EP0584675A1 - Holzaufschluss mit Essigsäure unter Zusatz von Ameisensäuren - Google Patents

Holzaufschluss mit Essigsäure unter Zusatz von Ameisensäuren Download PDF

Info

Publication number
EP0584675A1
EP0584675A1 EP93113002A EP93113002A EP0584675A1 EP 0584675 A1 EP0584675 A1 EP 0584675A1 EP 93113002 A EP93113002 A EP 93113002A EP 93113002 A EP93113002 A EP 93113002A EP 0584675 A1 EP0584675 A1 EP 0584675A1
Authority
EP
European Patent Office
Prior art keywords
pulp
digestion
acetic acid
lignocellulose
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93113002A
Other languages
English (en)
French (fr)
Other versions
EP0584675B1 (de
Inventor
Horst Harry Hermann Nimz
Martin Schöne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDELER, FRIEDRICH-WILHELM, DIPL.-ING.
NIMZ, HORST H., PROF. DR.
SCHOENE, MARTIN, DR. DIPL.-HOLZWIRT
Original Assignee
Gebr Kammerer Projekt Agentur GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebr Kammerer Projekt Agentur GmbH filed Critical Gebr Kammerer Projekt Agentur GmbH
Publication of EP0584675A1 publication Critical patent/EP0584675A1/de
Application granted granted Critical
Publication of EP0584675B1 publication Critical patent/EP0584675B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/003Pulping cellulose-containing materials with organic compounds

Definitions

  • the invention relates to a method for pulp production and bleached pulp and chemical pulp obtainable by this process. This procedure can also be used to obtain lignin and hemicelluloses.
  • Formic acid has also been proposed as a means of digesting wood. So in one Two-stage process Wood chips treated with formic or acetic acid in the first stage and hydrogen peroxide added in the second stage and heated to 70 to 100 ° C. However, the amounts of hydrogen peroxide required for this are too high with regard to economical process management (Poppius et al., Paper and Timber 73 (2) 154-158 (1991).
  • the object of the present invention is to provide a method for the production of cellulose, whereby cellulose with a significantly lower residual lignin is obtained.
  • Wood or annual plants can be used as starting lignocelluloses.
  • the digestion temperature is preferably between 130 and 190 ° C.
  • the concentration of acetic acid in the digestion medium is preferably between 50 and 95% by weight, that of formic acid from 5 to 40% by weight and that of water below 50% by weight.
  • the weight ratio of the lignocellulose to the digestion solution is preferably 1: 1 to 1:12.
  • the method can also be used to obtain lignin and hemicelluloses from lignocelluloses.
  • the process can be carried out continuously and batchwise, with the comminuted lignocellulose being introduced into a pressure cooker in the case of a continuous process is extracted in countercurrent from the digestion solution and on the other hand continuously leaves the digester in extracted form.
  • 2 to 20 digestion vessels can be connected in series.
  • the pulping of the pulp and the washing process of the pulp are included in the methods according to the invention.
  • the lignocelluloses can be pre-extracted with a solvent to remove the ingredients, and acetic anhydride and bleaching agents can be added to the digestion solution.
  • the lignocelluloses are impregnated with formic acid, acetic acid, acetic anhydride or their vapors before being introduced into the digestion vessel. The impregnation can also be carried out with a solvent or its vapors, which forms an aceotrope with water.
  • the lignins and hemicelluloses which are also obtained with a high degree of purity, can be used, for example, for glue production.
  • the process according to the invention has the advantage over the conventional processes for the production of cellulose that it does not use any inorganic pulping chemicals and therefore no SO2-containing waste gases or heavy metal-containing waste water are produced.
  • the pulps can be bleached with ozone in acetic acid and / or hydrogen peroxide, whereby neither chlorine nor waste water containing heavy metals is formed.
  • Formic and acetic acid are recovered by distillation, so that the lignin and the hemicelluloses do not need to be burned for chemical recovery.
  • Another advantage is that the digestion temperature of about 10 ° C is lower than in the conventional methods, which significantly reduces energy costs.
  • the pulp obtained according to the invention has a significantly lower residual lignin content and improved properties. From Table 1 it can be seen that the addition of 10% by weight of formic acid under otherwise similar pulping conditions results in a reduction in the Kappa number from 15.6 to 3.6, corresponding to a lignin content from 2.5 to 0.5, while the Yield drops only slightly.
  • Tab. 1 compares the pulp properties after digestion (2h, 180 ° C, poplar and miscanthus 170 ° C) with 85% acetic acid and with 85% acetic acid and 10% formic acid.
  • the strength properties of the pulps obtained with the addition of formic acid also increase significantly.
  • Table 1 Acetic acid 85% Acetic acid 85% + formic acid 10% Spruce poplar Misc.
  • GVZ mean the intrinsic viscosity according to Staudinger, DPW the degree of polymerization and R-10 the remaining pulp, which is insoluble in 10% NaOH.
  • the increase in the R-10 values in connection with the low xylose and mannose contents also evident from table 1, means lower hemicellulose contents of the cellulose obtained with formic acid addition and thus its suitability as starting materials (chemical cellulose) for the production of cellulose derivatives.
  • the process according to the invention offers advantages in particular in the production of cellulose acetate, because at the pre-swelling of the pulp in acetic acid before acetylation and an acetic acid recovery step are eliminated.
  • the optimal formic acid concentration depends on the digestion temperature, the digestion time, the type of wood and the water content of the digestion medium. As can be seen from Table 2, at 190 ° C with 20% formic acid, the lignin condensation already prevails after 1 h, which is why in Table 1 a two-hour digestion with 10% formic acid was chosen at 180 and 170%.
  • the acetic acid concentration in Tab. 2 is 85%.
  • Formic acid increases the acidity of the digestion medium and thus the lignin breakdown, while the lignin condensation increases more slowly. Compared to mineral acids as catalysts, the selectivity of formic acid in lignin degradation appears to be increased. In addition, formic acid increases the solubility of the lignin in the exclusion medium.
  • the chlorine-free bleaching of the cellulose obtained by the process according to the invention is fundamentally simplified compared to that of conventional cellulose.
  • conventional bleaching usually uses five bleaching stages required with oxygen, peroxide, ozone, sodium hydroxide solution and possibly chlorine dioxide, two to three bleaching stages with small amounts of ozone in acetic acid and / or peracetic acid are sufficient for the bleaching of the process according to the invention.
  • Spruce wood chips (20 x 35 x 5-6 mm) with a moisture content of 8% were poured with 6 times the amount by weight of 85% acetic acid, which contained 10% formic acid, and heated in a rotary autoclave at 180 ° C for 2 hours (heating time 40 min). Then part of the cooking liquor was evaporated to below 100 ° C., the fibrous material was pressed off on a suction filter and washed with 85% acetic acid. The filter cake was opened with a laboratory mixer in a large beaker under 85% acetic acid and suction filtered again. The pulp obtained was splinter-free and had the properties given in Table 1.
  • the spruce pulp obtained with the addition of formic acid (Table 1) was washed on a suction filter with glacial acetic acid, pressed to a consistency of 35%, fluffed up in a coffee grinder for 30 seconds and then in a rotary flask on a rotary evaporator with a 3% ozone-oxygen mixture fumigated.
