EP4005592B1 - Particules d'administration de type virion de molécules d'arn autoréplicatives - Google Patents

Particules d'administration de type virion de molécules d'arn autoréplicatives Download PDF

Info

Publication number
EP4005592B1
EP4005592B1 EP21204155.2A EP21204155A EP4005592B1 EP 4005592 B1 EP4005592 B1 EP 4005592B1 EP 21204155 A EP21204155 A EP 21204155A EP 4005592 B1 EP4005592 B1 EP 4005592B1
Authority
EP
European Patent Office
Prior art keywords
rna
virus
liposome
composition
liposomes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21204155.2A
Other languages
German (de)
English (en)
Other versions
EP4005592A1 (fr
Inventor
Andrew Geall
Christian Mandl
Derek O'hagan
Manmohan Singh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
GlaxoSmithKline Biologicals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44629863&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP4005592(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GlaxoSmithKline Biologicals SA filed Critical GlaxoSmithKline Biologicals SA
Priority to HRP20221522TT priority Critical patent/HRP20221522T1/hr
Priority to EP22200367.5A priority patent/EP4180057A1/fr
Priority to RS20221148A priority patent/RS63817B1/sr
Priority to SI201132073T priority patent/SI4005592T1/sl
Publication of EP4005592A1 publication Critical patent/EP4005592A1/fr
Application granted granted Critical
Publication of EP4005592B1 publication Critical patent/EP4005592B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18522New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18534Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36141Use of virus, viral particle or viral elements as a vector
    • C12N2770/36143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention is in the field of non-viral delivery of self-replicating RNAs for immunisation.
  • nucleic acids for immunising animals has been a goal for several years.
  • Various approaches have been tested, including the use of DNA or RNA, of viral or non-viral delivery vehicles (or even no delivery vehicle, in a "naked” vaccine), of replicating or non-replicating vectors, or of viral or non-viral vectors.
  • nucleic acid vaccines There remains a need for further and improved nucleic acid vaccines and, in particular, for improved ways of delivering nucleic acid vaccines.
  • Wilson et al., 1979, Cell, 17:1, 77-84 describe the lipid-mediated introduction of poliovirus RNA into cells.
  • nucleic acid immunisation is achieved by delivering a self-replicating RNA encapsulated within a small particle which is a liposome comprising a lipid with a cationic head group.
  • the RNA encodes an immunogen of interest which can elicit an immune response in vivo against a virus, a bacterium, a fungus, a parasite, an allergen or a tumor antigen, and the particle may deliver this RNA by mimicking the delivery function of a natural virus.
  • the invention provides a pharmaceutical composition comprising a non-virion particle that does not comprise a protein capsid, for in vivo delivery of RNA to a vertebrate cell; wherein (a) the particle is formed from a delivery material of amphiphilic lipids which can form liposomes, and the particle is a liposome comprising a lipid with a cationic head group and encapsulating a self-replicating RNA molecule which encodes an immunogen, wherein the immunogen can elicit an immune response in vivo against a virus, a bacterium, a fungus, a parasite, an allergen or a tumor antigen; and wherein (bi) the RNA includes no modified nucleotides except for any 5' cap structure, or (bii) the RNA includes a 5' cap comprising a 7-methylguanosine and the first 1, 2 or 3 5' ribonucleotides are methylated at the 2' position of the ribose.
  • compositions are for immunising subjects against various diseases.
  • the combination of utilising a non-virion particle to deliver a self-replicating RNA provides a way to elicit a strong and specific immune response against the immunogen while delivering only a low dose of RNA.
  • these particles can readily be manufactured at a commercial scale.
  • Particles of the invention are non-virion particles i.e. they are not a virion.
  • the particle does not comprise a protein capsid.
  • the invention does not require a packaging cell line, thus permitting easier up-scaling for commercial production and minimising the risk that dangerous infectious viruses will inadvertently be produced.
  • particles of the invention are formed from a delivery material of amphiphilic lipids which can form liposomes. Where delivery is by liposome, RNA should be encapsulated.
  • a particle of the invention is a liposome encapsulating a self-replicating RNA molecule which encodes an immunogen which can elicit an immune response in vivo against a virus, a bacterium, a fungus, a parasite, an allergen or a tumor antigen.
  • the particle preferably is substantially spherical.
  • RNA is encapsulated within the liposome. This means that RNA inside the particles is (as in a natural virus) separated from any external medium by the delivery material, and encapsulation has been found to protect RNA from RNase digestion. Encapsulation can take various forms. For example, in some embodiments (as in a unilamellar liposome) the delivery material forms a outer layer around an aqueous RNA-containing core. The particles can include some external RNA (e.g. on the surface of the particles), but at least half of the RNA (and ideally all of it) is encapsulated. Encapsulation within liposomes is distinct from, for instance, the lipid/RNA complexes disclosed in reference 1.
  • RNA-containing aqueous core can form bilayers in an aqueous environment to encapsulate a RNA-containing aqueous core as a liposome.
  • These lipids have a cationic head group.
  • Further lipids can have an anionic or zwitterionic hydrophilic head group. Formation of liposomes from anionic phospholipids dates back to the 1960s, and cationic liposome-forming lipids have been studied since the 1990s. Some phospholipids are anionic whereas other are zwitterionic and others are cationic.
  • Suitable classes of phospholipid include, but are not limited to, phosphatidylethanolamines, phosphatidylcholines, phosphatidylserines, and phosphatidyl-glycerols, and some useful phospholipids are listed in Table 1.
  • Useful cationic lipids include, but are not limited to, dioleoyl trimethylammonium propane (DOTAP), 1,2-distearyloxy-N,N-dimethyl-3-aminopropane (DSDMA), 1,2-dioleyloxy-N,Ndimethyl-3 -aminopropane (DODMA), 1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane (DLinDMA), 1,2-dilinolenyloxy-N,N-dimethyl-3-aminopropane (DLenDMA).
  • Zwitterionic lipids include, but are not limited to, acyl zwitterionic lipids and ether zwitterionic lipids.
  • lipids can be saturated or unsaturated.
  • the use of at least one unsaturated lipid for preparing liposomes is preferred. If an unsaturated lipid has two tails, both tails can be unsaturated, or it can have one saturated tail and one unsaturated tail.
  • Liposomal particles of the invention can be formed from a single lipid or from a mixture of lipids.
  • a mixture may comprise (i) a mixture of cationic lipids (ii) a mixture of anionic lipids and cationic lipids (iii) a mixture of zwitterionic lipids and cationic lipids or (iv) a mixture of anionic lipids, cationic lipids and zwitterionic lipids.
  • a mixture may comprise both saturated and unsaturated lipids.
  • a mixture may comprise DSPC (zwitterionic, saturated), DlinDMA (cationic, unsaturated), and/or DMG (anionic, saturated).
  • a mixture of lipids is used, not all of the component lipids in the mixture need to be amphiphilic e.g. one or more amphiphilic lipids can be mixed with cholesterol.
  • the hydrophilic portion of a lipid can be PEGylated (i.e . modified by covalent attachment of a polyethylene glycol). This modification can increase stability and prevent non-specific adsorption of the liposomes.
  • lipids can be conjugated to PEG using techniques such as those disclosed in reference 2 and 3.
  • Various lengths of PEG can be used e.g. between 0.5-8kDa.
  • a mixture of DSPC, DlinDMA, PEG-DMG and cholesterol is used in the examples.
  • Liposomal particles are usually divided into three groups: multilamellar vesicles (MLV); small unilamellar vesicles (SUV); and large unilamellar vesicles (LUV).
  • MLVs have multiple bilayers in each vesicle, forming several separate aqueous compartments.
  • SUVs and LUVs have a single bilayer encapsulating an aqueous core; SUVs typically have a diameter ⁇ 50nm, and LUVs have a diameter >50nm.
  • Liposomal particles of the invention are ideally LUVs with a diameter in the range of 50-220nm.
  • compositions comprising a population of LUVs with different diameters: (i) at least 80% by number should have diameters in the range of 20-220nm, (ii) the average diameter (Zav, by intensity) of the population is ideally in the range of 40-200nm, and/or (iii) the diameters should have a polydispersity index ⁇ 0.2.
  • the liposome/RNA complexes of reference 1 are expected to have a diameter in the range of 600-800nm and to have a high polydispersity.
  • Particles of the invention include a self-replicating RNA molecule which (unlike siRNA) encodes an immunogen.
  • the RNA includes no modified nucleotides except for any 5' cap structure, or includes a 5' cap comprising a 7-methylguanosine and the first 1, 2 or 3 5' ribonucleotides are methylated at the 2' position of the ribose.
  • RNA is released from the particles and is translated inside a cell to provide the immunogen in situ.
  • RNA in particles of the invention is self-replicating.
  • a self-replicating RNA molecule (replicon) can, when delivered to a vertebrate cell even without any proteins, lead to the production of multiple daughter RNAs by transcription from itself (via an antisense copy which it generates from itself).
  • a self-replicating RNA molecule is thus typically a +-strand molecule which can be directly translated after delivery to a cell, and this translation provides a RNA-dependent RNA polymerase which then produces both antisense and sense transcripts from the delivered RNA.
  • RNA leads to the production of multiple daughter RNAs.
  • These daughter RNAs, as well as collinear subgenomic transcripts, may be translated themselves to provide in situ expression of an encoded immunogen, or may be transcribed to provide further transcripts with the same sense as the delivered RNA which are translated to provide in situ expression of the immunogen.
  • the overall results of this sequence of transcriptions is a huge amplification in the number of the introduced replicon RNAs and so the encoded immunogen becomes a major polypeptide product of the cells.
  • One suitable system for achieving self-replication in this manner is to use an alphavirus-based replicon.
  • These replicons are +-stranded RNAs which lead to translation of a replicase (or replicase-transcriptase) after delivery to a cell.
  • the replicase is translated as a polyprotein which auto-cleaves to provide a replication complex which creates genomic --strand copies of the +-strand delivered RNA.
  • These --strand transcripts can themselves be transcribed to give further copies of the +-stranded parent RNA and also to give a subgenomic transcript which encodes the immunogen. Translation of the subgenomic transcript thus leads to in situ expression of the immunogen by the infected cell.
  • Suitable alphavirus replicons can use a replicase from a Sindbis virus, a Semliki forest virus, an eastern equine encephalitis virus, a Venezuelan equine encephalitis virus, etc.
  • Mutant or wild-type virus sequences can be used e.g. the attenuated TC83 mutant of VEEV has been used in replicons [14].
  • a preferred self-replicating RNA molecule thus encodes (i) a RNA-dependent RNA polymerase which can transcribe RNA from the self-replicating RNA molecule and (ii) an immunogen.
  • the polymerase can be an alphavirus replicase e.g. comprising one or more of alphavirus proteins nsP1, nsP2, nsP3 and nsP4.
  • the self-replicating RNA molecules of the invention do not encode alphavirus structural proteins.
  • a preferred self-replicating RNA can lead to the production of genomic RNA copies of itself in a cell, but not to the production of RNA-containing virions.
  • the inability to produce these virions means that, unlike a wild-type alphavirus, the self-replicating RNA molecule cannot perpetuate itself in infectious form.
  • alphavirus structural proteins which are necessary for perpetuation in wild-type viruses are absent from self-replicating RNAs of the invention and their place is taken by gene(s) encoding the immunogen of interest, such that the subgenomic transcript encodes the immunogen rather than the structural alphavirus virion proteins.
  • RNA molecule useful with the invention may have two open reading frames.
  • the first (5') open reading frame encodes a replicase; the second (3') open reading frame encodes an immunogen.
  • the RNA may have additional ( e . g . downstream) open reading frames e.g. to encode further immunogens (see below) or to encode accessory polypeptides.
  • a preferred self-replicating RNA molecule has a 5' cap (e.g. a 7-methylguanosine). This cap can enhance in vivo translation of the RNA.
  • the 5' sequence of the self-replicating RNA molecule must be selected to ensure compatibility with the encoded replicase.
  • a self-replicating RNA molecule may have a 3' poly-A tail. It may also include a poly-A polymerase recognition sequence (e.g. AAUAAA) near its 3' end.
  • AAUAAA poly-A polymerase recognition sequence
  • Self-replicating RNA molecules can have various lengths but they are typically 5000-25000 nucleotides long e.g. 8000-15000 nucleotides, or 9000-12000 nucleotides. Thus the RNA is longer than seen in siRNA delivery.
  • RNA molecules will typically be single-stranded.
  • Single-stranded RNAs can generally initiate an adjuvant effect by binding to TLR7, TLR8, RNA helicases and/or PKR.
  • RNA delivered in double-stranded form can bind to TLR3, and this receptor can also be triggered by dsRNA which is formed either during replication of a single-stranded RNA or within the secondary structure of a single-stranded RNA.
  • the self-replicating RNA can conveniently be prepared by in vitro transcription (IVT).
  • IVT can use a (cDNA) template created and propagated in plasmid form in bacteria, or created synthetically (for example by gene synthesis and/or polymerase chain-reaction (PCR) engineering methods).
  • a DNA-dependent RNA polymerase such as the bacteriophage T7, T3 or SP6 RNA polymerases
  • Appropriate capping and poly-A addition reactions can be used as required (although the replicon's poly-A is usually encoded within the DNA template).
  • RNA polymerases can have stringent requirements for the transcribed 5' nucleotide(s) and in some embodiments these requirements must be matched with the requirements of the encoded replicase, to ensure that the IVT-transcribed RNA can function efficiently as a substrate for its self-encoded replicase.
  • the self-replicating RNA can include (in addition to any 5' cap structure) one or more nucleotides having a modified nucleobase.
  • the RNA can comprise m5C (5-methylcytidine), m5U (5-methyluridine), m6A (N6-methyladenosine), s2U (2-thiouridine), Um (2'-O-methyluridine), m1A (1-methyladenosine); m2A (2-methyladenosine); Am (2'-O-methyladenosine); ms2m6A (2-methylthio-N6-methyladenosine); i6A (N6-isopentenyladenosine); ms2i6A (2-methylthio-N6isopentenyladenosine); io6A (N6-(cis-hydroxyisopentenyl)adenosine); ms2io6A (2-methylthio-N6-(cis-hydroxyisopen
  • a self-replicating RNA can include one or more modified pyrimidine nucleobases, such as pseudouridine and/or 5-methylcytosine residues.
  • the RNA includes no modified nucleobases, and may include no modified nucleotides i . e . all of the nucleotides in the RNA are standard A, C, G and U ribonucleotides (except for any 5' cap structure, which may include a 7'-methylguanosine).
  • the RNA includes a 5' cap comprising a 7'-methylguanosine, and the first 1, 2 or 3 5' ribonucleotides may be methylated at the 2' position of the ribose.
  • a RNA used with the invention ideally includes only phosphodiester linkages between nucleosides, but in some embodiments it can contain phosphoramidate, phosphorothioate, and/or methylphosphonate linkages.
  • RNA per particle can vary, and the number of individual self-replicating RNA molecules per particle can depend on the characteristics of the particle being used.
  • a particle may include from 1-500 RNA molecules.
  • the number of RNA molecules is typically ⁇ 50 per liposome e . g . ⁇ 20, ⁇ 10, ⁇ 5, or 1-4.
  • a particle includes fewer than 10 different species of RNA e.g. 5, 4, 3, or 2 different species; most preferably, a particle includes a single RNA species i.e. all RNA molecules in the particle have the same sequence and same length.
  • RNA molecules used with the invention encode a polypeptide immunogen which elicits an immune response against a bacterium, a virus, a fungus or a parasite (or, in some embodiments, against an allergen; and in other embodiments, against a tumor antigen). After administration of the particles the immunogen is translated in vivo and can elicit an immune response in the recipient.
  • the immune response may comprise an antibody response (usually including IgG) and/or a cell-mediated immune response.
  • the polypeptide immunogen will typically elicit an immune response which recognises the corresponding bacterial, viral, fungal or parasite (or allergen or tumour) polypeptide, but in some embodiments the polypeptide may act as a mimotope to elicit an immune response which recognises a bacterial, viral, fungal or parasite saccharide.
  • the immunogen will typically be a surface polypeptide e . g . an adhesin, a hemagglutinin, an envelope glycoprotein, a spike glycoprotein, etc.
  • Self-replicating RNA molecules can encode a single polypeptide immunogen or multiple polypeptides. Multiple immunogens can be presented as a single polypeptide immunogen (fusion polypeptide) or as separate polypeptides. If immunogens are expressed as separate polypeptides then one or more of these may be provided with an upstream IRES or an additional viral promoter element. Alternatively, multiple immunogens may be expressed from a polyprotein that encodes individual immunogens fused to a short autocatalytic protease ( e . g . foot-and-mouth disease virus 2A protein), or as inteins.
