EP2162557A1 - Verfahren zum warmwalzen und zur wärmebehandlung eines bandes aus stahl - Google Patents
Verfahren zum warmwalzen und zur wärmebehandlung eines bandes aus stahlInfo
- Publication number
- EP2162557A1 EP2162557A1 EP08758994A EP08758994A EP2162557A1 EP 2162557 A1 EP2162557 A1 EP 2162557A1 EP 08758994 A EP08758994 A EP 08758994A EP 08758994 A EP08758994 A EP 08758994A EP 2162557 A1 EP2162557 A1 EP 2162557A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- cooling
- belt
- heating
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 104
- 238000010438 heat treatment Methods 0.000 title claims abstract description 58
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 19
- 239000010959 steel Substances 0.000 title claims abstract description 19
- 238000005098 hot rolling Methods 0.000 title claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 121
- 238000005096 rolling process Methods 0.000 claims abstract description 22
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 14
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 11
- 238000011282 treatment Methods 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 abstract 1
- 238000005496 tempering Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000004804 winding Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000009966 trimming Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0252—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0452—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with application of tension
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
Definitions
- the invention relates to a method for hot rolling and for heat treating a strip of steel.
- Hardening and subsequent tempering of steel components is common practice. This ensures that a desired combination of strength and toughness of the material can be adjusted specifically.
- This technology is also used in principle in the production of higher-strength steel sheets in sheet metal plants. It is described in EP 1 764423 A1.
- the sheet is cooled at high speed, for example, to room temperature, d. H. the hardening process is carried out. This is followed by the start-up process, d. H. the reheating of the strip to, for example, 600 ° C, followed by another cooling. In this way, sheets with different properties can be produced flexibly in small batches in a sheet metal frame.
- the present invention is therefore based on the object to provide a method by which a more economical production of high and very high-strength tapes with sufficient toughness in a belt system is possible.
- the coil is in a preferred embodiment of the invention in the implementation of step d) at a Aufhaspelstation, wherein the coil is in the implementation of step e) preferably at a spatially remote from the coiling station Abhaspelstation and wherein the coil between step d) and e) heat-insulated from the coiling station is possibly transported via a heat-insulating coil storage to Abhaspelstation.
- Step e) can be immediately followed by step d).
- the belt may be subjected to a straightening process during cooling or after cooling after step c) and / or step g). It can also be subjected to a straightening process between the uncoiling after step e) and the heating after step f). It may also be subjected to a straightening process between the heating after step f) and the removal after step h).
- the straightening process mentioned can be done by deflecting the belt around ground, deflection, driving or other roles.
- the straightening process is generally carried out with a roller straightening machine or employed band deflection rollers or, according to a special embodiment of the invention, on a so-called skin-pass framework.
- the tape may also be subjected to a straightening process during the heating of the above step f).
- the cooling of the belt after step c) may comprise laminar cooling and subsequent intensive cooling. Cooling the tape after step g) may also include laminar cooling or, alternatively or additively, air cooling.
- At least parts of the cooling device can be designed as zone cooling, which act zone-wise over the bandwidth.
- the cooling of the belt can also be done with a high-pressure beam, whereby a simultaneous cleaning or descaling of the belt is possible.
- the heating of the strip according to step f) may comprise inductive heating.
- a direct flame impingement of the strip can take place.
- the direct application of flame to the strip takes place by means of a gas jet with at least 75% oxygen, preferably with almost pure oxygen, into which a gaseous or liquid fuel is mixed.
- a further development provides that the inductive heating of the strip takes place under inert gas (protective gas).
- the removal of the tape after step h) may comprise a winding of the tape.
- the removal of the tape after step h) may also include a pushing off of plate-like cut parts of the tape.
- the strip preferably has a temperature of at least 750 ° C. before cooling after step c).
- the strip has, after cooling according to step c) and prior to coiling according to step d) a temperature of at least 25 0 C and at most 400 ° C, preferably between 100 0 C and 300 0 C. Furthermore, a further development provides that after heating after step f) the strip has a temperature of at least 400 ° C., preferably between 400 ° C. and 700 ° C. However, the strip may preferably have a temperature of at most 200 ° C., preferably between 25 ° C. and 200 ° C., after cooling after step g) and before removal after step h).
- the heating of the tape can be done differently over the bandwidth.
- steps e) to g) are carried out in reversing operation, for which purpose a coiling station located behind the cooling after step g) is used.
- planarity of the strip and / or the temperature of the strip is measured at at least two locations of the strip treatment plant for monitoring the quality of the strip.
- the throughput speed of the belt through the belt treatment plant, in particular zone-related belt heating, the adjustment of the straightening rollers and / or the particular zone-related belt cooling can be controlled or regulated by a process model.
- the strip when passing through the strip treatment plant, the strip can be held at least in sections by means of drivers under a defined strip tension. This is especially true in the area of the intensive cooling section.
- a band side guide is preferably arranged in front of it.
- step e wherein the strip has a temperature above ambient temperature prior to heating in step e).
- the method steps a) to d) can also be used on their own.
- the band can be guided by means of a sof ⁇ hrung transverse to its longitudinal axis.
- the lateral guidance can preferably take place in the region of the cooling of the belt, in particular in the area of the laminar cooling of the belt.
- the side guide of the tape can also be done in front of the driver and open after passing the tape head and close again at the end of the tape for the purpose of leadership task.
