EP1109041A1 - Optisches Bauelement-Modul - Google Patents

Optisches Bauelement-Modul Download PDF

Info

Publication number
EP1109041A1
EP1109041A1 EP00126567A EP00126567A EP1109041A1 EP 1109041 A1 EP1109041 A1 EP 1109041A1 EP 00126567 A EP00126567 A EP 00126567A EP 00126567 A EP00126567 A EP 00126567A EP 1109041 A1 EP1109041 A1 EP 1109041A1
Authority
EP
European Patent Office
Prior art keywords
optical
transparent structure
semiconductor device
positioning
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00126567A
Other languages
English (en)
French (fr)
Inventor
Shuichi Japan Aviation Electr. Ind. Ltd. Aihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Publication of EP1109041A1 publication Critical patent/EP1109041A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • G02B6/4224Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera using visual alignment markings, e.g. index methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • the present invention relates to an optical device module in which a light emitting device which emits light from its surface substantially at right angles thereto, such as a laser diode, or a light receiving device which receives light substantially at right angles to its surface, such as a photo diode (which elements will hereinafter be generically referred to as an optical semiconductor device) and the optical path of an optical waveguide member such as an optical fiber or optical waveguide board, i.e. the core of the optical fiber or the optical waveguide of the optical waveguide board, are interconnected by an optical path bent substantially at right angles.
  • a light emitting device which emits light from its surface substantially at right angles thereto, such as a laser diode, or a light receiving device which receives light substantially at right angles to its surface, such as a photo diode (which elements will hereinafter be generically referred to as an optical semiconductor device) and the optical path of an optical waveguide member such as an optical fiber or optical waveguide board, i.e. the core of the optical fiber or the optical
  • Fig. 9 is a diagrammatic showing of a conventional optical device module of this kind proposed in Japanese Patent Application Laid-Open Gazette No. 08-21930.
  • Reference numeral 12 denotes a photo detector disposed in a casing 11, 13 a window made in the top panel of the casing 11, 14 a condenser lens fitted in the window 13, 15 an optical fiber disposed on the top of the casing 11, and 16 a reflecting surface formed by cutting one end face of the optical fiber 15 at an angle of about 45 degrees.
  • Light propagated through the optical fiber 15 is bent at right angles by the reflecting surface 16 and gathered by the condenser lens 14 for incidence on the photo detector 12 as indicated by the broken line.
  • a conventional optical device module of this kind As depicted in Figs. 11 and 12, a frame-like guide block 21 with a rectangular opening has formed integrally therewith a guide prism 22, an optical fiber is disposed in each recess 23 of the guide block 21 with the end face of the optical fiber 15 abutted against the guide prism 22, and a light receiving device 24 is fitted in the frame of the guide block 21. Light from the optical fiber 15 is bent by the guide prism 22 for incidence on the light receiving device 24.
  • Fig. 9 suffers much difficulty in aligning the point of incidence on the reflecting surface 16 of the optical fiber 15, the axis of the lens 13 and the light-receiving center of the photo detector 12; hence, it is not easy to launch the light from the optical fiber 15 into the photo detector 12 with high efficiency.
  • Fig. 10 too, it is very difficult to align the reflecting-point of the prism 17, the axis of the lens and the light-receiving center of the photo detector.
  • the abutment of the end face of the optical fiber 15 against one side of the guide prism 22 ensures accurate positioning, but the light receiving device 24 needs to be fitted snugly in the frame of the guide block 21.
  • the inside dimensions of the frame of the guide block 21 and/or outside dimensions of the light receiving device 24 be adjusted for each optical device module.
  • the illustrated structure lacks general versatility.
  • the light receiving device 24, once fitted in the frame of the guide block 21, is fixed and its position cannot be adjusted so that its light receiving surface is placed at a correct position.
  • an optical device module comprising:
  • Figs. 1A and 1B illustrate an embodiment according to the first aspect of the present invention which employs an optical fiber 15 as an optical waveguide member.
  • Reference numeral 31 denotes a substantially rectangular transparent structure molded of transparent glass or transparent synthetic resin.
  • the transparent structure 31 has a prismatic protrusion 31 a formed integrally therewith on one surface, in this example, on the top 32 of the structure 31.
  • the prismatic protrusion 3 la has a positioning surface 33 substantially vertical to the top 32 of the transparent structure 31 and a reflecting surface 34 forming an angle of approximately 45 degrees with respect to the positioning surface 33, that is, oblique to the top 32 of the transparent structure 31.
  • the height of the positioning surface 33 from the top 32 of the transparent structure 31 is about the same as or larger than the diameter of the optical fiber 15.
  • One end face of the optical fiber 15 placed on the top 32 of the transparent structure 31 is abutted against the positioning surface 33 so that the optical fiber 15 is positioned horizontally.
  • the optical fiber 15 is disposed substantially at right angles to
  • a rectangular recess 31R surrounded by a square frame-shaped support wall 31b along the marginal edge of the underside of the transparent structure 31.
  • a wiring board 35 is attached in abutting relation to the end face of the frame-shaped support wall 31b in parallel with the underside of the transparent structure 31.
  • the wiring board 35 is a printed wiring board of glass epoxy or ceramics, which has printed on the side thereof facing the transparent structure 31 a conductor pattern 36 forming an electrode, terminals and lead wires interconnecting them.
  • an optical semiconductor device 37 On the electrode portion of the conductor pattern 36 there is placed an optical semiconductor device 37 by soldering, for instance.
  • An electrode on the optical semiconductor device 37 and the electrode of the conductor pattern 36 are interconnected by a bonding wire 38.
  • the optical semiconductor device 37 is disposed with its device surface, in this example, its light emitting surface 39, held opposite the reflecting surface 34 of the prismatic protrusion 31 a across the transparent structure 31.
  • the wiring board 35 and the transparent structure 31 are assembled in such a way as described below.
  • the wiring board 35 is positioned relative to the transparent structure 31 in adjacent but spaced relationship to the lower end face of the support wall 31b, and then moved vertically into abutment thereon in such a manner as to cover the recess 31R surrounded by the support wall 31b.
  • an ultraviolet setting adhesive layer 41 is irradiated with ultraviolet rays to cure the adhesive layer, and consequently, the wiring board 35 hermetically seals and separates the recess 31R of the transparent structure 31 from the outside.
  • the optical semiconductor device 37 is placed on the wiring board 35 in the recess 31R.
  • the optical semiconductor device 37 is sealed in the recess 31b for protection. Since the transparent structure 31 and the wiring board 35 define the recess 31R as mentioned above, the overall size of the module can be reduced accordingly.
  • the wiring board 35 having the adhesive layer 41 serves as a means for supporting the optical semiconductor device 37 in the transparent structure 31.
  • light 42 emitted from the optical semiconductor device or light emitting element 37 having a light emitting end face on the side opposite the wiring board 35 somewhat spreads and strikes on the prismatic protrusion 31a of the transparent structure 31.