  • a short autocatalytic protease e . g . foot-and-mouth disease virus 2A protein
  • the RNA encodes an immunogen which can elicit an immune response in vivo against a virus, a bacterium, a fungus, a parasite, an allergen or a tumor antigen.
  • the invention does not encompass RNA which encodes a firefly luciferase or which encodes a fusion protein of E.coli ⁇ -galactosidase or which encodes a green fluorescent protein (GFP).
  • GFP green fluorescent protein
  • the RNA is not total mouse thymus RNA.
  • the immunogen elicits an immune response against a virus which infects fish, such as: infectious salmon anemia virus (ISAV), salmon pancreatic disease virus (SPDV), infectious pancreatic necrosis virus (IPNV), channel catfish virus (CCV), fish lymphocystis disease virus (FLDV), infectious hematopoietic necrosis virus (IHNV), koi herpesvirus, salmon picorna-like virus (also known as picorna-like virus of atlantic salmon), landlocked salmon virus (LSV), atlantic salmon rotavirus (ASR), trout strawberry disease virus (TSD), coho salmon tumor virus (CSTV), or viral hemorrhagic septicemia virus (VHSV).
  • infectious salmon anemia virus ISAV
  • SPDV salmon pancreatic disease virus
  • IPNV infectious pancreatic necrosis virus
  • CCV channel catfish virus
  • FLDV fish lymphocystis disease virus
  • IHNV infectious hematopoietic necrosis virus
  • Fungal immunogens may be derived from Dermatophytres, including: Epidermophyton floccusum , Microsporum audouini , Microsporum canis, Microsporum distortum , Microsporum equinum, Microsporum gypsum, Microsporum nanum, Trichophyton concentricum, Trichophyton equinum, Trichophyton gallinae , Trichophyton gypseum, Trichophyton megnini, Trichophyton mentagrophytes, Trichophyton quinckeanum, Trichophyton rubrum, Trichophyton schoenleini, Trichophyton tonsurans , Trichophyton verrucosum , T.
  • Dermatophytres including: Epidermophyton floccusum , Microsporum audouini , Microsporum canis, Microsporum distortum , Microsporum equinum, Microsporum gypsum, Microsporum na
  • the immunogen elicits an immune response against a parasite from the Plasmodium genus, such as P.falciparum , P.vivax, P.malariae or P.ovale.
  • the invention may be used for immunising against malaria.
  • the immunogen elicits an immune response against a parasite from the Caligidae family, particularly those from the Lepeophtheirus and Caligus genera e.g. sea lice such as Lepeophtheirus salmonis or Caligus rogercresseyi.
  • the immunogen elicits an immune response against: pollen allergens (tree-, herb, weed-, and grass pollen allergens); insect or arachnid allergens (inhalant, saliva and venom allergens, e.g. mite allergens, cockroach and midges allergens, hymenopthera venom allergens); animal hair and dandruff allergens (from e.g. dog, cat, horse, rat, mouse, etc .); and food allergens (e.g. a gliadin).
  • pollen allergens tree-, herb, weed-, and grass pollen allergens
  • insect or arachnid allergens inhalant, saliva and venom allergens, e.g. mite allergens, cockroach and midges allergens, hymenopthera venom allergens
  • animal hair and dandruff allergens from e.g. dog, cat,
  • Important pollen allergens from trees, grasses and herbs are such originating from the taxonomic orders of Fagales, Oleales, Pinales and platanaceae including, but not limited to, birch (Betula), alder (Alnus), hazel (Corylus), hornbeam (Carpinus) and olive (Olea), cedar (Cryptomeria and Juniperus), plane tree (Platanus), the order of Poales including grasses of the genera Lolium, Phleum, Poa, Cynodon, Dactylis, Holcus, Phalaris, Secale, and Sorghum, the orders of Asterales and Urticales including herbs of the genera Ambrosia, Artemisia, and Parietaria.
  • venom allergens including such originating from stinging or biting insects such as those from the taxonomic order of Hymenoptera including bees ( Apidae ), wasps ( Vespidea ), and ants ( Formicoidae ).
  • the immunogen is a tumor antigen selected from: (a) cancer-testis antigens such as NY-ESO-1, SSX2, SCP1 as well as RAGE, BAGE, GAGE and MAGE family polypeptides, for example, GAGE-1, GAGE-2, MAGE-1, MAGE-2, MAGE-3, MAGE-4, MAGE-5, MAGE-6, and MAGE-12 (which can be used, for example, to address melanoma, lung, head and neck, NSCLC, breast, gastrointestinal, and bladder tumors; (b) mutated antigens, for example, p53 (associated with various solid tumors, e.g., colorectal, lung, head and neck cancer), p21/Ras (associated with, e.g., melanoma, pancreatic cancer and colorectal cancer), CDK4 (associated with, e .
  • cancer-testis antigens such as NY-ESO-1, SSX2, SCP1 as well as RAGE, BAGE, G
  • melanoma g ., melanoma
  • MUM1 associated with, e.g., melanoma
  • caspase-8 associated with, e.g., head and neck cancer
  • CIA 0205 associated with, e.g., bladder cancer
  • HLA-A2-R1701 associated with, e.g., bladder cancer
  • beta catenin associated with, e.g., melanoma
  • TCR associated with, e.g., T-cell non-Hodgkins lymphoma
  • BCR-abl associated with, e .
  • over-expressed antigens for example, Galectin 4 (associated with, e . g ., colorectal cancer), Galectin 9 (associated with, e.g., Hodgkin's disease), proteinase 3 (associated with, e.g., chronic myelogenous leukemia), WT 1 (associated with, e .
  • g ., various leukemias carbonic anhydrase (associated with, e.g., renal cancer), aldolase A (associated with, e.g., lung cancer), PRAME (associated with, e.g., melanoma), HER-2/neu (associated with, e.g., breast, colon, lung and ovarian cancer), mammaglobin, alpha-fetoprotein (associated with, e . g ., hepatoma), KSA (associated with, e.g., colorectal cancer), gastrin (associated with, e.g., pancreatic and gastric cancer), telomerase catalytic protein, MUC-1 (associated with, e .
  • MUC-1 associated with, e .
  • G-250 associated with, e.g., renal cell carcinoma
  • p53 associated with, e.g., breast, colon cancer
  • carcinoembryonic antigen associated with, e .
  • melanoma-melanocyte differentiation antigens such as MART-1/Melan A, gp100, MC1R, melanocyte-stimulating hormone receptor, tyrosinase, tyrosinase related protein-1/TRP1 and tyrosinase related protein-2/TRP2 (associated with, e . g ., melanoma);
  • prostate associated antigens such as PAP, PSA, PSMA, PSH-P1, PSM-P1, PSM-P2, associated with e .
  • tumor immunogens include, but are not limited to, p15, Hom/Mel-40, H-Ras, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus antigens, EBNA, human papillomavirus (HPV) antigens, including E6 and E7, hepatitis B and C virus antigens, human T-cell lymphotropic virus antigens, TSP-180, p185erbB2, p180erbB-3, c-met, mn-23H1, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, p16, TAGE, PSCA, CT7, 43-9F, 5T4, 791 Tgp72, beta-HCG, BCA225, BT
  • compositions of the invention are for immunising subjects against various diseases. These compositions will typically include a pharmaceutically acceptable carrier in addition to the particles. A thorough discussion of pharmaceutically acceptable carriers is available in reference 35.
  • a pharmaceutical composition of the invention may include one or more small molecule immunopotentiators.
  • the composition may include a TLR2 agonist (e.g. Pam3CSK4), a TLR4 agonist (e.g. an aminoalkyl glucosaminide phosphate, such as E6020), a TLR7 agonist (e.g. imiquimod), a TLR8 agonist (e.g. resiquimod) and/or a TLR9 agonist (e.g. IC31). Any such agonist ideally has a molecular weight of ⁇ 2000Da.
  • the RNA is encapsulated, and in some embodiments such agonist(s) are also encapsulated with the RNA, but in other embodiments they are unencapsulated
  • compositions of the invention may include the particles in plain water (e.g. w.f.i.) or in a buffer e.g. a phosphate buffer, a Tris buffer, a borate buffer, a succinate buffer, a histidine buffer, or a citrate buffer.
  • Buffer salts will typically be included in the 5-20mM range.
  • compositions of the invention may have a pH between 5.0 and 9.5 e . g . between 6.0 and 8.0.
  • compositions of the invention may include sodium salts (e . g . sodium chloride) to give tonicity.
  • sodium salts e . g . sodium chloride
  • a concentration of 10 ⁇ 2 mg/ml NaCl is typical e.g. about 9 mg/ml.
  • compositions of the invention may include metal ion chelators. These can prolong RNA stability by removing ions which can accelerate phosphodiester hydrolysis.
  • a composition may include one or more of EDTA, EGTA, BAPTA, pentetic acid, etc ..
  • chelators are typically present at between 10-500 ⁇ M e.g. 0.1mM.
  • a citrate salt, such as sodium citrate, can also act as a chelator, while advantageously also providing buffering activity.
  • compositions of the invention may have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, e . g . between 240-360 mOsm/kg, or between 290-310 mOsm/kg.
  • compositions of the invention may include one or more preservatives, such as thiomersal or 2-phenoxyethanol.
  • preservatives such as thiomersal or 2-phenoxyethanol.
  • Mercury-free compositions are preferred, and preservative-free vaccines can be prepared.
  • compositions of the invention are preferably sterile.
  • compositions of the invention are preferably non-pyrogenic e . g . containing ⁇ 1 EU (endotoxin unit, a standard measure) per dose, and preferably ⁇ 0.1 EU per dose.
  • compositions of the invention are preferably gluten free.
  • compositions of the invention may be prepared in unit dose form.
  • a unit dose may have a volume of between 0.1-1.0ml e.g. about 0.5ml.
  • compositions may be prepared as injectables, either as solutions or suspensions.
  • the composition may be prepared for pulmonary administration e . g . by an inhaler, using a fine spray.
  • the composition may be prepared for nasal, aural or ocular administration e . g . as spray or drops. Injectables for intramuscular administration are typical.
  • compositions comprise an immunologically effective amount of particles, as well as any other components, as needed.
  • 'immunologically effective amount' it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated ( e . g . non-human primate, primate, etc.), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
  • the particle and RNA content of compositions of the invention will generally be expressed in terms of the amount of RNA per dose.
  • a preferred dose has ⁇ 100 ⁇ g RNA (e.g . from 10-100 ⁇ g, such as about 10 ⁇ g, 25 ⁇ g, 50 ⁇ g, 75 ⁇ g or 100 ⁇ g), but expression can be seen at much lower levels e.g. ⁇ 1 ⁇ g/dose, ⁇ 100ng/dose, ⁇ 10ng/dose, ⁇ 1ng/dose, etc
  • the invention also provides a delivery device (e . g . syringe, nebuliser, sprayer, inhaler, dermal patch, etc.) containing a pharmaceutical composition of the invention. This device can be used to administer the composition to a vertebrate subject.
  • Particles of the invention do not include ribosomes.
  • compositions of the invention are for in vivo use for eliciting an immune response against an immunogen of interest.
  • the immune response is preferably protective and preferably involves antibodies and/or cell-mediated immunity.
  • a booster response may be raised.
  • the invention also provides a pharmaceutical composition of the invention for use in a method for raising an immune response in a vertebrate.
  • the vertebrate By raising an immune response in the vertebrate by these uses, the vertebrate can be protected against various diseases and/or infections e . g . against bacterial and/or viral diseases as discussed above.
  • the compositions are immunogenic, and are more preferably vaccine compositions.
  • Vaccines according to the invention may either be prophylactic ( i.e. to prevent infection) or therapeutic ( i.e. to treat infection), but will typically be prophylactic.
  • the vertebrate is preferably a mammal, such as a human or a large veterinary mammal (e . g . horses, cattle, deer, goats, pigs).
  • the human is preferably a child (e.g. a toddler or infant) or a teenager; where the vaccine is for therapeutic use, the human is preferably a teenager or an adult.
  • a vaccine intended for children may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc.
  • Vaccines prepared according to the invention may be used to treat both children and adults.
  • a human patient may be less than 1 year old, less than 5 years old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old.
  • Preferred patients for receiving the vaccines are the elderly ( e . g . ⁇ 50 years old, ⁇ 60 years old, and preferably ⁇ 65 years), the young ( e . g . ⁇ 5 years old), hospitalised patients, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, or immunodeficient patients.
  • the vaccines are not suitable solely for these groups, however, and may be used more generally in a population.
  • compositions of the invention will generally be administered directly to a patient.
  • Direct delivery may be accomplished by parenteral injection (e . g . subcutaneously, intraperitoneally, intravenously, intramuscularly, intradermally, or to the interstitial space of a tissue; unlike reference 1, intraglossal injection is not typically used with the present invention).
  • Alternative delivery routes include rectal, oral ( e.g . tablet, spray), buccal, sublingual, vaginal, topical, transdermal or transcutaneous, intranasal, ocular, aural, pulmonary or other mucosal administration.
  • Intradermal and intramuscular administration are two preferred routes. Injection may be via a needle (e.g. a hypodermic needle), but needle-free injection may alternatively be used.
  • a typical intramuscular dose is 0.5 ml.
  • the invention may be used to elicit systemic and/or mucosal immunity, preferably to elicit an enhanced systemic and/or mucosal immunity.
  • Dosage can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes e . g . a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Multiple doses will typically be administered at least 1 week apart ( e . g . about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.). In one embodiment, multiple doses may be administered approximately 6 weeks, 10 weeks and 14 weeks after birth, e.g.
  • two primary doses are administered about two months apart, e.g. about 7, 8 or 9 weeks apart, followed by one or more booster doses about 6 months to 1 year after the second primary dose, e.g. about 6, 8, 10 or 12 months after the second primary dose.
  • three primary doses are administered about two months apart, e.g. about 7, 8 or 9 weeks apart, followed by one or more booster doses about 6 months to 1 year after the third primary dose, e.g. about 6, 8, 10, or 12 months after the third primary dose.
  • the RNA includes no modified nucleotides (see above). In other embodiments the RNA can optionally include at least one modified nucleotide, provided that one or more of the following features (already disclosed above) is also required:
  • composition “comprising” encompasses “including” as well as “consisting” e.g. a composition "comprising" X may consist exclusively of X or may include something additional e . g . X + Y.
  • TLR3 is the Toll-like receptor 3. It is a single membrane-spanning receptor which plays a key role in the innate immune system.
  • Known TLR3 agonists include poly(I:C).
  • TLR3 is the approved HGNC name for the gene encoding this receptor, and its unique HGNC ID is HGNC: 11849.
  • the RefSeq sequence for the human TLR3 gene is GI:2459625.
  • TLR7 is the Toll-like receptor 7. It is a single membrane-spanning receptor which plays a key role in the innate immune system.
  • Known TLR7 agonists include e.g. imiquimod.
  • TLR7 is the approved HGNC name for the gene encoding this receptor, and its unique HGNC ID is HGNC: 15631.
  • the RefSeq sequence for the human TLR7 gene is GI:67944638.
  • TLR8 is the Toll-like receptor 8. It is a single membrane-spanning receptor which plays a key role in the innate immune system.
  • Known TLR8 agonists include e.g. resiquimod.
  • TLR8 is the approved HGNC name for the gene encoding this receptor, and its unique HGNC ID is HGNC:15632.
  • the RefSeq sequence for the human TLR8 gene is GI:20302165.
  • RLR-1 The RIG-I-like receptor (“RLR”) family includes various RNA helicases which play key roles in the innate immune system[43].
  • RLR-1 also known as RIG-I or retinoic acid inducible gene I
  • RLR-1 helicase has two caspase recruitment domains near its N-terminus.
  • the approved HGNC name for the gene encoding the RLR-1 helicase is "DDX58" (for DEAD (Asp-Glu-Ala-Asp) box polypeptide 58) and the unique HGNC ID is HGNC:19102.
  • the RefSeq sequence for the human RLR-1 gene is GI:77732514.
  • RLR-2 (also known as MDA5 or melanoma differentiation-associated gene 5) also has two caspase recruitment domains near its N-terminus.
  • the approved HGNC name for the gene encoding the RLR-2 helicase is "IFIH1" (for interferon induced with helicase C domain 1) and the unique HGNC ID is HGNC:18873.
  • the RefSeq sequence for the human RLR-2 gene is GI: 27886567.
  • RLR-3 (also known as LGP2 or laboratory of genetics and physiology 2) has no caspase recruitment domains.
  • the approved HGNC name for the gene encoding the RLR-3 helicase is "DHX58" (for DEXH (Asp-Glu-X-His) box polypeptide 58) and the unique HGNC ID is HGNC:29517.
  • the RefSeq sequence for the human RLR-3 gene is GI:149408121.
  • PKR is a double-stranded RNA-dependent protein kinase. It plays a key role in the innate immune system.
  • EIF2AK2 for eukaryotic translation initiation factor 2-alpha kinase 2
  • HGNC HGNC:9437
  • the RefSeq sequence for the human PKR gene is GI:208431825.
  • replicons are used below. In general these are based on a hybrid alphavirus genome with non-structural proteins from venezuelan equine encephalitis virus (VEEV), a packaging signal from Sindbis virus, and a 3' UTR from Sindbis virus or a VEEV mutant.
  • VEEV venezuelan equine encephalitis virus
  • Sindbis virus Sindbis virus
  • the replicon is about 10kb long and has a poly-A tail.
  • Plasmid DNA encoding alphavirus replicons (named: pT7-mVEEV-FL.RSVF or A317; pT7-mVEEV-SEAP or A306; pSP6-VCR-GFP or A50) served as a template for synthesis of RNA in vitro.
  • the replicons contain the alphavirus genetic elements required for RNA replication but lack those encoding gene products necessary for particle assembly; the structural proteins are instead replaced by a protein of interest (either a reporter, such as SEAP or GFP, or an immunogen, such as full-length RSV F protein) and so the replicons are incapable of inducing the generation of infectious particles.
