DE4319070C2 - Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur und Herstellungsverfahren dafür - Google Patents

Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur und Herstellungsverfahren dafür

Info

Publication number
DE4319070C2
DE4319070C2 DE4319070A DE4319070A DE4319070C2 DE 4319070 C2 DE4319070 C2 DE 4319070C2 DE 4319070 A DE4319070 A DE 4319070A DE 4319070 A DE4319070 A DE 4319070A DE 4319070 C2 DE4319070 C2 DE 4319070C2
Authority
DE
Germany
Prior art keywords
film
layer
semiconductor device
etching
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE4319070A
Other languages
English (en)
Other versions
DE4319070A1 (de
Inventor
Masazumi Matsuura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of DE4319070A1 publication Critical patent/DE4319070A1/de
Application granted granted Critical
Publication of DE4319070C2 publication Critical patent/DE4319070C2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76813Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving a partial via etch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

Die vorliegende Erfindung betrifft eine Halbleitervorrichtung nach dem Oberbegriff des Anspruchs 1 und ein Herstellungsver­ fahren nach dem Oberbegriff des Anspruchs 7. Insbesondere be­ trifft die vorliegende Erfindung eine Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur.
Eine Halbleitervorrichtung mit einer Mehrschicht-Verbindungs­ struktur ist allgemein bekannt und beispielsweise in "Proceedings of 11th International IEEE VLSI Multilevel Interconnect Conferen­ ce", 11. bis 12. Juni 1991, VMIC Conference, Seite 146 beschrie­ ben. Fig. 18 ist eine Schnittansicht mit einer herkömmlichen Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur, die in der oben erwähnten Druckschrift offenbart ist. Wie in Fig. 18 gezeigt, umfaßt die herkömmliche Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur ein Siliziumhalbleitersub­ strat 101, einen ersten Isolations-Zwischenschichtfilm 102 mit einer Ausnehmung (Nut) a, der auf dem Siliziumhalbleitersubstrat 101 gebildet ist, eine erste Verbindungsschicht 103, die in der Ausnehmung a gebildet ist, einen zweiten Zwischenschicht-Isola­ tionsfilm 104 mit Ausnehmungen (Nuten) b und c, der auf dem er­ sten Isolations-Zwischenschichtfilm 102 und der ersten Verbin­ dungsschicht 103 gebildet ist, sowie eine zweite Verbindungs­ schicht 105, die in den Ausnehmungen b und c gebildet ist und elektrisch mit der ersten Verbindungsschicht 103 verbunden ist.
Die Fig. 19 bis 26 sind Aufbau-Schnittansichten zum Verdeutli­ chen eines Herstellungsprozesses (erster bis achter Schritt) für die herkömmliche Halbleitervorrichtung mit Mehrschicht-Verbin­ dungsstruktur gemäß Fig. 18. Wie in Fig. 18 sowie den Fig. 19 bis 26 gezeigt, wird nachfolgend das Herstellungsverfahren für die herkömmliche Halbleitervorrichtung mit Mehrschicht-Verbin­ dungsstruktur beschrieben.
Zuerst wird der erste Isolations-Zwischenschichtfilm 102 auf dem Siliziumhalbleitersubstrat 101 gebildet, wie in Fig. 19 gezeigt. Das Siliziumhalbleitersubstrat 101 kann alternativ durch ein eine Schaltung bildendes Element ersetzt werden, wie einen Transistor oder eine ein derartiges Element bedeckende Isolationsschicht, so daß der erste Isolations-Zwischenschichtfilm 102 darauf gebildet werden kann.
Dann wird die Ausnehmung a für die erste Verbindungsschicht 103 (siehe Fig. 18) im ersten Isolations-Zwischenschichtfilm 102 durch Photolithografie und Ätzen gebildet, wie in Fig. 20 ge­ zeigt.
Dann wird die erste Verbindungsschicht 103 auf der gesamten Ober­ fläche gebildet, wie in Fig. 21 gezeigt, und danach geätzt, zum Freilegen der Oberfläche des Isolations-Zwischenschichtfilms 102. Dadurch wird die erste Verbindungsschicht 103 in der in Fig. 22 gezeigten Form fertiggestellt.
Danach wird der zweite Isolations-Zwischenschichtfilm 104 auf der gesamten Oberfläche gebildet, wie in Fig. 23 gezeigt.
Dann wird die Ausnehmung b für den durchgehenden Lochkontakt durch Photolithografie und Ätzen gebildet, wie in Fig. 24 ge­ zeigt.
Danach wird die Ausnehmung c für die zweite Verbindungsschicht 105 (siehe Fig. 18) durch Photolithografie und Ätzen gebildet, wie in Fig. 25 gezeigt.
Dann wird die zweite Verbindungsschicht 105 auf der gesamten Oberfläche gebildet, wie in Fig. 26 gezeigt, und danach geätzt zum Freilegen der oberen Oberfläche des zweiten Isolations-Zwi­ schenschichtfilms 104. Dadurch wird die zweite Verbindungsschicht 105 in der in Fig. 18 gezeigten Form fertiggestellt.
Allerdings besitzt die oben beschriebene herkömmliche Halbleiter­ vorrichtung mit Mehrschicht-Verbindungsstruktur die folgenden Probleme: Wenn eine schlechte Ausrichtung (mangelhafte Überlage­ rung) während der Bildung der Ausnehmung b für den durchgehenden Lochkontakt und der Ausnehmung c bei der zweiten Verbindungs­ schicht 105 in den in den Fig. 24 und 25 gezeigten Herstel­ lungsschritten bewirkt wird, wird die obere Oberfläche des ersten Isolations-Zwischenschichtfilms 102 durch Ätzen nachteilig ver­ tieft (ausgespart). Fig. 27 ist eine Schnittansicht dieses Auf­ baus zum Verdeutlichen dieses Problems der herkömmlichen Halblei­ tervorrichtung mit Mehrschicht-Verbindungsstruktur. Wie in Fig. 27 gezeigt, wird eine Vertiefung (Aushöhlung) d unvermeidbar im ersten Isolations-Zwischenschichtfilm 102 gebildet, wenn eine Fehlausrichtung der Muster während der Bildung der Ausnehmung b für das durchgehende Kontaktloch und der Ausnehmung c für die zweite Verbindungsschicht 105, wie oben beschrieben, bewirkt wird. Während das Ätzen zum Bilden der Ausnehmungen b und c im allgemeinen durch die erste Verbindungsschicht 103 angehalten (gestoppt) wird, beeinflußt ein derartiges Ätzen auf nachteilige Weise den ersten Isolations-Zwischenschichtfilm 102 beim Auftre­ ten einer Fehlausrichtung und beschreibt die Vertiefung d. Wenn eine derartige Vertiefung d so erzeugt wird, daß sie die Unter­ schicht der Isolations-Zwischenschicht 102 erreicht, die zum Bei­ spiel durch ein Schaltungselement wie einen Transistor gebildet sein kann, kann ein Kurzschluß über den zweiten Isolations-Zwi­ schenschichtfilm 102 und das Schaltungselement gebildet werden, oder das Schaltungselement kann beschädigt werden.