  • the incident light is reflected 90 degrees by the reflecting surface 34 of the protrusion 31a which forms an angle of 45 degrees with respect to the axis of emitted light from the light emitting device 37.
  • the reflected light passes through the positioning surface 33 of the protrusion 31 a and impinges on the core 15a (an optical path) of the optical fiber 15.
  • the angle of total reflection is equal to or smaller than 45 degrees which is determined by the relative refractive index of the transparent structure 31, total reflection of the emitted light from the light emitting device 37 occurs on the reflecting surface 34 of the transparent structure 31, permitting the incidence of approximately the entire quantity of emitted light on the core 15a of the optical fiber 15.
  • the total reflection is hard to occur, its reflection efficiency of the reflecting surface 34 can be increased as by evaporating metal it to form a mirror 43.
  • the optical coupling efficiency in this case is determined by a scattering loss on the total reflection surface, the spreading of the emitted light on the end face of the optical fiber 15, and deviations between the optical axes of the emitted and the reflected light and the optical axis of the optical fiber 15.
  • the reflection loss is zero
  • the light emitting device 37 is a point source and the spread angle of the emitted light is 10 degrees
  • the emitted light in an optical path 0.6 mm apart from the light emitting device 37 becomes a ray bundle 0.105 mm in diameter.
  • the transparent structure 31 (including the protrusion 31 a and the support wall 31b) can be molded of glass or similar material. This can be said to provide a high optical coupling efficiency with more ease and at lower cost than in the case of a conventional method of forming a similar reflecting surface by obliquely cutting an optical fiber.
  • At lease three positioning marks 44 are placed in each of the end face of the support wall 31 1B of the transparent structure 31 and the wiring board 35 at the positions where they are to be put together.
  • the transparent structure 31 is held above the wiring board 35 and their positioning marks 44 are aligned visually from above, after which the transparent structure 31 and the wiring board 35 are bonded to each other.
  • the positioning marks 44 in the wiring board 35 can be placed simultaneously with the formation of the conductor pattern 36.
  • the positioning marks 44 may be fiducial marks.
  • the positioning marks can be formed with an accuracy of 50 ⁇ m in the case of a glass epoxy wiring board and with an accuracy of 10 ⁇ m in the case of a ceramic wiring board.
  • the positioning marks on the transparent structure 31 can be formed, for example, by masked evaporation of metal with an accuracy of the submicron order. This allows ease in attaining a relative accuracy of, for instance, 5 ⁇ m or below that is usually needed in GI-500MMF (a graded index type 50- ⁇ m multimode optical fiber).
  • the height H1 of the support wall 31b be minimized within the range in which not to interfere the bonding wire 38.
  • the coupling efficiency of approximately 100% can be achieved by the alignment of the optical axes of the emitted light and the core of the optical fiber 15 and the coincidence of the diameter of the emitted light with the core diameter of the optical fiber 15.
  • the spread of the emitted light to be smaller than the core diameter of the optical fiber 15 (in the case of an optical waveguide member, the diameter of the optical waveguide)
  • Figs. 2A and 2B illustrate another embodiment of the present invention in which the reflecting surface 34 of the prismatic protrusion 31 a is formed, for example, as a paraboloid (of revolution) to thereby light-gathering power.
  • the curved surface in parabolic form and aligning the center of the light emitting surface of the light emitting device 37 with the focal point of the paraboloid reflected rays of light from the reflecting surface 34 become parallel rays, that is, the reflected light is kept from spreading, and consequently, the diameter of the ray bundle at the end face of the optical fiber 15 can be made smaller than the core diameter.
  • a convexity 45 is formed in the underside of the transparent structure 31 facing the light emitting device 37 in the Fig. 1 embodiment so that the convexity 45 serves as a lens, and this function is the same as is obtainable with the Fig. 2 embodiment.
  • the lens is shown to be a convex lens as a physical structure, it is also possible to employ a Fresnel lens or microplanar lens that provides the same function as the convex lens by partly changing the refractive index of the transparent structure 31. In this instance, the curved surface 45 is not formed.
  • the Fig. 4 embodiment is a combination of the embodiments of Figs. 2 and 3. As depicted in Fig. 4, the light-gathering power is provided in the reflecting surface 34 and in the underside of the transparent structure 31 facing the light emitting device 37.
  • the above-described embodiments are intended to raise the limitations on the degree of accuracy in mounting parts by reducing the diameter of the ray bundle, but the alignment of respective optical axes requires a high degree of precision in mounting the light emitting device 37 on the board 35, in mounting the transparent structure 31 on the board 35 and in connecting the transparent structure 31 and the optical fiber 15 to each other.
  • the mounting accuracy for aligning the optical axes can be enhanced by placing the optical fiber 15, the transparent structure 31 and the light emitting device 37 at certain fiducial points (parts) as well as by improving the mounting precision.
  • Figs. 5A to 5C illustrate an embodiment according to the second aspect of the present invention which is designed to provide increased mounting accuracy.
  • This embodiment uses an optical fiber as the optical waveguide member and a light emitting device as the semiconductor device.
  • the transparent structure 31 is as a fiducial part, on which the optical fiber 15 and the light emitting device 37 are mounted.
  • Reference numeral 31c denotes a thick-walled portion which is formed integrally with the top 32 of the rectangular transparent structure 31 and has a V-shaped groove 52 cut therein and extending about halfway from one end of the transparent structure 31 lengthwise.
  • the prismatic protrusion 31 a is formed integrally with top 32 of the transparent structure 31 in adjacent but spaced relation to the end face of the V-shaped groove 52, and the prismatic protrusion 31 a forms the positioning surface 33 and the reflecting surface 34.
  • the end face of the optical fiber 15 is abutted against the positioning surface 33 so that the optical fiber 15 is positioned in the side-to-side direction.
  • the light emitting device 37 is mounted directly on the underside of the transparent structure 31 with the optical axes of the reflecting surface 34 and the optical fiber 15 held in alignment with the optical axis of the light emitting device 37.
  • the solder adhesive layer by the solder bump 37S serves to support the light emitting device 37 on the transparent structure 31.
  • the transparent structure 31 has the above-mentioned V-shaped groove 52 as a guide which enables the optical fiber 15 to be aligned with the optical axis of the light reflected off the reflecting surface 34 and hence allows ease in mounting the optical fiber 15 in alignment with the optical axis of the light emitted from the light emitting device 37.
  • This embodiment uses the optical fiber, which is positioned by the V-shaped guide structure. Accordingly, the V-shaped groove 52 extends substantially at right angles to the positioning surface 33. This embodiment also permits relative positioning of the light emitting device 37 and the transparent structure 31 in the plane parallel to the underside of the latter.
