EP0779991B1 - Systeme de distribution telephonique sans fil avec transmission a diversite dans le temps et dans l'espace - Google Patents

Systeme de distribution telephonique sans fil avec transmission a diversite dans le temps et dans l'espace Download PDF

Info

Publication number
EP0779991B1
EP0779991B1 EP95943324A EP95943324A EP0779991B1 EP 0779991 B1 EP0779991 B1 EP 0779991B1 EP 95943324 A EP95943324 A EP 95943324A EP 95943324 A EP95943324 A EP 95943324A EP 0779991 B1 EP0779991 B1 EP 0779991B1
Authority
EP
European Patent Office
Prior art keywords
data packet
antenna
station
receiver
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95943324A
Other languages
German (de)
English (en)
Other versions
EP0779991A2 (fr
EP0779991A4 (fr
Inventor
D. Ridgely Bolgiano
Gilbert E. Lavean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23162506&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0779991(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP08102254A priority Critical patent/EP1926231A3/fr
Priority to EP08102235A priority patent/EP1926229A3/fr
Priority to EP10179516A priority patent/EP2293462A3/fr
Priority to DK05022143.1T priority patent/DK1615353T3/da
Priority to EP10182331A priority patent/EP2309660A3/fr
Priority to EP05010301A priority patent/EP1564907B1/fr
Priority to EP08102255.0A priority patent/EP1933475B1/fr
Priority to EP08102253A priority patent/EP1926230A3/fr
Priority to EP08102240A priority patent/EP1926232B1/fr
Priority to EP05022143A priority patent/EP1615353B1/fr
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Publication of EP0779991A2 publication Critical patent/EP0779991A2/fr
Publication of EP0779991A4 publication Critical patent/EP0779991A4/fr
Publication of EP0779991B1 publication Critical patent/EP0779991B1/fr
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity
    • H04B7/0888Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity with selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0894Space-time diversity using different delays between antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to two way wireless communication systems.
  • the present invention relates to wireless telephone systems with space diversity antennas and time diversity signal transmission for reducing signal fading and measuring subscriber location.
  • Wireless radio communication is subject to the adverse effects of signal fading, in which the signal level at the receiver temporarily loses strength for a variety of reasons, such as from variable multipath reflections causing signal cancellation, time varying transmission loss due to atmospheric conditions, and mobile receiver movement introducing obstructions into the signal path, and the like.
  • Signal fading causes poor reception, inconvenience, or in extreme cases, a loss of call connection.
  • Time diversity is obtained by the use of repetition, interleaving or error correction coding, which is a form of repetition. Error detection techniques in combination with automatic retransmission, provide a form of time diversity.
  • Frequency modulation is a form of frequency diversity.
  • CDMA code division multiple access
  • Space diversity is provided by transmitting or receiving the same signal on more than one geographically separated antennas. Space diversity provides alternate signal paths to guard against any one path being subject to fading at any one time. Space diversity also creates some time diversity since the receiver receives the same signal separated by small propagation delays. The difference in propagation delay requires that the receiver be able to discriminate between the arriving signals.
  • One solution is to use multiple receivers, one for each arriving signal. For instance, it is known from U.S. patent 5,280,472 to deliberately introduce relatively small delays compared to an information symbol, into a space diversity multiple antenna CDM A system in order to create artificial multipath time diversity signals greater than one chip delay up to a few chips.
  • CDMA systems are capable of discriminating between identical plural signals arriving at the receiver with different propagation delays greater than one chip delay. Such receivers are known as Rake receivers.
  • prior art systems require multiple CDMA receivers, one CDMA receiver for each separate received CDMA signal. It is desirable to provide a system for receiving time diversity CDMA signals which does not require multiple CDMA receivers.
  • GPS Global Position System
  • both satellite systems and the GPS receivers for receiving satellite signals tend to be expensive.
  • US-A-5 128 925 discloses a system in which synchronization signals from two or more stations are used to determine the position of a mobile station.
  • TDMA time division multiple access
  • the present invention is embodied in a wireless communication system in which time diversity and space diversity are used to reduce fading and simplify receiver design.
  • the present invention is further embodied in a wireless communication system in which time division signals are code division (spread spectrum) multiplexed onto space diverse antennas to provide a wireless communication system with the ability to determine subscriber location using the same communication signals which are used for the primary wireless communication.
  • a data packet which for example may carry telephone voice traffic, is transmitted at three different times from three different antennas.
  • the receiver thus receives the same data packet at three different times from three different antennas.
  • the receiver uses the best data packet or combination of the data packets to reduce the effects of fading.
  • the receiver uses the absolute and extrapolated relative time of arrival of the three data packets to determine its location from the three transmitting antennas.
  • absolute range to one antenna is determined by the time required for a round trip message.
  • the relative time of arrival of data packets, referenced to a universal time, from the two other antennas indicates the relative distances as compared to the first antenna. Since all three transmitting antennas are at known fixed locations, the receiver computes its own location as the intersection of three constant distance curves (in the two dimensional case, circles, or in the three dimensional case, the intersection of three spheres).
  • the mobile subscriber station provides raw delay measurement data back to a fixed station, or location service center, which computes the mobile subscriber location.
  • the present invention is embodied in a system using CDMA to modulate a TDMA signal which is transmitted from three space diversity antennas.
  • the TDMA signals are used to transmit multiple repetitions of the same data packet from a transfer station with three space diversity antennas.
  • the TDMA signals are used to transmit multiple repetitions of the same data packet from three transfer stations each transfer station including one of the three space diversity antennas.
  • the data packets could either be identical, or could carry substantially the same information, but modulated with different spreading codes or different segments of the same spreading code.
  • a mobile user having an antenna 10 is coupled to a CDMA transfer station 14.
  • the CDMA transfer station 14 further includes an antenna T, 16, antenna A, 11, antenna B, 12, and antenna C, 13.
  • Antennas A, B and C can be mounted either on separate structures as is shown, or on a single mast. The only physical requirement is that the space between antennas should be sufficient for uncorrelated space diversity. While a quarter wavelength spacing may be sufficient, at least ten wavelengths is preferable. At 1 GHz, 10 wavelengths is about 30 feet, while at 5 GHz, 10 wavelengths is about 6 feet.
  • the mobile subscriber antenna 10 (also referred herein as the user terminal antenna, or the subscriber station antenna, or simply antenna U) is coupled by a bidirectional radio link to antennas A, B and C.
  • the CDMA transfer station 14 is further coupled by a bidirectional radio link through antenna T through appropriate switching to the public switch telephone network.
  • forward channel telephone voice traffic received in data packets on antenna T is transmitted on antenna A during time slot 1, repeated on antenna B during time slot 2, and further repeated on antenna C during time slot 3. All three repeated data packets are sequentially received on antenna 10.
  • data packets representing telephone voice traffic transmitted from antenna 10 are substantially simultaneously received on antennas A, B and C.
  • the CDMA transfer station 14 further retransmits data packets received in the reverse direction through antenna T back to the telephone network.
  • FIG. 2 is an overview diagram of a system in accordance with the present invention that includes the different interconnections between the supporting network, i.e., between the public switched network 20 and switching center and central processor 22, and the CDMA transfer stations 26, 28, 30, 32, 34, 36 and 38.
  • the supporting network i.e., between the public switched network 20 and switching center and central processor 22, and the CDMA transfer stations 26, 28, 30, 32, 34, 36 and 38.
  • the user at CDMA subscriber station 42 is linked by antenna 10 to the CDMA transfer station 38 through antennas A, B and C.
  • Antenna T, 39 on CDMA transfer station 38 carries wireless TDMA telephone voice traffic to antenna 25 on base station 24.
  • Each of the other CDMA transfer stations are coupled to the switching center 22 by a variety of interconnection means.
  • Connection means W between TDMA base station 24 and CDMA transfer station 36 is a wireless means, having a TDMA channel structure with six TDMA slots.
  • the wireless TDMA distribution interconnection WE may be a commercially available wireless local loop system such as the Ultraphone ® digital radio telephone system provided by Interdigital communications Corporation.
  • the TDMA time slot structure is carried through the transfer station to become the time slot structure for the slotted CDMA signal on the output.
  • Connection means WE is the same as connection W except there are four W modules operating in parallel to provide a basic connectivity for 24 voice channels.
  • Connection means F uses a fiberoptic cable that connects between the switching center 22 to the CDMA transfer station 32 without going through a wireless base station. Since connection means F (fiberoptic cable) incorporates a modem with a TDM/TDMA channel structure similar to W and WE it readily interfaces with the transfer station.
  • Connection FT fiberoptic cable carrying standard T1 multiplex
  • between switching center 22 and CDMA transfer station 30 is a fiberoptic cable that uses a standard T1 multiplexer as the channel combining means. Therefore, the transfer station that handles the WE connection means could readily be adapted to operate with the FT connection means.
  • Connections C (coaxial cable) to CDMA transfer station 26, and CT to CDMA transfer station 28, (coaxial cable carrying T1 standard multiplex) are cable means that function like F and FT respectively.
  • Connection means L to CDMA transfer station 36 is a conditioned line that carries up to a 100kb/s data stream that has the same structure as the wireless TDMA, connection means W.
  • Connection means LE (not shown) utilizes 4 conditioned lines to function in the same way as connection means WE.
  • Connection means PG to CDMA transfer station 34 is a pair gain capability that is interfaced into a transfer station.
  • telephone voice traffic through the public switched network 20 is coupled to a TDMA base station 24 having antenna 25 for the transmission and reception of TDMA signals.
  • a plurality of CDMA transfer- stations 44, 46, 48, 50 and 52 provide wireless telephone service for a plurality of subscribers 45 and 47.
  • Each CDMA transfer station includes an antenna T for receiving and transmitting TDMA signals, as well as separate antenna A, antenna B and antenna C for communicating with mobile subscribers 45 and 47.
  • the TDMA base station 24 may have a range of 35 mile radius covering numerous CDMA transfer stations.
  • Each CDMA transfer station may typically have a range of five miles and be spaced three miles apart to provide cellular coverage for the entire area. Subscriber 45 will be served by CDMA transfer station 46, while subscriber 47 will be served by CDMA transfer station 50. As subscribers move about the system, a different CDMA transfer station will be assigned to serve that subscriber.
  • An alternate embodiment capitalizes on the rich connectivity described above to more widely distribute the three antennas that are used to give transmission space diversity.
  • the wider distribution allows compensation for not only multipath fading, but fading due to blockage. For instance if the CDMA user (antenna 10 in figure 1) goes behind a building or hill the signal from all three space diversity antennas, on a single transfer station, would fade.
  • Randomization is accomplished by having the central controller assign the different time slots on an individual basis during the call setup process.
  • W or WE connection means there is little impact on the capacity between the base stations and the transfer stations, but it would increase the number of TDMA receivers.
  • a major advantage of using multiple transfer stations as transmission diversity sources is that it allows the user CDMA receiver to evaluate the quality of the signal from each transfer station and request a handoff for individual time slots as better links are found, providing a highly reliable and smooth transition as a user passes through an area.
  • FIG. 4 illustrates a wireless telephone distribution system with enhanced space diversity.
  • a mobile user antenna 10 is coupled to antenna A during time slot 1, antenna B during time slot 2 and antenna C during time slot 3.
  • each of antennas A, B and C are mounted on separate respective CDMA transfer stations 54, 56 and 58.
  • an antenna A, 60 is provided on CDMA transfer station 54
  • antenna B, 68 is provided on CDMA transfer station 56
  • antenna C, 64 is provided on CDMA transfer station 58.
  • Each of the respective transfer stations 54, 56 and 58 are coupled through respective antennas 62, 70 and 66 to the TDMA wireless digital telephone system.
  • the signals received from antennas A, B and C by the subscriber station antenna 10 are similar to that received in the configuration of Figure 4.
  • due to the separation of antennas A, B and C, at separate CDMA transfer stations 54, 58, 58 signal diversity both transmitting and receiving, is vastly improved.
  • each CDMA transfer station has either an antenna B, or antenna B or an antenna C.
  • CDMA transfer station A, 108 has a separate antenna A, 109.
  • the CDMA transfer station 106 has an antenna B, 107.
  • CDMA transfer station 104 has an antenna C, 105.
  • the antenna 10 of CDMA subscriber station 112 receives signals from each of CDMA transfer stations 108, 106 and 104.
  • the received signals are time division multiplexed in the sense that only one of antenna A, B or C is transmitting to antenna 10 at any one time.
  • antennas A, B and C provide multiple code division multiplexed signals to other users.
  • each transfer station has only one type of antenna: either antenna A, antenna B or antenna C.
  • a system arrangement covering a service area is illustrated in Figure 5.
  • the public switch network 72 is coupled to a TDMA base station 74 having a transmitting antenna 75 covering an area of approximately a 35 mile radius.
  • CDMA transfer stations are spaced apart in one direction 84, and in another direction 86 are positioned to cover the service area. For illustration, a regular placement is shown. In practice, the CDMA transfer stations are placed so as to provide coverage whereby a plurality of subscribers 88, 90 are always within range of an A, B and C antenna.
  • CDMA transfer stations 76 and 82 are antenna A type
  • CDMA transfer station 80 is an antenna C type
  • CDMA transfer station 78 is an antenna B type.
  • subscriber 88 receives signals from CDMA transfer stations 76, 78 and 80
  • subscriber 90 may receive signals from CDMA transfer station 82, 78 and 80.
  • Time slot structure for use in the present invention is shown in Figure 7. Six time slots are used. Time slots 1 and 2 are used to receive, followed by time slot 3 wherein the subscriber station transmits, followed by time slot 4 also used for receiving. During time slot 5 and 6 the CDMA receiver scans the transmission from other transfer stations.
  • the base station When a circuit is to be established or transferred, the base station assigns a base station and transfer station frequency pair, a slot and a PN sequence. It then transmits to the transfer station all of these assignments and identifies which subscriber is to use the circuit.
  • the transfer station passes on to the desired subscriber station, the slot and PN sequence assignments. For example, see figure 17 where the TDMA time slots 1 through 6 are associated with users A through F, respectively.
  • the message to user B contains synchronizing information 1701, common control data 1702 for system wide functions, private control data 1704 and dedicated user traffic 1705 for user B.
  • the dedicated user traffic 1705 is used during call setup to transmit signalling information and initialization data.
  • FEC forward error correction
  • the base station may transmit the information during slot 1 on frequency fa.
  • the transfer station receives the information by demodulating the signal on frequency fa during slot 1, and regenerating the information only at the symbol or bit level.
  • the transfer station does not perform any decoding (i.e., error correction, compression or decompression)
  • the transfer station design is thus simplified by accepting the already coded signal from the TDMA base station. After regeneration at the symbol level, the received TDMA signal is combined with the assigned PN sequence and retransmitted from the transfer station as a CDMA signal on frequency fp without any intentional delay to antenna A.
  • the transfer station further stores the information received from the base station in a memory buffer.
  • the information bits stored in memory buffer are modulated onto a continuation of the PN signal and broadcast through an appropriate transmitter to antenna B.
  • the identical information signal using the same PN sequence, but incremented a fixed number of chips, is transmitted at antenna B.
  • the relative position, or phase of the PN sequence relative to the transmitted information is different.
  • information in the time slot buffer is read out a third time to provide a third repetition of the information, modulated by a continuation of the PN sequence, with still a different phase, through an appropriate transmitter to antenna C.
  • the subscriber station uses the correct CDMA code, receives during each of the three slots containing information signal repetition, so that it receives three identical repeats of the data packet from three antennas located in different locations.
  • the subscriber station compares the three receptions and selects the one with the best quality which may be based on bit error rate, phase distortion, signal to noise ratio, etc. Thus, spacial transmit diversity is achieved. Only one antenna is needed at the subscriber station.
  • the subscriber station demodulates and decodes the signal, performs error correction, decompression, etc.
  • a maximum likelihood combiner may be used to combine the power from all three time slots. Ideally, the energy of received data packets is combined in a maximal manner before making a hard decision.
  • the subscriber station transmits back to the transfer station using a similar PN sequence as it received.
  • the PN sequence may be the one derived from reception (after regeneration) or it can be locally generated on the basis of the original code received during call setup. Since the subscriber station does not transmit during the same time period as it receives, no diplexer or notch filter is needed.
  • a simple T/R (transmit/receive) switch is used to switch the antenna between transmit and receive. Only one receiver is necessary in the subscriber station to achieve three branch diversity. The three chains needed by a Rake receiver, are not needed in the present invention.
  • the three branch diversity typically achieves a reduction for deep fades of at least 10dB (a factor of 10x). While the three transmitted repetitions of the same information signal increases the interference level by a factor of 3 (about 5 dB), because the fades are 10 dB less, the transmitter power levels can be reduced by a factor of 10 (10 dB). Thus the overall amount of interference is reduced by a factor of 10/3 or 5dB. Because the transfer station to subscriber link is operated in a self interference mode that means that about three times as many simultaneous subscriber circuits can be used than if diversity were not used.
  • the present invention is cost effective.
  • the subscriber station needs only one receiver.
  • it does not need a diplexer.
  • the transfer station does not need to decode or re-encode any signals.
  • the number of subscribers per transmitter is the same, however, since spacial diversity is used in the reverse direction, the number of subscribers per receiver increased. Conversely, the noise of the subscriber station can be allowed to be higher if the full use of the increase in the number of subscribers is not fully utilized.
  • the signal received by the transfer station from the subscriber station is retransmitted (again with symbol or bit level regeneration but without decoding), from the transfer station back to the base station without intentional delay during the same slot.
  • the slot is within the same TDMA frame or at least with one frame's duration of the slot used from the base station to the transfer station, no additional delay is incurred by the use of the present system.
  • the CDMA transfer station has a TDMA input at antenna T.
  • the output side of the transfer station at antennas A, B and C uses a CDMA structure to reach a large number of subscribers in relatively densely populated areas.
  • CDMA possesses several attributes that make it desirable for this application.
  • the wideband signal is inherently robust in a multipath environment and it has the ability to overcome interference, intentional and otherwise. The possibility that selective fading will cause the entire spectrum to be suppressed decreases as the transmitted spectrum increases. A higher chip rate, or increased TW product, reduces the amount of fade margin that is required to achieve a specified level of performance.
  • Spread spectrum signals have inherent multipath protection to protect against fading.
  • statistical models generally do not take into account the frequency of occurrence or the duration of the fades.
  • the specific geometry at each location, and how the geometry is changing with regard to the receiver, determines the actual fading patterns. For small cells, with low antennas, the difference in path length for strong signals is very likely to be small. The result is flat fading. That is, the spectrum across ten or fifteen megahertz will fade at the same time. Therefore, it is not possible to use the inherent multipath protection characteristics of spread spectrum signals to protect against flat fading unless at least 25 or 30 MHz of spectrum is available. In addition, there is often no multipath of consequence that would have enough delay to gain an advantage from an additional Rake receiver.
  • the present invention utilizes the other important characteristic of spread spectrum systems, the ability to overcome interference, as the technique to combat the difficult multipath situations.
  • the capacity of a CDMA system is limited by the amount of interference that is received by the desired receiver. As long as the TW product is great enough to bring the desired signal up out of the interference it doesn't matter what the transmitted data rate actually is. Therefore, with the present invention the transmitted information rate is increased to allow the transmitted signal to be repeated three times from three different antennas, thus obtaining transmission triple diversity which allows the transmitted power margin to be reduced by at least 10 dB for a high performance link. Therefore, even though additional interference is introduced into the links, the CDMA processing gain readily overcomes the adverse impact. That is, the gain from the triple diversity far exceeds, in a high quality system, the loss due to added interference.
  • a block diagram of transfer station in accordance with the first embodiment of this invention is shown in Figure 8 for the forward channel.
  • the TDMA antenna T, 916 is coupled through a transfer receive switch 918, to a TDMA receiver 800.
  • the output of the TDMA receiver 800 is coupled to a demultiplexer 802, the output of which is stored in time slot buffers 806.
  • a time multiplexer 808 accesses the contents of the time slot buffers 806 and provides data packets output to plural CDMA encoders 810 intended for antenna A transmission.
  • the output of time multiplexer 808 also provides data packets output to plural CDMA encoders 812 intended for antenna C transmission.
  • the time multiplexer 808 provides data packets output to plural CDMA encoders 814 intended for antenna B transmission.
  • Each of the plurality of CDMA encoders 810, 812 and 814 are provided to respective CDMA transmitters 816, 824 and 826.
  • Each of CDMA transmitters is coupled to a respective antenna 822, 824 and 826 to provide respective antenna A, antenna B and antenna C transmissions.
  • the coordination of the timing and control of the TDMA receiver 800, as well as the time slot buffers 806, the time multiplexer 808 and each of the plurality of CDMA encoders, is controlled by a synchronization and control apparatus 804.
  • the synchronization and control apparatus 804 also provides a location identification (ID) representing the particular transfer station to the plurality of CDMA encoders 810, 812 and 814 for inclusion on the transmitted signals at antennas A, B and C.
  • ID location identification
  • the transfer station of Figure 8 also includes a CDMA receiver and TDMA transmitter 900, which is shown in further detail in the block diagram of Figure 9.
  • the TDMA transmitter is coupled to antenna 916 through transmit receive switch 918, while the CDMA receivers are coupled through respective diplexers to antenna A, antenna B and antenna C, as shown in further detail in Figure 15.
  • Figure 9 is a block diagram of a transfer station illustrating the structure of handling signals in the reverse channel.
  • Antennas A, B and C respectively shown as 822, 824 and 826 are coupled to respective CDMA receiver A, 902, CDMA receiver B, 904, and CDMA receiver C, 906.
  • the output of the respective CDMA receivers A, B and C is fed to maximum likelihood combiner 908, the output of which is provided to memory buffers and time slot multiplexer 910.
  • the memory buffers in time slot multiplexer 910 provide data packets to a TDMA transmitter 914 which is coupled through transmit receive switch 918 to antenna 916.
  • the TDMA receiver and CDMA transmitter 828 corresponding to the block diagram of Figure 8 is coupled to the other terminal of transmit receive switch 918.
  • Figure 15 illustrates the antenna configuration of a transfer station permitting antenna A, antenna B and antenna C to be shared between TDMA and CDMA transmit and receive signals.
  • Modulator 1502 is coupled through a time multiplexer 1503 to diplexers 1510, 1514, and 1518, respectively coupled to antenna A, 1512, antenna B, 1516 and antenna C, 1520.
  • the other input of diplexers 1510, 1514 and 1518 is respectively coupled to the output of demodulator 1504, 1506 and 1508.
  • a TDMA signal received on antenna 916 is demultiplexed and placed in time slot buffers 806.
  • a data packet intended for a given subscriber is selected by time multiplexer 808 during time slot 1 to encode a CDMA signal by one of plural encoders 810 for transmission on antenna A.
  • the same data packet is again selected by time multiplexer 808 to encode a CDMA signal by one of plural encoders 812 during time slot 2 for transmission on antenna B.
  • the same data packet is subsequently selected by time multiplexer 808 to encode a CDMA signal by one of plural encoders 814 for transmission during time slot 4 on antenna C.
  • the CDMA transmission from the subscriber station during time slot 3 is substantially simultaneously received on antennas 822, 824 and 826.
  • Each of the CDMA receivers 902, 904 and 906 receive the same data packet.
  • a maximum likelihood combiner 904 combines the power from all three time slots before making a hard decision. Generally speaking, the signal which is strongest and error free will be selected. After selection, the data packet is held in a memory buffer and time slot multiplexer 910 waiting to be placed in its appropriate time slot for transmission by TDMA transmitter 914 on antenna 916.
  • a transfer station in accordance with the second embodiment of the present invention is shown in Figure 12.
  • this transfer station is similar to the transfer station of Figures 8 and 9 except that only one CDMA antenna, A, B or C, is provided.
  • antenna 1200 is coupled through a transmit receive switch 1202 to a TDMA receiver 1204.
  • the output of the TDMA receiver 1204 is demultiplexed in 1206 and placed in time slot buffers 1208.
  • a data packet placed in time slot buffer 1208 is time multiplexed by multiplexer 1210 to one of a plurality of CDMA encoders 1212.
  • the encoded CDMA signal is amplified in CDMA transmitter 1214, coupled through diplexer 1218 to antenna A, 1228.
  • Antenna A 1228 also operates to receive CDMA signals.
  • a CDMA receiver 1226 is coupled to antenna A, 1228, through diplexer 1218 to provide received data packets in combiner and time slot buffers 1224.
  • a time multiplexer 1222 takes the data packets in time slot buffers 1224 and composes a time multiplex signal to TDMA transmitter 1220 which is coupled through transmit receive switch 1202 to antenna 1200.
  • the operation of the transfer station is controlled by a synchronization and control apparatus 1216 which also includes unique location identification (ID) for this particular transfer station, and call setup control parameters.
  • ID unique location identification
  • the transfer station receives TDMA signals on antenna T, 1200 which are demodulated in TDMA receiver 1204, and demultiplexed in demultiplexer 1206 for placement in time slot buffers 1208.
  • the data packets in time slot buffers 1208 are transmitted on antenna A during time slot 1.
  • time multiplexer 1210, CDMA encoders 1212 and the CDMA transmitter 1214 retrieve the respective data packets from time slot buffers 1208 and encode the appropriate data packet in a CDMA encoded signal on antenna A.
  • CDMA receiver 1226 receives signals simultaneously on antennas A, B and C during all time slots.
  • the received data packets are demodulated by respective PN codes, and placed in time slot combiner buffers 1224, each time slot assigned to a different user. Thereafter, data packets are time multiplexed in multiplexer 1222 for transmission by the TDMA transmitter 1220 through the transmit receive switch 1202 on antenna 1200.
  • the Transfer Station is the conversion point for mapping the TDM/TDMA signal into a CDMA signal.
  • the CDMA signal when designed properly has superior performance against multipath interference.
  • the input side of the transfer station is part of a structured distribution network. It is basically a tandem relay point in the network, that is, the address to the final CDMA user also includes the address of the intermediary point (the transfer station). Since, in the general case, the final CDMA user may move and access the network through another transfer point it will be necessary to provide the ability to enter the transfer station address independent from the CDMA users address. For fixed subscribers such as the TDMA subscriber station 40 in figure 2, this will not be an issue except for backup routing or for fade protection.
  • the preferred input network includes a number of base stations, transfer stations and TDMA user stations as shown in figure 2. Any time slot on any frequency could be assigned to any TDMA user or transfer station. To reduce the cost of the transfer station it is proposed that once a CDMA user is connected through a specific transfer station any additional CDMA users, assigned to that transfer station, also be assigned to a time slot on the same frequency as the first user. By properly managing these assignments the number of TDMA radio elements can be reduced significantly.
  • the base station 24 or the switching center and central processor 22 will manage the radio resource and assign the frequencies, time slots and the PN codes, thus assuring efficient use of the spectrum and the radios.
  • the frequency, time slot and PN code are all assigned during the initial call setup process.
  • the local transmissions on the output side of the transfer station are CDMA, but each subscriber is assigned a specific time slot of a time division signal. Therefore, the individual information rate is increased by the number of time slots. However, the total data rate for all subscribers stays the same and the total transmitted power for all signals remains the same, it is just redistributed. Since the individual time slots are turned off unless there is activity the transmitted power is reduced by approximately 3 dB for voice traffic. Because the same information is transmitted three times the average transmitted power is increased by 5 dB. Therefore, the total transmitted power from each transfer station is increased by 5 dB, transmitting three times, but also reduced by 10 dB, diversity improvement, resulting in a 5 dB overall reduction in average power. Overall, the interference introduced into other cells is reduced by 5 dB.
  • the base station (24 in figure 2) or the switching center and central processor (22 in figure 2) will also manage the handoff process.
  • by adding additional receivers in the CDMA user's terminal it will be possible to scan in parallel for better synch signals.
  • adding another receiver in all the CDMA users terminals would be an expensive solution. Therefore, with three time slots there is only dual diversity and no handoff.
  • Figure 7 shows the CDMA user terminal slot structure for six time slots.
  • the triple antenna structure at the transfer station is used on the return link by simultaneously listening to a single burst from each active subscriber, in his assigned time slot, on all three antennas, thus also achieving triple space diversity.
  • the overall timing structure for the forward and reverse CDMA links, at the transfer station are shown in figure 10A. For illustrative purposes six time slots have been shown, but as described previously any number of time slots, three or more, can be implemented, the upper reasonable boundary being in the neighborhood of 32.
  • the order of transmission of the three active time slots can be distributed over the total number of time slots, and even more than three time slots could be used.
  • the power transmitted from the CDMA user terminals can be reduced by at least 5 dB, probably more, but 5 dB is in keeping to match the performance of the forward link.
  • the transmitted power is controlled and kept at the minimum level to maintain a high quality link. It is also possible, at higher frequencies, to achieve some antenna independence even on a relatively small radio or area. Therefore, a similar approach of the transmission space and time diversity, that is used on the forward link, may also be applied to the reverse link. Dual diversity should yield a significant improvement for most situations.
  • Each transfer station continuously transmits a spread spectrum channel for synchronization and control purposes.
  • the synchronization and control channel identifies the particular transfer station and manages the user terminals as long as they are assigned to the transfer station. A large portion of the time the synchronization and control channel does not carry any user traffic.
  • the synchronization and control channel can be a narrow band channel that can be easily acquired and tracked.
  • the information bearing portion of the control signal has a preassigned time slot and includes system and signaling messages to all the users assigned to the particular area covered by that transfer station.
  • the processing gain is sufficient to allow a transfer station to include several time slotted CDMA signals to be transmitted in parallel, thus allowing the antenna array to be shared. Also, only one synchronization and control channel is required for multiple slotted CDMA modules that are integrated at a single location.
  • FIG. 13 A block diagram of the subscriber station in accordance with the present invention is shown in Figure 13.
  • Antenna 1300 is coupled to CDMA receiver 1304 through transmit receive switch 1302.
  • the output of CDMA receiver 1304 provides data packets to data buffers 1306, 1308 and 1310.
  • a combiner 1314 selects and combines the data held in buffers 1306, 1308 and 1310 to provide an output to a digital to analog converter 1316, which also includes means for decompressing the compressed signal to provide an audio output.
  • An analog audio input is provided to analog digital converter 1322, which also provides means for compressing the audio signal.
  • the output of the analog to digital converter 1322 is a digital form of audio samples assembled as data packets in memory buffer 1320.
  • a CDMA transmitter 1318 encodes the contents of memory buffer 1320 and provides a CDMA encoded signal through transmit receive switch 1302 to antenna 1300.
  • the CDMA subscriber station is synchronized by a synchronization and timing controller 1312, which also measures signal delay for location measurement, described below.
