitaxial layer adjacent said body region.
12. A structure as in claim 8, further comprising a deep diffusion region of said second conductivity formed in said epitaxial layer adjacent said drain region.
13. A structure as in claim 8, wherein said first conductivity is p-type and said second conductivity is n-type.
14. An LDD DMOS transistor structure, comprising:
a buried layer of a first conductivity formed on a surface of a substrate of said first conductivity; said buried layer having a dopant concentration substantially higher than the dopant concentration of said substrate;
an epitaxial layer of said first conductivity formed on said surface of said substrate;
a drift region of a second conductivity formed in said epitaxial layer, a portion of the boundary of said drift region located above said buried layer;
an oxide layer formed above said drift region;
a gate formed above said epitaxial layer such that a portion of said epitaxial layer underneath said gate is adjacent said portion of the boundary of said drift region, said portion of said epitaxial layer forming a channel region;
a body region formed in said epitaxial layer, said body region having a portion in said channel region exposed on a surface of said epitaxial layer, said exposed portion of said body region located away from said drift region;
a source region of said second conductivity formed in said epitaxial layer adjacent said channel region and said exposed portion of said body region;
a drain region of said second conductivity formed in said epitaxial layer adjacent said drift region away from said channel region.
15. A structure as in claim 14, further comprising a deep diffusion region of said first conductivity in said epitaxial layer adjacent said body region and said buried layer.
16. A structure as in claim 14, wherein said gate extends over said oxide layer forming a gate plate near the interface between said channel and drift regions.
17. A self-isolated diode structure, comprising:
a buried layer of a first conductivity formed on a surface of a substrate of said first conductivity;
an epitaxial layer of said first conductivity formed on said surface of said substrate;
an oxide layer formed on top of said epitaxial layer, said oxide layer partially covering said epitaxial layer, and exposing first and second regions of said epitaxial layer, a portion of the boundary of said first region being located above said buried layer;
a drift region of a second conductivity formed in said first region of said epitaxial layer adjacent said oxide layer at said portion of said boundary;
a cathode region of said second conductivity formed in said first region of said epitaxial layer adjacent said drift region away from said portion of said boundary, and
an anode region of said first conductivity in said second region of said epitaxial layer adjacent said oxide layer.
18. A structure as in claim 17, further comprising a deep diffusion region of said first conductivity in said epitaxial layer adjacent said anode region and said buried layer.
US07697356 1991-05-06 1991-05-06 Lightly-doped drain MOSFET with improved breakdown characteristics Expired - Lifetime US5386136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07697356 US5386136A (en) 1991-05-06 1991-05-06 Lightly-doped drain MOSFET with improved breakdown characteristics

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US07697356 US5386136A (en) 1991-05-06 1991-05-06 Lightly-doped drain MOSFET with improved breakdown characteristics
JP14015692A JP3425967B2 (en) 1991-05-06 1992-05-01 Lateral mos field effect transistor and manufacturing method thereof drain lightly doped
EP19920304017 EP0514060B1 (en) 1991-05-06 1992-05-05 DMOS transistor structure & method
DE1992624446 DE69224446D1 (en) 1991-05-06 1992-05-05 DMOS transistor structure and method
DE1992624446 DE69224446T2 (en) 1991-05-06 1992-05-05 DMOS transistor structure and method
US08040684 US5374843A (en) 1991-05-06 1993-03-31 Lightly-doped drain MOSFET with improved breakdown characteristics
US08318027 US5514608A (en) 1991-05-06 1994-10-04 Method of making lightly-doped drain DMOS with improved breakdown characteristics
JP2002008981A JP4078081B2 (en) 1991-05-06 2002-01-17 The method for providing the structure and the structure of this diode self insulated diode
JP2007166501A JP2007318158A (en) 1991-05-06 2007-06-25 Lateral mos field-effect transistor having lightly-doped drain and its manufacturing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08040684 Continuation-In-Part US5374843A (en) 1991-05-06 1993-03-31 Lightly-doped drain MOSFET with improved breakdown characteristics
US08318027 Division US5514608A (en) 1991-05-06 1994-10-04 Method of making lightly-doped drain DMOS with improved breakdown characteristics

Publications (1)

Publication Number Publication Date
US5386136A true US5386136A (en) 1995-01-31

Family

ID=24800813

Family Applications (2)

Application Number Title Priority Date Filing Date
US07697356 Expired - Lifetime US5386136A (en) 1991-05-06 1991-05-06 Lightly-doped drain MOSFET with improved breakdown characteristics
US08318027 Expired - Lifetime US5514608A (en) 1991-05-06 1994-10-04 Method of making lightly-doped drain DMOS with improved breakdown characteristics

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08318027 Expired - Lifetime US5514608A (en) 1991-05-06 1994-10-04 Method of making lightly-doped drain DMOS with improved breakdown characteristics

Country Status (4)