- a measurement of the strip temperature can be carried out by means of a low-temperature radiation pyrometer.
- the measurement of the strip temperature can preferably take place before, inside and / or behind temperature-changing cooling and / or heating devices.
- the process presented can set properties for which higher alloy contents are necessary in conventional production.
- Coils or plates may also be cut, depending on the purpose of the tape or the windability. The cutting of the plates is preferably carried out at a higher temperature, d. H. especially at tempering temperature.
- FIG. 1 shows schematically a hot strip mill for the production of a steel strip according to a first embodiment of the invention
- FIG. 2 an alternative to FIG. 1 embodiment of the hot strip mill
- Fig. 5 as a section of the hot strip mill of FIG. 1 or 2, the basic structure of a straightening machine with integrated heating and
- FIG. 6 schematically shows a hot strip mill with an alternative embodiment of a first method step.
- a hot strip mill in which a band 1 first in a first process stage (indicated by I.) And anschnetend in a second process stage (indicated by II.) Is processed.
- a slab is first rolled in a multi-stand rolling mill. Shown are from the Walzée only the last three finishing stands 7, which have rolled the band 6 with an intermediate thickness. Following this, the temperature distribution in the strip or the flatness can be measured. Subsequently, the belt 1 passes in the conveying direction F in a belt cooling 8, which is here from an intensive laminar belt cooling 9 with so-called. Edge masking and a laminar belt cooling 10 divided. The conveying speed is for example 6 m / s. Subsequently, the cooled strip 1 passes into an intensive cooling 11, in which according to a preferred embodiment of the invention, a straightening machine and driver are integrated (details in Fig. 4). It can be provided before and behind the intensive cooling 11 drivers.
- a measurement of the temperature distribution and the flatness of the strip can again follow.
- a low-temperature radiation pyrometer is used at these low temperatures.
- a temperature measurement is conceivable between two pinch rolls or driver rolls for the purpose of temperature / coolant control.
- the coil 2 is first unwound in a unwinding station 4 and then fed to a straightening machine 14 (this can be arranged in front of and / or behind the adjoining oven). After temperature compensation has taken place over the length and width of the strip in a zone 15, the strip 1 enters an oven 16. It is possible and advantageous to integrate a straightening machine into the oven 16 analogously to the cooling (details in this regard in FIG. 5) ).
- the belt 1 can be heated in continuous or reverse operation. Preferably comes an oxyfuel furnace or an induction furnace is used, the heating time is between 10 and 600 seconds.
- the strip 1 enters a laminar belt cooling or, alternatively, an air cooling system 19. This can be followed by a straightening machine 20.
- a Plattenabschiebeech 21 and a reel 22 in a Aufhaspelstation 5 is then further indicated.
- a skin-pass scaffold can also be arranged here.
- Coils from other hot strip mills can also be introduced at the location of the unwinding station 4.
- Fig. 2 can be seen (the system is not shown fully equipped).
- the last stands of a hot strip mill (finishing line 7), the belt cooling 8 and the reels 12 and 13 of the 1st process stage are shown here.
- the last reel 23 is provided for winding the higher strength belts. This may advantageously be a special reel for easy winding of high-strength steels.
- the reel 23 is in this case a so-called Ü bergabehaspel.
- the coil does not need to be bound there. Pivoting pinch rollers hold the tape under tension as it is rotated to the unwind position. Immediately after winding, therefore, the further processing takes place in the starting line (2nd process stage).
- the further transport takes place analogously as in the solution according to FIG. 1.
- the band 1 before heating in the oven 16 already has a temperature above the ambient temperature T 0 .
- a direct further transport of the band 1 from the first stage to the second stage without intermediate reels of the band 1 and / or subsequent reversing of the reel 22 on the reel 23 is provided.
- the reel 23 is not used, but performed directly after the end of the tape end of the rolling mill with low or high and then low speed, the annealing process.
- this procedure can be applied to tapes regardless of thickness and speed. Then reel 23 is initially not used and the oven is out of service. The tape is wound on reel 22. The annealing process is then performed reversing between reel 22 and 23.
- a preferred temperature profile for the strip 1 along the strip line is reproduced corresponding to FIG. 2 in FIG. 3.
- the cooling to the end of the line is preferably a water or air cooling.
- a cooling can also be done with a high pressure bar. This is carried out at the same time a cleaning or descaling of the strip surface.
- the production volume of the rolling mill is generally higher than during the tempering process, since the rolling speed of the strip is greater than the starting speed. It is therefore also a so-called.
- Mixed Rolling rolling operation possible to optimally utilize the rolling mill. This means that a number of ribbons are wound on reels 12 and 13 while the further processing of the higher strength ribbon occurs in the tempering line.
- the production of the strip is thus essentially divided into two process stages, which are given below by way of example with further optional steps:
- strip edge heaters in front of a conventional finishing line, edge masking in the first cooling line units, and a straightening machine are advantageous.
- the bands can be cut into sheets in front of the oven, behind the oven and / or immediately before the sheet removal unit.
- the cutting of panels is particularly advantageous in difficult to be wound tapes. Cutting at tempering temperature is advantageous because the strip has a lower strength there.
- a flame cutting machine For thicker strips and / or high strength steels that can no longer be cut, a flame cutting machine, a laser cutting machine or a thermal cutting machine is provided for cutting.