  • CDMA receiver 1304 receives three identical data packets placing one of the data packets during time slot T1 in buffer 1306, a second of the data packets during time slot T2 in memory buffer 1308, and a third data packet received during time slot T4 in memory buffer 1310.
  • the combiner 1314 selects one or more of the contents of the memory buffers to be combined or selected as the best received data to be converted to an analog audio output of the output of digital to analog converter 1316.
  • the analog audio input to analog to digital converter 1322 which also includes a digital compression algorithm, provides a data packet to buffer 1320.
  • the CDMA transmitter 1318 encodes the contents of buffer 1320 for transmission as a CDMA signal on antenna 1300.
  • the simplification of the CDMA user terminal is a major consideration in the present system.
  • the main simplification is the ability to time share the receiver, and particularly the correlator as it performs its different functions.
  • the ability to transmit and receive at different times also simplifies the implementation of the small portable user terminal.
  • the single receiver sequentially receives the three space diversity signals in the three different time slots and then moves to different codes to look for improved signals from other transfer stations.
  • the same receiver is also used for the purpose of acquisition and tracking. Since the user terminal does not receive during the slot when it is transmitting there is no need for a diplexer and notch filter. Only a simple on/off switch is used. Since only one PN code is needed at a time, the PN code generation process is also greatly simplified.
  • the baseband processing can be accomplished on a relatively low speed common processor.
  • the user terminal In those time slots where the user terminal is not receiving or transmitting the receiver is free to look for the synchronization and control channels from other transfer stations.
  • the user terminal When the user terminal identifies a synchronization and control channel that is better than the one he is assigned, the user terminal sends a message to the network controller telling the controller that he has identified a potential candidate for handoff.
  • the network controller uses this input, along with other information, to make the decision to handoff.
  • the network controller sends the handoff message to the effected entities.
  • the identity of the codes that are to be searched by the user terminal are provided by the network central controller through the transfer station where they are placed on the control channel.
  • the time slot assignment for multiplexing 6 simultaneous calls is shown in figure 10A.
  • Time slots assignments for transmission 1002 and for reception 1004 are illustrated.
  • the entry in each box contains the activity during the corresponding time slot.
  • antenna A transmits T1 to user 1
  • antenna B transmits T6 to user 6
  • antenna C transmits T4 to user 4.
  • antennas A, B and C receive R5 from user 5.
  • antenna A transmits T2 to user 2
  • antenna B transmits T1 to user 1 and antenna C transmits T5 to user 5.
  • antennas A, B and C receive R6 from user 6.
  • antenna B transmits T2 to user 2 and antenna C transmits T6 to user 6.
  • antennas A, B and C receive R1 from user 1.
  • T1 Transmission of T1 appears in time slots 1, 2 and 4, on antennas A, B and C respectively. No transmission to T1 appears during T3, but reference to receiving time slots 1004 indicates that R1 is received from user 1 during time slot 3. Since in any given time slot, there are three transmissions and one reception simultaneously, at least 4 addressable CDMA PN spreading code sequences are required.
  • time division multiplexing is used in the sense that successive time slots carry data directed to different users.
  • Code division multiplexing is used in the sense that during each time multiplexed time slot, multiple PN code sequences permit simultaneous communication with multiple users. The result is a time division multiplexed, code division multiplexed signal.
  • the time slot assignment for multiplexing 12 simultaneous calls is shown in figure 10B. Time slots assignments for transmission 1006 and for reception 1008 are illustrated. During time slot 1, antenna A transmits T1 to user 1 and T7 to user 7, antenna B transmits T6 to user 6, and T12 to user 12, and antenna C transmits T4 to user 4 and T10 to user 10. At the same time, antennas A, B and C receive R5 from user 5, and R11 from user 11.
  • FIGS 11A and 11B The time slot assignment for multiplexing 24 simultaneous calls is shown in figures 11A and 11B.
  • Figure 11A shows the transmission from the transfer station (forward direction), while figure 11B shows the transmission to the transfer station (reverse direction).
  • Time slots assignments for transmission 1102, 1104, 1106 and for reception 1108 are illustrated.
  • antenna A transmits T5, T11, T17 and T23 (i.e., T5 to user 5, T11 to user 11, etc.)
  • Antenna B transmits T4, T10, T16 and T22.
  • Antenna C transmits T2, T8, T14 and T20.
  • antennas A, B and C receive R3, R9, R15 and R21 (i.e., R3 from user 3, R9 from user 9, R15 from user 15 and R21 from user 21).
  • FIG 10A For figure 10A, one CDMA encoder per antenna is required to handle 6 simultaneous calls. In figure 10B, two CDMA encoders per antenna are required to handle 12 simultaneous calls. Similarly, in figure 11A, four CDMA encoders per antenna are required. Thus, for example, if 180 PN code sequences are available, then 180/6 or 30 CDMA encoders per antenna are required to handle 180 simultaneous calls. If, for these larger number of required accesses, the number of time slots is increased, the number of encoders will decrease proportionally.
  • a further enhancement extends the distance between the transfer station diversity antennas by using broadband cables that are a thousand feet or more.
  • the transfer station sends the final radio frequency spread spectrum signal down the cable to the antenna.
  • the antenna at the end of the cable contains a radio frequency amplifier.
  • An implementation distributing signals by cable has the same improvement against blockage as described for the multiple transfer station transmission diversity approach.
  • a preferred embodiment shares a single cable and uses frequency multiplexing to assign a different cable carrier frequency to each antenna.
  • the desired signal is only transmitted from the antenna nearest to the user which reduces the interference.
  • a cable distribution system integrates different elements into a local personal communications system network.
  • the basic building block is the six time slotted CDMA module that serially drives three antennas to obtain triple transmission space and time diversity.
  • the design of the transfer station handling the incoming TDMA signal also has a basic six time slot structure.
  • the six time slot modularity can readily be deployed to accommodate multiples of 12, 18, 24, and 30 or 32.
  • Figure 14 shows the implementation for several different combinations.
  • the preferred embodiment utilizes a wireless input, such as W or WE, as the input to the transfer station, however, a cable distribution system works equally well with hard wired signals as the input.
  • the transfer stations are moved back to the central controller, which reduces the cost of the transfer station since it does not have to be ruggedized or remotely powered. It also reduces the number of spares required and the cost to maintain the units since they are all in one place and easy access.
  • the transfer stations can also be dynamically reassigned as the traffic load changes during the day or week, thus significantly reducing the total number of required transfer stations.
  • the bandwidth of the distribution network increases, but developments in cable and fiber optic distribution system have increasing bandwidth at falling cost to accommodate the increase in bandwidth at reasonable cost.
  • the advantage of having several interconnection options to select means that the choice of interconnection becomes an economic choice determined by the cost factors associated with each installation. Each network is expected to include many or all of the interconnection options.
  • a general two-way cable or fiber optic wideband distribution system 1402 is used to link the centrally located transfer stations to the remotely located antennas.
  • Considerable flexibility in configuring the wideband spectrum into signal formats is available for linking the centrally located transfer stations to each transfer station antenna.
  • each antenna is assigned a separate center frequency on the wideband distribution cable 1402. Due to the TDMA and CDMA sharing ability, many users can be served on the same antenna using the same cable frequency.
  • the transfer station antenna at location N includes a transceiver which is tuned to the assigned cable frequency.
  • the central controller transmits and receives data packets in the final TDMA/CDMA waveform representing telephone traffic on each assigned frequency of the wideband distribution cable 1402.
  • each remote location includes a remote transceiver (transmitter, receiver, local oscillator, diplexer and antenna) at site 1602.
  • the remotely located unit is a relatively simple receiver, frequency translator and low power transmitter, for both the forward and reverse directions.
  • a low power transmitter amplifier is suitable because the cells are small and triple diversity (three antennas and three time slots) is being used to link the subscriber station to the system.
  • the transmit side of the central controller provides individual information flows along with the associated signaling and control information at interface A' in figure 14, which is presented in assignable time slots in the form of packets.
  • the signaling information includes the called parties identification number(s), code, service profile and authentication code, etc.
  • the control information includes routing information (i.e. which base station, transfer station, antenna designation), power levels, traffic on or off, handoff messages, etc. A large amount of this information is transmitted before the user information (telephone voice traffic) starts passing over the circuit, however, a significant amount of information is also passed during the time when telephone voice traffic is actually on the circuit. A separate control channel is required even after the connection to the user has been completed.
  • the base station function translates this information into the protocol that is required to interface to the TDMA air interface and provides a TDMA radio spectrum at interface W.
  • the transfer station converts the TDMA protocol to a time slotted CDMA triple space/time diversity air interface protocol and transmits this signal first on antenna A, then on antenna B and finally on antenna C (figure 14).
  • the centrally located combined base station and transfer station (B-T) module 1404 combines the base station and transfer station function and converts the signal appearing on A to the time slotted CDMA triple diversity air interface.
  • a B-T combined module may be achieved by direct combination of separate equipment, or the modules developed for the combined base station and transfer station use can be integrated.
  • the CDMA signal branches at the output of the transfer station or at the output of the B-T module as shown in figures 15 and 16. In the case of the of the transfer stations which are connected to respective antennas by three different cables, the output is just switched at the appropriate time, when one cable is used to reach all the antennas the output of the transfer station is frequency hopped at the appropriate time by changing the synthesizer frequency to the assigned frequency of the antenna.
  • the B-T module is similarly frequency agile.
  • the B-T transmits on two contiguous time slots and then listens to the response signal from the user terminal. During the user transmission time slot the user terminal tells the B-T module to not send the third diversity time slot if the first two time slots have given adequate performance and location measurement is not needed.
  • the use of only dual diversity reduces the interference to the other users, and frees up the user receiver to perform other functions.
  • An alternate approach is to utilize a 1/3 forward error correcting code that is spread over all three time slots.
  • the use of such coding provides improved performance if the error statistics during each of the time slots are nearly the same. If one time slot becomes significantly worse, and it can be identified as being bad, it may be better to ignore the bad time slot and request an antenna handoff to replace that time slot if the poor performance continues. Since it is expected that the real diversity channel statistics will result in unequal time slot statistics, the preferred alternative is to not use a forward error correcting code over the three time slots. Even though error detecting and correcting codes are only included within each time slot, forward error correcting codes may be used over multiple time slots.
  • Each antenna assuming there is data to transmit, transmits during each of the time slots. Since the data is transmitted three times there will be three CDMA signals transmitted in each time slot for each module assigned to that antenna. If there are 4 modules assigned to the antenna, 4 modules supports 24 users at any one time, there would be 12 CDMA signals emanating from the antenna in each time slot, (see figure 11A, 11B). If the duty factor is approximately 50% then only six CDMA signals will actually be transmitting and if 20 to 25% of the time the third time slot is not required only 4 to 5 CDMA signals would be transmitted at a time. The same antennas are used for the receive side, or reverse link, (user to transfer station).
  • the user CDMA terminal transmits only during one time slot and the transfer station simultaneously receives that transmission on the same three antennas resulting in receiver triple space diversity.
  • the three receive signals come into the transfer station, or B-T module, either on separate wires or at different frequencies, as shown in Figure 15 and 16, and are processed separately. These processed signals are summed together using maximum likelihood combiners.
  • the S/I from each antenna path is measured and kept in memory over an interval of at least ten time slots.
  • the record of signal statistics is used by the maximum likelihood combining process. Stored signal statistics are also useful in the decision process for executing handoff to other antennas.
  • the handoff process for the B-T cable network is based on the signal received from each of the antennas.
  • the central processor receives information on the quality of the links in both directions. On the forward link it receives information from the user CDMA receiver operating on that link during an assigned time slot which is identified with a particular antenna. On the reverse link it receives information on the separate paths through different antennas. The information on the quality of paths through a particular antenna can be evaluated and compared to other current paths through different antennas and with other new paths that the user terminal is continuously searching. When a current path in a particular time slot continues to deteriorate and a better path is available the central controller assigns a new path (antenna) to the user terminal and notifies the user terminal it has done so.
  • the handoff process for the transfer station is similar except the handoff is generally between transfer stations rather than antennas.
  • the handoff is generally between transfer stations rather than antennas.
  • All three antennas associated with a particular transfer station are handed off with the transfer station.
  • a few transfer stations may be implemented with widely separated antennas.
  • the handoff process described for B-T module could also be used.
  • a new subscriber turns on his CDMA user terminal and scans the synchronization codes until he acquires a synchronization code.
  • the CDMA user terminal then initiates a registration message.
  • the transfer station receives this message and passes it to the central controller who acknowledges it with an acknowledgment message back to the user terminal.
  • the central controller goes to the home register of the new terminal and obtains the user profile and places it in the file for active users. The new user is now registered and all calls will be forwarded to this new region of service.
  • each transfer station There are 28 different synchronization codes and one synchronization code is assigned to each area. The 28 areas make up a region and the codes are repeated in the next region. The transfer stations within an area are given different shifts or starting points for their particular code. Therefore, each transfer station, or widely separated antenna, has an identifiable code.
  • the central controller knows which antenna, or transfer station, that the new user registered through so the controller will route all information to the new user through that node.
  • the central controller will also give the new user a set of codes, or different starting points on his current code, to search for the purpose of identifying diversity paths or handoff candidates.
  • the new user continues to monitor the synchronization and control channel during half his time slots. The other half of his time slots he scans for better synchronization channels.
  • the user is paged on the control channel and given a CDMA and time slot assignment which he sets up so he will be ready for the beginning of the call.
  • a CDMA code and time slot assignment for the duration of the call.
  • the user terminal remains in this state until the end of the call, unless the signal in one or all the diversity paths becomes weak. Since the user receiver is continuously evaluating the incoming signals and scanning for better new paths, it will know if a path is going bad and will notify the central controller of this condition along with a list of better candidates. The central controller will order a handoff and the user terminal will go to the new CDMA code and time slot. None of this activity is detectable by the end user.
  • each time slot is a short unmodulated section, without user information, used for resynchronization and range adjustment, followed by a short control message section. These short bursts are sent whether there is user information to be sent or not. If no user information is to be sent the control message confirms this and the transmitter power is reduced by ten db, for the user information portion of the time slot.
  • four time slots are available on the forward channel for passing user information depending on what agreements have been established between the user and the central controller. These slots as described above can be turned off so that other users have access to additional capacity.
  • the multiple time slots can be used for diversity improvement or sending increased data rates, multiple data channels or a graphics channel along with a voice channel. The possibility of extending several parties on a conference call is also possible.
  • Figure 20 shows the radio links of figure 1 or figure 4, where the car and its antenna are represented by user antenna U.
  • the radio links are time slotted as shown in figure 10A.
  • the radio link AU is time slotted and is present during time slot 1.
  • Radio link BU is also time slotted and is present during time slot 2.
  • Radio link CU is also time slotted and is present during time slot 4.
  • Radio link AU establishes the absolute range from U to antenna A.
  • the range to antenna A forms a reference to measure the difference in path lengths between radio links AU and BU.
  • the path length of radio link AU is also used as a reference to measure the difference in path lengths between radio links AU and CU.
  • the ranges to all three antennas may be derived from the difference in respective arrival times of the all ones vector within each time slot.
  • the location center having the physical geographic coordinates of all three antennas, calculates the location of the user's antenna U.
  • the geometry of location determination is shown in figures 20, 21, 22 and 23.
  • the first range measurement AU establishes the user as someplace on circle A in figure 21.
  • the second range determination establishes the user as also being someplace on circle B.
  • the only locations this can be true is where the circles intersect each other at points X and Z. Therefore, his location has been narrowed down to two possible points.
  • the third range determination establishes the user someplace on circle C. Since the user is also on circle C, he must be at point Z. Obtaining additional ranges to other antennas confirms the first set of measurements and in many cases improves on the accuracy. If the terrain has significant variations in height the constant range circles become constant range spheres and the extra measurements remove any ambiguity that could be caused by adding the third dimension.
  • the position location processing center converts these coordinates into user friendly instructions. Range measurements by the CDMA system are obtained as follows:
  • the signal 2302 transmitted at antenna A represents a range of 25.5 chips from antenna A to user terminal antenna U.
  • Signal 2304 received at antenna U from antenna A is used as a reference to measure the relative time of arrival of signals from antennas B and C, adjusted for the different time slots in which these signals are placed.
  • signal 2306 received from antenna B at user terminal antenna U is received in advance (i.e., offset relative to the signal from antenna A) by 8 chips.
  • signal 2308 received from antenna C at user terminal U is also received in advance (i.e., offset relative to the signal from antenna C), but by 6 chips.
  • Received signals may be either delayed or advanced (i.e., have a positive or negative delay) relative to the reference signal 2304. Receipt in advance indicates that the antenna (B or C) is closer than antenna A. Conversely, a delayed receipt indicates that the antenna (B or C) is further away than antenna A.
  • the user terminal may be located at Z, the intersection of circle A at 2250 feet from antenna A, circle B at 1750 feet from antenna B and circle C at 1950 feet from antenna C.
  • location measurement may be accomplished by computing the intersection of two hyperbolas.
  • the first hyperbola is the locus of all points having a fixed difference in distance from two foci, which is proportional to the difference in delay between antenna A and antenna B.
  • the second hyperbola is the locus of all points having a fixed difference in distance from two foci, which is proportional to the difference in delay between antenna B and antenna C, (or antenna A and antenna C).
  • Antennas A and B are the foci of the first hyperbola, while antennas B and C are the foci of the second hyperbola.
  • position location information is derived by measuring the time of arrival of messages relative to a fixed time reference. The measurement accuracy depends on the chip rate, but at a chip rate of 10 megachips per second it is quite accurate. There are several ways location measurement and display can be accomplished, depending on how much processing is available in the user terminal. The choice also depends on who will actually use the information. It could be fairly passive, using only the relative chip offset information and obtaining a reference from the current cell. The user could locally derive and display his location, similar to using a GPS satellite. A GPS receiver displays longitude and latitude reading. Location information may also be sent back to a processing center that provides a service to the user. The processing center converts the longitude and latitude coordinates into a location having geographic meaning, such as, a block number on a specific street.
  • the manager of the service center could either notify the police, family designate or the service center could include, as part of a special service rate, the staff to check on irregular circumstances.
  • the service center can also, for a nominal fee, tell an individual his street location and give instructions on how to get to a desired destination address.
  • These services can be provided to users who are pedestrians or moving along in vehicles.
  • the destination instructions can be in the form of a set of one time detailed directions, or specific and continuous intersection prompting as the user travels the suggested route.
  • the prompting could take the form of a voice command, or text display, telling the user to turn right at the next intersection.
  • a delivery truck, cab, ambulance or fire truck could have a special screen that showed a local map with instructions written on it.
  • the instructions can also be modified as the traffic congestion changes.
  • the benefits of the present system are a significant increase in public safety, convenience and productivity.
  • the separation between antennas is made sufficient to yield an accurate position location capability.
  • the separation is also sufficient to reduce the triangulation error to a very small number.
  • the incremental cost of including optimization for a location capability is nominal.
  • Position location processing is accomplished by a third party provider which owns and manages the position location center.
  • Location service can be accomplished in several ways. The preferred approach is to make the user terminal the repository for all location information by building and maintaining a location file.
  • the position location center queries the user terminal over the normal public switched telephone network (preferably packet) when it needed information. Preferably, a provision for encryption during transmission and an access code for privacy, is used.
  • the user terminal could also send location information to the location center, also over the public switched telephone network, responsive to user activation. For instance, when the user pushed an alarm button, the radio sends the alarm message, along with the location information, to the location center.
  • the location center would respond according to prearranged directions and the level of subscribed service.
  • the distance measurement sent by the system to the user terminal includes the distance in feet, the time in milliseconds and the identity of the measuring entity.
  • the user terminal Upon receipt of the distance message the user terminal stores the message and makes code offset measurements to several different antennas, and, if signal levels are adequate, stores the composite information in the location file.
  • the location file is retained until a new distance message is received by the user terminal radio, whereupon the user terminal radio again makes the code offset measurements and updates the location file.
  • the radio When the location center queries the user terminal radio as to its location, the radio sends the contents of the location file.
  • the location center processes this data into very accurate map data, position on a particular street (can be displayed on a typical street map)
  • the system measures distance to the subscriber normally once every minute when the subscriber is in the active receive mode, receiver on, waiting to be paged. The period between measurements is variable and can be adjusted according to the needs of the user.
  • the system sends this new distance to the subscriber station which places it in the file and enters new code offset measurements with it. If the subscriber is engaged in a conversation, the user terminal is transmitting, the base station makes a measurement every ten seconds and if the distance changes more than one hundred feet the system sends a message to the subscriber station. Whenever the user terminal receives a distance measurement it adds the local code offset measurements and updates the file.
  • the user terminal's location file is updated at least every minute and more often if warranted. Therefore, the system can know the location of any active user within a distance of approximately 100 feet. Better accuracy and more frequent updating is certainly possible, but due to the loading on the data links the number of subscribers receiving higher performance should be the exception rather than the rule.
  • the terminal Whenever the user presses the alarm button on his portable terminal, the terminal transmits the contents of the location file three times which is long enough for the system to read a new distance and send a message to the user terminal.
  • the user terminal makes several offset measurements and sends the new location file three times.
  • the alarm message is repeated every thirty seconds until the battery goes dead.
  • the user terminal radio can have a module added (with its own battery) that emits an audible tone whenever the radio alarm message is transmitted.
  • the system generates raw location information at the user terminal that needs to be converted into human readable map data.
  • the basic longitude, latitude, or angle and distance readings are fine.
  • a third party to translate this data into a format that is quickly usable by the mass public, as a service business.
  • the location processing center periodically queries the subscribed user terminals and maintain a file on their current location.
  • One potential service for subscribers with health problems is a monitoring system during exercise. If the subscriber stops in an unusual location for an excessive length of time and does not press the alarm button, the location center operator could request life signs or send a medical technician to the paused subscriber.
  • the location center operator knows the subscriber location in order to send help.
  • the alarm button is pressed, the alarm message is addressed to the location center where they are equipped to handle such emergencies.
  • the capability to track user terminals and provide help as the result of some action is useful for many applications. Tracking stolen cars, identifying congestion, keeping ambulances from getting lost and reporting vandalism are but a few examples of the application of the present invention.
  • the system does, particularly in its distributed configuration as described previously, require a consistent zero time reference across the different base station antennas. Having a zero time reference available significantly reduces the time to resynchronize as the signal hops from antenna to antenna and also aids in the search and handoff process.
  • the location application capability described above allows the system to periodically perform a self calibration by placing several of the user terminals, as described above, at fixed locations and determining the proper zero time setting for these locations. By keeping the correct answer in the central processor, as the system scans these check points, it will get an error indication if the system is out of calibration. The same check points are used to show the effective delay, during the process wherein a variable delay is introduced by incrementing or decrementing the system delay in one or more of the signal paths in the recalibration or adjustment process.
  • the calibration process could be easily automated. Automation could be implemented in two ways. The first approach is to scan the check points every minute and determine any error that has developed. If this error reaches a significant level the communication system contacts the location center and provides the center with the corrections that need to be factored into the position location calculations. The latter approach requires close coordination between the communication system and the position location center. A more autonomous approach would be desirable.
  • the communication system itself could maintain the proper "zero" state by scanning the check points, as described above, and by having the ability to insert or remove delay 1806 in the path to the antenna.
  • Figure 18 illustrates a system with self-calibration. Once every minute the system queries each check point 1802. This results in a distance measure being sent to the check point 1802 where the check point receiver adds the code offset measurements and sends the contents of the location file to the processor 1804 where the received file is compared with a file that contains the correct measurements. If the difference exceeds the threshold the processor 1804 calculates the changes in delay that are required to bring the measurements within tolerance and passes the correction to the controller. The controller maintains a file that includes the variable delay 1806 to be inserted for each antenna. The controller changes the delay entry in the file and a new measurement is taken to validate the calibration.
  • the position location capability also provides a service for the communication system. Self calibration results in a significant reduction in installation cost and allows the use of more economical system components.
  • Location related communications between the antenna devices and the subscriber terminal can be broken into several different links.
  • the functions that are performed by these different links are: 1, distance measurement (requires a two way link, but no traffic); 2, sending measurement information to subscriber terminal (one way data link, except for possible retransmission requests); 3, measuring code offset (only requires user terminal to listen, no data is transferred); 4, Transmit location file to location center or communication processor 1804 (data links can be either one way or two way).
  • Distance measurement can only be performed by the system and since it requires a two way link it can be done while a normal conversation channel has been established or if the terminal is in the listening mode the system has to establish a short round trip connection.
  • the two way link is required because the base station measures the code phase difference between the signal it sends to, and the signal it receives from, the user terminal.
  • the foregoing function is accomplished in processor 1804.
  • the system operates like a radar with a pulse the width of a PN chip.
  • the one way data link message transporting the distance message to the user terminal is a single message that typically will include an error correcting code, and may also require an acknowledgment message to be sent back from the user terminal to the base station.
  • the acknowledgment message could be sent independently or appended as part of the distance measurement function.
  • the code offset information is also placed it in a file that is accessible from outside the system.
  • the user terminal time shares one receiver on the three independent paths that emanate at different times from the three different antennas. Therefore, the receiver tracks three independent paths one after the other.
  • the PN code on each path is the same, and as described above the code has the same starting time at each antenna, but because of the difference in distance to the three different antennas, from the user terminal, the codes arriving at the user terminal are of different code phases. However, since the system cycles very rapidly from antenna to antenna, the receiver cycles between signals received from each of the antennas. Therefore, the receiver maintains three separate starting states and tracking loops for the different time slots.
  • the processor is emulating three different receivers.
  • the receiver quickly adjusts for any slight drift that occurred while the receiver was locked to the other antennas.
  • the receiver has a specific starting state.
  • the PN sequence has been shifted to compensate for the difference in range on the path between the user terminal and the first antenna and the path between the user terminal and the second antenna.
  • the difference is the code offset, because the code offset measures the difference in range.
  • the distance to the second antenna is known without having to do a closed loop (two way) measurement. The same process is followed for the third antenna.
  • Additional entries, greater than three, in the location file are available using the normal search mode that the user terminal radio uses to identify potential candidates for handoff.
  • the user terminal radio searches the pilot codes emanating from nearby antennas to determine if any of these antennas have better signals than one of the three that are currently being used. If so, the user terminal notifies the system that a good candidate is available.
  • the process of searching starts at the state of the PN signal coming in from time slot number one and if nothing is found at that state the radio adds a chip to the path length and integrates again.
  • the radio keeps adding chips until it finds a signal or exceeds a range threshold. If it exceeds the range threshold it resets the PN generator to a new pilot code and starts at the 0 offset distance again.
  • the radio finds a new pilot signal it knows how many chips it added before it was successful.
  • the added number of chips is also the code offset.
  • the code offset value along with the identity of the code, which uniquely names the antenna, and the time stamp are entered into the location file.
  • the radio places these entries in the location file even if they are not better than the current signals. As the radio scans and finds new antennas it places the four best results in the location file. As it continues to scan, older entries are replaced with newer better entries.
  • the location center 1902 receives the location files over the public switched network, see figure 19.
  • the network can be a circuit switched network or a packet switched network. A packet switched network is adequate and economical for this type of application.