  • the conventional face down bonding (which is referred to also as flip-chip bonding) it is customary to utilize an image recognition system in which: a probe equipped with image pickup means is inserted into the space between the surface of the light emitting device and the surface of the wiring board to be bonded; images of the both surfaces are alternately picked up; their relative position is judged and determined after processing the picked up images; and the both surfaces are bonded after pulling out the probe from the space between them.
  • the wiring board side is the transparent structure 31
  • their relative positioning can be achieved simply by visual observation or picking up their images from above the top of the transparent structure 31.
  • the positioning can be accomplished with reference to the electrode on the transparent substrate and the electrode of the light emitting device 37 that are to be interconnected; however, it is also possible to place fiducial mark on the transparent structure so that it is positioned with respect to a part of the light emitting device 37 such as an electrode that is not connected to the transparent structure, or its light emitting surface, or a swelled portion in the case of a mesa structure.
  • a tape fiber 15' having plural cores 15a arranged in parallel is abutted at one end against the positioning surface 33 of the prismatic protrusion 31a formed integrally with the transparent structure 31 on the top thereof and having the same length as the width of the tape fiber 15'.
  • the optical axes of the cores 15a are bent by the reflecting surface 34 of the protrusion 31a so that they pass through the transparent structure 31 and reach the individual light emitting devices 37 disposed on the wiring board 35.
  • the light emitting devices 37 may be mounted on the transparent structure 37 as depicted in Fig. 5.
  • the tape fiber 15' may be substituted with an optical waveguide member having plural optical waveguides formed side by side.
  • the position of the core 15a of the optical fiber 15 is determined only by the positioning surface 33 of the transparent structure 31, but it may also be positioned in a two-dimensional plane as depicted in Fig. 7.
  • Fig. 7 there is protrusively provided on the top 32 of the transparent structure 31 a guide portion 55 having a reference surface 54 perpendicular to the positioning surface 33 and the top 32.
  • the end face of an optical waveguide member 56 is abutted against the positioning surface 33 with one side of the waveguide member 56 held in abutment on the reference surface 54; thus, the optical waveguide member 56 is positioned in the two-dimensional plane on the transparent structure 31.
  • the optical waveguide member 56 is shown to have a plurality of optical waveguides or optical paths arranged side by side.
  • the optical semiconductor devices 37 are placed on the wiring board 35 in a one-to-one correspondence with the plurality of optical waveguides as depicted in Figs. 1A and 1B, or mounted by face bonding on the underside of the transparent structure 31 as depicted in Fig. 5.
  • the optical waveguide member 56 having the plurality of optical waveguides 67 is used, but this structure is applicable as well to the optical waveguide member having one optical waveguide.
  • the optical waveguide member 56 may be the optical tape fiber 15' depicted in Fig. 6.
  • Fig. 8 illustrates a modified form of the Fig. 5 embodiment, in which the optical fiber 15 and the transparent structure 31 are equipped with a connector 61 and a receptacle 62, respectively, so that the former is detachably mounted on the latter.
  • the connector 61 has: a through hole 64 in, for example, a thick rod-like coupling portion 63 centrally thereof, through which the optical fiber 15 is inserted and fixed therein; a pair of parallel engaging pieces 65 extending in the same direction from opposite ends of the coupling portion 63; a pair of hooks 66 protrusively provided on the tip end portions of the engaging pieces 65 in opposing relation to the optical fiber 15; and a pair of keys 67 protrusively provided on the inside surfaces of the engaging pieces 66 and extended in the same direction as the optical fiber 15.
  • the coupling portion 63, the engaging pieces 65, the hooks 66 and the keys 67 are integrally molded of a synthetic resin material, and the opposite end portions of the engaging pieces 65 can be elastically pushed apart.
  • the receptacle 62 for receiving the connector 61 is shown to be formed integrally with the transparent structure 31 that has formed integrally therewith the V-shaped groove 52 for guiding and positioning the optical cable 15.
  • the thick-walled portion with the V-shaped groove 52 cut therein has a pair of engaging portions 68 outwardly projecting from each side surface thereof to thereby define a key groove 69 which extends substantially at right angles to the positioning surface 33 of the prismatic protrusion 31a.
  • Those portions of the two pairs of engaging portions 68 on the side thereof opposite the protrusion 31 a are gradually protruded, that is, tapered so that the spacing of the engaging portions 68 on the both sides of the thick-walled portion gradually increases toward the positioning surface 33.
  • the engaging pieces 65 of the connector 61 are elastically pushed outward in the opposite directions by the tapered surfaces of the engaging portions 68.
  • the hooks 66 slide over the engaging portions 68 and snap elastically into engagement with the side surfaces of the engaging portions 68 on the side thereof facing the positioning surface 33, thereby assembling the connector 61 and the receptacle 62 into a unitary structure.
  • the coupling portion 68 of the connector 61 abuts against the end face of the transparent structure 31 and the end face of the optical fiber 15 abuts against or lies adjacent the positioning surface 33, whereby the optical fiber 15 is positioned in the direction perpendicular to the positioning surface 33.
  • the keys 65 are inserted in and guided by the key grooves 69 and the optical fiber 15 is inserted in the V-shaped groove 52 just in the center thereof, whereby the optical fiber 15 is positioned in the planes parallel with and vertical to the transparent structure 31, respectively.
  • the optical semiconductor device 37 is mounted on the transparent structure 31 as depicted in Fig. 1 or 5.
  • the Fig. 8 embodiment has been described to be applied to the optical coupling of the optical fiber 15 and the optical semiconductor device 37, but the illustrated structure is applicable as well to the optical coupling of the tape fiber 15' and a plurality of optical semiconductor devices 3.
  • the connector-receptacle structure can be applied to the combination of the optical waveguide member having one or more optical waveguides and the optical semiconductor device or devices.
  • the optical waveguide member can be used in place of the optical fiber 15.
  • the optical semiconductor device 37 has been described to be a light emitting device, it may also be light receiving element or photo detector.
  • the reflecting surface 34 may also be formed as such a light-gathering curved surface as described in respect of Figs. 2, 3 and 4, and the portion of the transparent structure 31 facing the optical semiconductor device 37 may also be equipped with light-gathering lens power.
  • a prismatic protrusion is formed integrally with a block-shaped transparent structure on one side thereof and the vertical surface of the prismatic protrusion is used for positioning an optical waveguide member, and an optical semiconductor device is placed opposite the other side of the transparent structure. Since the optical semiconductor device is positioned using a positioning mark placed in the above-mentioned other side of the transparent structure, they can be fixedly assembled with a high degree of positioning accuracy--this provides high optical coupling efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
EP00126567A 1999-12-16 2000-12-12 Optisches Bauelement-Modul Withdrawn EP1109041A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35747899 1999-12-16
JP35747899A JP2001174671A (ja) 1999-12-16 1999-12-16 光素子モジュール

