EP2103717A1 - Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten - Google Patents

Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten Download PDF

Info

Publication number
EP2103717A1
EP2103717A1 EP08003786A EP08003786A EP2103717A1 EP 2103717 A1 EP2103717 A1 EP 2103717A1 EP 08003786 A EP08003786 A EP 08003786A EP 08003786 A EP08003786 A EP 08003786A EP 2103717 A1 EP2103717 A1 EP 2103717A1
Authority
EP
European Patent Office
Prior art keywords
carbamoyl
pyridinium chloride
pyrophosphate
benzyl
aqueous cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08003786A
Other languages
English (en)
French (fr)
Other versions
EP2103717B1 (de
Inventor
Philip Hartmann
Lars Kohlmann
Heiko Brunner
Klaus Dieter Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT08003786T priority Critical patent/PT2103717E/pt
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to PL08003786T priority patent/PL2103717T3/pl
Priority to ES08003786T priority patent/ES2340973T3/es
Priority to DE502008000573T priority patent/DE502008000573D1/de
Priority to AT08003786T priority patent/ATE465283T1/de
Priority to EP08003786A priority patent/EP2103717B1/de
Priority to US12/864,180 priority patent/US8647491B2/en
Priority to BRPI0907497-0A priority patent/BRPI0907497A2/pt
Priority to JP2010547984A priority patent/JP5688841B2/ja
Priority to KR1020107018440A priority patent/KR101540615B1/ko
Priority to CA2716115A priority patent/CA2716115A1/en
Priority to PCT/EP2009/000802 priority patent/WO2009109271A2/en
Priority to CN2009801015016A priority patent/CN101918618B/zh
Priority to TW098104123A priority patent/TWI439580B/zh
Publication of EP2103717A1 publication Critical patent/EP2103717A1/de
Application granted granted Critical
Publication of EP2103717B1 publication Critical patent/EP2103717B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Definitions