  • the pulp was then washed on a suction filter first with water and then with a 0.2% peracetic acid solution in water, pressed to 15% consistency, heated at 80 ° C for 1 h and finally washed on the suction filter with water.
  • the bleached spruce pulp has the properties shown in Table 3.
  • Wood chips (80 x 20 x 5 mm) of a six-year-old poplar (Populus nigra from the clone "Rapp") with a moisture content of 10% were poured with six times the amount of 85% acetic acid, which contained 10% formic acid, and put in a rotary autoclave for two hours heated to 170 ° C.
  • the pulp was worked up, defibred and washed as described in Example 1 for spruce pulp.
  • the pulp properties are shown in Tab. 1.
  • the pulp was bleached in two stages with peracetic acid, first with 0.7% in 6.6 parts of glacial acetic acid for 90 minutes at 80 ° C, and then with 1.3% peracetic acid in 6.6 parts of water for 120 minutes at 80 ° C .
  • the properties of the bleached pulp are shown in Tab. 3.
  • the pulp was bleached in two stages using peracetic acid, as described for poplar cellulose in Example 2.
  • the properties of the bleached pulp can be found in Tab. 3.
  • Spruce woodchips of the type specified in Example 1 were poured over with six times the amount of 85% acetic acid, which contained 5, 10, 15 or 20% formic acid in four batches, and were each heated to 190 ° C. in a rotary autoclave for 1 hour.
  • the resulting pulps were worked up, defibred and washed in the same manner as in Example 1. After that, the pulps were splinter-free.
  • Their residual lignin contents, degrees of whiteness and yields are shown in Table 2.
  • Digestion solution acetic acid / water / formic acid (75:15:10) Temperature: 160-180 ° C Time: 1 - 2 h
  • One cooker is sufficient for the test phase (batch process, 25 t of pulp / d), while 6 to 12 cookers are connected in series for production (semi-continuous process, maximum 300 t of pulp / d). Only by connecting several cookers in series is it possible to extract the wood chips according to the countercurrent principle with optimal use of the digestion solution.
  • the wood chips are heated by pumping the digestion solution heated externally in heat exchangers.
  • the first bleaching stage is carried out with 1 to 2% hydrogen peroxide in the cooker after the digestion has ended and the extract has been displaced by fresh digestion solution, 1 to 2 hours at 70 to 90 ° C.
  • a uniform distribution of the H2O2 takes place by pumping around the bleaching solution, the composition of which, apart from the H2O2, does not differ from the digestion solution.
  • the active agent is peracetic acid, the formation of which is catalyzed by the formic acid present.
  • Sorting consists of post-defibrating (separation), rough sorting and cleaning.
  • a slot sorter equipped with stirring arms, slot width about 0.4 mm, in the manner of a pipe centrifuge, and a hydrocyclone for cleaning are proposed.
  • the diffuser (thickener) must be very effective in order to get from a consistency of about 1%, which is necessary for the sorting, to at least 8%, from which a consistency of about 40% for the ozone bleaching is achieved in a screw press got to.
  • the cellulose washing takes place at the same time.
  • a separate wash as in the conventional processes, is not necessary since no inorganic pulping chemicals have to be washed out and the pulp leaving the cooker hardly contains any lignin.
  • the effectiveness of the sorting can be improved by several pipe centrifuges or cyclones connected in series.
  • Ozone bleaching takes place in a rotary drum at 20 to 50 ° C and a consistency of about 40%, the residence time of the pulp should be at least 10 minutes, ozone amount about 0.5%, calculated on pulp. Because of the good solubility of the ozone in acetic acid, it is not necessary to fluff up the pulp.
  • the pulp After ozone bleaching, the pulp still contains about 60% digestion solution, which is displaced in an extraction tower (2.0 ⁇ 10 m) with butyl acetate. Because the pulp swells more in acetic acid than in butyl acetate, there should be no clogging problems in the tower.
  • the amount of butyl acetate that leaves the tower at the top together with the digestion solution should be about 60% of the dry weight of the pulp if the wood moisture content of the wood chips is 10%, because then in the subsequent distillation 20% water, based on the pulp weight, than Aceotropically with butyl acetate leaves the distillation column in the upper part. Under these conditions, the butyl acetate would completely leave the solution mixture as an aceotrope, while 2.5% water remained in the digestion solution, which flows back undistilled into the storage tank. Small amounts of extract substances, furfural etc. remain in the digestion solution and do not interfere with the digestion. A separation of the Formic acid from acetic acid by distillation is not required. Changes in the composition of the digestion solution (see under A.) must be compensated for by adding the component present in the deficit.
  • the butyl acetate is exchanged for water with steam in a desolventizer.
  • the consistency of the pulp is brought to about 40% by a screw press upstream of the desolventizer. Since the enthalpy of vaporization of the butyl acetate is only about 1/5 of that of the water, the pulp leaves the desolvent coating with 12% moisture and is then pressed in a press into sheets of 1 m2.
  • the waste liquor leaving the stove contains 17% dissolved lignin and hemicelluloses. They are concentrated to a 50% thick liquor in a six-stage tube evaporator with a pressure gradient, using the heat of condensation of the evaporated digestion solution.
  • the distillation column only serves to separate the water introduced with the chips from the digestion solution as an aceotrope with butyl acetate. After the water has been distilled off, the digestion solution flows undistilled into the storage tank.
  • the capacity of the column depends on the wood chip moisture. If this is 10%, there are 200 kg of water per ton of pulp (together with approx 600 kg of butyl acetate).
  • the digestion solution contains 15% water, 1.333 m3 of digestion solution + 0.6 m3 of butyl acetate would be required per ton of pulp. With a wood chips moisture of 20%, the amount doubles. It should therefore be considered whether the wood chips can be pre-dried, which would also be advantageous for the storage capacity of the wood chips. Drying the wood chips has no influence on the wood digestion using the Formacell process.
  • All parts of the system that come into contact with the hot digestion solution must use steels that are corrosion-resistant to acetic acid / formic acid / water mixtures. This applies in particular to the cooker, the distillation column and the spray dryer.
  • Tab. 4 compares the properties of unbleached spruce pulps obtained by the process according to the invention (Formacell process) with those of sulfate and acetosolv pulps.
  • Table 4 Formacell sulfate Acetosolv Kappa number 3.6 30.6 15.6 Whiteness (% ISO) 28.0 24.8 20.3 GVZ (ml / g) 1179.5 902.2 1059.0 DP 3490 2470 3035 R-10 (%) 93.6 88.3 90.1 Yield (%) 46.8 47.4 49.0
  • Formacell pulps are also suitable for the production of cellulose derivatives.
  • Tab. 4 also shows the improvements of the Formacell process compared to the earlier Acetosolv process, which are mainly due to a significant improvement in delignification and an increase in whiteness.
  • Fig. 1 shows a comparison of the strengths (tear length and tear strength) of Formacell and sulfate spruce pulp depending on the degree of grinding.
  • Formacell spruce pulp While the tear length of Formacell spruce pulp is above the values of the sulfate pulp at all grades, the tear strength of the Formacell pulp is lower. Overall, the strength potential of the Formacell pulp is roughly comparable to that of the sulfate pulp.