- the scaling properties are also favorable or the growth of scale is very low (operate with low air).
- the high flow rate of the gases even has a cleaning effect on the strip surface. With regard to strip surface quality, this type of heating is particularly advantageous. With this method similar high heat densities can be achieved with good efficiency, as in inductive heating.
- the straightening machine and the belt cooling can also be accommodated in a combined unit.
- the straightening rollers are then used simultaneously as water squeezing rollers and thus ensure as uniform a cooling effect as possible over the width of the belt, because possible transverse strains and unevenness are eliminated directly during formation.
- the adjustment of the straightening rollers is done individually depending on the belt temperature and the material quality with the support of a straightening machine model, so that overstretching of the belt surface can be avoided.
- Drivers in front of and behind the cooling drafting unit ensure that the strip pulls as long as possible, even if the scaffolding or reel puller is not set up.
- Part of the strip cooling may be in the form of a strip zone cooling in order to be able to actively influence the temperature distribution.
- the cooling-straightening unit is indicated in FIGS. 1 and 2. Details on this are shown in FIG. 4. In this figure, any possible combinations for straightening, cooling and squeezing can be seen.
- the cooling-straightening unit can be raised and pivoted, especially in the case of thinner tape, which is also indicated in FIG. 4 (see double arrow).
- the straightening rollers are individually adjustable.
- a temperature scanner for the band can be provided.
- a tape head shape detector for detecting a ski or waves
- a tape head shape detector for detecting a ski or waves
- drivers 24, a pure cooling units 25, straightening rollers 26 and combined pinch rollers / drivers 27 can also be seen in detail.
- nozzles of intensive cooling 28 can be seen.
- the directing amount is set individually depending on the material of the tape and the temperature.
- the straightening and cooling unit can be lifted and swiveled.
- the direction and heating process 14, 16 of the second process stage can also be combined with the system shown.
- the indicative amount can be adjusted to the existing strip temperature and the strip material.
- the effect of the skin effect (higher surface temperature) of the induction heating (or a direct application of flame in the DFI oxyfuel process) has a positive effect.
- the straightening rollers keep the belt in position and avoid unevenness, so that the most efficient (inductive) heating in the long filet part of the belt is possible.
- Driver 29 in front and behind the heating-straightening unit keep the tape under tension 30.
- the induction coils 32 and Rieht- and transfer rollers 31 are designed to be vertically adjustable.
- the use of the cooling / straightening unit (FIG. 4) or the heating / straightening unit (FIG. 5) is not limited to a belt installation, but can also be provided in the case of a heavy plate installation. Before and / or behind the joint arrangement of straightening machine and heating, which can be seen in FIG. 5, a temperature scanner for the band can be provided.
- the strip temperature can be equalized over the length and width of the strip by controlled cooling (zone cooling) or heating to warm or cold strip abrasion.
- controlled cooling zone cooling
- heating to warm or cold strip abrasion.
- the passage of the coils can be shortened by the Coillager.
- a coil tracking system (model) and the measured temperature distributions during unwinding of the coil are used to optimally control the heating or cooling units.
- job-welded high-wear roller materials are used to ensure a long service life and good strip quality.
- Temperature scanners and flatness measuring devices within the line indirectly monitor the quality of the strip and serve as a signal for actuators and control elements, such.
- the heating power, the straightening roller adjustment and the cooling which are controlled by a process model.
- FIG. 6 shows the rear part of the finishing train 7, laminar belt cooling units 9, 10 and an intensive cooling 11 and the coiling stations 3.
- the intensive cooling 11 and a belt straightening unit 36.1, 36.2 are arranged at different locations. Before and behind the intensive cooling 11 drivers 34 and 35 are positioned. This makes it possible to maintain a strip tension within the intensive cooling 11 almost for the entire strip length, without the strip being clamped in the frame or coiler. This will be pulled out possibly occurring tape shafts, thus achieving the most uniform cooling effect.
- a band side guide 33.1 is arranged in front of it in a particularly advantageous manner. After the tape head has passed the driver 33.1 and the intensive cooling 11, the side guide 33.1 is opened again, so that the water flow in the laminar belt cooling 10 is not hindered. The leadership task then takes over the leadership of the rest of the band 33.2. Analogously, the guide 33.1 is briefly made again for the end of the tape after the end has left the finishing line to counteract a running of the tape end. Therefore, in order to minimize the cooling path length, the side guide 33. 1 is preferably arranged within the laminar belt cooling unit 10.
- the straightening rollers 36.1, 36.2 before each Aufhaspelstationen 3 are immersed in the band level after construction of the strip tension and ensure by wrapping the bottom, deflection or drive rollers for a band straightening effect.