Abstract

Système de télécommunication sans fil associant la diversité dans le temps et dans l'espace dans le but de réduire l'évanouissement et de simplifier la conception des récepteurs. Plus particulièrement, un paquet de données portant le trafic téléphonique numérique est transmis à trois instants différents à partir de trois antennes différentes (A-C). Par conséquent, le récepteur d'abonné mobile (10) reçoit le même paquet de données à trois instants différents et en provenance de trois antennes différentes, et il utilise le meilleur paquet de données, ou la meilleure combinaison de paquets de données, pour atténuer les effets de l'évanouissement. Une station de transfert (54, 56, 58) reçoit un signal d'accès multiple par multiplexage à répartition dans le temps (AMRT) provenant d'une station de base portant le trafic téléphonique de paquets de données, afin de former trois répartitions de paquets de données au niveau de trois emplacements d'antenne répartis dans l'espace. En outre, la station de transfert module un système d'accès multiple par difference de code (AMDC) à l'aide d'un signal AMRT reliant le récepteur d'abonné mobile à la station de transfert. Chaque paquet de données reçu par la station de transfert est donc retransmis à trois instants différents en direction du poste d'abonné mobile par l'intermédiaire d'une liaison AMDC. Selon un mode de réalisation, chaque station de transfert comprend les trois antennes réparties dans l'espace.

Claims (68)