  • a bacteriophage (T7 or SP6) promoter upstream of the alphavirus cDNA facilitates the synthesis of the replicon RNA in vitro and a hepatitis delta virus (HDV) ribozyme immediately downstream of the poly(A)-tail generates the correct 3'-end through its self-cleaving activity.
  • HDV hepatitis delta virus
  • run-off transcripts were synthesized in vitro using T7 or SP6 bacteriophage derived DNA-dependent RNA polymerase. Transcriptions were performed for 2 hours at 37°C in the presence of 7.5 mM (T7 RNA polymerase) or 5 mM (SP6 RNA polymerase) of each of the nucleoside triphosphates (ATP, CTP, GTP and UTP) following the instructions provided by the manufacturer (Ambion). Following transcription the template DNA was digested with TURBO DNase (Ambion).
  • RNA was precipitated with LiCl and reconstituted in nuclease-free water.
  • Uncapped RNA was capped post-transcriptionally with Vaccinia Capping Enzyme (VCE) using the ScriptCap m7G Capping System (Epicentre Biotechnologies) as outlined in the user manual; replicons capped in this way are given the "v" prefix e.g. vA317 is the A317 replicon capped by VCE.
  • Post-transcriptionally capped RNA was precipitated with LiCl and reconstituted in nuclease-free water. The concentration of the RNA samples was determined by measuring OD 260nm . Integrity of the in vitro transcripts was confirmed by denaturing agarose gel electrophoresis.
  • Microparticles were made using 500mg of PLG RG503 (50:50 lactide/glycolide molar ratio, MW ⁇ 30kDa) and 20mg DOTAP using an Omni Macro Homogenizer. The particle suspension was shaken at 150rpm overnight and then filtered through a 40 ⁇ m sterile filter for storage at 2-8 °C. Self-replicating RNA was adsorbed to the particles. To prepare 1 mL of PLG/RNA suspension the required volume of PLG particle suspension was added to a vial and nuclease-free water was added to bring the volume to 900 ⁇ L. 100 ⁇ L RNA (10 ⁇ g/mL) was added dropwise to the PLG suspension, with constant shaking.
  • PLG/RNA was incubated at room temperature for 30 min. For 1 mL of reconstituted suspension, 45mg mannitol, 15mg sucrose and 250-500 ⁇ g of PVA were added. The vials were frozen at -80°C and lyophilized.
  • RNA adsorption 100 ⁇ L particle suspension was centrifuged at 10,000 rpm for 5 min and supernatant was collected. PLG/RNA was reconstituted using 1mL nuclease-free water. To 100 ⁇ L particle suspension (1 ⁇ g RNA), 1mg heparin sulfate was added. The mixture was vortexed and allowed to sit at room temperature for 30 min for RNA desorption. Particle suspension was centrifuged and supernatant was collected.
  • RNAse stability 100 ⁇ L particle suspension was incubated with 6.4mAU of RNase A at room temperature for 30 min. RNAse was inactivated with 0.126mAU of Proteinase K at 55°C for 10 min. 1mg of heparin sulfate was added to desorb the RNA followed by centrifugation. The supernatant samples containing RNA were mixed with formaldehyde load dye, heated at 65°C for 10 min and analyzed using a 1% denaturing gel (460ng RNA loaded per lane).
  • RNA was encapsulated in liposomes made by the method of references 7 and 44.
  • the liposomes were made of 10% DSPC (zwitterionic), 40% DlinDMA (cationic), 48% cholesterol and 2% PEG-conjugated DMG (2kDa PEG). These proportions refer to the % moles in the total liposome.
  • DlinDMA (1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane) was synthesized using the procedure of reference 2.
  • DSPC (1,2-Diastearoyl-sn-glycero-3-phosphocholine) was purchased from Genzyme. Cholesterol was obtained from Sigma-Aldrich.
  • PEG-conjugated DMG (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol), ammonium salt), DOTAP (1,2-dioleoyl-3-trimethylammonium-propane, chloride salt) and DC-chol (3 ⁇ -[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride) were from Avanti Polar Lipids.
  • lipids were dissolved in ethanol (2ml), a RNA replicon was dissolved in buffer (2ml, 100mM sodium citrate, pH 6) and these were mixed with 2ml of buffer followed by 1 hour of equilibration. The mixture was diluted with 6ml buffer then filtered. The resulting product contained liposomes, with ⁇ 95% encapsulation efficiency.
  • fresh lipid stock solutions were prepared in ethanol.
  • 37 mg of DlinDMA, 11.8 mg of DSPC, 27.8 mg of cholesterol and 8.07 mg of PEG-DMG were weighed and dissolved in 7.55 mL of ethanol.
  • the freshly prepared lipid stock solution was gently rocked at 37°C for about 15 min to form a homogenous mixture.
  • 755 ⁇ L of the stock was added to 1.245 mL ethanol to make a working lipid stock solution of 2 mL. This amount of lipids was used to form liposomes with 250 ⁇ g RNA.
  • RNA working solution was also prepared from a stock solution of ⁇ 1 ⁇ g/ ⁇ L in 100 mM citrate buffer (pH 6). Three 20 mL glass vials (with stir bars) were rinsed with RNase Away solution (Molecular BioProducts) and washed with plenty of MilliQ water before use to decontaminate the vials of RNases. One of the vials was used for the RNA working solution and the others for collecting the lipid and RNA mixes (as described later). The working lipid and RNA solutions were heated at 37°C for 10 min before being loaded into 3cc luer-lok syringes. 2 mL citrate buffer (pH 6) was loaded in another 3 cc syringe.
  • RNA and the lipids were connected to a T mixer (PEEK TM 500 ⁇ m ID junction, Idex Health Science) using FEP tubing (fluorinated ethylene-propylene; all FEP tubing used had a 2mm internal diameter and a 3mm outer diameter; obtained from Idex Health Science).
  • the outlet from the T mixer was also FEP tubing.
  • the third syringe containing the citrate buffer was connected to a separate piece of tubing. All syringes were then driven at a flow rate of 7 mL/min using a syringe pump. The tube outlets were positioned to collect the mixtures in a 20 mL glass vial (while stirring).
  • the stir bar was taken out and the ethanol/aqueous solution was allowed to equilibrate to room temperature for 1 h. 4 ml of the mixture was loaded into a 5 cc syringe, which was connected to a piece of FEP tubing and in another 5 cc syringe connected to an equal length of FEP tubing, an equal amount of 100 mM citrate buffer (pH 6) was loaded. The two syringes were driven at 7mL/min flow rate using the syringe pump and the final mixture collected in a 20 mL glass vial (while stirring).
  • the mixture collected from the second mixing step were passed through a Mustang Q membrane (an anion-exchange support that binds and removes anionic molecules, obtained from Pall Corporation).
  • a Mustang Q membrane an anion-exchange support that binds and removes anionic molecules, obtained from Pall Corporation.
  • 4 mL of 1 M NaOH, 4 mL of 1 M NaCl and 10 mL of 100 mM citrate buffer (pH 6) were successively passed through it. Liposomes were warmed for 10 min at 37°C before passing through the membrane.
  • liposomes were concentrated to 2 mL and dialyzed against 10-15 volumes of IX PBS using by tangential flow filtration before recovering the final product.
  • TFF system and hollow fiber filtration membranes were purchased from Spectrum Labs (Rancho Dominguez) and were used according to the manufacturer's guidelines. Polysulfone hollow fiber filtration membranes with a 100 kD pore size cutoff and 8 cm 2 surface area were used. For in vitro and in vivo experiments formulations were diluted to the required RNA concentration with IX PBS. Further liposome manufacturing methods are disclosed below.
  • Figure 2 shows an example electron micrograph of liposomes prepared by these methods. These liposomes contain encapsulated RNA encoding full-length RSV F antigen. Dynamic light scattering of one batch showed an average diameter of 141nm (by intensity) or 78nm (by number).
  • RNA and RNA concentration were determined by Quant-iT RiboGreen RNA reagent kit (Invitrogen), following manufacturer's instructions. The ribosomal RNA standard provided in the kit was used to generate a standard curve. Liposomes were diluted 10x or 100x in IX TE buffer (from kit) before addition of the dye. Separately, liposomes were diluted 10x or 100x in IX TE buffer containing 0.5% Triton X before addition of the dye (to disrupt the liposomes and thus to assay total RNA). Thereafter an equal amount of dye was added to each solution and then ⁇ 180 ⁇ L of each solution after dye addition was loaded in duplicate into a 96 well tissue culture plate. The fluorescence (Ex 485 nm, Em 528 nm) was read on a microplate reader. All liposome formulations were dosed in vivo based on the encapsulated amount of RNA.
  • RNA from liposomes was shown to protect RNA from RNase digestion. Experiments used 3.8mAU of RNase A per microgram of RNA, incubated for 30 minutes at room temperature. RNase was inactivated with Proteinase K at 55°C for 10 minutes. A 1:1 v/v mixture of sample to 25:24:1 v/v/v, phenol:chloroform:isoamyl alcohol was then added to extract the RNA from the lipids into the aqueous phase. Samples were mixed by vortexing for a few seconds and then placed on a centrifuge for 15 minutes at 12k RPM. The aqueous phase (containing the RNA) was removed and used to analyze the RNA.
  • RNA construct Prior to loading (400 ng RNA per well) all the samples were incubated with formaldehyde loading dye, denatured for 10 minutes at 65°C and cooled to room temperature. Ambion Millennium markers were used to approximate the molecular weight of the RNA construct.
  • RNA a reporter enzyme SEAP; secreted alkaline phosphatase
  • SEAP secreted alkaline phosphatase
  • Expression levels were measured in sera diluted 1:4 in IX Phospha-Light dilution buffer using a chemiluminescent alkaline phosphate substrate. 8-10 week old BALB/c mice (5/group) were injected intramuscularly on day 0, 50 ⁇ l per leg with 0.1 ⁇ g or 1 ⁇ g RNA dose. The same vector was also administered without the liposomes (in RNase free IX PBS) at 1 ⁇ g. Virion-packaged replicons were also tested.
  • Virion-packaged replicons used herein were obtained by the methods of reference 45, where the alphavirus replicon is derived from the mutant VEEV or a chimera derived from the genome of VEEV engineered to contain the 3' UTR of Sindbis virus and a Sindbis virus packaging signal (PS), packaged by co-electroporating them into BHK cells with defective helper RNAs encoding the Sindbis virus capsid and glycoprotein genes.
  • PS Sindbis virus packaging signal
  • encapsulation increased SEAP levels by about 1 ⁇ 2 log at the 1 ⁇ g dose, and at day 6 expression from a 0.1 ⁇ g encapsulated dose matched levels seen with 1 ⁇ g unencapsulated dose.
  • day 3 expression levels exceeded those achieved with VRPs (squares).
  • VRPs squares
  • RNA was formulated in the liposomes relative to the naked RNA control, even at a 10x lower dose. Expression was also higher relative to the VRP control, but the kinetics of expression were very different (see Figure 5 ). Delivery of the RNA with electroporation resulted in increased expression relative to the naked RNA control, but these levels were lower than with liposomes.
  • a replicon was constructed to express full-length F protein from respiratory syncytial virus (RSV). This was delivered naked (1 ⁇ g), encapsulated in liposomes (0.1 or 1 ⁇ g), or packaged in virions (10 6 IU; "VRP") at days 0 and 21.
  • Figure 7 shows anti-F IgG titers 2 weeks after the second dose, and the liposomes clearly enhance immunogenicity.
  • Figure 8 shows titers 2 weeks later, by which point there was no statistical difference between the encapsulated RNA at 0.1 ⁇ g, the encapsulated RNA at 1 ⁇ g, or the VRP group.
  • Neutralisation titers (measured as 60% plaque reduction, "PRNT60") were not significantly different in these three groups 2 weeks after the second dose ( Figure 9 ).
  • Figure 12 shows both IgG and PRNT titers 4 weeks after the second dose.
  • Figure 13 confirms that the RNA elicits a robust CD8 T cell response.
  • liposome-encapsulated RNA induces essentially the same magnitude of immune response as seen with virion delivery.
  • FIG. 11 shows IgG titers in mice receiving the replicon in naked form at 3 different doses, in liposomes at 4 different doses, or as VRP (10 6 IU).
  • the response seen with 1 ⁇ g liposome-encapsulated RNA was statistically insignificant (ANOVA) when compared to VRP, but the higher response seen with 10 ⁇ g liposome-encapsulated RNA was statistically significant (p ⁇ 0.05) when compared to both of these groups.
  • mice showed few visual signs of distress (weight loss, etc.) after receiving liposome-encapsulated RNA replicon, although a transient weight loss of 3-4% was seen after a second dose of 10 ⁇ g RNA. In contrast, delivery of 10 ⁇ g liposome-encapsulated DNA led to 8-10% weight loss.
  • Bone marrow derived dendritic cells were obtained from wild-type mice or the "Resq" ( rsq1 ) mutant strain.
  • the mutant strain has a point mutation at the amino terminus of its TLR7 receptor which abolishes TLR7 signalling without affecting ligand binding [46].
  • the cells were stimulated with replicon RNA formulated with DOTAP, lipofectamine 2000 or inside a liposome.
  • IL-6 and INF ⁇ were induced in WT cells but this response was almost completely abrogated in mutant mice.
  • RNA replicons were shown to induce several serum cytokines within 24 hours of intramuscular injection (IFN- ⁇ , IP-10 (CXCL-10), IL-6, KC, IL-5, IL-13, MCP-1, and MIP-a), whereas only MIP-1 was induced by naked RNA and liposome alone induced only IL-6.
  • IFN- ⁇ was shown to contribute to the immune response to liposome-encapsulated RSV-F-encoding replicon because an anti-IFNa receptor (IFNAR1) antibody reduced F-specific serum IgG a 10-fold reduction after 2 vaccinations.
  • IFNAR1 anti-IFNa receptor
  • RNA replicons have generally been seen to elicit a balanced IgG1:IgG2a subtype profile in mice, sometimes with a higher IgG2a/IgG1 ratio than seen with electroporated DNA or with protein/MF59 immunizations ( i . e . a Th1-type immune response).
  • lipid expression could be increased 18x by adding 10% 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine (DPyPE) to the liposome, 10x by adding 10% 18:2 (cis) phosphatidylcholine, and 900x by instead using RV01.
  • DPyPE 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine
  • the vA317 self-replicating replicon encoding RSV F protein was administered to BALB/c mice, 4 or 8 animals per group, by bilateral intramuscular vaccinations (50 ⁇ L per leg) on days 0 and 21 with the replicon (1 ⁇ g) alone or formulated as liposomes with DlinDMA ("RV01") or DOTAP ("RV13").
  • the RV01 liposomes had 40% DlinDMA, 10% DSPC, 48% cholesterol and 2% PEG-DMG, but with differing amounts of RNA.
  • the RV13 liposomes had 40% DOTAP, 10% DPE, 48% cholesterol and 2% PEG-DMG.
  • naked plasmid DNA (20 ⁇ g) expressing the same RSV-F antigen was delivered either using electroporation or with RV01(10) liposomes (0.1 ⁇ g DNA).
  • RV01(10) liposomes 0.1 ⁇ g DNA.
  • Liposomes were prepared by method (D) or method (B). For some liposomes made by method (D) a double or half amount of RNA was used.
  • the Z average particle diameter, polydispersity index and encapsulation efficiency of the liposomes were as follows: RV Zav (nm) pdI % encapsulation Preparation RV01 (10) 158.6 0.088 90.7 (A) RV01 (08) 156.8 0.144 88.6 (A) RV01 (05) 136.5 0.136 99 (B) RV01 (09) 153.2 0.067 76.7 (A) RV01 (10) 134.7 0.147 87.8 ⁇ (A) RV13 (02) 128.3 0.179 97 (A) ⁇
  • RV01(10) formulation the nucleic acid was DNA not RNA
  • F-specific serum IgG titers were as follows: RV Day 14 Day 36 Naked DNA plasmid 439 6712 Naked A317 RNA 78 2291 RV01 (10) 3020 26170 RV01 (08) 2326 9720 RV01 (05) 5352 54907 RV01 (09) 4428 51316 RV01 (10) DNA 5 13 RV13 (02) 644 3616
  • the proportion of T cells which are cytokine-positive and specific for RSV F51-66 peptide are as follows, showing only figures which are statistically significantly above zero: RV CD4+CD8- CD4-CD8+ IFN ⁇ IL2 IL5 TNF ⁇ IFN ⁇ IL2 IL5 TNF ⁇ Naked DNA plasmid 0.04 0.07 0.10 0.57 0.29 0.66 Naked A317 RNA 0.04 0.05 0.08 0.57 0.23 0.67 RV01 (10) 0.07 0.10 0.13 1.30 0.59 1.32 RV01 (08) 0.02 0.04 0.06 0.46 0.30 0.51 RV01 (05) 0.08 0.12 0.15 1.90 0.68 1.94 RV01 (09) 0.06 0.08 0.09 1.62 0.67 1.71 RV01 (10) DNA 0.03 0.08 RV13 (02) 0.03 0.04 0.06 1.15 0.41 1.18
  • liposome formulations significantly enhanced immunogenicity relative to the naked RNA controls, as determined by increased F-specific IgG titers and T cell frequencies.
  • RV01 RNA vaccines were more immunogenic than the RV13 vaccine.
  • RV01 has a tertiary amine in the headgroup with a pKa of about 5.8, and also include unsaturated alkyl tails.
  • RV13 has unsaturated alkyl tails but its headgroup has a quaternary amine and is very strongly cationic.
  • the replicon was administered in encapsulated form (with two different purification protocols, 0.1 ⁇ g RNA), or mixed with the liposomes after their formation (a non-encapsulated "lipoplex", 0.1 ⁇ g RNA), or as naked RNA (1 ⁇ g).
  • Figure 10 shows that the lipoplex gave the lowest levels of expression, showing that shows encapsulation is essential for potent expression.
  • RNAs (i) 'vA317' replicon that expresses RSV-F i.e. the surface fusion glycoprotein of RSV; (ii) 'vA17' replicon that expresses GFP; and (iii) 'vA336' that is replication-defective and encodes GFP.
  • RNAs were delivered either naked or with liposomes made by method (D). Empty liposomes were made by method (D) but without any RNA. Four liposome formulations had these characteristics: RNA Particle Size Zav (nm) Polydispersity RNA Encapsulation vA317 155.7 0.113 86.6% vA17 148.4 0.139 92% vA336 145.1 0.143 92.9% Empty 147.9 0.147 -
  • mice 5 animals per group, were given bilateral intramuscular vaccinations (50 ⁇ L per leg) on days 0 and 21 with:
  • Serum was collected for antibody analysis on days 14, 35 and 51.
  • F-specific specific serum IgG titers were measured; if an individual animal had a titer of ⁇ 25 (limit of detection), it was assigned a titer of 5.
  • spleens were harvested from mice at day 51 for T cell analysis, to determine cells which were cytokine-positive and specific for RSV F51-66 peptide (CD4+) or for RSV F peptides F85-93 and F249-258 (CD8+).
  • IgG titers were as follows in the 10 groups and in non-immunised control mice: Day 1 2 3 4 - 14 22 1819 5 5 5 35 290 32533 9 19877 5 51 463 30511 18 20853 5
  • RSV serum neutralization titers at day 51 were as follows: Day 1 2 3 4 51 35 50 24 38