- a similar procedure is practiced when 11 deflection rollers 26 (see Fig. 4) are arranged within the intensive cooling section.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Metal Rolling (AREA)
- Winding, Rewinding, Material Storage Devices (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08758994T PL2162557T3 (pl) | 2007-06-22 | 2008-06-04 | Sposób walcowania na gorąco i obróbki cieplnej taśmy ze stali |
SI200830299T SI2162557T1 (sl) | 2007-06-22 | 2008-06-04 | Postopek za vroče valjanje in za toplotno obdelavo jeklenega traka |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007029280 | 2007-06-22 | ||
DE102008010062A DE102008010062A1 (de) | 2007-06-22 | 2008-02-20 | Verfahren zum Warmwalzen und zur Wärmebehandlung eines Bandes aus Stahl |
PCT/EP2008/004435 WO2009000387A1 (de) | 2007-06-22 | 2008-06-04 | Verfahren zum warmwalzen und zur wärmebehandlung eines bandes aus stahl |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2162557A1 true EP2162557A1 (de) | 2010-03-17 |
EP2162557B1 EP2162557B1 (de) | 2011-04-06 |
Family
ID=40030935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08758994A Active EP2162557B1 (de) | 2007-06-22 | 2008-06-04 | Verfahren zum warmwalzen und zur wärmebehandlung eines bandes aus stahl |
Country Status (23)
Country | Link |
---|---|
US (1) | US20100175452A1 (de) |
EP (1) | EP2162557B1 (de) |
JP (1) | JP5485147B2 (de) |
KR (1) | KR101153732B1 (de) |
CN (1) | CN101755058B (de) |
AR (1) | AR067091A1 (de) |
AT (1) | ATE504665T1 (de) |
AU (1) | AU2008267505B2 (de) |
BR (1) | BRPI0812324A2 (de) |
CA (1) | CA2686377C (de) |
DE (2) | DE102008010062A1 (de) |
DK (1) | DK2162557T3 (de) |
EG (1) | EG25307A (de) |
ES (1) | ES2362052T3 (de) |
MX (1) | MX2009013530A (de) |
MY (1) | MY148425A (de) |
PL (1) | PL2162557T3 (de) |
RU (1) | RU2429922C1 (de) |
SI (1) | SI2162557T1 (de) |
TW (1) | TWI412410B (de) |
UA (1) | UA98653C2 (de) |
WO (1) | WO2009000387A1 (de) |
ZA (1) | ZA200907733B (de) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009023359A1 (de) * | 2008-08-18 | 2010-02-25 | Sms Siemag Ag | Verfahren und Vorrichtung zur Kühlung und Trocknung eines Warmbandes oder eines Bleches in einem Walzwerk |
GB2468713B (en) * | 2009-03-20 | 2011-02-16 | Siemens Vai Metals Tech Ltd | Edge flatness monitoring |
CN101537443B (zh) * | 2009-05-06 | 2011-04-27 | 北京首钢国际工程技术有限公司 | 一种热轧带钢深加工处理系统 |
SE534565C2 (sv) | 2009-06-23 | 2011-10-04 | Linde Ag | Glödgning av kallvalsade metallband |
US20110144790A1 (en) * | 2009-12-15 | 2011-06-16 | Terry Gerritsen | Thermal Sensing for Material Processing Assemblies |
CN103459619B (zh) * | 2011-03-22 | 2015-06-10 | 日立金属株式会社 | 热轧马氏体时效钢带的卷绕方法 |
RU2474623C1 (ru) * | 2011-10-31 | 2013-02-10 | Валентин Николаевич Никитин | Способ производства высокопрочной листовой стали мартенситного класса и деформационно-термический комплекс для его осуществления |
RU2480528C1 (ru) * | 2011-10-31 | 2013-04-27 | Зуфар Гарифуллинович САЛИХОВ | Способ охлаждения движущейся стальной горячекатаной полосы |
KR101376565B1 (ko) * | 2011-12-15 | 2014-04-02 | (주)포스코 | 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치 |
BR112015007313A2 (pt) * | 2012-10-05 | 2017-07-04 | Linde Ag | preaquecimento e recozimento de tira de metal laminada a frio |
DE102012110010B4 (de) | 2012-10-19 | 2016-09-01 | Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh | Vorrichtung und Verfahren zur kontinuierlichen Behandlung eines Metallbandes |
KR101449180B1 (ko) * | 2012-12-21 | 2014-10-08 | 주식회사 포스코 | 고강도강의 형상 교정 및 압연 방법과 형상 교정 장치 |
CN103495850A (zh) * | 2013-07-24 | 2014-01-08 | 李庆中 | 一种低残余应力钢带开平工艺 |
DE102013220657A1 (de) | 2013-07-26 | 2015-01-29 | Sms Siemag Ag | Verfahren und Vorrichtung zur Herstellung eines metallischen Bandes im kontinuierlichen Gießwalzverfahren |
DE102013224547A1 (de) * | 2013-11-29 | 2015-06-03 | Sms Siemag Ag | Vorrichtung zur Temperaturerhöhung von länglichem metallischem Walzgut und Fertigstraße zum Erzeugen und/oder Bearbeiten von länglichem metallischem Walzgut |
RU2563911C2 (ru) * | 2014-01-09 | 2015-09-27 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Способ производства рулонного проката на непрерывном широкополосном стане |
US9725780B2 (en) | 2014-06-13 | 2017-08-08 | M3 Steel Tech | Modular micro mill and method of manufacturing a steel long product |
US9850553B2 (en) | 2014-07-22 | 2017-12-26 | Roll Forming Corporation | System and method for producing a hardened and tempered structural member |