  1. Procédé permettant la localisation d'un récepteur (10) dans un système de communication sans fil, dans lequel des paquets de données sont transmis d'au moins un transmetteur (14) vers ledit récepteur afin de former des données numériques ; ledit système comprenant une première, une seconde et une troisième antennes (11, 12, 13) espacées les unes des autres, ledit procédé étant caractérisé par :
    la transmission d'un premier paquet de données dans un premier canal à accès multiple à répartition par code CDMA à créneau temporel, ayant un premier code d'étalement à partir de ladite première antenne (11) afin de former un premier paquet de données transmis ;
    la transmission d'un deuxième paquet de données dans un second canal CDMA à créneau temporel ayant un deuxième code d'étalement à partir de ladite deuxième antenne (12) afin de former un deuxième paquet de données transmis ;
    la transmission d'un troisième paquet de données dans un troisième canal CDMA à créneau temporel ayant un troisième code d'étalement à partir de ladite troisième antenne (13) afin de former un troisième paquet de données transmis ;
    la réception desdits premier, deuxième et troisième paquets de données transmis au niveau dudit récepteur (10) en formant respectivement un premier, un deuxième et un troisième paquets de données reçus ;
    la sélection d'au moins un desdits premier, deuxième et troisième paquets de données reçus afin de former lesdites données numériques au niveau dudit récepteur ; et
    la détermination des différences d'offset du code dans des puces entre le premier, le deuxième et le troisième codes d'étalement des paquets de données reçus au niveau dudit récepteur ; et
    le calcul de la localisation dudit récepteur (10) à partir desdites différences d'offset déterminées respectives desdits premier, deuxième et troisième paquets transmis ; lesdits premier, deuxième et troisième paquets de données transportant sensiblement les mêmes informations.
  2. Procédé selon la revendication 1, dans lequel ladite étape de calcul de la localisation dudit récepteur (10) à partir desdites différences déterminées respectives d'offset du code desdits premier, deuxième et troisième paquets de données transmis comprend le calcul de la distance par rapport à au moins une desdites première, deuxième et troisième antennes.
  3. Procédé selon la revendication 1, dans lequel ladite étape de calcul de la localisation dudit récepteur (10) à partir desdites différences déterminées respectives d'offset de code desdits premier, deuxième et troisième paquets de données transmis comprend le calcul de la différence de distance entre ledit récepteur et lesdites première et deuxième antennes.
  4. Procédé selon la revendication 3, dans lequel ladite étape de calcul de la localisation dudit récepteur (10) à partir desdites différences déterminées respectives d'offset de code desdits premier, deuxième et troisième paquets de données transmis comprend le calcul de la différence de distance entre ledit récepteur et lesdites deuxième et troisième antennes.
  5. Procédé selon la revendication 1, dans lequel ladite étape de calcul de la localisation dudit récepteur (10) à partir desdites différences déterminées respectives d'offset de code desdits premier, deuxième et troisième paquets de données transmis comprend le calcul d'une première distance par rapport à ladite première antenne (11), le calcul d'une deuxième distance par rapport à ladite seconde antenne (12) et le calcul d'une troisième distance par rapport à ladite troisième antenne (13) et le calcul de la position dudit récepteur (10) qui se trouve à l'intersection des trois courbes de distances constantes de la première, de la deuxième et de la troisième antennes (11, 12, 13) qui se trouvent respectivement à la première, deuxième et troisième distances.
  6. Procédé selon la revendication 1, comprenant en outre une fréquence porteuse ayant une longueur d'onde caractéristique, dans lequel lesdites première, deuxième et troisième antennes (11, 12, 13) sont espacées les unes des autres d'une distance entre un quart de ladite longueur d'onde et dix fois ladite longueur d'onde.
  7. Procédé selon la revendication 1, dans lequel ladite étape de sélection d'au moins un desdits premier, deuxième et troisième paquets de données reçus afin de former lesdites données numériques au niveau dudit récepteur comprend une étape de combinaison de l'énergie dudit premier, deuxième et troisième paquets de données reçus de manière maximale.
  8. Procédé selon la revendication 7, dans lequel ladite étape de combinaisons des premier, deuxième et troisième paquets de données reçus de manière maximale consiste à combiner l'énergie desdits premier, deuxième et troisième paquets de données dans un multiplexeur à maximum de vraisemblance.
  9. Procédé selon la revendication 1, dans lequel le paquet de données est transmis d'une station de base (22, 24) vers une station d'abonné (42), ledit système comprenant une station de transfert (38) entre ladite station de base (22, 24) et ladite station d'abonné (42) pour la réception dudit paquet de données provenant de ladite station de base et la retransmission dudit paquet de données à ladite station d'abonné, moyennant quoi ladite station de transfert comprend ledit transmetteur et ladite station d'abonné comprend ledit récepteur, ladite station de transfert comprenant lesdites première, deuxième et troisième antennes espacées les unes des autres, le procédé étant en outre caractérisé par :
    la réception dudit paquet de données au niveau de ladite station de transfert ;
    la retransmission dudit paquet de données à partir de ladite première antenne afin de former un premier paquet de données transmis ;
    la retransmission dudit paquet de données à partir de ladite deuxième antenne afin de former un deuxième paquet de données transmis après ledit premier paquet de données transmis ; et
    la retransmission dudit paquet de données à partir de ladite troisième antenne afin de former un troisième paquet de données transmis après ledit deuxième paquet de données transmis.
  10. Procédé selon la revendication 9, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert et ledit paquet de données est retransmis de ladite station de transfert vers ladite station d'abonné à l'aide d'un signal multiplexé par répartition par code, ledit signal multiplexé par répartition par code étant divisé en un premier et un deuxième créneaux temporels multiplexés par répartition dans le temps contenant ledit premier paquet de données transmis et ledit deuxième paquet de données transmis, respectivement à partir desdites première et deuxième antennes.
  11. Procédé selon la revendication 10, dans lequel ledit paquet de données est retransmis de ladite station de transfert vers ladite station d'abonné à l'aide d'un signal multiplexé par répartition par code, ledit signal multiplexé par répartition par code étant divisé en un troisième créneau temporel multiplexé par répartition dans le temps contenant ledit troisième paquet de données transmis.
  12. Procédé selon la revendication 10, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison radio numérique multiplexée par répartition dans le temps.
  13. Procédé selon la revendication 10, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison de télévision par câble à large bande.
  14. Procédé selon la revendication 10, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison par câble à fibre optique.
  15. Procédé selon la revendication 10, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à module à gain de paires.
  16. Procédé selon la revendication 10, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à boucle à paire torsadée.
  17. Procédé selon la revendication 9, comprenant en outre une fréquence porteuse ayant une longueur d'onde caractéristique, dans lequel lesdites première, deuxième et troisième antennes sont espacées les unes des autres d'une distance entre un quart de ladite longueur d'onde et dix fois ladite longueur d'onde.
  18. Procédé selon la revendication 9, caractérisé en outre par :
    le calcul d'un fichier de localisation comprenant des données représentant la localisation de ladite station d'abonné à partir dudit temps d'arrivée mesuré respectif desdits premier, deuxième et troisième paquets de données transmis ; et
    la transmission des contenus dudit fichier de localisation contenant les données correspondant audit temps d'arrivée mesuré respectif desdits premier, deuxième et troisième paquets de données transmis au niveau de ladite station d'abonné, de ladite station d'abonné vers ladite station de base.
  19. Procédé selon la revendication 18, dans lequel ladite station de base reçoit les contenus dudit fichier de localisation contenant les données correspondant audit temps d'arrivée mesuré respectif desdits premier, deuxième et troisième paquets de données transmis au niveau de ladite station d'abonné, calcule la localisation de ladite station d'abonné et transmet la localisation calculée de ladite station d'abonné à ladite station d'abonné, ledit procédé de la station d'abonné étant en outre caractérisé par l'étape de réception de ladite localisation calculée de la station d'abonné.
  20. Procédé selon la revendication 18, dans lequel ledit fichier de localisation contient des données représentant la distance par rapport à une desdites première, deuxième et troisième antennes et les différences déterminées respectives du temps d'arrivée des paquets de données reçus entre ladite une desdites première, deuxième, troisième antennes et les deux autres antennes parmi lesdites première, deuxième et troisième antennes.
  21. Procédé selon la revendication 18, dans lequel ladite station de base accède auxdites données du fichier de localisation à l'aide d'une numérotation par l'intermédiaire du réseau téléphonique commuté public.
  22. Procédé selon la revendication 18, dans lequel on accède auxdites données du fichier de localisation à l'aide d'un mot de passe et lesdites données du fichier de localisation sont transmises à ladite station de base sous une forme cryptée.
  23. Procédé selon la revendication 18, dans lequel lesdites données du fichier de localisation sont transmises à ladite station de base suite à une indication d'initiation au niveau de ladite station d'abonné.
  24. Procédé selon la revendication 1, dans lequel le paquet de données est transmis d'une station de base (92) vers une station d'abonné (112), ledit système comprenant une première, une deuxième et une troisième stations de transfert (104, 106, 108) espacées les unes des autres, chacune desdites première, deuxième et troisième stations de transfert étant conçue pour recevoir ledit paquet de données provenant de ladite station de base et pour retransmettre ledit paquet de données vers ladite station d'abonné, moyennant quoi lesdites première, deuxième et troisième stations de transfert (104, 106, 108) comprennent chacune un desdits transmetteurs et ladite station d'abonné (112) comprend ledit récepteur, ladite première station de transfert (108) comprenant ladite première antenne (A), ladite deuxième station de transfert (106) comprenant ladite deuxième antenne (B) et ladite troisième station de transfert (104) comprenant ladite troisième antenne (C), le procédé étant caractérisé en outre par :
    la réception dudit paquet de données au niveau desdites première, deuxième et troisième stations de transfert ;
    la retransmission dudit paquet de données à partir de ladite première antenne de station de transfert afin de former un premier paquet de données transmis ;
    la retransmission dudit paquet de données à partir de ladite deuxième antenne de station de transfert afin de former un deuxième paquet de données transmis après ledit premier paquet de données transmis ; et
    la retransmission dudit paquet de données à partir de ladite troisième antenne de station de transfert afin de former un troisième paquet de données transmis après ledit deuxième paquet de données transmis.
  25. Procédé selon la revendication 24, dans lequel ledit paquet de données est transmis de ladite station de base vers chacune desdites stations de transfert et ledit paquet de données est retransmis de chacune desdites stations de transfert vers ladite station d'abonné à l'aide d'un signal multiplexé par répartition par code, ledit signal multiplexé par répartition par code étant divisé en un premier et un deuxième créneaux temporels multiplexés par répartition dans le temps contenant respectivement ledit premier paquet de données transmis et ledit deuxième paquet de données transmis.
  26. Procédé selon la revendication 25, ledit signal multiplexé par répartition par code étant divisé en un troisième créneau temporel multiplexé par répartition dans le temps contenant ledit troisième paquet de données transmis.
  27. Procédé selon la revendication 25, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison radio numérique multiplexée par répartition dans le temps.
  28. Procédé selon la revendication 25, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison de télévision par câble à large bande.
  29. Procédé selon la revendication 25, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison par câble à fibre optique.
  30. Procédé selon la revendication 25, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à module à gain de paires.
  31. Procédé selon la revendication 25, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à boucle à paire torsadée.
  32. Appareil permettant de déterminer la localisation d'un récepteur (10) dans un système de communication sans fil, dans lequel un paquet est transmis d'au moins un transmetteur (14) vers ledit récepteur (10) afin de former un paquet de données reçu, ledit système comprenant une première, une deuxième et une troisième antennes (11, 12, 13) espacées les unes des autres, ledit appareil étant caractérisé par :
    un moyen permettant de transmettre un premier paquet de données dans un premier canal à accès multiple à répartition par code CDMA à créneau temporel, ayant un premier code d'étalement, à partir de ladite première antenne (11) afin de former un premier paquet de données transmis ;
    un moyen permettant de transmettre un deuxième paquet de données dans un deuxième canal CDMA à créneau temporel, ayant un deuxième code d'étalement, à partir de ladite deuxième antenne (12) afin de former un deuxième paquet de données transmis ;
    un moyen permettant de transmettre un troisième paquet de données dans un troisième canal CDMA à créneau temporel, ayant un troisième code d'étalement, à partir de ladite troisième antenne (13) afin de former un troisième paquet de données transmis ;
    un moyen permettant de recevoir lesdits premier, deuxième et troisième paquets de données transmis au niveau dudit récepteur (10) en formant les premier, deuxième et troisième paquets de données reçus respectifs ;
    un moyen permettant la sélection d'au moins un desdits premier, deuxième et troisième paquets de données reçus pour former lesdits données numériques au niveau dudit récepteur ;
    un moyen permettant de déterminer des différences d'offset du code dans des puces entre le premier, le deuxième et le troisième codes d'étalement des paquets de données reçus au niveau dudit récepteur ; et
    un moyen permettant de calculer la localisation dudit récepteur (10) à partir desdites différences respectives déterminées d'offset du code desdits premier, deuxième et troisième paquets transmis ; lesdits premier, deuxième et troisième paquets de données transportant sensiblement les mêmes informations.
  33. Appareil selon la revendication 32, dans lequel ledit moyen permettant de calculer la localisation dudit récepteur à partir desdites différences déterminées respectives d'offset du code desdits premier, deuxième et troisième paquets de données transmis comprend un moyen permettant de calculer la distance par rapport à au moins une desdites première, deuxième et troisième antennes (11, 12, 13).
  34. Appareil selon la revendication 32, dans lequel ledit moyen permettant de calculer la localisation dudit récepteur à partir desdites différences déterminées respectives d'offset du code desdits premier, deuxième et troisième paquets de données transmis comprend un moyen permettant de calculer la différence de distance entre ledit récepteur et lesdites première et deuxième antennes (11, 12).
  35. Appareil selon la revendication 34, dans lequel ledit moyen permettant de calculer la localisation dudit récepteur à partir desdites différences déterminées respectives d'offset du code desdits premier, deuxième et troisième paquets de données transmis comprend un moyen permettant de calculer la différence de distance entre ledit récepteur et lesdites deuxième et troisième antennes (12, 13).
  36. Appareil selon la revendication 32, dans lequel ledit moyen permettant de calculer la localisation dudit récepteur à partir desdites différences déterminées respectives d'offset du code desdits premier, deuxième et troisième paquets de données transmis comprend un moyen permettant de calculer une première distance par rapport à ladite première antenne, un moyen permettant de calculer une deuxième distance par rapport à ladite deuxième antenne et de calculer une troisième distance par rapport à ladite troisième antenne, et un moyen permettant de calculer la position dudit récepteur qui se trouve à l'intersection des trois courbes de distances constantes par rapport auxdites première, deuxième et troisième antennes (11, 12, 13) qui se trouvent respectivement à la première, deuxième et troisième distances.
  37. Appareil selon la revendication 32, comprenant en outre une fréquence porteuse ayant une longueur d'onde caractéristique, dans lequel lesdites première, deuxième et troisième antennes (11, 12, 13) sont espacées les unes des autres d'une distance entre un quart de ladite longueur d'onde et dix fois ladite longueur d'onde.
  38. Appareil selon la revendication 32, dans lequel ledit moyen permettant de sélectionner au moins un desdits premier, deuxième et troisième paquets de données reçus pour former lesdites données numériques au niveau dudit récepteur comprend un moyen permettant de combiner l'énergie desdits premier, deuxième et troisième paquets de données reçus de manière maximale.
  39. Appareil selon la revendication 32, dans lequel ledit moyen permettant de sélectionner au moins un desdits premier, deuxième et troisième paquets de données reçus pour former lesdites données numériques au niveau dudit récepteur comprend un moyen permettant de combiner l'énergie desdits premier, deuxième et troisième paquets de données reçus de manière maximale.
  40. Appareil selon la revendication 32, dans lequel un paquet de données est transmis d'une station de base (22, 24) vers une station d'abonné (42), ledit système comprenant une station de transfert (38) entre ladite station de base (22, 24) et ladite station d'abonné (42) pour la réception dudit paquet de données provenant de ladite station de base et la retransmission dudit paquet de données à ladite station d'abonné, moyennant quoi ladite station de transfert (38) comprend ledit transmetteur et ladite station d'abonné comprend ledit récepteur, ladite station de transfert comprenant lesdites première, deuxième et troisième antennes (A, B, C) espacées les unes des autres, l'appareil étant caractérisé par :
    un moyen permettant la réception dudit paquet de données au niveau de ladite station de transfert ;
    un moyen permettant la retransmission dudit paquet de données à partir de ladite première antenne afin de former un premier paquet de données transmis ;
    un moyen permettant la retransmission dudit paquet de données à partir de ladite deuxième antenne afin de former un deuxième paquet de données transmis après ledit premier paquet de données transmis ; et
    un moyen permettant la retransmission dudit paquet de données à partir de ladite troisième antenne afin de former un troisième paquet de données transmis après ledit deuxième paquet de données transmis.
  41. Appareil selon la revendication 40, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert et ledit paquet de données est retransmis de ladite station de transfert vers ladite station d'abonné à l'aide d'un signal multiplexé par répartition par code, ledit signal multiplexé par répartition par code étant divisé en un premier et un deuxième créneaux temporels multiplexés par répartition dans le temps contenant ledit premier paquet de données transmis et ledit deuxième paquet de données transmis, respectivement à partir desdites première et deuxième antennes.
  42. Appareil selon la revendication 41, dans lequel ledit paquet de données est retransmis de ladite station de transfert vers ladite station d'abonné à l'aide d'un signal multiplexé par répartition par code, ledit signal multiplexé par répartition par code étant divisé en un troisième créneau temporel multiplexé par répartition dans le temps contenant ledit troisième paquet de données transmis.
  43. Appareil selon la revendication 41, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison radio numérique multiplexée par répartition dans le temps.
  44. Appareil selon la revendication 41, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison de télévision par câble à large bande.
  45. Appareil selon la revendication 41, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison par câble à fibre optique.
  46. Appareil selon la revendication 41, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à module à gain de paires.
  47. Appareil selon la revendication 41, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à boucle à paire torsadée.
  48. Appareil selon la revendication 40, comprenant en outre une fréquence porteuse ayant une longueur d'onde caractéristique, dans lequel lesdites première, deuxième et troisième antennes sont espacées les unes des autres d'une distance entre un quart de ladite longueur d'onde et dix fois ladite longueur d'onde.
  49. Appareil selon la revendication 40, caractérisé en outre par :
    un moyen permettant le calcul d'un fichier de localisation comprenant des données représentant la localisation de ladite station d'abonné à partir dudit temps d'arrivée mesuré respectif desdits premier, deuxième et troisième paquets de données transmis ; et
    un moyen permettant la transmission des contenus dudit fichier de localisation contenant les données correspondant audit temps d'arrivée mesuré respectif desdits premier, deuxième et troisième paquets de données transmis au niveau de ladite station d'abonné, de ladite station d'abonné vers ladite station de base.
  50. Appareil selon la revendication 49, dans lequel ladite station de base reçoit les contenus dudit fichier de localisation contenant les données correspondant audit temps d'arrivée mesuré respectif desdits premier, deuxième et troisième paquets de données transmis au niveau de ladite station d'abonné, calcule la localisation de ladite station d'abonné et transmet la localisation calculée de ladite station d'abonné à ladite station d'abonné, ledit appareil de la station d'abonné étant en outre caractérisé par un moyen de réception de ladite localisation calculée de la station d'abonné.
  51. Appareil selon la revendication 49, dans lequel ledit fichier de localisation contient des données représentant la distance par rapport à une desdites première, deuxième et troisième antennes et les différences déterminées respectives du temps d'arrivée des paquets de données reçus entre ladite une desdites première, deuxième, troisième antennes et les deux autres antennes parmi lesdites première, deuxième et troisième antennes.
  52. Appareil selon la revendication 49, dans lequel ladite station de base accède auxdites données du fichier de localisation à l'aide d'une numérotation par l'intermédiaire du réseau téléphonique commuté public.
  53. Appareil selon la revendication 49, dans lequel on accède auxdites données du fichier de localisation à l'aide d'un mot de passe et lesdites données du fichier de localisation sont transmises à ladite station de base sous une forme cryptée.
  54. Appareil selon la revendication 49, dans lequel lesdites données du fichier de localisation sont transmises à ladite station de base suite à une indication d'initiation au niveau de ladite station d'abonné.
  55. Appareil selon la revendication 32, dans lequel un paquet de données est transmis d'une station de base (92, 94) vers une station d'abonné, ledit système comprenant une première, une deuxième et une troisième stations de transfert (104, 106, 108) espacées les unes des autres, chacune desdites première, deuxième et troisième stations de transfert étant conçue pour recevoir ledit paquet de données provenant de ladite station de base et pour retransmettre ledit paquet de données vers ladite station d'abonné, moyennant quoi lesdites première, deuxième et troisième stations de transfert comprennent chacune un desdits transmetteurs et ladite station d'abonné comprend ledit récepteur, ladite première station de transfert (108) comprenant ladite première antenne (A), ladite deuxième station de transfert (106) comprenant ladite deuxième antenne (B) et ladite troisième station de transfert (104) comprenant ladite troisième antenne (C), l'appareil étant caractérisé en outre par :
    un moyen permettant la réception dudit paquet de données au niveau desdites première et deuxième stations de transfert ;
    un moyen permettant la retransmission dudit paquet de données à partir de ladite première antenne de station de transfert afin de former un premier paquet de données transmis ;
    un moyen permettant la retransmission dudit paquet de données à partir de ladite deuxième antenne de station de transfert afin de former un deuxième paquet de données transmis après ledit premier paquet de données transmis ; et
    un moyen permettant la retransmission dudit paquet de données à partir de ladite troisième antenne de station de transfert afin de former un troisième paquet de données transmis après ledit deuxième paquet de données transmis.
  56. Appareil selon la revendication 55, dans lequel ledit paquet de données est transmis de ladite station de base vers chacune desdites stations de transfert et ledit paquet de données est retransmis de chacune desdites stations de transfert vers ladite station d'abonné à l'aide d'un signal multiplexé par répartition par code, ledit signal multiplexé par répartition par code étant divisé en un premier et un deuxième créneaux temporels multiplexés par répartition dans le temps contenant respectivement ledit premier paquet de données transmis et ledit deuxième paquet de données transmis.
  57. Appareil selon la revendication 56, ledit signal multiplexé par répartition par code étant divisé en un troisième créneau temporel multiplexé par répartition dans le temps contenant ledit troisième paquet de données transmis.
  58. Appareil selon la revendication 56, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison radio numérique multiplexée par répartition dans le temps.
  59. Appareil selon la revendication 56, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison de télévision par câble à large bande.
  60. Appareil selon la revendication 56, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison par câble à fibre optique.
  61. Appareil selon la revendication 56, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à module à gain de paires.
  62. Appareil selon la revendication 25, dans lequel ledit paquet de données est transmis de ladite station de base vers ladite station de transfert à l'aide d'une liaison téléphonique à boucle à paire torsadée.
  63. Procédé selon la revendication 1, caractérisé en outre par :
    le positionnement d'un récepteur de calibrage au niveau d'une localisation connue ;
    la réception de manière séquentielle desdits premier, deuxième et troisième paquets de données transmis au niveau dudit récepteur de calibrage formant respectivement les premier, deuxième et troisième paquets de données reçus ;
    la mesure des temps d'arrivée respectifs desdits premier, deuxième et troisième paquets de données transmis au niveau dudit récepteur de calibrage ;
    le calcul de la localisation dudit récepteur de calibrage à partir desdits temps d'arrivée mesurés respectifs desdits premier, deuxième et troisième paquets de données transmis ; et
    la comparaison de la localisation calculée dudit récepteur de calibrage avec ladite localisation connue.
  64. Procédé selon la revendication 63, caractérisé en outre par le calcul de la différence entre ladite localisation calculée et ladite localisation connue, et par l'introduction de retards de transmission respectifs par rapport auxdites première, deuxième et troisième antennes afin de calibrer ledit système.
  65. Procédé selon la revendication 63, caractérisé en outre par le calcul d'indications d'erreurs représentant la différence entre ladite localisation calculée et ladite localisation connue et par le stockage desdites indications d'erreurs pour une utilisation dans ledit procédé pour la détermination de la localisation dudit récepteur afin de calibrer ledit système.
  66. Appareil selon la revendication 32, caractérisé en outre par:
    un récepteur de calibrage positionné au niveau d'une localisation connue ;
    un moyen permettant la réception de manière séquentielle desdits premier, deuxième et troisième paquets de données transmis au niveau dudit récepteur de calibrage formant respectivement les premier, deuxième et troisième paquets de données reçus ;
    un moyen permettant la mesure des temps d'arrivée respectifs desdits premier, deuxième et troisième paquets de données transmis au niveau dudit récepteur de calibrage ;
    un moyen permettant le calcul de la localisation dudit récepteur de calibrage à partir desdits temps d'arrivée mesurés respectifs desdits premier, deuxième et troisième paquets de données transmis ; et
    un moyen permettant la comparaison de la localisation calculée dudit récepteur de calibrage avec ladite localisation connue.
  67. Appareil selon la revendication 66, caractérisé en outre par un moyen permettant de calculer la différence entre ladite localisation calculée et ladite localisation connue, et par un moyen permettant l'introduction de retards de transmission respectifs par rapport auxdites première, deuxième et troisième antennes afin de calibrer ledit système.
  68. Appareil selon la revendication 66, caractérisé en outre par un moyen permettant de calculer des indications d'erreurs représentant la différence entre ladite localisation calculée et ladite localisation connue et par un moyen permettant le stockage desdites indications d'erreurs pour une utilisation dans ledit moyen pour la détermination de la localisation dudit récepteur afin de calibrer ledit système.
EP95943324A 1994-09-06 1995-08-31 Systeme de distribution telephonique sans fil avec transmission a diversite dans le temps et dans l'espace Expired - Lifetime EP0779991B1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP05022143A EP1615353B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102240A EP1926232B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
DK05022143.1T DK1615353T3 (da) 1994-09-06 1995-08-31 Trådløst telefondistributionssystem med transmission med tids- og rumdiversitet
EP08102235A EP1926229A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP05010301A EP1564907B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102255.0A EP1933475B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil doté d'une transmission de diversité temporelle et spatiale
EP08102254A EP1926231A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP10179516A EP2293462A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP10182331A EP2309660A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102253A EP1926230A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US301230 1981-09-11
US08/301,230 US5614914A (en) 1994-09-06 1994-09-06 Wireless telephone distribution system with time and space diversity transmission for determining receiver location
PCT/US1995/011067 WO1996008908A2 (fr) 1994-09-06 1995-08-31 Systeme de distribution telephonique sans fil avec transmission a diversite dans le temps et dans l'espace

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP08102240A Division EP1926232B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP05010301A Division EP1564907B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP05022143A Division EP1615353B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace

Publications (3)

Publication Number Publication Date
EP0779991A2 EP0779991A2 (fr) 1997-06-25
EP0779991A4 EP0779991A4 (fr) 2001-10-04
EP0779991B1 true EP0779991B1 (fr) 2007-10-10

Family

ID=23162506

Family Applications (10)

Application Number Title Priority Date Filing Date
EP08102254A Withdrawn EP1926231A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP95943324A Expired - Lifetime EP0779991B1 (fr) 1994-09-06 1995-08-31 Systeme de distribution telephonique sans fil avec transmission a diversite dans le temps et dans l'espace
EP05022143A Expired - Lifetime EP1615353B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102240A Expired - Lifetime EP1926232B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102253A Withdrawn EP1926230A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP10179516A Withdrawn EP2293462A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP10182331A Withdrawn EP2309660A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102235A Withdrawn EP1926229A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102255.0A Expired - Lifetime EP1933475B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil doté d'une transmission de diversité temporelle et spatiale
EP05010301A Expired - Lifetime EP1564907B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08102254A Withdrawn EP1926231A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace

Family Applications After (8)

Application Number Title Priority Date Filing Date
EP05022143A Expired - Lifetime EP1615353B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102240A Expired - Lifetime EP1926232B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102253A Withdrawn EP1926230A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP10179516A Withdrawn EP2293462A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP10182331A Withdrawn EP2309660A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102235A Withdrawn EP1926229A3 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace
EP08102255.0A Expired - Lifetime EP1933475B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil doté d'une transmission de diversité temporelle et spatiale
EP05010301A Expired - Lifetime EP1564907B1 (fr) 1994-09-06 1995-08-31 Système de distribution de téléphone sans fil avec transmission à diversité dans le temps et dans l'espace

Country Status (10)

Country Link
US (15) US5614914A (fr)
EP (10) EP1926231A3 (fr)
JP (13) JP4080529B2 (fr)
AU (1) AU4462096A (fr)
DE (3) DE69535615T2 (fr)
DK (3) DK1615353T3 (fr)
ES (4) ES2421088T3 (fr)
FI (3) FI121945B (fr)
HK (4) HK1081750A1 (fr)
WO (1) WO1996008908A2 (fr)