Country Link
US (2) US5386136A (en)
EP (1) EP0514060B1 (en)
JP (3) JP3425967B2 (en)
DE (2) DE69224446D1 (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612561A (en) * 1993-12-22 1997-03-18 Nec Corporation Involatile semiconductor memory
US5731612A (en) * 1995-06-05 1998-03-24 Motorola, Inc. Insulated gate field effect transistor structure having a unilateral source extension
US5753958A (en) * 1995-10-16 1998-05-19 Sun Microsystems, Inc. Back-biasing in asymmetric MOS devices
US5825065A (en) * 1997-01-14 1998-10-20 Texas Instruments Incorporated Low voltage DMOS transistor
US5905284A (en) * 1995-08-25 1999-05-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device with a particular DMISFET structure
US5907173A (en) * 1997-08-25 1999-05-25 Lg Semicon Co., Ltd. High voltage field effect transistor and method of fabricating the same
US5939753A (en) * 1997-04-02 1999-08-17 Motorola, Inc. Monolithic RF mixed signal IC with power amplification
US6020611A (en) * 1998-06-10 2000-02-01 Motorola, Inc. Semiconductor component and method of manufacture
WO2000046851A1 (en) * 1999-02-05 2000-08-10 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
WO2000046859A1 (en) * 1999-02-05 2000-08-10 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6424007B1 (en) * 2001-01-24 2002-07-23 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US20020153556A1 (en) * 1996-11-05 2002-10-24 Power Integrations, Inc. Method of making a high-voltage transistor with buried conduction regions
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6525376B1 (en) * 1998-01-26 2003-02-25 Seiko Instruments Inc. High withstand voltage insulated gate N-channel field effect transistor
US20030047769A1 (en) * 2001-09-07 2003-03-13 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US20030047792A1 (en) * 2001-09-07 2003-03-13 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6534829B2 (en) * 1998-06-25 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US20030057524A1 (en) * 2001-09-07 2003-03-27 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US20030102507A1 (en) * 2001-12-03 2003-06-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
WO2003058702A1 (en) * 2001-12-26 2003-07-17 Sirenza Microdevices, Inc. Multiple conductive plug structure for lateral rf mos devices
US6617643B1 (en) 2002-06-28 2003-09-09 Mcnc Low power tunneling metal-oxide-semiconductor (MOS) device
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US20040201061A1 (en) * 2003-04-09 2004-10-14 Chang-Ki Jeon Lateral double-diffused MOS transistor having multiple current paths for high breakdown voltage and low on-resistance
US20040251493A1 (en) * 2002-10-25 2004-12-16 Makoto Kitaguchi Lateral short-channel dmos, method for manufacturing same and semiconductor device
US20050056889A1 (en) * 2003-09-15 2005-03-17 Gordon Ma LDMOS transistor
US20050133858A1 (en) * 2001-09-07 2005-06-23 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US20050179093A1 (en) * 2004-02-17 2005-08-18 Silicon Space Technology Corporation Buried guard ring and radiation hardened isolation structures and fabrication methods
US20050255655A1 (en) * 2000-12-31 2005-11-17 Hower Philip L N-channel LDMOS with buried P-type region to prevent parasitic bipolar effects
US20070023830A1 (en) * 2005-07-27 2007-02-01 Pfirsch Frank D Semiconductor component with a low on-state resistance
US20070141794A1 (en) * 2005-10-14 2007-06-21 Silicon Space Technology Corporation Radiation hardened isolation structures and fabrication methods
US20070155062A1 (en) * 2004-07-08 2007-07-05 Disney Donald R Method and apparatus for controlling a circuit with a high voltage sense device
US20070278612A1 (en) * 2006-05-31 2007-12-06 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US20080054325A1 (en) * 2006-09-01 2008-03-06 Denso Corporation Semiconductor device having lateral MOS transistor and Zener diode
US20080142899A1 (en) * 2006-08-04 2008-06-19 Silicon Space Technology Corporation Radiation immunity of integrated circuits using backside die contact and electrically conductive layers
CN100399581C (en) 2006-01-19 2008-07-02 电子科技大学 RF DMOS power device
US20080157210A1 (en) * 2006-12-27 2008-07-03 Chang Gung University High-linearity and high-power CMOS structure and manufacturing method for the same
US20080197418A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US20080197417A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US20080197397A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US20080197408A1 (en) * 2002-08-14 2008-08-21 Advanced Analogic Technologies, Inc. Isolated quasi-vertical DMOS transistor
US20080197406A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Sensing FET integrated with a high-voltage vertical transistor
US20080197446A1 (en) * 2002-08-14 2008-08-21 Advanced Analogic Technologies, Inc. Isolated diode
US20080210980A1 (en) * 2002-08-14 2008-09-04 Advanced Analogic Technologies, Inc. Isolated CMOS transistors
US20080213972A1 (en) * 2002-08-14 2008-09-04 Advanced Analogic Technologies, Inc. Processes for forming isolation structures for integrated circuit devices
US20080217699A1 (en) * 2002-08-14 2008-09-11 Advanced Analogic Technologies, Inc. Isolated Bipolar Transistor
US20080237706A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Lateral MOSFET
US20080237704A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Isolated trench MOSFET
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US20090194843A1 (en) * 2008-02-01 2009-08-06 Infineon Technologies Ag Integrated circuit arrangement including a protective structure
US20090218621A1 (en) * 2005-07-27 2009-09-03 Infineon Technologies Austria Ag Semiconductor component with a drift region and a drift control region
DE102008004682A1 (en) * 2008-01-16 2009-09-10 Infineon Technologies Ag Integrated switching arrangement, has protection structure, whose one of semiconductor zones of conducting type is arranged in semiconductor substrate and attached at connecting zone in electrical conducting manner
US20100065909A1 (en) * 2008-09-17 2010-03-18 Sharp Kabushiki Kaisha Semiconductor device and method for making the same
US20100072540A1 (en) * 2003-05-27 2010-03-25 Power Integrations, Inc. Electronic circuit control element with tap element
US20100133611A1 (en) * 2002-08-14 2010-06-03 Advanced Analogic Technologies, Inc. Isolated transistor
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US7956391B2 (en) 2002-08-14 2011-06-07 Advanced Analogic Technologies, Inc. Isolated junction field-effect transistor
US20110201171A1 (en) * 2002-08-14 2011-08-18 Advanced Analogic Technologies, Inc. Processes For Forming Isolation Structures For Integrated Circuit Devices
CN102194877A (en) * 2010-02-08 2011-09-21 半导体元件工业有限责任公司 Electronic device and process of forming the same
US20110241114A1 (en) * 2010-04-02 2011-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage mos transistor
CN101719515B (en) 2009-11-03 2011-11-23 苏州远创达科技有限公司 LDMOS device with transverse diffusing buried layer below grid
US20120018804A1 (en) * 2010-07-23 2012-01-26 Khemka Vishnu K Guard Ring Integrated LDMOS
US20120043608A1 (en) * 2010-08-20 2012-02-23 Hongning Yang Partially Depleted Dielectric Resurf LDMOS
US8445357B2 (en) 2010-03-30 2013-05-21 Samsung Electronics Co., Ltd. Method of fabricating semiconductor integrated circuit device and semiconductor integrated circuit device fabricated using the method
US8638160B2 (en) 2007-12-14 2014-01-28 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
US20140167159A1 (en) * 2010-11-24 2014-06-19 Semiconductor Components Industries, Llc Semiconductor device and method of manufacturing the same
US8853780B2 (en) * 2012-05-07 2014-10-07 Freescale Semiconductor, Inc. Semiconductor device with drain-end drift diminution
US20150221628A1 (en) * 2014-02-04 2015-08-06 Stmicroelectronics (Tours) Sas Increase of epitaxy resistivity and decrease of junction capacitance by addition of pburied layer
EP2945191A1 (en) * 2014-05-12 2015-11-18 Semiconductor Components Industries, LLC Method of forming a semiconductor device and structure therefor
CN105355552A (en) * 2015-11-03 2016-02-24 株洲南车时代电气股份有限公司 Preparation method of fast recovery diode
US9490322B2 (en) 2013-01-23 2016-11-08 Freescale Semiconductor, Inc. Semiconductor device with enhanced 3D resurf
US20160336427A1 (en) * 2015-03-27 2016-11-17 Texas Instruments Incorporated Diluted drift layer with variable stripe widths for power transistors
US9543379B2 (en) 2014-03-18 2017-01-10 Nxp Usa, Inc. Semiconductor device with peripheral breakdown protection
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US9660053B2 (en) 2013-07-12 2017-05-23 Power Integrations, Inc. High-voltage field-effect transistor having multiple implanted layers
US9871135B2 (en) 2016-06-02 2018-01-16 Nxp Usa, Inc. Semiconductor device and method of making
US9905687B1 (en) 2017-02-17 2018-02-27 Nxp Usa, Inc. Semiconductor device and method of making