  • Animals showing RSV F-specific CD4+ splenic T cells on day 51 were as follows, where a number (% positive cells) is given only if the stimulated response was statistically significantly above zero: Cytokine 1 2 3 4 IFN- ⁇ 0.04 IL2 0.02 0.06 0.02 IL5 TNF ⁇ 0.03 0.05
  • RNA within the liposomes is necessary for high immunogenicity, as a simple admixture of RNA and the liposomes (group 3) was not immunogenic (in fact, less immunogenic than naked RNA).
  • mice received various combinations of (i) self-replicating RNA replicon encoding full-length RSV F protein (ii) self-replicating GFP-encoding RNA replicon (iii) GFP-encoding RNA replicon with a knockout in nsP4 which eliminates self-replication (iv) full-length RSV F-protein.
  • Results in Figure 16 show that F-specific IgG responses required encapsulation in the liposome rather than mere co-delivery (compare groups C & D).
  • a comparison of groups K, L and M shows that the RNA provided an adjuvant effect against co-delivered protein, and this effect was seen with both replicating and non-replicating RNA.
  • vA142 encodes the full-length wild type surface fusion (F) glycoprotein of RSV but with the fusion peptide deleted, and the 3' end is formed by ribozyme-mediated cleavage. It was tested in three different mouse strains.
  • mice were given bilateral intramuscular vaccinations (50 ⁇ L per leg) on days 0 and 22. Animals were divided into 8 test groups (5 animals per group) and a naive control (2 animals):
  • F-specific serum IgG GMTs were: Day 1 2 3 4 5 6 7 8 14 82 2463 1789 2496 1171 1295 1293 5 35 1538 34181 25605 23579 13718 8887 73809 5
  • F-specific IgG1 and IgG2a titers were as follows: IgG 1 2 3 4 5 6 7 IgG1 94 6238 4836 7425 8288 1817 78604 IgG2a 5386 77064 59084 33749 14437 17624 24
  • RSV serum neutralizing antibody titers at days 35 and 49 were as follows (data are 60% plaque reduction neutralization titers of pools of 2-5 mice, 1 pool per group): Day 1 2 3 4 5 6 7 8 35 ⁇ 20 143 20 101 32 30 111 ⁇ 20 49 ⁇ 20 139 ⁇ 20 83 41 32 1009 ⁇ 20
  • VRPs (1 ⁇ 10 6 IU) expressing the full-length wild-type surface fusion glycoprotein of RSV (fusion peptide deletion).
  • F-specific IgG titers were: Day 1 2 3 4 5 6 7 8 9 14 1140 2133 1026 2792 3045 1330 2975 5 1101 35 1721 5532 3184 3882 9525 2409 39251 5 12139
  • F-specific IgG1 and IgG2a titers were as follows: IgG 1 2 3 4 5 6 7 8 IgG1 66 247 14 328 468 92 56258 79 IgG2a 2170 7685 5055 6161 1573 2944 35 14229
  • RSV serum neutralizing antibody titers at days 35 and 49 were as follows (data are 60% plaque reduction neutralization titers of pools of 2-5 mice, 1 pool per group): Day 1 2 3 4 5 6 7 8 9 35 ⁇ 20 27 29 22 36 ⁇ 20 28 ⁇ 20 ⁇ 20 49 ⁇ 20 44 30 23 36 ⁇ 20 33 ⁇ 20 37
  • F-specific IgG titers were: Day 1 2 3 4 5 6 7 8 9 14 5 2049 1666 1102 298 984 3519 5 806 35 152 27754 19008 17693 3424 6100 62297 5 17249
  • F-specific IgG1 and IgG2a titers were as follows: IgG 1 2 3 4 5 6 7 8 IgG1 5 1323 170 211 136 34 83114 189 IgG2a 302 136941 78424 67385 15667 27085 3800 72727
  • RSV serum neutralizing antibody titers at days 35 and 49 were as follows: Day 1 2 3 4 5 6 7 8 9 35 ⁇ 20 539 260 65 101 95 443 ⁇ 20 595 49 ⁇ 20 456 296 35 82 125 1148 ⁇ 20 387
  • RV01, RV05, RV17; pKa 5.8, 5.85, 6.1 were tested in three different inbred mouse strains.
  • RV01 was more effective than RV17; for BALB/c and C3H strains RV05 was less effective than either RV01 or RV17, but it was more effective in B6 strain.
  • the liposomes were more effective than two cationic nanoemulsions which were tested in parallel.
  • RV01 liposomes with DLinDMA as the cationic lipid were used to deliver RNA replicons encoding cytomegalovirus (CMV) glycoproteins.
  • CMV cytomegalovirus
  • the "vA160" replicon encodes full-length glycoproteins H and L (gH/gL), whereas the "vA322" replicon encodes a soluble form (gHsol/gL).
  • the two proteins are under the control of separate subgenomic promoters in a single replicon; co-administration of two separate vectors, one encoding gH and one encoding gL, did not give good results.
  • mice 10 per group, were given bilateral intramuscular vaccinations (50 ⁇ L per leg) on days 0, 21 and 42 with VRPs expressing gH/gL (1 ⁇ 10 6 IU), VRPs expressing gHsol/gL (1 ⁇ 10 6 IU) and PBS as the controls.
  • Two test groups received 1 ⁇ g of the vA160 or vA322 replicon formulated in liposomes (40% DlinDMA, 10% DSPC, 48% Chol, 2% PEG-DMG; made using method (D) but with 150 ⁇ g RNA batch size).
  • the vA160 liposomes had a Zav diameter of 168nm, a pdI of 0.144, and 87.4% encapsulation.
  • the vA322 liposomes had a Zav diameter of 162nm, a pdI of 0.131, and 90% encapsulation.
  • the replicons were able to express two proteins from a single vector.
  • CMV neutralization titers (the reciprocal of the serum dilution producing a 50% reduction in number of positive virus foci per well, relative to controls) were as follows: gH/gL VRP gHsol/gL VRP gH/gL liposome gHsol/gL liposome 4576 2393 4240 10062
  • RNA expressing either a full-length or a soluble form of the CMV gH/gL complex thus elicited high titers of neutralizing antibodies, as assayed on epithelial cells.
  • the average titers elicited by the liposome-encapsulated RNAs were at least as high as for the corresponding VRPs.
  • RNA replicon was able to express two proteins from a single vector.
  • the RNA replicon gave a 3wp3 titer of 11457, compared to 5516 with VRPs.
  • the vA526 replicon expresses the CMV pentameric complex (gH-gL-UL128-UL130-UL-131) under the control of three subgenomic promoters: the first drives the expression of gH; the second drives expression of gL; the third drives the expression of the UL128-2A-UL130-2A-UL131 polyprotein, which contains two 2A cleavage sites between the three UL genes.
  • the vA527 replicon expresses the CMV pentameric complex via three subgenomic promoters and two IRESs: the first subgenomic promoter drives the expression of gH; the second subgenomic promoter drives expression of gL; the third subgenomic promoter drives the expression of the UL128; UL130 is under the control of an EMCV IRES; UL131 is under control of an EV71 IRES.
  • H liposome
  • VRPs VRPs.
  • mice 10 groups of 10 animals, were given bilateral intramuscular vaccinations (50 ⁇ L per leg) on days 0, 21 and 42 with:
  • Sera were collected for immunological analysis on days 21 (3wp1), 42 (3wp2) and 63 (3wp3).
  • CMV serum neutralization titers on days 21, 42 and 63 were: Vaccine Group 3wp1 3wp2 3wp3 1 126 6296 26525 2 N/A N/A 6769 3 N/A 3442 7348 4 N/A N/A 2265 5 347 9848 42319 6 179 12210 80000 7 1510 51200 130000 8 N/A N/A 845 9 N/A N/A 228 10 N/A N/A 413
  • self-replicating RNA can be used to express multiple antigens from a single vector and to raise a potent and specific immune response.
  • the replicon can express five antigens (CMV pentamric complex (gH-gL-UL128-UL130-UL-131) and raise a potent immune response.
  • CMV pentamric complex gH-gL-UL128-UL130-UL-131
  • Self-replicating RNA delivered in liposomes was able to elicit high titers of neutralizing antibody, as assayed on epithelial cells, at all time points assayed (3wp1, 3wp2, and 3wp3). These responses were superior to the corresponding VRPs and to cationic nanoemulsions.
  • Hydrodynamic delivery employs the force generated by the rapid injection of a large volume of solution to overcome the physical barriers of cell membranes which prevent large and membrane-impermeable compounds from entering cells. This phenomenon has previously been shown to be useful for the intracellular delivery of DNA vaccines.
  • a typical mouse delivery volume for intramuscular injection is 50 ⁇ l into the hind leg, which is a relatively high volume for a mouse leg muscle.
  • a human intramuscular dose of ⁇ 0.5ml is relatively small. If immunogenicity in mice would be volume-dependent then the replicon vaccines' efficacy might be due, at least in part, on hydrodynamic forces, which would not be encouraging for use of the same vaccines in humans and larger animals.
  • the vA317 replicon was delivered to BALB/c mice, 10 per group, by bilateral intramuscular vaccinations (5 or 50 per leg) on day 0 and 21:
  • F-specific serum IgG GMTs were: Day 1 2 3 4 14 42 21 2669 2610 35 241 154 17655 18516
  • vA311 A self-replicating RNA replicon (“vA311”) that expresses a luciferase reporter gene (luc) was used for studying the kinetics of protein expression after injection.
  • mice Prior to vaccination mice were depilated. Mice were anesthetized (2% isoflurane in oxygen), hair was first removed with an electric razor and then chemical Nair. Bioluminescence data was then acquired using a Xenogen IVIS 200 imaging system (Caliper Life Sciences) on days 3, 7, 14, 21, 28, 35, 42, 49, 63 and 70. Five minutes prior to imaging mice were injected intraperitoneally with 8 mg/kg of luciferin solution. Animals were then anesthetized and transferred to the imaging system. Image acquisition times were kept constant as bioluminescence signal was measured with a cooled CCD camera.
  • luciferase-expressing cells were seen to remain primarily at the site of RNA injection, and animals imaged after removal of quads showed no signal.
  • luciferase expression was measured as average radiance over a period of 70 days (p/s/cm 2 /sr), and results were as follows for the 5 groups: Days 1 2 3 4 5 3 8.69E+07 3.33E+06 2.11E+06 9.71E+06 1.46E+07 7 1.04E+08 8.14E+06 1.83E+07 5.94E+07 1.64E+07 14 8.16E+07 2.91E+06 9.22E+06 3.48E+07 8.49E+05 21 1.27E+07 3.13E+05 6.79E+04 5.07E+05 6.79E+05 28 1.42E+07 6.37E+05 2.36E+04 4.06E+03 2.00E+03 35 1.21E+07 6.12E+05 2.08E+03 42 1.49E+07 8.70E+05 49 1.17E +07 2.04E+05 63 9.69E+06 1.72E+03 70 9.29E+06
  • RNA formulated with cationic nanoemulsions showed measurable bioluminescence at day 3, which peaked at day 7 and then reduced to background levels by days 28 to 35.
  • RNA When formulated in liposomes the RNA showed measurable bioluminescence at day 3, which peaked at day 7 and reduced to background levels by day 63.
  • RNA delivered using VRPs showed enhanced bioluminescence at day 21 when compared to the formulated RNA, but expression had reduced to background levels by day 28.
  • Electroporated DNA showed the highest level of bioluminescence at all time points measured and levels of bioluminescence did not reduce to background levels within the 70 days of the experiment.
  • Liposome-encapsulated RNA encoding HIV gp140 was delivered to mice intramuscularly, intradermally, or subcutaneously. All three routes led to high serum IgG levels of HIV-specific antibodies ( Figure 15 ), exceeding titers seen in response to electroporated intramuscular DNA.
  • vA317 expresses full-length RSV-F
  • vA318 expresses truncated (transmembrane and cytoplasmic tail removed) RSV-F
  • vA142 expresses RSV-F with its fusion peptide deleted
  • vA140 expresses the truncated RSV-F also without its peptide.
  • Cotton rats, 4 to 8 animals per group, were given intramuscular vaccinations (100 ⁇ L in one leg) on days 0 and 21 with the four different replicons at two doses (1.0 and 0.1 ⁇ g) formulated in liposomes made by method (D), but with a 150 ⁇ g RNA batch size.
  • Control groups received a RSV-F subunit protein vaccine (5 ⁇ g) adjuvanted with alum (8 animals/group), VRPs expressing full-length RSV-F (1 ⁇ 10 6 IU, 8 animals/group), or naive control (4 animals/group). Serum was collected for antibody analysis on days 0, 21 and 34.
  • F-specific serum IgG titers and RSV serum neutralizing antibody titers on day 21 and 34 were: Group IgG, day 21 IgG, day 34 NT, day 21 NT, day 34 1 ⁇ g vA317 915 2249 115 459 0.1 ⁇ g vA317 343 734 87 95 1 ⁇ g vA318 335 1861 50 277 0.1 ⁇ g vA318 129 926 66 239 1 ⁇ g vA142 778 4819 92 211 0.1 ⁇ g vA142 554 2549 78 141 1 ⁇ g vA140 182 919 96 194 0.1 ⁇ g vA140 61 332 29 72 5 ⁇ g F trimer subunit/alum 13765 86506 930 4744 1 ⁇ 10 6 IU VRP-F full 1877 19179 104 4528 Na ⁇ ve 5 5 10 15
  • All four replicons evaluated in this study were immunogenic in cotton rats when delivered by liposome, although serum neutralization titers were at least ten-fold lower than those induced by adjuvanted protein vaccines or by VRPs.
  • the liposome/RNA vaccines elicited serum F-specific IgG and RSV neutralizing antibodies after the first vaccination, and a second vaccination boosted the response effectively.
  • F-specific IgG titers after the second vaccination with 1 ⁇ g replicon were 2- to 3-fold higher than after the second vaccination with 0.1 ⁇ g replicon.
  • the four replicons elicited comparable antibody titers, suggesting that full length and truncated RSV-F, each with or without the fusion peptide, are similarly immunogenic in cotton rats.
  • Cotton rats 2-8 animals per group, were given intramuscular vaccinations (100 ⁇ L in one leg) on days 0 and 21 with the replicons (0.1 or 1 ⁇ g) encapsulated in RV01 liposomes made by method (D) but with a 150 ⁇ g RNA batch size.
  • Control groups received the RSV-F subunit protein vaccine (5 ⁇ g) adjuvanted with alum or VRPs expressing full-length RSV-F (1 ⁇ 10 6 IU, 8 animals/group). All these animals received a third vaccination (day 56) with RSV-F subunit protein vaccine (5 ⁇ g) adjuvanted with alum.
  • F-specific serum IgG titers were as follows: Day 21 Day 35 Day 56 Day 70 1 ⁇ g vA318 260 1027 332 14263 0.1 ⁇ g vA318 95 274 144 2017 1 ⁇ g vA142 483 1847 1124 11168 0.1 ⁇ g vA142 314 871 418 11023 1 ⁇ g vA317 841 4032 1452 13852 1 ⁇ 10 6 VRP (F-full) 2075 3938 1596 14574 5 ⁇ g F trimer subunit/alum 12685 54526 25846 48864 Naive 5 5 5 5 5
  • Serum neutralisation titers were as follows (60% RSV neutralization titers for 2 pools of 3-4 animals per group, GMT of these 2 pools per group): Day 21 Day 35 Day 56 Day 70 1 ⁇ g vA318 58 134 111 6344 0.1 ⁇ g vA318 41 102 63 6647 1 ⁇ g vA142 77 340 202 5427 0.1 ⁇ g vA142 35 65 56 2223 1 ⁇ g vA317 19 290 200 4189 1 ⁇ 10 6 VRP (F-full) 104 1539 558 2876 5 ⁇ g F trimer subunit/alum 448 4457 1630 3631 Naive 10 10 10 10
  • Serum titers and neutralising titers for the extra group were as follows: Day 14 21 28 35 42 56 70 IgG 397 561 535 501 405 295 3589 NT 52 82 90 106 80 101 1348
  • the replicons are confirmed as immunogenic in cotton rats, eliciting serum F-specific IgG and RSV neutralizing antibodies after the first vaccination.
  • a second vaccination boosted the responses effectively.
  • F-specific IgG titers after the second vaccination with 1.0 ⁇ g replicon were 1.5 to 4-fold higher than after the second vaccination with 0.1 ⁇ g replicon.
  • the third vaccination did not boost titers in cotton rats previously vaccinated with F trimer subunit + alum, but it did provide a large boost to titers in cotton rats previously vaccinated with replicon.
  • the RSV serum neutralization titers after two replicon vaccinations followed by protein boost were equal to or greater than titers induced by two or three sequential protein vaccinations.
  • F-specific serum IgG and RSV neutralization titers induced by a single vaccination reached their peak around day 21 and were maintained through at least day 56 (50-70% drop in F-specific IgG titer, little change in RSV neutralization titer).
  • a homologous second vaccination was given to these animals on day 56, and boosted antibody titers to a level at least equal to that achieved when the second vaccination was administered on day 21.
  • vA368 replicon encodes the full-length wild type surface fusion glycoprotein of RSV with the fusion peptide deleted, with expression driven by the EV71 IRES.
  • a control group received 5 ⁇ g alum-adjuvanted protein, and a naive control group was also included.
  • RNA vaccine reduced the lung viral load by over three logs, from approximately 10 6 PFU/g in unvaccinated control cotton rats to less than 10 3 PFU/g in vaccinated cotton rats.
  • RNA vaccines encoded human RSV F whereas the "Triangle 4" vaccine contains bovine RSV F, but the RSV F protein is highly conserved between BRSV and HRSV.
  • the liposomes were made by method (E), except a 1.5 mg RNA batch size was used.
  • Serum was collected for antibody analysis on days 0, 14, 21, 35, 42, 56, 63, 86, 100, 107, 114, 121, 128, 135, 146, 160, 167, 174, 181, 188, 195, and 202. If an individual animal had a titer below the limit of detection it was assigned a titer of 5
  • Figure 14A shows F-specific IgG titers over the first 63 days.
  • the RNA replicon was immunogenic in the cows via liposomes, although it gave lower titers than the licensed vaccine. All vaccinated cows showed F-specific antibodies after the second dose, and titers were very stable from the period of 2 to 6 weeks after the second dose (and were particularly stable for the RNA vaccines).
  • Figure 14B shows F-specific serum IgG titers (GMT) over 210 days, and measured values up to day 202 were as follows: D0 3wp1 D21 2wp2 D35 5wp2 D56 ⁇ 9wp2 D86 2wp3 D100 5wp3 D121 8wp3 D146 2wp4 D160 5wp4 D181 8wp4 D202 PBS 5 5 5 5 5 5 5 5 46 98 150 Liposome 5 5 12 11 20 768 428 74 20774 7022 2353 Triangle 4 5 5 5 1784 721 514 3406 2786 336 13376 4775 2133
  • RSV serum neutralizing antibody titers were as follows: D0 2wp2 D35 5wp2 D56 2wp3 D100 3wp3 D107 4wp3 D114 8wp3 D146 2wp4 D160 3wp4 D167 4wp4 D174 PBS 12 10 10 14 18 20 14 10 10 10 Liposome 13 10 10 20 13 17 13 47 26 21 Triangle 4 12 15 13 39 38 41 13 24 26 15
  • the material used for the second liposome dose was not freshly prepared, and the same lot of RNA showed a decrease in potency in a mouse immunogenicity study. Therefore it is possible that the vaccine would have been more immunogenic if fresh material had been used for all vaccinations.
  • MF59-adjuvanted RSV-F was able to boost the IgG response in all previously vaccinated calves, and to boost complement-independent neutralization titers of calves previously vaccinated with RNA.
  • RNA vaccines in large animals is particularly important in light of the loss in potency observed previously with DNA-based vaccines when moving from small animal models to larger animals and humans.
  • a typical dose for a cow DNA vaccine would be 0.5-1 mg [47,48] and so it is very encouraging that immune responses were induced with only 66 ⁇ g of RNA.
  • Table 1 useful phospholipids DDPC 1,2-Didecanoyl-sn-Glycero-3-phosphatidylcholine DEPA 1,2-Dierucoyl-sn-Glycero-3 -Phosphate DEPC 1,2-Erucoyl-sn-Glycero-3 -phosphatidylcholine DEPE 1,2-Dierucoyl-sn-Glycero-3 -phosphatidylethanolamine DEPG 1,2-Dierucoyl-sn-Glycero-3 [Phosphatidyl-rac-(1-glycerol%) DLOPC 1,2- Linoleoyl-sn-Glycero-3 -phosphatidylcholine DLPA 1,2- Dilauroyl-sn-Glycero- 3 -Phosphate DLPC 1,2-Dilauroyl-sn-Glycero-3 -phosphatidylcholine DLPE 1,2-Dilauroyl-sn-Glycero