Eine Halbleitervorrichtung mit einer Mehrschicht-Verbindungs­ struktur kann der EP 0 046 525 A2 entnommen werden. Die Halb­ leitervorrichtung weist eine erste Isolationsschicht über ei­ nem Halbleitersubstrat, einen ersten Ätzverhinderungsfilm auf der ersten Isolationsschicht, eine erste Öffnung in der ersten Isolationsschicht und dem Ätzverhinderungsfilm, eine erste Verbindungsschicht in der ersten Öffnung, eine zweite Isolati­ onsschicht mit einer zweiten Öffnung auf dem Ätzverhinderungs­ film und der ersten Verbindungsschicht und eine zweite Verbin­ dungsschicht in der zweiten Öffnung, die elektrisch mit der ersten Verbindungsschicht verbunden ist, auf.
Aus Proceedings of 11th International IEEE VLSI Multilevel In­ terconnect Conference, 11.12.06 1991, VMIC Conference, Seiten 144-152 kann eine Halbleitervorrichtung mit einer Mehrschicht- Verbindungsstruktur entnommen werden, bei der eine sogenannte Dual-Damaszenertechnologie verwendet wird, indem nämlich eine Mehrzahl von Isolationsfilmen übereinander geschichtet wird und jeweils an dem Grenzbereich der Isolationsschichten lei­ tende Schichten vorgesehen werden, die durch vertikale Stopfen miteinander verbunden sein können.
Es ist daher Aufgabe der vorliegenden Erfindung zu verhindern, daß eine Vertiefung in einer ersten Isolationsschicht einer Halbleitervorrichtung gebildet wird, selbst wenn eine Fehlaus­ richtung von Mustern während der Bildung einer Öffnung in ei­ ner zweiten Isolationsschicht geschieht, wobei die zweite Iso­ lationsschicht auf der ersten Isolationsschicht vorgesehen ist. Ferner ist ein Verfahren zum Herstellen einer derartigen Halbleitervorrichtung zu schaffen.
Diese Aufgabe wird gelöst durch eine Halbleitervorrichtung nach Anspruch 1 oder ein Verfahren nach Anspruch 7.
Weiterbildungen der Erfindung sind in den jeweiligen Unteran­ sprüchen angegeben.
Im Gebrauch ist der Ätzverhinderungsfilm so auf der ersten Isolationsschicht gebildet, daß er einen Einfluß durch Ätzen auf die erste Isolationsschicht beim Bilden der zweiten Öff­ nung verhindert, selbst wenn eine Muster-Fehlausrichtung wäh­ rend der Bildung der zweiten Öffnung in der zweiten Isolati­ onsschicht geschieht. Daher wird verhindert, daß eine Vertie­ fung in der ersten Isolationsschicht gebildet wird, wie dies im herkömmlichen Fall geschah.
Im Gebrauch wird der Ätzverhinderungsfilm auf der ersten Isola­ tionsschicht gebildet, und die zweite Isolationsschicht wird auf dem Ätzverhinderungsfilm gebildet, während ein vorbestimmter Be­ reich der zweiten Isolationsschicht so geätzt wird, daß die zwei­ te Öffnung gebildet wird, wodurch effektiv verhindert wird, daß die erste Isolationsschicht durch Ätzen beim Bilden der zweiten Öffnung beeinflußt (angegriffen) wird, selbst wenn eine Muster- Fehlausrichtung während der Bildung der zweiten Öffnung ge­ schieht. Daher wird verhindert, daß in der ersten Isolations­ schicht eine Vertiefung (Aushöhlung) gebildet wird.
Es folgt die Beschreibung von Ausführungsbeispielen anhand der Figuren.
Von den Figuren zeigen
Fig. 1 eine Schnittansicht mit einer Halbleitervorrich­ tung mit Mehrschicht-Verbindungsstruktur gemäß einer ersten Ausführungsform;
Fig. 2 eine Schnittansicht zum Verdeutlichen eines ersten Schritts eines Verfahrens zum Herstellen der Halb­ leitervorrichtung gemäß der in Fig. 1 gezeigten ersten Ausführungsform;
Fig. 3 eine Schnittansicht zum Verdeutlichen eines zwei­ ten Schritts im Verfahrens zum Herstellen der Halbleitervorrichtung gemäß der ersten Ausfüh­ rungsform aus Fig. 1;
Fig. 4 eine Schnittansicht zum Verdeutlichen eines drit­ ten Schrittes im Verfahrens zum Herstellen der Halbleitervorrichtung der ersten Ausführungsform gemäß Fig. 1;
Fig. 5 eine Schnittansicht zum Verdeutlichen eines vier­ ten Schrittes des Verfahrens zum Herstellen der Halbleitervorrichtung gemäß der ersten Ausfüh­ rungsform aus Fig. 1;
Fig. 6 eine Schnittansicht zum Verdeutlichen eines fünf­ ten Schrittes im Verfahren zum Herstellen der Halbleitervorrichtung gemäß der ersten Ausfüh­ rungsform aus Fig. 1;
Fig. 7 eine Schnittansicht zum Verdeutlichen eines sech­ sten Schrittes im Verfahren zum Herstellen der Halbleitervorrichtung der ersten Ausführungsform gemäß Fig. 1;
Fig. 8 eine Schnittansicht zum Verdeutlichen eines sieb­ ten Schrittes im Verfahren zum Herstellen der Halbleitervorrichtung der ersten Ausführungsform gemäß Fig. 1;
Fig. 9 eine Schnittansicht zum Verdeutlichen eines achten Schrittes im Verfahren zum Herstellen der Halblei­ tervorrichtung der ersten Ausführungsform gemäß Fig. 1;
Fig. 10 eine typische Ansicht der chemischen Formel von Polyphenylsilsesquioxan;
Fig. 11 eine Schnittansicht mit einer Halbleitervorrich­ tung mit Mehrschicht-Verbindungsstruktur gemäß einer zweiten Ausführungsform;
Fig. 12 eine Schnittansicht zum Verdeutlichen eines ersten Schrittes eines Verfahrens zum Herstellen der Halbleitervorrichtung der zweiten Ausführungsform gemäß Fig. 11;
Fig. 13 eine Schnittansicht zum Verdeutlichen eines zwei­ ten Schrittes im Verfahrens zum Herstellen der Halbleitervorrichtung der zweiten Ausführungsform gemäß Fig. 11;
Fig. 14 eine Schnittansicht zum Verdeutlichen eines drit­ ten Schrittes im Verfahrens zum Herstellen der Halbleitervorrichtung der zweiten Ausführungsform gemäß Fig. 11;
Fig. 15 eine Schnittansicht zum Verdeutlichen eines vier­ ten Schrittes im Verfahrens zum Herstellen der Halbleitervorrichtung der zweiten Ausführungsform gemäß Fig. 11;
Fig. 16 eine Schnittansicht zum Verdeutlichen eines fünf­ ten Schrittes im Verfahrens zum Herstellen der Halbleitervorrichtung der zweiten Ausführungsform gemäß Fig. 11;
Fig. 17 eine Schnittansicht zum Verdeutlichen eines sechs­ ten Schrittes im Verfahrens zum Herstellen der Halbleitervorrichtung der zweiten Ausführungsform gemäß Fig. 11;
Fig. 18 eine Schnittansicht einer herkömmlichen Halblei­ tervorrichtung mit Mehrschicht-Verbindungsstruk­ tur;