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558313A (en) * 1992-07-24 1996-09-24 Siliconix Inorporated Trench field effect transistor with reduced punch-through susceptibility and low RDSon
US5422508A (en) * 1992-09-21 1995-06-06 Siliconix Incorporated BiCDMOS structure
US5446300A (en) * 1992-11-04 1995-08-29 North American Philips Corporation Semiconductor device configuration with multiple HV-LDMOS transistors and a floating well circuit
JP3221766B2 (en) * 1993-04-23 2001-10-22 三菱電機株式会社 A method of manufacturing a field effect transistor
US5378912A (en) * 1993-11-10 1995-01-03 Philips Electronics North America Corporation Lateral semiconductor-on-insulator (SOI) semiconductor device having a lateral drift region
US5498554A (en) * 1994-04-08 1996-03-12 Texas Instruments Incorporated Method of making extended drain resurf lateral DMOS devices
DE19517975B4 (en) * 1994-07-12 2007-02-08 International Rectifier Corp., El Segundo CMOS circuit die with polysilicon field ring structure
US5598021A (en) * 1995-01-18 1997-01-28 Lsi Logic Corporation MOS structure with hot carrier reduction
DE69616013D1 (en) * 1995-07-19 2001-11-22 Koninkl Philips Electronics Nv A semiconductor device from high voltage LDMOS-type
US6831331B2 (en) 1995-11-15 2004-12-14 Denso Corporation Power MOS transistor for absorbing surge current
US6242787B1 (en) 1995-11-15 2001-06-05 Denso Corporation Semiconductor device and manufacturing method thereof
JP2728070B2 (en) * 1995-11-30 1998-03-18 日本電気株式会社 Field-effect transistor
US6096610A (en) * 1996-03-29 2000-08-01 Intel Corporation Transistor suitable for high voltage circuit
US5602046A (en) * 1996-04-12 1997-02-11 National Semiconductor Corporation Integrated zener diode protection structures and fabrication methods for DMOS power devices
US5852559A (en) * 1996-09-24 1998-12-22 Allen Bradley Company, Llc Power application circuits utilizing bidirectional insulated gate bipolar transistor
US5977569A (en) * 1996-09-24 1999-11-02 Allen-Bradley Company, Llc Bidirectional lateral insulated gate bipolar transistor having increased voltage blocking capability
JP3175923B2 (en) * 1997-11-05 2001-06-11 松下電子工業株式会社 Semiconductor device
US6091108A (en) * 1997-11-13 2000-07-18 Abb Research Ltd. Semiconductor device of SiC having an insulated gate and buried grid region for high breakdown voltage
US6063678A (en) * 1998-05-04 2000-05-16 Xemod, Inc. Fabrication of lateral RF MOS devices with enhanced RF properties
US6048772A (en) * 1998-05-04 2000-04-11 Xemod, Inc. Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection
WO2000035020A1 (en) * 1998-12-07 2000-06-15 Infineon Technologies Ag Lateral high-voltage semiconductor component with reduced specific closing resistor
WO2000039858A8 (en) 1998-12-28 2001-11-01 Duc Q Chau Metal gate double diffusion mosfet with improved switching speed and reduced gate tunnel leakage
KR100302611B1 (en) * 1999-06-07 2001-10-29 김영환 High power semiconductor device and fabrication method thereof
US6395610B1 (en) 1999-06-24 2002-05-28 Lucent Technologies Inc. Method of making bipolar transistor semiconductor device including graded, grown, high quality oxide layer
US6521496B1 (en) 1999-06-24 2003-02-18 Lucent Technologies Inc. Non-volatile memory semiconductor device including a graded, grown, high quality control gate oxide layer and associated methods
US6551946B1 (en) 1999-06-24 2003-04-22 Agere Systems Inc. Two-step oxidation process for oxidizing a silicon substrate wherein the first step is carried out at a temperature below the viscoelastic temperature of silicon dioxide and the second step is carried out at a temperature above the viscoelastic temperature
US6509230B1 (en) 1999-06-24 2003-01-21 Lucent Technologies Inc. Non-volatile memory semiconductor device including a graded, grown, high quality oxide layer and associated methods
US6670242B1 (en) 1999-06-24 2003-12-30 Agere Systems Inc. Method for making an integrated circuit device including a graded, grown, high quality gate oxide layer and a nitride layer
US6365932B1 (en) 1999-08-20 2002-04-02 Denso Corporation Power MOS transistor
KR100751100B1 (en) 1999-09-16 2007-08-22 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Semiconductor device
WO2001020682A1 (en) * 1999-09-16 2001-03-22 Koninklijke Philips Electronics N.V. Semiconductor device
US6593594B1 (en) * 1999-12-21 2003-07-15 Koninklijke Philips Electonics N.V. Silicon carbide n-channel power LMOSFET
US6369426B2 (en) 2000-04-27 2002-04-09 Infineon Technologies North America Corp. Transistor with integrated photodetector for conductivity modulation
DE10027397A1 (en) * 2000-06-02 2001-12-13 Graffinity Pharm Design Gmbh Surface for the immobilization of ligand
DE10028008A1 (en) * 2000-06-06 2001-12-13 Bosch Gmbh Robert Protection against electrostatic discharge for integrated circuit in semiconductor substrate
US20020117714A1 (en) * 2001-02-28 2002-08-29 Linear Technology Corporation High voltage MOS transistor
JP2002353441A (en) * 2001-05-22 2002-12-06 Denso Corp Power mos transistor
FR2826183A1 (en) * 2001-06-15 2002-12-20 St Microelectronics Sa Mos transistor lateral power
US6794719B2 (en) * 2001-06-28 2004-09-21 Koninklijke Philips Electronics N.V. HV-SOI LDMOS device with integrated diode to improve reliability and avalanche ruggedness
US6730962B2 (en) * 2001-12-07 2004-05-04 Texas Instruments Incorporated Method of manufacturing and structure of semiconductor device with field oxide structure
JP4524989B2 (en) * 2001-12-18 2010-08-18 富士電機システムズ株式会社 Semiconductor device
US20030235957A1 (en) * 2002-06-25 2003-12-25 Samir Chaudhry Method and structure for graded gate oxides on vertical and non-planar surfaces
US6855985B2 (en) * 2002-09-29 2005-02-15 Advanced Analogic Technologies, Inc. Modular bipolar-CMOS-DMOS analog integrated circuit & power transistor technology
JP3713490B2 (en) * 2003-02-18 2005-11-09 株式会社東芝 Semiconductor device
DE10311699B4 (en) * 2003-03-17 2007-07-26 Infineon Technologies Ag thereof lomos high-frequency transistor and methods for making
US20050006701A1 (en) * 2003-07-07 2005-01-13 Tzu-Chiang Sung High voltage metal-oxide semiconductor device
KR20060064659A (en) * 2003-08-27 2006-06-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electronic device comprising an ldmos transistor
JP2005116876A (en) 2003-10-09 2005-04-28 Toshiba Corp Semiconductor device
JP4618629B2 (en) 2004-04-21 2011-01-26 三菱電機株式会社 The dielectric isolation semiconductor device
KR100611111B1 (en) * 2004-07-15 2006-08-10 삼성전자주식회사 High Frequency MOS Transistor, Method of forming the same and Method of manufacturing semiconductor device
DE102005049247A1 (en) 2004-11-05 2006-05-11 Infineon Technologies Ag High frequency switching transistor has doped barrier region on a substrate containing source and drain regions with channel and gate electrode and insulating interlayer
KR100690173B1 (en) * 2005-03-08 2007-03-08 매그나칩 반도체 유한회사 Semiconductor device and method for manufacturing the same
JP2008085082A (en) 2006-09-27 2008-04-10 Sony Corp Power mosfet, semiconductor device equipped with the same, and manufacturing method of power mosfet
WO2008042843A3 (en) * 2006-09-29 2008-06-19 Fairchild Semiconductor Tapered voltage polysilicon diode electrostatic discharge circuit for power mosfets and ics
JP2008140817A (en) * 2006-11-30 2008-06-19 Toshiba Corp Semiconductor device
JP4970185B2 (en) * 2007-07-30 2012-07-04 株式会社東芝 Semiconductor device and manufacturing method thereof
JP5272410B2 (en) * 2008-01-11 2013-08-28 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP2009245998A (en) * 2008-03-28 2009-10-22 Fujitsu Microelectronics Ltd Semiconductor device and manufacturing method thereof
US7906810B2 (en) * 2008-08-06 2011-03-15 United Microelectronics Corp. LDMOS device for ESD protection circuit
US20100102379A1 (en) * 2008-10-29 2010-04-29 United Microelectronics Corp. Lateral diffused metal oxide semiconductor device
JP4602465B2 (en) * 2008-12-04 2010-12-22 株式会社東芝 Semiconductor device
JP5172654B2 (en) * 2008-12-27 2013-03-27 株式会社東芝 Semiconductor device
KR101531884B1 (en) * 2009-01-06 2015-06-26 주식회사 동부하이텍 The horizontal de-MOS transistor
JP4703769B2 (en) * 2009-01-15 2011-06-15 株式会社東芝 Semiconductor device and manufacturing method thereof
JP5560812B2 (en) * 2010-03-23 2014-07-30 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP5138748B2 (en) * 2010-09-08 2013-02-06 三菱電機株式会社 Semiconductor device
US20120175679A1 (en) * 2011-01-10 2012-07-12 Fabio Alessio Marino Single structure cascode device
DE102011108651A1 (en) * 2011-07-26 2013-01-31 Austriamicrosystems Ag High-voltage transistor device, and manufacturing method
US20130071994A1 (en) * 2011-09-20 2013-03-21 Alpha And Omega Semiconductor Incorporated Method of integrating high voltage devices
US20130069157A1 (en) * 2011-09-20 2013-03-21 Alpha And Omega Semiconductor Incorporated Semiconductor chip integrating high and low voltage devices
JP5898473B2 (en) * 2011-11-28 2016-04-06 ルネサスエレクトロニクス株式会社 Semiconductor device
KR20130085751A (en) * 2012-01-20 2013-07-30 에스케이하이닉스 주식회사 Lateral dmos transistor and method of fabricating the same
CN103367431B (en) * 2012-03-31 2016-12-28 中芯国际集成电路制造(上海)有限公司 Ldmos transistor and manufacturing method thereof
US8673712B2 (en) * 2012-07-20 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Power transistor with high voltage counter implant
JP5973824B2 (en) * 2012-07-25 2016-08-23 旭化成エレクトロニクス株式会社 Field effect transistor and a semiconductor device
JP5860161B2 (en) 2012-10-16 2016-02-16 旭化成エレクトロニクス株式会社 Field effect transistor and a semiconductor device
US9040384B2 (en) * 2012-10-19 2015-05-26 Freescale Semiconductor, Inc. High voltage diode
CN103000626B (en) * 2012-11-28 2015-08-26 深圳市明微电子股份有限公司 High voltage device with composite structure and the starting circuit
CN104576375B (en) * 2013-10-12 2018-01-05 中芯国际集成电路制造(上海)有限公司 Ldmos and its manufacturing method
US9425788B1 (en) 2015-03-18 2016-08-23 Infineon Technologies Austria Ag Current sensors and methods of improving accuracy thereof