Abstract

In einem Verfahren zur Gewinnung von Zellstoffen aus Lignocellulosen erfolgt die Gewinnung durch Erhitzen mit wäßriger Essigsäure unter Druck und Zugabe von Ameisensäure, wobei ein Zellstoff mit einem sehr niedrigen Restligningehalt erhalten wird, der sich mit Ozon und Peressigsäure zu hohen Weißgraden bleichen läßt, und Essig- und Ameisensäure durch Destillation zurückgewonnen werden, so daß Abwässer deshalb nicht anfallen.

Description

  • Die Erfindung betrifft ein Verfahren zur Zellstoffgewinnung und nach diesem Verfahren erhältlichen gebleichten Zellstoff und Chemiezellstoff. Mit diesem Verfahren können darüber hinaus Lignin und Hemicellulosen gewonnen werden.
  • Herkömmliche Verfahren zur Zellstoffgewinnung wie das Sulfit- und das Sulfatverfahren führen zu schwefelhaltigen Ablaugen, bei deren Verbrennung SO₂-haltige Abgase entstehen. Die hohen Restligningehalte der Zellstoffe von 4 bis 5 Gew.% erfordern große Mengen an Bleichchemikalien, die zu chlorierten organischen Verbindungen in Abwässern führen. Nachteilig bei diesen Verfahren ist weiterhin, daß wegen der Chemikalienrückgewinnung durch Ablaugenverbrennung Anlagen mit einer Mindestgröße von 1000 tato Zellstoff erforderlich sind.
  • In der US-A-3 553 076 wird der Holzaufschluß mit wäßriger Essigsäure unter Druck bei 150 bis 205°C beschrieben, wobei Zellstoffe mit Restligningehalten von 2 bis 3 Gew.% (entsprechend Kappazahlen von 12 bis 20) erhalten werden. Nach der DE-A-34 35 132 läßt sich Holz bereits bei Normaldruck aufschließen, wenn der Essigsäure katalytische Mengen Salzsäure zugegeben werden (Acetosolvverfahren). Allerdings erniedrigen sich die Restligningehalte der Zellstoffe dadurch nicht, und Chloridionen wirken in Gegenwart von Essigsäure stark korrodierend.
  • Andere Mineralsäuren wie Schwefelsäure, Phosphorsäure, Perchlorsäure, MgCl₂ oder Salpetersäure wurden als Katalysatoren beim Holzaufschluß mit Essigsäure untersucht, die jedoch durchweg Zellstoffe mit höheren Restligningehalten ergaben und zu Problemen bei der Rückgewinnung der Mineralsäuren führen.
  • Auch Ameisensäure wurde als Mittel für den Holzaufschluß vorgeschlagen. So wurden in einem Zweistufenverfahren Hackschnitzel in der ersten Stufe mit Ameisen- oder Essigsäure behandelt und in der zweiten Stufe Wasserstoffperoxid hinzugegeben und auf 70 bis 100°C erwärmt. Die hierfür erforderlichen Mengen Wasserstoffperoxid sind im Hinblick auf eine wirtschaftliche Verfahrensführung jedoch zu hoch (Poppius et al., Paper and Timber 73 (2) 154-158 (1991).
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Zellstoffgewinnung bereitzustellen, wodurch Zellstoffe mit deutlich niedrigerem Restlignin erhalten werden.
  • Gelöst wird diese Aufgabe durch ein Verfahren, in dem Lignocellulosen mit wäßriger Essigsäure unter Druck und Zugabe von Ameisensäure erhitzt werden.
  • Als Ausgangslignocellulosen können Holz oder Einjahrespflanzen eingesetzt werden. Vorzugsweise liegt die Aufschlußtemperatur zwischen 130 und 190°C. Die Konzentration der Essigsäure im Aufschlußmedium liegt vorzugsweise zwischen 50 und 95 Gew.%, die der Ameisensäure von 5 bis 40 Gew.% und die des Wassers unter 50 Gew.%. Das Gewichtsverhältnis der Lignocellulose zur Aufschlußlösung beträgt vorzugsweise 1:1 bis 1:12.
  • Gemäß einer anderen Ausführungsform kann das Verfahren auch zur Gewinnung von Lignin und Hemicellulosen aus Lignocellulosen eingesetzt werden. Die Verfahrensführung kann kontinuierlich und diskontinuierlich erfolgen, wobei im Falle einer kontinuierlichen Verfahrensführung die zerkleinerte Lignocellulose in einen Druckkocher eingetragen wird, in dem sie im Gegenstrom von der Aufschlußlösung extrahiert wird und den Kocher auf der anderen Seite in extrahierter Form kontinuierlich verläßt. Dabei können beispielsweise 2 bis 20 Aufschlußgefäße hintereinander geschaltet werden.
  • Gemäß weiteren bevorzugten Ausführungsformen sind die Zerfaserung des Zellstoffs und der Waschprozeß des Zellstoffs in die erfindungsgemäßen Verfahren eingeschlossen. Die Lignocellulosen können zur Entfernung der Inhaltsstoffe mit einem Lösemittel vorextrahiert und der Aufschlußlösung können Acetanhydrid und Bleichmittel zugegeben werden. Gemäß einer weiteren bevorzugten Ausführungsform werden die Lignocellulosen vor der Eingabe in das Aufschlußgefäß mit Ameisensäure, Essigsäure, Essigsäureanhydrid oder deren Dämpfen imprägniert. Die Imprägnierung kann auch mit einem Lösungsmittel oder dessen Dämpfen, das mit Wasser ein Aceotrop bildet, vorgenommen werden.
  • Die ebenfalls mit einem hohen Reinheitsgrad anfallenden Lignine und Hemicellulosen können beispielsweise zur Leimherstellung verwendet werden.
  • Das erfindungsgemäße Verfahren besitzt gegenüber den konventionellen Verfahren zur Zellstoffgewinnung den Vorteil, daß es keine anorganischen Aufschlußchemikalien verwendet und damit keine SO₂-haltigen Abgase oder schwermetallhaltigen Abwässer entstehen. Die Zellstoffe lassen sich mit Ozon in Essigsäure und/oder Wasserstoffperoxid bleichen, wobei weder Chlor noch schwermetallhaltige Abwässer gebildet werden. Ameisen- und Essigsäure werden durch Destillation zurückgewonnen, so daß das Lignin und die Hemicellulosen zwecks Chemikalienrückgewinnung nicht verbrannt zu werden brauchen. Ein weiterer Vorteil besteht darin, daß die Aufschlußtemperatur von etwa 10°C niedriger als bei den herkömmlichen Verfahren liegt, wodurch die Energiekosten erheblich verringert werden.
  • Der erfindungsgemäß erhaltene Zellstoff hat einen deutlich niedrigeren Restligningehalt und verbesserte Eigenschaften. Aus der Tabelle 1 geht hervor, daß der Zusatz von 10 Gew.% Ameisensäure unter sonst gleichen Aufschlußbedingungen bei Fichtenzellstoff eine Reduzierung der Kappazahl von 15,6 auf 3,6, entsprechend einem Ligningehalt von 2,5 auf 0,5 bewirkt, während die Ausbeute nur geringfügig abfällt.
  • Ähnliches gilt für Pappel- und Miscanthus-Zellstoff (Tab. 1). Entsprechend steigen die Weißgrade der drei Zellstoffe um 8 bis 15 % an. Niedrige Kappazahlen und höhere Weißgrade bedeuten einen geringeren Einsatz der teuren Bleichchemikalien, die für die Wirtschaftlichkeit des Verfahrens von Bedeutung sind.
  • In Tab. 1 werden die Zellstoffeigenschaften nach Aufschluß (2h, 180 °C, Pappel- und Miscanthus 170 °C) mit 85 %iger Essigsäure und mit 85 %iger Essigsäure und 10 % Ameisensäure verglichen. Wie aus dieser Tabelle hervorgeht, nehmen auch die Festigkeitseigenschaften der mit Ameisensäurezusatz erhaltenen Zellstoffe deutlich zu. Dies gilt insbesondere für die Durchreißfestigkeit, die allgemein bei sauren Aufschlußverfahren niedriger ist als bei alkalischen, wie beispielsweise dem Sulfatverfahren. Da Sulfatzellstoffe heute allgemein für die Papierherstellung als Standard angesehen werden, kommt der Erhöhung der Durchreißfestigkeit bei dem erfindungsgemäßen Verfahren besondere Bedeutung zu. Tabelle 1
    Essigsäure 85 % Essigsäure 85 % + Ameisensäure 10 %
    Fichte Pappel Misc. Fichte Pappel Misc.
    Kappazahl 15,6 9,2 13,3 3,6 3,1 3,2
    Ausbeute (%) 49,0 50,1 48,5 46,8 50,3 48,2
    Weißgrad (% ISO) 20,3 20,0 25,9 28,0 34,7 33,8
    GVZ (ml/g) 1050,0 1005,0 1022,0 1179,0 849,5 1012,0
    DPW 3035,0 2850,0 2910,0 3490,0 2430,0 2870,0
    Durchreißf. * (cN) 59,1 31,1 51,5 77,1 42,7 90,4
    Berstfläche * (m²) 62,9 31,4 24,6 70,9 38,0 43,9
    Reißlänge * (km) 10,3 7,5 5,2 11,4 7,3 8,1
    R-10 (%) 90,1 85,8 88,5 93,6 89,4 91,0
    Mannose (%) - 2,3 - 0,5 1,2 0,2
    Xylose (%) - 5,4 - 1,5 2,4 3,3
    Glucose (%) - 92,3 - 94,2 93,5 96,2
    * Papierfestigkeiten beim Mahlgrad 30 ° SR
  • In dieser Tabelle bedeuten GVZ die Grenzviskositätszahl nach Staudinger, DPW den Polymerisationsgrad und R-10 den restlichen Zellstoff, der in 10%iger NaOH unlöslich ist.
  • Der aus Tab. 1 ebenfalls ersichtliche Anstieg der R-10 Werte im Zusammenhang mit den niedrigen Xylose- und Mannosegehalten bedeutet niedrigere Hemicellulosegehalte der mit Ameisensäurezusatz erhaltenen Zellstoffe und damit ihre Eignung als Ausgangsstoffe (Chemiezellstoffe) für die Herstellung von Cellulosederivaten. Das erfindungsgemäße Verfahren bietet insbesondere Vorteile bei der Herstellung von Celluloseacetat, weil bei ihm die Vorquellung des Zellstoffes in Essigsäure vor der Acetylierung sowie eine Essigsäure-Rückgewinnungsstufe entfallen.
  • Die optimale Ameisensäurekonzentration hängt ab von der Aufschlußtemperatur, der Aufschlußzeit, der Holzart und dem Wassergehalt des Aufschlußmediums. Wie aus Tab. 2 hervorgeht, überwiegt bei 190 °C mit 20 %iger Ameisensäure bereits nach 1 h die Ligninkondensation, weshalb in Tab. 1 ein zweistündiger Aufschluß mit 10 %iger Ameisensäure bei 180 bzw. 170 % gewählt wurde. Die Essigsäurekonzentration in Tab. 2 beträgt 85 %.
    Figure imgb0001
  • Die Ameisensäure erhöht die Acidität des Aufschlußmediums und damit den Ligninabbau, während die Ligninkondensationen langsamer zunehmen. Gegenüber Mineralsäuren als Katalysatoren erscheint die Selektivität der Ameisensäure beim Ligninabbau erhöht. Außerdem erhöht die Ameisensäure die Löslichkeit des Lignins im Auschlußmediums.
  • Die chlorfreie Bleiche der nach dem erfindungsgemäßen Verfahren erhaltenen Zellstoffe ist gegenüber der von konventionellen Zellstoffen grundlegend vereinfacht. Während man bei der konventionellen Zellstoffbleiche heute üblicherweise fünf Bleichstufen mit Sauerstoff, Peroxid, Ozon, Natronlauge und eventuell Chlordioxid benötigt, sind für die Bleiche des erfindungsgemäßen Verfahrens zwei bis drei Bleichstufen mit geringen Mengen Ozon in Essigsäure und/oder Peressigsäure ausreichend.
  • Bei den folgenden Beispielen beziehen sich die Prozentangaben auf das Gewicht.
  • Beispiel 1
  • Fichtenholzhackschnitzel (20 x 35 x 5-6 mm) mit einem Feuchtigkeitsgehalt von 8 % wurden mit der 6-fachen Gewichtsmenge 85 %iger Essigsäure übergossen, die 10 % Ameisensäure enthielt, und in einem Drehautoklaven 2 Stunden auf 180 °C erhitzt (Aufheizzeit 40 min). Danach wurde durch Abdampfen eines Teiles der Kochlauge auf unter 100 °C abgekühlt, der Faserstoff auf einer Nutsche abgepreßt und mit 85 %iger Essigsäure nachgewaschen. Der Filterkuchen wurde mit einem Labormischer in einem großen Becherglas unter 85 %iger Essigsäure aufgeschlagen und erneut abgenutscht. Der erhaltene Zellstoff war splitterfrei und hatte die in Tab. 1 angegebenen Eigenschaften.
  • Zum Vergleich wurden Fichtenhackschnitzel mit 85 %iger Essigsäure, die keine Ameisensäure enthielt, unter sonst gleichen Bedingungen aufgeschlossen und aufgearbeitet. Die Eigenschaften des unter diesen Bedingungen erhaltenen Zellstoffes sind ebenfalls in Tab. 1 angegeben.
  • Der unter Ameisensäurezusatz erhaltene Fichtenzellstoff (Tab. 1) wurde auf einer Nutsche mit Eisessig gewaschen, auf eine Konsistenz von 35 % abgepreßt, in einer Kaffeemühle 30 sec. aufgeflufft und anschließend in einem Rundkolben am Rotationsverdampfer mit einem 3 %igen Ozon-Sauerstoff-Gemisch begast. Danach wurde der Zellstoff auf einer Nutsche zuerst mit Wasser und danach mit einer 0,2 %igen Peressigsäurelösung in Wasser gewaschen, auf 15 %ige Konsistenz abgepreßt, 1 h bei 80 °C erhitzt und abschließend auf der Nutsche mit Wasser gewaschen. Der gebleichte Fichtenzellstoff hat die in Tab. 3 angegebenen Eigenschaften.
  • In einem zweiten Ansatz wurde Fichtenzellstoff bei 15 %iger Konsistenz nur mit Peressigsäure, zuerst in Essigsäure mit 0,7 % bei 80 °C, 90 min, und danach in Wasser mit 1,3 % bei 80 °C, 120 min, gebleicht. Die Ergebnisse finden sich ebenfalls in Tab. 3.
  • Beispiel 2
  • Hackschnitzel (80 x 20 x 5 mm) einer sechsjährigen Pappel (Populus nigra vom Klon "Rapp") mit einem Feuchtegehalt von 10 % wurden mit der sechsfachen Menge einer 85 %igen Essigsäure, die 10 % Ameisensäure enthielt, übergossen und zwei Stunden im Drehautoklaven auf 170 °C erhitzt. Die Aufarbeitung, Zerfaserung und Wäsche des Zellstoffes erfolgte wie in Beispiel 1 für Fichtenzellstoff beschrieben. Die Zellstoffeigenschaften sind in Tab. 1 wiedergegeben.
  • Die Bleiche des Zellstoffes erfolgte in zwei Stufen mit Peressigsäure, zuerst mit 0,7 % in 6,6 Teilen Eisessig 90 min bei 80 °C, und danach mit 1,3 % Peressigsäure in 6,6 Teilen Wasser 120 min bei 80 °C. Die Eigenschaften des gebleichten Zellstoffes sind in Tab. 3 wiedergegeben.
  • Beispiel 3
  • Auf eine Länge von 2,5 cm gehäckselte Stengel von Miscanthus sinensis "Giganteus" mit einem Feuchtegehalt von 18 % wurden mit der zehnfachen Menge 85 %iger Essigsäure, die 10 % Ameisensäure enthielt, übergossen und in einem Drehautoklaven 2 h auf 170 °C erhitzt (Aufheizzeit 40 min). Aufarbeitung, Zerfaserung und Wäsche des Zellstoffes erfolgte wie in Beispiel 1 für Fichtenzellstoff beschrieben. Der Zellstoff war splitterfrei. Seine Eigenschaften ergeben sich aus Tab. 1 und sind denen von unter gleichen Bedingungen, aber unter Ausschluß der Essigsäure erhaltenen Zellstoffen gegenübergestellt.
  • Die Bleiche des Zellstoffes erfolgte zweistufig mit Peressigsäure, wie für Pappelzellstoff unter Beispiel 2 beschrieben. Die Eigenschaften des gebleichten Zellstoffes finden sich in Tab. 3.
  • Beispiel 4
  • Fichtenhackschnitzel der unter Beispiel 1 angegebenen Art wurden mit der sechsfachen Menge 85%iger Essigsäure übergossen, die in vier Ansätzen 5, 10, 15 oder 20 % Ameisensäure enthielt, und im Drehautoklaven je 1 h auf 190 °C erhitzt. Aufarbeitung, Zerfaserung und Wäsche der erhaltenen Zellstoffe erfolgte in gleicher Weise wie bei Beispiel 1. Danach waren die Zellstoffe splitterfrei. Ihre Restligningehalte, Weißgrade und Ausbeuten ergeben sich aus Tab. 2. Tabelle 3
    Eigenschaften der mit Ozon (Z) und Peressigsäure (Pa) gebleichten Zellstoffe beim Mahlgrad 20 SR
    Zellstoff Bleichmittel Menge (%) Weißgrad (% ISO) Reißlänge (km) Berstfläche (m²) Durchreißf. (cN)
    Fichte Z/Pa 0,6/1,3 84,3 9,315 52,5 76,7
    Pa/Pa 0,7/1,3 72,1 9,113 50,3 79,1
    Pappel Pa/Pa 0,7/1,3 83,4 6,68 28,8 46,0
    Miscanthus Pa/Pa 0,7/1,3 83,0 6,933 35,6 89,6
  • Beispiel 5 A. Aufschluß
  • Kocher: 2,5 x 10 m = 49 m³
    Aufschlußlösung: Essigsäure/Wasser/Ameisensäure (75:15:10)
    Temperatur: 160 - 180°C
    Zeit: 1 - 2 h
    Flottenverhältnis: 1 : 5
    Für die Versuchsphase ist ein Kocher ausreichend (Batch-Verfahren, 25 t Zellstoff/d), während für die Produktion 6 bis 12 Kocher hintereinander geschaltet werden (semikontinuierliches Verfahren, maximal 300 t Zellstoff/d). Erst durch das Hintereinanderschalten mehrer Kocher ist eine Extraktion der Hackschnitzel nach dem Gegenstromprinzip mit optimaler Nutzung der Aufschlußlösung möglich. Die Aufheizung der Hackschnitzel erfolgt durch Umpumpen der extern in Wärmetauschern beheizten Aufschlußlösung.
  • B. Bleiche mit Wasserstoffperoxid
  • Die erste Bleichstufe erfolgt mit 1 bis 2 % Wasserstoffperoxid im Kocher nach Beendigung des Aufschlusses und Verdrängen des Extraktes durch frische Aufschlußlösung, 1 bis 2 Stunden bei 70 bis 90°C. Eine gleichmäßige Verteilung des H₂O₂ erfolgt durch Umpumpen der Bleichlösung, deren Zusammensetzung, bis auf das H₂O₂, sich von der Aufschlußlösung nicht unterscheidet. Das wirksame Agens ist Peressigsäure, deren Bildung durch die anwesende Ameisensäure katalysiert wird.
  • C. Sortierung
  • Die Sortierung besteht in einer Nachdefibrierung (Separation), Grobsortierung und Reinigung. Für die ersten beiden Schritte wird ein mit Rührarmen ausgestatteter Schlitzsortierer, Schlitzweite etwa 0,4 mm, nach Art einer Rohrschleuder und für die Reinigung ein Hydrozyklon vorgeschlagen. Der Diffuseur (Eindicker) muß sehr effektiv sein, um von einer Stoffdichte von etwa 1 %, die für die Sortierung erforderlich ist, auf mindestens 8 % zu kommen, von der aus in einer Schneckenpresse eine Konsistenz von etwa 40 % für die Ozonbleiche erreicht werden muß.
  • In der Sortierung erfolgt gleichzeitig die Zellstoffwäsche. Eine gesonderte Wäsche, wie bei den konventionellen Verfahren, ist nicht erforderlich, da keine anorganischen Aufschlußchemikalien auszuwaschen sind und der den Kocher verlassende Zellstoff kaum noch Lignin enthält. Die Effektivität der Sortierung läßt sich durch mehrere hintereinandergeschaltete Rohrschleudern bzw. Zyklone verbessern.
  • D. Ozonbleiche
  • Die Ozonbleiche erfolgt in einer Drehtrommel bei 20 bis 50°C und einer Stoffdichte von etwa 40 %, wobei die Verweilzeit des Zellstoffes mindestens 10 min betragen sollte, Ozonmenge etwa 0,5 %, berechnet auf Zellstoff. Weger der guten Löslichkeit des Ozons in Essigsäure ist ein Auffluffen des Zellstoffes nicht erforderlich.
  • Wegen der Explosionsgefahr von Essigsäuredämpfen mit Sauerstoff-Ozon-Gemischen ist eine explosionsgeschützte Ausführung der Drehtrommel erforderlich. Die Abgase sollten im Kreislauf bzw. einem geschlossenen System gehalten werden. Mit dem Zellstoff ausgetragenes Ozon zersetzt sich innerhalb einer gewissen Zeit. Eine Kontrolle in der Destillationskolonne erscheint unbedingt erforderlich, besonders bei hohen Ozondosen (0,5 %). Eventuell müßte das zur Destillation gelangende Essigsäure/Butylacetat-Gemisch im Vakuum entgast oder das überschüssige Ozon chemisch beseitigt werden (Prüfung mit KJ-Lösung).
  • E. Lösungsmittelaustausch
  • Nach der Ozonbleiche enthält der Zellstoff noch etwa 60 % Aufschlußlösung, die in einem Extraktionsturm (2,0 x 10 m) mit Butylacetat verdrängt wird. Da die Quellung des Zellstoffes in Essigsäure stärker ist als in Butylacetat, sollten im Turm keine Verstopfungsprobleme auftreten.
  • Die Menge des Butylacetats, die zusammen mit der Aufschlußlösung den Turm am Kopf verläßt, sollte etwa 60 % des Trockengewichtes des Zellstoffes betragen, wenn die Holzfeuchte der Hackschnitzel 10 % beträgt, weil dann bei der anschließenden Destillation 20 % Wasser, bezogen auf Zellstoffgewicht, als Aceotrop mit Butylacetat die Destillationskolonne im oberen Teil verläßt. Unter diesen Bedingungen würde das Butylacetat das Lösungsgemisch vollständig als Aceotrop verlassen, während noch 2,5 % Wasser in der Aufschlußlösung zurückbleiben, die undestilliert in den Vorratstank zurückfließt. Geringe Mengen von Extraktstoffen, Furfural etc. verbleiben in der Aufschlußlösung und stören den Aufschluß nicht. Eine Trennung der Ameisensäure von der Essigsäure durch Destillation ist nicht erforderlich. Änderungen der Zusammensetzung der Aufschlußlösung (siehe unter A.) sind durch Zugabe der im Unterschuß vorhandenen Komponente auszugleichen.
  • F. Austausch des Butylacetats gegen Wasser
  • Der Austausch des Butylacetats gegen Wasser erfolgt mit Wasserdampt in einem Desolventizer. Durch eine dem Desolventizer vorgeschaltete Schneckenpresse wird die Stoffdichte des Zellstoffes auf etwa 40 % gebracht. Da die Verdampfungsenthalpie des Butylacetats nur etwa 1/5 von der des Wasser beträgt, verläßt der Zellstoff den Desolventzier mit 12%iger Feuchtigkeit und wird anschließend in einer Presse zu Platten von 1 m² verpreßt.
  • G. Eindampfen der Ablauge
  • Die den Kocher verlassende Ablauge enthält 17 % gelöstes Lignin und Hemicellulosen. Ihre Aufkonzentration auf eine 50%ige Dicklauge erfolgt in einem sechsstufigen Röhrenverdampfer mit Druckgefälle unter Ausnutzung der Kondensationswärme der verdampften Aufschlußlösung.
  • H. Destillation
  • Die Destillationskolonne dient nur der Abtrennung des mit den Hackschnitzeln eingetragenen Wassers aus der Aufschlußlösung als Aceotrop mit Butylacetat. Nach der Abdestillation des Wassers fließt die Aufschlußlösung undestilliert in den Vorratstank ab. Die Kapazität der Kolonne richtet sich nach der Hackschnitzelfeuchte. Beträgt diese 10 %, so sind pro Tonne Zellstoff 200 kg Wasser (zusammen mit etwa 600 kg Butylacetat) abzudestillieren.
  • Da die Aufschlußlösung 15 % Wasser enthält, wären pro Tonne Zellstoff 1,333 m³ Aufschlußlösung + 0,6 m³ Butylacetat erforderlich. Bei einer Hackschnitzelfeuchte von 20 % verdoppelt sich die Menge. Es ist daher zu überlegen, ob eine Vortrocknung der Hackschnitzel möglich ist, was auch auf die Lagerungsfähigkeit der Hackschnitzel von Vorteil wäre. Eine Trocknung der Hackschnitzel hat keinen Einfluß auf den Holzaufschluß nach dem Formacell-Verfahren.
  • I. Sprühtrocknung der Dicklauge
  • Labor- und Technikumsversuche haben zu einem Pulver mit etwa 1 % Essigsäure geführt.
  • K. Allgemeine Bemerkungen
  • Bei allen Anlageteilen, die mit der heißen Aufschlußlösung in Berührung kommen, müssen Stähle verwendet werden, die gegenüber Essigsäure/Ameisensäure/Wassergemischen korrosionsfest sind. Das gilt insbesondere für den Kocher, die Destillationskolonne und den Sprühtrockner.
  • Zellstoffqualitäten
  • In Tab. 4 sind die Eigenschaften von ungebleichten Fichtenzellstoffen, die nach dem erfindungsgemäßen Verfahren (Formacell-Verfahren) erhalten wurden, denen von Sulfat- und Acetosolv-Zellstoffen gegenübergestellt. Tabelle 4
    Formacell Sulfat Acetosolv
    Kappazahl 3,6 30,6 15,6
    Weißgrad (% ISO) 28,0 24,8 20,3
    GVZ (ml/g) 1179,5 902,2 1059,0
    DP 3490 2470 3035
    R-10 (%) 93,6 88,3 90,1
    Ausbeute (%) 46,8 47,4 49,0
  • Auffällig ist die sehr niedrige Kappazahl des Formacell-Zellstoffes bei nur wenig erniedrigter Ausbeute gegenüber dem konventionellen Sulfatzellstoff, was einen wesentlich niedrigeren Bedarf an Bleichchemikalien erfordert. Aufgrund ihres hohen R10-Wertes eignen sich Formacell-Zellstoffe auch für die Herstellung von Cellulosederivaten.
  • Tab. 4 zeigt außerdem die Verbesserungen des Formacell-Verfahrens gegenüber dem früheren Acetosolv-Verfahren, die vor allem in einer deutlichen Verbesserung der Delignifizierung und Erhöhung des Weißgrades liegen.
  • Abb. 1 zeigt einen Vergleich der Festigkeiten (Reißlänge und Durchreißfestigkeit) von Formacell- und Sulfatfichtenzellstoff in Abhängigkeit vom Mahlgrad.
    Figure imgb0002
  • Während die Reißlänge von Formacell-Fichtenzellstoff bei allen Mahlgraden über den Werten des Sulfatzellstoffes liegt, ist die Durchreißfestigkeit des Formacell-Zellstoffes niedriger. Insgesamt ist das Festigkeitspotential des Formacell-Zellstoffes mit dem des Sulfatzellstoffes in etwa vergleichbar.
  • Noch günstigere Werte werden bei Miscanthus-Zellstoffen erhalten, wie aus Tab. 5 hervorgeht. Hier werden nicht nur niedrigere Kappazahlen und höhere Weißgrade, sondern auch deutlich höhere Durchreißfestigkeiten als nach dem konventionellen Soda-Verfahren erhalten. In neueren Untersuchungen konnten sogar noch höhere Durchreißfestigkeiten, die denen von Fichtensulfatzellstoffen nahe kommen, erhalten werden. Da das Formacell-Verfahren im Gegensatz zum Soda-Verfahren keine Natriumsilikat-haltigen Ablaugen erzeugt, ist es für den Aufschluß von Einjahrespflanzen besonders geeignet. Tab.5
    Eigenschaften von Miscanthus-Zellstoffen, die nach drei verschiedenen Verfahren erhalten wurden
    Formacell Soda Acetosolv
    Kappazahl 3,2 27,2 13,2
    Weißgrad (% ISO) 33,8 26,6 25,9
    GVZ (ml/g) 1012 1010 1022,5
    DP 2870 2870 2910
    R-10 91,0 -- 88,5
    Ausbeute (%) 48,2 54,6 48,5
    Durchrf. (cN) 90,4 63,2 51,5
    Berstfl. (m²) 43,9 41,2 24,6
    Reißlänge (km) 8,1 7,08 5,2

Claims (14)

  1. Verfahren zur Gewinnung von Zellstoffen, Lignin und Hemicellulosen aus Lignocellulosen durch Erhitzen auf 130 bis 190 °C unter Druck in einem Aufschlußmedium, dadurch gekennzeichnet, daß das Aufschlußmedium 50 bis 95 Gew.% Essigsäure, 5 bis 40 Gew.% Ameisensäure und bis zu 50 Gew.% Wasser enthält.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lignocellulose Holz oder eine Einjahrespflanze ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Feuchtgehalt der Lignocellulose durch eine Vorbehandlung bei erhöhter Temperatur oder durch Lösungsmitteldämpfe reduziert werden kann.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gewichtsverhältnis der Lignocellulose zur Aufschlußlösung 1 : 1 bis 1 : 12 beträgt.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zerkleinerte Lignocellulose kontinuierlich in einen Druckkocher eingetragen wird, in dem sie im Gegenstrom von der Aufschlußlösung extrahiert wird und den Kocher auf der anderen Seite in extrahierter Form kontinuierlich verläßt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß eine kontinuierliche Extraktion dadurch erreicht wird, daß 2 bis 20 Aufschlußgefäße hintereinandergeschaltet sind und die Aufschlußlösung die Lignocellulose im Gegenstrom extrahiert.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zerfaserung des Zellstoffes eingeschlossen ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Waschprozeß des Zellstoffes in die kontinuierliche Extraktion eingeschlossen ist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Lignocellulose mit einem Lösungsmittel zur Entfernung der Inhaltsstoffe vorextrahiert wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Aufschlußlösung Acetanhydrid zugegeben wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Aufschlußlösung ein Bleichmittel zugegeben wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Lignocellulose vor der Eingabe in das Aufschlußgefäß mit Ameisensäure, Essigsäure, Essigsäureanhydrid oder deren Dämpfen imprägniert wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Lignocellulose mit einem Lösungsmittel oder dessen Dämpfen imprägniert wird, das mit Wasser ein Aceotrop bildet.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Bleichen des Zellstoffs eingeschlossen ist.
EP93113002A 1992-08-25 1993-08-13 Holzaufschluss mit Essigsäure unter Zusatz von Ameisensäuren Expired - Lifetime EP0584675B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4228171 1992-08-25
DE4228171A DE4228171C2 (de) 1992-08-25 1992-08-25 Verfahren zur Gewinnung von Zellstoffen

Publications (2)

Publication Number Publication Date
EP0584675A1 true EP0584675A1 (de) 1994-03-02
EP0584675B1 EP0584675B1 (de) 1998-10-28

Family

ID=6466358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93113002A Expired - Lifetime EP0584675B1 (de) 1992-08-25 1993-08-13 Holzaufschluss mit Essigsäure unter Zusatz von Ameisensäuren

Country Status (8)

Country Link
US (1) US6139683A (de)
EP (1) EP0584675B1 (de)
JP (1) JP3348387B2 (de)
AT (1) ATE172761T1 (de)
CA (1) CA2104765A1 (de)
DE (2) DE4228171C2 (de)
ES (1) ES2123600T3 (de)
FI (1) FI110695B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035013A1 (de) * 1995-05-03 1996-11-07 Sven Siegle Verfahren zur herstellung einer pulpe aus zellulosehaltigem material, die pulpe selbst und deren verwendung
FR2770543A1 (fr) * 1997-10-30 1999-05-07 Michel Delmas Procede de production de pate a papier, lignignes sucres et acide acetique par fractionnement de matiere vegetale lignocellulosique em milieu acide formique/acide acetique
WO1999057364A1 (en) * 1998-05-05 1999-11-11 Chempolis Oy Process for producing pulp with a mixture of formic acid and acetic acid as cooking chemical
WO2000068494A1 (fr) * 1999-05-06 2000-11-16 Compagnie Industrielle Des Matieres Vegetales Procede de production de pate a papier, lignines, sucres et acide acetique par fractionnement de matiere vegetale lignocellulosique en milieu acide formique/acide acetique
WO2006117295A1 (en) * 2005-05-03 2006-11-09 Compagnie Industrielle De La Matiere Vegetale Installation for implementing a method for producing paper pulp, lignins and sugars and production method using such an installation
WO2008028183A1 (en) * 2006-09-01 2008-03-06 Wisconsin Alumni Research Foundation Method of making medium density fiberboard
WO2009092749A1 (en) * 2008-01-25 2009-07-30 Compagnie Industrielle De La Matiere Vegetale Cimv Process for pretreating a lignocellulosic material with a view to producing bioethanol, and bioethanol production process
EP2227590A1 (de) * 2007-11-16 2010-09-15 JVS-Polymers Oy Verfahren und vorrichtung zum kontinuierlichen aufschluss von molekularen bestandteilen einer biomasse
WO2011073284A1 (en) * 2009-12-18 2011-06-23 Shell Internationale Research Maatschappij B.V. A process for the extraction of sugars and lignin from lignocellulose-comprising solid biomass

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856582C1 (de) * 1998-12-08 2001-03-15 Rhodia Acetow Ag Verfahren zur Gewinnung von Chemiezellstoff aus Hackschnitzeln
CA2387822C (en) * 1999-10-15 2011-01-04 Cargill, Incorporated Fibers from plant seeds and use
DE10057878A1 (de) * 2000-11-21 2003-02-27 Natural Pulping Ag I Ins Verfahren zur Herstellung einer Pulpe aus cellulosehaltigem Material
FI117633B (fi) * 2000-12-29 2006-12-29 Chempolis Oy Kemikaalien talteenotto ja valmistus massan valmistuksen yhteydessä
FI117632B (fi) * 2001-07-13 2006-12-29 Chempolis Oy Menetelmä massan valmistamiseksi
US20040118536A1 (en) * 2002-12-20 2004-06-24 Kimberly-Clark Worldwide, Inc. Process for manufacturing a cellulosic paper product exhibiting reduced malodor
AU2003904323A0 (en) * 2003-08-13 2003-08-28 Viridian Chemical Pty Ltd Solvents based on salts of aryl acids
FI121811B (fi) * 2007-06-01 2011-04-29 Upm Kymmene Corp Uudet dispersiot ja menetelmä niiden valmistamiseksi
DE102007036382A1 (de) * 2007-07-31 2009-02-05 Voith Patent Gmbh Lignocellulosischer Faserstoff aus Einjahrespflanzen
AU2015203453B2 (en) * 2008-06-23 2016-09-22 Compagnie Industrielle De La Matiere Vegetale Cimv Method For Pretreating Plant Starting Material For The Production, From Sacchariferous And Lignocellulosic Resources, Of Bioethanol And Of Sugar, And Plant
FR2932815B1 (fr) * 2008-06-23 2015-10-30 Cie Ind De La Matiere Vegetale Cimv Procede de pretraitement de la matiere premiere vegetale pour la production, a partir de ressources sacchariferes et lignocellulosiques, de bioethanol et/ou de sucre, et installation.
US8608970B2 (en) 2010-07-23 2013-12-17 Red Shield Acquisition, LLC System and method for conditioning a hardwood pulp liquid hydrolysate
US9228243B2 (en) 2011-08-24 2016-01-05 Red Shield Acquistion, LLC System and method for conditioning a hardwood pulp liquid hydrolysate
CN103131017B (zh) * 2011-11-22 2016-03-16 济南圣泉集团股份有限公司 一种从木质纤维素生物质中提取木质素的工艺
CA2870829A1 (en) * 2012-04-26 2013-10-31 Archer Daniels Midland Company Liquid/liquid separation of lignocellulosic biomass to produce sugar syrups and lignin fractions
CN103898783B (zh) * 2012-12-25 2016-02-10 济南圣泉集团股份有限公司 一种由生物质原料制备纸浆的工艺
CN103898784B (zh) * 2012-12-25 2016-02-10 济南圣泉集团股份有限公司 一种生物质原料的综合利用工艺
CN103031764B (zh) * 2012-12-25 2015-01-14 济南圣泉集团股份有限公司 一种由生物质原料制备纸浆并联产生物碳的方法
JP6260947B2 (ja) * 2013-04-30 2018-01-17 公立大学法人秋田県立大学 蛍光色素
CN112127192A (zh) * 2019-06-24 2020-12-25 广州腾龙材料科技有限公司 复合脱色碱式增白剂及其制备方法与应用
CN112080015B (zh) * 2020-09-22 2022-06-03 南京林业大学 一种高糖基高酰化高缩合型木质素及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730444A (en) * 1950-10-10 1956-01-10 British Celanese Production of cellulose
US3553076A (en) * 1968-01-22 1971-01-05 Weyerhaeuser Co Non-catalytic process for the production of cellulose from lignocellulosic materials using acetic acid
DE3830993A1 (de) * 1987-09-14 1989-04-06 Shell Int Research Verfahren zum aufschliessen lignozellulosehaltigen materials
WO1991018864A1 (en) * 1990-05-29 1991-12-12 Kemira Oy Process for the recovery of a lower aliphatic acid
EP0503304A1 (de) * 1991-03-08 1992-09-16 Acetocell GmbH & Co. KG Verfahren zur Delignifizierung von cellulosehaltigen Rohstoffen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB579669A (en) * 1943-11-05 1946-08-12 Stanley Charles Bate Improvements in or relating to the production of cellulose
US2601408A (en) * 1947-08-29 1952-06-24 Celanese Corp Two-step digestion of wood with aliphatic acid
US2645633A (en) * 1949-11-14 1953-07-14 Masonite Corp Process for extraction of lignin
SU821614A1 (ru) * 1979-06-19 1981-04-15 Белорусский Технологический Институт Им.C.M.Кирова Способ получени целлюлозного полу-фАбРиКАТА
EP0065984A1 (de) * 1980-12-05 1982-12-08 JORDAN, Robert K. Pulpierung in ameisensäure
DE3445132A1 (de) * 1984-12-11 1986-06-12 Nimz, Horst H., Prof.Dr., 2050 Hamburg Holzaufschluss mit essigsaeure
ES2041828T3 (es) * 1988-01-25 1993-12-01 Acetocell Gmbh & Co. Kg Procedimiento para el tratamiento de masa de celulosa conteniendo lignina, con ozono.
EP0325891A1 (de) * 1988-01-25 1989-08-02 Kunz Holding Gmbh & Co. Kg Verfahren zur Gewinnung von gebleichtem Zellstoff
EP0485150A1 (de) * 1990-11-06 1992-05-13 Biodyne Chemical Inc. Aufschlussverfahren, Gewinnung von Lignin und Zusammensetzung daraus
DE4107354C1 (de) * 1991-03-08 1992-11-05 Acetocell Gmbh & Co Kg, 7162 Gschwend, De

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730444A (en) * 1950-10-10 1956-01-10 British Celanese Production of cellulose
US3553076A (en) * 1968-01-22 1971-01-05 Weyerhaeuser Co Non-catalytic process for the production of cellulose from lignocellulosic materials using acetic acid
DE3830993A1 (de) * 1987-09-14 1989-04-06 Shell Int Research Verfahren zum aufschliessen lignozellulosehaltigen materials
WO1991018864A1 (en) * 1990-05-29 1991-12-12 Kemira Oy Process for the recovery of a lower aliphatic acid
EP0503304A1 (de) * 1991-03-08 1992-09-16 Acetocell GmbH & Co. KG Verfahren zur Delignifizierung von cellulosehaltigen Rohstoffen

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183597B1 (en) 1995-05-03 2001-02-06 Natural Pulping Ag Method of producing a pulp from cellulosic material using formic acid and hydrogen peroxide
WO1996035013A1 (de) * 1995-05-03 1996-11-07 Sven Siegle Verfahren zur herstellung einer pulpe aus zellulosehaltigem material, die pulpe selbst und deren verwendung
FR2770543A1 (fr) * 1997-10-30 1999-05-07 Michel Delmas Procede de production de pate a papier, lignignes sucres et acide acetique par fractionnement de matiere vegetale lignocellulosique em milieu acide formique/acide acetique
WO1999057364A1 (en) * 1998-05-05 1999-11-11 Chempolis Oy Process for producing pulp with a mixture of formic acid and acetic acid as cooking chemical
US6562191B1 (en) 1998-05-05 2003-05-13 Chempolis Oy Process for producing pulp with a mixture of formic acid and acetic acid as cooking chemical
US7402224B1 (en) 1999-05-06 2008-07-22 Compagnie Industrielle De La Matiere Vegetale Method for producing paper pulp, lignins, sugars and acetic acid by frantionation of lignocellulosic vegetable material in formic/acetic acid medium
WO2000068494A1 (fr) * 1999-05-06 2000-11-16 Compagnie Industrielle Des Matieres Vegetales Procede de production de pate a papier, lignines, sucres et acide acetique par fractionnement de matiere vegetale lignocellulosique en milieu acide formique/acide acetique
EA012118B1 (ru) * 2005-05-03 2009-08-28 Компани Эндюстриель Де Ля Матьер Вежеталь Установка для осуществления способа получения целлюлозы для производства бумаги, лигнинов и сахаров и способ получения, в котором используется такая установка
FR2885371A1 (fr) * 2005-05-03 2006-11-10 Cie Ind De La Matiere Vegetale Installation pour la mise en oeuvre d'un procede de production de pate a papier, de lignines et de sucres et procede de production au moyen d'une telle installation
WO2006117295A1 (en) * 2005-05-03 2006-11-09 Compagnie Industrielle De La Matiere Vegetale Installation for implementing a method for producing paper pulp, lignins and sugars and production method using such an installation
US8157964B2 (en) 2005-05-03 2012-04-17 Compagnie Industrielle De La Matiere Vegetale Installation for implementing a method for producing paper pulp, lignins and sugars and production method using such an installation
AU2006243234B2 (en) * 2005-05-03 2010-10-28 Compagnie Industrielle De La Matiere Vegetale Installation for implementing a method for producing paper pulp, lignins and sugars and production method using such an installation
WO2008028183A1 (en) * 2006-09-01 2008-03-06 Wisconsin Alumni Research Foundation Method of making medium density fiberboard
US8123904B2 (en) 2006-09-01 2012-02-28 Wisconsin Alumni Research Foundation Method of making medium density fiberboard
EP2227590A4 (de) * 2007-11-16 2012-01-25 Jvs Polymers Oy Verfahren und vorrichtung zum kontinuierlichen aufschluss von molekularen bestandteilen einer biomasse
EP2227590A1 (de) * 2007-11-16 2010-09-15 JVS-Polymers Oy Verfahren und vorrichtung zum kontinuierlichen aufschluss von molekularen bestandteilen einer biomasse
WO2009092749A1 (en) * 2008-01-25 2009-07-30 Compagnie Industrielle De La Matiere Vegetale Cimv Process for pretreating a lignocellulosic material with a view to producing bioethanol, and bioethanol production process
FR2926824A1 (fr) * 2008-01-25 2009-07-31 Cie Ind De La Matiere Vegetale Procede de pretraitement d'une matiere vegetale lignocellulosique en vue de la production de bioethanol.
US8551747B2 (en) 2008-01-25 2013-10-08 Campagnie Industrielle de la Matiere Vegetale CIMV Process for producing bioethanol from lignocellulosic plant raw material
EA019155B1 (ru) * 2008-01-25 2014-01-30 Компани Эндюстриель Де Ля Матьер Вежеталь Кэмв Способ получения биоэтанола из лигноцеллюлозного растительного исходного материала
WO2011073284A1 (en) * 2009-12-18 2011-06-23 Shell Internationale Research Maatschappij B.V. A process for the extraction of sugars and lignin from lignocellulose-comprising solid biomass

Also Published As

Publication number Publication date
FI933729A (fi) 1994-02-26
DE59309094D1 (de) 1998-12-03
ES2123600T3 (es) 1999-01-16
JP3348387B2 (ja) 2002-11-20
CA2104765A1 (en) 1994-02-26
EP0584675B1 (de) 1998-10-28
FI110695B (fi) 2003-03-14
ATE172761T1 (de) 1998-11-15
DE4228171C2 (de) 1995-06-14
FI933729A0 (fi) 1993-08-25
JPH06322682A (ja) 1994-11-22
DE4228171A1 (de) 1994-03-03
US6139683A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
EP0584675B1 (de) Holzaufschluss mit Essigsäure unter Zusatz von Ameisensäuren
DE19916347C1 (de) Verfahren zum Auftrennen lignocellulosehaltiger Biomasse
DE2027319C3 (de) Verfahren zur Herstellung von chemisch gut loslichem Zellstoff
EP2016222B1 (de) Verfahren zur herstellung eines zellstoffes
DE2945421C2 (de)
DE69730233T2 (de) Verfahren zur zellstoffherstellung durch einstufiges kochen mit ameisensaüre und wäsche mit perameisensaüre
DE3212767A1 (de) Verfahren und reaktor zum kontinuierlichen aufschliessen von pflanzenfasermaterial
EP2029807A2 (de) Lignocellulosischer faserstoff aus holz
DE60318810T2 (de) Verwendung von Holz mit niedrigem spezifischem Gewicht für Lyozellprodukte
DD142562A5 (de) Verfahren zum abbauen von lignocellulosematerialien
DE3445132C2 (de)
DE1249666C2 (de) Verfahren zur gewinnung von zellstoff nach dem magnesiumbisulfitverfahren
DE2920731A1 (de) Verfahren zur chemischen umwandlung von lignocellulose unter abtrennung von fasern davon
EP0508064A1 (de) Verfahren zur Delignifizierung von cellulosehaltigen Rohstoffen
DE10145338C1 (de) Verfahren zum Abtrennen von Hemicellulosen aus hemicellulosehaltiger Biomasse
DE3227843C2 (de)
AT503611B1 (de) Verfahren zur herstellung eines zellstoffes
DE4107357C1 (de)
DE3423024A1 (de) Holzaufschluss mit essigsaeure und chlorethanol
DE3239608A1 (de) Verfahren zur herstellung von zellulosepulpe
EP0503303B1 (de) Verfahren zum Bleichen von Zellstoffen in aliphatischen Monocarbonsäuren
DE3024420C2 (de)
DE1692857C3 (de) Verfahren zum Herstellen eines Cellulosebreis
DE1034473B (de) Verfahren zur Gewinnung von gebleichtem Halbzellstoff
DE2537785A1 (de) Verfahren zum sulfit-kochen von holz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19940928

R17P Request for examination filed (corrected)

Effective date: 19940924

17Q First examination report despatched

Effective date: 19950126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EDELER, FRIEDRICH-WILHELM, DIPL.-ING.

Owner name: SCHOENE, MARTIN, DR. DIPL.-HOLZWIRT

Owner name: NIMZ, HORST H., PROF. DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES GB IT LI NL PT SE

REF Corresponds to:

Ref document number: 172761

Country of ref document: AT

Date of ref document: 19981115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59309094

Country of ref document: DE

Date of ref document: 19981203

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981118

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2123600

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19981211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20030709

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030826

Year of fee payment: 11

Ref country code: CH

Payment date: 20030826

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030828

Year of fee payment: 11

Ref country code: AT

Payment date: 20030828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030829

Year of fee payment: 11

Ref country code: ES

Payment date: 20030829

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030905

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040813

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040814

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20050214

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050813

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040814