Fig. 19 eine Schnittansicht zum Verdeutlichen eines ersten Schritts eines Verfahrens zum Herstellen der her­ kömmlichen Halbleitervorrichtung aus Fig. 18;
Fig. 20 eine Schnittansicht zum Verdeutlichen eines zwei­ ten Schritts im Verfahren zum Herstellen der her­ kömmlichen Halbleitervorrichtung gemäß Fig. 18;
Fig. 21 eine Schnittansicht zum Verdeutlichen eines drit­ ten Schritts des Verfahrens zum Herstellen der herkömmlichen Halbleitervorrichtung gemäß Fig. 18;
Fig. 22 eine Schnittansicht zum Verdeutlichen eines vier­ ten Schrittes im Verfahren zum Herstellen der her­ kömmlichen Halbleitervorrichtung gemäß Fig. 18;
Fig. 23 eine Schnittansicht zum Verdeutlichen eines fünf­ ten Schrittes im Verfahren zum Herstellen der her­ kömmlichen Halbleitervorrichtung gemäß Fig. 18;
Fig. 24 eine Schnittansicht zum Verdeutlichen eines sech­ sten Schrittes im Verfahren zum Herstellen der herkömmlichen Halbleitervorrichtung gemäß Fig. 18;
Fig. 25 eine Schnittansicht zum Verdeutlichen eines sieb­ ten Schrittes im Verfahren zum Herstellen der her­ kömmlichen Halbleitervorrichtung gemäß Fig. 18;
Fig. 26 eine Schnittansicht zum Verdeutlichen eines achten Schrittes im Verfahren zum Herstellen der herkömm­ lichen Halbleitervorrichtung gemäß Fig. 18; und
Fig. 27 eine Schnittansicht zum Verdeutlichen eines Pro­ blems der herkömmlichen Halbleitervorrichtung mit Mehrschicht-Verbindungsstruktur.
Wie in Fig. 1 gezeigt, umfaßt eine Halbleitervorrichtung gemäß einer ersten Ausführungsform ein Siliziumhalbleitersubstrat 1, einen ersten Isolations-Zwischenschichtfilm 2 mit einer Ausneh­ mung a (Nut), der auf dem Siliziumhalbleitersubstrat 1 gebildet ist, eine erste Verbindungsschicht 4, die in der Ausnehmung a gebildet ist, einen ersten Ätzverhinderungsfilm 3, der auf dem ersten Isolations-Zwischenschichtfilm 2 gebildet ist, einen zwei­ ten Isolations-Zwischenschichtfilm 5 mit Ausnehmungen (Nuten) b und c, der auf dem ersten Ätzverhinderungsfilm 3 und der ersten Verbindungsschicht 4 gebildet ist, eine zweite Verbindungsschicht 7, die in den Ausnehmungen b und c gebildet ist und elektrisch mit der ersten Verbindungsschicht 4 verbunden ist, sowie einen zweiten Ätzverhinderungsfilm 6, der auf dem zweiten Isolations- Zwischenschichtfilm 5 gebildet ist.
Gemäß der oben beschriebenen ersten Ausführungsform ist der erste Ätzverhinderungsfilm 3 so auf dem ersten Isolations-Zwischen­ schichtfilm 2 gebildet, daß die obere Oberfläche des ersten Iso­ lations-Zwischenschichtfilms 2 nicht durch Ätzen zum Bilden der Ausnehmungen b und c beeinflußt (betroffen) ist, selbst wenn eine Fehlausrichtung der Muster bei der Bildung der Ausnehmungen b und c auftritt. Dadurch wird effektiv verhindert, daß sich im ersten Isolations-Zwischenschichtfilm 2 eine Vertiefung (Aushöhlung) bildet, wie diesem herkömmlichen Fall geschah. Wenn das Silizium­ halbleitersubstrat 1, das als Unterlage für den ersten Isola­ tions-Zwischenschichtfilm dient, durch ein Schaltungselement wie einen Transistor ersetzt wird, ist es daher möglich zu verhin­ dern, daß das Schaltungselement und die zweite Verbindungsschicht 7 kurzgeschlossen bzw. beschädigt werden.
Unter Bezug auf die Fig. 1 und die Fig. 2 bis 9 wird nachfol­ gend ein Herstellungsverfahren der Halbleitervorrichtung gemäß der ersten Ausführungsform beschrieben.
Zuerst wird der erste Isolations-Zwischenschichtfilm 2 auf dem Siliziumhalbleitersubstrat 1 gebildet, wie in Fig. 2 gezeigt. Der Ätzverhinderungsfilm 3 wird auf dem ersten Isolations-Zwi­ schenschichtfilm 2 gebildet. Das Siliziumhalbleitersubstrat 1, das als Unterlage für den ersten Isolations-Zwischenschichtfilm 2 dient, kann durch ein eine Schaltung bildendes Element (Schal­ tungselement) wie einen Transistor oder eine Isolationsschicht zum Bedecken eines solchen ersetzt werden. Das Material für den Ätzverhinderungsfilm 3 wird durch Aufbringen von Polyphenylsil­ sesquioxan durch Rotationsbeschichtung als Film und durch Aushär­ ten von diesem aufgebracht (dieser Film wird nachfolgend als PPSQ-Film bezeichnet). Fig. 10 zeigt die typische chemische For­ mel von Polyphenylsilsesquioxan. Ein derartiger PPSQ-Film wird mit einer Ätzrate von etwa 1/3 bis 1/4 von der von Siliziumoxid­ filmen trockengeätzt, wobei Siliziumoxid Basismaterial für den ersten und den zweiten Isolations-Zwischenschichtfilm 2,4 ist. Dadurch weist der PPSQ-Film eine ausreichende Eignung auf, um als Ätzverhinderungsfilm zu dienen.
Dann wird die Ausnehmung a für die erste Verbindungsschicht 4 durch den ersten Isolations-Zwischenschichtfilm 2 und den ersten Ätzverhinderungsfilm 3 durch Photolithografie und Ätzen gebildet, wie in Fig. 3 gezeigt.
Dann wird die erste Verbindungsschicht 4 auf dem Gesamtaufbau gebildet, wie in Fig. 4 gezeigt, und danach geätzt, zum Freile­ gen der oberen Oberfläche des ersten Ätzverhinderungsfilms 3. Dadurch wird die erste Verbindungsschicht 4 in der in Fig. 5 gezeigten Form fertiggestellt. Dieser Ätzschritt wird durch che­ misch-mechanisches Polieren durchgeführt, einem Verfahren zum Aufbringen eines Schleifmittels mit chemischer Ätzwirkung auf einer Wafer-Oberfläche und Drücken einer schleifenden Unterlage gegen den Wafer, um diesen mechanisch zu ätzen. Die erste Verbin­ dungsschicht 4 kann durch ein allgemeines reaktives Gas SF6, NF3, Cl, O2 oder dergleichen trockengeätzt werden.
Dann wird der zweite Isolations-Zwischenschichtfilm 5 auf der Gesamtoberfläche gebildet, wonach der zweite Ätzverhinderungsfilm 6 auf diesem zweiten Isolations-Zwischenschichtfilm 5 gebildet wird, wie in Fig. 6 gezeigt.
Dann wird die Ausnehmung b für den durchgehenden Lochkontakt mit einem gewünschten Muster durch Photolithografie und Ätzen gebil­ det, wie in Fig. 7 gezeigt, und danach wird die Ausnehmung c für die zweite Verbindungsschicht wie in Fig. 8 gezeigt gebildet. Die Ausnehmungen b und c werden durch Trockenätzen mit reaktivem Gas gebildet. Selbst wenn eine Muster-Fehlausrichtung während dieser Bildung der Ausnehmungen b und c geschieht, wird der erste Isolations-Zwischenschichtfilm 2 nicht durch das Trockenätzen zum Bilden der Ausnehmungen b und c beeinflußt. Mit anderen Worten, der erste Ätzverhinderungsfilm 3 verhindert effektiv einen Ein­ fluß des Trockenätzens auf den ersten Isolations-Zwischenschicht­ film 2. Dadurch wird verhindert, daß sich eine Vertiefung im er­ sten Isolations-Zwischenschichtfilm 2 bildet, wie dies im her­ kömmlichen Fall geschah.