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058822A (en) * 1975-05-30 1977-11-15 Sharp Kabushiki Kaisha High voltage, low on-resistance diffusion-self-alignment metal oxide semiconductor device and manufacture thereof
US4153904A (en) * 1977-10-03 1979-05-08 Texas Instruments Incorporated Semiconductor device having a high breakdown voltage junction characteristic
JPS5552272A (en) * 1978-10-13 1980-04-16 Seiko Epson Corp High withstanding voltage dsa mos transistor
JPS5670662A (en) * 1979-11-13 1981-06-12 Nec Corp Insulated gate type field effect transistor
US4292642A (en) * 1978-01-18 1981-09-29 U.S. Philips Corporation Semiconductor device
US4300150A (en) * 1980-06-16 1981-11-10 North American Philips Corporation Lateral double-diffused MOS transistor device
JPS57211778A (en) * 1981-06-24 1982-12-25 Hitachi Ltd Mos semiconductor device
JPS58140165A (en) * 1982-02-15 1983-08-19 Rohm Co Ltd Field effect semiconductor device
EP0114435A1 (en) * 1982-12-21 1984-08-01 Philips Electronics N.V. Lateral DMOS transistor devices suitable for sourcefollower applications
US4509067A (en) * 1981-06-23 1985-04-02 Tokyo Shibaura Denki Kabushiki Kaisha Semiconductor integrated circuit devices with protective means against overvoltages
JPS6245175A (en) * 1985-08-23 1987-02-27 Toshiba Corp Lateral mos type fet element
US4652895A (en) * 1982-08-09 1987-03-24 Harris Corporation Zener structures with connections to buried layer
JPS62222676A (en) * 1986-03-25 1987-09-30 Nec Corp High withstanding-voltage mos transistor
US4819045A (en) * 1985-01-25 1989-04-04 Nissan Motor Co. Ltd. MOS transistor for withstanding a high voltage
JPH01243472A (en) * 1988-03-24 1989-09-28 Fuji Xerox Co Ltd Semiconductor device
US4884116A (en) * 1986-12-20 1989-11-28 Kabushiki Kaisha Toshiba Double diffused mosfet with potential biases
US4890146A (en) * 1987-12-16 1989-12-26 Siliconix Incorporated High voltage level shift semiconductor device
JPH0251274A (en) * 1988-08-15 1990-02-21 Nec Corp Manufacture of schottky diode
JPH02102577A (en) * 1988-10-12 1990-04-16 Nec Corp High breakdown strength semiconductor device
US4922327A (en) * 1987-12-24 1990-05-01 University Of Toronto Innovations Foundation Semiconductor LDMOS device with upper and lower passages
US4929991A (en) * 1987-11-12 1990-05-29 Siliconix Incorporated Rugged lateral DMOS transistor structure
US4933740A (en) * 1986-11-26 1990-06-12 General Electric Company Insulated gate transistor with vertical integral diode and method of fabrication
US4939566A (en) * 1987-10-30 1990-07-03 North American Philips Corporation Semiconductor switch with parallel DMOS and IGT
JPH0357278A (en) * 1989-07-25 1991-03-12 Seiko Instr Inc Mis type field-effect transistor
US5055896A (en) * 1988-12-15 1991-10-08 Siliconix Incorporated Self-aligned LDD lateral DMOS transistor with high-voltage interconnect capability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3219888A1 (en) * 1982-05-27 1983-12-01 Itt Ind Gmbh Deutsche Planar semiconductor device and method for manufacturing
JP2896141B2 (en) * 1987-02-26 1999-05-31 株式会社東芝 High-voltage semiconductor device
US5237193A (en) * 1988-06-24 1993-08-17 Siliconix Incorporated Lightly doped drain MOSFET with reduced on-resistance

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058822A (en) * 1975-05-30 1977-11-15 Sharp Kabushiki Kaisha High voltage, low on-resistance diffusion-self-alignment metal oxide semiconductor device and manufacture thereof
US4153904A (en) * 1977-10-03 1979-05-08 Texas Instruments Incorporated Semiconductor device having a high breakdown voltage junction characteristic
US4292642A (en) * 1978-01-18 1981-09-29 U.S. Philips Corporation Semiconductor device
JPS5552272A (en) * 1978-10-13 1980-04-16 Seiko Epson Corp High withstanding voltage dsa mos transistor
JPS5670662A (en) * 1979-11-13 1981-06-12 Nec Corp Insulated gate type field effect transistor
US4300150A (en) * 1980-06-16 1981-11-10 North American Philips Corporation Lateral double-diffused MOS transistor device
US4509067A (en) * 1981-06-23 1985-04-02 Tokyo Shibaura Denki Kabushiki Kaisha Semiconductor integrated circuit devices with protective means against overvoltages
JPS57211778A (en) * 1981-06-24 1982-12-25 Hitachi Ltd Mos semiconductor device
JPS58140165A (en) * 1982-02-15 1983-08-19 Rohm Co Ltd Field effect semiconductor device
US4652895A (en) * 1982-08-09 1987-03-24 Harris Corporation Zener structures with connections to buried layer
EP0114435A1 (en) * 1982-12-21 1984-08-01 Philips Electronics N.V. Lateral DMOS transistor devices suitable for sourcefollower applications
US4819045A (en) * 1985-01-25 1989-04-04 Nissan Motor Co. Ltd. MOS transistor for withstanding a high voltage
JPS6245175A (en) * 1985-08-23 1987-02-27 Toshiba Corp Lateral mos type fet element
JPS62222676A (en) * 1986-03-25 1987-09-30 Nec Corp High withstanding-voltage mos transistor
US4933740A (en) * 1986-11-26 1990-06-12 General Electric Company Insulated gate transistor with vertical integral diode and method of fabrication
US4884116A (en) * 1986-12-20 1989-11-28 Kabushiki Kaisha Toshiba Double diffused mosfet with potential biases
US4939566A (en) * 1987-10-30 1990-07-03 North American Philips Corporation Semiconductor switch with parallel DMOS and IGT
US4929991A (en) * 1987-11-12 1990-05-29 Siliconix Incorporated Rugged lateral DMOS transistor structure
US4890146A (en) * 1987-12-16 1989-12-26 Siliconix Incorporated High voltage level shift semiconductor device
US4922327A (en) * 1987-12-24 1990-05-01 University Of Toronto Innovations Foundation Semiconductor LDMOS device with upper and lower passages
JPH01243472A (en) * 1988-03-24 1989-09-28 Fuji Xerox Co Ltd Semiconductor device
JPH0251274A (en) * 1988-08-15 1990-02-21 Nec Corp Manufacture of schottky diode
JPH02102577A (en) * 1988-10-12 1990-04-16 Nec Corp High breakdown strength semiconductor device
US5055896A (en) * 1988-12-15 1991-10-08 Siliconix Incorporated Self-aligned LDD lateral DMOS transistor with high-voltage interconnect capability
JPH0357278A (en) * 1989-07-25 1991-03-12 Seiko Instr Inc Mis type field-effect transistor