EP2982453A1 (de) * | 2014-08-06 | 2016-02-10 | Primetals Technologies Austria GmbH | Einstellen eines gezielten Temperaturprofiles an Bandkopf und Bandfuß vor dem Querteilen eines Metallbands |
EP3002343A1 (de) * | 2014-09-30 | 2016-04-06 | Voestalpine Stahl GmbH | Verfahren zum Ausbilden eines Stahlbandes mit unterschiedlichen mechanischen Eigenschaften über die Breite des Bandes |
DE102014221068A1 (de) * | 2014-10-16 | 2016-04-21 | Sms Group Gmbh | Anlage und Verfahren zur Herstellung von Grobblechen |
JP6229066B2 (ja) * | 2014-12-09 | 2017-11-08 | ポスコPosco | Ahss熱延コイルの熱処理方法、これを利用した冷間圧延方法および熱処理装置 |
EP3242756B1 (de) | 2015-01-09 | 2021-04-14 | Illinois Tool Works Inc. | Inline-widerstandsheizungssystem und verfahren zur thermischen behandlung von kontinuierlichen leitfähigen produkten |
AT517335B1 (de) * | 2015-10-07 | 2017-01-15 | Berndorf Band Gmbh | Verfahren und Vorrichtung zum Herstellen eines Metallbands mit weitgehend parallelen Bandkanten |
US20170247774A1 (en) * | 2016-02-26 | 2017-08-31 | GM Global Technology Operations LLC | Continuous tailor heat-treated blanks |
IT201700028732A1 (it) * | 2017-03-15 | 2018-09-15 | Danieli Off Mecc | Impianto combinato di colata continua e laminazione di nastri metallici a caldo |
CN110616299A (zh) * | 2018-06-19 | 2019-12-27 | 宝钢湛江钢铁有限公司 | 一种高强钢的生产方法 |
DE102018122901A1 (de) * | 2018-09-18 | 2020-03-19 | Voestalpine Stahl Gmbh | Verfahren zur Herstellung ultrahochfester Stahlbleche und Stahlblech hierfür |
CN111254265B (zh) * | 2019-12-31 | 2021-11-05 | 中冶南方工程技术有限公司 | 一种改善带钢内应力分布的方法及装置 |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016740A (en) * | 1973-12-27 | 1977-04-12 | Nippon Steel Corporation | Method and an apparatus for the manufacture of a steel sheet |
US4098624A (en) * | 1976-12-28 | 1978-07-04 | Upton Industries, Inc. | Process for increasing the versatility of isothermal transformation |
US4316376A (en) * | 1980-05-15 | 1982-02-23 | Sumitomo Metal Industries, Ltd. | Method for preventing wandering of strip under roller leveling in hot rolling line |
US4413406A (en) * | 1981-03-19 | 1983-11-08 | General Electric Company | Processing amorphous metal into packets by bonding with low melting point material |
JPS589919A (ja) * | 1981-07-09 | 1983-01-20 | Kawasaki Steel Corp | 低温靭性にすぐれた高張力熱延鋼帯の製造方法 |
JPS58122107A (ja) * | 1982-01-18 | 1983-07-20 | Hitachi Ltd | 連続薄板直接圧延設備 |
JPS6123722A (ja) * | 1984-12-25 | 1986-02-01 | Sumitomo Metal Ind Ltd | 熱延鋼板の製造方法 |
US4869089A (en) * | 1988-04-05 | 1989-09-26 | Mitsubishi Denki Kabushiki Kaisha | Coil box apparatus |
IT1244295B (it) * | 1990-07-09 | 1994-07-08 | Giovanni Arvedi | Processo ed impianto per l'ottenimento di nastri di acciaio avvolti, aventi caratteristiche di laminati a freddo ottenuti direttamente in linea di laminazione a caldo |
JPH0494815A (ja) * | 1990-08-13 | 1992-03-26 | Daido Steel Co Ltd | リードフレーム材の残留応力除去方法 |
DE4041206C2 (de) * | 1990-12-21 | 2003-04-17 | Sms Demag Ag | Verfahren und Anlage zur Herstellung von warmgewalztem Stahlband, insbesondere für Edelstähle aus stranggegossenem Vormaterial |
JP2543612Y2 (ja) * | 1991-06-03 | 1997-08-13 | 三菱重工業株式会社 | 鋼板の冷却装置 |
JP3015924B2 (ja) * | 1991-06-04 | 2000-03-06 | 新日本製鐵株式会社 | 強靱鋼の製造方法 |
JP3015923B2 (ja) * | 1991-06-04 | 2000-03-06 | 新日本製鐵株式会社 | 強靱鋼の製造方法 |
JPH0663636A (ja) * | 1992-08-18 | 1994-03-08 | Kawasaki Steel Corp | 熱延鋼板の予備冷却装置 |
JP3087468B2 (ja) * | 1992-10-06 | 2000-09-11 | 住友金属工業株式会社 | 鋼材の熱間接合方法 |
JP2997971B2 (ja) * | 1992-10-07 | 2000-01-11 | 新日本製鐵株式会社 | めっき密着性に優れた熱延溶融めっき鋼帯の製造方法および製造装置 |
US6149740A (en) * | 1992-10-28 | 2000-11-21 | Sms Schloemann-Siemag Aktiengesellschaft | Method of and apparatus for manufacturing hot rolled steel strips, in particular from strip-shaped continuously cast primary material |
JPH07102315A (ja) * | 1993-10-01 | 1995-04-18 | Sumitomo Metal Ind Ltd | ステンレス鋼帯のデスケーリング方法 |
US5560236A (en) * | 1993-10-07 | 1996-10-01 | Kawasaki Steel Corporation | Method of rolling and cutting endless hot-rolled steel strip |
US5714113A (en) * | 1994-08-29 | 1998-02-03 | American Combustion, Inc. | Apparatus for electric steelmaking |
US5752403A (en) * | 1995-01-11 | 1998-05-19 | Tippins Incorporated | Method of rolling hot mill band on a twin stand reversing mill |
JPH093543A (ja) * | 1995-06-26 | 1997-01-07 | Sumitomo Metal Ind Ltd | オーステナイト系ステンレス熱延鋼板および冷延鋼板の製造方法 |
