JPH0357278A - Mis type field-effect transistor - Google Patents

Mis type field-effect transistor

Info

Publication number
JPH0357278A
JPH0357278A JP19348789A JP19348789A JPH0357278A JP H0357278 A JPH0357278 A JP H0357278A JP 19348789 A JP19348789 A JP 19348789A JP 19348789 A JP19348789 A JP 19348789A JP H0357278 A JPH0357278 A JP H0357278A
Authority
JP
Japan
Prior art keywords
region
source
insulating film
impurity
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19348789A
Other languages
Japanese (ja)
Inventor
Ryoji Takada
高田 量司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP19348789A priority Critical patent/JPH0357278A/en
Publication of JPH0357278A publication Critical patent/JPH0357278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enhance breakdown strength of a drain, to perform double diffusion in a source and to realize a short channel and a low ON resistance by utilizing a LOCOS oxidation. CONSTITUTION:A separate region is patterned and an impurity is implanted with an Si3N4 mask 10. Then, an isolation region 8 and a low concentration drain region 3 are formed by selective oxidation. Thereafter, a gate electrode 5 is formed of polysilicon, a high concentration impurity region 9 to become a channel is implanted into the electrode 5 in a self-alignment manner, and thermally diffused. Then, a source 2 and a high concentration drain region 4 are formed by implanting the impurity. An interlayer insulating film is deposited, a connecting hole is formed, and metal wirings are provided to complete it. With this structure, in a MIS type FET in which breakdown strength of the drain 3 only is enhanced, an increase in a driving force due to reductions in the area of the source region 2 and decreases in ON resistance and effective channel length can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はロジック回路や小信号回路と共存する高耐圧
パワーICに関わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high voltage power IC that coexists with logic circuits and small signal circuits.

〔発明の概要〕[Summary of the invention]

この発明はLOGOS酸化を利用してドレインの高耐圧
化を図り、ソースに二重拡散を利用して短チャネル化を
図ったMIS型電界効果トランジスタである。
This invention is an MIS type field effect transistor that uses LOGOS oxidation to increase the withstand voltage of the drain, and uses double diffusion for the source to shorten the channel.

〔従来の技術〕[Conventional technology]

集積度の向上に伴ない、ロジック演算処理部だけでなく
、出力バッファも含めて、モノリシツクICで構成でき
るようになってきた。通常素子間分離に使われるLOG
OS(Local  Oxidation  of  
Silicon)を用いた高耐圧トランジスタは、少な
いマスク構成で、上記用途【Cを実現できる。
As the degree of integration increases, it has become possible to configure not only the logic processing section but also the output buffer with a monolithic IC. LOG usually used for isolation between elements
OS (Local Oxidation of
High breakdown voltage transistors using silicon can achieve the above application [C] with a small number of mask configurations.

従来のLOGOS酸化を利用した高耐圧MIS電界効果
トランジスタの断面図を第2図に示す。
FIG. 2 shows a cross-sectional view of a high voltage MIS field effect transistor using conventional LOGOS oxidation.

LOGOS酸化による分離絶縁膜8をゲート電極5の両
側に配置し、分離絶縁@8に自己整合的に導入し、ソー
ス2、ドレイン領域3に低濃度不純物賄域が形成されて
いる。この低不純物濃度ドレイン領域3の存在により、
高電界によるチャネルキャリアのインパクトイオン化を
抑制し、さらに厚い分離絶縁膜によりゲート端の表面ブ
レークダウン耐圧を高めることが可能となった。しかし
ながら、この構造では、高耐圧化の不用なソース2まで
低濃度不純物濃度となってしまい、オン抵抗を増大させ
てしまうという欠点があった。一方、実効チャネル長は
活性領域の長さLGで決まる。
Isolation insulating films 8 formed by LOGOS oxidation are placed on both sides of the gate electrode 5 and introduced into the isolation insulators 8 in a self-aligned manner, forming low concentration impurity regions in the source 2 and drain regions 3. Due to the existence of this low impurity concentration drain region 3,
It has become possible to suppress impact ionization of channel carriers due to high electric fields, and to increase the surface breakdown voltage at the gate edge by using a thick isolation insulating film. However, this structure has the disadvantage that even the source 2, which is not required to have a high breakdown voltage, has a low impurity concentration, which increases the on-resistance. On the other hand, the effective channel length is determined by the length LG of the active region.