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Appels et al, "High Voltage Thin Layer Devices (RESURF Devices)" IEDM '79, pp. 238-241.
Appels et al, High Voltage Thin Layer Devices (RESURF Devices) IEDM 79, pp. 238 241. *
B. J. Baliga, "Power Integrated Circuits--A Brief Overview," IEEE Transactions of Electron Devices, vol. ED-33, No. 12, Dec. 1986, pp. 1936-1939.
B. J. Baliga, Power Integrated Circuits A Brief Overview, IEEE Transactions of Electron Devices, vol. ED 33, No. 12, Dec. 1986, pp. 1936 1939. *
E. J. Wildi et al., "Modeling and Process Implementation of Implanted RESURF Type Devices," Proceedings IEDM '82, pp. 268-271.
E. J. Wildi et al., Modeling and Process Implementation of Implanted RESURF Type Devices, Proceedings IEDM 82, pp. 268 271. *
M. Declercq et al, "Avalanche Breakdown in High voltage D-MOS Devices," IEEE Transactions on Electron Devices, vol. ED-23, No. 1, Jan. 1976, pp. 1-4.
M. Declercq et al, Avalanche Breakdown in High voltage D MOS Devices, IEEE Transactions on Electron Devices, vol. ED 23, No. 1, Jan. 1976, pp. 1 4. *
S. C. Sun et al., "Modeling of the On-Resistance of LDMOS, VDMOS, and VMOS Power Transistors," IEEE Transactions on Electron Devices, vol. ED-27, No. 2, Feb. 1980, pp. 356-367.
S. C. Sun et al., Modeling of the On Resistance of LDMOS, VDMOS, and VMOS Power Transistors, IEEE Transactions on Electron Devices, vol. ED 27, No. 2, Feb. 1980, pp. 356 367. *
S. Colak, "Effects of Drift Region, Parameters on the Static Properties of Power LDMOST" Transactions on Electron Devices, vol. ED-28, No. 12, Dec. 1981, pp. 1455-1466.
S. Colak, Effects of Drift Region, Parameters on the Static Properties of Power LDMOST Transactions on Electron Devices, vol. ED 28, No. 12, Dec. 1981, pp. 1455 1466. *