Dann wird die zweite Verbindungsschicht 7 auf der Gesamtoberflä­ che gebildet, wie in Fig. 9 gezeigt, und danach geätzt, zum Freilegen der oberen Oberfläche des zweiten Ätzverhinderungsfilms 6. Dadurch wird die zweite Verbindungsschicht 7 in der in Fig. 1 gezeigten Form fertiggestellt.
Wie in Fig. 11 gezeigt, sind bei einer Halbleitervorrichtung, gemäß einer zweiten Ausführungsform ein zweiter Isolations-Zwi­ schenschichtfilm 25 und ein dritter Isolations-Zwischenschicht­ film 35 getrennt gebildet und mit einer Ausnehmung b für ein durchgehendes Kontaktloch und einer Ausnehmung c für eine zweite Verbindungsschicht 9 versehen. Der zweite Isolations-Zwischen­ schichtfilm 25 mit der Ausnehmung b für den durchgehenden Loch­ kontakt ist auf einem ersten Ätzverhinderungsfilm 3 und einer ersten Verbindungsschicht 4 gebildet. Ein zweiter Ätzverhinde­ rungsfilm 6 ist auf dem zweiten Isolations-Zwischenschichtfilm 25 gebildet. Eine Verbindungsschicht 8 ist in der Ausnehmung b ge­ bildet. Der dritte Isolations-Zwischenschichtfilm 35 mit der Aus­ nehmung c für die zweite Verbindungsschicht 9 ist auf der Verbin­ dungsschicht 8 und dem zweiten Ätzverhinderungsfilm 6 gebildet. Die zweite Verbindungsschicht 9 ist in der Ausnehmung c gebildet und elektrisch mit der Verbindungsschicht 8 verbunden. Ein drit­ ter Ätzverhinderungsfilm 10 ist auf dem dritten Isolations-Zwi­ schenschichtfilm 35 gebildet.
Unter Bezug auf die Fig. 11 und die Fig. 12 bis 17 wird nach­ folgend ein Verfahren zum Herstellen der Halbleitervorrichtung gemäß der zweiten Ausführungsform beschrieben.
Zuerst wird die erste Verbindungsschicht 4 wie in Fig. 12 ge­ zeigt gebildet, über ein Verfahren gleich dem der in den Fig. 2 bis 5 gezeigten ersten Ausführungsform, so daß dann der zweite Isolations-Zwischenschichtfilm 25 darauf gebildet wird. Dann wird der zweite Ätzverhinderungsfilm 6 auf dem zweiten Isolations-Zwi­ schenschichtfilm 25 gebildet.
Dann wird die Ausnehmung b für den durchgehenden Lochkontakt durch Photolithografie und Ätzen gebildet, wie in Fig. 13 ge­ zeigt.
Dann wird die erste Verbindungsschicht 8 selektiv in der Ausneh­ mung b durch CVD gebildet, wie in Fig. 14 gezeigt. Alternativ kann die Verbindungsschicht 14 auf der gesamten Oberfläche gebil­ det werden und danach geätzt werden, zum Freilegen der oberen Oberfläche des ersten Ätzverhinderungsfilms 3. Selbst wenn eine Muster-Fehlausrichtung während einer Bildung der Ausnehmung b geschieht, verhindert der erste Ätzverhinderungsfilm 3 effektiv, daß sich eine Vertiefung im ersten Isolations-Zwischenschichtfilm 2 bildet, wie dies im herkömmlichen Fall geschah.
Dann wird der dritte Isolations-Zwischenschichtfilm 35 auf dem zweiten Ätzverhinderungsfilm 6 und der Verbindungsschicht 8 ge­ bildet, wie in Fig. 15 gezeigt. Der dritte Ätzverhinderungsfilm 10 wird auf dem dritten Isolations-Zwischenschichtfilm 35 gebil­ det.
Dann wird die Ausnehmung c durch Photolithografie und Ätzen ge­ bildet, wie in Fig. 16 gezeigt. Dann wird die zweite Verbin­ dungsschicht 9 die Gesamtoberfläche bedeckend gebildet, wie in Fig. 17 gezeigt. Schließlich wird die zweite Verbindungsschicht 9 geätzt, zum Freilegen der oberen Oberfläche des dritten Ätzver­ hinderungsfilms 10. Dadurch wird die zweite Verbindungsschicht 9 in der in Fig. 11 gezeigten Form fertiggestellt. Selbst wenn eine Muster-Fehlausrichtung während der Bildung der Ausnehmung c bei dem in Fig. 16 gezeigten Schritt bewirkt wird, schützt der zweite Ätzverhinderungsfilm 6 den zweiten Isolations-Zwischen­ schichtfilm 25 gegen Ätzen und verhindert effektiv, daß sich in diesem eine Vertiefung (Aushöhlung) bildet.
In sowohl der ersten als auch der zweiten Ausführungsform wird, wie oben beschrieben, der Ätzverhinderungsfilm mit einer langsa­ meren Rate als das Hauptmaterial für den Isolations-Zwischen­ schichtfilm geätzt, wodurch es möglich ist, daß der unterliegende Isolations-Zwischenschichtfilm vor der Bildung einer Vertiefung durch Ätzen geschützt wird, selbst wenn eine Muster-Fehlausrich­ tung während einer Bildung der Ausnehmung für den durchgehenden Lochkontakt und der Ausnehmung zum Aufnehmen der oberen Verbin­ dungsschicht geschieht.
Gemäß den obigen Ausführungsformen wird ein Ätzverhinderungsfilm auf der ersten Isolationsschicht gebildet, so daß verhindert wird, daß durch Ätzen beim Bilden der zweiten Öffnung eine Ver­ tiefung in der ersten Isolationsschicht gebildet wird, selbst wenn eine Muster-Fehlausrichtung bei der Bildung der zweiten Öff­ nung in der zweiten Isolationsschicht, die auf dem Ätzverhinde­ rungsfilm gebildet ist, geschieht. Dadurch wird effektiv verhin­ dert, daß sich eine Vertiefung in der ersten Isolationsschicht bildet, und wenn daher ein Schaltungselement, wie ein Transistor, als Unterlage der ersten Isolationsschicht gebildet wird, kann verhindert werden, daß ein derartiges Schaltungselement beschä­ digt wird, und es ist möglich, einen Kurzschluß über die zweite Verbindungsschicht und das Schaltungselement zu verhindern.
Gemäß dem Herstellungsverfahren wird der Ätzverhinderungsfilm auf der ersten Isolationsschicht gebildet, und die zweite Isolations­ schicht wird auf dem Ätzverhinderungsfilm gebildet, so daß ein vorgegebener Bereich der zweiten Isolationsschicht zum Bilden der zweiten Öffnung geätzt wird, wodurch ein Einfluß durch Ätzen beim Bilden der zweiten Öffnung auf die erste Isolationsschicht ver­ hindert wird, selbst wenn eine Muster-Fehlausrichtung während der Bildung der zweiten Öffnung auftritt. Es ist daher möglich, ef­ fektiv die Bildung einer Vertiefung in der ersten Isolations­ schicht zu verhindern.