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Claims (14)

  1. Composition pharmaceutique comprenant une particule non virion qui ne comprend pas de capside protéique, pour la délivrance in vivo d'ARN à une cellule de vertébré; où
    (a) la particule est formée à partir d'un matériau de délivrance de lipides amphiphiles qui peuvent former des liposomes, et la particule est un liposome comprenant un lipide avec un groupe de tête cationique et encapsulant une molécule d'ARN autoréplicative qui code un immunogène, où l'immunogène peut déclencher une réponse immunitaire in vivo contre un virus, une bactérie, un champignon, un parasite, un allergène ou un antigène tumoral; et où
    (bi) l'ARN n'inclut aucun nucléotide modifié à l'exception de toute structure de coiffe en 5', ou (bii) l'ARN inclut une coiffe en 5' comprenant une 7-méthylguanosine et les 1, 2 ou 3 premiers ribonucléotides en 5' sont méthylés à la 2' position du ribose.
  2. Composition selon la revendication 1, où le liposome a un diamètre dans la plage de 50 à 220 nm.
  3. Composition selon l'une quelconque des revendications précédentes, où le liposome comprend un lipide avec un groupe de tête zwitterionique.
  4. Composition selon l'une quelconque des revendications 1 ou 3, où le liposome comprend un lipide PEGylé, éventuellement où le PEG est entre 0,5 et 8 kDa.
  5. Composition selon l'une quelconque des revendications précédentes, où un ou plusieurs des lipides sont mélangés avec du cholestérol.
  6. Composition selon l'une quelconque des revendications précédentes, où la molécule d'ARN autoréplicative code (i) une ARN polymérase ARN-dépendante qui peut transcrire un ARN à partir de la molécule d'ARN autoréplicative et (ii) un immunogène.
  7. Composition selon la revendication 6, où la molécule d'ARN a deux cadres de lecture ouverts dont le premier code une réplicase d'alphavirus et dont le second code l'immunogène.
  8. Composition selon l'une quelconque des revendications précédentes, où la molécule d'ARN est longue de 5 000 à 25 000 nucléotides.
  9. Composition selon l'une quelconque des revendications précédentes, où l'immunogène peut déclencher une réponse immunitaire in vivo contre:
    (a) un coronavirus, tel qu'un coronavirus du SRAS, la bronchite infectieuse aviaire (IBV), le virus de l'hépatite murine (MHV) et le virus de la gastro-entérite transmissible porcine (TGEV); (b) un orthomyxovirus, tel que le virus de la grippe A, B et C; (c) un virus respiratoire syncytial (RSV), tel que la glycoprotéine F du RSV; (d) un herpès virus tel que les virus herpès simplex (HSV), le virus de la varicelle (VZV), le virus d'Epstein-Barr (EBV), le cytomégalovirus (CMV), l'herpèsvirus humain 6 (HHV6), l'herpèsvirus humain 7 (HHV7) et l'herpèsvirus humain 8 (HHV8); ou (e) une bactérie.
  10. Composition selon l'une quelconque des revendications précédentes, où l'immunogène est un polypeptide de surface éventuellement choisi parmi une glycoprotéine de pointe, une hémagglutinine, une glycoprotéine d'enveloppe ou une adhésine.
  11. Composition selon la revendication 10, où l'immunogène est une glycoprotéine de pointe.
  12. Composition selon l'une quelconque des revendications précédentes, destinée à être utilisée dans l'immunisation d'un sujet ou destinée à être utilisée dans un procédé pour déclencher une réponse immunitaire protectrice chez un vertébré.
  13. Composition destinée à être utilisée selon la revendication 12, destinée à être utilisée comme vaccin prophylactique pour prévenir une infection.
  14. Procédé pour préparer une composition pharmaceutique selon l'une quelconque des revendications 1 à 11, qui comprend la préparation de liposomes par mélange (i) d'une solution éthanolique des lipides formant des liposomes, (ii) d'une solution aqueuse de l'ARN et (iii) d'un tampon, suivi d'une mise en équilibre, d'une dilution et d'une purification; et la formulation en une composition pharmaceutique avec un vecteur pharmaceutiquement acceptable.
EP21204155.2A 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives Active EP4005592B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
HRP20221522TT HRP20221522T1 (hr) 2010-07-06 2011-07-06 Čestice za dostavljanje nalik virionu za samo-replicirajuće rna molekule
EP22200367.5A EP4180057A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives
RS20221148A RS63817B1 (sr) 2010-07-06 2011-07-06 Čestice za isporuku slične virionu za molekule samoreplicirajuće rnk
SI201132073T SI4005592T1 (sl) 2010-07-06 2011-07-06 Virionom podobni dostavni delci za samopodvojene molekule RNA

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36182810P 2010-07-06 2010-07-06
PCT/US2011/043103 WO2012006376A2 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion pour des molécules d'arn auto-répliquant
EP11741348.4A EP2590676B1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion pour des molécules d'arn auto-répliquant
EP16184271.1A EP3115061A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP16184271.1A Division EP3115061A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives
EP11741348.4A Division EP2590676B1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion pour des molécules d'arn auto-répliquant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP22200367.5A Division EP4180057A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives

Publications (2)

Publication Number Publication Date
EP4005592A1 EP4005592A1 (fr) 2022-06-01
EP4005592B1 true EP4005592B1 (fr) 2022-10-12

Family

ID=44629863

Family Applications (4)

Application Number Title Priority Date Filing Date
EP21204155.2A Active EP4005592B1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives
EP11741348.4A Revoked EP2590676B1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion pour des molécules d'arn auto-répliquant
EP16184271.1A Withdrawn EP3115061A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives
EP22200367.5A Pending EP4180057A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP11741348.4A Revoked EP2590676B1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion pour des molécules d'arn auto-répliquant
EP16184271.1A Withdrawn EP3115061A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives
EP22200367.5A Pending EP4180057A1 (fr) 2010-07-06 2011-07-06 Particules d'administration de type virion de molécules d'arn autoréplicatives

Country Status (22)

Country Link
US (2) US11291635B2 (fr)
EP (4) EP4005592B1 (fr)
JP (1) JP6061849B2 (fr)
CN (2) CN103052400B (fr)
AU (1) AU2011276232B2 (fr)
BR (1) BR112013000392B8 (fr)
CA (1) CA2804494A1 (fr)
CY (1) CY1118080T1 (fr)
DK (1) DK2590676T3 (fr)
ES (2) ES2600892T3 (fr)
FI (1) FI4005592T3 (fr)
HR (2) HRP20221522T1 (fr)
HU (2) HUE060788T2 (fr)
LT (2) LT2590676T (fr)
MX (1) MX342608B (fr)
PL (2) PL2590676T3 (fr)
PT (2) PT2590676T (fr)
RS (2) RS63817B1 (fr)
RU (1) RU2013104890A (fr)
SI (2) SI4005592T1 (fr)
SM (1) SMT201600386B (fr)
WO (1) WO2012006376A2 (fr)