Cited By (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612561A (en) * 1993-12-22 1997-03-18 Nec Corporation Involatile semiconductor memory
US5731612A (en) * 1995-06-05 1998-03-24 Motorola, Inc. Insulated gate field effect transistor structure having a unilateral source extension
US5905284A (en) * 1995-08-25 1999-05-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device with a particular DMISFET structure
US5753958A (en) * 1995-10-16 1998-05-19 Sun Microsystems, Inc. Back-biasing in asymmetric MOS devices
US6800903B2 (en) 1996-11-05 2004-10-05 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US20030151093A1 (en) * 1996-11-05 2003-08-14 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6633065B2 (en) 1996-11-05 2003-10-14 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6639277B2 (en) 1996-11-05 2003-10-28 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6724041B2 (en) 1996-11-05 2004-04-20 Power Integrations, Inc. Method of making a high-voltage transistor with buried conduction regions
US6768172B2 (en) 1996-11-05 2004-07-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6168983B1 (en) 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6207994B1 (en) 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6777749B2 (en) 1996-11-05 2004-08-17 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6570219B1 (en) 1996-11-05 2003-05-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US20040207012A1 (en) * 1996-11-05 2004-10-21 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US20020153556A1 (en) * 1996-11-05 2002-10-24 Power Integrations, Inc. Method of making a high-voltage transistor with buried conduction regions
US6828631B2 (en) 1996-11-05 2004-12-07 Power Integrations, Inc High-voltage transistor with multi-layer conduction region
US20040217419A1 (en) * 1996-11-05 2004-11-04 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US20030151101A1 (en) * 1996-11-05 2003-08-14 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US5825065A (en) * 1997-01-14 1998-10-20 Texas Instruments Incorporated Low voltage DMOS transistor
US5939753A (en) * 1997-04-02 1999-08-17 Motorola, Inc. Monolithic RF mixed signal IC with power amplification
US5907173A (en) * 1997-08-25 1999-05-25 Lg Semicon Co., Ltd. High voltage field effect transistor and method of fabricating the same
US6258674B1 (en) 1997-08-25 2001-07-10 Lg Semicon Co., Ltd. High voltage field effect transistor and method of fabricating the same
US6525376B1 (en) * 1998-01-26 2003-02-25 Seiko Instruments Inc. High withstand voltage insulated gate N-channel field effect transistor
US6020611A (en) * 1998-06-10 2000-02-01 Motorola, Inc. Semiconductor component and method of manufacture
US6534829B2 (en) * 1998-06-25 2003-03-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
WO2000046851A1 (en) * 1999-02-05 2000-08-10 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
WO2000046859A1 (en) * 1999-02-05 2000-08-10 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
EP2264774B1 (en) * 1999-02-05 2016-10-19 Power Integrations, Inc. High-voltage insulated gate field-effect transistor
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US7268045B2 (en) * 2000-12-31 2007-09-11 Texas Instruments Incorporated N-channel LDMOS with buried P-type region to prevent parasitic bipolar effects
US20050255655A1 (en) * 2000-12-31 2005-11-17 Hower Philip L N-channel LDMOS with buried P-type region to prevent parasitic bipolar effects
US6730585B2 (en) * 2001-01-24 2004-05-04 Power Integrations, Inc. Method of fabricating high-voltage transistor with buried conduction layer
US6424007B1 (en) * 2001-01-24 2002-07-23 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US20030178646A1 (en) * 2001-01-24 2003-09-25 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6563171B2 (en) * 2001-01-24 2003-05-13 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6465291B1 (en) * 2001-01-24 2002-10-15 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6501130B2 (en) 2001-01-24 2002-12-31 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6504209B2 (en) 2001-01-24 2003-01-07 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US20040036115A1 (en) * 2001-01-24 2004-02-26 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6818490B2 (en) 2001-01-24 2004-11-16 Power Integrations, Inc. Method of fabricating complementary high-voltage field-effect transistors
US20030047769A1 (en) * 2001-09-07 2003-03-13 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US20030057524A1 (en) * 2001-09-07 2003-03-27 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6750105B2 (en) 2001-09-07 2004-06-15 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US20030047792A1 (en) * 2001-09-07 2003-03-13 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US20030047793A1 (en) * 2001-09-07 2003-03-13 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US8940605B2 (en) 2001-09-07 2015-01-27 Power Integrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US6781198B2 (en) 2001-09-07 2004-08-24 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US20110018058A1 (en) * 2001-09-07 2011-01-27 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US6787847B2 (en) 2001-09-07 2004-09-07 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6798020B2 (en) * 2001-09-07 2004-09-28 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US7998817B2 (en) 2001-09-07 2011-08-16 Power Integrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US7829944B2 (en) 2001-09-07 2010-11-09 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7253042B2 (en) 2001-09-07 2007-08-07 Power Integrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US6667213B2 (en) 2001-09-07 2003-12-23 Power Integrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6815293B2 (en) 2001-09-07 2004-11-09 Power Intergrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US7221011B2 (en) 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US20040232486A1 (en) * 2001-09-07 2004-11-25 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6555873B2 (en) 2001-09-07 2003-04-29 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US20050023571A1 (en) * 2001-09-07 2005-02-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7745291B2 (en) 2001-09-07 2010-06-29 Power Integrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US20090233407A1 (en) * 2001-09-07 2009-09-17 Power Integrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US20050133858A1 (en) * 2001-09-07 2005-06-23 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US8552496B2 (en) 2001-09-07 2013-10-08 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US20030151110A1 (en) * 2001-09-07 2003-08-14 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US20080102581A1 (en) * 2001-09-07 2008-05-01 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US6987299B2 (en) 2001-09-07 2006-01-17 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US20070293002A1 (en) * 2001-09-07 2007-12-20 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US6573558B2 (en) 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US20050104121A1 (en) * 2001-09-07 2005-05-19 Power Integrations, Inc. Method of fabricating a high-voltage transistor with an extended drain structure
US7459366B2 (en) 2001-09-07 2008-12-02 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US7008865B2 (en) 2001-12-03 2006-03-07 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor device having a high breakdown voltage and low on-resistance
US20030102507A1 (en) * 2001-12-03 2003-06-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
US20040164376A1 (en) * 2001-12-03 2004-08-26 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
US6686627B2 (en) * 2001-12-26 2004-02-03 Sirenza Microdevices, Inc. Multiple conductive plug structure for lateral RF MOS devices
WO2003058702A1 (en) * 2001-12-26 2003-07-17 Sirenza Microdevices, Inc. Multiple conductive plug structure for lateral rf mos devices
EP2562819A2 (en) 2002-05-02 2013-02-27 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6617643B1 (en) 2002-06-28 2003-09-09 Mcnc Low power tunneling metal-oxide-semiconductor (MOS) device
US8097522B2 (en) 2002-08-14 2012-01-17 Advanced Analogic Technologies, Inc. Modular methods of forming isolation structures for integrated circuits
US7834421B2 (en) 2002-08-14 2010-11-16 Advanced Analogic Technologies, Inc. Isolated diode
US20080042232A1 (en) * 2002-08-14 2008-02-21 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US20080217699A1 (en) * 2002-08-14 2008-09-11 Advanced Analogic Technologies, Inc. Isolated Bipolar Transistor
US20080213972A1 (en) * 2002-08-14 2008-09-04 Advanced Analogic Technologies, Inc. Processes for forming isolation structures for integrated circuit devices
US7902630B2 (en) 2002-08-14 2011-03-08 Advanced Analogic Technologies, Inc. Isolated bipolar transistor
US20090236683A1 (en) * 2002-08-14 2009-09-24 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits
US7939420B2 (en) 2002-08-14 2011-05-10 Advanced Analogic Technologies, Inc. Processes for forming isolation structures for integrated circuit devices
US20100133611A1 (en) * 2002-08-14 2010-06-03 Advanced Analogic Technologies, Inc. Isolated transistor
US8659116B2 (en) 2002-08-14 2014-02-25 Advanced Analogic Technologies Incorporated Isolated transistor
US7956391B2 (en) 2002-08-14 2011-06-07 Advanced Analogic Technologies, Inc. Isolated junction field-effect transistor
US20080210980A1 (en) * 2002-08-14 2008-09-04 Advanced Analogic Technologies, Inc. Isolated CMOS transistors
US7956437B2 (en) 2002-08-14 2011-06-07 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits
US20110201171A1 (en) * 2002-08-14 2011-08-18 Advanced Analogic Technologies, Inc. Processes For Forming Isolation Structures For Integrated Circuit Devices
US8513087B2 (en) 2002-08-14 2013-08-20 Advanced Analogic Technologies, Incorporated Processes for forming isolation structures for integrated circuit devices
US20080197408A1 (en) * 2002-08-14 2008-08-21 Advanced Analogic Technologies, Inc. Isolated quasi-vertical DMOS transistor
US8664715B2 (en) 2002-08-14 2014-03-04 Advanced Analogic Technologies Incorporated Isolated transistor
US20080197446A1 (en) * 2002-08-14 2008-08-21 Advanced Analogic Technologies, Inc. Isolated diode
US8089129B2 (en) 2002-08-14 2012-01-03 Advanced Analogic Technologies, Inc. Isolated CMOS transistors
US20080048287A1 (en) * 2002-09-29 2008-02-28 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US8728904B2 (en) 2002-09-29 2014-05-20 Advanced Analogic Technologies (Hong Kong) Limited Method of forming isolation structure in semiconductor substrate
US9905640B2 (en) 2002-09-29 2018-02-27 Skyworks Solutions (Hong Kong) Limited Isolation structures for semiconductor devices including trenches containing conductive material
US9257504B2 (en) 2002-09-29 2016-02-09 Advanced Analogic Technologies Incorporated Isolation structures for semiconductor devices
US7173308B2 (en) * 2002-10-25 2007-02-06 Shindengen Electric Manufacturing Co., Ltd. Lateral short-channel DMOS, method for manufacturing same and semiconductor device
US20040251493A1 (en) * 2002-10-25 2004-12-16 Makoto Kitaguchi Lateral short-channel dmos, method for manufacturing same and semiconductor device
KR100948139B1 (en) * 2003-04-09 2010-03-18 페어차일드코리아반도체 주식회사 Lateral double-diffused MOS transistor having multi current paths for high breakdown voltage and low on-resistance
US20040201061A1 (en) * 2003-04-09 2004-10-14 Chang-Ki Jeon Lateral double-diffused MOS transistor having multiple current paths for high breakdown voltage and low on-resistance
US6909143B2 (en) * 2003-04-09 2005-06-21 Fairchild Korea Semiconductor Lateral double-diffused MOS transistor having multiple current paths for high breakdown voltage and low on-resistance
US20100072540A1 (en) * 2003-05-27 2010-03-25 Power Integrations, Inc. Electronic circuit control element with tap element
US8264858B2 (en) 2003-05-27 2012-09-11 Power Integrations, Inc. Electronic circuit control element with tap element
US20120314453A1 (en) * 2003-05-27 2012-12-13 Power Integrations, Inc. Electronic circuit control element with tap element
US8611108B2 (en) * 2003-05-27 2013-12-17 Power Integrations, Inc. Electronic circuit control element with tap element