  • the present invention relates to an aqueous cyanide-free bath and a process for the cyanide-free deposition of tin alloys, in particular tin-copper alloys containing N-methylpyrrolidone as organic brightener.
  • the invention enables the cyanide-free deposition of homogeneous, shiny tin alloy layers, in particular tin-copper alloy layers, the alloy ratio of which can be selectively adjusted depending on the metal salt ratio used within the electrolyte.
  • Tin alloys and especially copper-tin alloys, have come into focus as an alternative to nickel deposits. Electrodeposited nickel layers are commonly used for both decorative and functional applications.
  • nickel layers are problematic due to their sensitizing properties, especially in the case of direct skin contact. For this reason, alternatives are of the highest interest.
  • Cyanide-containing copper-tin alloy baths are industrially established. Due to stricter regulations and the high toxicity and problematic and expensive disposal of these cyanide-containing baths, there is a growing demand for cyanide-free copper-tin electrolytes.
  • JP 10-102278 A a pyrophosphate-based copper-tin alloy bath which contains as an additive a reaction product of an amine and an epihalodrin derivative (molar ratio 1: 1), an aldehyde derivative and, optionally, depending on the application, surfactants.
  • the US 6416571 B1 also describes a pyrophosphate-based bath which also contains as additives a reaction product of an amine and an epihalohydrin derivative (molar ratio 1: 1), a cationic surfactant, optionally further surface-active surfactants and an antioxidant.
  • a disadvantage of the abovementioned baths is that no uniform alloy layers are obtained, especially in the case of drum galvanizations, so that the products do not have a uniform coloring and gloss.
  • a pyrophosphate-containing copper-tin alloy bath containing as an additive a reaction product of an amine derivative, more preferably piperazine, an epihalohydrin derivative, especially epichlorohydrin, and a glycidyl ether.
  • an amine derivative more preferably piperazine
  • an epihalohydrin derivative especially epichlorohydrin
  • a glycidyl ether for the preparation of this reaction product, a mixture consisting of epichlorohydrin and the glycidyl ether is added slowly under precise temperature control to an aqueous solution of piperazine, wherein the temperature from 65 to 80 ° C must be maintained.
  • a disadvantage of this additive is the difficult to control reaction, especially at high temperatures, since such reaction products tend at too high reaction and / or storage temperatures for post-reaction and thus formation of high molecular weight and thus partially water-insoluble and ineffective polymers.
  • a way out of this dilemma can be achieved only by a reaction in very high dilution ( ⁇ 1 wt .-%). It comes with such low concentration additive solutions with repeated replenishment to an adverse solution buildup of the electrolyte. This can lead to fluctuating deposits with longer use of electrolyte.
  • this electrolyte exhibits weaknesses in rack plating applications.
  • the quality of the deposited layers which often show a haze, very much depends on the nature of the movement of goods during the electrolysis.
  • the copper-tin coatings obtained in this way also often have pores, which is problematic especially in decorative coatings.
  • the invention is therefore based on the object to develop a galvanic bath for tin alloys, which allows the production of optically attractive tin alloy layers.
  • a more homogeneous tin-alloy metal distribution and an optimal tin-metal ratio should be set.
  • a uniform layer thickness with high gloss and the uniformity of the distribution of the alloy components in the coating should be maintained over a wide current density range.
  • the electrolytic bath according to the invention may further comprise an acid (iii) and / or a pyrophosphate source (iv).
  • the component (iii) of the aqueous cyanide-free electrolyte bath according to the invention is any acid which can be used in known electrolyte baths.
  • they are organic sulfonic acids, orthophosphoric acid, sulfuric acid and boric acid.
  • the aqueous cyanide-free electrolyte bath according to the invention preferably also contains additives which are selected from antioxidants and / or further organic brighteners.
  • Preferred organic brighteners here are morpholine, 2-morpholineethanesulfonic acid, hexamethylenetetramine, 3- (4-morpholino) -1,2-propanediol, 1,4-diazabicyclo [2.2.2] octane, 1-benzyl-3-carbamoyl-pyridinium chloride , 1- (2'-Chloro-benzyl) -3-carbamoyl-pyridinium chloride, 1- (2'-fluoro-benzyl) -3-carbamoyl-pyridinium chloride, 1- (2'-methoxy-benzyl) - 3-carbamoyl-pyridinium chloride, 1- (2'-carboxy-benzyl) -3-carbamoyl-pyridinium chloride, 1- (2'-carbamoyl-benzyl) -3-carbamoyl-pyridinium chloride, 1- (3 'Chloro-benzy
  • the additives according to the invention can be used with N-methylpyrrolidone alone or as a mixture of a plurality of different brightener systems of the abovementioned representatives in a concentration of 0.0001 to 20 g / l and more preferably of 0.001 to 1 g / l.
  • the tin ion source and the source of another alloying element may be pyrophosphates.
  • the tin ion source and the source of another alloying element are also pyrophosphate sources within the meaning of the aforementioned component (iv) of the electrolytic bath according to the invention.
  • the pyrophosphate concentration of the source for another alloying element is 0.5 to 50 g / l, and preferably 1 to 5 g / l.
  • the bath according to the invention may contain copper pyrophosphate in an amount of 0.5 to 50 g / l, preferably 1 to 5 g / l or zinc pyrophosphate in these amounts.
  • the concentration is generally 0.5 to 100 g / l, with concentrations of 10 to 40 g / l being particularly preferred.
  • tin and metal pyrophosphates In addition to the above-mentioned tin and metal pyrophosphates, other water-soluble tin and metal salts, such as tin sulfate, tin methanesulfonate, copper sulfate, copper methanesulfonate, or the corresponding Zinc salts are used, which can be umkomplexiert by the addition of suitable alkali metal pyrophosphates within the electrolyte into the corresponding pyrophosphates.
  • the concentration ratio of pyrophosphate to tin / metal should be 3 to 80, more preferably 5 to 50.
  • Pyrophosphate sources according to component (iv) are particularly preferably the sodium, potassium and ammonium pyrophosphates in concentrations of 50 to 500 g / l, more preferably from 100 to 400 g / l.
  • the aforementioned antioxidants include hydroxylated aromatic compounds, e.g. Catechol, resorcinol, pyrocatechol, hydroquinone, pyrogallol, ⁇ - or ⁇ -naphthol, phloroglucin and sugar-based systems such as e.g. Ascorbic acid, sorbitol in concentrations of 0.1 to 1 g / l.
  • hydroxylated aromatic compounds e.g. Catechol, resorcinol, pyrocatechol, hydroquinone, pyrogallol, ⁇ - or ⁇ -naphthol, phloroglucin
  • sugar-based systems such as e.g. Ascorbic acid, sorbitol in concentrations of 0.1 to 1 g / l.
  • organic sulfonic acids both mono- and polyalkylsulfonic acids, e.g. Methanesulfonic acid, methanedisulfonic acid, ethanesulfonic acid, propanesulfonic acid, 2-propanesulfonic acid, butanesulfonic acid, 2-butanesulfonic acid, pentanesulfonic acid, hexanesulfonic acid, decanesulfonic acid, dodecanesulfonic acid and salts thereof and their hydroxylated derivatives are used. Particularly preferred is the use of methanesulfonic acid in a concentration of 0.01 to 1 g / l.
  • the baths according to the invention have a pH of 3 to 9, more preferably 6 to 8.
  • N-methylpyrrolidone a significant improvement in the deposited layers can be achieved with regard to gloss and freedom from pores, preferably in a concentration of 0.1 to 50 g / l, more preferably 0.1 to 4 g / l.
  • the baths according to the invention can be prepared by conventional methods, for example by adding the specific amounts of the above-described components to water.
  • the amount of bases, acids and acids Buffer components such as sodium pyrophosphate, methanesulfonic acid and / or boric acid should preferably be chosen so that the bath reaches the pH range of at least 6 to 8.
  • the baths according to the invention deposit a bright, even and ductile copper-tin alloy layer at any customary temperature of about 15 to 50 ° C, preferably 20 ° C to 40 ° C, more preferably 25 ° C to 30 ° C from. At these temperatures, the baths according to the invention are stable and effective over a wide current density range of 0.01 to 2 A / dm 2 , more preferably 0.25 to 0.75 A / dm 2 .
  • the baths of the invention may be operated in a continuous or intermittent manner, and from time to time the components of the bath will have to be supplemented.
  • the components of the bath may be added singly or in combination. Furthermore, they can be varied over a wide range, depending on the consumption and present concentration of the individual components.
  • An advantage of the baths according to the invention compared to the electrolyte of WO 2004/005528 is the good reproducibility and long-term stability of the formulations according to the invention in comparison to the reaction products of piperazine with epichlorohydrin and glycidyl ether.
  • the aqueous baths according to the invention can generally be used for all types of substrates on which tin alloys can be deposited.
  • substrates on which tin alloys can be deposited.
  • useful substrates include copper-zinc alloys, chemically copper or chemically nickel-coated ABS plastic surfaces, mild steel, stainless steel, spring steel, chrome steel, chromium-molybdenum steel, copper and tin.
  • Another object is therefore a process for the electrodeposition of copper-tin alloys on conventional substrates, wherein the inventive Bath is used.
  • the substrate to be coated is introduced into the electrolyte bath.
  • the deposition of the coatings at a current density of 0.25 to 0.75 A / dm 2 and at a temperature of 15 to 50 ° C, preferably 25 to 30 ° C.
  • the method according to the invention can be carried out in the application for mass parts, for example as a drum electroplating method and for depositing on larger workpieces as a rack electroplating method.
  • anodes are used which may be soluble, such as copper anodes, tin anodes or suitable copper-tin alloy anodes, which simultaneously serve as copper and / or tin ion source, so that the deposited on the cathode copper and / or tin by dissolution is substituted by copper and / or tin at the anode.
  • insoluble anodes e.g., platinized titanium mixed oxide anodes
  • the copper and tin ions withdrawn from the electrolyte must be re-added in some other way, e.g. by addition of the corresponding soluble metal salts.
  • galvanic deposition it is also possible to operate the process according to the invention under nitrogen or argon injection, with goods movement or without movement, without resulting in any disadvantages for the coatings obtained.
  • the tin (II) ions can be used with the separation of the electrode spaces or with the use of membrane anodes, whereby a significant stabilization of the electrolyte can be achieved.
  • the current source used are commercial DC converters or pulse rectifiers.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 0.1 g / l 1- (pentafluorobenzyl) -3-carbamoyl pyridinium chloride
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high gloss deposit was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 20 ml / l N-methylpyrrolidone 0.06 g / l 1-benzyl-3-acetyl-pyridinium chloride
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high glossy, light veil deposit in the low current density range was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 0.03 g / l 1- (4-methoxy-benzyl) -3-carbamoyl pyridinium chloride
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A brilliant deposit was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 0.03 g / l 1,1 '- (xylenyl) -3', 3-bis-carbamoyl-bis-pyridinium dichloride
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1 A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high gloss deposit was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 0.12 g / l 1- (4'-Carboxy-benzyl) -3-carbamoyl pyridinium chloride
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high gloss deposit was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 3 ml / l 1- (Benzyl) -3-carbamoylpyridinium chloride 35% solution
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high gloss deposit was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 3 g / l morpholine
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high gloss deposit was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 5 g / l 2-morpholino-ethane sulfonic acid
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high gloss deposit was obtained.
  • An electrolyte with the following composition is used: 300 g / l tetrapotassiumpyrophosphate 10 g / l copper pyrophosphate 30 g / l pyrophosphate 50 g / l boric acid 32.4 ml / l 85% phosphoric acid 40 ml / l N-methylpyrrolidone 3 g / l 3- (4-morpholino) -1,2-propanediol
  • the anode used is a titanium mixed oxide electrode.
  • the cathode sheet is coated at 1A for 10 minutes. After completion of the coating, the sheet is rinsed and dried under compressed air. A high gloss deposit was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)
  • Coating With Molten Metal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Beschrieben wird ein wässriges cyanid-freies Elektrolytbad zur Abscheidung von Zinn-Legierungsschichten auf Substratoberflächen, umfassend (i) eine Zinn-Ionenquelle und eine Quelle für ein weiteres Legierungselement, dadurch gekennzeichnet, dass sie weiterhin (ii) N-Methylpyrrolidon enthält.