Families Citing this family (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2013000164A (es) 2010-07-06 2013-03-05 Novartis Ag Liposomas con lipidos que tienen valor de pka ventajoso para suministro de arn.
US10487332B2 (en) 2010-07-06 2019-11-26 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
BR112013000391B8 (pt) 2010-07-06 2022-10-04 Novartis Ag Composição de emulsão catiônica de óleo em água e seu uso
CN103052400B (zh) 2010-07-06 2016-11-16 诺华股份有限公司 自我复制rna分子的病毒样递送颗粒
PL3243526T3 (pl) 2010-07-06 2020-05-18 Glaxosmithkline Biologicals S.A. Dostarczanie rna w celu wyzwolenia wielu szlaków immunologicznych
WO2012019168A2 (fr) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Acides nucléiques modifiés et leurs procédés d'utilisation
DK3981427T3 (da) 2010-08-31 2022-07-11 Glaxosmithkline Biologicals Sa Pegylerede liposomer til afgivelse af immunogen-kodende RNA
FI4043040T3 (fi) * 2010-08-31 2023-04-04 Glaxosmithkline Biologicals Sa Pieniä liposomeja immunogeeniä koodaavan rna:n toimittamiseksi
DE19177059T1 (de) 2010-10-01 2021-10-07 Modernatx, Inc. N1-methyl-pseudouracile enthältendes ribonucleinsäuren sowie ihre verwendungen
EP4098325A1 (fr) * 2010-10-11 2022-12-07 GlaxoSmithKline Biologicals S.A. Plateformes de délivrance d'antigènes
DE12722942T1 (de) 2011-03-31 2021-09-30 Modernatx, Inc. Freisetzung und formulierung von manipulierten nukleinsäuren
CN103906527B (zh) 2011-06-08 2020-07-10 川斯勒佰尔公司 Mrna递送的脂质纳米颗粒组合物和方法
BR112014000227A8 (pt) 2011-07-06 2018-03-06 Novartis Ag emulsões óleo-em-água que contêm ácidos nucleicos
SG10201605537XA (en) * 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
RU2649133C2 (ru) 2011-07-06 2018-03-29 Новартис Аг Катионные эмульсии масло-в-воде
ES2656050T3 (es) 2011-07-06 2018-02-22 Glaxosmithkline Biologicals Sa Composiciones de combinación inmunogénica y usos de las mismas
TR201900264T4 (tr) 2011-08-31 2019-02-21 Glaxosmithkline Biologicals Sa İmmünojen şifreleyici rna'nın verilmesi için pegile edilmiş lipozomlar.
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
JP6113737B2 (ja) 2011-10-03 2017-04-12 モデルナティエックス インコーポレイテッドModernaTX,Inc. 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
WO2013055905A1 (fr) * 2011-10-11 2013-04-18 Novartis Ag Molécules recombinantes d'arn polycistronique à autoréplication
MX2014007233A (es) 2011-12-16 2015-02-04 Moderna Therapeutics Inc Composiciones de nucleosidos, nucleotidos y acidos nucleicos modificados.
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
EP2834259A4 (fr) 2012-04-02 2016-08-24 Moderna Therapeutics Inc Polynucléotides modifiés
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US10501512B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides
CA2868391A1 (fr) 2012-04-02 2013-10-10 Stephane Bancel Polynucleotides comprenant du n1-methyl-pseudouracils et methodes pour les preparer
EP2858679B1 (fr) 2012-06-08 2021-02-24 Translate Bio, Inc. Administration pulmonaire d'arnm à des cellules cibles autres que pulmonaires
WO2014028429A2 (fr) 2012-08-14 2014-02-20 Moderna Therapeutics, Inc. Enzymes et polymérases destinées à la synthèse d'arn
CA2892529C (fr) 2012-11-26 2023-04-25 Moderna Therapeutics, Inc. Arn modifie a son extremite terminale
EP2943221A1 (fr) * 2013-01-10 2015-11-18 Novartis AG Compositions immunogènes comprenant un virus influenza et utilisations associées
JP2016504050A (ja) 2013-01-17 2016-02-12 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 細胞表現型の改変のためのシグナルセンサーポリヌクレオチド
US20160024181A1 (en) 2013-03-13 2016-01-28 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
ES2923018T3 (es) 2013-03-15 2022-09-22 Glaxosmithkline Biologicals Sa Métodos de purificación de ARN
JP7019233B2 (ja) 2013-07-11 2022-02-15 モデルナティエックス インコーポレイテッド CRISPR関連タンパク質をコードする合成ポリヌクレオチドおよび合成sgRNAを含む組成物ならびに使用方法
EP3041934A1 (fr) 2013-09-03 2016-07-13 Moderna Therapeutics, Inc. Polynucléotides chimériques
EP3041938A1 (fr) 2013-09-03 2016-07-13 Moderna Therapeutics, Inc. Polynucléotides circulaires
WO2015048744A2 (fr) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucléotides codant des polypeptides de modulation immunitaire
CA2926218A1 (fr) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides codant pour un recepteur de lipoproteines de faible densite
EP3065703A1 (fr) * 2013-11-08 2016-09-14 Tyrx, Inc. Système d'administration de médicament polymère pour le traitement des complications chirurgicales
EP3122774B1 (fr) * 2014-03-25 2020-11-04 Yale University Utilisation des macrophage migration inhibitory facteur des parasites
RU2746406C2 (ru) 2014-04-23 2021-04-13 МОДЕРНАТиЭкс, ИНК. Вакцины на основе нуклеиновых кислот
EP2974739A1 (fr) 2014-07-15 2016-01-20 Novartis AG Domaines de trimérisation RSVF
CA2951430A1 (fr) 2014-06-13 2015-12-17 Glaxosmithkline Biologicals Sa Combinaisons immunogenes
US20170204152A1 (en) 2014-07-16 2017-07-20 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2016014846A1 (fr) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Polynucléotides modifiés destinés à la production d'anticorps intracellulaires
EP3061826A1 (fr) 2015-02-27 2016-08-31 Novartis AG Réplicons du flavivirus
RU2749113C2 (ru) 2015-04-22 2021-06-04 Куревак Аг Содержащая рнк композиция для лечения опухолевых заболеваний
MA42502A (fr) 2015-07-21 2018-05-30 Modernatx Inc Vaccins contre une maladie infectieuse
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
RS63030B1 (sr) 2015-09-17 2022-04-29 Modernatx Inc Jedinjenja i kompozicije za intracelularno isporučivanje terapeutskih sredstava
AU2016336344A1 (en) 2015-10-05 2018-04-19 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2017070613A1 (fr) * 2015-10-22 2017-04-27 Modernatx, Inc. Vaccin contre le cytomégalovirus humain
EP3364950A4 (fr) 2015-10-22 2019-10-23 ModernaTX, Inc. Vaccins contre des maladies tropicales
AU2016342376A1 (en) 2015-10-22 2018-06-07 Modernatx, Inc. Sexually transmitted disease vaccines
BR112018008102A2 (pt) * 2015-10-22 2018-11-06 Modernatx Inc vacina de vírus sincicial respiratório
WO2017070620A2 (fr) * 2015-10-22 2017-04-27 Modernatx, Inc. Vaccin contre le virus de la grippe à large spectre
PE20181529A1 (es) * 2015-10-22 2018-09-26 Modernatx Inc Vacunas de acido nucleico para el virus varicela-zoster (vzv)
US20180303929A1 (en) * 2015-10-22 2018-10-25 Moderna TX, Inc. Herpes simplex virus vaccine
MD3386484T2 (ro) 2015-12-10 2022-11-30 Modernatx Inc Compoziții și metode de livrare a unor agenți terapeutici
JP7114465B2 (ja) 2015-12-22 2022-08-08 モデルナティエックス インコーポレイテッド 薬剤の細胞内送達のための化合物および組成物
EP3394093B1 (fr) 2015-12-23 2022-01-26 Modernatx, Inc. Procédés d'utilisation de polynucléotides codant pour un ligand ox40
MA43587A (fr) 2016-01-10 2018-11-14 Modernatx Inc Arnm thérapeutiques codant pour des anticorps anti-ctla-4
JP2019511255A (ja) 2016-01-11 2019-04-25 バーンダリ,インク. マイクロニードル組成物およびそれを使用する方法
WO2017162265A1 (fr) 2016-03-21 2017-09-28 Biontech Rna Pharmaceuticals Gmbh Arn à réplication trans
WO2017208191A1 (fr) 2016-06-02 2017-12-07 Glaxosmithkline Biologicals Sa Constructions à base d'antigènes du virus zika
WO2018060288A1 (fr) 2016-09-29 2018-04-05 Glaxosmithkline Biologicals S.A. Compositions et méthodes de traitement d'une infection par hpv persistante
GB201616904D0 (en) 2016-10-05 2016-11-16 Glaxosmithkline Biologicals Sa Vaccine
WO2018075980A1 (fr) 2016-10-21 2018-04-26 Modernatx, Inc. Vaccin contre le cytomégalovirus humain
US11583504B2 (en) 2016-11-08 2023-02-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
CN110167587A (zh) 2016-11-11 2019-08-23 摩登纳特斯有限公司 流感疫苗
EP3541416A1 (fr) 2016-11-17 2019-09-25 GlaxoSmithKline Biologicals SA Constructions à base d'antigènes du virus zika
EP3551193A4 (fr) 2016-12-08 2020-08-19 Modernatx, Inc. Vaccins à acide nucléique contre des virus respiratoires
MA47680A (fr) 2017-02-28 2020-01-08 Sanofi Sa Arn thérapeutique
SG11201907916TA (en) 2017-03-15 2019-09-27 Modernatx Inc Compounds and compositions for intracellular delivery of therapeutic agents
US11045540B2 (en) 2017-03-15 2021-06-29 Modernatx, Inc. Varicella zoster virus (VZV) vaccine
JP7332478B2 (ja) 2017-03-15 2023-08-23 モデルナティエックス インコーポレイテッド 脂質ナノ粒子製剤
ES2911186T3 (es) 2017-03-15 2022-05-18 Modernatx Inc Formas cristalinas de aminolípidos
WO2018170245A1 (fr) 2017-03-15 2018-09-20 Modernatx, Inc. Vaccin à large spectre contre le virus de la grippe
US11752206B2 (en) 2017-03-15 2023-09-12 Modernatx, Inc. Herpes simplex virus vaccine
WO2018170260A1 (fr) 2017-03-15 2018-09-20 Modernatx, Inc. Vaccin contre le virus respiratoire syncytial
WO2018208856A1 (fr) 2017-05-08 2018-11-15 Gritstone Oncology, Inc. Vecteurs néoantigéniques alphaviraux
AU2018270111B2 (en) 2017-05-18 2022-07-14 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (IL12) polypeptides and uses thereof
US11485972B2 (en) 2017-05-18 2022-11-01 Modernatx, Inc. Modified messenger RNA comprising functional RNA elements
JP7402503B2 (ja) 2017-06-14 2023-12-21 テクニスチェ ユニベルシタト ドレスデン デザイナーdna組換え酵素を利用したゲノムを遺伝的に改変するための方法及び手段
WO2018232006A1 (fr) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucléotides codant pour le facteur viii de coagulation
WO2018232357A1 (fr) 2017-06-15 2018-12-20 Modernatx, Inc. Formulations d'arn
WO2019023566A1 (fr) 2017-07-28 2019-01-31 Janssen Vaccines & Prevention B.V. Méthodes et compositions pour assurer l'immunisation contre l'arnrep hétérologue
US11639329B2 (en) 2017-08-16 2023-05-02 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
EP3675817A1 (fr) 2017-08-31 2020-07-08 Modernatx, Inc. Procédés de fabrication de nanoparticules lipidiques
WO2019055807A1 (fr) 2017-09-14 2019-03-21 Modernatx, Inc. Vaccins à arn contre le virus zika
EP3461497A1 (fr) 2017-09-27 2019-04-03 GlaxoSmithKline Biologicals S.A. Antigènes viraux
WO2019104160A2 (fr) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucléotides codant pour la phénylalanine hydroxylase pour le traitement de la phénylcétonurie
MA50803A (fr) 2017-11-22 2020-09-30 Modernatx Inc Polynucléotides codant pour l'ornithine transcarbamylase pour le traitement de troubles du cycle de l'urée
JP7424976B2 (ja) 2017-11-22 2024-01-30 モダーナティエックス・インコーポレイテッド プロピオン酸血症の治療用のプロピオニルCoAカルボキシラーゼアルファ及びベータサブユニットをコードするポリヌクレオチド
US11020476B2 (en) 2017-12-19 2021-06-01 Janssen Sciences Ireland Unlimited Company Methods and compositions for inducing an immune response against Hepatitis B Virus (HBV)
US11021692B2 (en) 2017-12-19 2021-06-01 Janssen Sciences Ireland Unlimited Company Hepatitis B virus (HBV) vaccines and uses thereof
US11389531B2 (en) 2017-12-19 2022-07-19 Janssen Sciences Ireland Unlimited Company Methods and apparatus for the delivery of hepatitis B virus (HBV) vaccines
US11773139B2 (en) 2017-12-20 2023-10-03 Glaxosmithkline Biologicals Sa Epstein-barr virus antigen constructs
SG11202006400UA (en) 2018-01-04 2020-08-28 Iconic Therapeutics Inc Anti-tissue factor antibodies, antibody-drug conjugates, and related methods
US11802146B2 (en) 2018-01-05 2023-10-31 Modernatx, Inc. Polynucleotides encoding anti-chikungunya virus antibodies
US11911453B2 (en) 2018-01-29 2024-02-27 Modernatx, Inc. RSV RNA vaccines
CA3100050A1 (fr) 2018-05-11 2019-11-14 Lupagen, Inc. Systemes et methodes pour effectuer des modifications en temps reel en boucle fermee de cellules de patient
WO2019226650A1 (fr) 2018-05-23 2019-11-28 Modernatx, Inc. Administration d'adn
EP3581201A1 (fr) 2018-06-15 2019-12-18 GlaxoSmithKline Biologicals S.A. Escherichia coli o157:h7 polypeptides et leurs utilisations
WO2020023390A1 (fr) 2018-07-25 2020-01-30 Modernatx, Inc. Traitement enzymatique substitutif basé sur l'arnm combiné à un chaperon pharmacologique pour le traitement de troubles du stockage lysosomal
EP3836963A2 (fr) 2018-08-17 2021-06-23 GlaxoSmithKline Biologicals S.A. Compositions immunogènes et leurs utilisations
US20220110966A1 (en) 2018-09-02 2022-04-14 Modernatx, Inc. Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency
MA53608A (fr) 2018-09-13 2021-07-21 Modernatx Inc Polynucléotides codant pour les sous-unités e1-alpha, e1-beta et e2 du complexe alpha-cétoacide déshydrogénase à chaîne ramifiée pour le traitement de la leucinose
WO2020056147A2 (fr) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucléotides codant la glucose-6-phosphatase pour le traitement de la glycogénose
MA53615A (fr) 2018-09-14 2021-07-21 Modernatx Inc Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar
WO2020069169A1 (fr) 2018-09-27 2020-04-02 Modernatx, Inc. Polynucléotides codant pour l'arginase 1 pour le traitement d'une déficience en arginase
TW202043256A (zh) 2019-01-10 2020-12-01 美商健生生物科技公司 前列腺新抗原及其用途
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
MX2021010808A (es) 2019-03-08 2021-12-15 Massachusetts Inst Technology Ácido ribonucleico replicón-nanopartículas sinteticas oncolítico y sintético y usos para inmunoterapia de cáncer.
EP3965797A1 (fr) 2019-05-08 2022-03-16 AstraZeneca AB Compositions pour peau et plaies et leurs méthodes d'utilisation
BR122024002387A2 (pt) 2019-05-30 2024-03-12 Gritstone Bio, Inc. Vetores de adenovírus, composição farmacêutica, sequência de nucleotídeo isolada, célula isolada, vetor, kit, usos de um vetor, método para fabricar o vetor, métodos para produzir um vírus e vetor viral
KR20220042116A (ko) 2019-06-18 2022-04-04 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 B형 간염 바이러스(HBV) 백신 및 HBV-타케팅 RNAi의 조합
EP3986915A1 (fr) 2019-06-18 2022-04-27 Janssen Sciences Ireland Unlimited Company Construction de l'interleukine 12 recombinante et ses utilisations
WO2020255009A2 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1
WO2020255010A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison d'une construction d'interleukine 12 recombinante et de vaccins contre le virus de l'hépatite b (vhb)
CN114630675A (zh) 2019-06-18 2022-06-14 爱尔兰詹森科学公司 乙型肝炎病毒(hbv)疫苗和抗pd-1或抗pd-l1抗体的组合
AU2020295807A1 (en) 2019-06-20 2022-02-17 Janssen Sciences Ireland Unlimited Company Lipid nanoparticle or liposome delivery of hepatitis B virus (HBV) vaccines
CN114206909A (zh) 2019-07-21 2022-03-18 葛兰素史克生物有限公司 治疗性病毒疫苗
WO2021055833A1 (fr) 2019-09-19 2021-03-25 Modernatx, Inc. Composés lipidiques de queue ramifiés et compositions pour l'administration intracellulaire d'agents thérapeutiques
JP2023519173A (ja) 2020-03-09 2023-05-10 アークトゥラス・セラピューティクス・インコーポレイテッド 免疫応答を誘導するための組成物及び方法
US20230364219A1 (en) 2020-04-16 2023-11-16 Glaxosmithkline Biologicals Sa Sars cov-2 spike protein construct
EP4158005A1 (fr) 2020-06-01 2023-04-05 ModernaTX, Inc. Variants de la phénylalanine hydroxylase et leurs utilisations
US20230234992A1 (en) 2020-06-05 2023-07-27 Glaxosmithkline Biologicals Sa Modified betacoronavirus spike proteins
US20230256090A1 (en) 2020-06-29 2023-08-17 Glaxosmithkline Biologicals Sa Adjuvants
CN116367854A (zh) 2020-07-08 2023-06-30 杨森科学爱尔兰无限公司 针对hbv的rna复制子疫苗
WO2022032196A2 (fr) 2020-08-06 2022-02-10 Gritstone Bio, Inc. Cassettes de vaccin à plusieurs épitopes
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
WO2022104131A1 (fr) 2020-11-13 2022-05-19 Modernatx, Inc. Polynucléotides codant pour un régulateur de conductance transmembranaire de la mucoviscidose pour le traitement de la mucoviscidose
WO2022133230A1 (fr) 2020-12-18 2022-06-23 Janssen Pharmaceuticals, Inc. Polythérapie pour le traitement d'une infection par le virus de l'hépatite b
WO2022135993A2 (fr) * 2020-12-22 2022-06-30 Curevac Ag Composition pharmaceutique comprenant des vecteurs lipidique encapsulant de l'arn pour une administration multidose
WO2022137128A2 (fr) 2020-12-23 2022-06-30 Glaxosmithkline Biologicals Sa Arn messager auto-amplifiant
EP4267740A1 (fr) 2020-12-28 2023-11-01 Arcturus Therapeutics, Inc. Nucléases effectrices de type activateur de transcription (talens) ciblant le vhb
EP4032546A1 (fr) 2021-01-20 2022-07-27 GlaxoSmithKline Biologicals S.A. Vaccin viral thérapeutique
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
WO2022204390A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour la phénylalanine hydroxylase et leurs utilisations
JP2024512026A (ja) 2021-03-24 2024-03-18 モデルナティエックス インコーポレイテッド オルニチントランスカルバミラーゼ欠損症の治療を目的とした脂質ナノ粒子及びオルニチントランスカルバミラーゼをコードするポリヌクレオチド
WO2022204369A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucléotides codant pour la méthylmalonyl-coa mutase pour le traitement de l'acidémie méthylmalonique
WO2022204371A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour la glucose-6-phosphatase et leurs utilisations
WO2022204380A1 (fr) 2021-03-24 2022-09-29 Modernatx, Inc. Nanoparticules lipidiques contenant des polynucléotides codant pour des sous-unités alpha et bêta de propionyl-coa carboxylase et leurs utilisations
JP2024511206A (ja) 2021-03-26 2024-03-12 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 免疫原性組成物
WO2022248353A1 (fr) 2021-05-24 2022-12-01 Glaxosmithkline Biologicals Sa Adjuvants
WO2022259191A1 (fr) 2021-06-09 2022-12-15 Glaxosmithkline Biologicals Sa Dosage de libération pour déterminer la puissance d'un produit médicamenteux à base d'arn auto-amplifié et ses procédés d'utilisation
WO2022266083A2 (fr) 2021-06-15 2022-12-22 Modernatx, Inc. Polynucléotides modifiés pour expression spécifique de type cellulaire ou micro-environnement
WO2022271776A1 (fr) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucléotides codant pour le polypeptide a1, de la famille de l'uridine diphosphate glycosyltransférase 1, pour le traitement du syndrome de crigler-najjar
WO2023021421A1 (fr) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Vaccins à base d'arn lyophilisés à faible dose et leurs procédés de préparation et d'utilisation
WO2023021427A1 (fr) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Lyophilisation de nanoparticules lipidiques (lnp) encapsulant de l'arn et leurs formulations
WO2023020992A1 (fr) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Nouveaux procédés
WO2023020993A1 (fr) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Nouveaux procédés
WO2023020994A1 (fr) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Nouveaux procédés
WO2023031855A1 (fr) 2021-09-03 2023-03-09 Glaxosmithkline Biologicals Sa Substitution de bases nucléotidiques dans des acides ribonucléiques messagers auto-amplificateurs
WO2023056044A1 (fr) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucléotides codant la relaxine pour le traitement de la fibrose et/ou d'une maladie cardiovasculaire
CN115960922A (zh) * 2021-10-09 2023-04-14 吴可行 自复制rna分子设计及其应用
CA3232485A1 (fr) 2021-11-15 2023-05-19 Technische Universitat Dresden Recombinases specifiques de site pour l'edition du genome efficace et specifique
WO2023183909A2 (fr) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucléotides codant pour des protéines du groupe de complémentation de l'anémie de fanconi, destinées au traitement de l'anémie de fanconi
WO2023198815A1 (fr) 2022-04-14 2023-10-19 Janssen Vaccines & Prevention B.V. Administration séquentielle d'adénovirus
WO2023218420A1 (fr) 2022-05-13 2023-11-16 Janssen Pharmaceuticals, Inc. Compositions d'arnm pour induire une inversion latente du vih-1
CN117070464A (zh) * 2022-05-16 2023-11-17 上海行深生物科技有限公司 蛋白包裹自复制rna及其制备方法
WO2023233290A1 (fr) 2022-05-31 2023-12-07 Janssen Sciences Ireland Unlimited Company Agents d'arni ciblant pd-l1
WO2023242817A2 (fr) 2022-06-18 2023-12-21 Glaxosmithkline Biologicals Sa Molécules d'arn recombinant comprenant des régions ou des segments non traduits codant pour une protéine de spicule à partir de la souche omicron de coronavirus 2 du syndrome respiratoire aigu sévère
WO2024026254A1 (fr) 2022-07-26 2024-02-01 Modernatx, Inc. Polynucléotides modifiés pour la régulation temporelle de l'expression
WO2024068545A1 (fr) 2022-09-26 2024-04-04 Glaxosmithkline Biologicals Sa Vaccins contre le virus de la grippe

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000617A2 (fr) 1998-06-29 2000-01-06 U.S. Medical Research Institute Of Infectious Diseases Proteines du virion ebola exprimees a partir de replicons du virus de l'encephalomyelite equine du venezuela (eev)
WO2002009645A2 (fr) 2000-08-01 2002-02-07 The Johns Hopkins University Vaccin moleculaire permettant de relier une proteine a diffusion intracellulaire a un antigene
WO2002095023A2 (fr) 2001-05-23 2002-11-28 Institut Pasteur Replicons derives de genomes viraux a arn brin positif utilises dans la production de proteines heterologues
WO2007047749A1 (fr) 2005-10-18 2007-04-26 Novartis Vaccines And Diagnostics Inc. Immunisations mucosiques et systemiques avec particules de replicon d’alphavirus
WO2009146867A1 (fr) 2008-06-04 2009-12-10 Institut Für Viruskrankheiten Und Immunprophylaxe Réplicons de pestivirus fournissant un système de vecteur viral à base d'arn
WO2010015098A1 (fr) 2008-08-07 2010-02-11 Universidad de Concepción Préparation pharmaceutique vétérinaire comprenant une particule de recombinaison de l'arn codant pour une protéine cu/zn superoxyde dismutase de bactéries pathogènes de ruminants et au moins un alfavirus d'arn appartenant à la famille du virus de semliki forest
WO2012006369A2 (fr) 2010-07-06 2012-01-12 Novartis Ag Immunisation de grands mammifères à l'aide de faibles doses d'arn
WO2012006378A1 (fr) 2010-07-06 2012-01-12 Novartis Ag Liposomes à lipides ayant une valeur de pka avantageuse pour la délivrance d'arn
WO2012006372A1 (fr) 2010-07-06 2012-01-12 Novartis Ag Administration d'arn à différents types cellulaires
WO2012006376A2 (fr) 2010-07-06 2012-01-12 Novartis Ag Particules d'administration de type virion pour des molécules d'arn auto-répliquant
WO2012006377A2 (fr) 2010-07-06 2012-01-12 Novartis Ag Administration d'arn pour activer de multiples voies immunitaires
WO2012031046A2 (fr) 2010-08-31 2012-03-08 Novartis Ag Lipides adaptés pour une administration liposomale d'arn codant pour une protéine
WO2012031043A1 (fr) 2010-08-31 2012-03-08 Novartis Ag Liposomes pégylés pour l'apport d'arn codant pour un immunogène
WO2012030901A1 (fr) 2010-08-31 2012-03-08 Novartis Ag Petits liposomes destinés à l'administration d'un arn codant pour un immunogène