US8144484B2 (en) 2003-05-27 2012-03-27 Power Integrations, Inc. Electronic circuit control element with tap element
US20050056889A1 (en) * 2003-09-15 2005-03-17 Gordon Ma LDMOS transistor
WO2005079400A3 (en) * 2004-02-17 2005-12-15 Silicon Space Technology Corp Buried guard ring and radiation hardened isolation structures and fabrication methods
US20130313620A1 (en) * 2004-02-17 2013-11-28 Silicon Space Technology Corporation Method and structure for radiation hardening a semiconductor device
US20050179093A1 (en) * 2004-02-17 2005-08-18 Silicon Space Technology Corporation Buried guard ring and radiation hardened isolation structures and fabrication methods
US20080073725A1 (en) * 2004-02-17 2008-03-27 Morris Wesley H Buried guard ring structures and fabrication methods
US8729640B2 (en) * 2004-02-17 2014-05-20 Silicon Space Technology Corporation Method and structure for radiation hardening a semiconductor device
US7629654B2 (en) 2004-02-17 2009-12-08 Silicon Space Technology Corp. Buried guard ring structures and fabrication methods
US7304354B2 (en) * 2004-02-17 2007-12-04 Silicon Space Technology Corp. Buried guard ring and radiation hardened isolation structures and fabrication methods
EP1716591A2 (en) * 2004-02-17 2006-11-02 Silicon Space Technology Corporation Buried guard ring and radiation hardened isolation structures and fabrication methods
US20120108045A1 (en) * 2004-02-17 2012-05-03 Morris Wesley H Method for radiation hardening a semiconductor device
US8093145B2 (en) 2004-02-17 2012-01-10 Silicon Space Technology Corp. Methods for operating and fabricating a semiconductor device having a buried guard ring structure
US20060249759A1 (en) * 2004-02-17 2006-11-09 Morris Wesley H Buried guard ring and radiation hardened isolation structures and fabrication methods
EP1716591A4 (en) * 2004-02-17 2010-10-20 Silicon Space Technology Corp Buried guard ring and radiation hardened isolation structures and fabrication methods
US20080188045A1 (en) * 2004-02-17 2008-08-07 Morris Wesley H Methods for operating and fabricating a semiconductor device having a buried guard ring structure
US7804138B2 (en) 2004-02-17 2010-09-28 Silicon Space Technology Corp. Buried guard ring and radiation hardened isolation structures and fabrication methods
US8497195B2 (en) * 2004-02-17 2013-07-30 Silicon Space Technology Corporation Method for radiation hardening a semiconductor device
US8120097B2 (en) 2004-07-08 2012-02-21 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US20070155062A1 (en) * 2004-07-08 2007-07-05 Disney Donald R Method and apparatus for controlling a circuit with a high voltage sense device
US20110089482A1 (en) * 2004-07-08 2011-04-21 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US8236656B2 (en) 2004-07-08 2012-08-07 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US7872304B2 (en) 2004-07-08 2011-01-18 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US7696566B2 (en) 2004-07-08 2010-04-13 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US7491611B2 (en) * 2004-07-08 2009-02-17 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US20090121779A1 (en) * 2004-07-08 2009-05-14 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US8110868B2 (en) 2005-07-27 2012-02-07 Infineon Technologies Austria Ag Power semiconductor component with a low on-state resistance
US9190511B2 (en) 2005-07-27 2015-11-17 Infineon Technologies Austria Ag Semiconductor component with a drift region and a drift control region
US8461648B2 (en) 2005-07-27 2013-06-11 Infineon Technologies Austria Ag Semiconductor component with a drift region and a drift control region
US8643086B2 (en) 2005-07-27 2014-02-04 Infineon Technologies Austria Ag Semiconductor component with high breakthrough tension and low forward resistance
US20070023830A1 (en) * 2005-07-27 2007-02-01 Pfirsch Frank D Semiconductor component with a low on-state resistance
US20090218621A1 (en) * 2005-07-27 2009-09-03 Infineon Technologies Austria Ag Semiconductor component with a drift region and a drift control region
US20100267212A1 (en) * 2005-10-14 2010-10-21 Morris Wesley H Fabrication methods for radiation hardened isolation structures
US20070141794A1 (en) * 2005-10-14 2007-06-21 Silicon Space Technology Corporation Radiation hardened isolation structures and fabrication methods
US8278719B2 (en) 2005-10-14 2012-10-02 Silicon Space Technology Corp. Radiation hardened isolation structures and fabrication methods
US8252642B2 (en) 2005-10-14 2012-08-28 Silicon Space Technology Corp. Fabrication methods for radiation hardened isolation structures
CN100399581C (en) 2006-01-19 2008-07-02 电子科技大学 RF DMOS power device
US8071462B2 (en) 2006-05-31 2011-12-06 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US20080044978A1 (en) * 2006-05-31 2008-02-21 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US7825488B2 (en) 2006-05-31 2010-11-02 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US7800198B2 (en) 2006-05-31 2010-09-21 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits
US7898060B2 (en) 2006-05-31 2011-03-01 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits
US20080290449A1 (en) * 2006-05-31 2008-11-27 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits
US20080290451A1 (en) * 2006-05-31 2008-11-27 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits
US20070278612A1 (en) * 2006-05-31 2007-12-06 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US20080142899A1 (en) * 2006-08-04 2008-06-19 Silicon Space Technology Corporation Radiation immunity of integrated circuits using backside die contact and electrically conductive layers
US20080054325A1 (en) * 2006-09-01 2008-03-06 Denso Corporation Semiconductor device having lateral MOS transistor and Zener diode
US7893458B2 (en) * 2006-09-01 2011-02-22 Denso Corporation Semiconductor device having lateral MOS transistor and zener diode
US20080157210A1 (en) * 2006-12-27 2008-07-03 Chang Gung University High-linearity and high-power CMOS structure and manufacturing method for the same
US20080197418A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US20080197417A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7859037B2 (en) 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US20080197397A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US8022456B2 (en) 2007-02-16 2011-09-20 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US7557406B2 (en) 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US20080197406A1 (en) * 2007-02-16 2008-08-21 Power Integrations, Inc. Sensing FET integrated with a high-voltage vertical transistor
US8653583B2 (en) 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US8222691B2 (en) 2007-02-16 2012-07-17 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US20110089476A1 (en) * 2007-02-16 2011-04-21 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US8410551B2 (en) 2007-02-16 2013-04-02 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US7595523B2 (en) 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US20080237783A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Isolated bipolar transistor
US7795681B2 (en) * 2007-03-28 2010-09-14 Advanced Analogic Technologies, Inc. Isolated lateral MOSFET in epi-less substrate
US20080237782A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Isolated rectifier diode
US20080237706A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Lateral MOSFET
US20080237704A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Isolated trench MOSFET
US8258575B2 (en) 2007-03-28 2012-09-04 Advanced Analogic Technologies, Inc. Isolated drain-centric lateral MOSFET
US7737526B2 (en) 2007-03-28 2010-06-15 Advanced Analogic Technologies, Inc. Isolated trench MOSFET in epi-less semiconductor sustrate
US8138570B2 (en) 2007-03-28 2012-03-20 Advanced Analogic Technologies, Inc. Isolated junction field-effect transistor
US8030731B2 (en) 2007-03-28 2011-10-04 Advanced Analogic Technologies, Inc. Isolated rectifier diode
US20110012196A1 (en) * 2007-03-28 2011-01-20 Advanced Analogic Technologies, Inc. Isolated drain-centric lateral MOSFET
US20080237656A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Isolated junction field-effect transistor
US7868414B2 (en) 2007-03-28 2011-01-11 Advanced Analogic Technologies, Inc. Isolated bipolar transistor
US8638160B2 (en) 2007-12-14 2014-01-28 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
US9411346B2 (en) 2007-12-14 2016-08-09 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
DE102008004682A1 (en) * 2008-01-16 2009-09-10 Infineon Technologies Ag Integrated switching arrangement, has protection structure, whose one of semiconductor zones of conducting type is arranged in semiconductor substrate and attached at connecting zone in electrical conducting manner
US20090194843A1 (en) * 2008-02-01 2009-08-06 Infineon Technologies Ag Integrated circuit arrangement including a protective structure
US7943960B2 (en) 2008-02-01 2011-05-17 Infineon Technologies Ag Integrated circuit arrangement including a protective structure
US20100065909A1 (en) * 2008-09-17 2010-03-18 Sharp Kabushiki Kaisha Semiconductor device and method for making the same
US8143691B2 (en) * 2008-09-17 2012-03-27 Sharp Kabushiki Kaisha Semiconductor device and method for making the same
CN101719515B (en) 2009-11-03 2011-11-23 苏州远创达科技有限公司 LDMOS device with transverse diffusing buried layer below grid
CN102194877B (en) * 2010-02-08 2016-01-20 半导体元件工业有限责任公司 The method of forming an electronic device and
CN102194877A (en) * 2010-02-08 2011-09-21 半导体元件工业有限责任公司 Electronic device and process of forming the same
US8445357B2 (en) 2010-03-30 2013-05-21 Samsung Electronics Co., Ltd. Method of fabricating semiconductor integrated circuit device and semiconductor integrated circuit device fabricated using the method
US20110241114A1 (en) * 2010-04-02 2011-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage mos transistor
US20120018804A1 (en) * 2010-07-23 2012-01-26 Khemka Vishnu K Guard Ring Integrated LDMOS
US8278710B2 (en) * 2010-07-23 2012-10-02 Freescale Semiconductor, Inc. Guard ring integrated LDMOS
US20120043608A1 (en) * 2010-08-20 2012-02-23 Hongning Yang Partially Depleted Dielectric Resurf LDMOS
US8772871B2 (en) * 2010-08-20 2014-07-08 Freescale Semiconductor, Inc. Partially depleted dielectric resurf LDMOS
US9099552B2 (en) * 2010-11-24 2015-08-04 Semiconductor Components Industries, Llc Semiconductor device and method of manufacturing the same
US20140167159A1 (en) * 2010-11-24 2014-06-19 Semiconductor Components Industries, Llc Semiconductor device and method of manufacturing the same
US8853780B2 (en) * 2012-05-07 2014-10-07 Freescale Semiconductor, Inc. Semiconductor device with drain-end drift diminution
US9136323B2 (en) 2012-05-07 2015-09-15 Freescale Semiconductor, Inc. Drain-end drift diminution in semiconductor devices
US9490322B2 (en) 2013-01-23 2016-11-08 Freescale Semiconductor, Inc. Semiconductor device with enhanced 3D resurf
US9691880B2 (en) 2013-01-23 2017-06-27 Nxp Usa, Inc. Semiconductor device with enhanced 3D resurf
US9660053B2 (en) 2013-07-12 2017-05-23 Power Integrations, Inc. High-voltage field-effect transistor having multiple implanted layers
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US9257420B2 (en) * 2014-02-04 2016-02-09 Stmicroelectronics (Tours) Sas Overvoltage protection device
US20150221628A1 (en) * 2014-02-04 2015-08-06 Stmicroelectronics (Tours) Sas Increase of epitaxy resistivity and decrease of junction capacitance by addition of pburied layer
US9543379B2 (en) 2014-03-18 2017-01-10 Nxp Usa, Inc. Semiconductor device with peripheral breakdown protection
EP2945191A1 (en) * 2014-05-12 2015-11-18 Semiconductor Components Industries, LLC Method of forming a semiconductor device and structure therefor
US9653577B2 (en) * 2015-03-27 2017-05-16 Texas Instruments Incorporated Diluted drift layer with variable stripe widths for power transistors
US20160336427A1 (en) * 2015-03-27 2016-11-17 Texas Instruments Incorporated Diluted drift layer with variable stripe widths for power transistors
CN105355552A (en) * 2015-11-03 2016-02-24 株洲南车时代电气股份有限公司 Preparation method of fast recovery diode
US9871135B2 (en) 2016-06-02 2018-01-16 Nxp Usa, Inc. Semiconductor device and method of making
US9905687B1 (en) 2017-02-17 2018-02-27 Nxp Usa, Inc. Semiconductor device and method of making