Families Citing this family (423)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007434A1 (fr) * 1990-10-23 1992-04-30 Omnipoint Corporation Procede et dispositif servant a etablir des communications a spectre disperse
US5519760A (en) 1994-06-22 1996-05-21 Gte Laboratories Incorporated Cellular network-based location system
US5614914A (en) * 1994-09-06 1997-03-25 Interdigital Technology Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
US6885652B1 (en) * 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7020111B2 (en) * 1996-06-27 2006-03-28 Interdigital Technology Corporation System for using rapid acquisition spreading codes for spread-spectrum communications
US7929498B2 (en) * 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
ZA965340B (en) * 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
JP3483991B2 (ja) * 1995-07-27 2004-01-06 沖電気工業株式会社 符号分割多重アクセス通信用拡散符号発生器、符号分割多重アクセス通信システム及び符号分割多重アクセス通信用拡散符号発生方法
US5790605A (en) * 1995-07-28 1998-08-04 Motorola, Inc. Method for determining voting windows in a diversity repeater
US6132306A (en) * 1995-09-06 2000-10-17 Cisco Systems, Inc. Cellular communication system with dedicated repeater channels
US5950124A (en) * 1995-09-06 1999-09-07 Telxon Corporation Cellular communication system with dynamically modified data transmission parameters
US6128512A (en) * 1995-09-06 2000-10-03 Cisco Systems, Inc. Cellular communication system with dedicated repeater channels
US6052408A (en) * 1995-09-06 2000-04-18 Aironet Wireless Communications, Inc. Cellular communication system with dynamically modified data transmission parameters
US5748103A (en) * 1995-11-13 1998-05-05 Vitalcom, Inc. Two-way TDMA telemetry system with power conservation features
US5944659A (en) 1995-11-13 1999-08-31 Vitalcom Inc. Architecture for TDMA medical telemetry system
US6023615A (en) * 1995-11-29 2000-02-08 Motorola, Inc. Method for controlling a diversity receiver apparatus in a radio subscriber unit
US6005883A (en) * 1996-01-26 1999-12-21 Aironet Wireless Communications, Inc. Direct sequence network and method using PN sequence selection to represent data
US6091936A (en) * 1996-03-29 2000-07-18 Ericsson Inc. Method and apparatus for reducing co-channel interference
US5850392A (en) * 1996-04-10 1998-12-15 Ericsson Inc. Spread spectrum random access systems and methods for time division multiple access radiotelephone communication systems
GB2312790A (en) * 1996-04-30 1997-11-05 Northern Telecom Ltd Omnidirectional antenna arrangement
US6678311B2 (en) 1996-05-28 2004-01-13 Qualcomm Incorporated High data CDMA wireless communication system using variable sized channel codes
JPH09321659A (ja) * 1996-05-31 1997-12-12 Fujitsu Ltd スペクトラム拡散通信方式
US6195046B1 (en) * 1996-06-06 2001-02-27 Klein S. Gilhousen Base station with slave antenna for determining the position of a mobile subscriber in a CDMA cellular telephone system
GB2355159B (en) * 1996-06-06 2001-06-13 Qualcomm Inc Determining the position of a mobile station in a CDMA cellular telephone system
US5943014A (en) * 1996-06-06 1999-08-24 Qualcom Incorporated Using a signal with increased power for determining the position of a mobile subscriber in a CDMA cellular telephone system
US6034635A (en) * 1996-06-06 2000-03-07 Gilhousen; Klein S. Method for using only two base stations for determining the position of a mobile subscriber in a CDMA cellular telephone system
GB2357223B (en) * 1996-06-06 2001-08-15 Qualcomm Inc Determining the position of a mobile station in a cellular telephone system
US6243565B1 (en) * 1996-06-18 2001-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting communication signals using frequency and polarization diversity
US6006075A (en) * 1996-06-18 1999-12-21 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for transmitting communication signals using transmission space diversity and frequency diversity
US6097771A (en) * 1996-07-01 2000-08-01 Lucent Technologies Inc. Wireless communications system having a layered space-time architecture employing multi-element antennas
US5805983A (en) * 1996-07-18 1998-09-08 Ericsson Inc. System and method for equalizing the delay time for transmission paths in a distributed antenna network
US5862133A (en) * 1996-08-02 1999-01-19 Golden Bridge Technology Packet-switched spread-spectrum system
US6236365B1 (en) 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US7764231B1 (en) * 1996-09-09 2010-07-27 Tracbeam Llc Wireless location using multiple mobile station location techniques
US9134398B2 (en) 1996-09-09 2015-09-15 Tracbeam Llc Wireless location using network centric location estimators
US6249252B1 (en) 1996-09-09 2001-06-19 Tracbeam Llc Wireless location using multiple location estimators
US7903029B2 (en) 1996-09-09 2011-03-08 Tracbeam Llc Wireless location routing applications and architecture therefor
US7714778B2 (en) * 1997-08-20 2010-05-11 Tracbeam Llc Wireless location gateway and applications therefor
DE19638814A1 (de) * 1996-09-20 1998-03-26 Bosch Gmbh Robert Verfahren zur drahtlosen Übertragung von digitalen Daten
UA53669C2 (uk) * 1996-11-18 2003-02-17 Сіменс Акцієнгезельшафт Спосіб та система базової станції для конфігурування радіоінтерфейсу між мобільною станцією та базовою станцією мобільної радіосистеми пакетної передачі даних з часовим мультиплексуванням
US6061337A (en) * 1996-12-02 2000-05-09 Lucent Technologies Inc. System and method for CDMA handoff using telemetry to determine the need for handoff and to select the destination cell site
US6034987A (en) * 1996-12-17 2000-03-07 Ericsson Inc. System for improving the quality of a received radio signal
JPH10190528A (ja) * 1996-12-25 1998-07-21 Matsushita Electric Ind Co Ltd スペクトル拡散受信機
US5978370A (en) * 1997-01-13 1999-11-02 At&Tcorp Circuit-switched switching system
US5930721A (en) * 1997-02-18 1999-07-27 Telefonaktiebolaget L M Ericsson Emulating an advanced control algorithm in a mobile communications system
US6128276A (en) * 1997-02-24 2000-10-03 Radix Wireless, Inc. Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays
US6898197B1 (en) * 1997-02-28 2005-05-24 Interdigital Technology Corporation Geolocation of a mobile terminal in a CDMA communication system
FR2760309B1 (fr) * 1997-03-03 2000-08-04 Alsthom Cge Alcatel Procede de communication mis en oeuvre dans un systeme de transmission a ressource partagee
US6359882B1 (en) * 1997-04-01 2002-03-19 Yipes Communications, Inc. Method and apparatus for transmitting data
FR2762168B1 (fr) * 1997-04-10 1999-05-07 Alsthom Cge Alcatel Station mobile integrant des fonctions de radiocommunication et de localisation, et procede correspondant de reception de signaux de localisation par une station mobile
US5973643A (en) * 1997-04-11 1999-10-26 Corsair Communications, Inc. Method and apparatus for mobile emitter location
CA2411996C (fr) * 1997-04-24 2009-09-08 Ntt Mobile Communications Network Inc. Procede et systeme de communication mobile
GB9709285D0 (en) * 1997-05-08 1997-06-25 Philips Electronics Nv Flexible two-way telecommunications system
CN1142635C (zh) * 1997-05-13 2004-03-17 夸尔柯姆股份有限公司 多副天线的检测和选择系统
SE509435C2 (sv) * 1997-05-16 1999-01-25 Ericsson Telefon Ab L M Integritetsskydd i ett telekommunikationssystem
EP1571857A3 (fr) * 1997-06-04 2007-09-05 NTT DoCoMo, Inc. Système de radiocommunication mobile, station mobile et procédé de commande des voies de passage de diversité
US6542481B2 (en) 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US6388999B1 (en) * 1997-12-17 2002-05-14 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communications using buffer urgency factor
US6081536A (en) 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US6151332A (en) 1997-06-20 2000-11-21 Tantivy Communications, Inc. Protocol conversion and bandwidth reduction technique providing multiple nB+D ISDN basic rate interface links over a wireless code division multiple access communication system
US6275484B1 (en) * 1997-06-23 2001-08-14 Lucent Technologies Inc. Methods and apparatus for increasing the uplink gain for a CDMA base station
JP3985299B2 (ja) * 1997-07-14 2007-10-03 三菱電機株式会社 移動通信システム
FR2766627B1 (fr) * 1997-07-28 1999-10-01 France Telecom Reseau d'antennes pour station de base de radiocommunication avec des mobiles
JP2953441B2 (ja) * 1997-07-29 1999-09-27 日本電気株式会社 移動データ通信システム
US6185258B1 (en) 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
BR9812246A (pt) * 1997-09-18 2000-07-18 Nokia Mobile Phones Ltd Diversidade de tempo em sistema tdma
CA2276207C (fr) 1997-10-31 2003-02-18 At&T Wireless Services, Inc. Detection par probabilite maximale a faible complexite de codes d'espace concatenes pour applications sans fil
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US6101168A (en) * 1997-11-13 2000-08-08 Qualcomm Inc. Method and apparatus for time efficient retransmission using symbol accumulation
US6795508B1 (en) * 1997-12-02 2004-09-21 Qualcomm, Incorporated Method and apparatus for obtaining transmit diversity using switched antennas
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US7394791B2 (en) 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US7936728B2 (en) 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
US20040160910A1 (en) * 1997-12-17 2004-08-19 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US7496072B2 (en) 1997-12-17 2009-02-24 Interdigital Technology Corporation System and method for controlling signal strength over a reverse link of a CDMA wireless communication system
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US6363079B1 (en) * 1997-12-31 2002-03-26 At&T Corp. Multifunction interface facility connecting wideband multiple access subscriber loops with various networks
US7184428B1 (en) 1997-12-31 2007-02-27 At&T Corp. Facility management platform for a hybrid coaxial/twisted pair local loop network service architecture
SE511365C2 (sv) * 1998-01-23 1999-09-20 Ericsson Telefon Ab L M Antennomkopplingsdiversitet
JP3299927B2 (ja) * 1998-01-29 2002-07-08 沖電気工業株式会社 移動体通信システム、および移動局の位置推定方法
US6141543A (en) * 1998-04-13 2000-10-31 Motorola, Inc. Method and apparatus for simulcast space diversity transmission of a message in a radio messaging system
US6205127B1 (en) * 1998-04-21 2001-03-20 Lucent Technologies, Inc. Wireless telecommunications system that mitigates the effect of multipath fading
US6198775B1 (en) * 1998-04-28 2001-03-06 Ericsson Inc. Transmit diversity method, systems, and terminals using scramble coding
US6615024B1 (en) * 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
FI107219B (fi) * 1998-05-04 2001-06-15 Nokia Networks Oy Signaalin ajoituksen mittausmenetelmä ja radiojärjestelmä
KR19990088235A (ko) * 1998-05-13 1999-12-27 윤종용 이동통신시스템의시간스위칭송신다이버시티장치및그제어방법
US8134980B2 (en) 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
US7773566B2 (en) 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US7221664B2 (en) 1998-06-01 2007-05-22 Interdigital Technology Corporation Transmittal of heartbeat signal at a lower level than heartbeat request
JP3260716B2 (ja) * 1998-06-05 2002-02-25 松下電器産業株式会社 送信装置及びそれを用いた基地局装置
DE19825536B4 (de) 1998-06-08 2005-05-19 IQ wireless GmbH, Entwicklungsgesellschaft für Systeme und Technologien der Telekommunikation Verfahren und Vorrichtung für ein vollduplexfähiges Funkübertragungssystem mit CDMA-Zugriff
JP3562368B2 (ja) * 1999-03-02 2004-09-08 株式会社日立製作所 ダイバーシチ無線通信方法およびその無線通信装置
KR100288559B1 (ko) * 1998-06-19 2001-05-02 윤종용 이동 통신 시스템을 위한 위치 시스템 및 위치 서비스 요구 방법
US6330452B1 (en) 1998-08-06 2001-12-11 Cell-Loc Inc. Network-based wireless location system to position AMPs (FDMA) cellular telephones, part I
US6665332B1 (en) 1998-09-09 2003-12-16 Allen Telecom, Inc. CDMA geolocation system
US6360102B1 (en) * 1998-09-10 2002-03-19 Ericsson Inc. System and method for defining a subscriber location privacy profile
JP3473434B2 (ja) * 1998-09-16 2003-12-02 三菱電機株式会社 無線通信システム並びに無線通信方法
WO2000018056A1 (fr) * 1998-09-18 2000-03-30 Hughes Electronics Corporation Procedes et structures pour codes espace-temps destines aux constellations a transmission par deplacement de phase servant a assurer la diversite spatiale dans des systemes d'antennes a elements multiples
RU2145152C1 (ru) 1998-10-08 2000-01-27 Гармонов Александр Васильевич Способ ортогональной разнесенной передачи-приема сигнала в сотовой системе радиосвязи с кодовым разделением каналов
US6208297B1 (en) * 1998-10-09 2001-03-27 Cell-Loc Inc. Methods and apparatus to position a mobile receiver using downlink signals, part I
US6266014B1 (en) 1998-10-09 2001-07-24 Cell-Loc Inc. Methods and apparatus to position a mobile receiver using downlink signals part IV
US7180951B2 (en) * 1998-10-30 2007-02-20 Broadcom Corporation Reduction of aggregate EMI emissions of multiple transmitters
US6198921B1 (en) 1998-11-16 2001-03-06 Emil Youssefzadeh Method and system for providing rural subscriber telephony service using an integrated satellite/cell system
US20030146871A1 (en) * 1998-11-24 2003-08-07 Tracbeam Llc Wireless location using signal direction and time difference of arrival
US6128330A (en) 1998-11-24 2000-10-03 Linex Technology, Inc. Efficient shadow reduction antenna system for spread spectrum
US8135413B2 (en) 1998-11-24 2012-03-13 Tracbeam Llc Platform and applications for wireless location and other complex services
US6813254B1 (en) 1998-11-25 2004-11-02 Lucent Technologies Inc. Methods and apparatus for wireless communication using code division duplex time-slotted CDMA
US6542485B1 (en) 1998-11-25 2003-04-01 Lucent Technologies Inc. Methods and apparatus for wireless communication using time division duplex time-slotted CDMA
US7020071B2 (en) 1998-11-25 2006-03-28 Lucent Technologies Inc. Methods and apparatus for wireless communication using orthogonal frequency division multiplexing
US6977910B1 (en) * 1998-12-31 2005-12-20 Texas Instruments Incorporated Power control with space time transmit diversity
US6141566A (en) * 1999-01-11 2000-10-31 Tellabs Operations, Inc. Co-located omnidirectional and sectorized base station
US6215812B1 (en) 1999-01-28 2001-04-10 Bae Systems Canada Inc. Interference canceller for the protection of direct-sequence spread-spectrum communications from high-power narrowband interference
US6377609B1 (en) * 1999-03-05 2002-04-23 Neptune Technology Group Inc. Spread spectrum frequency hopping system and method
KR100322021B1 (ko) * 1999-03-22 2002-03-20 윤종용 다이버시티 안테나간의 이격거리 결정방법
US6804311B1 (en) * 1999-04-08 2004-10-12 Texas Instruments Incorporated Diversity detection for WCDMA
US6249253B1 (en) * 1999-04-13 2001-06-19 Nortel Networks Limited Mobile radiotelephone determination using time of arrival of GPS and pilot signals
US6823483B1 (en) * 1999-04-22 2004-11-23 Broadcom Corporation Physical coding sublayer for a multi-pair gigabit transceiver
AU4278600A (en) * 1999-04-27 2000-11-10 Brian De Champlain Single receiver wireless tracking system
US6614776B1 (en) 1999-04-28 2003-09-02 Tantivy Communications, Inc. Forward error correction scheme for high rate data exchange in a wireless system
US6839334B1 (en) * 1999-05-17 2005-01-04 Lucent Technologies Inc. Control channel for time division multiple access systems
US6424638B1 (en) * 1999-05-21 2002-07-23 Ericsson Inc. System and method for performing an inter mobile system handover using the internet telephony system
KR20010110066A (ko) * 1999-06-04 2001-12-12 가나이 쓰토무 셀룰러 통신을 사용한 측위 장치
AU4613399A (en) * 1999-06-18 2001-01-09 Nokia Corporation Diversity transmission method and system
FI111438B (fi) * 1999-07-09 2003-07-15 Nokia Corp Symbolijonon lähetysmenetelmä
MXPA02001046A (es) * 1999-07-30 2003-08-20 Iospan Wireless Inc Multiplexion espacial en una red celular.
US6067290A (en) * 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6453168B1 (en) * 1999-08-02 2002-09-17 Itt Manufacturing Enterprises, Inc Method and apparatus for determining the position of a mobile communication device using low accuracy clocks
US6721339B2 (en) 1999-08-17 2004-04-13 Lucent Technologies Inc. Method of providing downlink transmit diversity
US8064409B1 (en) 1999-08-25 2011-11-22 Qualcomm Incorporated Method and apparatus using a multi-carrier forward link in a wireless communication system
US6526034B1 (en) 1999-09-21 2003-02-25 Tantivy Communications, Inc. Dual mode subscriber unit for short range, high rate and long range, lower rate data communications
AU1367101A (en) 1999-09-24 2002-01-08 Dennis J. Dupray Geographically constrained network services
KR100363216B1 (ko) * 1999-10-29 2002-12-05 에스케이 텔레콤주식회사 이동통신 시스템의 다중경로 중계방법 및 그 장치
BRPI0015248B1 (pt) * 1999-11-03 2016-01-12 Qualcomm Inc método para transmitir referências piloto a partir de uma pluralidade de fontes de transmissão, sistema de comunicação sem fio e terminal de acesso
AU1913801A (en) * 1999-11-06 2001-06-06 Motorola, Inc. Displaying caller id for call waiting in a fixed wireless terminal
US6640106B2 (en) * 2001-09-20 2003-10-28 Motorola, Inc. Method and system for verifying the position of a mobile station using checkpoints
US8463255B2 (en) * 1999-12-20 2013-06-11 Ipr Licensing, Inc. Method and apparatus for a spectrally compliant cellular communication system
US6975666B2 (en) 1999-12-23 2005-12-13 Institut National De La Recherche Scientifique Interference suppression in CDMA systems
US6438117B1 (en) * 2000-01-07 2002-08-20 Qualcomm Incorporated Base station synchronization for handover in a hybrid GSM/CDMA network
JP4495288B2 (ja) * 2000-01-18 2010-06-30 パナソニック株式会社 基地局装置、通信端末装置、及び無線通信方法
WO2001058044A2 (fr) * 2000-02-07 2001-08-09 Tantivy Communications, Inc. Liaison a entretien minime destinee a maintenir la synchronisation
US7027425B1 (en) * 2000-02-11 2006-04-11 Alereon, Inc. Impulse radio virtual wireless local area network system and method
JP3566895B2 (ja) * 2000-02-15 2004-09-15 株式会社エヌ・ティ・ティ・ドコモ 先頭波位置検出装置、受信装置、先頭位置検出装置、先頭波位置検出方法および先頭位置検出方法
US6975619B1 (en) * 2000-03-20 2005-12-13 Lucent Technologies Inc. System and method for providing host geographic location information in a packet data network
US7515659B2 (en) * 2001-05-04 2009-04-07 Agere Systems Inc. Decoding techniques for multi-antenna systems
EP1152576B8 (fr) * 2000-05-05 2009-12-23 Agere Systems, Inc. Estimation conjointe par l'utilisation des algorithmes M ou T, dans des systèmes à plusieurs antennes
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US6532416B1 (en) * 2000-05-23 2003-03-11 Siemens Aktiengesellschaft Apparatus, method and system for a wireless communication and local positioning system in an automated, industrial and/or manufacturing environment
US6539209B1 (en) * 2000-05-30 2003-03-25 Lucent Technologies Inc. Code-division, multiple-access base station having transmit diversity
US10641861B2 (en) 2000-06-02 2020-05-05 Dennis J. Dupray Services and applications for a communications network
US9875492B2 (en) 2001-05-22 2018-01-23 Dennis J. Dupray Real estate transaction system
US10684350B2 (en) 2000-06-02 2020-06-16 Tracbeam Llc Services and applications for a communications network
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
DE10029115A1 (de) * 2000-06-14 2001-12-20 Mannesmann Ag Verfahren zur Erfassung von Verkehrslagedaten
US6845104B2 (en) * 2000-06-14 2005-01-18 Ipr Licensing, Inc. Receiver for time division multiplex system without explicit time slot assignment
JP3903695B2 (ja) * 2000-07-12 2007-04-11 株式会社日立製作所 マルチアプリケーション対応デジタル無線通信システム、その基地局及び移動局
JP2002064414A (ja) * 2000-08-14 2002-02-28 Sony Corp 通信システム及び通信方法、並びに通信端末
US7245880B1 (en) * 2000-08-31 2007-07-17 Intel Corporation Transmit power control within a wireless transmitter
US7233625B2 (en) * 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US6885847B1 (en) * 2000-10-10 2005-04-26 Symantec Corp. Extension mechanism and technique for enabling low-power end devices to access remote networks using short-range wireless communications means
US7068683B1 (en) 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US6807165B2 (en) * 2000-11-08 2004-10-19 Meshnetworks, Inc. Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel
ES2611489T3 (es) * 2000-11-16 2017-05-09 Sony Corporation Aparato de procesamiento de información y aparato de comunicación
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
WO2002052742A1 (fr) * 2000-12-06 2002-07-04 Linex Technologies, Inc. Systeme et procede permettant d'effectuer le transfert a etalement de spectre et d'eviter la congestion de source
US6314126B1 (en) 2001-01-12 2001-11-06 Linex Technologies, Inc. Spread-spectrum handoff and source congestion avoidance system and method
US6493377B2 (en) * 2000-12-06 2002-12-10 Linex Technologies, Inc. Distributed network, spread-spectrum system
US6952158B2 (en) * 2000-12-11 2005-10-04 Kennedy Jr Joseph P Pseudolite positioning system and method
JP3498704B2 (ja) * 2000-12-12 2004-02-16 日本電気株式会社 無線回線制御装置、その受信特性改善方法及び受信特性改善プログラムを記録した記録媒体
US7386781B2 (en) * 2000-12-15 2008-06-10 Arraycomm, Llc Method and apparatus for increasing the effective range of a communication link in a wireless communication system
US6954440B2 (en) * 2000-12-20 2005-10-11 At&T Corp. Method and apparatus for code division switching
US7373160B2 (en) * 2001-01-19 2008-05-13 Telefonaktiebolaget L M Ericsson (Publ) Method and device for indicating amounts of data in mobile networks
JP3540754B2 (ja) * 2001-02-06 2004-07-07 株式会社日立製作所 位置算出方法、位置算出装置及びそのプログラム
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US8082096B2 (en) 2001-05-22 2011-12-20 Tracbeam Llc Wireless location routing applications and architecture therefor
JP2002353865A (ja) * 2001-05-23 2002-12-06 Nec Corp アレーアンテナ送受信装置及びそのキャリブレーション方法
US20040252663A1 (en) * 2001-06-04 2004-12-16 Michiaki Takano Cdma transmission diversity apparatus
EP1267175A3 (fr) 2001-06-11 2003-10-15 Hewlett-Packard Company Détermination d'une position en utilisant des données élémentaires de positionnement reçues par transmission à courte portée
EP1267541A1 (fr) * 2001-06-11 2002-12-18 Hewlett-Packard Company Procédé et système de la détermination de position utilisant des éléments de données reçus par communication sur courtes distances
US7203508B2 (en) * 2001-06-13 2007-04-10 Ntt Docomo, Inc. Mobile communication systems, mobile communication methods, base stations, mobile stations, and signal transmission methods in the mobile communication systems
SG185139A1 (en) 2001-06-13 2012-11-29 Ipr Licensing Inc Transmittal of heartbeat signal at a lower level than heartbeat request
FR2826208B1 (fr) * 2001-06-19 2003-12-05 Thales Sa Systeme et procede de transmission d'un signal audio ou phonie
JP3700933B2 (ja) * 2001-07-27 2005-09-28 松下電器産業株式会社 受信機および通信端末
US7206294B2 (en) * 2001-08-15 2007-04-17 Meshnetworks, Inc. Movable access points and repeaters for minimizing coverage and capacity constraints in a wireless communications network and a method for using the same
US6861982B2 (en) * 2001-08-16 2005-03-01 Itt Manufacturing Enterprises, Inc. System for determining position of an emitter
US6549759B2 (en) 2001-08-24 2003-04-15 Ensemble Communications, Inc. Asymmetric adaptive modulation in a wireless communication system
US7564827B2 (en) * 2001-10-19 2009-07-21 Alcatel-Lucent Usa Inc. Adaptive hybrid retransmission method for wireless communications
US6957050B2 (en) * 2001-10-23 2005-10-18 Celletra Ltd. Time-delay transmit diversity add-on to a multicarrier base transceiver system
US7072649B2 (en) * 2001-11-06 2006-07-04 Volvo Trucks North America, Inc. Multiple purpose antenna system
US6728545B1 (en) * 2001-11-16 2004-04-27 Meshnetworks, Inc. System and method for computing the location of a mobile terminal in a wireless communications network
KR100506310B1 (ko) * 2001-11-23 2005-08-05 삼성전자주식회사 공중 무선망 및 사설 유무선망 서비스 장치 및 방법
JPWO2003049322A1 (ja) * 2001-11-30 2005-04-21 富士通株式会社 送信ダイバーシチ通信装置
US7184797B2 (en) * 2001-12-28 2007-02-27 Nokia Corporation Data transfer rate display selection
US7043273B2 (en) * 2002-01-15 2006-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Diversity branch delay alignment in radio base station
US7630691B2 (en) * 2002-01-23 2009-12-08 Qualcomm Incorporated Selective combining of multiple non-synchronous transmissions in a wireless communication system
US6907028B2 (en) * 2002-02-14 2005-06-14 Nokia Corporation Clock-based time slicing
US20050003828A1 (en) * 2002-04-09 2005-01-06 Sugar Gary L. System and method for locating wireless devices in an unsynchronized wireless environment
US6950684B2 (en) 2002-05-01 2005-09-27 Interdigital Technology Corporation Method and system for optimizing power resources in wireless devices
US7366492B1 (en) 2002-05-03 2008-04-29 Verizon Corporate Services Group Inc. Method and system for mobile location detection using handoff information
CA2661727C (fr) * 2002-05-06 2014-09-02 Interdigital Technology Corporation Synchronisation pour allonger la duree de vie d'accumulateurs
AU2003228985A1 (en) * 2002-05-09 2003-11-11 Kestrel Wireless, Inc. Method and system for enabling electronic transactions via a personal device
US6990317B2 (en) * 2002-05-28 2006-01-24 Wireless Innovation Interference resistant wireless sensor and control system
US7251235B2 (en) * 2002-06-12 2007-07-31 Conexant, Inc. Event-based multichannel direct link
US7933293B2 (en) * 2002-06-12 2011-04-26 Xocyst Transfer Ag L.L.C. Link margin notification using return frame
US7948951B2 (en) * 2002-06-12 2011-05-24 Xocyst Transfer Ag L.L.C. Automatic peer discovery
US8787988B2 (en) 2003-01-29 2014-07-22 Intellectual Ventures I Llc Power management for wireless direct link
USRE43127E1 (en) 2002-06-12 2012-01-24 Intellectual Ventures I Llc Event-based multichannel direct link
US8050360B2 (en) 2002-06-12 2011-11-01 Intellectual Ventures I Llc Direct link relay in a wireless network
US7327705B2 (en) * 2002-07-03 2008-02-05 Massachusetts Institute Of Technology Hybrid wireless network for data collection and distribution
US20040008648A1 (en) * 2002-07-11 2004-01-15 Schmidl Timothy M. Diversity decisions for downlink antenna transmission
US8086283B2 (en) * 2002-08-08 2011-12-27 Parker Stephen B Wireless child communication device
US7050756B2 (en) * 2002-08-29 2006-05-23 Kestrel Wireless, Inc. Phone enabled direct response
US7058034B2 (en) * 2002-09-09 2006-06-06 Nokia Corporation Phase shifted time slice transmission to improve handover
US7606192B2 (en) * 2002-09-30 2009-10-20 Intel Corporation Transmitting signals on a channel used for traffic and access in a communications system