JIKさLGはL.OCOS酸化のバースビークがある
ことや、この構造ではソース、ドレインの接合深さが深
いためパンチスルーが起こりやすいなどの点から、分離
絶縁膜8の4〜5倍の長さを必要としていた。ちなみに
分離絶縁M1μmの場合、LG−4〜5μm必要であっ
た。これらの欠点を改善する為、第3図に示すようにソ
ース2側だけ浅くて濃度の高い不純物領域をゲート電極
に自己整合的に形成したMI S型電界トランジスタも
考案されている。この構造ではソース側に低不純物領域
はなく、オン抵抗は小さい。しかし、この場合ても、ト
レインを形戊するLOGOSのフォl・マスクと、ゲー
ト71mのフォトマスクのアライメントずれにより、実
効チャネル長が変化するという問題が新たに生ずる為、
量産ではLG−3〜4μmは必要であり、短くすること
は難しかった。
JIKSALG is L. The length of the isolation insulating film 8 was required to be four to five times longer because of the birth beak of OCOS oxidation and the deep junction depth of the source and drain in this structure, which tends to cause punch-through. Incidentally, in the case of separation insulation M1 .mu.m, LG-4 to 5 .mu.m was required. In order to improve these drawbacks, an MIS type field transistor has been devised in which a shallow, highly concentrated impurity region is formed only on the source 2 side in a self-aligned manner with the gate electrode, as shown in FIG. In this structure, there is no low impurity region on the source side, and the on-resistance is small. However, even in this case, a new problem arises in that the effective channel length changes due to misalignment between the LOGOS photomask that shapes the train and the gate 71m photomask.
In mass production, LG-3 to 4 μm is required, and it was difficult to shorten it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、分離絶縁膜を使ったドレインの高耐圧化を
保ちつつ、ソース抵抗の低減と、実効チャネル長の短縮
を同時に戊遂げる構造とその製造方法を提供するもので
ある。
The present invention provides a structure and a method for manufacturing the same, which simultaneously achieves a reduction in source resistance and an effective channel length while maintaining a high breakdown voltage of the drain using an isolation insulating film.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は、LOCOS酸化を利用し、ドレインの高耐圧
化を図り、二重拡散を用いて、短チャネル化と、低オン
抵抗を実現した。
The present invention utilizes LOCOS oxidation to increase the withstand voltage of the drain, and uses double diffusion to achieve a short channel and low on-resistance.

〔作用〕[Effect]

ソース側に導入された基板と同じ導電型の高濃度不純物
領域により、チャネル長が決定される為、ゲート電極マ
スクとLOGOSマスクのアライメントずれによる実効
チャネル長のバラツキからのがれることができる。従っ
て、短チャネル化が可能となりチャネルコンダクタンス
を高めることができる。またソース領域に低濃度不純物
領域が入らないためオン抵抗を約半分に低下することが
できる。
Since the channel length is determined by the high concentration impurity region of the same conductivity type as the substrate introduced on the source side, it is possible to avoid variations in the effective channel length due to misalignment between the gate electrode mask and the LOGOS mask. Therefore, the channel can be shortened and the channel conductance can be increased. Furthermore, since a low concentration impurity region does not enter the source region, the on-resistance can be reduced by about half.

〔実施例〕〔Example〕

第1図は本発明の高耐圧MIS型電界効果トランジスタ
の実施例の断面図である。
FIG. 1 is a sectional view of an embodiment of a high breakdown voltage MIS type field effect transistor of the present invention.