Publications (1)

Publication Number Publication Date
EP1109041A1 true EP1109041A1 (de) 2001-06-20

Family

ID=18454338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00126567A Withdrawn EP1109041A1 (de) 1999-12-16 2000-12-12 Optisches Bauelement-Modul

Country Status (3)

Country Link
US (1) US6491447B2 (de)
EP (1) EP1109041A1 (de)
JP (1) JP2001174671A (de)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027743A1 (de) * 2001-09-14 2003-04-03 Infineon Technologies Ag Sende- und/oder empfangsanordnung zur optischen signalübertragung
EP1336883A1 (de) * 2002-02-15 2003-08-20 Omron Corporation Optisches Kopplungselement und Transceiver, der es benutzt
FR2836236A1 (fr) * 2002-02-21 2003-08-22 Framatome Connectors Int Dispositif de couplage optoelectronique perfectionne
EP1447695A2 (de) * 2003-02-17 2004-08-18 Seiko Epson Corporation Optisches Modul mit optischer Buchse zwecks optischer Übertragung und Verfahren zu seiner Herstellung
EP1517166A2 (de) * 2003-09-15 2005-03-23 Rohm and Haas Electronic Materials, L.L.C. Vorrichtungsgehäuse und Verfahren zu derer Prüfung und Herstellung
US6957006B2 (en) 2002-02-15 2005-10-18 Omron Corporation Optical element and optical device using the same
WO2006039200A2 (en) * 2004-09-30 2006-04-13 Intel Corporation Optical transceiver module
KR100590840B1 (ko) 2004-03-16 2006-06-19 (주)미래컴퍼니 광트랜시버 모듈용 커넥터의 제조 방법
GB2397393B (en) * 2002-12-12 2007-05-16 Agilent Technologies Inc Optical apparatus and method
WO2007128021A1 (de) 2006-05-08 2007-11-15 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Leiterplattenelement mit optoelektronischem bauelement und licht-wellenleiter
EP2116879A3 (de) * 2008-04-10 2009-12-23 Tyco Electronics Nederland B.V. Optische Schnittstelle
WO2011040830A1 (en) 2009-09-30 2011-04-07 Corning Incorporated Optical fiber end structures for improved multi-mode bandwidth, and related systems and methods
WO2012031780A3 (de) * 2010-09-12 2012-05-10 Amphenol-Tuchel Electronics Gmbh Optische kopplungsvorrichtung, optoelektronisches bauelement und optoelektronischer transceiver
WO2012031781A3 (de) * 2010-09-12 2012-05-24 Amphenol-Tuchel Electronics Gmbh Optische kopplungsvorrichtung, optoelektronisches bauelement und optoelektronischer transceiver
WO2013059731A1 (en) * 2011-10-19 2013-04-25 Cisco Technology, Inc. Molded glass lid for wafer level packaging of opto-electronic assemblies
WO2013148763A1 (en) * 2012-03-30 2013-10-03 Corning Cable Systems Llc Total-internal-reflection fiber optic interface modules and assemblies
CN103424812A (zh) * 2012-05-16 2013-12-04 鸿富锦精密工业(深圳)有限公司 光纤连接器
CN103885134A (zh) * 2012-12-22 2014-06-25 鸿富锦精密工业(深圳)有限公司 光耦合透镜及光纤耦合连接器
CN104335092A (zh) * 2012-03-30 2015-02-04 康宁光电通信有限责任公司 具有不同光学路径的全内反射光纤接口模块和使用所述模块的组件
US9435963B2 (en) 2012-03-30 2016-09-06 Corning Cable Systems Llc Misalignment-tolerant total-internal-reflection fiber optic interface modules and assemblies with high coupling efficiency
US9638873B2 (en) 2011-01-20 2017-05-02 Corning Incorporated Receptacle ferrule assemblies with gradient index lenses and fiber optic connectors using same
EP3911986A4 (de) * 2019-01-18 2023-02-22 Samtec Inc. Abgedichteter optischer sender-empfänger

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258081A (ja) * 2001-02-28 2002-09-11 Fujitsu Ltd 光配線基板、光配線基板の製造方法及び多層光配線
TW591990B (en) * 2001-07-25 2004-06-11 Sanyo Electric Co Method for making an illumination device
JP3791394B2 (ja) 2001-11-01 2006-06-28 日本電気株式会社 光導波路基板
JP2003270462A (ja) * 2002-03-15 2003-09-25 Nippon Telegr & Teleph Corp <Ntt> 光結合構造
US7123798B2 (en) * 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same
WO2003083542A1 (fr) * 2002-03-29 2003-10-09 Ngk Insulators, Ltd. Dispositif optique et son procede de fabrication
US20040021214A1 (en) * 2002-04-16 2004-02-05 Avner Badehi Electro-optic integrated circuits with connectors and methods for the production thereof
WO2003088286A2 (en) * 2002-04-16 2003-10-23 Xloom Photonics Ltd. Electro-optical circuitry having integrated connector and methods for the production thereof
DE10238741A1 (de) * 2002-08-19 2004-03-04 Infineon Technologies Ag Planare optische Komponente und Kopplungsvorrichtung zur Kopplung von Licht zwischen einer planaren optischen Komponente und einem optischen Bauteil
KR100383382B1 (en) * 2002-08-30 2003-05-16 Fionix Inc Optical transmission module using optical fiber having tilt angle and reflective side of silicon optical bench
DE10246532B4 (de) * 2002-10-01 2005-07-07 Infineon Technologies Ag Koppeleinheit zur Kopplung eines optischen Sende- und/oder Empfangsmoduls mit einer Lichtleitfaser
WO2004038473A1 (en) * 2002-10-22 2004-05-06 Firecomms Limited Connection of optical waveguides to optical devices
US6774353B2 (en) * 2002-12-18 2004-08-10 Branson Ultrasonics Corporation Radial power feedback sensor for fiber optic bundle
US20040126064A1 (en) * 2002-12-31 2004-07-01 Vandentop Gilroy J. Optical assembly
WO2004068592A1 (ja) * 2003-01-27 2004-08-12 Ngk Insulators, Ltd. 光デバイス
CA2424820C (en) * 2003-04-08 2010-06-22 Institut National D'optique Prismatic reflection optical waveguide device
WO2004097481A1 (ja) * 2003-04-30 2004-11-11 Fujikura Ltd. 光トランシーバおよび光コネクタ
CN101398516B (zh) * 2003-04-30 2011-07-27 株式会社藤仓 光收发器及光连接器
WO2004097480A1 (ja) * 2003-04-30 2004-11-11 Fujikura Ltd. 光コネクタアッセンブリ、コネクタホルダ、光コネクタ
US7206480B2 (en) * 2003-08-01 2007-04-17 Bae Systems Information And Electronic Systems Integration Inc. Method of forming interlayer connections in integrated optical circuits, and devices formed using same
JP4433730B2 (ja) * 2003-09-05 2010-03-17 住友電気工業株式会社 光フィルタ保持部材及び光送受信モジュール
AU2003272062A1 (en) * 2003-10-15 2005-04-27 Xloom Photonics Ltd. Electro-optical circuitry having integrated connector and methods for the production thereof
US7251393B2 (en) * 2004-03-30 2007-07-31 Lockheed Martin Corporation Optical router
JP2006267501A (ja) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd サブマウントの製造方法、サブマウント、及び光送受信モジュール
EP2829899B1 (de) * 2005-05-19 2019-07-03 Fujikura Ltd. Optischer Verbinderhalter und Verfahren zur Montage des Verbinderhalters
JP4559327B2 (ja) * 2005-09-14 2010-10-06 株式会社日立製作所 レンズを用いた光モジュールのアラインメント方法およびその方法で作成した光モジュール
JP2006023777A (ja) * 2005-09-15 2006-01-26 Seiko Epson Corp 光モジュール、光通信装置、光電気混載集積回路、回路基板、電子機器
JP4631655B2 (ja) * 2005-10-31 2011-02-16 セイコーエプソン株式会社 光伝送モジュール、光伝送モジュールの製造方法、光インターコネクション回路及び電子機器
KR100793296B1 (ko) 2005-12-08 2008-01-10 한국전자통신연구원 렌즈 일체형 반사경과 그 제조방법 및 렌즈 일체형반사경을 이용하는 광접속 모듈
JP4610478B2 (ja) * 2005-12-21 2011-01-12 株式会社エンプラス 光モジュール及びこれを備えた光コネクタ
US8052337B2 (en) * 2005-12-28 2011-11-08 Omron Corporation Optical module
JP2007304298A (ja) * 2006-05-11 2007-11-22 Central Glass Co Ltd 光能動素子実装基板
US7680376B2 (en) * 2006-06-30 2010-03-16 Applied Materials, Inc. Wafer-level alignment of optical elements
JP4690963B2 (ja) * 2006-08-09 2011-06-01 株式会社日立製作所 多チャンネル光モジュールの製造方法
US7543994B2 (en) 2006-10-19 2009-06-09 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Multi-optical fiber connector module for use with a transceiver module and method for coupling optical signals between the transceiver module and multiple optical fibers
US7553091B2 (en) * 2006-10-19 2009-06-30 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Stackable multi-optical fiber connector modules and devices for aligning sets of the stackable multi-optical fiber connector modules and coupling optical signals between them
JP4299855B2 (ja) * 2006-11-30 2009-07-22 シャープ株式会社 光伝送装置アッセンブリおよびそれを用いた電子機器
US8189262B2 (en) 2007-01-25 2012-05-29 Sumitomo Electric Fine Polymer, Inc. Optical sheet, and mounting method and optical module using the optical sheet
JP4903120B2 (ja) 2007-10-03 2012-03-28 株式会社フジクラ 光路変更部材
US7794158B2 (en) * 2007-10-04 2010-09-14 Hitachi Cable Ltd. Fabrication method of optical interconnection component and optical interconnection component itself
US20090093137A1 (en) * 2007-10-08 2009-04-09 Xloom Communications, (Israel) Ltd. Optical communications module
JP5550221B2 (ja) * 2007-12-12 2014-07-16 株式会社エンプラス 光結合素子およびこれを備えた光モジュール
US8985865B2 (en) * 2008-11-28 2015-03-24 Us Conec, Ltd. Unitary fiber optic ferrule and adapter therefor
KR101246137B1 (ko) * 2008-12-19 2013-03-25 한국전자통신연구원 발광 소자 및 광결합 모듈
JP2010164856A (ja) * 2009-01-16 2010-07-29 Ntt Electornics Corp 光学モジュール
US20100284647A1 (en) * 2009-05-09 2010-11-11 Sixis, Inc. Optical ribbon cable attachment mechanism for the backside of a circuit board
US8439578B2 (en) * 2009-09-08 2013-05-14 Vi Systems Gmbh Opto-electronic assembly for high speed transmission
JP5238651B2 (ja) * 2009-09-11 2013-07-17 株式会社フジクラ 光路変更部材、光接続方法
US8477298B2 (en) * 2009-09-30 2013-07-02 Corning Incorporated Angle-cleaved optical fibers and methods of making and using same
US20110075976A1 (en) * 2009-09-30 2011-03-31 James Scott Sutherland Substrates and grippers for optical fiber alignment with optical element(s) and related methods
US8295671B2 (en) * 2009-10-15 2012-10-23 Corning Incorporated Coated optical fibers and related apparatuses, links, and methods for providing optical attenuation
US8961037B2 (en) 2009-10-16 2015-02-24 Fujikura Ltd. Optical connector
JP5186048B2 (ja) * 2010-01-15 2013-04-17 アルプス電気株式会社 光学素子モジュール
JP5390422B2 (ja) * 2010-01-22 2014-01-15 アルプス電気株式会社 光学素子モジュール
CN104977668A (zh) * 2010-03-19 2015-10-14 康宁公司 用于电子装置的光纤接口装置
JP5457913B2 (ja) * 2010-03-31 2014-04-02 ヒロセ電機株式会社 光モジュール装置及びその製造方法
DE102010018248B4 (de) * 2010-04-23 2015-07-30 Ruprecht-Karls-Universität Heidelberg Über optische Verbinder und deren Herstellung
US8876408B2 (en) * 2010-04-23 2014-11-04 Ruprecht-Karls-Universität Heidelberg Optical connectors and a method of production thereof
JP5564344B2 (ja) * 2010-06-29 2014-07-30 株式会社フジクラ 光ファイバ付きフェルール
US9429717B2 (en) 2010-06-29 2016-08-30 Fujikura Ltd. Ferrule and ferrule with optical fiber
JP5690101B2 (ja) * 2010-08-26 2015-03-25 株式会社エンプラス 光ファイバ保持部材
US9151918B2 (en) * 2010-08-26 2015-10-06 Vi Systems Gmbh Opto-electronic assembly for parallel high speed transmission
KR101176950B1 (ko) * 2010-09-17 2012-08-30 주식회사 유나이브 부품의 수동 정렬을 구현하는 광 송수신 장치 및 부품의 수동 정렬방법
US9239440B2 (en) * 2010-11-09 2016-01-19 Corning Incorporated Receptacle ferrules with monolithic lens system and fiber optic connectors using same
US20130266264A1 (en) * 2010-12-21 2013-10-10 Nec Corporation Optical module and method for making the same
US9066456B2 (en) * 2011-02-28 2015-06-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Lens device attachment to printed circuit board
JP2012220621A (ja) * 2011-04-06 2012-11-12 Murata Mfg Co Ltd 受信モジュール
US8818145B2 (en) * 2011-08-03 2014-08-26 Tyco Electronics Corporation Optical interposer with transparent substrate
WO2013048743A1 (en) 2011-09-26 2013-04-04 3M Innovative Properties Company Optical substrate having a plurality of staggered light redirecting features on a major surface thereof
JP5812116B2 (ja) * 2011-12-28 2015-11-11 日本電気株式会社 光モジュール及びその製造方法
US8867870B2 (en) 2012-02-05 2014-10-21 Mellanox Technologies Ltd. Optical module fabricated on folded printed circuit board
US8750660B2 (en) * 2012-02-09 2014-06-10 Mellanox Technologies Ltd. Integrated optical interconnect
US8871570B2 (en) 2012-03-14 2014-10-28 Mellanox Technologies Ltd. Method of fabricating integrated optoelectronic interconnects with side mounted transducer
JP2013200347A (ja) 2012-03-23 2013-10-03 Enplas Corp 光レセプタクルおよびこれを備えた光モジュール
JP2013235243A (ja) * 2012-04-09 2013-11-21 Fujikura Ltd 光路変更部材
JP5956815B2 (ja) * 2012-04-20 2016-07-27 日本航空電子工業株式会社 光モジュール用基体及び光モジュール
US9946032B2 (en) * 2012-04-20 2018-04-17 Corning Optical Communications LLC Fiber optic modules having a fiber tray, optical-to-optical fiber optic connectors, and methods thereof
US9201201B2 (en) * 2012-04-20 2015-12-01 Corning Cable Systems Llc Fiber trays, fiber optical modules, and methods of processing optical fibers
US8690455B2 (en) 2012-05-06 2014-04-08 Mellanox Technologies Ltd. Planar optical interface and splitter
US8870467B2 (en) 2012-05-06 2014-10-28 Mellanox Technologies Ltd. Optical interface and splitter with micro-lens array
US8750657B2 (en) 2012-11-15 2014-06-10 Mellanox Technologies Ltd. Flip-chip optical interface with micro-lens array
TWI553363B (zh) * 2012-05-16 2016-10-11 鴻海精密工業股份有限公司 光纖連接器
US9323014B2 (en) 2012-05-28 2016-04-26 Mellanox Technologies Ltd. High-speed optical module with flexible printed circuit board
US20130330033A1 (en) * 2012-06-12 2013-12-12 Futurewei Technologies, Inc. Tsv substrate with mirror and its application in high-speed optoelectronic packaging
JP6070709B2 (ja) * 2012-08-23 2017-02-01 株式会社村田製作所 光伝送モジュール
TWI578049B (zh) * 2012-09-14 2017-04-11 鴻海精密工業股份有限公司 光電耦合模組
JP6033624B2 (ja) * 2012-09-25 2016-11-30 シャープ株式会社 光電変換素子
CN104755977B (zh) 2012-10-10 2016-08-24 恩普乐股份有限公司 光耦合元件和具备该光耦合元件的光模块
TWI565989B (zh) * 2012-12-14 2017-01-11 鴻海精密工業股份有限公司 光纖連接器
TWI575275B (zh) * 2012-12-21 2017-03-21 鴻海精密工業股份有限公司 光學通訊模組
TWI557460B (zh) * 2012-12-27 2016-11-11 鴻海精密工業股份有限公司 光電轉換裝置及光纖耦合連接器
JP5823419B2 (ja) * 2013-01-15 2015-11-25 古河電気工業株式会社 光モジュールの製造方法
JP2014137410A (ja) * 2013-01-15 2014-07-28 Furukawa Electric Co Ltd:The 光モジュール、光モジュールの製造方法
WO2014142789A1 (en) * 2013-03-11 2014-09-18 Lightlab Imaging, Inc. Optical fiber beam directing systems and apparatuses
US8979394B2 (en) 2013-03-28 2015-03-17 Corning Cable Systems Llc Self-contained total internal reflection sub-assembly
JP6204177B2 (ja) * 2013-06-20 2017-09-27 京セラ株式会社 光装置用基板およびそれを備えた光装置
EP2843446B1 (de) * 2013-09-02 2019-07-24 Pepperl & Fuchs GmbH Optischer Sensor
CN104678513B (zh) * 2013-11-30 2018-02-27 中北大学 光耦合模块与光纤连接器
EP2916151B1 (de) * 2014-03-05 2020-01-01 Corning Optical Communications LLC Verfahren zur Herstellung einer Faserkopplungsvorrichtung
JP6245071B2 (ja) * 2014-05-23 2017-12-13 日立金属株式会社 光伝送モジュール
TWI495917B (zh) 2014-06-17 2015-08-11 Unimicron Technology Corp 光電線路板及其組裝方法
US9261660B2 (en) * 2014-07-09 2016-02-16 Hon Hai Precision Industry Co., Ltd. Optical coupling lens, optical communiction device, and method for assembling same
US9632261B1 (en) * 2014-08-06 2017-04-25 Sandia Corporation Device-packaging method and apparatus for optoelectronic circuits
WO2016080296A1 (ja) * 2014-11-18 2016-05-26 コニカミノルタ株式会社 光路変更素子及び光結合装置
EP3345029A1 (de) 2015-09-04 2018-07-11 CCS Technology, Inc. Faserkoppler zur kopplung von mindestens einer optischen faser
US10295768B2 (en) * 2016-07-08 2019-05-21 Finisar Corporation Chip on leadframe optical subassembly
US10168494B2 (en) * 2016-11-30 2019-01-01 International Business Machines Corporation Off-axis micro-mirror arrays for optical coupling in polymer waveguides
JP2018092061A (ja) * 2016-12-06 2018-06-14 株式会社エンプラス 光レセプタクル、光モジュール、および光レセプタクルの製造方法
JP7047329B2 (ja) * 2017-10-27 2022-04-05 住友電気工業株式会社 光学部品、光学部品の製造方法、及び光コネクタケーブル
JP7117133B2 (ja) * 2018-04-16 2022-08-12 日本ルメンタム株式会社 光サブアセンブリ及びその製造方法並びに光モジュール
JP6886432B2 (ja) * 2018-07-06 2021-06-16 ライトラボ・イメージング・インコーポレーテッド 光ファイバビーム方向付けシステム及び装置
DE102018214803B4 (de) * 2018-08-31 2021-09-02 Robert Bosch Gmbh Vorrichtung zum Einkoppeln elektromagnetischer Wellen in einen Chip
JP2022050209A (ja) * 2020-09-17 2022-03-30 住友電気工業株式会社 光モジュール及び光コネクタケーブル
WO2022131463A1 (ko) * 2020-12-14 2022-06-23 엠피닉스 주식회사 파이버 레이저 다이오드 모듈
WO2022215274A1 (ja) * 2021-04-09 2022-10-13 日本電信電話株式会社 光導波路形成方法
US20230251428A1 (en) * 2022-02-04 2023-08-10 Broadcom International Pte. Ltd. Silicon photonic edge coupled connector via collimation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732446A (en) * 1985-10-02 1988-03-22 Lamar Gipson Electrical circuit and optical data buss
JPH01305789A (ja) * 1988-06-03 1989-12-11 Canon Inc ホワイトバランス装置
US5073003A (en) * 1988-12-23 1991-12-17 At&T Bell Laboratories Optoelectronic device package method and apparatus
JPH0799339A (ja) * 1993-04-30 1995-04-11 Sharp Corp 光結合装置
US5764832A (en) * 1993-03-24 1998-06-09 Fujitsu Limited Integrated semiconductor optical devices and method of manufacture employing substrate having alignment groove
US5898803A (en) * 1996-04-27 1999-04-27 Robert Bosch Gmbh Optical, beam-splitting component and a method for producing a prism carrier plate for such a component
US5987202A (en) * 1995-01-18 1999-11-16 Robert Bosch Gmbh Arrangement for converting optical signals into electrical signals and method of producing the arrangement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132076A (en) * 1979-04-02 1980-10-14 Nippon Telegr & Teleph Corp <Ntt> Photoreceptor
JPH0513749A (ja) * 1991-06-28 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> 光接続回路
US5369529A (en) * 1993-07-19 1994-11-29 Motorola, Inc. Reflective optoelectronic interface device and method of making
JPH088818A (ja) * 1994-06-17 1996-01-12 Hitachi Cable Ltd 電子回路一体型光送受信モジュール
JPH10209426A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 光送受信半導体装置
US6198864B1 (en) * 1998-11-24 2001-03-06 Agilent Technologies, Inc. Optical wavelength demultiplexer
JP2001051162A (ja) * 1999-06-04 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> 光結合部品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732446A (en) * 1985-10-02 1988-03-22 Lamar Gipson Electrical circuit and optical data buss
JPH01305789A (ja) * 1988-06-03 1989-12-11 Canon Inc ホワイトバランス装置
US5073003A (en) * 1988-12-23 1991-12-17 At&T Bell Laboratories Optoelectronic device package method and apparatus
US5764832A (en) * 1993-03-24 1998-06-09 Fujitsu Limited Integrated semiconductor optical devices and method of manufacture employing substrate having alignment groove
JPH0799339A (ja) * 1993-04-30 1995-04-11 Sharp Corp 光結合装置
US5987202A (en) * 1995-01-18 1999-11-16 Robert Bosch Gmbh Arrangement for converting optical signals into electrical signals and method of producing the arrangement
US5898803A (en) * 1996-04-27 1999-04-27 Robert Bosch Gmbh Optical, beam-splitting component and a method for producing a prism carrier plate for such a component