US7729316B2 (en) 2002-09-30 2010-06-01 Intel Corporation Receiving signals on a channel used for traffic and access in a communications system
US7492743B2 (en) * 2002-09-30 2009-02-17 Intel Corporation Assigning training sequences based on spatial channels in a wireless communications system
WO2004052027A2 (fr) * 2002-11-27 2004-06-17 Cognio, Inc Systeme et procede de localisation de sources de signaux radio sans fil inconnus
EP1584160B1 (fr) * 2003-01-13 2011-07-06 Meshnetworks, Inc. Systeme et procede assurant la connectivite en continu d' un point d'acces ou une passerelle dans un reseau sans fil suite a un protocole de routage sur demande
US7382315B1 (en) * 2003-03-11 2008-06-03 Rockwell Collins, Inc. System for and method of improving beyond line-of-sight transmissions and receptions
EP1602202A4 (fr) * 2003-03-13 2007-05-23 Meshnetworks Inc Systeme et procede en temps reel d'amelioration de la precision de l'emplacement calcule d'abonnes mobiles dans un reseau sans fil ad hoc utilisant une unite de traitement centrale a vitesse lente
US20040179557A1 (en) * 2003-03-14 2004-09-16 Wen Tong Channel structures, systems, and methods to support high speed communication channels
US7171220B2 (en) * 2003-03-14 2007-01-30 Meshnetworks, Inc. System and method for analyzing the precision of geo-location services in a wireless network terminal
JP4102692B2 (ja) 2003-03-25 2008-06-18 富士通株式会社 無線基地局装置および基地局制御装置
CA2807352C (fr) 2003-03-26 2016-08-16 Interdigital Technology Corporation Methode et appareillage de communication sans fil permettant d'obtenir des services d'acces par paquets a liaison descendante a haute vitesse
WO2004097594A2 (fr) * 2003-04-29 2004-11-11 Nobel Communications Systeme de routage a plusieurs paquets (mprs)
FR2854536B1 (fr) * 2003-04-30 2005-07-01 France Telecom Procede de selection de canal de transmission dans un protocole d'acces multiple a repartition dans le temps et systeme de communication mettant en oeuvre un tel procede de selection
US7429914B2 (en) * 2003-06-04 2008-09-30 Andrew Corporation System and method for CDMA geolocation
WO2004109476A2 (fr) * 2003-06-05 2004-12-16 Meshnetworks, Inc. Systeme et procede permettant d'optimiser l'utilisation des canaux dans un reseau de communication sans fil multicanaux
EP1652207A4 (fr) * 2003-06-05 2011-12-28 Meshnetworks Inc Systeme et procede de determination d'un point de synchronisation dans des modems ofdm pour une mesure exacte du temps de vol
JP5037120B2 (ja) * 2003-06-05 2012-09-26 メッシュネットワークス インコーポレイテッド アドホック無線通信ネットワークにおける最適なルーティング
WO2004110082A1 (fr) * 2003-06-05 2004-12-16 Meshnetworks, Inc. Systeme et procede pour localiser un dispositif dans un reseau de communication hertzienne
WO2004109472A2 (fr) * 2003-06-06 2004-12-16 Meshnetworks, Inc. Systeme et procede permettant d'ameliorer la performance globale d'un reseau de communication sans fil
JP5054377B2 (ja) 2003-06-06 2012-10-24 メッシュネットワークス インコーポレイテッド アドホック・ネットワークにおけるフェアネスおよびサービスの差別化を実現するシステムおよび方法
KR20060018882A (ko) * 2003-06-06 2006-03-02 메시네트웍스, 인코포레이티드 애드혹 무선 네트워크에서 라우팅 프로토콜에 링크신뢰도의 척도를 제공하기 위한 방법
JP2007526445A (ja) * 2003-06-06 2007-09-13 メッシュネットワークス インコーポレイテッド 受信信号強度表示および信号伝搬時間を用いて、救助が必要な消防士がいるフロア番号を特定するシステムおよび方法
JP4168349B2 (ja) * 2003-07-14 2008-10-22 ソニー株式会社 情報提供方法、情報提供装置及び情報提供プログラム
US7590094B2 (en) * 2003-09-25 2009-09-15 Via Telecom Co., Ltd. Tristate requests for flexible packet retransmission
US7570615B2 (en) * 2003-10-20 2009-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Resource-sharing cells
US20050157674A1 (en) * 2003-10-31 2005-07-21 Globespanvirata Incorporated Time-scheduled multichannel direct link
US20050130634A1 (en) * 2003-10-31 2005-06-16 Globespanvirata, Inc. Location awareness in wireless networks
KR20050045223A (ko) * 2003-11-10 2005-05-17 삼성전자주식회사 광 대역 무선 접속 통신 시스템의 셀 플래닝 방법 및 그광 대역 무선 접속 통신 시스템의 인접 기지국 파워 스캔방법
GB2408172B (en) * 2003-11-12 2007-11-14 Ipwireless Inc Method and apparatus for improved throughput in a communication system
KR100581290B1 (ko) * 2003-12-10 2006-05-17 한국전자통신연구원 위치 측정을 위한 기지국 장치 및 단말기, 그 위치 측정방법
EP1721395B1 (fr) * 2004-03-05 2013-04-17 Qualcomm, Incorporated Procede et appareil pour commande de diversite de reception dans des communications sans fil
CA2558543A1 (fr) * 2004-03-05 2005-09-22 Qualcomm Incorporated Commande de reception radio en diversite d'antennes
US7505597B2 (en) * 2004-03-17 2009-03-17 Lockheed Martin Corporation Multi-level security CDMA communications arrangement
US7660583B2 (en) * 2004-03-19 2010-02-09 Nokia Corporation Advanced handover in phased-shifted and time-sliced networks
US20050219142A1 (en) * 2004-04-05 2005-10-06 Nagy Louis L Self-structuring hybrid antenna system
GB2413240A (en) 2004-04-13 2005-10-19 Ipwireless Inc Dynamic channel assignment in a TDD communication system
US7684372B2 (en) 2004-05-04 2010-03-23 Ipwireless, Inc. Signaling MIMO allocations
US8068530B2 (en) * 2004-06-18 2011-11-29 Qualcomm Incorporated Signal acquisition in a wireless communication system
KR101222447B1 (ko) * 2004-07-15 2013-01-15 큐빅 코포레이션 시뮬레이팅된 트레이닝 시스템들에서의 조준점의 강화
US7583982B2 (en) * 2004-08-06 2009-09-01 Interdigital Technology Corporation Method and apparatus to improve channel quality for use in wireless communications systems with multiple-input multiple-output (MIMO) antennas
DE602005017059D1 (de) * 2004-09-17 2009-11-19 Panasonic Corp System und verfahren zur drahtlosen übertragung und drahtlose station und sendestation zur verwendung darin
JP4361093B2 (ja) * 2004-09-30 2009-11-11 富士通株式会社 マルチアンテナ無線システムの増幅器利得制御方法および装置
US7167463B2 (en) * 2004-10-07 2007-01-23 Meshnetworks, Inc. System and method for creating a spectrum agile wireless multi-hopping network
US7715845B2 (en) 2004-10-14 2010-05-11 Qualcomm Incorporated Tone hopping methods and apparatus
US7379446B2 (en) * 2004-10-14 2008-05-27 Qualcomm Incorporated Enhanced beacon signaling method and apparatus
EP1810440A2 (fr) * 2004-10-26 2007-07-25 Kestrel Wireless, Inc. Procede, systeme, et reseau de controle selectif de la fonctionnalite d'une cible
US20060123055A1 (en) * 2004-12-07 2006-06-08 Paul Atkinson Device and method for selectively controlling the utility of a target
US20070194945A1 (en) * 2004-12-07 2007-08-23 Paul Atkinson Mobile Device for Selectively Activating a Target and Method of Using Same
KR100667785B1 (ko) * 2004-12-16 2007-01-12 삼성전자주식회사 카오스 기반 통신 시스템에서 동기화 방법 및 장치, 위치인식 방법 및 장치
US20060264184A1 (en) * 2005-02-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
US20060192653A1 (en) * 2005-02-18 2006-08-31 Paul Atkinson Device and method for selectively controlling the utility of an integrated circuit device
WO2006094054A2 (fr) * 2005-03-02 2006-09-08 Rohde & Schwarz Gmbh & Co.Kg Dispositif, systemes et procedes permettant d'ameliorer les reseaux atsc par un decoupage synchrone de trames de bande laterale residuelle (vsb)
US7532857B2 (en) * 2005-03-02 2009-05-12 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems and methods for providing time diversity for mobile broadcast services
US7822139B2 (en) * 2005-03-02 2010-10-26 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems, methods and computer products for providing a virtual enhanced training sequence
US20060245516A1 (en) * 2005-03-02 2006-11-02 Rohde & Schwarz, Inc. Apparatus, systems and methods for providing in-band atsc vestigial sideband signaling or out-of-band signaling
US7738582B2 (en) * 2005-03-02 2010-06-15 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems and methods for producing coherent symbols in a single frequency network
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US20060252461A1 (en) * 2005-05-06 2006-11-09 Grant Neil G Controlling wireless communications from a multi-sector antenna of a base station
US7949032B1 (en) * 2005-05-16 2011-05-24 Frost Edward G Methods and apparatus for masking and securing communications transmissions
WO2006124907A2 (fr) * 2005-05-17 2006-11-23 Andrew Corporation Procede et appareil de determination d'un affaiblissement de propagation
US7606288B2 (en) * 2005-05-27 2009-10-20 S5 Wireless, Inc. Burst spread spectrum radio system and method for asset tracking and data telemetry
US7273181B2 (en) * 2005-07-06 2007-09-25 Kestrel Wireless, Inc. Device and method for authenticating and securing transactions using RF communication
KR100774933B1 (ko) * 2005-10-28 2007-11-09 엘지전자 주식회사 이동통신 단말기, 이를 이용한 송신측 링크 관리방법 및수신측 링크 관리방법
US9204420B2 (en) * 2006-01-25 2015-12-01 Alcatel Lucent QoS-aware paging in a wireless communication system
US8175175B1 (en) * 2006-04-03 2012-05-08 Aaris Group Inc. Method and system for rate-shaping and transmitting media streams
US8000701B2 (en) 2006-05-16 2011-08-16 Andrew, Llc Correlation mechanism to communicate in a dual-plane architecture
US8000702B2 (en) * 2006-05-16 2011-08-16 Andrew, Llc Optimizing location services performance by combining user plane and control plane architectures
US8019339B2 (en) 2006-05-16 2011-09-13 Andrew Llc Using serving area identification in a mixed access network environment
US8738056B2 (en) 2006-05-22 2014-05-27 Qualcomm Incorporation Signal acquisition in a wireless communication system
US20070282621A1 (en) * 2006-06-01 2007-12-06 Flipt, Inc Mobile dating system incorporating user location information
US8989778B2 (en) 2006-06-01 2015-03-24 Green Dot Corporation Secure and private location sharing for location-aware mobile communication devices
US8571580B2 (en) * 2006-06-01 2013-10-29 Loopt Llc. Displaying the location of individuals on an interactive map display on a mobile communication device
US8929353B2 (en) 2007-05-09 2015-01-06 Qualcomm Incorporated Preamble structure and acquisition for a wireless communication system
BRPI0712926B1 (pt) 2006-06-13 2019-11-12 Qualcomm Inc estrutura de preâmbulo e aquisição para um sistema de comunicação sem fio
US8903432B2 (en) * 2006-08-04 2014-12-02 Huawei Technologies Co., Ltd. Wireless paging method
US8165124B2 (en) * 2006-10-13 2012-04-24 Qualcomm Incorporated Message compression methods and apparatus
US10075182B2 (en) * 2006-10-13 2018-09-11 Qualcomm Incorporated Message compression
JP5105834B2 (ja) * 2006-11-17 2012-12-26 キヤノン株式会社 制御装置及びその制御方法、通信装置及びその制御方法、通信システム、及び、プログラム
US7944892B2 (en) * 2006-11-17 2011-05-17 Xg Technology, Inc. Time coordinated base station and antenna array for integer cycle and impulse modulation systems
JP5072329B2 (ja) * 2006-11-22 2012-11-14 キヤノン株式会社 制御装置及びその制御方法、通信装置及びその制御方法、無線通信システム、及び、プログラム
US20080165692A1 (en) * 2007-01-04 2008-07-10 Motorola, Inc. Method and system for opportunistic data communication
WO2008088859A2 (fr) * 2007-01-18 2008-07-24 Mobileaccess Networks Ltd. Antenne à large bande hybride passive-active pour système d'antennes réparties
KR101424152B1 (ko) 2007-02-01 2014-08-04 로오데운트쉬바르츠게엠베하운트콤파니카게 Atsc 상호운용성을 제공하는 시스템, 장치, 방법 및 컴퓨터 프로그램 제품
EP2118810B1 (fr) 2007-02-05 2012-08-15 Andrew Corporation Système et procédé pour optimiser l'estimation de position d'une unité mobile
US7715319B2 (en) * 2007-02-06 2010-05-11 Viasat, Inc. Default assignment of scheduled transmissions
WO2008103374A2 (fr) * 2007-02-19 2008-08-28 Mobile Access Networks Ltd. Procédé et système pour améliorer l'efficacité d'une liaison montante
US8005050B2 (en) * 2007-03-23 2011-08-23 Lgc Wireless, Inc. Localization of a mobile device in distributed antenna communications system
DE102007014997B4 (de) * 2007-03-28 2013-08-29 Continental Automotive Gmbh Redundante Signalübertragung
US8315574B2 (en) * 2007-04-13 2012-11-20 Broadcom Corporation Management of variable-rate communication links
US7953060B2 (en) * 2007-06-11 2011-05-31 Viasat, Inc. Quasisynchronous reservation requests
US7940790B2 (en) * 2007-06-11 2011-05-10 Viasat, Inc. Multiple request intervals
NL1033982C2 (nl) * 2007-06-13 2008-12-16 Nedap Nv Systeem voor het herkennen van dieren.
US8001445B2 (en) * 2007-08-13 2011-08-16 Provigent Ltd. Protected communication link with improved protection indication
JP2009069022A (ja) * 2007-09-13 2009-04-02 Panasonic Corp レーダ装置、その制御方法及び車両
US8040985B2 (en) 2007-10-09 2011-10-18 Provigent Ltd Decoding of forward error correction codes in the presence of phase noise
CN101842715A (zh) * 2007-10-29 2010-09-22 诺基亚公司 室内定位系统和方法
US8170585B2 (en) 2007-11-14 2012-05-01 Andrew, Llc Ranging in UMTS networks
US8447319B2 (en) * 2007-11-15 2013-05-21 Andrew Llc System and method for locating UMTS user equipment using measurement reports
US20090141680A1 (en) * 2007-11-30 2009-06-04 Viasat, Inc. Flexible assignment of scheduled and request transmissions
US8144680B2 (en) * 2007-11-30 2012-03-27 Viasat, Inc. Contention-based communications
US7800530B2 (en) * 2007-12-07 2010-09-21 Andrew, Llc Method and system for providing assistance data for A-GPS location of handsets in wireless networks
DE102008017290A1 (de) * 2007-12-11 2009-06-18 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur Bildung eines gemeinsamen Datenstroms insbesondere nach dem ATSC-Standard
DE102007059959B4 (de) * 2007-12-12 2020-01-02 Rohde & Schwarz Gmbh & Co. Kg Verfahren und System zur Übertragung von Daten zwischen einer zentralen Rundfunkstation und mindestens einem Sender
ATE486478T1 (de) * 2008-02-15 2010-11-15 Mitsubishi Electric Corp Verfahren und vorrichtung zur entscheidung, ob eine basisstation ein endgerät nicht nutzen kann
US8509081B2 (en) * 2008-05-01 2013-08-13 Saudi Arabian Oil Company Adaptive hybrid wireless and wired process control system and method
US8213955B2 (en) 2008-05-01 2012-07-03 Andrew, Llc Network measurement report caching for location of mobile devices
DE102008056703A1 (de) * 2008-07-04 2010-01-07 Rohde & Schwarz Gmbh & Co. Kg Verfahren und System zur Zeitsynchronisierung zwischen einer Zentrale und mehreren Sendern
US8355458B2 (en) * 2008-06-25 2013-01-15 Rohde & Schwarz Gmbh & Co. Kg Apparatus, systems, methods and computer program products for producing a single frequency network for ATSC mobile / handheld services
WO2010014899A2 (fr) * 2008-08-01 2010-02-04 Bigfoot Networks, Inc. Dispositif de routage de message à distance et ses procédés
US20100063829A1 (en) * 2008-09-08 2010-03-11 Dupray Dennis J Real estate transaction system
DE102008059028B4 (de) * 2008-10-02 2021-12-02 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Verfahren und Vorrichtung zur Erzeugung eines Transportdatenstroms mit Bilddaten
US8073463B2 (en) 2008-10-06 2011-12-06 Andrew, Llc System and method of UMTS UE location using uplink dedicated physical control channel and downlink synchronization channel
DE102008052799B4 (de) * 2008-10-15 2011-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zum Kalibrieren eines Funksystems
DE502009005919C5 (de) 2008-10-27 2022-01-05 Andrew Wireless Systems Gmbh Repeater und Verfahren zum Betrieb eines solchen Repeaters
US8762519B2 (en) * 2008-10-28 2014-06-24 Andrew Llc System and method for providing location services for multiple access networks from a single location server
US8774069B2 (en) * 2008-11-06 2014-07-08 Rohde & Schwarz Gmbh & Co. Kg Method and system for synchronized mapping of data packets in an ATSC data stream
US8035557B2 (en) * 2008-11-24 2011-10-11 Andrew, Llc System and method for server side detection of falsified satellite measurements
US8249622B2 (en) 2008-11-26 2012-08-21 Andrew, Llc System and method for multiple range estimation location
US8380222B2 (en) 2008-11-26 2013-02-19 Andrew Llc System and method for multiple range estimation location
US8160609B2 (en) * 2008-11-26 2012-04-17 Andrew Llc System and method for multiple range estimation location
US7916071B2 (en) * 2008-12-23 2011-03-29 Andrew, Llc System and method for determining a reference location of a mobile device
CN101478335B (zh) * 2008-12-31 2012-12-19 中兴通讯股份有限公司 一种快速实现预编码的方法及装置
US20100175000A1 (en) * 2009-01-08 2010-07-08 Microsoft Corporation Dynamically creating and managing alternate contacts list
EP2234357B1 (fr) * 2009-03-21 2016-07-27 Rohde & Schwarz GmbH & Co. KG Procédé d'amélioration du débit de données mobiles et de la qualité d'estimation du canal dans un flux de données de transport ATSC-M/H
WO2010108269A1 (fr) * 2009-03-22 2010-09-30 Universite Laval Procédé et système pour des applications gps haute précision
US8391884B2 (en) * 2009-03-26 2013-03-05 Andrew Llc System and method for managing created location contexts in a location server
DE102009025219A1 (de) * 2009-04-07 2010-10-14 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur kontinuierlichen Anpassung von Kodierungsparametern an eine veränderliche Nutzdatenrate
US8290510B2 (en) * 2009-06-11 2012-10-16 Andrew Llc System and method for SUPL held interworking
US8340574B2 (en) * 2009-08-14 2012-12-25 Emc Satcom Technologies, Llc System and method for enabling ultra small aperture communication antenna using spectral replication and coherent frequency and phase combining
EP2462461A1 (fr) 2009-08-05 2012-06-13 Andrew LLC Système et procédé pour une localisation hybride dans un réseau à évolution à long terme (lte)
US8811200B2 (en) 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
US8217832B2 (en) * 2009-09-23 2012-07-10 Andrew, Llc Enhancing location accuracy using multiple satellite measurements based on environment
JP5503246B2 (ja) * 2009-10-08 2014-05-28 日本電信電話株式会社 位置推定システム及び位置推定方法
US8188920B2 (en) * 2009-10-15 2012-05-29 Andrew, Llc Location measurement acquisition optimization with Monte Carlo simulation
US8289210B2 (en) 2009-10-15 2012-10-16 Andrew Llc Location measurement acquisition adaptive optimization
DE102009057363B4 (de) 2009-10-16 2013-04-18 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur effizienten Übertragung von überregional und regional auszustrahlenden Programm-und Servicedaten
US9331798B2 (en) * 2010-01-08 2016-05-03 Commscope Technologies Llc System and method for mobile location by proximity detection
US8634349B1 (en) 2010-01-11 2014-01-21 Google Inc. Merging for wireless access points
KR101080532B1 (ko) * 2010-01-29 2011-11-04 주식회사 팬택 통신단말 및 그의 데이터 전송 방법
EP2534854B1 (fr) * 2010-02-12 2017-08-09 Sonova AG Système et procédé de transmission sonore sans fil
CA2788389C (fr) * 2010-02-12 2020-03-24 Phonak Ag Systeme et procede de transmission du son par ondes radioelectriques
EP2534768A1 (fr) * 2010-02-12 2012-12-19 Phonak AG Système et procédé d'assistance auditive sans fil
ES2784745T3 (es) * 2010-03-19 2020-09-30 Sky Perfect Jsat Corp Sistema de posicionamiento para satélite artificial geoestacionario
US9112989B2 (en) * 2010-04-08 2015-08-18 Qualcomm Incorporated System and method of smart audio logging for mobile devices
US8346160B2 (en) 2010-05-12 2013-01-01 Andrew Llc System and method for detecting and measuring uplink traffic in signal repeating systems
US8718673B2 (en) 2010-05-21 2014-05-06 Maple Acquisition Llc System and method for location assurance of a mobile device
US9538493B2 (en) 2010-08-23 2017-01-03 Finetrak, Llc Locating a mobile station and applications therefor
US8958754B2 (en) 2010-09-29 2015-02-17 Andrew, Llc System and method for sub-coherent integration for geo-location using weak or intermittent signals
DE102010048619A1 (de) * 2010-10-15 2012-04-19 Epcos Ag Antennenanordnung
JP5588306B2 (ja) * 2010-10-29 2014-09-10 キヤノン株式会社 通信システム及びその制御局並びに通信方法
KR101750369B1 (ko) * 2010-11-18 2017-06-23 삼성전자 주식회사 분산 안테나를 사용하는 이동 통신 시스템에서 상향 링크 전력 제어 방법 및 장치
US8489122B2 (en) 2010-12-09 2013-07-16 Andrew Llc System and method for total flight time ratio pattern matching
US8737506B1 (en) 2010-12-29 2014-05-27 Sprint Communications Company L.P. Determination of transmit diversity transmission delays
US8989021B2 (en) 2011-01-20 2015-03-24 Rohde & Schwarz Gmbh & Co. Kg Universal broadband broadcasting
JP5032678B2 (ja) * 2011-02-09 2012-09-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 複数キャリアのスケジューリング
WO2012112555A1 (fr) 2011-02-14 2012-08-23 Andrew Llc Procédé permettant une localisation mobile par un regroupement dynamique
US8437713B1 (en) 2011-02-16 2013-05-07 Sprint Communications Company L.P. Wireless transmit diversity control by location of a wireless communication device
US9715001B2 (en) 2011-06-13 2017-07-25 Commscope Technologies Llc Mobile location in a remote radio head environment
US8565686B2 (en) 2011-06-30 2013-10-22 Sprint Communications Company L.P. Power status multipath search window sizing for wireless communications
US8918304B2 (en) 2011-07-22 2014-12-23 Ascom Network Testing Inc. System and method for tuning geo-location in wideband code division multiple access (WCDMA) networks
CN104115023B (zh) 2011-12-19 2018-04-03 诺基亚技术有限公司 用于在多天线接收器中的天线之间进行切换的装置和相关联的方法
US9423508B2 (en) 2012-01-12 2016-08-23 Commscope Technologies Llc Autonomous Transmit Chain Delay Measurements
US8897813B2 (en) 2012-02-03 2014-11-25 Andrew Llc LTE user equipment positioning system and method
US9947004B2 (en) 2012-06-28 2018-04-17 Green Dot Corporation Wireless client transaction systems and related methods
US20140019322A1 (en) 2012-07-13 2014-01-16 Green Dot Corporation Mobile banking systems and related methods
US9494490B2 (en) * 2012-08-14 2016-11-15 General Electric Company Creep life management system for a turbine engine and method of operating the same
WO2014033500A1 (fr) 2012-08-31 2014-03-06 Nokia Corporation Dispositifs de localisation
US9165547B2 (en) 2012-09-17 2015-10-20 Blackberry Limited Localization of a wireless user equipment (UE) device based on audio masking
US9286879B2 (en) 2012-09-17 2016-03-15 Blackberry Limited Localization of a wireless user equipment (UE) device based on out-of-hearing band audio signatures for ranging
US9078055B2 (en) 2012-09-17 2015-07-07 Blackberry Limited Localization of a wireless user equipment (UE) device based on single beep per channel signatures
US9337914B2 (en) 2012-11-27 2016-05-10 Blackberry Limited System and method for communicating with a portable electronic device
CN104067662B (zh) * 2012-12-17 2018-11-06 华为技术有限公司 一种载波的分配方法、用户设备及基站
US9135808B2 (en) 2012-12-18 2015-09-15 James Vincent Petrizzi Systems, devices and methods to communicate public safety information
RU2549120C2 (ru) * 2012-12-21 2015-04-20 Акционерное общество "Концерн "Созвездие" Средство передачи данных телекоммуникационной сети и телекоммуникационная сеть
WO2014151103A1 (fr) * 2013-03-15 2014-09-25 Nextnav, Llc Systèmes et procédés offrant une diversité de transmission pour combattre les effets multitrajets dans l'estimation de position
JP2016532863A (ja) * 2013-07-18 2016-10-20 エルジー エレクトロニクス インコーポレイティド 電子機器の位置測定方法及び装置
US9473230B2 (en) * 2013-12-19 2016-10-18 It Centricity, Llc System and method for wireless broadband communication
GB2522892A (en) * 2014-02-08 2015-08-12 Nimble Devices Oy Method and system for determining spatial position of receiving device
US9401734B2 (en) * 2014-02-27 2016-07-26 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system and communication device
US9544699B2 (en) 2014-05-09 2017-01-10 Starkey Laboratories, Inc. Wireless streaming to hearing assistance devices
US10032364B2 (en) * 2014-05-15 2018-07-24 Savant Systems, Llc Standalone wireless lighting application
US9042911B1 (en) * 2014-06-20 2015-05-26 MTN Satellite Communications Inc. Dynamically reconfigured geo-fence boundaries
GB2536018A (en) * 2015-03-03 2016-09-07 Stratospheric Platforms Ltd Increasing data transfer rates
US10422870B2 (en) 2015-06-15 2019-09-24 Humatics Corporation High precision time of flight measurement system for industrial automation
US10591592B2 (en) 2015-06-15 2020-03-17 Humatics Corporation High-precision time of flight measurement systems
CA2989702A1 (fr) * 2015-06-15 2016-12-22 Humatics Corporation Systeme de mesure haute precision de temps de vol
US10430788B2 (en) 2015-08-06 2019-10-01 Green Dot Corporation Systems and methods for fund transfers
US20170164267A1 (en) * 2015-12-03 2017-06-08 The Trustees Of Columbia University In The City Of New York Apparatus to inhibit misuse of an electrically powered device
US10665923B2 (en) 2015-12-17 2020-05-26 Humatics Corporation Chip-scale radio-frequency localization devices and associated systems and methods
WO2017120196A1 (fr) 2016-01-04 2017-07-13 The Trustees Of Columbia University In The City Of New York Appareil pour mettre en œuvre une barrière optique pour des organismes nuisibles
US10128931B2 (en) * 2016-07-20 2018-11-13 Kymeta Corporation Antenna combiner
DE102016012101A1 (de) * 2016-10-08 2018-04-12 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung zur Positionsbestimmung
JP2018096799A (ja) * 2016-12-12 2018-06-21 ヤンマー株式会社 通信システム
US10145935B1 (en) 2017-05-30 2018-12-04 Polaris Wireless, Inc. Estimating the location of a wireless terminal in the purview of a distributed-antenna system
US10014913B1 (en) * 2017-07-24 2018-07-03 Polaris Wireless, Inc. Estimating the location of a wireless terminal in the purview of a distributed-antenna system
US11715154B2 (en) 2017-09-22 2023-08-01 Green Dot Corporation Systems and methods for managing accounts in a financial services system
US11399291B2 (en) * 2018-01-25 2022-07-26 Wiser Systems, Inc. Methods, systems and computer program products for automatic calibration of antennas
US10601539B2 (en) 2018-02-02 2020-03-24 J3 Technology LLC Multiple jamming signal transmit antennas with spatial diversity
US10855951B2 (en) 2018-07-13 2020-12-01 Analog Devices Global Unlimited Company Methods and devices for compensating sag effect
US10623692B2 (en) * 2018-07-13 2020-04-14 Analog Devices Global Unlimited Company High definition analog video and control link for automotive applications
US10462413B1 (en) 2018-10-26 2019-10-29 Analog Devices Global Unlimited Company Using metadata for DC offset correction for an AC-coupled video link
US11240773B2 (en) * 2018-12-07 2022-02-01 Google Llc Managing doppler and framing impacts in networks
DE102019202756A1 (de) * 2019-02-28 2020-09-03 Diehl Metering Gmbh Verfahren um Teilnehmer in Sensornetzwerke zu koordinieren
WO2020218889A1 (fr) * 2019-04-26 2020-10-29 주식회사 아모센스 Dispositif de mesure de position
KR20210030785A (ko) * 2019-09-10 2021-03-18 삼성전자주식회사 외부 전자 장치의 위치를 결정하기 위한 전자 장치 및 그 방법
US11448722B2 (en) * 2020-03-26 2022-09-20 Intel Corporation Apparatus, system and method of communicating radar signals
US20230276194A1 (en) * 2020-09-03 2023-08-31 Beijing Xiaomi Mobile Software Co., Ltd. Ranging method, communication node, communication device and storage medium