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft ein wässriges cyanid-freies Bad und ein Verfahren zur cyanid-freien Abscheidung von Zinn-Legierungen, insbesondere Zinn-Kupfer-Legierungen, das N-Methylpyrrolidon als organischen Glanzbildner enthält.
  • Die Erfindung ermöglicht die cyanid-freie Abscheidung von homogenen, glänzenden Zinn-Legierungsschichten, insbesondere Zinn-Kupfer-Legierungsschichten, deren Legierungsverhältnis je nach eingesetztem Metallsalzverhältnis innerhalb des Elektrolyten gezielt eingestellt werden kann.
  • Stand der Technik
  • Zinn-Legierungen und insbesondere Kupfer-Zinn-Legierungen sind als Alternative zu Nickelabscheidungen in den Fokus des Interesses gekommen. Galvanisch abgeschiedene Nickelschichten werden üblicherweise sowohl für dekorative als auch funktionale Anwendungen eingesetzt.
  • Trotz ihrer guten Eigenschaften sind Nickelschichten auf Grund ihrer sensibilisierenden Eigenschaften gerade bei direktem Hautkontakt gesundheitlich problematisch. Aus diesem Grund sind Alternativen von höchstem Interesse.
  • Neben den im Elektronik-Sektor etablierten aber ökologisch problematischen Zinn-Blei-Legierungen, sind in den letzten Jahren vor allem Kupfer-Zinn-Legierungen als Ersatz ins Auge gefasst worden. Kapitel 13 (S. 155 bis 163) der Schrift "The Electrodeposition of Tin and ist Alloys" von Manfred Jordan (Eugen G. Leuze Publ., 1st Ed., 1995) gibt einen Überblick über die bekannten Bad-Typen für Kupfer-Zinn-Legierungsabscheidungen.
  • Industriell etabliert sind cyanid-haltige Kupfer-Zinn-Legierungsbäder. Aufgrund strenger werdender Regularien und der hohen Toxizität und problematischen und teuren Entsorgung dieser cyanid-haltigen Bäder besteht ein wachsender Bedarf an cyanid-freien Kupfer-Zinn-Elektrolyten.
  • Zu diesem Zweck sind vereinzelt cyanid-freie pyrophosphat-haltige Elektrolyte entwickelt worden. So beschreibt die JP 10-102278 A ein Kupfer-Zinn-Legierungsbad auf Pyrophosphat-Basis, das als Additiv ein Reaktionsprodukt eines Amins und eines Epihalodrin-Derivates (Molverhältnis 1:1), ein Aldehyd-Derivat und gegebenenfalls je nach Anwendung Tenside enthält. Die US 6416571 B1 beschreibt ebenfalls ein Pyrophosphat-basierendes Bad, welches ebenfalls als Additive ein Reaktionsprodukt eines Amins und eines Epihalohydrin-Derivates (Molverhältnis 1:1), ein kationisches Tensid, gegebenenfalls weitere oberflächenaktive Tenside und ein Antioxidationsmittel enthält.
  • Nachteilig bei den oben genannten Bädern ist, dass gerade bei Trommelgalvanisierungen keine einheitlichen Legierungsschichten erhalten werden, so dass die Produkte keine einheitliche Farbgebung und Glanz aufweisen.
  • Zur Lösung dieses Problems wird in der WO 2004/005528 ein pyrophosphathaltiges Kupfer-Zinn-Legierungsbad vorgeschlagen, das als Additiv ein Reaktionsprodukt eines Amin-Derivates, besonders bevorzugt Piperazin, eines Epihalohydrin-Derivates, vor allem Epichlorhydrin, und eines Glycidylethers enthält. Zur Herstellung dieses Reaktionsproduktes wird ein Gemisch bestehend aus Epichlorhydrin und dem Glycidylether langsam unter genauer Temperaturkontrolle zu einer wässrigen Lösung des Piperazin gegeben, wobei die Temperatur von 65 bis 80°C eingehalten werden muss. Nachteilig bei diesem Additiv ist die schwierig zu kontrollierende Reaktionsführung gerade bei hohen Temperaturen, da derartige Reaktionsprodukte bei zu hohen Reaktions- und/oder Lagertemperaturen zur Nachreaktion und somit Bildung hochmolekularer und somit teilweise wasserunlöslicher und unwirksamer Polymere neigen. Ein Ausweg aus diesem Dilemma kann nur durch eine Reaktionsführung in sehr hoher Verdünnung (< 1 Gew.-%) erreicht werden. Dabei kommt es bei derartig gering konzentrierten Additiv-Lösungen bei mehrmaligem Nachdosieren zu einem nachteiligen Lösungsaufbau des Elektrolyten. Dadurch kann es bei längerem Elektrolytgebrauch zu schwankenden Abscheidungen kommen.
  • Ferner zeigt dieser Elektrolyt Schwächen bei Anwendungen in der Gestellgalvanisierung. So ist die Qualität der abgeschiedenen Schichten, die oftmals einen Schleier zeigen, sehr stark von der Art der Warenbewegung während der Elektrolyse abhängig. Die auf diese Weise erhaltenen Kupfer-Zinn-Überzüge weisen zudem oftmals Poren auf, was gerade bei dekorativen Überzügen problematisch ist.
  • Zusammenfassung der Erfindung
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, ein galvanisches Bad für Zinn-Legierungen zu entwickeln, welches die Herstellung von optisch ansprechenden Zinn-Legierungsschichten ermöglicht.
  • Dabei soll zusätzlich eine homogenere Zinn-Legierungsmetallverteilung und ein optimales Zinn-Metall-Verhältnis eingestellt werden. Außerdem sollen eine einheitliche Schichtdicke mit hohem Glanz und die Gleichmäßigkeit der Verteilung der Legierungskomponenten im Überzug über einen weiten Stromdichtebereich aufrechterhalten werden.
  • Gegenstand der Erfindung ist ein wässriges cyanid-freies Elektrolytbad zur Abscheidung von Zinn-Legierungsschichten auf Substratoberflächen, umfassend
    1. (i) eine Zinn-Ionenquelle und eine Quelle für ein weiteres Legierungselement sowie
    2. (ii) N-Methylpyrrolidon.
    Beschreibung bevorzugter Ausführungsformen der Erfindung
  • Neben den vorgenannten Komponenten (i) und (ii) kann das erfindungsgemäße Elektrolytbad weiterhin eine Säure (iii) und/oder eine Pyrophosphat-Quelle (iv) umfassen.
  • Bei der Komponente (iii) des erfindungsgemäßen wässrigen cyanid-freien Elektrolytbads handelt es sich um eine beliebige Säure, wie sie in bekannten Elektrolytbädern eingesetzt werden kann. Vorzugsweise handelt es sich um organische Sulfonsäuren, Orthophosphorsäure, Schwefelsäure und Borsäure.