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 105 (E - 0895) 26 February 1990 (1990-02-26) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 07 31 August 1995 (1995-08-31) *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302306C (zh) * 2001-09-14 2007-02-28 因芬尼昂技术股份公司 光学信号传输之传送及/或接收装置
WO2003027743A1 (de) * 2001-09-14 2003-04-03 Infineon Technologies Ag Sende- und/oder empfangsanordnung zur optischen signalübertragung
US7359646B2 (en) 2001-09-14 2008-04-15 Finisar Corporation Transmitter and/or receiver arrangement of optical signal transmission
EP1336883A1 (de) * 2002-02-15 2003-08-20 Omron Corporation Optisches Kopplungselement und Transceiver, der es benutzt
US6957006B2 (en) 2002-02-15 2005-10-18 Omron Corporation Optical element and optical device using the same
FR2836236A1 (fr) * 2002-02-21 2003-08-22 Framatome Connectors Int Dispositif de couplage optoelectronique perfectionne
WO2003075065A1 (fr) * 2002-02-21 2003-09-12 Fci Dispositif de couplage optoelectronique perfectionne
GB2397393B (en) * 2002-12-12 2007-05-16 Agilent Technologies Inc Optical apparatus and method
EP1447695A2 (de) * 2003-02-17 2004-08-18 Seiko Epson Corporation Optisches Modul mit optischer Buchse zwecks optischer Übertragung und Verfahren zu seiner Herstellung
US7118293B2 (en) 2003-02-17 2006-10-10 Seiko Epson Corporation Optical module and manufacturing method of the same, optical communication device, opto-electrical hybrid integrated circuit, circuit board, and electronic apparatus
EP1447695A3 (de) * 2003-02-17 2005-04-20 Seiko Epson Corporation Optisches Modul mit optischer Buchse zwecks optischer Übertragung und Verfahren zu seiner Herstellung
EP1517166B1 (de) * 2003-09-15 2015-10-21 Nuvotronics, LLC Vorrichtungsgehäuse und Verfahren zu derer Prüfung und Herstellung
EP1517166A2 (de) * 2003-09-15 2005-03-23 Rohm and Haas Electronic Materials, L.L.C. Vorrichtungsgehäuse und Verfahren zu derer Prüfung und Herstellung
KR100590840B1 (ko) 2004-03-16 2006-06-19 (주)미래컴퍼니 광트랜시버 모듈용 커넥터의 제조 방법
WO2006039200A3 (en) * 2004-09-30 2006-06-22 Intel Corp Optical transceiver module
WO2006039200A2 (en) * 2004-09-30 2006-04-13 Intel Corporation Optical transceiver module
WO2007128021A1 (de) 2006-05-08 2007-11-15 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Leiterplattenelement mit optoelektronischem bauelement und licht-wellenleiter
US8417078B2 (en) 2006-05-08 2013-04-09 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Printed circuit board element including an optoelectronic component and an optical waveguide
US20090310905A1 (en) * 2006-05-08 2009-12-17 Markus Riester Printed circuit board element including an optoelectronic component and an optical waveguide
CN103185934B (zh) * 2006-05-08 2015-04-01 At&S奥地利科技及系统技术股份公司 光电子构件及其制造方法和印刷电路板元件
EP2116879A3 (de) * 2008-04-10 2009-12-23 Tyco Electronics Nederland B.V. Optische Schnittstelle
WO2011040830A1 (en) 2009-09-30 2011-04-07 Corning Incorporated Optical fiber end structures for improved multi-mode bandwidth, and related systems and methods
WO2012031780A3 (de) * 2010-09-12 2012-05-10 Amphenol-Tuchel Electronics Gmbh Optische kopplungsvorrichtung, optoelektronisches bauelement und optoelektronischer transceiver
WO2012031781A3 (de) * 2010-09-12 2012-05-24 Amphenol-Tuchel Electronics Gmbh Optische kopplungsvorrichtung, optoelektronisches bauelement und optoelektronischer transceiver
CN103140786A (zh) * 2010-09-12 2013-06-05 安费诺-图赫尔电子有限公司 光学联接装置、光电子构件和光电子收发器
US9294197B2 (en) 2010-09-12 2016-03-22 Amphenol Corporation Optoelectronic component
US8985868B2 (en) 2010-09-12 2015-03-24 Amphenol Corporation Optoelectronic component
US9638873B2 (en) 2011-01-20 2017-05-02 Corning Incorporated Receptacle ferrule assemblies with gradient index lenses and fiber optic connectors using same
WO2013059731A1 (en) * 2011-10-19 2013-04-25 Cisco Technology, Inc. Molded glass lid for wafer level packaging of opto-electronic assemblies
US20150277068A1 (en) * 2011-10-19 2015-10-01 Cisco Technology, Inc. Molded glass lid for wafer level packaging of opto-electronic assemblies
CN104220914A (zh) * 2011-10-19 2014-12-17 思科技术公司 用于光电组件的晶圆级封装的模制玻璃盖
CN104220914B (zh) * 2011-10-19 2017-09-08 思科技术公司 用于光电组件的晶圆级封装的模制玻璃盖
US9575266B2 (en) 2011-10-19 2017-02-21 Cisco Technology, Inc. Molded glass lid for wafer level packaging of opto-electronic assemblies
US9052445B2 (en) 2011-10-19 2015-06-09 Cisco Technology, Inc. Molded glass lid for wafer level packaging of opto-electronic assemblies
US9435963B2 (en) 2012-03-30 2016-09-06 Corning Cable Systems Llc Misalignment-tolerant total-internal-reflection fiber optic interface modules and assemblies with high coupling efficiency
CN104335092A (zh) * 2012-03-30 2015-02-04 康宁光电通信有限责任公司 具有不同光学路径的全内反射光纤接口模块和使用所述模块的组件
CN104335092B (zh) * 2012-03-30 2016-09-07 康宁光电通信有限责任公司 具有不同光学路径的全内反射光纤接口模块和使用所述模块的组件
US9052478B2 (en) 2012-03-30 2015-06-09 Corning Cable Systems Llc Total-internal-reflection fiber optic interface modules with different optical paths and assemblies using same
WO2013148763A1 (en) * 2012-03-30 2013-10-03 Corning Cable Systems Llc Total-internal-reflection fiber optic interface modules and assemblies
US8913858B2 (en) 2012-03-30 2014-12-16 Corning Cable Systems Llc Total-internal-reflection fiber optic interface modules and assemblies
EP2831652B1 (de) * 2012-03-30 2020-03-04 Corning Optical Communications LLC Versatztolerante glasfaserschnittstellenmodule mit totalreflexion und anordnungen mit hohem einkopplungsgrad
CN103424812A (zh) * 2012-05-16 2013-12-04 鸿富锦精密工业(深圳)有限公司 光纤连接器
CN103885134A (zh) * 2012-12-22 2014-06-25 鸿富锦精密工业(深圳)有限公司 光耦合透镜及光纤耦合连接器
CN103885134B (zh) * 2012-12-22 2016-12-07 鸿富锦精密工业(深圳)有限公司 光耦合透镜及光纤耦合连接器
EP3911986A4 (de) * 2019-01-18 2023-02-22 Samtec Inc. Abgedichteter optischer sender-empfänger