Family Cites Families (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US474590A (en) * 1892-05-10 Method of making bimetallic balances for watches
US501641A (en) * 1893-07-18 Level
US555076A (en) * 1896-02-25 Electric visual indicator
US553076A (en) * 1896-01-14 Fire-door opening for water fire-boxes
US3714573A (en) * 1970-05-06 1973-01-30 Hazeltine Corp Spread-spectrum position monitoring system
US4018748A (en) * 1973-01-24 1977-04-19 E. I. Du Pont De Nemours And Company Polyamides containing 1,2,5-Oxadiazole-3,4-dicarbonyl groups
US4058200A (en) * 1975-07-23 1977-11-15 Ppg Industries, Inc. Orienting and aligning moving glass sheets
US4099121A (en) * 1976-06-11 1978-07-04 Communications Satellite Corporation Spatial diversity satellite communications system with error control
US4081748A (en) * 1976-07-01 1978-03-28 Northern Illinois Gas Company Frequency/space diversity data transmission system
US4128809A (en) * 1976-08-31 1978-12-05 Nippon Electric Co., Ltd. Time diversity receiver for processing repeatedly received signal bits in consideration of a maximum-level and/or a favorably received signal bit
US4093046A (en) 1976-12-30 1978-06-06 Cummins Engine Company, Inc. Exhaust braking apparatus
JPS53109328U (fr) 1977-02-09 1978-09-01
US4158809A (en) * 1977-02-28 1979-06-19 Beckman Instruments, Inc. Signal measuring and display control method and apparatus
US4128121A (en) * 1977-07-18 1978-12-05 General Electric Company Nb3 Ge superconductive films
US4426712A (en) * 1981-05-22 1984-01-17 Massachusetts Institute Of Technology Correlation system for global position receiver
US4423712A (en) * 1982-04-28 1984-01-03 The Jacobs Mfg. Company Engine retarder slave piston return mechanism
JPS58202642A (ja) * 1982-05-21 1983-11-25 Nec Corp スペ−スダイバ−シテイ受信装置
IL67379A (en) * 1982-12-01 1985-11-29 Tadiran Israel Elect Ind Ltd Real-time frequency management system for hf communication networks
US4549303A (en) * 1983-12-27 1985-10-22 The United States Of America As Represented By The Secretary Of The Army Multichannel time division multiplexed trunk transmission link
US4576548A (en) 1984-01-17 1986-03-18 Westinghouse Electric Corp. Self-aligning static seal for gas turbine stator vanes
US5448593A (en) * 1984-03-06 1995-09-05 Cyplex Corporation Frequency hopping time-diversity communications systems and transceivers for local area networks
JPS60202307A (ja) * 1984-03-28 1985-10-12 Hitachi Ltd 進行指示機能付ナビゲ−シヨンシステム
JPS60214641A (ja) * 1984-04-10 1985-10-26 Nec Corp 時分割多方向通信のスペース・ダイバシティ通信方式
US4644351A (en) * 1984-05-08 1987-02-17 Motorola, Inc. Two way personal message system with extended coverage
US4675863A (en) * 1985-03-20 1987-06-23 International Mobile Machines Corp. Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
US4670871A (en) 1985-06-27 1987-06-02 American Telephone And Telegraph Company, At&T Bell Laboratories Reliable synchronous inter-node communication in a self-routing network
DE3527331A1 (de) * 1985-07-31 1987-02-05 Philips Patentverwaltung Digitales funkuebertragungssystem
JPH0697914B2 (ja) 1986-03-03 1994-12-07 井関農機株式会社 脱穀機の排塵装置
US4727580A (en) * 1986-04-23 1988-02-23 Alpine Electronics, Inc. Radio receiver
JPS6365723A (ja) 1986-09-05 1988-03-24 Mitsubishi Electric Corp 移動無線通信システム
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
CA1290020C (fr) * 1987-02-09 1991-10-01 Steven Messenger Reseau local sans fil
US6081643A (en) * 1987-02-18 2000-06-27 Lentink; Willem Wave guides and material comprising wave guides and its application in screens
JP2528656B2 (ja) 1987-05-01 1996-08-28 日本電信電話株式会社 フレ−ム同期確立方法
JPS63286072A (ja) 1987-05-19 1988-11-22 Canon Inc 撮像装置
JP2572765B2 (ja) 1987-05-19 1997-01-16 日本電信電話株式会社 送信パスダイバ−シチ伝送方式
JPS6462034A (en) 1987-09-02 1989-03-08 Japan Radio Co Ltd Position measuring method by carrier of communication wave
IL88931A (en) 1988-01-25 1992-05-25 Kaiser Aerospace & Electronics Multiple image-forming apparatus
SE460449B (sv) * 1988-02-29 1989-10-09 Ericsson Telefon Ab L M Cellindelat digitalt mobilradiosystem och foerfarande foer att oeverfoera information i ett digitalt cellindelat mobilradiosystem
JPH01233930A (ja) 1988-03-15 1989-09-19 Canon Inc 移動通信方式
JPH0744497B2 (ja) 1988-06-14 1995-05-15 国際電気株式会社 複数受信機の信号合成方式
US4954958A (en) * 1988-08-19 1990-09-04 Hacowie Corporation Directional information system
US5097484A (en) * 1988-10-12 1992-03-17 Sumitomo Electric Industries, Ltd. Diversity transmission and reception method and equipment
JPH02178263A (ja) * 1988-12-27 1990-07-11 Kaken Pharmaceut Co Ltd アザアズレン誘導体、その製造法およびそれを有効成分とする抗アレルギー剤および抗炎症剤
JPH02178947A (ja) * 1988-12-29 1990-07-11 Fujitsu Ltd 半導体ウェーハのノッチ合わせ機構
FR2646302B1 (fr) * 1989-04-25 1993-01-15 Matra Communication Procede de pseudo-synchronisation d'un reseau de communication a multiplexage dans le temps et applications
JPH0338932A (ja) * 1989-07-06 1991-02-20 Oki Electric Ind Co Ltd スペースダイバーシチ方式
US5317734A (en) * 1989-08-29 1994-05-31 North American Philips Corporation Method of synchronizing parallel processors employing channels and compiling method minimizing cross-processor data dependencies
JP3134157B2 (ja) * 1989-10-06 2001-02-13 廣光 奥村 不釣合修正装置
GB8923182D0 (en) 1989-10-14 1989-11-29 Redding Robert J Improvements in and relating to the transmission of data by radio
GB2237706A (en) * 1989-11-03 1991-05-08 Racal Res Ltd Radio communications link with diversity
US5109390A (en) 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5101501A (en) * 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5031193A (en) * 1989-11-13 1991-07-09 Motorola, Inc. Method and apparatus for diversity reception of time-dispersed signals
US5214789A (en) 1989-11-17 1993-05-25 Uniden America Corporation Radio channel allocation based on location of mobile users
JP2830218B2 (ja) * 1989-11-22 1998-12-02 株式会社日立製作所 キャッシュ付ディスク制御装置の障害処理方法
JPH03177699A (ja) 1989-12-05 1991-08-01 Tlv Co Ltd フリーフロート式トラップ
JPH03177669A (ja) 1989-12-05 1991-08-01 Mitsubishi Electric Corp デューティソレノイドバルブ駆動装置
JPH0743064B2 (ja) 1989-12-06 1995-05-15 株式会社タツノ・メカトロニクス ホースの連結金具
DE69026390T2 (de) * 1989-12-28 1996-10-31 Nissan Motor Dichtungsstreifen für ein Kraftfahrzeug
JPH0394851U (fr) * 1990-01-16 1991-09-27
JPH0830728B2 (ja) * 1990-02-05 1996-03-27 ニチデン機械株式会社 耐圧検査方法及び装置
US5081641A (en) * 1990-02-06 1992-01-14 Motorola, Inc. Interconnecting and processing system for facilitating frequency hopping
JPH03235077A (ja) 1990-02-09 1991-10-21 Nippon Telegr & Teleph Corp <Ntt> 位置検出方式
JPH0635921B2 (ja) 1990-02-13 1994-05-11 株式会社キーエンス スペックル測長計
US5343898A (en) 1990-04-17 1994-09-06 Iro Ab Method and apparatus for threading-up yarn in a pulsating manner
US5124915A (en) 1990-05-29 1992-06-23 Arthur Krenzel Computer-aided data collection system for assisting in analyzing critical situations
US5335359A (en) * 1990-05-31 1994-08-02 Nec Corporation Diversity receiver using matched filter and decision feedback equalizer
US5058200A (en) * 1990-06-04 1991-10-15 General Electric Company Transmitter location searching system
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5043736B1 (en) * 1990-07-27 1994-09-06 Cae Link Corp Cellular position location system
US5056106A (en) * 1990-08-02 1991-10-08 Wang James J Golf course ranging and direction-finding system using spread-spectrum radiolocation techniques
GB9019489D0 (en) 1990-09-06 1990-10-24 Ncr Co Antenna control for a wireless local area network station
US5283737A (en) * 1990-09-21 1994-02-01 Prolab Software Inc. Mechanism for generating linguistic expressions based on synonyms and rules derived from examples
US5371780A (en) 1990-10-01 1994-12-06 At&T Corp. Communications resource assignment in a wireless telecommunications system
US5067916A (en) * 1990-10-12 1991-11-26 Amp Incorporated Method for making an electrical contact
US5068916A (en) * 1990-10-29 1991-11-26 International Business Machines Corporation Coordination of wireless medium among a plurality of base stations
US5128928A (en) * 1990-10-31 1992-07-07 Rose Communications, Inc. Digital radio telephone system
US5218618A (en) * 1990-11-07 1993-06-08 Hughes Aircraft Company Cellular telephone service using spread spectrum transmission
US5081643A (en) * 1990-11-16 1992-01-14 Scs Mobilecom, Inc. Spread spectrum multipath receiver apparatus and method
AR247460A1 (es) * 1990-11-30 1994-12-29 Motorola Inc Una disposicion de rf multiusuario donde la informacion se comunica por paquetes, y metodo para implementarla
IL100213A (en) * 1990-12-07 1995-03-30 Qualcomm Inc Mikrata Kedma phone system and its antenna distribution system
US5513176A (en) * 1990-12-07 1996-04-30 Qualcomm Incorporated Dual distributed antenna system
US5251233A (en) * 1990-12-20 1993-10-05 Motorola, Inc. Apparatus and method for equalizing a corrupted signal in a receiver
US5155689A (en) * 1991-01-17 1992-10-13 By-Word Technologies, Inc. Vehicle locating and communicating method and apparatus
US5208756A (en) * 1991-01-28 1993-05-04 Song Han L Vehicle locating and navigating system
US5193101A (en) * 1991-02-04 1993-03-09 Motorola, Inc. On-site system frequency sharing with trunking systems using spread spectrum
DE4105560A1 (de) * 1991-02-22 1992-08-27 Continental Ag Heiztrommel fuer ein zu vulkanisierendes drucktuch
JP2696435B2 (ja) * 1991-03-26 1998-01-14 顯治 前田 コンクリートの混練方法及びその装置
US5166951A (en) * 1991-05-15 1992-11-24 Scs Mobilecom, Inc. High capacity spread spectrum channel
US5235615A (en) * 1991-05-22 1993-08-10 Cylink Corporation Spread spectrum method
JP2811027B2 (ja) * 1991-05-24 1998-10-15 松下電器産業株式会社 電子機器筐体の蓋装置
US5177785A (en) * 1991-05-24 1993-01-05 Intervoice, Inc. Method and system for secure telecommunications
US5177765A (en) * 1991-06-03 1993-01-05 Spectralink Corporation Direct-sequence spread-spectrum digital signal acquisition and tracking system and method therefor
US5345467A (en) * 1991-07-10 1994-09-06 Interdigital Technology Corp. CDMA cellular hand-off apparatus and method
GB9115809D0 (en) 1991-07-22 1991-09-04 Philips Electronic Associated Display apparatus and method of storing pictures
JPH0548520A (ja) * 1991-08-12 1993-02-26 Matsushita Electric Ind Co Ltd 移動通信方式
US5365516A (en) * 1991-08-16 1994-11-15 Pinpoint Communications, Inc. Communication system and method for determining the location of a transponder unit
GB2259430B (en) * 1991-09-07 1996-05-01 Motorola Ltd Radio receiver and transmitter providing diversity
US5421030A (en) * 1991-09-17 1995-05-30 Com21, Inc. Communications system and method for bi-directional communications between an upstream control facility and downstream user terminals
WO1993006690A1 (fr) 1991-09-17 1993-04-01 Radamec Epo Limited Systeme de reglage pour des cameras commandees a distance
US5289527A (en) * 1991-09-20 1994-02-22 Qualcomm Incorporated Mobile communications device registration method
JP3235077B2 (ja) 1991-09-28 2001-12-04 株式会社ニコン 露光装置、該装置を用いた露光方法、及び該装置を用いた半導体素子製造方法
US5293645A (en) 1991-10-04 1994-03-08 Sharp Microelectronics Technology, Inc. Apparatus and method for locating mobile and portable radio terminals in a radio network
JPH05102943A (ja) 1991-10-04 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> スペクトル拡散伝送方式
JP2701626B2 (ja) * 1991-10-25 1998-01-21 日本電気株式会社 無線接続方式
US5227802A (en) 1991-12-23 1993-07-13 Motorola, Inc. Satellite system cell management
US5235633A (en) 1991-12-26 1993-08-10 Everett Dennison Cellular telephone system that uses position of a mobile unit to make call management decisions
US5321698A (en) * 1991-12-27 1994-06-14 Amdahl Corporation Method and apparatus for providing retry coverage in multi-process computer environment
US5367539A (en) * 1991-12-31 1994-11-22 At&T Bell Laboratories Digital block processor for processing a plurality of transmission channels in a wireless radiotelephony system
US5260967A (en) * 1992-01-13 1993-11-09 Interdigital Technology Corporation CDMA/TDMA spread-spectrum communications system and method
US5260472A (en) * 1992-01-29 1993-11-09 The Board Of Governors For Higher Education State Of Rhode Island And Providence Plantations Efficient chemoenzymatic synthesis of D-myo-inositol 1,4,5-triphosphate, D-myo-inositol 1,3,4-triphosphate, and D-myo-inositol 1,3,4,5-tetraphosphate
JPH05227124A (ja) 1992-02-10 1993-09-03 Sharp Corp 符号分割多元アクセス通信方式
US5247356A (en) * 1992-02-14 1993-09-21 Ciampa John A Method and apparatus for mapping and measuring land
JPH05244051A (ja) 1992-02-26 1993-09-21 Seiko Instr Inc 無線機のデータ伝送方法
US5283767A (en) * 1992-02-27 1994-02-01 Mccoy Kim Autonomous oceanographic profiler
JPH05268128A (ja) * 1992-03-18 1993-10-15 Kokusai Denshin Denwa Co Ltd <Kdd> Cdma通信方式
DE4210305A1 (de) * 1992-03-30 1993-10-07 Sel Alcatel Ag Verfahren, Sender und Empfänger zur Informationsdatenübertragung mit veränderlichem Verkehrsaufkommen und Leitstation zur Koordinierung mehrerer solcher Sender und Empfänger
US5479448A (en) * 1992-03-31 1995-12-26 At&T Corp. Method and apparatus for providing antenna diversity
US5223844B1 (en) * 1992-04-17 2000-01-25 Auto Trac Inc Vehicle tracking and security system
US5305353A (en) * 1992-05-29 1994-04-19 At&T Bell Laboratories Method and apparatus for providing time diversity
US5218367A (en) * 1992-06-01 1993-06-08 Trackmobile Vehicle tracking system
US5400002A (en) * 1992-06-12 1995-03-21 Matsushita Electric Industrial Co., Ltd. Strip dual mode filter in which a resonance width of a microwave is adjusted and dual mode multistage filter in which the strip dual mode filters are arranged in series
US5260943A (en) * 1992-06-16 1993-11-09 Motorola, Inc. TDM hand-off technique using time differences
FI91345C (fi) * 1992-06-24 1994-06-10 Nokia Mobile Phones Ltd Menetelmä kanavanvaihdon tehostamiseksi
US5712868A (en) 1992-06-30 1998-01-27 Motorola, Inc. Dual mode communication network
DE4225074C1 (de) * 1992-07-29 1994-02-03 Nsm Ag Vorrichtung zur Steuerung des Verschlusses einer von einer Lichtquelle mit Licht beaufschlagten CCD-Kamera
JPH0697914A (ja) 1992-09-14 1994-04-08 Nippon Telegr & Teleph Corp <Ntt> 時間ダイバーシチスペクトル拡散通信方式
DE9214886U1 (de) * 1992-11-02 1994-03-03 Siemens Ag Anordnung zur Steuerung einer Sende-/Empfangseinrichtung, insbesondere von Basisstationen und Mobilteilen eines Schnurlostelefonsystems
US5430769A (en) * 1992-11-23 1995-07-04 Motorola, Inc. Method and apparatus for controlling switched antenna diversity systems
FI925472A (fi) * 1992-12-01 1994-06-02 Nokia Mobile Phones Ltd Tiedonsiirtomenetelmä sekä -järjestelmä
US5323384A (en) * 1992-12-23 1994-06-21 Motorola, Inc. Method for establishing communication between tasks of a limited number of repeaters in a communication system
US5289499A (en) * 1992-12-29 1994-02-22 At&T Bell Laboratories Diversity for direct-sequence spread spectrum systems
WO1994016513A1 (fr) 1993-01-13 1994-07-21 Motorola, Inc. Systeme de messagerie d'arrivee a acces multiple par difference de code (amdc) base sur la reutilisation de sequences
US5371734A (en) * 1993-01-29 1994-12-06 Digital Ocean, Inc. Medium access control protocol for wireless network
US5353516A (en) * 1993-02-05 1994-10-11 Imo Industries, Inc., Quabbin Division Turbine packing ring measuring device
US5459759A (en) 1993-02-17 1995-10-17 Interdigital Technology Corporation Frequency hopping code division multiple access system and method
CA2091658A1 (fr) * 1993-03-15 1994-09-16 Matthew Lennig Methode et appareil utilisant la reconnaissance vocale pour automatiser l'assistance telephonique
DE4310025A1 (de) * 1993-03-27 1994-09-29 Boehringer Mannheim Gmbh Vorrichtung zur lateral aufgelösten Untersuchung einer lateral heterogenen ultradünnen Objektschicht
EP0622910B1 (fr) 1993-04-29 2003-06-25 Ericsson Inc. Système de transmission par diversité en temps pour la réduction de l'interférence des canaux adjacents dans les systèmes téléphoniques mobiles
US5420883A (en) * 1993-05-17 1995-05-30 Hughes Aircraft Company Train location and control using spread spectrum radio communications
JPH06335079A (ja) * 1993-05-19 1994-12-02 Fujitsu Ltd Atm網におけるセル多重化装置
US5395516A (en) * 1993-05-28 1995-03-07 Courtaulds Fibres (Holdings) Limited Filtration system
US5297162A (en) 1993-06-04 1994-03-22 Motorola, Inc. System and method for bit timing synchronization in an adaptive direct sequence CDMA communication system
FI932605A (fi) 1993-06-07 1994-12-08 Nokia Telecommunications Oy Tukiasemavastaanotinlaitteisto
US5335633A (en) * 1993-06-10 1994-08-09 Thien James L Internal combustion engine valve actuator apparatus
US5390166A (en) 1993-07-14 1995-02-14 Motorola, Inc. Method for recovering a data signal using diversity in a radio frequency, time division multiple access communication system
US5506863A (en) * 1993-08-25 1996-04-09 Motorola, Inc. Method and apparatus for operating with a hopping control channel in a communication system
JP2526510B2 (ja) 1993-10-22 1996-08-21 日本電気株式会社 無線デ―タ通信装置
ZA948134B (en) * 1993-10-28 1995-06-13 Quaqlcomm Inc Method and apparatus for performing handoff between sectors of a common base station
US5442628A (en) * 1993-11-15 1995-08-15 Motorola, Inc. Local area network data processing system containing a quad elastic buffer and layer management (ELM) integrated circuit and method of switching
US5442825A (en) * 1993-11-22 1995-08-22 Rite-Hite Corporation Dock leveler weather seal
US6175308B1 (en) * 1993-12-16 2001-01-16 Actall Corporation Personal duress security system
US5483244A (en) * 1994-04-05 1996-01-09 Motorola, Inc. Method and apparatus of determining location of an unauthorized communication unit
US5553076A (en) 1994-05-02 1996-09-03 Tcsi Corporation Method and apparatus for a wireless local area network
US5481533A (en) * 1994-05-12 1996-01-02 Bell Communications Research, Inc. Hybrid intra-cell TDMA/inter-cell CDMA for wireless networks
US5442625A (en) * 1994-05-13 1995-08-15 At&T Ipm Corp Code division multiple access system providing variable data rate access to a user
US5680472A (en) * 1994-06-09 1997-10-21 Cr Machines, Inc. Apparatus and method for use in an automatic determination of paper currency denominations
US5614914A (en) * 1994-09-06 1997-03-25 Interdigital Technology Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
JP2746190B2 (ja) 1995-04-27 1998-04-28 住友電気工業株式会社 スペクトラム拡散通信装置
US5781541A (en) 1995-05-03 1998-07-14 Bell Atlantic Network Services, Inc. CDMA system having time-distributed transmission paths for multipath reception
DE29511556U1 (de) * 1995-07-18 1995-09-28 Doll Friedhelm Dipl Ing Induktiver Durchflußmesser
US5747969A (en) * 1995-11-21 1998-05-05 Sanyo Electric Co., Ltd. Method of charging a rechargeable battery with pulses of a predetermined amount of charge
JPH09163244A (ja) * 1995-12-05 1997-06-20 Olympus Optical Co Ltd 固体撮像装置
KR970057995A (ko) * 1995-12-30 1997-07-31 배순훈 Mpeg 복호기에서 역양자화기의 최적화 장치
US5664793A (en) * 1996-02-21 1997-09-09 Engibarov; Eddy Quick-change chuck jaws
US6205132B1 (en) * 1996-02-22 2001-03-20 Korea Mobile Telecommunications Corp. Method for accessing a cell using two pilot channels in a CDMA communication system of an asynchronous or quasi-synchronous mode
US5746669A (en) * 1996-10-31 1998-05-05 Michael N. Sinsheimer Game and training device for teaching soccer skills
JP3308835B2 (ja) * 1996-12-06 2002-07-29 株式会社日立製作所 無線通信システム
US6154788A (en) * 1997-04-25 2000-11-28 Simple Technology, Inc. Multi-function module incorporating flash memory having additional controller adapted to configure the data from the memory that is to be provided to the external source
US5912644A (en) * 1997-08-05 1999-06-15 Wang; James J. M. Spread spectrum position determination, ranging and communication system
CA2251010A1 (fr) * 1997-11-11 1999-05-11 Lucent Technologies Inc. Systeme de communication sans fil, cellulaire et d'ondes porteuses multiples
KR100289843B1 (ko) * 1998-02-05 2001-05-15 이계철 비동기식 셀룰러 코드분할다중접속시스템의 기지국 획득방법
US6226315B1 (en) * 1998-03-09 2001-05-01 Texas Instruments Incorporated Spread-spectrum telephony with accelerated code acquisition
KR100322001B1 (ko) * 1998-09-16 2002-06-22 윤종용 이동통신시스템에서이동국의위치측정장치및방법
US6971118B1 (en) * 1999-07-28 2005-11-29 Sharp Laboratories Of America, Inc. System for displaying programming guide information
US6747969B1 (en) 1999-11-23 2004-06-08 Olaf Hirsch Transmission gap interference measurement
KR100709088B1 (ko) 2000-04-07 2007-04-19 인터디지탈 테크날러지 코포레이션 무선 통신 시스템용 기지국 동기 방법 및 시스템
US6371780B1 (en) * 2000-05-15 2002-04-16 Avaya Technology Corp. RJ jack with switch
US6628634B2 (en) * 2000-12-11 2003-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Fast decoding of long codes
KR100557159B1 (ko) * 2002-11-30 2006-03-03 삼성전자주식회사 직교 주파수 분할 다중 방식 통신시스템에서 프리앰블시퀀스 생성 장치 및 방법
KR100575959B1 (ko) * 2003-09-02 2006-05-02 삼성전자주식회사 다중 반송파 변조 방식을 사용하는 통신 시스템에서파일럿 송수신 장치 및 방법
DE102008005736B4 (de) 2008-01-23 2012-07-19 Girana Anuman-Rajadhon Regal für Ladenbau
JP2010282411A (ja) 2009-06-04 2010-12-16 Renesas Electronics Corp 半導体集積回路、半導体集積回路の内部状態退避回復方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2309660A3 (fr) 2011-10-05
EP1933475A2 (fr) 2008-06-18
JP4080529B2 (ja) 2008-04-23
US20080219233A1 (en) 2008-09-11
FI20051346A (fi) 2005-12-30
DE69535615T2 (de) 2008-07-10
JP4418776B2 (ja) 2010-02-24
US20020105962A1 (en) 2002-08-08
ES2396385T3 (es) 2013-02-21
EP1926229A2 (fr) 2008-05-28
EP1564907A2 (fr) 2005-08-17
US20050249178A1 (en) 2005-11-10
JP2007208996A (ja) 2007-08-16
JP2008228320A (ja) 2008-09-25
US5859879A (en) 1999-01-12
EP1615353B1 (fr) 2009-12-16
EP2293462A3 (fr) 2011-10-26
EP1615353A3 (fr) 2007-10-10
JP2008211829A (ja) 2008-09-11
JP4689748B2 (ja) 2011-05-25
JP2007202166A (ja) 2007-08-09
JP5313370B2 (ja) 2013-10-09
JP2008236763A (ja) 2008-10-02
DE69535615D1 (de) 2007-11-22
JP4964994B2 (ja) 2012-07-04
EP1926231A3 (fr) 2011-02-09
US8432867B2 (en) 2013-04-30
HK1085584A1 (en) 2006-08-25
US20020097704A1 (en) 2002-07-25
JP2012120222A (ja) 2012-06-21
FI121945B (fi) 2011-06-15
US20020089966A1 (en) 2002-07-11
JP4457118B2 (ja) 2010-04-28
DE69536031D1 (de) 2010-01-28
HK1118980A1 (en) 2009-02-20
JP2011151829A (ja) 2011-08-04
EP2293462A2 (fr) 2011-03-09
US20080219234A1 (en) 2008-09-11
US8248988B2 (en) 2012-08-21
DE69536092D1 (de) 2010-09-09
US8228886B2 (en) 2012-07-24
JP4665009B2 (ja) 2011-04-06
JP2006042324A (ja) 2006-02-09
EP1933475A3 (fr) 2010-08-18
US6804207B2 (en) 2004-10-12
US7554964B2 (en) 2009-06-30
JP2005323392A (ja) 2005-11-17
US20020093934A1 (en) 2002-07-18
EP0779991A2 (fr) 1997-06-25
EP1926231A2 (fr) 2008-05-28
JP2010206826A (ja) 2010-09-16
JP2006042323A (ja) 2006-02-09
EP1926229A3 (fr) 2011-10-05
EP2309660A2 (fr) 2011-04-13
JP4457157B2 (ja) 2010-04-28
JPH10509287A (ja) 1998-09-08
EP1564907A3 (fr) 2006-04-05
EP1564907B1 (fr) 2010-07-28
DK1615353T3 (da) 2010-04-19
JP4457158B2 (ja) 2010-04-28
US5614914A (en) 1997-03-25
JP4457117B2 (ja) 2010-04-28
US8155017B2 (en) 2012-04-10
JP5113214B2 (ja) 2013-01-09
HK1118982A1 (en) 2009-02-20
FI20050650A (fi) 2005-06-17
WO1996008908A3 (fr) 1996-05-23
US8130696B2 (en) 2012-03-06
EP0779991A4 (fr) 2001-10-04
DK1926232T3 (da) 2013-01-07
DK0779991T3 (da) 2008-02-11
EP1926230A3 (fr) 2011-10-05
US6778515B2 (en) 2004-08-17
WO1996008908A2 (fr) 1996-03-21
US6842444B2 (en) 2005-01-11
US5663990A (en) 1997-09-02
ES2296294T3 (es) 2008-04-16
HK1081750A1 (en) 2006-05-19
US7463608B2 (en) 2008-12-09
FI970955A (fi) 1997-04-14
JP2010022048A (ja) 2010-01-28
ES2421088T3 (es) 2013-08-28
US20020071435A1 (en) 2002-06-13
US6366568B1 (en) 2002-04-02
EP1926230A2 (fr) 2008-05-28
EP1926232A2 (fr) 2008-05-28
US6785251B2 (en) 2004-08-31
EP1926232A3 (fr) 2010-08-11
FI970955A0 (fi) 1997-03-06
ES2339124T3 (es) 2010-05-17
AU4462096A (en) 1996-03-29
EP1926232B1 (fr) 2012-09-26
US20050185627A1 (en) 2005-08-25
US20040062220A1 (en) 2004-04-01
EP1933475B1 (fr) 2013-05-29
EP1615353A2 (fr) 2006-01-11
US20020101847A1 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
EP0779991B1 (fr) Systeme de distribution telephonique sans fil avec transmission a diversite dans le temps et dans l&#39;espace
WO1996008908A9 (fr) Systeme de distribution telephonique sans fil avec transmission a diversite dans le temps et dans l&#39;espace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970327