5V以下の低電圧駆動による高集積ロジック用MOS}
ランジスタと高電圧駆動出力用MOSトランジスタを同
一基板上に構戒するICにおいて、比較的簡単に両トラ
ンジスタを形威する製造プロセスとして分離絶縁膜とそ
の下に自己整合的に低濃度不純物領域を導入する方法が
とられている。
Highly integrated logic MOS with low voltage drive of 5V or less
In an IC in which a transistor and a high-voltage drive output MOS transistor are arranged on the same substrate, an isolation insulating film and a low concentration impurity region are introduced under it in a self-aligned manner as a manufacturing process to form both transistors relatively easily. A method is being adopted to do so.

一方、最終段のレベルシフタやCMOS型インバータあ
るいはオーブンドレインなどの出力回路において、ソー
スは基板やウエルの電位と同電位で使用する場合がほと
んどである。従ってソースの耐圧は、シリーズ接続やト
ランスファゲートとして使用する場合を除いて高耐圧化
する必要はない。
On the other hand, in output circuits such as final-stage level shifters, CMOS inverters, oven drains, and the like, the source is almost always used at the same potential as the substrate or well. Therefore, there is no need to increase the withstand voltage of the source except when the source is connected in series or used as a transfer gate.

ソース側にドレイン側の様な低不純物領域を用いなけれ
ば、トランジスタのサイズは小さくなるし、オン抵抗も
約1/2程度に低下できる。第1図は、この目的で、し
かも、マスクズレによる実効チャネル長のバラッキのほ
とんどないMIS型電界効果トランジスタの断面図であ
る。ドレインは分離絶縁膜8を用いた低濃度不純物領域
3により、インパクトイオン化の起こりにくい構造とな
っている。さらに、低濃度不純物領域3とゲート電極5
の端では絶縁膜の厚さが除々に厚くなっているのでゲー
トOFF時の表面ブレークダウンも起こりにくくなって
いる。ソース側は、ゲート電極5のパターンに合せた二
重拡散技術によりチャネルとなる高濃度不純物領域7と
ソース領域2が形威されている。このtR造では実効チ
ャネル長LGは二重拡散の不純物源とその拡散により、
制御される。
If a low impurity region like the drain side is not used on the source side, the size of the transistor can be reduced and the on-resistance can be reduced to about 1/2. FIG. 1 is a cross-sectional view of a MIS type field effect transistor for this purpose and with almost no variation in effective channel length due to mask misalignment. The drain has a structure in which impact ionization is difficult to occur due to the low concentration impurity region 3 using the isolation insulating film 8. Furthermore, the low concentration impurity region 3 and the gate electrode 5
Since the thickness of the insulating film gradually increases at the edge of the gate, surface breakdown is less likely to occur when the gate is turned off. On the source side, a high-concentration impurity region 7 serving as a channel and a source region 2 are formed by a double diffusion technique matching the pattern of the gate electrode 5. In this tR structure, the effective channel length LG is due to the double diffusion impurity source and its diffusion.
controlled.

高扇度不純物領域7と低濃度ドレイン領域3の間の基板
1表面は、ゲート電極5により制御され、オン時は、強
反転状態となり、実効チャネル長LGを変化させること
はほとんどなく、ゲート電極5と、分離絶縁膜のアライ
メントに影響されない高耐圧MOS}ランジスタを実現
することが可能である。しかもここで形成される実効チ
ャネル長は約1μm程度までの非常に短チャネルを形成
することができる。
The surface of the substrate 1 between the high degree impurity region 7 and the low concentration drain region 3 is controlled by the gate electrode 5, and when turned on, it is in a strong inversion state, hardly changing the effective channel length LG, and the gate electrode 5 5, it is possible to realize a high voltage MOS transistor which is not affected by the alignment of the isolation insulating film. Furthermore, a very short channel can be formed with an effective channel length of about 1 μm.