Also Published As

Publication number Publication date Type
JP3425967B2 (en) 2003-07-14 grant
JP2002261297A (en) 2002-09-13 application
DE69224446D1 (en) 1998-03-26 grant
EP0514060A2 (en) 1992-11-19 application
DE69224446T2 (en) 1998-10-08 grant
EP0514060B1 (en) 1998-02-18 grant
JPH05259444A (en) 1993-10-08 application
JP4078081B2 (en) 2008-04-23 grant
JP2007318158A (en) 2007-12-06 application
EP0514060A3 (en) 1993-06-30 application
US5514608A (en) 1996-05-07 grant

Similar Documents

Publication Publication Date Title
US6204138B1 (en) Method for fabricating a MOSFET device structure which facilitates mitigation of junction capacitance and floating body effects
US6509220B2 (en) Method of fabricating a high-voltage transistor
US5726469A (en) Surface voltage sustaining structure for semiconductor devices
US6768171B2 (en) High-voltage transistor with JFET conduction channels
US5569937A (en) High breakdown voltage silicon carbide transistor
US5777362A (en) High efficiency quasi-vertical DMOS in CMOS or BICMOS process
US6144070A (en) High breakdown-voltage transistor with electrostatic discharge protection
US5146298A (en) Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US6566708B1 (en) Trench-gate field-effect transistors with low gate-drain capacitance and their manufacture
US6855985B2 (en) Modular bipolar-CMOS-DMOS analog integrated circuit & power transistor technology
US7626233B2 (en) LDMOS device
US6140678A (en) Trench-gated power MOSFET with protective diode
US5532179A (en) Method of making a field effect trench transistor having lightly doped epitaxial region on the surface portion thereof
US6285060B1 (en) Barrier accumulation-mode MOSFET
US7187033B2 (en) Drain-extended MOS transistors with diode clamp and methods for making the same
US6472678B1 (en) Trench MOSFET with double-diffused body profile
US5218228A (en) High voltage MOS transistors with reduced parasitic current gain
US20020030237A1 (en) Power semiconductor switching element
US6825531B1 (en) Lateral DMOS transistor with a self-aligned drain region
US5349225A (en) Field effect transistor with a lightly doped drain
US5852314A (en) Thin epitaxy resurf integrated circuit containing high voltage p-channel and n-channel devices with source or drain not tied to ground
US6933560B2 (en) Power devices and methods for manufacturing the same
US4893160A (en) Method for increasing the performance of trenched devices and the resulting structure
US6927453B2 (en) Metal-oxide-semiconductor device including a buried lightly-doped drain region
EP0069429A2 (en) Insulated gate field effect transistor

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILICONIX INCORPORATED, A CORPORATION OF CA, CALIF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:WILLIAMS, RICHARD K.;CORNELL, MICHAEL E.;REEL/FRAME:005704/0342

Effective date: 19910506

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
SULP Surcharge for late payment

Year of fee payment: 11

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: COMERICA BANK, AS AGENT,MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNORS:VISHAY SPRAGUE, INC., SUCCESSOR IN INTEREST TO VISHAY EFI, INC. AND VISHAY THIN FILM, LLC;VISHAY DALE ELECTRONICS, INC.;VISHAY INTERTECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:024006/0515

Effective date: 20100212

Owner name: COMERICA BANK, AS AGENT, MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNORS:VISHAY SPRAGUE, INC., SUCCESSOR IN INTEREST TO VISHAY EFI, INC. AND VISHAY THIN FILM, LLC;VISHAY DALE ELECTRONICS, INC.;VISHAY INTERTECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:024006/0515

Effective date: 20100212

AS Assignment

Owner name: YOSEMITE INVESTMENT, INC., AN INDIANA CORPORATION,

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

Owner name: SILICONIX INCORPORATED, A DELAWARE CORPORATION, PE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

Owner name: VISHAY VITRAMON, INCORPORATED, A DELAWARE CORPORAT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

Owner name: VISHAY GENERAL SEMICONDUCTOR, LLC, F/K/A GENERAL S

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

Owner name: VISHAY MEASUREMENTS GROUP, INC., A DELAWARE CORPOR

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

Owner name: VISHAY INTERTECHNOLOGY, INC., A DELAWARE CORPORATI

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

Owner name: VISHAY SPRAGUE, INC., SUCCESSOR-IN-INTEREST TO VIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

Owner name: VISHAY DALE ELECTRONICS, INC., A DELAWARE CORPORAT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT, A TEXAS BANKING ASSOCIATION (FORMERLY A MICHIGAN BANKING CORPORATION);REEL/FRAME:025489/0184

Effective date: 20101201

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY AGREEMENT;ASSIGNORS:VISHAY INTERTECHNOLOGY, INC.;VISHAY DALE ELECTRONICS, INC.;SILICONIX INCORPORATED;AND OTHERS;REEL/FRAME:025675/0001

Effective date: 20101201