Also Published As

Publication number Publication date
JP2001174671A (ja) 2001-06-29
US20010004413A1 (en) 2001-06-21
US6491447B2 (en) 2002-12-10

Similar Documents

Publication Publication Date Title
US6491447B2 (en) Optical device module
US5071213A (en) Optical coupler and method of making optical coupler
US5337391A (en) Optoelectronic sub-module and method of making same
US5909523A (en) Optical module and method of fabricating optical module
US7433554B2 (en) Optical wiring board and method for manufacturing optical wiring board
US6987906B2 (en) Optical connection device
JP2546506B2 (ja) 光半導体素子と光導波路の結合構造およびその結合方法
JP3403306B2 (ja) 光モジュール
US6832013B1 (en) Hybrid integration of active and passive optical components on an Si-board
EP0646813A1 (de) Herstellungsmethode für optischen Koppler mit geneigten Endflächen
EP0874258A1 (de) Verbindung von einem optoelektronischen Element oder einem Wellenleiter zu einem Steckerstift mit einer optischen Faser
US7522807B2 (en) Optical connector assembly
JP2010540991A (ja) 2基板パラレル方式の光学サブアセンブリ
EP0646812A1 (de) Optischer Koppler mit geneigten Endflächen
CA2387538A1 (en) Optical subassembly
US6023546A (en) Structure for securing optical device and fiber optics
JP2001281485A (ja) 光導波路送受信モジュール
WO2002103427A2 (en) Optoelectronic mounting structure
US20040228580A1 (en) Optical module
WO2002052324A9 (en) Process for coupling optical elements to optoelectronic devices
US6907178B2 (en) Optoelectronic assembly with embedded optical and electrical components
US5224184A (en) Optical multi-chip interconnect
US7266270B2 (en) Waveguide to waveguide monitor
US6715936B2 (en) Photonic component package and method of packaging
JP2003520353A (ja) マルチファイバアレー用光電子モジュール

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050816