US5710411A (en) * | 1995-08-31 | 1998-01-20 | Tippins Incorporated | Induction heating in a hot reversing mill for isothermally rolling strip product |
ES2142528T3 (es) * | 1995-09-06 | 2000-04-16 | Schloemann Siemag Ag | Instalacion de produccion de banda en caliente para laminar banda delgada. |
JPH1068705A (ja) * | 1996-08-27 | 1998-03-10 | Kobe Steel Ltd | 鋼材の変態率測定方法および装置 |
JPH10128425A (ja) * | 1996-10-31 | 1998-05-19 | Nippon Steel Corp | デスケーリング方法 |
IT1290743B1 (it) * | 1997-04-10 | 1998-12-10 | Danieli Off Mecc | Procedimento di laminazione per prodotti piani con spessori sottili e relativa linea di laminazione |
AT406834B (de) * | 1997-12-18 | 2000-09-25 | Voest Alpine Ind Anlagen | Kühlvorrichtung zum kühlen eines heissen bewegten metallbandes |
US5950476A (en) * | 1998-03-20 | 1999-09-14 | Sms Engineering, Inc. | Method and apparatus to tension hot strip during coiling |
DE19815032A1 (de) * | 1998-04-03 | 1999-10-07 | Schloemann Siemag Ag | Walzverfahren für ein Metallband |
US6026669A (en) * | 1999-02-23 | 2000-02-22 | Danieli United | Discrete and coiled plate production |
US6182490B1 (en) * | 1999-03-19 | 2001-02-06 | Danieli Technology Inc. | Super thin strip hot rolling |
KR100430981B1 (ko) * | 1999-08-10 | 2004-05-14 | 제이에프이 엔지니어링 가부시키가이샤 | 디프 드로잉성이 우수한 냉연강판의 제조방법 |
US6615633B1 (en) * | 1999-11-18 | 2003-09-09 | Nippon Steel Corporation | Metal plateness controlling method and device |
EP1210993B2 (de) * | 2000-03-01 | 2016-07-06 | JFE Steel Corporation | Vorrichtung und verfahren zum kühlen von warmgewalztem stahlband und verfahren zu seiner herstellung |
DE10045085C2 (de) * | 2000-09-12 | 2002-07-18 | Siemens Ag | Gießwalzanlage |
KR100496607B1 (ko) * | 2000-12-27 | 2005-06-22 | 주식회사 포스코 | 열연코일의 제조방법 및 그 장치 |
JP2002241837A (ja) | 2001-02-14 | 2002-08-28 | Nkk Corp | 高靭性高張力鋼の製造方法 |
JPWO2003008121A1 (ja) * | 2001-07-17 | 2004-11-04 | 株式会社ハルナ | 冷間圧延構成体及び冷間圧延方法 |
JP3659208B2 (ja) * | 2001-09-28 | 2005-06-15 | 住友金属工業株式会社 | MgまたはMg合金帯板の製造方法および製造装置 |
DE10223905A1 (de) * | 2002-05-29 | 2003-12-11 | Sms Demag Ag | Coilbox, die zwischen Vor- und Fertigwalzstraßen angeordnet ist |
ITMI20021996A1 (it) * | 2002-09-19 | 2004-03-20 | Giovanni Arvedi | Procedimento e linea di produzione per la fabbricazione di nastro a caldo ultrasottile sulla base della tecnologia della bramma sottile |
DE10304318C5 (de) * | 2003-02-04 | 2015-10-15 | Sms Group Gmbh | Verfahren zum Walzen von dünnen und/oder dicken Brammen aus Stahlwerkstoffen zu Warmband |
DE10339191A1 (de) * | 2003-08-22 | 2005-03-17 | Sms Demag Ag | Coilbox zwischen Vorstraße und Fertigstraße im Warmwalzwerk |
JP4311226B2 (ja) | 2004-02-23 | 2009-08-12 | Jfeスチール株式会社 | 高張力鋼板の製造方法 |
JP2005238304A (ja) * | 2004-02-27 | 2005-09-08 | Jfe Steel Kk | 熱延鋼板の製造方法 |
DE502004005051D1 (de) * | 2004-04-06 | 2007-10-31 | Siemens Ag | Verfahren zum herstellen eines metalls |
WO2006004228A1 (ja) | 2004-07-07 | 2006-01-12 | Jfe Steel Corporation | 高張力鋼板の製造方法 |
DE102004048443B3 (de) * | 2004-10-02 | 2005-12-01 | C.D. Wälzholz-Brockhaus GmbH | Verfahren zur walztechnischen Verformung von draht- und stabförmigem Vormaterial, Vorrichtung zur Durchführung des Verfahrens sowie nach dem Verfahren hergestelltes Flachprofil |
AT501314B1 (de) * | 2004-10-13 | 2012-03-15 | Voest Alpine Ind Anlagen | Verfahren und vorrichtung zum kontinuierlichen herstellen eines dünnen metallbandes |
KR101362540B1 (ko) * | 2004-11-16 | 2014-02-13 | 에스에프피 워크스 엘엘씨 | 철계 합금 및 이 합금의 최종 물질을 마이크로 처리하기 위한 방법 및 장치 |
FR2879216B1 (fr) * | 2004-12-13 | 2007-04-20 | D M S Sa | Procede de recuit d'une bande d'acier inoxydable |
JP4552731B2 (ja) * | 2005-03-30 | 2010-09-29 | Jfeスチール株式会社 | 鋼帯の熱間圧延方法 |
JP4892978B2 (ja) | 2005-06-08 | 2012-03-07 | Jfeスチール株式会社 | 耐ssc特性に優れた高張力鋼板の製造方法 |
JP4728710B2 (ja) * | 2005-07-01 | 2011-07-20 | 新日本製鐵株式会社 | 加工性に優れる熱延鋼板およびその製造方法 |
JP2007118064A (ja) * | 2005-10-31 | 2007-05-17 | Kasatani:Kk | レベラー、板状材加工システム、及び板状材の矯正方法 |
JP5130472B2 (ja) * | 2005-12-21 | 2013-01-30 | 新日鐵住金株式会社 | 耐溶接割れ性が優れた高張力鋼材の製造方法 |
SE531077C2 (sv) * | 2006-04-11 | 2008-12-09 | Aga Ab | Förfarande för värmning av metallmaterial |
DE102007005015A1 (de) * | 2006-06-26 | 2008-01-03 | Sms Demag Ag | Verfahren und Anlage zur Herstellung von Warmband-Walzgut aus Siliziumstahl auf der Basis von Dünnbrammen |
-
2008
- 2008-02-20 DE DE102008010062A patent/DE102008010062A1/de not_active Withdrawn
- 2008-06-04 ES ES08758994T patent/ES2362052T3/es active Active