Claims (11)

1. Halbleitervorrichtung mit Mehrschicht-Verbindungsstruktur, mit
einer ersten Isolationsschicht (2), die über einem Halbleiter­ substrat (1) gebildet ist,
einem ersten Ätzverhinderungsfilm (3), der auf der ersten Iso­ lationsschicht gebildet ist,
einer ersten Öffnung (a), die in der ersten Isolationsschicht und dem Ätzverhinderungsfilm (3) gebildet ist,
einer ersten Verbindungsschicht (4), die in der ersten Öffnung gebildet ist, wobei der Ätzverhinderungsfilm (3) in direktem Kontakt mit der ersten Verbindungsschicht (4) steht,
einer zweiten Isolationsschicht (5) mit einer zweiten Öffnung (b, c), die auf dem Ätzverhinderungsfilm und der ersten Ver­ bindungsschicht gebildet ist,
einer zweiten Verbindungsschicht (7), die in der zweiten Öff­ nung verbunden ist.
2. Halbleitervorrichtung nach Anspruch 1, dadurch gekennzeich­ net, daß der erste Ätzverhinderungsfilm ein Polyphenylsilsesquioxanfilm (PPSQ-Film) ist.
3. Halbleitervorrichtung nach Anspruch 1 oder 2, dadurch ge­ kennzeichnet, daß
die zweite Verbindungsschicht auf der ersten Verbindungsschicht gebildet ist, und
der erste Ätzverhinderungsfilm in Kontakt mit diesen ist.
4. Halbleitervorrichtung nach einem der Ansprüche 1 bis 3, da­ durch gekennzeichnet, daß die zweite Öffnung eine durchgehende Kontaktöffnung (b) mit einem ersten Durchmesser aufweist, sowie eine Verbindungsöffnung (c) mit einem zweiten inneren Durchmesser, der größer als der erste innere Durchmesser ist.
5. Halbleitervorrichtung nach einem der Ansprüche 1 bis 4, da­ durch gekennzeichnet, daß
ein zweiter Ätzverhinderungsfilm (6) auf der zweiten Isolations­ schicht gebildet ist,
eine dritte Isolationsschicht (35) mit einer dritten Öffnung auf dem zweiten Ätzverhinderungsfilm und der zweiten Verbindungs­ schicht gebildet ist, und
eine dritte Verbindungsschicht (9) in der dritten Öffnung gebil­ det ist und elektrisch mit der zweiten Verbindungsschicht verbun­ den ist.
6. Halbleitervorrichtung nach Anspruch 5, dadurch gekennzeich­ net, daß die dritte Verbindungsschicht auf der zweiten Verbindungsschicht und dem zweiten Ätzverhinderungsfilm in Kontakt mit diesem gebil­ det ist.
7. Verfahren zum Herstellen einer Halbleitervorrichtung mit Mehrschicht-Verbindungstruktur, mit
einem Schritt zum Bilden einer ersten Isolationsschicht (12) über einem Halbleitersubstrat (1),
einem Schritt zum Bilden eines ersten Ätzverhinderungsfilms (3) auf der ersten Isolationsschicht,
einem Schritt zum Bilden einer ersten Öffnung (a) in der er­ sten Isolationsschicht (12) und dem ersten Ätzverhinderungs­ film (3),
einem Schritt zum Bilden einer ersten Verbindungsschicht (4) in der ersten Öffnung in direktem Kontakt mit dem ersten Ätz­ verhinderungsfilm (3),
einem Schritt zum Bilden einer zweiten Isolationsschicht (5) auf dem ersten Ätzverhinderungsfilm und der ersten Verbin­ dungsschicht,
einem Schritt zum Ätzen eines vorbestimmten Bereichs der zwei­ ten Isolationsschicht, wodurch eine zweite Öffnung (b, c) ge­ bildet wird, und
einem Schritt zum Bilden einer zweiten Verbindungsschicht (7) in der zweiten Öffnung, elektrisch verbunden mit der ersten Verbindungsschicht (8).
8. Verfahren zum Herstellen einer Halbleitervorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der erste Ätzverhinderungsfilm ein Polyphenylsilsesquioxanfilm (PPSQ-Film) ist.
9. Verfahren zum Herstellen einer Halbleitervorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Schritt zum Bilden einer zweiten Öffnung einen Schritt zum Bilden einer durchgehenden Kontaktlochöffnung (b) mit einem er­ sten inneren Durchmesser aufweist, sowie einen Schritt zum Bilden einer Verbindungsöffnung (c) mit einem zweiten inneren Durchmes­ ser, der größer als der erste innere Durchmesser ist.
10. Verfahren zum Herstellen einer Halbleitervorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß der Schritt zum Bilden einer zweiten Verbindungsschicht einen schritt zum Bilden der zweiten Verbindungsschicht auf der ersten Verbindungsschicht und dem ersten Ätzverhinderungsfilm aufweist, in Kontakt mit diesem.
11. Verfahren zum Herstellen einer Halbleitervorrichtung nach einem der Ansprüche 7 bis 10, gekennzeichnet durch
einen Schritt zum Bilden eines zweiten Ätzverhinderungsfilms (6) auf der zweiten Isolationsschicht,
einen Schritt zum Bilden einer dritten Isolationsschicht (35) mit einer dritten Öffnung auf dem zweiten Ätzverhinderungsfilm und der zweiten Verbindungsschicht, und
einen Schritt zum Bilden einer dritten Verbindungsschicht (9) in der dritten Öffnung, elektrisch in Kontakt mit der zweiten Ver­ bindungsschicht.
DE4319070A 1992-06-24 1993-06-08 Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur und Herstellungsverfahren dafür Expired - Fee Related DE4319070C2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166179A JP2934353B2 (ja) 1992-06-24 1992-06-24 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
DE4319070A1 DE4319070A1 (de) 1994-01-05
DE4319070C2 true DE4319070C2 (de) 2003-09-25