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090406A (en) * 1984-04-12 2000-07-18 The Liposome Company, Inc. Potentiation of immune responses with liposomal adjuvants
US5140086A (en) 1988-11-25 1992-08-18 Weyerhaeuser Company Isocyanate modified cellulose products and method for their manufacture
US6867195B1 (en) 1989-03-21 2005-03-15 Vical Incorporated Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5750390A (en) 1992-08-26 1998-05-12 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of diseases caused by expression of the bcl-2 gene
US5693535A (en) 1992-05-14 1997-12-02 Ribozyme Pharmaceuticals, Inc. HIV targeted ribozymes
CA2134773A1 (fr) 1992-06-04 1993-12-09 Robert J. Debs Methodes et compositions pour genotherapie in vivo
AU4769893A (en) 1992-07-17 1994-02-14 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of animal diseases
EP1624068A1 (fr) 1993-06-01 2006-02-08 Life Technologies Inc. Vaccination génétique avec des lipides cationiques
US6015686A (en) 1993-09-15 2000-01-18 Chiron Viagene, Inc. Eukaryotic layered vector initiation systems
JPH11512609A (ja) * 1995-09-27 1999-11-02 アメリカ合衆国 クローン化されたヌクレオチド配列からの感染性RSウイルス(respiratory syncytial virus)の生産
EP0910343A1 (fr) 1996-07-03 1999-04-28 University Of Pittsburgh Formulations d'emulsions pour des agents actifs hydrophiles
EP1254657B1 (fr) 1996-09-13 2008-05-21 Lipoxen Technologies Limited Liposomes
US7384923B2 (en) 1999-05-14 2008-06-10 Lipoxen Technologies Limited Liposomes
US6395302B1 (en) 1996-11-19 2002-05-28 Octoplus B.V. Method for the preparation of microspheres which contain colloidal systems
CA2289702C (fr) 1997-05-14 2008-02-19 Inex Pharmaceuticals Corp. Encapsulation hautement efficace d'agents therapeutiques charges dans des vesicules lipidiques
US6060308A (en) 1997-09-04 2000-05-09 Connaught Laboratories Limited RNA respiratory syncytial virus vaccines
US6009406A (en) 1997-12-05 1999-12-28 Square D Company Methodology and computer-based tools for re-engineering a custom-engineered product line
US6432925B1 (en) 1998-04-16 2002-08-13 John Wayne Cancer Institute RNA cancer vaccine and methods for its use
ATE289630T1 (de) 1999-09-09 2005-03-15 Curevac Gmbh Transfer von mrnas unter verwendung von polykationischen verbindungen
EP1222289B1 (fr) 1999-10-20 2008-04-16 The Johns Hopkins University School Of Medicine Compositions chimeriques immunogenes et acides nucleiques codant pour de telles compositions
US8541008B2 (en) * 1999-11-19 2013-09-24 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Pharmaceutical compositions and methods to vaccinate against candidiasis
US20030212022A1 (en) * 2001-03-23 2003-11-13 Jean-Marie Vogel Compositions and methods for gene therapy
US7149665B2 (en) 2000-04-03 2006-12-12 Browzwear International Ltd System and method for simulation of virtual wear articles on virtual models
AU2001253323A1 (en) 2000-04-18 2001-10-30 Human Genome Sciences, Inc. Extracellular matrix polynucleotides, polypeptides, and antibodies
EP1297005B1 (fr) 2000-07-03 2009-08-26 Novartis Vaccines and Diagnostics S.r.l. Immunisation contre une infection par chlamydia pneumoniae
ATE320792T1 (de) 2000-09-28 2006-04-15 Chiron Corp Mikropartikel zur verabreichung von heterologen nukleinsäure
MXPA03003690A (es) 2000-10-27 2004-05-05 Chiron Spa Acidos nucleicos y proteinas de los grupos a y b de estreptococos.
WO2002079239A2 (fr) 2001-01-31 2002-10-10 U.S. Army Medical Research Institute Of Infectious Diseases Glycoproteine de filovirus chimere
EP1363660A4 (fr) 2001-02-01 2006-06-21 Univ Johns Hopkins Vaccin moleculaire superieur a base d'arn autoreplicatif, d'adn suicide ou de vecteur d'adn nu, qui lie un antigene a un polypeptide qui favorise la presentation de l'antigene
WO2002072027A2 (fr) 2001-03-14 2002-09-19 University Of Alabama Research Foundation Replicons d'arn oncolytiques
EP1604688B1 (fr) 2001-06-05 2010-02-03 CureVac GmbH ARNm stabilisé codant pour un antigène tumoral avec un contenu G/C augmenté
US20050175629A1 (en) 2001-08-31 2005-08-11 Giuseppe Del Giudice Helicobacter pylori vaccination
AU2002327614B2 (en) * 2001-09-06 2007-12-06 Alphavax, Inc. Alphavirus replicon vector systems
AU2003211103A1 (en) 2002-02-13 2003-09-04 Northeastern University Intracellular delivery of therapeutic agents
DE10207177A1 (de) 2002-02-19 2003-09-04 Novosom Ag Fakultativ kationische Lipide
CA2491164C (fr) 2002-06-28 2012-05-08 Cory Giesbrecht Appareil liposomal et procedes de fabrication
CN1694959B (zh) 2002-09-13 2013-09-18 雷普利瑟公司 非序列互补的抗病毒寡核苷酸
ES2429338T3 (es) 2002-12-23 2013-11-14 Vical Incorporated Vacuna basada en polinucleótidos optimizados por codones contra infección por citomegalovirus humano
US8338583B2 (en) 2003-02-04 2012-12-25 Bar-Ilan University Snornai-small nucleolar RNA degradation by RNA interference in trypanosomatids
US7731967B2 (en) 2003-04-30 2010-06-08 Novartis Vaccines And Diagnostics, Inc. Compositions for inducing immune responses
CA2527301A1 (fr) 2003-05-30 2004-12-09 Nippon Shinyaku Co., Ltd. Composite contenant un acide oligonucleique et composition pharmaceutique contenant ledit composite
EP1635865A2 (fr) 2003-06-26 2006-03-22 Chiron Corporation Compositions immunogenes pour lutter contre chlamydia trachomatis
US7368537B2 (en) * 2003-07-15 2008-05-06 Id Biomedical Corporation Of Quebec Subunit vaccine against respiratory syncytial virus infection
CA2532228C (fr) 2003-07-16 2017-02-14 Protiva Biotherapeutics, Inc. Arn interferant encapsule dans un lipide
ES2505695T3 (es) 2003-07-31 2014-10-10 Novartis Vaccines And Diagnostics, Inc. Composiciones inmunógenas para Streptococcus pyogenes
US7303881B2 (en) 2004-04-30 2007-12-04 Pds Biotechnology Corporation Antigen delivery compositions and methods of use
GB0410866D0 (en) 2004-05-14 2004-06-16 Chiron Srl Haemophilius influenzae
MXPA06013124A (es) 2004-05-18 2007-05-23 Alphavax Inc Vectores de alfavirus derivados de tc-83, particulas y metodos.
US20060024670A1 (en) 2004-05-18 2006-02-02 Luke Catherine J Influenza virus vaccine composition and methods of use
WO2006078294A2 (fr) 2004-05-21 2006-07-27 Novartis Vaccines And Diagnostics Inc. Vecteurs d'alphavirus pour vaccins contre pathogenes respiratoires
JP4796062B2 (ja) 2004-06-07 2011-10-19 プロチバ バイオセラピューティクス インコーポレイティッド 脂質封入干渉rna
EP1781593B1 (fr) 2004-06-07 2011-12-14 Protiva Biotherapeutics Inc. Lipides cationiques et leurs procédés d'utilisation
US20060051405A1 (en) * 2004-07-19 2006-03-09 Protiva Biotherapeutics, Inc. Compositions for the delivery of therapeutic agents and uses thereof
JP5086082B2 (ja) 2004-10-01 2012-11-28 ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル C型肝炎ウイルス複製系
CA2588089C (fr) * 2004-11-15 2015-06-23 Novartis Vaccines And Diagnostics Inc. Compositions immunogenes contenant un antigene de l'anthrax, des microparticules de polymeres biodegradables, et un adjuvant immunologique contenant un polynucleotide
HUE027400T2 (en) 2005-02-18 2016-10-28 Glaxosmithkline Biologicals Sa Proteins and nucleic acids from meningitis / sepsis with Escherichia coli
NZ560929A (en) 2005-02-18 2009-12-24 Novartis Vaccines & Diagnostic Immunogens from uropathogenic escherichia coli
DE602006008278D1 (de) 2005-03-02 2009-09-17 Pharmazeutische zusammensetzung
NZ562381A (en) 2005-03-30 2011-06-30 Novartis Vaccines & Diagnostic Haemophilus influenzae type B
US7618393B2 (en) 2005-05-03 2009-11-17 Pharmajet, Inc. Needle-less injector and method of fluid delivery
CN101238146A (zh) 2005-05-12 2008-08-06 诺华疫苗和诊断有限公司 砂眼衣原体的免疫原性组合物
US8703095B2 (en) 2005-07-07 2014-04-22 Sanofi Pasteur S.A. Immuno-adjuvant emulsion
ES2735531T3 (es) 2005-08-23 2019-12-19 Univ Pennsylvania ARN que contiene nucleósidos modificados y métodos de uso del mismo
JP2007112768A (ja) 2005-10-24 2007-05-10 Kyoto Univ 肝指向性リポソーム組成物
US7776336B2 (en) 2005-10-25 2010-08-17 Novartis Vaccines And Diagnostics Srl Compositions comprising Yersinia pestis antigens
US7915399B2 (en) 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
EP2064230A2 (fr) 2006-08-16 2009-06-03 Novartis AG Immunogènes pour escherichia coli uropathogène
US20100015218A1 (en) 2007-02-16 2010-01-21 Vasant Jadhav Compositions and methods for potentiated activity of biologically active molecules
US8877206B2 (en) 2007-03-22 2014-11-04 Pds Biotechnology Corporation Stimulation of an immune response by cationic lipids
CN101674853B (zh) 2007-05-04 2013-03-27 玛瑞纳生物技术有限公司 氨基酸脂质及其用途
DE102007029471A1 (de) 2007-06-20 2008-12-24 Novosom Ag Neue fakultativ kationische Sterole
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
GB0717187D0 (en) 2007-09-04 2007-10-17 Novartis Ag Compositions comprising yersinia pestis antigens
US20090162395A1 (en) 2007-09-26 2009-06-25 Crowe Jr James E Vaccine for rsv and mpv
JP5627464B2 (ja) 2007-11-26 2014-11-19 ノバルティス アーゲー アルファウイルス粒子を生成する方法
WO2009111088A2 (fr) 2008-01-02 2009-09-11 The Johns Hopkins University Immunisation anti-tumorale par une administration liposomique de vaccin à la rate
CA3044134A1 (fr) 2008-01-02 2009-07-09 Arbutus Biopharma Corporation Compositions et procedes ameliores pour la delivrance d'acides nucleiques
ITMI20081249A1 (it) 2008-07-09 2010-01-09 Novartis Vaccines & Diagnostic Immunogeni di escherichia coli con solubilità migliorata.
WO2009109860A2 (fr) 2008-03-06 2009-09-11 Novartis Ag Formes mutantes de htra de chlamydia
DK2279254T3 (en) 2008-04-15 2017-09-18 Protiva Biotherapeutics Inc PRESENT UNKNOWN LIPID FORMS FOR NUCLEIC ACID ADMINISTRATION
WO2009127230A1 (fr) 2008-04-16 2009-10-22 Curevac Gmbh Arn(m) modifié pour supprimer ou éviter une réponse immunostimulante et composition immunosuppressive
WO2009132206A1 (fr) 2008-04-25 2009-10-29 Liquidia Technologies, Inc. Compositions et procédés pour administration et libération intracellulaire de chargement
US20100040650A1 (en) * 2008-05-30 2010-02-18 Crowe Jr James E Virus-Like paramyxovirus particles and vaccines
CA2984026C (fr) 2008-10-09 2020-02-11 Arbutus Biopharma Corporation Lipides amines ameliores et procedes d'administration d'acides nucleiqu s
AU2009316680B2 (en) 2008-11-18 2016-03-24 Takeda Vaccines, Inc. RSV F VLPs and methods of manufacture and use thereof
EP2510947B1 (fr) 2009-04-14 2016-02-10 GlaxoSmithKline Biologicals SA Compositions pour l'immunisation contre le Staphylococcus aureus
EP2449114B9 (fr) 2009-07-01 2017-04-19 Protiva Biotherapeutics Inc. Formulations lipidiques inédites permettant l'administration d'agents thérapeutiques en direction de tumeurs solides
WO2011001780A1 (fr) 2009-07-02 2011-01-06 コニカミノルタホールディングス株式会社 Méthode de production de liposomes par une méthode d'émulsification en deux étapes en utilisant une phase aqueuse externe contenant un agent de dispersion spécifique, méthode de production d'une dispersion liposomique ou d'une poudre sèche correspondante en utilisant la méthode de production des liposomes et dispersion liposomique ou poudre sèche correspondante produite de cette manière
CA2766907A1 (fr) 2009-07-06 2011-01-13 Novartis Ag Molecules d'arn autorepliquantes et leurs utilisations
PL3178490T3 (pl) * 2009-07-15 2022-08-01 Glaxosmithkline Biologicals S.A. Kompozycje białka f rsv i sposoby ich wytwarzania
US8277919B2 (en) 2009-07-23 2012-10-02 VMO Systems, Inc. Reflective coating for an optical disc
WO2011012316A2 (fr) 2009-07-31 2011-02-03 Ludwig-Maximilians-Universität Arn ayant une combinaison de nucléotides non modifiés et modifiés pour l'expression protéique
RU2573409C2 (ru) * 2009-11-04 2016-01-20 Дзе Юниверсити Оф Бритиш Коламбиа Содержащие нуклеиновые кислоты липидные частицы и относящиеся к ним способы
US20110112353A1 (en) 2009-11-09 2011-05-12 Circulite, Inc. Bifurcated outflow cannulae
TR201901311T4 (tr) 2009-12-01 2019-02-21 Translate Bio Inc İnsan genetik hastalıklarında mRNA'nın teslimi için steroid türevi.
EP2516010A2 (fr) 2009-12-23 2012-10-31 Novartis AG Lipides, compositions lipidiques, et procédés d'utilisation associés
BR112013000391B8 (pt) 2010-07-06 2022-10-04 Novartis Ag Composição de emulsão catiônica de óleo em água e seu uso
SG10201605537XA (en) 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
TR201900264T4 (tr) 2011-08-31 2019-02-21 Glaxosmithkline Biologicals Sa İmmünojen şifreleyici rna'nın verilmesi için pegile edilmiş lipozomlar.

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000617A2 (fr) 1998-06-29 2000-01-06 U.S. Medical Research Institute Of Infectious Diseases Proteines du virion ebola exprimees a partir de replicons du virus de l'encephalomyelite equine du venezuela (eev)
WO2002009645A2 (fr) 2000-08-01 2002-02-07 The Johns Hopkins University Vaccin moleculaire permettant de relier une proteine a diffusion intracellulaire a un antigene
WO2002095023A2 (fr) 2001-05-23 2002-11-28 Institut Pasteur Replicons derives de genomes viraux a arn brin positif utilises dans la production de proteines heterologues
WO2007047749A1 (fr) 2005-10-18 2007-04-26 Novartis Vaccines And Diagnostics Inc. Immunisations mucosiques et systemiques avec particules de replicon d’alphavirus
WO2009146867A1 (fr) 2008-06-04 2009-12-10 Institut Für Viruskrankheiten Und Immunprophylaxe Réplicons de pestivirus fournissant un système de vecteur viral à base d'arn
WO2010015098A1 (fr) 2008-08-07 2010-02-11 Universidad de Concepción Préparation pharmaceutique vétérinaire comprenant une particule de recombinaison de l'arn codant pour une protéine cu/zn superoxyde dismutase de bactéries pathogènes de ruminants et au moins un alfavirus d'arn appartenant à la famille du virus de semliki forest
US20110200667A1 (en) 2008-08-07 2011-08-18 Universidad De Concepcion Veterinary pharmaceutical formulacion that comprises an rna recombinant particle that encodes for a cu/zn superoxide dismutase protein of ruminant pathogenic bacteria and at least one rna alphavirus belonging to the semliki forest virus family
WO2012006378A1 (fr) 2010-07-06 2012-01-12 Novartis Ag Liposomes à lipides ayant une valeur de pka avantageuse pour la délivrance d'arn
WO2012006369A2 (fr) 2010-07-06 2012-01-12 Novartis Ag Immunisation de grands mammifères à l'aide de faibles doses d'arn
WO2012006372A1 (fr) 2010-07-06 2012-01-12 Novartis Ag Administration d'arn à différents types cellulaires
WO2012006376A2 (fr) 2010-07-06 2012-01-12 Novartis Ag Particules d'administration de type virion pour des molécules d'arn auto-répliquant
WO2012006377A2 (fr) 2010-07-06 2012-01-12 Novartis Ag Administration d'arn pour activer de multiples voies immunitaires
EP2590676B1 (fr) 2010-07-06 2016-08-17 GlaxoSmithKline Biologicals SA Particules d'administration de type virion pour des molécules d'arn auto-répliquant
WO2012031046A2 (fr) 2010-08-31 2012-03-08 Novartis Ag Lipides adaptés pour une administration liposomale d'arn codant pour une protéine
WO2012031043A1 (fr) 2010-08-31 2012-03-08 Novartis Ag Liposomes pégylés pour l'apport d'arn codant pour un immunogène
WO2012030901A1 (fr) 2010-08-31 2012-03-08 Novartis Ag Petits liposomes destinés à l'administration d'un arn codant pour un immunogène

Non-Patent Citations (55)