第1図の本発明によるMIS型電界効果トランジスタの
製造工程の一例を第4図(a)〜(d)に示す。第4図
(a)において、シリコンナイトライド10により、分
離領域となる領域のバターニングと、インプラによる不
純物導入を行う。第4図(b)においてシリコンナイト
ライド10をマスクに選択酸化を行い分離領域8と低濃
度ドレイン領域3を形成するその後ゲート電極5をポリ
シリコンのデポジションにより形成し、さらにチャネル
となる高濃度不純物領域7をゲート電極5に自己整合的
に導入し、熱拡散させる。第4図(C)において、ソー
ス2および、高濃度ドレイン領域4をインプラにより形
戊する。第4図(d)において、層間絶縁膜をデポジッ
トし、コンタクトホールを開け、金属配線をパターニン
グして完戊となる。
An example of the manufacturing process of the MIS type field effect transistor according to the present invention shown in FIG. 1 is shown in FIGS. 4(a) to 4(d). In FIG. 4(a), a region to be an isolation region is patterned using silicon nitride 10, and impurities are introduced by implantation. In FIG. 4(b), selective oxidation is performed using silicon nitride 10 as a mask to form an isolation region 8 and a low concentration drain region 3. Thereafter, a gate electrode 5 is formed by depositing polysilicon, and then a high concentration drain region 3, which will become a channel, is formed. Impurity region 7 is introduced into gate electrode 5 in a self-aligned manner and thermally diffused. In FIG. 4(C), the source 2 and heavily doped drain region 4 are formed by implantation. In FIG. 4(d), an interlayer insulating film is deposited, contact holes are opened, and metal wiring is patterned to complete the process.

〔発明の効果〕〔Effect of the invention〕

ドレインのみを高耐圧化したMIS型電界効果トランジ
スタにおいて、ソース領域の面積の減少と、ON抵抗の
低減、実効チャネル長の縮少による駆動能力の増加を成
すことができる。
In an MIS type field effect transistor in which only the drain has a high breakdown voltage, it is possible to reduce the area of the source region, reduce the ON resistance, and increase the driving capability by reducing the effective channel length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明であるMIS型電界効果トランジスタの
断面図、第2図および第3図は各々従来のMIS型電界
効果トランジスタの断面図、第4図(a)〜(d)は本
発明のMrS型電界効果トランジスタの製造工程順断面
図である。 1・・・半導体基板 2・・・ソース領域 3・・・低不純物濃度ドレイン領域 4・・・高不純物濃度ドレイン領域 5・・・ゲート電極 6・・・ゲート絶縁膜 7・・・高濃度不純物領域 8 ・ ・ ・分離絶縁膜 9・・・層間絶縁膜 以 上
FIG. 1 is a sectional view of an MIS type field effect transistor according to the present invention, FIGS. 2 and 3 are sectional views of conventional MIS type field effect transistors, and FIGS. 4(a) to 4(d) are sectional views of a MIS type field effect transistor according to the present invention. FIG. 3 is a cross-sectional view of the manufacturing process of the MrS type field effect transistor. 1... Semiconductor substrate 2... Source region 3... Low impurity concentration drain region 4... High impurity concentration drain region 5... Gate electrode 6... Gate insulating film 7... High concentration impurity Region 8 ・ ・ Isolation insulating film 9 ... Interlayer insulating film or higher

Claims (1)

【特許請求の範囲】[Claims] 第一導電型の半導体基板表面部分に設けられた第二導電
型の高濃度不純物のソース領域と、前記ソース領域に接
するゲート絶縁膜と、前記ゲート絶縁膜上のゲート電極
と、前記ソース領域から間隔をおいて設けられ前記ゲー
ト絶縁膜より厚い分離絶縁膜と、前記分離絶縁膜下に自
己整合的に導入された第二導電型の低濃度不純物の第一
のドレイン領域と、前記第一ドレイン領域に接する高濃
度不純物の第二のドレイン領域と、前記ソース領域に自
己整合的に導入された前記半導体基板より濃度の高い第
一導電型の不純物領域から成るMIS型電界効果トラン
ジスタ。
A highly concentrated impurity source region of a second conductivity type provided on a surface portion of a semiconductor substrate of a first conductivity type, a gate insulating film in contact with the source region, a gate electrode on the gate insulating film, and a source region from the source region. an isolation insulating film provided at intervals and thicker than the gate insulating film; a first drain region of a second conductivity type low concentration impurity introduced in a self-aligned manner under the isolation insulating film; and the first drain region. A MIS type field effect transistor comprising a second drain region of high concentration impurity in contact with the source region, and a first conductivity type impurity region having a higher concentration than the semiconductor substrate and introduced into the source region in a self-aligned manner.
JP19348789A 1989-07-25 1989-07-25 Mis type field-effect transistor Pending JPH0357278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19348789A JPH0357278A (en) 1989-07-25 1989-07-25 Mis type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19348789A JPH0357278A (en) 1989-07-25 1989-07-25 Mis type field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0357278A true JPH0357278A (en) 1991-03-12

Family

ID=16308853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19348789A Pending JPH0357278A (en) 1989-07-25 1989-07-25 Mis type field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0357278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190278A (en) * 1989-12-20 1991-08-20 Oki Electric Ind Co Ltd Offset type mis transistor device
US5374843A (en) * 1991-05-06 1994-12-20 Silinconix, Inc. Lightly-doped drain MOSFET with improved breakdown characteristics
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
EP0837509A1 (en) * 1996-05-15 1998-04-22 Texas Instruments Incorporated LDMOS transistor including a RESURF region self-aligned to a LOCOS field oxide region

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190278A (en) * 1989-12-20 1991-08-20 Oki Electric Ind Co Ltd Offset type mis transistor device
US5374843A (en) * 1991-05-06 1994-12-20 Silinconix, Inc. Lightly-doped drain MOSFET with improved breakdown characteristics
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5514608A (en) * 1991-05-06 1996-05-07 Siliconix Incorporated Method of making lightly-doped drain DMOS with improved breakdown characteristics
EP0837509A1 (en) * 1996-05-15 1998-04-22 Texas Instruments Incorporated LDMOS transistor including a RESURF region self-aligned to a LOCOS field oxide region

Similar Documents

Publication Publication Date Title
US5688722A (en) CMOS integrated circuit with reduced susceptibility to PMOS punchthrough
JP3226053B2 (en) Method for manufacturing semiconductor device
WO2002052649A1 (en) Semiconductor device and portable electronic device
US20030141552A1 (en) Semiconductor devices and methods of manufacturing the same
US5191401A (en) MOS transistor with high breakdown voltage
US5319236A (en) Semiconductor device equipped with a high-voltage MISFET
JPH10294465A (en) Semiconductor device
JPS6152577B2 (en)
JP2000232224A (en) Semiconductor device and manufacture thereof
JP2001308321A (en) Semiconductor device and its manufacturing method
JPS6329967A (en) Manufacture of semiconductor device
EP0091256B1 (en) Cmos device
JPH0357278A (en) Mis type field-effect transistor
US5847433A (en) Integrated switching circuit with CMOS circuit and method for producing isolated active regions of a CMOS circuit
US6362034B1 (en) Method of forming MOSFET gate electrodes having reduced depletion region growth sensitivity to applied electric field
US6709936B1 (en) Narrow high performance MOSFET device design
US6215151B1 (en) Methods of forming integrated circuitry and integrated circuitry
JPH08264784A (en) Manufacture of field-effect semiconductor device
JPH06216380A (en) Semiconductor device and manufacture thereof
JPH10189978A (en) Semiconductor integrated circuit device
JP3314341B2 (en) Method of forming C-MOS gate array and base contact
KR100265049B1 (en) MOS field effect transistor and manufacturing method of S.O.I device
JP2807718B2 (en) Semiconductor device and manufacturing method thereof
JP2002343884A (en) Semiconductor device and its manufacturing method
JPS6118170A (en) Manufacture of semiconductor device