  • Das erfindungsgemäße wässrige cyanid-freie Elektrolytbad enthält vorzugsweise weiterhin Zusätze, die aus Antioxidationsmitteln und/oder weiteren organischen Glanzbildnern ausgewählt sind.
  • Bevorzugte organische Glanzbildner sind hierbei Morpholin, 2-Morpholinethansulfonsäure, Hexamethylentetramin, 3-(4-Morpholino)-1,2-propandiol, 1,4-Diazabicyclo-[2.2.2]-octan, 1-Benzyl-3-carbamoyl-pyridiniumchlorid, 1-(2'-Chloro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Fluoro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Methoxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Carboxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Carbamoyl-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Chloro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Fluoro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Methoxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Carboxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Carbamoyl-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Chloro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Fluoro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Methoxybenzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Carboxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Carbamoyl-benzyl)-3-carbamoyl-pyridinium-chlorid, (1'-Methyl-naphthyl)-3-carbamoyl-pyridinium-chlorid, 1-(1'methyl-naphthyl)-3-carbamoyl-pyridinium-bromid, 1-(1'-Methyl-naphthyl)-3-carbamoyl-pyridinium-fluorid, 1,1'-(Xylenyl)-3,3'-bis-carbamoyl-bis-pyridinium-dibromid, 1,1',1"-(Mesitylenyl)-3,3',3"-tris-carbamoyl-tri-pyridinium-trichlorid, sowie die korrespondierenden Bromide, Fluoride, Iodide und Pseudohalogenide (z.B. Triflate, Tosylate) der oben aufgeführten Verbindungen sowie quatemisierte N,N-Bis-[dialkylamino-alkyl]-harnstoffe, wobei benzylierte Derivate besonders geeignet sind.
  • Die erfindungsgemäßen Additive können mit N-Methylpyrrolidon alleine oder als Gemisch mehrerer unterschiedlicher Glanzbildnersysteme der oben genannten Vertreter in einer Konzentration von 0,0001 bis 20 g/l und besonders bevorzugt von 0,001 bis 1 g/l eingesetzt werden.
  • Die Zinn-Ionenquelle und die Quelle für ein weiteres Legierungselement können Pyrophosphate sein. Insoweit sind die Zinn-Ionenquelle und die Quelle für ein weiteres Legierungselement auch Pyrophosphat-Quellen im Sinne der vorgenannten Komponente (iv) des erfindungsgemäßen Elektrolytbads.
  • In einem solchen Fall beträgt die Pyrophosphatkonzentration der Quelle für ein weiteres Legierungselement 0,5 bis 50 g/l und vorzugsweise 1 bis 5 g/l. Beispielsweise kann das erfindungsgemäße Bad Kupferpyrophosphat in einer Menge von 0,5 bis 50 g/l, vorzugsweise 1 bis 5 g/l oder Zinkpyrophosphat in diesen Mengen enthalten.
  • Wenn als Zinn-Ionenquelle Zinnpyrophosphat in dem erfindungsgemäßen Elektrolytbad eingesetzt wird, beträgt die Konzentration im Allgemeinen 0,5 bis 100 g/l, wobei Konzentrationen von 10 bis 40 g/l besonders bevorzugt sind.
  • Neben den oben erwähnten Zinn- und Metallpyrophosphaten können auch anderweitige wasserlösliche Zinn- und Metallsalze, wie z.B. Zinnsulfat, Zinnmethansulfonat, Kupfersulfat, Kupfermethansulfonat, oder die entsprechenden Zinksalze eingesetzt werden, die durch Zusatz geeigneter Alkalimetallpyrophosphate innerhalb des Elektrolyten in die entsprechenden Pyrophosphate umkomplexiert werden können. Dabei sollte das Konzentrationsverhältnis Pyrophosphat zu Zinn/Metall bei 3 bis 80, besonders bevorzugt bei 5 bis 50 liegen.
  • Pyrophosphat-Quellen gemäß Komponente (iv) sind besonders bevorzugt die Natrium-, Kalium- und Ammoniumpyrophosphate in Konzentrationen von 50 bis 500 g/l, besonders bevorzugt von 100 bis 400 g/l.
  • Die vorgenannten Antioxidationsmittel beinhalten hydroxylierte aromatische Verbindungen wie z.B. Catechol, Resorcin, Brenzkatechin, Hydrochinon, Pyrogallol, α- oder β-Naphthol, Phloroglucin und zuckerbasierte Systeme wie z.B. Ascorbinsäure, Sorbitol in Konzentrationen von 0,1 bis 1 g/l.
  • Als organische Sulfonsäuren können sowohl Mono- als auch Polyalkylsulfonsäuren wie z.B. Methansulfonsäure, Methandisulfonsäure, Ethansulfonsäure, Propansulfonsäure, 2-Propansulfonsäure, Butansulfonsäure, 2-Butansulfonsäure, Pentansulfonsäure, Hexansulfonsäure, Decansulfonsäure, Dodecansulfonsäure sowie deren Salze und deren hydroxylierte Derivate eingesetzt werden. Besonders bevorzugt ist die Verwendung von Methansulfonsäure in einer Konzentration von 0,01 bis 1 g/l.
  • Die erfindungsgemäßen Bäder weisen einen pH-Wert von 3 bis 9, besonders bevorzugt 6 bis 8 auf.
  • Überraschend und unerwarteter Weise konnte gefunden werden, dass durch Zusatz von N-Methylpyrrolidon eine signifikante Verbesserung der abgeschiedenen Schichten hinsichtlich Glanz und Porenfreiheit erreicht werden kann, vorzugsweise in einer Konzentration von 0,1 bis 50 g/l, besonders bevorzugt 0,1 bis 4 g/l.
  • Die erfindungsgemäßen Bäder können mit gebräuchlichen Verfahren hergestellt werden, beispielsweise durch Zugabe der spezifischen Mengen der vorstehend beschriebenen Komponenten zu Wasser. Die Menge der Basen-, Säure- und Pufferkomponenten, wie z.B. Natriumpyrophosphat, Methansulfonsäure und/oder Borsäure, sollte vorzugsweise so gewählt werden, dass das Bad den pH-Bereich von mindestens 6 bis 8 zu erreicht.
  • Die erfindungsgemäßen Bäder scheiden eine blanke, ebene und duktile Kupfer-Zinn-Legierungsschicht bei jeder gebräuchlichen Temperatur von etwa 15 bis 50°C, vorzugsweise 20°C bis 40°C, besonders bevorzugt 25°C bis 30°C, ab. Bei diesen Temperaturen sind die erfindungsgemäßen Bäder stabil und über einen weiten Stromdichtebereich von 0,01 bis 2 A/dm2, besonders bevorzugt 0,25 bis 0,75 A/dm2, wirkungsvoll.
  • Die erfindungsgemäßen Bäder können auf eine kontinuierliche oder intermittierende Weise betrieben werden, und von Zeit zu Zeit wird man die Komponenten des Bades ergänzen müssen. Die Komponenten des Bades können einzeln oder in Kombination zugesetzt werden. Ferner können sie über einen weiten Bereich variiert werden, abhängig vom Verbrauch und vorliegenden Konzentration der Einzelkomponenten.
  • Ein Vorteil der erfindungsgemäßen Bäder im Vergleich zum Elektrolyten der WO 2004/005528 ist die gute Reproduzierbarkeit und Langzeitstabilität der erfindungsgemäßen Formulierungen im Vergleich zu den Umsetzungsprodukten des Piperazin mit Epichlorhydrin und Glycidylether.
  • Die erfindungsgemäßen wässrigen Bäder können im allgemeinen für alle Arten von Substraten verwendet werden, auf welchen Zinn-Legierungen abgeschieden werden können. Beispiele zweckdienlicher Substrate schließen Kupfer-Zink-Legierungen, mit chemisch Kupfer oder chemisch Nickel beschichtete ABS-Kunststoffoberflächen, Weichstahl, Edelstahl, Federstahl, Chromstahl, Chrom-Molybdänstahl, Kupfer und Zinn ein.
  • Ein weiterer Gegenstand ist daher ein Verfahren zur galvanischen Abscheidung von Kupfer-Zinn-Legierungen auf üblichen Substraten, wobei das erfindungsgemäße Bad verwendet wird. Dabei wird das zu beschichtende Substrat in das Elektrolytbad eingebracht.
  • Vorzugsweise erfolgt bei dem erfindungsgemäßen Verfahren die Abscheidung der Überzüge bei einer Stromdichte von 0,25 bis 0,75 A/dm2 sowie bei einer Temperatur von 15 bis 50°C, vorzugsweise 25 bis 30°C.
  • Das erfindungsgemäße Verfahren kann bei der Anwendung für Massenteile beispielsweise als Trommelgalvanisierverfahren und zur Abscheidung auf größeren Werkstücken als Gestellgalvanisierverfahren durchgeführt werden. Dabei werden Anoden verwendet, die löslich sein können, wie beispielsweise Kupferanoden, Zinnanoden oder geeignete Kupfer-Zinn-Legierungsanoden, die gleichzeitig als Kupfer und/oder Zinn-Ionen-Quelle dienen, damit das auf der Kathode abgeschiedenen Kupfer und/oder Zinn durch Auflösen von Kupfer und/oder Zinn an der Anode substituiert wird.
  • Andererseits können auch unlösliche Anoden (z.B. platinierte Titanmischoxid-Anoden) eingesetzt werden, wobei die dem Elektrolyten entzogenen Kupfer- und Zinn-Ionen auf andere Weise wieder zugesetzt werden müssen, z.B. durch Zusatz der entsprechenden löslichen Metallsalze. Wie bei der galvanischen Abscheidung möglich, kann auch das erfindungsgemäße Verfahren unter Stickstoff- oder Argoneinblasung, mit Warenbewegung oder ohne Bewegung, betrieben werden, ohne dass sich hierfür irgendwelche Nachteile für die erhaltenen Überzüge ergeben. Zur Vermeidung bzw. Reduzierung von Oxidationen der zugesetzten Additive bzw. der Zinn(II)-Ionen kann mit der Trennung der Elektrodenräume oder mit der Verwendung von Membrananoden gearbeitet werden, wodurch eine erhebliche Stabilisierung des Elektrolyten erreicht werden kann.
  • Als Stromquelle dienen handelsübliche Gleichstromrichter oder Pulsgleichrichter.
  • Beispiele: Anwendungsbeispiel 1:
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    0,1 g/l 1-(Pentafluorbenzyl)-3-carbamoyl-pyridinium-chlorid
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung erhalten.
  • Anwendungsbeispiel 2:
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    20 ml/l N-Methylpyrrolidon
    0,06 g/l 1-Benzyl-3-acetyl-pyridinium-chlorid
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung mit leichtem Schleier im niedrigen Stromdichtebereich erhalten.
  • Anwendungsbeispiel 3:
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    0,03 g/l 1-(4-Methoxy-benzyl)-3-carbamoyl-pyridinium-chlorid
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine glänzende Abscheidung erhalten.
  • Anwendungsbeispiel 4:
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    0,03 g/l 1,1'-(Xylenyl)-3',3-bis-carbamoyl-bis-pyridinium-dichlorid
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1 A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung erhalten.
  • Anwendungsbeispiel 5:
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    0,12 g/l 1-(4'-Carboxy-benzyl)-3-carbamoyl-pyridinium-chlorid
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung erhalten.
  • Anwendungsbeispiel 6:
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    3 ml/l 1-(Benzyl)-3-carbamoyl-pyridinium-chlorid 35%-ige Lösung
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung erhalten.
  • Anwendungsbeispiel 7:
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    3 g/l Morpholin
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung erhalten.
  • Anwendungsbeispiel 8 :
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    5 g/l 2-Morpholino-ethansulfonsäure
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung erhalten.
  • Anwendungsbeispiel 9 :
  • Es wird ein Elektrolyt mit folgender Zusammensetzung verwendet:
    300 g/l Tetrakaliumpyrophosphat
    10 g/l Kupferpyrophosphat
    30 g/l Zinnpyrophosphat
    50 g/l Borsäure
    32,4 ml/l Phosphorsäure 85%-ig
    40 ml/l N-Methylpyrrolidon
    3 g/l 3-(4-Morpholino)-1,2-propandiol
  • 250 ml des Elektrolyten mit einem pH-Wert von 7 werden in eine Hullzelle gefüllt. Als Anode dient eine Titan-Mischoxid-Elektrode. Das Kathodenblech wird 10 min bei 1A beschichtet. Nach beendeter Beschichtung wird das Blech abgespült und unter Pressluft getrocknet. Es wurde eine hoch glänzende Abscheidung erhalten.

Claims (22)

  1. Wässriges cyanid-freies Elektrolytbad zur Abscheidung von Zinn-Legierungsschichten auf Substratoberflächen, umfassend
    (i) eine Zinn-lonenquelle und eine Quelle für ein weiteres Legierungselement, dadurch gekennzeichnet, dass sie weiterhin
    (ii) N-Methylpyrrolidon enthält.
  2. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, weiterhin umfassend eine Säure (iii) und/oder eine Pyrophosphat-Quelle (iv).
  3. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, worin die Säure Orthophosphorsäure, Schwefelsäure oder Methansulfonsäure ist.
  4. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, worin die Zinn-Ionenquelle Zinnpyrophosphat ist.
  5. Wässriges cyanid-freies Elektrolytbad nach Anspruch 4, enthaltend Zinnpyrophosphat in einer Menge von 0,5 bis 100 g/l.
  6. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, worin die Quelle für ein weiteres Legierungselement Kupferpyrophosphat ist.
  7. Wässriges cyanid-freies Elektrolytbad nach Anspruch 5 oder 6, enthaltend Zinnpyrophosphat in einer Menge von 10 bis 40 g/l und Kupferpyrophosphat in einer Menge von 1 bis 5 g/l.
  8. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, worin die Pyrophosphatquelle aus der Gruppe, bestehend aus Natrium-, Kalium- und Ammoniumpyrophosphaten, ausgewählt ist.
  9. Wässriges cyanid-freies Elektrolytbad nach Anspruch 8, enthaltend die Pyrophosphate in einer Konzentration von 50 bis 500 g/l.
  10. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, worin das Konzentrationsverhältnis von Pyrophosphat zu Zinn/Legierungselement 3 bis 80 beträgt.
  11. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, enthaltend N-Methylpyrrolidon in einer Konzentration von 0,1 bis 50 g/l.
  12. Wässriges cyanid-freies Elektrolytbad nach Anspruch 11, enthaltend N-Methylpyrrolidon in einer Konzentration von 0,1 bis 4 g/l.
  13. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1 mit einem pH-Wert von 3 bis 9.
  14. Wässriges cyanid-freies Elektrolytbad nach Anspruch 1, weiterhin umfassend ein Antioxidationsmittel und/oder einen weiteren organischen Glanzbildner.
  15. Wässriges cyanid-freies Elektrolytbad nach Anspruch 14, worin der weitere organische Glanzbildner aus der Gruppe, bestehend aus Morpholin, 2-Morpholinethansulfonsäure, Hexamethylentetramin, 3-(4-Morpholino)-1,2-propandiol, 1,4-Diazabicyclo-[2.2.2]-octan, 1-Benzyl-3-carbamoyl-pyridiniumchlorid, 1-(2'-Chloro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Fluoro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Methoxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Carboxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(2'-Carbamoyl-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Chloro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Fluoro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Methoxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Carboxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(3'-Carbamoyl-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Chloro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Fluoro-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Methoxy-benzyl)-3-carbamoyl-pyridinium-chlorid, 1-(4'-Carbamoyl-benzyl)-3-carbamoyl-pyridinium-chlorid, (1'-Methyl-naphthyl)-3-carbamoyl-pyridinium-chlorid, 1-(1'methyl-naphthyl)-3-carbamoyl-pyridinium-bromid, 1,1'-(Xylenyl)-3,3'-bis-carbamoyl-bis-pyridinium-dibromid, 1,1',1"-(Mesitylenyl)-3,3',3"-tris-carbamoyl-tri-pyridinium-trichlorid, den korrespondierenden Bromiden, Fluoriden, Iodiden und Pseudohalogeniden der vorgenannten Verbindungen und quaternisierten N,N-Bis-[dialkylamino-alkyl]-harnstoffen ausgewählt ist.
  16. Verfahren zur galvanischen Abscheidung von glänzenden und ebenen Zinn-Legierungsüberzügen, umfassend das Einbringen eines zu beschichtenden Substrats in ein wässriges cyanid-freies Elektrolytbad nach den Ansprüchen 1 bis 15 und Abscheiden des Zinnlegierungsüberzugs auf dem Substrat.
  17. Verfahren nach Anspruch 16, worin das Bad bei einer Stromdichte von 0,01 bis 2 A/dm2 betrieben wird.
  18. Verfahren nach Anspruch 17, worin das Bad bei einer Stromdichte von 0,25 bis 0,75 A/dm2 betrieben wird.
  19. Verfahren nach Anspruch 16, worin das Bad bei einer Temperatur von 15 bis 50°C betrieben wird.
  20. Verfahren nach Anspruch 19, worin das Bad bei einer Temperatur von 25 bis 30°C betrieben wird.
  21. Verfahren nach den Ansprüchen 16 bis 20, worin die Überzüge auf einem leitenden Substrat unter Anwendung eines Gestellgalvanisierungsverfahren abgeschieden werden.
  22. Verfahren nach den Ansprüchen 16 bis 21, worin als Anoden Membrananoden verwendet werden.
EP08003786A 2008-02-29 2008-02-29 Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten Not-in-force EP2103717B1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
PL08003786T PL2103717T3 (pl) 2008-02-29 2008-02-29 Kąpiel oparta na pirofosforanach do nakładania warstw stopów cyny
ES08003786T ES2340973T3 (es) 2008-02-29 2008-02-29 Baño basado en pirofosfato para la deposicion de capas de aleaciones de estaño.
DE502008000573T DE502008000573D1 (de) 2008-02-29 2008-02-29 Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten
AT08003786T ATE465283T1 (de) 2008-02-29 2008-02-29 Pyrophosphat-basiertes bad zur abscheidung von zinn-legierungsschichten
EP08003786A EP2103717B1 (de) 2008-02-29 2008-02-29 Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten
PT08003786T PT2103717E (pt) 2008-02-29 2008-02-29 Banho com base em pirofosfato para deposição de camadas de ligas de estanho
BRPI0907497-0A BRPI0907497A2 (pt) 2008-02-29 2009-02-05 Banho baseado em pirofosfatos para revestimento de camadas de ligas de estanho
JP2010547984A JP5688841B2 (ja) 2008-02-29 2009-02-05 スズ合金層のメッキのためのピロリン酸系浴
US12/864,180 US8647491B2 (en) 2008-02-29 2009-02-05 Pyrophosphate-based bath for plating of tin alloy layers
KR1020107018440A KR101540615B1 (ko) 2008-02-29 2009-02-05 주석 합금층의 도금을 위한 피로인산염계 전해조
CA2716115A CA2716115A1 (en) 2008-02-29 2009-02-05 Pyrophosphate-based bath for plating on tin alloy layers
PCT/EP2009/000802 WO2009109271A2 (en) 2008-02-29 2009-02-05 Pyrophosphate-based bath for plating on tin alloy layers
CN2009801015016A CN101918618B (zh) 2008-02-29 2009-02-05 用于电镀锡合金层的焦磷酸盐基镀液
TW098104123A TWI439580B (zh) 2008-02-29 2009-02-10 用於電鍍錫合金層之焦磷酸鹽基浴

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08003786A EP2103717B1 (de) 2008-02-29 2008-02-29 Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten

Publications (2)

Publication Number Publication Date
EP2103717A1 true EP2103717A1 (de) 2009-09-23
EP2103717B1 EP2103717B1 (de) 2010-04-21

Family

ID=39521873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08003786A Not-in-force EP2103717B1 (de) 2008-02-29 2008-02-29 Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten

Country Status (14)

Country Link
US (1) US8647491B2 (de)
EP (1) EP2103717B1 (de)
JP (1) JP5688841B2 (de)
KR (1) KR101540615B1 (de)
CN (1) CN101918618B (de)
AT (1) ATE465283T1 (de)
BR (1) BRPI0907497A2 (de)
CA (1) CA2716115A1 (de)
DE (1) DE502008000573D1 (de)
ES (1) ES2340973T3 (de)
PL (1) PL2103717T3 (de)
PT (1) PT2103717E (de)
TW (1) TWI439580B (de)
WO (1) WO2009109271A2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121798B4 (de) 2011-12-21 2013-08-29 Umicore Galvanotechnik Gmbh Elektrolyt und Verfahren zur elektrolytischen Abscheidung von Cu-Zn-Sn-Legierungsschichten und Verfahren zur Herstellung einer Dünnschichtsolarzelle
DE102011121799B4 (de) 2011-12-21 2013-08-29 Umicore Galvanotechnik Gmbh Elektrolyt und Verfahren zur elektrolytischen Abscheidung von Cu-Zn-Sn-Legierungsschichten und Verfahren zur Herstellung einer Dünnschichtsolarzelle
CN103849912A (zh) * 2012-11-29 2014-06-11 沈阳工业大学 一种电镀光亮锡锌镍合金工艺
CN103132113B (zh) * 2013-03-08 2015-08-12 大连理工大学 一种弱碱性锡基无铅钎料复合镀液及其应用
EP2801640A1 (de) * 2013-05-08 2014-11-12 ATOTECH Deutschland GmbH Nickel- oder Nickellegierungsgalvanisierungsbad zum Aufbringen von halbglänzendem Nickel oder Nickellegierung
CN103668402B (zh) * 2013-10-08 2016-06-08 常州大学 一种纳米复合高锡铜合金电镀材料的制备方法
AR100422A1 (es) * 2014-05-15 2016-10-05 Nippon Steel & Sumitomo Metal Corp Solución para deposición para conexión roscada para un caño o tubo y método de producción de la conexión roscada para un caño o tubo
CN104152955A (zh) * 2014-07-17 2014-11-19 广东致卓精密金属科技有限公司 碱性溶液电镀光亮白铜锡电镀液及工艺
JP6621169B2 (ja) * 2015-04-28 2019-12-18 オーエム産業株式会社 めっき品の製造方法
WO2017199835A1 (ja) * 2016-05-18 2017-11-23 日本高純度化学株式会社 電解ニッケル(合金)めっき液
CN114351232A (zh) * 2022-01-14 2022-04-15 张家港扬子江冷轧板有限公司 一种电镀锡预电镀漂洗水循环系统及循环方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU876797A1 (ru) * 1980-02-27 1981-10-30 Ростовский-на-Дону научно-исследовательский институт технологии машиностроения Электролит хромировани
SU1432093A1 (ru) * 1987-03-24 1988-10-23 Ростовский государственный университет им.М.А.Суслова Электролит дл получени покрытий на основе никел
JPH10102278A (ja) 1996-09-30 1998-04-21 Nippon New Chrome Kk 銅−スズ合金メッキ用ピロリン酸浴
US6416571B1 (en) 2000-04-14 2002-07-09 Nihon New Chrome Co., Ltd. Cyanide-free pyrophosphoric acid bath for use in copper-tin alloy plating
WO2004005528A2 (en) 2002-07-05 2004-01-15 Nihon New Chrome Co., Ltd. Pyrophosphoric acid bath for use in copper-tin alloy plating

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294578A (en) * 1963-10-22 1966-12-27 Gen Aniline & Film Corp Deposition of a metallic coat on metal surfaces
JPS5344406B2 (de) * 1973-03-23 1978-11-29
DE3320563A1 (de) * 1982-09-29 1984-12-20 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Elektrolyte fuer die galvanische und reduktive abscheidung von metallen und metallegierungen
JPS61253384A (ja) * 1985-01-07 1986-11-11 Masami Kobayashi アモルフアス合金のメツキ方法
DE3809672A1 (de) * 1988-03-18 1989-09-28 Schering Ag Verfahren zur herstellung von hochtemperaturbestaendigen metallschichten auf keramikoberflaechen
JPH05163599A (ja) * 1991-12-12 1993-06-29 Hitachi Chem Co Ltd 電気めっき用治具
EP0893514B1 (de) * 1996-01-30 2003-04-02 Naganoken Beschichtungslösung für Zinn-Silber-Legierungen und Verfahren zur Beschichtung mit dieser Lösung
US6210556B1 (en) * 1998-02-12 2001-04-03 Learonal, Inc. Electrolyte and tin-silver electroplating process
US6383352B1 (en) * 1998-11-13 2002-05-07 Mykrolis Corporation Spiral anode for metal plating baths
JP3433291B2 (ja) * 1999-09-27 2003-08-04 石原薬品株式会社 スズ−銅含有合金メッキ浴、スズ−銅含有合金メッキ方法及びスズ−銅含有合金メッキ皮膜が形成された物品
US20040045832A1 (en) * 1999-10-14 2004-03-11 Nicholas Martyak Electrolytic copper plating solutions
US6706418B2 (en) * 2000-07-01 2004-03-16 Shipley Company L.L.C. Metal alloy compositions and plating methods related thereto
JP3693647B2 (ja) * 2001-02-08 2005-09-07 日立マクセル株式会社 金属合金微粒子及びその製造方法
DE10313517B4 (de) * 2003-03-25 2006-03-30 Atotech Deutschland Gmbh Lösung zum Ätzen von Kupfer, Verfahren zum Vorbehandeln einer Schicht aus Kupfer sowie Anwendung des Verfahrens
JP2005060822A (ja) * 2003-08-08 2005-03-10 Rohm & Haas Electronic Materials Llc 複合基体の電気メッキ
US7709632B2 (en) * 2004-02-17 2010-05-04 Johnson Thomas E Methods, compositions, and apparatuses for forming macrocyclic compounds
CN1657655A (zh) * 2004-02-18 2005-08-24 中国科学院金属研究所 一种纳米金属管的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU876797A1 (ru) * 1980-02-27 1981-10-30 Ростовский-на-Дону научно-исследовательский институт технологии машиностроения Электролит хромировани
SU1432093A1 (ru) * 1987-03-24 1988-10-23 Ростовский государственный университет им.М.А.Суслова Электролит дл получени покрытий на основе никел
JPH10102278A (ja) 1996-09-30 1998-04-21 Nippon New Chrome Kk 銅−スズ合金メッキ用ピロリン酸浴
US6416571B1 (en) 2000-04-14 2002-07-09 Nihon New Chrome Co., Ltd. Cyanide-free pyrophosphoric acid bath for use in copper-tin alloy plating
WO2004005528A2 (en) 2002-07-05 2004-01-15 Nihon New Chrome Co., Ltd. Pyrophosphoric acid bath for use in copper-tin alloy plating
US20050166790A1 (en) * 2002-07-05 2005-08-04 Kazuya Urata Pyrophosphoric acid bath for use in copper-tin alloy plating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1982-74146E, XP002485327, SMIRNOV V A; SUKHOLENTS E A; SUKHOLENTS T V: "Chromium plating electrolyte compsn. - contg. chromium sulphate, sodium sulphate, methyl pyrrolidone and di:alkyl-methyl benzyl ammonium chloride" *
DATABASE WPI Derwent World Patents Index; AN 1989-128377, XP002485326, BARCHAN G P; SMIRNOV V A; SUKHOLENTS E A: "Electrolyte for nickel based coatings - contains nickel sulphate, boric acid and derivs. of pyrrolidone and improves coating properties" *

Also Published As

Publication number Publication date
ATE465283T1 (de) 2010-05-15
TWI439580B (zh) 2014-06-01
ES2340973T3 (es) 2010-06-11
EP2103717B1 (de) 2010-04-21
WO2009109271A2 (en) 2009-09-11
WO2009109271A3 (en) 2010-02-25
PT2103717E (pt) 2010-06-14
US20100300890A1 (en) 2010-12-02
CN101918618A (zh) 2010-12-15
CA2716115A1 (en) 2009-09-11
TW200949021A (en) 2009-12-01
DE502008000573D1 (de) 2010-06-02
CN101918618B (zh) 2012-02-22
KR101540615B1 (ko) 2015-07-30
JP2011513585A (ja) 2011-04-28
JP5688841B2 (ja) 2015-03-25
US8647491B2 (en) 2014-02-11
BRPI0907497A2 (pt) 2015-07-14
PL2103717T3 (pl) 2010-07-30
KR20100120160A (ko) 2010-11-12

Similar Documents

Publication Publication Date Title
EP2103717B1 (de) Pyrophosphat-basiertes Bad zur Abscheidung von Zinn-Legierungsschichten
EP2130948B1 (de) Pyrophosphathaltiges Bad zur cyanidfreien Abscheidung von Kupfer-Zinn-Legierungen
EP1114206B1 (de) Wässriges alkalisches cyanidfreies bad zur galvanischen abscheidung von zink- oder zinklegierungsüberzügen
EP2283170B1 (de) Pd- und pd-ni-elektrolytbäder
EP2116634B1 (de) Modifizierter Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
DE3428345A1 (de) Waessriges bad zur galvanischen abscheidung von zink und zinklegierungen
EP1870495A1 (de) Wässriges alkalisches cyanidfreies Bad zur galvanischen Abscheidung von Zink- und Zinklegierungsüberzügen
CH647269A5 (de) Plattierungsloesung fuer die ablagerung einer palladium/nickel-legierung.
EP2937450B1 (de) Galvanisches bad oder mischung zur verwendung in einem galvanischen bad zur abscheidung einer glanznickelschicht sowie verfahren zur herstellung eines artikels mit einer glanznickelschicht
DE4023444C2 (de) Verfahren zum galvanischen Abscheiden von Kupfer aus einem wäßrigen, alkalischen, Cyanid-freien Bad, bei dem sowohl eine lösliche als auch eine unlösliche Anode verwendet wird
EP1961840A1 (de) Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
DE3447813A1 (de) Waessriges saures bad sowie ein verfahren zur galvanischen abscheidung von zink oder zinklegierungen
EP2635724B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)-freien elektrolyten
DE3139815C2 (de) Verfahren zur galvanischen Herstellung eines einen Metallhärter enthaltenden Goldüberzugs
DE3013191A1 (de) Im wesentlichen cyanidfreies bad zur elektrolytischen abscheidung von silber oder silberlegierung
DE2718285A1 (de) Verfahren und zusammensetzung zur herstellung einer galvanischen abscheidung
DE3212118A1 (de) Bad zur galvanischen abscheidung von glaenzendem metallischem zinn oder legierungen des zinns
DE3139641A1 (de) &#34;galvanisches bad und verfahren zur abscheidung halbglaenzender duktiler und spannungsfreier nickelueberzuege&#34;
EP3415665B1 (de) Verfahren zur galvanischen abscheidung von zink-nickel-legierungsüberzügen aus einem alkalischen zink-nickel-legierungsbad mit reduziertem abbau von additiven
US4411744A (en) Bath and process for high speed nickel electroplating
DE2943399C2 (de) Verfahren und Zusammensetzung zur galvanischen Abscheidung von Palladium
DE3108466C2 (de) Verwendung eines Acetylenalkohols in einem Bad zur galvanischen Abscheidung einer Palladium/Nickel-Legierung
DE4013349A1 (de) 1-(2-sulfoaethyl)pyridiniumbetain, verfahren zu dessen herstellung sowie saure nickelbaeder enthaltend diese verbindung
DE2333096B2 (de) Galvanisch aufgebrachter mehrschichtiger Metallüberzug und Verfahren zu seiner Herstellung
EP2878711A1 (de) Verfahren zur galvanischen Abscheidung von Nickel und entsprechender Elektrolyt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20090107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HARTMANN, PHILIP

Inventor name: KOHLMANN, LARS

Inventor name: BRUNNER, HEIKO

Inventor name: SCHULZ, KLAUS DIETER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008000573

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2340973

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100602

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100421

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100401580

Country of ref document: GR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100821

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

26N No opposition filed

Effective date: 20110124

BERE Be: lapsed

Owner name: ATOTECH DEUTSCHLAND G.M.B.H.

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20130214

Year of fee payment: 6

Ref country code: FI

Payment date: 20130213

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20130218

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100721

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100421

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 465283

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20100401580

Country of ref document: GR

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140903

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200322

Year of fee payment: 13

Ref country code: IT

Payment date: 20200225

Year of fee payment: 13

Ref country code: GB

Payment date: 20200219

Year of fee payment: 13

Ref country code: PL

Payment date: 20200123

Year of fee payment: 13

Ref country code: DE

Payment date: 20200219

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200219

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008000573

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228