Family

ID=15826546

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4319070A Expired - Fee Related DE4319070C2 (de) 1992-06-24 1993-06-08 Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur und Herstellungsverfahren dafür

Country Status (3)

Country Link
US (2) US5598027A (de)
JP (1) JP2934353B2 (de)
DE (1) DE4319070C2 (de)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470788A (en) * 1994-02-28 1995-11-28 International Business Machines Corporation Method of making self-aligned, lateral diffusion barrier in metal lines to eliminate electromigration
US5619072A (en) * 1995-02-09 1997-04-08 Advanced Micro Devices, Inc. High density multi-level metallization and interconnection structure
US6740573B2 (en) 1995-02-17 2004-05-25 Micron Technology, Inc. Method for forming an integrated circuit interconnect using a dual poly process
JP3022744B2 (ja) * 1995-02-21 2000-03-21 日本電気株式会社 半導体装置及びその製造方法
KR0186085B1 (ko) * 1995-09-02 1999-04-15 문정환 배선 형성방법
JPH09153545A (ja) * 1995-09-29 1997-06-10 Toshiba Corp 半導体装置及びその製造方法
JP2809200B2 (ja) * 1996-06-03 1998-10-08 日本電気株式会社 半導体装置の製造方法
US5916524A (en) * 1997-07-23 1999-06-29 Bio-Dot, Inc. Dispensing apparatus having improved dynamic range
US5872056A (en) * 1997-02-07 1999-02-16 Micron Technology, Inc. Semiconductor processing methods of forming self-aligned contact openings
TW315517B (en) * 1997-02-21 1997-09-11 United Microelectronics Corp Eliminating poisoned via problem
US5960316A (en) * 1997-03-31 1999-09-28 Intel Corporation Method to fabricate unlanded vias with a low dielectric constant material as an intraline dielectric
NL1005911C2 (nl) * 1997-04-25 1998-10-27 United Microelectronics Corp Zelf-uitgerichte, niet-gelande doorgangsmetallisatie.
US6080655A (en) * 1997-08-21 2000-06-27 Micron Technology, Inc. Method for fabricating conductive components in microelectronic devices and substrate structures thereof
GB2330001B (en) * 1997-10-06 1999-09-01 United Microelectronics Corp Method of forming an integrated circuit device
NL1007464C2 (nl) * 1997-11-06 1999-05-07 United Microelectronics Corp Verbindingsstructuur met gas-diëlektricum die compatibel is met contactpuntloze doorgangen.
TW366563B (en) * 1998-02-09 1999-08-11 United Microelectronics Corp Double damascene structure and the manufacturing method
US6054379A (en) 1998-02-11 2000-04-25 Applied Materials, Inc. Method of depositing a low k dielectric with organo silane
US6340435B1 (en) 1998-02-11 2002-01-22 Applied Materials, Inc. Integrated low K dielectrics and etch stops
US6593247B1 (en) 1998-02-11 2003-07-15 Applied Materials, Inc. Method of depositing low k films using an oxidizing plasma
US6303523B2 (en) * 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6627532B1 (en) * 1998-02-11 2003-09-30 Applied Materials, Inc. Method of decreasing the K value in SiOC layer deposited by chemical vapor deposition
US6287990B1 (en) 1998-02-11 2001-09-11 Applied Materials, Inc. CVD plasma assisted low dielectric constant films
US6660656B2 (en) 1998-02-11 2003-12-09 Applied Materials Inc. Plasma processes for depositing low dielectric constant films
US6413583B1 (en) 1998-02-11 2002-07-02 Applied Materials, Inc. Formation of a liquid-like silica layer by reaction of an organosilicon compound and a hydroxyl forming compound
US5976967A (en) * 1998-02-13 1999-11-02 Texas Instruments - Acer Incorporated Dual damascene process for multi-level metallization and interconnection structure
US6081032A (en) * 1998-02-13 2000-06-27 Texas Instruments - Acer Incorporated Dual damascene multi-level metallization and interconnection structure
TW368741B (en) * 1998-02-26 1999-09-01 United Microelectronics Corp Manufacturing method for dual damascene
TW376351B (en) * 1998-03-17 1999-12-11 United Microelectronics Corp Polishing barrier structure of chemical mechanical polishing
FR2779274B1 (fr) 1998-05-27 2000-08-18 St Microelectronics Sa Circuit integre avec couche d'arret et procede de fabrication associe
US6667553B2 (en) 1998-05-29 2003-12-23 Dow Corning Corporation H:SiOC coated substrates
US6159871A (en) 1998-05-29 2000-12-12 Dow Corning Corporation Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
NL1009459C2 (nl) * 1998-06-22 1999-12-27 United Microelectronics Corp Tweevoudig-gedamasceerde structuur en vervaardigingswerkwijze hiervoor.
US6127258A (en) * 1998-06-25 2000-10-03 Motorola Inc. Method for forming a semiconductor device
US6326296B1 (en) * 1998-07-01 2001-12-04 Taiwan Semiconductor Manufacturing Company Method of forming dual damascene structure with improved contact/via edge integrity
US6319813B1 (en) 1998-07-06 2001-11-20 Micron Technology, Inc. Semiconductor processing methods of forming integrated circuitry and integrated circuitry constructions
US6323118B1 (en) * 1998-07-13 2001-11-27 Taiwan Semiconductor For Manufacturing Company Borderless dual damascene contact
KR100285698B1 (ko) * 1998-07-13 2001-04-02 윤종용 반도체장치의제조방법
TW405223B (en) * 1998-07-28 2000-09-11 United Microelectronics Corp Method for avoiding the poisoning at the trench of the dual damascene structure and the dielectric hole
US6172421B1 (en) * 1998-08-11 2001-01-09 Advanced Micro Devices, Inc. Semiconductor device having an intermetallic layer on metal interconnects
US6147000A (en) * 1998-08-11 2000-11-14 Advanced Micro Devices, Inc. Method for forming low dielectric passivation of copper interconnects
JP3631380B2 (ja) * 1998-08-28 2005-03-23 株式会社東芝 半導体装置及びその製造方法
US6025276A (en) * 1998-09-03 2000-02-15 Micron Technology, Inc. Semiconductor processing methods of forming substrate features, including contact openings
US6800571B2 (en) * 1998-09-29 2004-10-05 Applied Materials Inc. CVD plasma assisted low dielectric constant films
JP4095731B2 (ja) 1998-11-09 2008-06-04 株式会社ルネサステクノロジ 半導体装置の製造方法及び半導体装置
KR100576467B1 (ko) * 1998-12-30 2006-08-21 주식회사 하이닉스반도체 반도체소자의 캐패시터 형성방법
US6358831B1 (en) 1999-03-03 2002-03-19 Taiwan Semiconductor Manufacturing Company Method for forming a top interconnection level and bonding pads on an integrated circuit chip
US6262484B1 (en) * 1999-04-20 2001-07-17 Advanced Micro Devices, Inc. Dual damascene method for backened metallization using poly stop layers
JP2001007202A (ja) * 1999-06-22 2001-01-12 Sony Corp 半導体装置の製造方法
JP2001044195A (ja) * 1999-07-28 2001-02-16 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6133144A (en) * 1999-08-06 2000-10-17 Taiwan Semiconductor Manufacturing Company Self aligned dual damascene process and structure with low parasitic capacitance
US6284642B1 (en) 1999-08-11 2001-09-04 Taiwan Semiconductor Manufacturing Company Integrated method of damascene and borderless via process
US7335965B2 (en) 1999-08-25 2008-02-26 Micron Technology, Inc. Packaging of electronic chips with air-bridge structures
US7276788B1 (en) 1999-08-25 2007-10-02 Micron Technology, Inc. Hydrophobic foamed insulators for high density circuits
US20020055250A1 (en) * 1999-10-12 2002-05-09 Manoj K Jain Dielectric structure and method for minimizing erosion during chemical mechanical polishing of metals
US6399489B1 (en) 1999-11-01 2002-06-04 Applied Materials, Inc. Barrier layer deposition using HDP-CVD
JP2001135723A (ja) * 1999-11-04 2001-05-18 Nec Corp 半導体装置及びその製造方法
US6329281B1 (en) * 1999-12-03 2001-12-11 Agere Systems Guardian Corp. Methods for fabricating a multilevel interconnection for an integrated circuit device utilizing a selective overlayer
US6413827B2 (en) 2000-02-14 2002-07-02 Paul A. Farrar Low dielectric constant shallow trench isolation
US6677209B2 (en) 2000-02-14 2004-01-13 Micron Technology, Inc. Low dielectric constant STI with SOI devices
US6890847B1 (en) * 2000-02-22 2005-05-10 Micron Technology, Inc. Polynorbornene foam insulation for integrated circuits
US6858937B2 (en) * 2000-03-02 2005-02-22 Micron Technology, Inc. Backend metallization method and device obtained therefrom
JP2001345297A (ja) * 2000-05-30 2001-12-14 Hitachi Ltd 半導体集積回路装置の製造方法及び研磨装置
US6352917B1 (en) 2000-06-21 2002-03-05 Chartered Semiconductor Manufacturing Ltd. Reversed damascene process for multiple level metal interconnects
US6531398B1 (en) 2000-10-30 2003-03-11 Applied Materials, Inc. Method of depositing organosillicate layers
DE10059935A1 (de) 2000-11-28 2002-06-06 Infineon Technologies Ag Dicht gepackte Halbleiterstruktur und Verfahren zum Herstellen einer solchen
US6709721B2 (en) 2001-03-28 2004-03-23 Applied Materials Inc. Purge heater design and process development for the improvement of low k film properties
US6486082B1 (en) * 2001-06-18 2002-11-26 Applied Materials, Inc. CVD plasma assisted lower dielectric constant sicoh film
DE10134100A1 (de) * 2001-07-13 2002-10-02 Infineon Technologies Ag Kontaktierung von Damascene-Leiterbahnen in integrierten Halbleiterschaltungen
US6926926B2 (en) * 2001-09-10 2005-08-09 Applied Materials, Inc. Silicon carbide deposited by high density plasma chemical-vapor deposition with bias
US6461887B1 (en) * 2002-01-03 2002-10-08 Chartered Semiconductor Manufacturing Ltd. Method to form an inverted staircase STI structure by etch-deposition-etch and selective epitaxial growth
US6936309B2 (en) * 2002-04-02 2005-08-30 Applied Materials, Inc. Hardness improvement of silicon carboxy films
US20030211244A1 (en) * 2002-04-11 2003-11-13 Applied Materials, Inc. Reacting an organosilicon compound with an oxidizing gas to form an ultra low k dielectric
US20030194495A1 (en) * 2002-04-11 2003-10-16 Applied Materials, Inc. Crosslink cyclo-siloxane compound with linear bridging group to form ultra low k dielectric
US6815373B2 (en) * 2002-04-16 2004-11-09 Applied Materials Inc. Use of cyclic siloxanes for hardness improvement of low k dielectric films
US20030206337A1 (en) * 2002-05-06 2003-11-06 Eastman Kodak Company Exposure apparatus for irradiating a sensitized substrate
US6927178B2 (en) * 2002-07-11 2005-08-09 Applied Materials, Inc. Nitrogen-free dielectric anti-reflective coating and hardmask
US7105460B2 (en) * 2002-07-11 2006-09-12 Applied Materials Nitrogen-free dielectric anti-reflective coating and hardmask
US6686270B1 (en) * 2002-08-05 2004-02-03 Advanced Micro Devices, Inc. Dual damascene trench depth monitoring
US6897163B2 (en) * 2003-01-31 2005-05-24 Applied Materials, Inc. Method for depositing a low dielectric constant film
US7074717B2 (en) * 2003-03-04 2006-07-11 Micron Technology, Inc. Damascene processes for forming conductive structures
US20050137882A1 (en) * 2003-12-17 2005-06-23 Cameron Don T. Method for authenticating goods
JP4938222B2 (ja) * 2004-02-03 2012-05-23 ルネサスエレクトロニクス株式会社 半導体装置
US7238620B1 (en) 2004-02-18 2007-07-03 National Semiconductor Corporation System and method for providing a uniform oxide layer over a laser trimmed fuse with a differential wet etch stop technique
US7288205B2 (en) * 2004-07-09 2007-10-30 Applied Materials, Inc. Hermetic low dielectric constant layer for barrier applications
US7297629B2 (en) * 2004-09-15 2007-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. Ultra-thick metal-copper dual damascene process
US7422985B2 (en) * 2005-03-25 2008-09-09 Sandisk 3D Llc Method for reducing dielectric overetch using a dielectric etch stop at a planar surface
US7521353B2 (en) * 2005-03-25 2009-04-21 Sandisk 3D Llc Method for reducing dielectric overetch when making contact to conductive features
US20080174022A1 (en) * 2007-01-22 2008-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication method thereof
JP5357401B2 (ja) * 2007-03-22 2013-12-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2009246394A (ja) * 2009-07-27 2009-10-22 Nec Corp 半導体装置の製造方法
US20110115047A1 (en) * 2009-11-13 2011-05-19 Francois Hebert Semiconductor process using mask openings of varying widths to form two or more device structures
US9524916B2 (en) * 2012-10-31 2016-12-20 International Business Machines Corporation Structures and methods for determining TDDB reliability at reduced spacings using the structures
US9577023B2 (en) * 2013-06-04 2017-02-21 Globalfoundries Inc. Metal wires of a stacked inductor
US9905456B1 (en) * 2016-09-26 2018-02-27 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US20190109090A1 (en) * 2017-08-15 2019-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Interconnection structure lined by isolation layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021818A1 (de) * 1979-06-21 1981-01-07 Fujitsu Limited Elektronische Vorrichtung mit einer Mehrschicht-Bedrahtungsstruktur
EP0046525A2 (de) * 1980-08-18 1982-03-03 International Business Machines Corporation Planar mehrlagige Metallisolationsstruktur mit einem Substrat, einem leitenden Verbindungsmuster und einer überlagerten Leiterstruktur und ein Verfahren zum Formen einer solchen Struktur
DE3329065A1 (de) * 1982-08-13 1984-02-16 Western Electric Co., Inc., 10038 New York, N.Y. Polymerschichten fuer elektronische schaltungen