- 2008-06-04 MY MYPI20095263A patent/MY148425A/en unknown
- 2008-06-04 AU AU2008267505A patent/AU2008267505B2/en not_active Ceased
- 2008-06-04 EP EP08758994A patent/EP2162557B1/de active Active
- 2008-06-04 SI SI200830299T patent/SI2162557T1/sl unknown
- 2008-06-04 BR BRPI0812324-1A2A patent/BRPI0812324A2/pt not_active IP Right Cessation
- 2008-06-04 US US12/602,277 patent/US20100175452A1/en not_active Abandoned
- 2008-06-04 JP JP2010512554A patent/JP5485147B2/ja not_active Expired - Fee Related
- 2008-06-04 AT AT08758994T patent/ATE504665T1/de active
- 2008-06-04 RU RU2010101900/02A patent/RU2429922C1/ru active
- 2008-06-04 CA CA2686377A patent/CA2686377C/en not_active Expired - Fee Related
- 2008-06-04 KR KR1020097024981A patent/KR101153732B1/ko not_active IP Right Cessation
- 2008-06-04 DK DK08758994.1T patent/DK2162557T3/da active
- 2008-06-04 TW TW097120680A patent/TWI412410B/zh not_active IP Right Cessation
- 2008-06-04 PL PL08758994T patent/PL2162557T3/pl unknown
- 2008-06-04 CN CN2008800214465A patent/CN101755058B/zh active Active
- 2008-06-04 DE DE502008003118T patent/DE502008003118D1/de active Active
- 2008-06-04 MX MX2009013530A patent/MX2009013530A/es active IP Right Grant
- 2008-06-04 WO PCT/EP2008/004435 patent/WO2009000387A1/de active Application Filing
- 2008-06-04 UA UAA201000592A patent/UA98653C2/ru unknown
- 2008-06-20 AR ARP080102646A patent/AR067091A1/es unknown
-
2009
- 2009-11-04 ZA ZA200907733A patent/ZA200907733B/xx unknown
- 2009-12-06 EG EG2009121765A patent/EG25307A/xx active
Non-Patent Citations (1)
Title |
---|
See references of WO2009000387A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2009000387A1 (de) | 2008-12-31 |
PL2162557T3 (pl) | 2011-09-30 |
BRPI0812324A2 (pt) | 2014-11-25 |
EP2162557B1 (de) | 2011-04-06 |
KR101153732B1 (ko) | 2012-06-14 |
ATE504665T1 (de) | 2011-04-15 |
KR20100007940A (ko) | 2010-01-22 |
CA2686377C (en) | 2011-09-27 |
TW200914157A (en) | 2009-04-01 |
MY148425A (en) | 2013-04-30 |
CN101755058A (zh) | 2010-06-23 |
RU2429922C1 (ru) | 2011-09-27 |
ES2362052T3 (es) | 2011-06-27 |
RU2010101900A (ru) | 2011-07-27 |
AU2008267505A1 (en) | 2008-12-31 |
DE502008003118D1 (de) | 2011-05-19 |
AU2008267505B2 (en) | 2010-11-25 |
ZA200907733B (en) | 2010-06-30 |
MX2009013530A (es) | 2010-01-27 |
CA2686377A1 (en) | 2008-12-31 |
US20100175452A1 (en) | 2010-07-15 |
JP5485147B2 (ja) | 2014-05-07 |
EG25307A (en) | 2011-12-07 |
SI2162557T1 (sl) | 2011-08-31 |
JP2010530807A (ja) | 2010-09-16 |
AR067091A1 (es) | 2009-09-30 |
DE102008010062A1 (de) | 2008-12-24 |
DK2162557T3 (da) | 2011-07-11 |
CN101755058B (zh) | 2011-11-09 |
TWI412410B (zh) | 2013-10-21 |
UA98653C2 (ru) | 2012-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2162557B1 (de) | Verfahren zum warmwalzen und zur wärmebehandlung eines bandes aus stahl | |
EP2195124B1 (de) | Kompakte flexible csp-anlage für endlos-, semi-endlos- und batchbetrieb | |
DE60307496T2 (de) | Prozess- und produktionslinie zur herstellung von ultradünnen heissgewalzten streifen auf grundlage der dünnbrammentechnik | |
DE69730750T2 (de) | Verfahren zur herstellung eines stahlbandes | |
EP1305122B1 (de) | Produktionsverfahren und -anlage zur erzeugung von dünnen flachprodukten | |
DE69814513T2 (de) | Walzverfahren und Walzstrasse für dünne Flacherzeugnisse | |
EP2035587B1 (de) | Verfahren und anlage zur herstellung von warmband-walzgut aus siliziumstahl auf der basis von dünnbrammen | |
EP2710159B1 (de) | Verfahren und vorrichtung zum aufbereiten von walzgut aus stahl vor dem warmwalzen | |
DE102008029581A1 (de) | Verfahren und Vorrichtung zum Herstellen von Bändern aus Silizum-Stahl oder Mehrphasenstahl | |
DE19758108C1 (de) | Produktionsverfahren und -anlage zur endlosen Erzeugung von warmgewalzten dünnen Flachprodukten | |
EP0761326B1 (de) | Warmbandproduktionsanlage für das Walzen von dünnem Walzband | |
AT504782A4 (de) | Verfahren zur herstellung eines warmgewalzten stahlbandes und kombinierte giess- und walzanlage zur durchführung des verfahrens | |
EP2183065A1 (de) | Verfahren und vorrichtung zum herstellen eines metallbandes durch giesswalzen | |
EP2651578B2 (de) | WALZSTRAßE ZUR RÖHRENSTAHL- UND DÜNNBANDERZEUGUNG | |
DE102009036378A1 (de) | Verfahren und Vorrichtung zum Herstellen eines mikrolegierten Stahls, insbesondere eines Röhrenstahls | |
DE4041206C2 (de) | Verfahren und Anlage zur Herstellung von warmgewalztem Stahlband, insbesondere für Edelstähle aus stranggegossenem Vormaterial | |
DE60004236T2 (de) | Coilzone für in-line behandlung von gewalzten produkten | |
EP0919296B1 (de) | Nachrüstung von Warmwalzstrassen zum Walzen von dünnen Bändern | |
EP3027331B1 (de) | Giesswalzanlage und verfahren zum herstellen von brammen | |
DE19538341A1 (de) | Warmbandproduktionsanlage für das Walzen von dünnem Walzband | |
DE19632448A1 (de) | Verfahren und Anlage zur Herstellung von Band aus niedriggekohlten und ultraniedriggekohlten Stählen | |
WO1999058263A1 (de) | Anordnung und verfahren zum erzeugen von stahlband | |
EP1134296A2 (de) | Verfahren und Anlage zur Oberflächenbehandlung von warmgewaltzen Bändern oder Blechen aus Metall | |
EP0879100B1 (de) | Verfahren zum reversierwalzen von band sowie einrichtung zur durchführung des verfahrens | |
WO2022194467A1 (de) | Anlage und verfahren zum kaltwalzen von metallband aus stahl |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100122 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20100602 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502008003118 Country of ref document: DE Date of ref document: 20110519 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008003118 Country of ref document: DE Effective date: 20110519 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2362052 Country of ref document: ES Kind code of ref document: T3 Effective date: 20110627 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 9519 Country of ref document: SK |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110406 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E011100 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110406 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110706 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110808 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110707 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110406 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110406 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110406 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110406 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120110 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008003118 Country of ref document: DE Effective date: 20120110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120627 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110706 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20130529 Year of fee payment: 6 Ref country code: SK Payment date: 20130604 Year of fee payment: 6 Ref country code: DK Payment date: 20130619 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20130603 Year of fee payment: 6 Ref country code: TR Payment date: 20130529 Year of fee payment: 6 Ref country code: SI Payment date: 20130527 Year of fee payment: 6 Ref country code: NL Payment date: 20130619 Year of fee payment: 6 Ref country code: HU Payment date: 20130620 Year of fee payment: 6 Ref country code: PL Payment date: 20130524 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20130619 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20140630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20150101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140604 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140604 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 9519 Country of ref document: SK Effective date: 20140604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150101 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20150213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140605 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008003118 Country of ref document: DE Representative=s name: HEMMERICH & KOLLEGEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008003118 Country of ref document: DE Owner name: SMS GROUP GMBH, DE Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150928 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140604 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140604 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20170621 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180605 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200625 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210604 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230707 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240620 Year of fee payment: 17 |