* Cited by examiner, † Cited by third party
Title
"About Us", PRINT-OUT OF THE TRILINK BIOTECHNOLOGIES, Retrieved from the Internet <URL:https://www.trilinkbiotech.com/about-us>
"Handbook of Pharmaceutical Biotechnology", 1 June 2007, JOHN WILEY & SONS , ISBN: 978-0-471-21386-4, article SHAYNE COX, STEVE PASCOLO: "Chapter 7.2. Plasmid DNA and Messenger RNA for Therapy", pages: 971 - 1011, XP055626043, DOI: 10.1002/9780470117118.ch07b
"Molecular Biology of Human Respiratory Syncytial Virus", RESPIRATORY SYNCYTIAL VIRUS, 2007
ANITA BRINGMANN ET AL: "RNA Vaccines in Cancer Treatment", JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, vol. 2010, pages 1 - 12, XP002765542, ISSN: 1110-7243, DOI: 10.1155/2010/623687
ANITA BRINGMANN, STEFANIE ANDREA ERIKA HELD, ANNKRISTIN HEINE, PETER BROSSART: "RNA Vaccines in Cancer Treatment", JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, vol. 2010, pages 1 - 12, XP002765542, ISSN: 1110-7243, DOI: 10.1155/2010/623687
ANONYMOUS: "High Yield Capped RNA Transcription Kit", MMESSAGE MMACHINE KIT, AMBION, BY LIFE TECHNOLOGIES, 1 January 2012 (2012-01-01), pages 1 - 36, XP093137992
ANONYMOUS: "ScriptCap™ 2*-O-Methyltransferase", EPICENTRE* BIOTECHNOLOGIES, 13 November 2006 (2006-11-13), pages 1 - 1, XP093137965, Retrieved from the Internet <URL:http://www.epibio.com/item.asp?lD=500&CatlD=l2&SubCatlD=26> [retrieved on 20240305]
ANONYMOUS: "ScriptCap™ m7G Capping System", EPICENTRE® BIOTECHNOLOGIES, 1 November 2006 (2006-11-01), pages 1 - 2, XP093137925, Retrieved from the Internet <URL:https://web.archive.org/web/20061116032247/http://www.epibio.com/item.asp?ID=498&CatlD=26 > [retrieved on 20240305]
COWLING: "Regulation of mRNA cap methylation", BIOCHEM. J., vol. 425, 15 January 2010 (2010-01-15), pages 295 - 302, XP055980156, DOI: 10.1042/BJ20091352
CROOKE STANLEY T: "ANTISENSE DRUG TECHNOLOGY: PRINCIPLES, STRATEGIES, AND APPLICATIONS, 2ND ED.", 1 January 2007, CRC PRESS , US , ISBN: 978-0-8493-8796-8, article MACLACHLAN I.: "Liposomal formulations for nucleic acid delivery", pages: 237 - 270, XP002584305
CROOKE STANLEY T: "ANTISENSE DRUG TECHNOLOGY: PRINCIPLES, STRATEGIES, AND APPLICATIONS, 2ND ED.", 25 July 2007, CRC PRESS , US , ISBN: 978-0-8493-8796-8, article MACLACHLAN, IAN: "Chapter 9: Liposomal Formulations for Nucleic Acid Delivery", pages: 237 - 270, XP055915899
D. B. FENSKE, A. CHONN, P. R. CULLIS: "Liposomal Nanomedicines: An Emerging Field", TOXICOLOGIC PATHOLOGY, vol. 36, no. 1, 1 January 2008 (2008-01-01), pages 21 - 29, XP055179556, ISSN: 01926233, DOI: 10.1177/0192623307310960
DAFFIS STEPHANE; SZRETTER KRISTY J.; SCHRIEWER JILL; LI JIANQING; YOUN SOONJEON; ERRETT JOHN; LIN TSAI-YU; SCHNELLER STEWART; ZUST: "2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members", NATURE, vol. 468, no. 7322, 1 November 2010 (2010-11-01), pages 452 - 456, XP037065800, ISSN: 0028-0836, DOI: 10.1038/nature09489
FENSKE ET AL.: "Liposomal nanomedicines: An emerging field", TOXICOLOGIC PATHOLOGY, vol. 36, 2008, pages 21 - 29, XP055179556, DOI: 10.1177/0192623307310960
FLEETON M.N. ET AL: "Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus.", JOURNAL OF INFECTIOUS DISEASES, UNIVERSITY OF CHICAGO PRESS, US, vol. 183, no. 9, 1 May 2001 (2001-05-01), US , pages 1395 - 1398, XP002224503, ISSN: 0022-1899, DOI: 10.1086/319857
FURUICHI ET AL.: "5'-Terminal structure and mRNA stability", NATURE, vol. 266, 17 March 1977 (1977-03-17), pages 235 - 239, XP037052445, DOI: 10.1038/266235a0
FURUICHI ET AL.: "V iral and cellular mRNA capping: past and prospects", ADV VIRUS RES, vol. 55, 2000, pages 135 - 84, XP009124440, DOI: 10.1016/S0065-3527(00)55003-9
FURUICHI Y; SHATKIN A J: "Viral and cellular mRNA capping: past and prospects", ADVANCES IN VIRUS RESEARCH, ACADEMIC PRESS, US, vol. 55, 1 January 2000 (2000-01-01), US , pages 135 - 184, XP009124440, ISSN: 0065-3527, DOI: 10.1016/S0065-3527(00)55003-9
GOPI S. MOHAN ET AL: "Less is more: ebola virus surface glycoprotein expression levels regulate virus production and infectivity", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 89, no. 2, 15 January 2015 (2015-01-15), US , pages 1205 - 1217, XP055544944, ISSN: 0022-538X, DOI: 10.1128/JVI.01810-14
IMMORDINO MARIA LAURA; DOSIO FRANCO; CATTEL LUIGI: "Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential", INTERNATIONAL JOURNAL OF NANOMEDICINE, DOVE MEDICAL PRESS LTD., AUCKLAND, NZ, vol. 1, no. 3, 1 January 2006 (2006-01-01), AUCKLAND, NZ , pages 297 - 315, XP009145524, ISSN: 1176-9114
JAMES HEYES ET AL: "'Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 107, no. 2, 1 January 2005 (2005-01-01), AMSTERDAM, NL , pages 276 - 287, XP008157522, ISSN: 0168-3659, DOI: 10.1016/j.jconrel.2005.06.014
JOANNA KOWALSKA, MAGDALENA LEWDOROWICZ, JOANNA ZUBEREK, EWA GRUDZIEN-NOGALSKA, ELZBIETA BOJARSKA, JANUSZ STEPINSKI, ROBERT E. RHOA: "Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS", RNA, COLD SPRING HARBOR LABORATORY PRESS, US, vol. 14, no. 6, 1 June 2008 (2008-06-01), US , pages 1119 - 1131, XP002554206, ISSN: 1355-8382, DOI: 10.1261/rna.990208
KIM, H.K. ; DAVAA, E. ; MYUNG, C.S. ; PARK, J.S.: "Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER, NL, vol. 392, no. 1-2, 15 June 2010 (2010-06-15), NL , pages 141 - 147, XP027044515, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2010.03.047
LI W, ET AL: "Low-pH-sensitive poly(ethylene glycol)(PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery", THE JOURNAL OF GENE MEDICINE, JOHN WILEY & SONS, INC, US, vol. 7, no. 1, 1 January 2005 (2005-01-01), US , pages 67 - 79, XP008126013, ISSN: 1099-498X, DOI: 10.1002/JGM.634
LLOYD B. JEFFS ; LORNE R. PALMER ; ELLEN G. AMBEGIA ; CORY GIESBRECHT ; SHANNON EWANICK ; IAN MACLACHLAN: "A Scalable, Extrusion-Free Method for Efficient Liposomal Encapsulation of Plasmid DNA", PHARMACEUTICAL RESEARCH, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NL, vol. 22, no. 3, 1 March 2005 (2005-03-01), NL , pages 362 - 372, XP019370801, ISSN: 1573-904X, DOI: 10.1007/s11095-004-1873-z
LLOYD B. JEFFS ET AL: "A Scalable, Extrusion-Free Method for Efficient Liposomal Encapsulation of Plasmid DNA", PHARMACEUTICAL RESEARCH, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NL, vol. 22, no. 3, 1 March 2005 (2005-03-01), NL , pages 362 - 372, XP019370801, ISSN: 1573-904X, DOI: 10.1007/s11095-004-1873-z
MANNING E J, MILLSON G C: "INFECTIVITY OF LIPOSOMALLY ENCAPSULATED NUCLEIC ACIDS ISOLATED FROMEMC VIRUS AND SCRAPIE-INFECTED MOUSE BRAIN", INTERVIROLOGY., KARGER, CH, vol. 20, no. 02/03, 1 January 1983 (1983-01-01), CH , pages 164 - 168, XP001005390, ISSN: 0300-5526, DOI: 10.1159/000149387
MARTINON ET AL.: "Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome- entrapped mRNA", EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 23, 1993, pages 1719 - 1722, XP002937540, DOI: 10.1002/eji.1830230749
MARTINON F, ET AL.: "INDUCTION OF VIRUS-SPECIFIC CYTOTOXIC T LYMPHOCYTES IN VIVO BY LIPOSOME-ENTRAPPED MRNA", EUROPEAN JOURNAL OF IMMUNOLOGY, WILEY-VCH, HOBOKEN, USA, vol. 23, 1 January 1993 (1993-01-01), Hoboken, USA, pages 1719 - 1722, XP002937540, ISSN: 0014-2980, DOI: 10.1002/eji.1830230749
MEBATSION TESHOME, KÖNIG MATTHIAS, CONZELMANN KARL-KLAUS: "Budding of Rabies Virus Particles in the Absence of the Spike Glycoprotein", CELL, ELSEVIER, AMSTERDAM NL, vol. 84, no. 6, 1 March 1996 (1996-03-01), Amsterdam NL , pages 941 - 951, XP093138009, ISSN: 0092-8674, DOI: 10.1016/S0092-8674(00)81072-7
MEIS JUDITH E, MEIS RONALD: "The New mscrip tTM mRNA Production System - Efficient mRNA Transcription, Capping and Tailing for the Highest Yields of Active Protein", EPICENTRE BIOTECHNOLGIES FORUM, vol. 14, no. 1, 1 January 2017 (2017-01-01), pages 1 - 3, XP093031513
NICOLAU ET AL.: "In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin", PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 1068 - 1072, XP000602251, DOI: 10.1073/pnas.80.4.1068
OBATA, Y. ; TAJIMA, S. ; TAKEOKA, S.: "Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 142, no. 2, 3 March 2010 (2010-03-03), AMSTERDAM, NL , pages 267 - 276, XP026905290, ISSN: 0168-3659, DOI: 10.1016/j.jconrel.2009.10.023
PASCOLO S.: "Messenger RNA-based vaccines", EXPERT OPIN BIOL THER, vol. 4, no. 8, August 2004 (2004-08-01), pages 1285 - 94, XP009095328, DOI: 10.1517/14712598.4.8.1285
PASCOLO S.: "Vaccination with messenger RNA (mRNA", HANDB EXP PHARMACOL, 2008, pages 221 - 35, XP001538300, DOI: 10.1007/978-3-540-72167-3_11
POLO ET AL.: "Stable alphavirus packaging cell lines for Sindbis virus- and Semliki Forest virus-derived vectors", PROC. NATL. ACA. SCI, vol. 96, April 1999 (1999-04-01), pages 4598 - 4603, XP002139370, DOI: 10.1073/pnas.96.8.4598
RAYNER J O, DRYGA S A, KAMRUD K I: "ALPHAVIRUS VECTORS AND VACCINATION", REVIEWS IN MEDICAL VIROLOGY, CHICHESTER, GB, vol. 12, no. 05, 1 September 2002 (2002-09-01), GB , pages 279 - 296, XP008035758, ISSN: 1052-9276, DOI: 10.1002/rmv.360
RICE ET AL.: "Production of Infectious RNA Transcripts from Sinbis Virus cDNA Clones: Mapping of Lethal Mutations, Rescue of a Temperature-Sensitive Marker, and In Vitro Mutagenesis To Generate Defined Mutants", JOURNAL OF VIROLOGY, vol. 61, no. 2, December 1987 (1987-12-01), pages 3809 - 3819, XP093031508
S. SONOKE, T. UEDA, K. FUJIWARA, Y. SATO, K. TAKAGAKI, K. HIRABAYASHI, T. OHGI, J. YANO: "Tumor Regression in Mice by Delivery of Bcl-2 Small Interfering RNA with Pegylated Cationic Liposomes", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, vol. 68, no. 21, 1 November 2008 (2008-11-01), pages 8843 - 8851, XP055046252, ISSN: 00085472, DOI: 10.1158/0008-5472.CAN-08-0127
SAXENA ET AL.: "Induction of immune responses and protection in mice against rabies using a self-replicating RNA vaccine encoding rabies virus glycoprotein", VETERINARY MICROBIOLOGY, 2009, pages 36 - 44, XP026071306, DOI: 10.1016/j.vetmic.2008.10.030
SCHIRRMACHER V. ET AL: "Intra-pinna anti-tumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine", GENE THERAPY, NATURE PUBLISHING GROUP, LONDON, GB, vol. 7, no. 13, 1 July 2000 (2000-07-01), GB , pages 1137 - 1147, XP002359468, ISSN: 0969-7128, DOI: 10.1038/sj.gt.3301220
SEAN C SEMPLE ET AL: "Rational design of cationic lipids for siRNA delivery", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP US, NEW YORK, vol. 28, no. 2, 1 February 2010 (2010-02-01), New York, pages 172 - 176, XP002633693, ISSN: 1087-0156, DOI: 10.1038/NBT.1602
SHIN ET AL.: "CleanCAP® Co-transcriptional Capping Streamlines mRNA Manufacturing", TRILINK BIOTECHNOLOGIES, Retrieved from the Internet <URL:https://www.trilinkbiotech.com/media/contentmanager/content/mRNA_WVC2_1.pdf>
SORIANO PHILIPPE ET AL: "Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene", PROC. NATL. ACAD. SCI., vol. 80, 1 January 1983 (1983-01-01), pages 7128 - 7131, XP093138003
WANG, D. ET AL: "Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, cellular and humoral immune responses", JOURNAL OF CLINICAL VIROLOGY, ELSEVIER, AMSTERDAM, NL, vol. 31, 1 December 2004 (2004-12-01), NL , pages 99 - 106, XP004660136, ISSN: 1386-6532, DOI: 10.1016/j.jcv.2004.09.013
WHEELER ET AL.: "Stabilized plasmid-lipid particles: construction and characterization", GENE THERAPY, vol. 6, 1996, pages 271 - 281, XP037770556, DOI: 10.1038/sj.gt.3300821
WHITE ET AL.: "Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme", CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULE BIOLOGY, vol. 43, 2008, pages 189 - 219, XP055326250, DOI: 10.1080/10409230802058320
WILSON ET AL.: "The introduction of poliovirus RNA into cells via lipid vesicles (Liposomes", CELL, vol. 17, 1979, pages 77 - 84, XP023910555, DOI: 10.1016/0092-8674(79)90296-4
WILSON, T. ; PAPAHADJOPOULOS, D. ; TABER, R.: "The introduction of poliovirus RNA into cells via lipid vesicles (liposomes)", CELL, ELSEVIER, AMSTERDAM NL, vol. 17, no. 1, 1 May 1979 (1979-05-01), Amsterdam NL , pages 77 - 84, XP023910555, ISSN: 0092-8674, DOI: 10.1016/0092-8674(79)90296-4
WONG, J.P. ET AL: "DNA vaccination against respiratory influenza virus infection", VACCINE, ELSEVIER, AMSTERDAM, NL, vol. 19, no. 17-19, 21 March 2001 (2001-03-21), AMSTERDAM, NL , pages 2461 - 2467, XP004231066, ISSN: 0264-410X, DOI: 10.1016/S0264-410X(00)00474-6
YAMAMOTO ET AL.: "Current prospects for mRNA gene delivery", EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, vol. 71, 2009, pages 484 - 489, XP025992169, DOI: 10.1016/j.ejpb.2008.09.016
YI LU • RAM L MAHATO: "Pharmaceutical Perspectives of Cancer Therapeutics", 1 January 2009, SPRINGER US, New York, NY, ISBN: 978-1-4419-0131-6, article CHENG K., QIN B.: "Cationic Lipids and Polymers", pages: 420, XP093137979
YING ET AL.: "Cancer therapy using a self-replicating RNA vaccine", NATURE MEDICINE, vol. 5, no. 7, 1999, pages 823 - 827, XP002224504, DOI: 10.1038/10548
ZHANG ET AL.: "The Cytoplasmic Tails of the Influenza Virus Spike Glycoproteins Are Required for Normal Genome Packaging", VIROLOGY, vol. 269, no. 2, 2000, pages 325 - 334, XP004450270, DOI: 10.1006/viro.2000.0228
ZHOU ET AL.: "Self-replicating Semliki forest virus RNA as recombinant vaccine", VACCINE, vol. 12, no. 16, 1994, pages 1510 - 1514, XP023937577, DOI: 10.1016/0264-410X(94)90074-4

Also Published As

Publication number Publication date
HRP20161352T1 (hr) 2016-12-02
US20220192997A1 (en) 2022-06-23
HUE031485T2 (en) 2017-07-28
SMT201600386B (it) 2017-01-10
CN106421773A (zh) 2017-02-22
EP3115061A1 (fr) 2017-01-11
US20130195968A1 (en) 2013-08-01
MX2013000089A (es) 2013-02-27
MX342608B (es) 2016-10-06
CA2804494A1 (fr) 2012-01-12
AU2011276232A1 (en) 2013-02-21
CN103052400B (zh) 2016-11-16
EP4005592A1 (fr) 2022-06-01
BR112013000392B1 (pt) 2022-07-12
ES2934240T3 (es) 2023-02-20
FI4005592T3 (fi) 2023-01-13
EP4180057A1 (fr) 2023-05-17
AU2011276232B2 (en) 2016-01-14
LT4005592T (lt) 2023-01-10
PT2590676T (pt) 2016-11-04
HRP20221522T1 (hr) 2023-02-17
BR112013000392A2 (pt) 2021-05-25
EP2590676B1 (fr) 2016-08-17
ES2600892T3 (es) 2017-02-13
WO2012006376A3 (fr) 2012-04-19
RS63817B1 (sr) 2023-01-31
SI4005592T1 (sl) 2023-03-31
EP2590676A2 (fr) 2013-05-15
LT2590676T (lt) 2016-10-25
PT4005592T (pt) 2022-12-30
US11291635B2 (en) 2022-04-05
HUE060788T2 (hu) 2023-04-28
CN103052400A (zh) 2013-04-17
DK2590676T3 (en) 2016-10-24
WO2012006376A2 (fr) 2012-01-12
RU2013104890A (ru) 2014-08-20
CY1118080T1 (el) 2017-06-28
SI2590676T1 (sl) 2016-11-30
PL4005592T3 (pl) 2023-02-06
JP6061849B2 (ja) 2017-01-18
PL2590676T3 (pl) 2017-02-28
JP2013533747A (ja) 2013-08-29
BR112013000392B8 (pt) 2022-10-04
RS55260B1 (sr) 2017-02-28

Similar Documents

Publication Publication Date Title
US11857681B2 (en) Lipid formulations with RNA encoding immunogens
AU2022204487B2 (en) Small liposomes for delivery of immunogen-encoding RNA
US20220192997A1 (en) Virion-like delivery particles for self-replicating rna molecules

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20221522T

Country of ref document: HR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211022

AC Divisional application: reference to earlier application

Ref document number: 2590676

Country of ref document: EP

Kind code of ref document: P

Ref document number: 3115061

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220817

AC Divisional application: reference to earlier application

Ref document number: 2590676

Country of ref document: EP

Kind code of ref document: P

Ref document number: 3115061

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011073378

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1523754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40071976

Country of ref document: HK

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 4005592

Country of ref document: PT

Date of ref document: 20221230

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20221226

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20221221

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221012

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 40970

Country of ref document: SK

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E022927

Country of ref document: EE

Effective date: 20221222

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20221522

Country of ref document: HR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2934240

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230220

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20220402518

Country of ref document: GR

Effective date: 20230210

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E060788

Country of ref document: HU

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230331

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20221522

Country of ref document: HR

Payment date: 20230704

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602011073378

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAN Information deleted related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSDOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230621

Year of fee payment: 13

Ref country code: NO

Payment date: 20230622

Year of fee payment: 13

Ref country code: NL

Payment date: 20230622

Year of fee payment: 13

Ref country code: MC

Payment date: 20230622

Year of fee payment: 13

Ref country code: LT

Payment date: 20230620

Year of fee payment: 13

Ref country code: IT

Payment date: 20230620

Year of fee payment: 13

Ref country code: IE

Payment date: 20230622

Year of fee payment: 13

Ref country code: FR

Payment date: 20230621

Year of fee payment: 13

Ref country code: EE

Payment date: 20230620

Year of fee payment: 13

Ref country code: DK

Payment date: 20230622

Year of fee payment: 13

Ref country code: CZ

Payment date: 20230623

Year of fee payment: 13

Ref country code: SM

Payment date: 20230620

Year of fee payment: 13

Ref country code: RO

Payment date: 20230627

Year of fee payment: 13

26 Opposition filed

Opponent name: MARGARET DIXON LIMITED

Effective date: 20230712

Opponent name: THOMANN, WILLIAM

Effective date: 20230711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230623

Year of fee payment: 13

Ref country code: SK

Payment date: 20230623

Year of fee payment: 13

Ref country code: SE

Payment date: 20230622

Year of fee payment: 13

Ref country code: PL

Payment date: 20230623

Year of fee payment: 13

Ref country code: LV

Payment date: 20230620

Year of fee payment: 13

Ref country code: LU

Payment date: 20230620

Year of fee payment: 13

Ref country code: IS

Payment date: 20230622

Year of fee payment: 13

Ref country code: GR

Payment date: 20230622

Year of fee payment: 13

Ref country code: FI

Payment date: 20230622

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230622

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230628

Year of fee payment: 13

Ref country code: GB

Payment date: 20230620

Year of fee payment: 13

Ref country code: ES

Payment date: 20230801

Year of fee payment: 13

Ref country code: CY

Payment date: 20230621

Year of fee payment: 13

Ref country code: CH

Payment date: 20230801

Year of fee payment: 13

Ref country code: BG

Payment date: 20230703

Year of fee payment: 13

Ref country code: AT

Payment date: 20230622

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230703

Year of fee payment: 13

Ref country code: RS

Payment date: 20230705

Year of fee payment: 13

Ref country code: HU

Payment date: 20230630

Year of fee payment: 13

Ref country code: HR

Payment date: 20230704

Year of fee payment: 13

Ref country code: DE

Payment date: 20230620

Year of fee payment: 13

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20230721

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230621

Year of fee payment: 13