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760330A (en) * 1980-09-27 1982-04-12 Fujitsu Ltd Resin composition
US4443932A (en) * 1982-01-18 1984-04-24 Motorla, Inc. Self-aligned oxide isolated process and device
JPS61152040A (ja) * 1984-12-26 1986-07-10 Hitachi Micro Comput Eng Ltd 半導体装置の製造方法
JP2519217B2 (ja) * 1985-09-11 1996-07-31 テキサス インスツルメンツ インコ−ポレイテツド 相互接続導体を形成する方法
AR241298A1 (es) * 1985-10-03 1992-04-30 Siemens Ag Ecualizador transversal adaptivo .
US4789648A (en) * 1985-10-28 1988-12-06 International Business Machines Corporation Method for producing coplanar multi-level metal/insulator films on a substrate and for forming patterned conductive lines simultaneously with stud vias
US4723978A (en) * 1985-10-31 1988-02-09 International Business Machines Corporation Method for a plasma-treated polysiloxane coating
JPS62160441A (ja) * 1986-01-09 1987-07-16 Hitachi Chem Co Ltd ホトレジスト用感光性組成物
US5063175A (en) * 1986-09-30 1991-11-05 North American Philips Corp., Signetics Division Method for manufacturing a planar electrical interconnection utilizing isotropic deposition of conductive material
US4832789A (en) * 1988-04-08 1989-05-23 American Telephone And Telegrph Company, At&T Bell Laboratories Semiconductor devices having multi-level metal interconnects
FR2630588A1 (fr) * 1988-04-22 1989-10-27 Philips Nv Procede pour realiser une configuration d'interconnexion sur un dispositif semiconducteur notamment un circuit a densite d'integration elevee
JPH02156537A (ja) * 1988-12-08 1990-06-15 Fujitsu Ltd 半導体装置の製造方法
JP2578193B2 (ja) * 1989-02-01 1997-02-05 沖電気工業株式会社 半導体素子の製造方法
US5198298A (en) * 1989-10-24 1993-03-30 Advanced Micro Devices, Inc. Etch stop layer using polymers
JPH03205829A (ja) * 1990-01-08 1991-09-09 Nec Corp 半導体装置の製造方法
EP0460857B1 (de) * 1990-05-31 1997-03-19 Canon Kabushiki Kaisha Verfahren zur Herstellung einer Halbleitervorrichtung mit einer Verdrahtungsstruktur hoher Dichte
JP2646289B2 (ja) * 1990-06-01 1997-08-27 富士写真フイルム株式会社 レジスト組成物
DE69131658T2 (de) * 1990-06-25 2000-04-27 Matsushita Electronics Corp Licht- oder strahlungsempfindliche Zusammensetzung
FR2663784B1 (fr) * 1990-06-26 1997-01-31 Commissariat Energie Atomique Procede de realisation d'un etage d'un circuit integre.
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
US5235205A (en) * 1991-04-23 1993-08-10 Harris Corporation Laser trimmed integrated circuit
US5219793A (en) * 1991-06-03 1993-06-15 Motorola Inc. Method for forming pitch independent contacts and a semiconductor device having the same
US5442237A (en) * 1991-10-21 1995-08-15 Motorola Inc. Semiconductor device having a low permittivity dielectric
JP2726348B2 (ja) * 1992-02-03 1998-03-11 沖電気工業株式会社 放射線感応性樹脂組成物
US5321211A (en) * 1992-04-30 1994-06-14 Sgs-Thomson Microelectronics, Inc. Integrated circuit via structure
US5612254A (en) * 1992-06-29 1997-03-18 Intel Corporation Methods of forming an interconnect on a semiconductor substrate
US5328553A (en) * 1993-02-02 1994-07-12 Motorola Inc. Method for fabricating a semiconductor device having a planar surface
US5516729A (en) * 1994-06-03 1996-05-14 Advanced Micro Devices, Inc. Method for planarizing a semiconductor topography using a spin-on glass material with a variable chemical-mechanical polish rate
US5506172A (en) * 1994-08-29 1996-04-09 Micron Technology, Inc. Semiconductor processing method of forming an electrical interconnection between an outer layer and an inner layer
KR0138305B1 (ko) * 1994-11-30 1998-06-01 김광호 반도체소자 배선형성방법
US5691238A (en) * 1995-06-07 1997-11-25 Advanced Micro Devices, Inc. Subtractive dual damascene
US5759911A (en) * 1995-08-22 1998-06-02 International Business Machines Corporation Self-aligned metallurgy
US5552344A (en) * 1995-11-16 1996-09-03 Taiwan Semiconductor Manufacturing Company Non-etchback self-aligned via size reduction method employing ozone assisted chemical vapor deposited silicon oxide
US5661083A (en) * 1996-01-30 1997-08-26 Integrated Device Technology, Inc. Method for via formation with reduced contact resistance
US5741741A (en) * 1996-05-23 1998-04-21 Vanguard International Semiconductor Corporation Method for making planar metal interconnections and metal plugs on semiconductor substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021818A1 (de) * 1979-06-21 1981-01-07 Fujitsu Limited Elektronische Vorrichtung mit einer Mehrschicht-Bedrahtungsstruktur
EP0046525A2 (de) * 1980-08-18 1982-03-03 International Business Machines Corporation Planar mehrlagige Metallisolationsstruktur mit einem Substrat, einem leitenden Verbindungsmuster und einer überlagerten Leiterstruktur und ein Verfahren zum Formen einer solchen Struktur
DE3329065A1 (de) * 1982-08-13 1984-02-16 Western Electric Co., Inc., 10038 New York, N.Y. Polymerschichten fuer elektronische schaltungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. W. KAANTA, S. G. BOMBARDIER, W. J. COTE, W. R. HILL, G. KERSZYKOWSKI, H. S. LANDIS, D. J. POINDEXTER, C. W. POLLARD, G. H. ROSS, J. G. RYAN, S. WOLFF, J. E. CRONIN: Dual Damascenea ULSI Wiring Technology, in: VMIC Conference, 11.-12.06.1991, S. 144-152 *