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE DK ES FR GB IE IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTERDIGITAL TECHNOLOGY CORPORATION

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 01S 3/02 A, 7H 04B 7/06 B, 7H 04L 1/06 B

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 01S 3/02 A, 7H 04B 7/06 B, 7H 04L 1/06 B, 7H 04Q 7/38 B

A4 Supplementary search report drawn up and despatched

Effective date: 20010820

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): BE CH DE DK ES FR GB IE IT LI NL SE

17Q First examination report despatched

Effective date: 20021014

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INTERDIGITAL TECHNOLOGY CORPORATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB IE IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69535615

Country of ref document: DE

Date of ref document: 20071122

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2296294

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071010

26N No opposition filed

Effective date: 20080711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69535615

Country of ref document: DE

Representative=s name: UEXKUELL & STOLBERG, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 69535615

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20121213 AND 20121219

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: INTEL CORPORATION, US

Effective date: 20130107

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: INTEL CORPORATION

Effective date: 20130218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69535615

Country of ref document: DE

Representative=s name: UEXKUELL & STOLBERG PARTNERSCHAFT VON PATENT- , DE

Effective date: 20121114

Ref country code: DE

Ref legal event code: R082

Ref document number: 69535615

Country of ref document: DE

Representative=s name: UEXKUELL & STOLBERG, DE

Effective date: 20121114

Ref country code: DE

Ref legal event code: R081

Ref document number: 69535615

Country of ref document: DE

Owner name: INTEL CORPORATION (N.D.GES.D. STAATES DELAWARE, US

Free format text: FORMER OWNER: INTERDIGITAL TECHNOLOGY CORP., WILMINGTON, DEL., US

Effective date: 20130917

Ref country code: DE

Ref legal event code: R081

Ref document number: 69535615

Country of ref document: DE

Owner name: INTEL CORPORATION (N.D.GES.D. STAATES DELAWARE, US

Free format text: FORMER OWNER: INTERDIGITAL TECHNOLOGY CORP., WILMINGTON, US

Effective date: 20130917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140812

Year of fee payment: 20

Ref country code: IE

Payment date: 20140812

Year of fee payment: 20

Ref country code: DE

Payment date: 20140827

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140827

Year of fee payment: 20

Ref country code: SE

Payment date: 20140826

Year of fee payment: 20

Ref country code: ES

Payment date: 20140730

Year of fee payment: 20

Ref country code: FR

Payment date: 20140808

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140820

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69535615

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150831

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150830

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150831

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150830

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150901