Also Published As

Publication number Publication date
DE4319070A1 (de) 1994-01-05
JPH0613470A (ja) 1994-01-21
US5926732A (en) 1999-07-20
US5598027A (en) 1997-01-28
JP2934353B2 (ja) 1999-08-16

Similar Documents

Publication Publication Date Title
DE4319070C2 (de) Halbleitervorrichtung mit einer Mehrschicht-Verbindungsstruktur und Herstellungsverfahren dafür
DE10235986B4 (de) Nichtflüchtige Speichervorrichtung mit einer schwebenden Trap-Speicherzelle und Verfahren zur Herstellung derselben
DE10194958B4 (de) Verfahren zur Herstellung einer Sperr-/ Haftschicht und einer Kristallkeimschicht in einer integrierten Schaltkreisanordnung und zugehörige integrierte Schaltkreisanordnung
DE102005027234B4 (de) Verfahren zum Bilden einer Verbindungsstruktur für eine Halbleitervorrichtung
DE102004004532B4 (de) Halbleitervorrichtung
DE19638684C2 (de) Halbleitervorrichtung mit einem Kontaktloch
DE19834917A1 (de) Verfahren zum Bilden von selbstausrichtenden Durchgängen in integrierten Schaltungen mit mehreren Metallebenen
DE69838202T2 (de) Endpunktfühlung und Apparat
DE10226571A1 (de) Prozess zur Ausbildung von Schmelzsicherungen
DE60132152T2 (de) Herstellungsverfahren von einem randlosen Kontakt auf Bitleitungskontaktstutzen mit einer Ätzstopschicht
DE19860769A1 (de) Verfahren zur Ausbildung eines selbspositionierenden Kontakts in einem Halbleiterbauelement
DE19614164C2 (de) Verfahren zum Bilden einer Mehrschichtverbindung
DE19925657B4 (de) Verfahren zum Ausbilden eines selbstpositionierenden Kontakts in einem Halbleiterbauelement
DE19849743A1 (de) Verfahren zur Herstellung eines eingebetteten dynamischen Direktzugriffsspeichers
DE112004001530T5 (de) Versiegelte Poren in Damascene-Strukturen mit Low-k-Material
DE60037599T2 (de) Herstellungsverfahren für halbleiteranordnung mit reduzierter signalwegverzögerungszeit
DE19920757A1 (de) Nonlineare Schaltelemente auf IC's
DE102005042732A1 (de) Verfahren zur Ätzstoppschichtbildung, Halbleiterbauelement und Herstellungsverfahren
DE10031881A1 (de) Halbleitereinrichtung und Verfahren zur Herstellung der Halbleitereinrichtung
DE10347458B4 (de) Verfahren zur Herstellung einer Halbleitervorrichtung und nach dem Verfahren hergestellte Halbleitervorrichtung
DE19920970C2 (de) Verfahren zum Ausbilden von Kontaktstrecken und gleichzeitigen Planarisieren einer Substratoberfläche in integrierten Schaltungen
DE19716791A1 (de) Verfahren zum Herstellen einer mehrschichtigen Halbleiterstruktur
DE10039185A1 (de) Halbleitervorrichtung mit einer Potentialsicherung, sowie Verfahren zu ihrer Herstellung
DE102021129057A1 (de) Reram-integration mit zwischenverbindung mit hoher dichte
DE10338252B4 (de) Bitleitung einer Halbleitervorrichtung mit einer nippelförmigen Abdeckschicht und Verfahren zur Herstellung derselben

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8304 Grant after examination procedure
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee