CN1842892A - 光学元件和曝光装置 - Google Patents

光学元件和曝光装置 Download PDF

Info

Publication number
CN1842892A
CN1842892A CNA2004800243243A CN200480024324A CN1842892A CN 1842892 A CN1842892 A CN 1842892A CN A2004800243243 A CNA2004800243243 A CN A2004800243243A CN 200480024324 A CN200480024324 A CN 200480024324A CN 1842892 A CN1842892 A CN 1842892A
Authority
CN
China
Prior art keywords
optical element
film
sio
liquid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800243243A
Other languages
English (en)
Other versions
CN100440432C (zh
Inventor
白井健
国分崇生
石泽均
村上敦信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of CN1842892A publication Critical patent/CN1842892A/zh
Application granted granted Critical
Publication of CN100440432C publication Critical patent/CN100440432C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Lenses (AREA)

Abstract

一种在曝光装置中被使用的光学元件,所述曝光装置用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,其中,在所述投影光学系统的所述基板一侧的透过光学元件的表面上具备第1防止溶解构件。

Description

光学元件和曝光装置
技术领域
本发明涉及在采用了液浸法的投影曝光装置中被使用的光学元件和使用了该光学元件的曝光装置,其中,所述液浸法用于在制造例如半导体器件、摄像元件(CCD等)、液晶显示元件或薄膜磁头等的器件用的光刻工序中将掩模图形转印到感光性的基板上。
背景技术
在制造半导体元件等时,使用了将作为掩模的中间掩模的像经投影光学系统转印到作为感光性的基板的被涂敷了抗蚀剂的晶片(或玻璃板等)上的各拍摄区域上的投影曝光装置。以前大多使用了”步进和重复”方式的缩小投影型的曝光装置(步进器)作为投影曝光装置,但最近同步地扫描中间掩模和晶片以进行曝光的”步进和扫描”方式的投影曝光装置也越来越引人注目。
所使用的曝光波长越短,此外,投影光学系统的数值孔径越大,在投影曝光装置中具备的投影光学系统的解像度就越高。因此,伴随集成电路的微细化,在投影曝光装置中被使用的曝光波长逐年地缩短了,投影光学系统的数值孔径也越来越增大了。而且,现在主流的曝光波长是KrF受激准分子激光的248nm,但进而短波长的ArF受激准分子激光的193nm也实现了实用化。
但是,因为伴随曝光的光的短波长化,既确保所优选的成像性能又具有在曝光中能确保充分的光量的透射率的玻璃材料受到了限定,故提出了用水或有机溶媒等的液体充满投影光学系统的下面与晶片表面之间、利用在液体中的曝光的光的波长为空气中的1/n倍(n是液体的折射率,通常约为1.2~1.6)的现象来提高解像度的液浸型的投影曝光装置(特开平10-303114号公报)。
发明的公开
在将该液浸型的投影曝光装置作为”步进和重复”方式的投影曝光装置来构成的情况下,由于投影光学系统与液体接触,故存在与液体接触的投影光学系统的前端部被液体侵蚀的可能性,存在不能得到所优选的光学性能的问题。
在将该液浸型的投影曝光装置作为”步进和扫描”方式的投影曝光装置来构成的情况下,由于一边使晶片移动一边进行曝光,故在使晶片移动的期间内也必须在投影光学系统与晶片之间充满了液体,由于投影光学系统与液体接触,故存在与液体接触的投影光学系统的前端部被液体侵蚀、不能得到所优选的光学性能的问题。
本发明的课题是提供在应用了液浸法的情况下投影光学系统的前端部不被液体侵蚀的光学元件和具备该光学元件的曝光装置。
本发明提供解决所述课题的以下的光学元件和使用了该光学元件的曝光装置。
<1>一种用于曝光装置的光学元件,所述曝光装置用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,所述光学元件的特征在于:
在所述投影光学系统的所述基板一侧的透过光学元件的表面上具备第1防止溶解构件。
按照所述<1>中记载的光学元件,由于在光学元件的表面(前端面)上形成了第1防止溶解构件,故可防止光学元件的溶解,可维持投影光学系统的光学性能。
<2>利用具有保护所述光学元件使之不受所述液体的影响的保护功能的单层膜构成了所述第1防止溶解构件的<1>中记载的光学元件。
<3>所述单层膜对于纯水的溶解度小于等于1.0×10-7g/水100g的<2>中记载的光学元件。
按照所述<2>或<3>中记载的光学元件,在与多层膜比较的情况下,由于可减少界面,故可尽可能抑制因液体从作为防止溶解膜的保护层的界面侵入的情况下容易引起的化学反应导致的不良影响。此外,与形成由多层膜构成的防止溶解膜的情况相比,可简易地成膜。
<4>利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的多层膜构成了所述第1防止溶解构件的<1>中记载的光学元件。
<5>至少所述多层膜的最表层对于纯水的溶解度小于等于1.0×10-7g/水100g,而且,在所述曝光束的射出角度为50度时平均反射率小于等于2%的<4>中记载的光学元件。
<6>所述多层膜由n层构成,其中n是整数;
从所述光学元件一侧起依次为第1层、第2层、...、最表层为第n层,第奇数的层是具有与邻接的所述光学元件或邻接的第偶数的层的折射率相比为高折射率的膜,所述第1层至所述第n层作为整体具备所述防止反射功能的<4>中记载的光学元件。
<7>所述多层膜由n层构成,其中n是整数;
从所述光学元件一侧起依次为第1层、第2层、...、最表层为第n层,第奇数的层是具有与邻接的所述光学元件或邻接的第偶数的层的折射率相比为低折射率的膜,所述第1层至所述第n层作为整体具备所述防止反射功能的<4>中记载的光学元件。
按照所述<4>~<7>中的任一项中记载的光学元件,由于在所述光学元件的表面上形成多层膜、该多层膜具备保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束(来自曝光光源的入射光)被反射的防止反射功能,故可提供没有因液体导致的侵蚀的稳定的光学元件。因而,使用液浸法可提供解像度高、聚焦深度深的高性能的投影曝光装置的光学元件。
<8>利用从MgF2、LaF3、SrF2、YF3、LuF3、HfF4、NdF3、GdF3、YbF3、DyF3、AlF3、Na3AlF6、5NaF·3AlF6、Al2O3、SiO2、TiO2、MgO、HfO2、Cr2O3、ZrO2、Ta2O5和Nb2O5构成的一组中选择的至少一种形成了所述第1防止溶解构件的<1>中记载的光学元件。
按照所述<8>中记载的光学元件,由于可选择在光学元件中被形成的防止溶解构件,故可根据光学元件的基体材料、设置光学元件的环境、将光学元件浸在液体中的情况下的液体的种类等来选择最佳的防止溶解构件。
<9>所述多层膜由n层构成,其中n是整数,且具有从由下述层结构(第1层/第2层/.../第n层)构成的一组中选择的层结构的<4>中记载的光学元件:
(i)LaF3/MgF2
(ii)MgF2/SiO2
(iii)MgF2/SiO2/SiO2
(iv)LaF3/MgF2/SiO2
(v)LaF3/MgF2/Al2O3
(vi)LaF3/MgF2/Al2O3/SiO2
(vii)LaF3/MgF2/LaF3/MgF2
(viii)LaF3/MgF2/LaF3/SiO2
(ix)LaF3/MgF2/LaF3/MgF2/SiO2、以及
(x)LaF3/MgF2/LaF3/Al2O3/SiO2
按照所述<9>中记载的光学元件,由于所述多层膜在规定的期间内具备所述保护功能,故例如可在10年间保护光学元件使之不受作为浸液的水的影响。因而,使用液浸法可提供解像度高、聚焦深度深的高性能的投影曝光装置的光学元件,同时可提供在规定的期间内没有因液体导致的侵蚀的稳定的光学元件。
<10>利用从真空蒸镀法、离子束辅助蒸镀法、气体团离子束辅助蒸镀法、离子喷镀法、离子束溅射法、磁控管溅射法、偏压溅射法、ECR溅射法、RF溅射法、热CVD法、等离子CVD法和CVD法构成的一组中选择的至少一种成膜方法形成所述第1防止溶解构件的<1>中记载的光学元件。
按照所述<10>中记载的光学元件,由于在光学元件中形成防止溶解构件的情况下可选择成膜方法,故通过选择对于防止溶解构件的材料最佳的成膜方法,可在最佳的状态下利用成膜方法在光学元件中形成防止溶解构件。
<11>所述第1防止溶解构件具备由利用湿式成膜方法形成的氧化物构成的膜的<1>中记载的光学元件。
按照所述<11>中记载的光学元件,由于利用以高的均质性和对于孔的高的填埋性为特征的湿式成膜方法在投影光学系统的基板一侧的透过光学元件的表面上形成防止被液体溶解的氧化物防止溶解膜,故可防止在基板的表面与投影光学系统之间介入的规定的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
再有,在利用具有被平滑地研磨了的表面的萤石形成了透过光学元件的情况下,为了提高透过光学元件与氧化物防止溶解膜的密接力,优选以不使投影光学系统的光学性能恶化的程度对透过光学元件进行使透过光学元件的表面变得粗糙、以使透过光学元件的表面积增大的表面处理。
<12>所述多层膜具备利用干式成膜方法形成的第1膜和由利用湿式成膜方法形成的氧化物构成的第2膜的<4>中记载的光学元件。
按照所述<12>中记载的光学元件,在投影光学系统的基板一侧的透过光学元件的表面上利用干式成膜方法形成第1膜,在已形成的第1膜的表面上利用湿式成膜方法形成作为第2膜的氧化物膜。因而,即使在利用具有平滑地被研磨了的表面的萤石形成了透过光学元件的情况下,由于利用干式成膜方法形成第1膜,故可将第1膜密接到透过光学元件上。此外,可使第1膜起到使透过光学元件与第2膜密接的密接力强化膜的功能。
此外,由于利用以高的均质性和对于孔的高的填埋性为特征的湿式成膜方法形成第2膜,故由于第2膜进入到第1膜的孔中来消除孔,故可防止在基板的表面与投影光学系统之间介入的规定的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,第1膜和第2膜不会从透过光学元件剥离,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<13>至少所述多层膜的表层为利用湿式成膜方法形成的SiO2膜的<4>中记载的光学元件。
按照所述<13>中记载的光学元件,由于所述最表层的膜在规定的期间内具备所述保护功能,故例如可在10年间保护光学元件使之不受作为浸液的水的影响。因而,使用液浸法可提供解像度高、聚焦深度深的高性能的投影曝光装置的光学元件,同时可在规定的期间内提供没有因液体导致的侵蚀的稳定的光学元件。
<14>在利用湿式成膜方法形成的SiO2膜的所述光学元件一侧还具备利用干式成膜方法形成的SiO2膜的<13>中记载的光学元件。
按照所述<14>中记载的光学元件,利用干式成膜方法形成的二氧化硅膜与利用湿式成膜方法形成的二氧化硅膜的结合力被强化,可更牢固地使两者的膜密接。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,两者的膜不会剥离,由于液体不会溶解透过光学元件,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<15>利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的薄板构成了所述第1防止溶解构件,以能在所述光学元件的表面上拆卸的方式接合了所述薄板的<1>中记载的光学元件。
<16>用光学接触的方式将所述薄板接合到所述光学元件的表面上,在所述曝光束的射出角度为50度时平均反射率小于等于2%的<15>中记载的光学元件。
<17>利用从由氟化物、氧化物和树脂构成的一组中选择的至少一种形成了所述薄板的<15>中记载的光学元件。
<18>所述薄板是从由石英玻璃薄板、氟化镁薄板、萤石薄板和聚四氟乙烯薄板构成的一组中选择的至少一种的<15>中记载的光学元件。
按照所述<15>~<18>中的任一项中记载的光学元件,由于在所述光学元件的表面上接合了具有保护所述光学元件的表面使之不受所述液体的影响的保护功能和防止所述曝光束被反射的功能的薄板,使用可在不损伤所述光学元件的表面状态的情况下拆卸的光学构件,可提供没有因液体导致的侵蚀的稳定的光学元件。因而,可提供使用液浸法的解像度高、聚焦深度深的高性能的投影曝光装置的光学元件。此外,如果用光学接触的方式接合了所述薄板与所述光学元件,则可进一步提高保护所述光学元件的表面使之不受所述液体的影响的保护功能。
<19>在所述投影光学系统的所述基板一侧的透过光学元件的侧面上还具备第2防止溶解构件的<1>中记载的光学元件。
按照所述<19>中记载的光学元件,由于在光学元件的基板一侧的表面(前端面)和光学元件的侧面(锥形面)、即曝光束不通过的部分上形成了第2防止溶解构件,故可防止来自光学元件的基板一侧的表面的溶解,同时可防止来自光学元件的侧面的溶解,故可维持投影光学系统的光学性能。
<20>所述第1防止溶解构件和所述第2防止溶解构件具备使用同一材料形成的膜的<19>中记载的光学元件。
按照所述<20>中记载的光学元件,由于可一次性地进行对光学元件的基板一侧的表面和光学元件的侧面的防止溶解膜的成膜,故可利用简易的工序进行防止溶解膜的成膜。
<21>使用所述同一材料形成的膜是利用湿式成膜方法形成的膜的<20>中记载的光学元件。
按照所述<21>中记载的光学元件,由于可一次性地进行对光学元件的基板一侧的表面和光学元件的侧面的防止溶解膜的成膜,故可无间隙地保护基板。
<22>所述同一材料是MgF2或SiO2的<20>中记载的光学元件。
按照所述<22>中记载的光学元件,由于所述同一材料是MgF2或SiO2,故可保护基板。
<23>所述第1防止溶解构件具备亲水性的防止溶解膜,所述第2防止溶解构件具备疏水性的防止溶解膜的<19>中记载的光学元件。
在此,在光学元件的侧面上形成的防止溶解膜与在光学元件的基板一侧的表面上形成的防止溶解膜比较,是在疏水性能方面优良的防止溶解膜,在基板一侧的表面上形成的防止溶解膜与在光学元件的侧面上形成的防止溶解膜比较,是在亲水性能方面优良的防止溶解膜。
按照所述<23>中记载的光学元件,因为在光学元件的侧面上形成的防止溶解膜是疏水性的防止溶解膜,故可容易地使附着于光学元件的侧面上的液体绕回到基板一侧,因为在光学元件的基板一侧的表面上形成的防止溶解膜是亲水性的防止溶解膜,故可常时地用液体充满光学元件的基板一侧的表面与基板之间。
<24>所述第2防止溶解构件具备具有保护所述光学元件使之不受所述液体的影响的保护功能的金属制防止溶解膜的<19>中记载的光学元件。
按照所述<24>中记载的光学元件,由于在光学元件的基板一侧的透过光学元件的侧面(锥形面)上形成不溶于在基板的表面与投影光学系统之间介入了的规定的液体的金属制防止溶解膜,故可防止液体对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<25>所述第2防止溶解构件还具备在所述光学元件的侧面与所述金属制防止溶解膜之间形成的密接力强化膜的<24>中记载的光学元件。
按照所述<25>中记载的光学元件,由于在投影光学系统的基板一侧的透过光学元件的侧面上形成金属制防止溶解膜,故可使金属制防止溶解膜密接到透过光学元件上。因而,可防止在基板的表面与投影光学系统之间介入了的规定的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,由于金属制防止溶解膜不从透过光学元件剥离,透过光学元件不因液体而溶解,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<26>所述第2防止溶解构件还具备在所述金属制防止溶解膜的表面上形成的金属制防止溶解膜保护膜的<24>中记载的光学元件。
按照所述<26>中记载的光学元件,由于在投影光学系统的基板一侧的透过光学元件的侧面上形成的金属制防止溶解膜上形成金属制防止溶解膜保护膜,故可防止柔软的耐擦伤性低的金属制防止溶解膜的损伤,可保护金属制防止溶解膜。因而,可防止在基板的表面与投影光学系统之间介入了的规定的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<27>所述金属制防止溶解膜对于纯水的溶解度小于等于2ppt,充填密度大于等于95%的<24>中记载的光学元件。
按照所述<27>中记载的光学元件,由于在投影光学系统的基板一侧的透过光学元件的侧面上形成对于水的溶解度小于等于2ppt的防止溶解膜,故光学元件不溶解于在基板的表面与投影光学系统之间介入了的规定的液体,可维持投影光学系统的光学性能。此外,由于在投影光学系统的基板一侧的透过光学元件的侧面上形成充填密度大于等于95%的防止溶解膜,故可防止所述液体对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,由于透过光学元件不溶解于液体,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<28>利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属制防止溶解膜的<24>中记载的光学元件。
按照所述<28>中记载的光学元件,在投影光学系统的基板一侧的透过光学元件的侧面(锥形面)、即曝光束不通过的部分上形成利用由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr中的至少一种形成的膜构成的金属制防止溶解膜。因而,即使在将该透过光学元件使用于液浸型的曝光装置的情况下,金属制防止溶解膜也不对曝光束进行遮光,可在最佳的状态下持续进行曝光。
<29>利用从由Ta和Cr构成的一组中选择的至少一种形成了所述密接力强化膜的<25>中记载的光学元件。
按照所述<29>中记载的光学元件,由于在透过光学元件与防止溶解膜之间形成利用由Ta和Cr的至少一种形成的膜构成的密接力强化膜,故可提高透过光学元件的侧面与防止溶解膜的密接力。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,防止溶解膜不会从透过光学元件剥离,透过光学元件不因液体而溶解,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<30>利用从由SiO2、Y2O3、Nd2F3、Cr2O3、Ta2O5、Nb2O5、TiO2、ZrO2、HfO2和La2O3构成的一组中选择的至少一种形成了所述金属制防止溶解膜保护膜的<26>中记载的光学元件。
按照所述<30>中记载的光学元件,由于可选择在透过光学元件上形成的金属制防止溶解膜的表面上成膜的金属制防止溶解膜保护膜,故可根据透过光学元件的基体材料、设置透过光学元件的环境、在基板的表面与投影光学系统之间介入了的规定的液体的种类等来选择最佳的金属制防止溶解膜保护膜。
<31>所述第2防止溶解构件具备遮光膜的<19>中记载的光学元件。
<32>利用金属膜或金属氧化物膜形成了所述遮光膜的<31>中记载的光学元件。
<33>利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO2和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜的<32>中记载的光学元件。
按照所述<31>~<33>中的任一项中记载的光学元件,利用遮光膜可防止曝光束和来自晶片的曝光束反射光照射到在投影光学系统的基板一侧的透过光学元件的侧面(锥形面)的周边部上设置了的密封构件上,可防止密封构件的性能恶化。
<34>还具备在所述光学元件的表面上经所述第1防止溶解构件用光学接触的方式接合的光学构件的<1>中记载的光学元件。
按照所述<34>中记载的光学元件,由于将所述光学构件经所述第1防止溶解构件与所述光学元件进行光学接触,故利用适当的防止溶解构件的存在,即使对于以氟化物为基体材料的光学元件,也可牢固地接合所述光学构件。其结果,可利用所述光学构件来保护所述光学元件,可在长时间内维持装入了这样的光学元件的光学系统的性能。
<35>所述第1防止溶解构件是利用SiO2形成的膜,所述光学构件是利用石英形成的构件的<34>中记载的光学元件。
按照所述<35>中记载的光学元件,由于用二氧化硅形成所述第1防止溶解构件的用于光学接触的面,故可利用二氧化硅的氢氧基来提高对于所述光学构件的接合强度。此外,二氧化硅可用高的控制性来成膜,可将膜质作成高品质的。此外,利用石英形成的所述光学构件的耐水性或接合强度特别优良,紫外光等的透过性也良好。
<36>所述曝光束是ArF激光,所述光学元件是利用萤石形成的元件,所述光学元件的所述表面的结晶方位是(111)面的<1>中记载的光学元件。
按照所述<36>中记载的光学元件,由于被使用在射出ArF激光作为所述曝光束的曝光装置中,故可得到性能高的解像度。此外,由于所述光学元件是用萤石形成的,故即使是ArF激光那样的短波长的激光器,也能使用这样的光学元件。此外,在用萤石形成了所述光学元件的情况下,紫外光等的透过性是良好的,对于紫外光等的耐久性也是良好的。再者,通过在结晶方位为(111)面的萤石的成膜面上成膜,以异质外延的方式生长形成的防止溶解膜、特别是氟化镧。因而,形成的防止溶解膜非常致密,而且成为缺陷少的结晶结构。
<37>一种用于曝光装置的光学元件,所述曝光装置用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,所述光学元件的特征在于:
在所述投影光学系统的所述基板一侧的透过光学元件的侧面上具备遮光膜。
<38>利用金属膜或金属氧化物膜形成了所述遮光膜的<37>中记载的光学元件。
<39>利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜的<38>中记载的光学元件。
按照所述<37>~<39>中的任一项中记载的光学元件,利用遮光膜可防止曝光束和来自晶片的曝光束反射光照射到在投影光学系统的基板一侧的透过光学元件的侧面(锥形面)的周边部上设置了的密封构件上,可防止密封构件的性能恶化。
<40>一种曝光装置,用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,其特征在于:
具备在所述投影光学系统的所述基板一侧的透过光学元件的表面上形成的第1防止溶解构件。
按照所述<40>中记载的曝光装置,由于在光学元件的表面(前端面)上形成了第1防止溶解构件,故由于光学元件不会因在投影光学系统的前端部与基板之间被充满了的液体而溶解,故没有必要频繁地更换透过光学元件,故可维持曝光装置的高的生产能力。再者,由于光学元件不因所述液体而溶解,故可维持投影光学系统的光学性能,可在最佳的状态下持续进行曝光。
<41>利用具有保护所述光学元件使之不受所述液体的影响的保护功能的单层膜构成了所述第1防止溶解构件的<40>中记载的曝光装置。
按照所述<41>中记载的曝光装置,在与作成多层膜的情况比较可减少界面。因而,可尽可能抑制因液体从作为防止溶解膜的保护层的界面侵入了的情况下容易引起的化学反应导致的不良影响。此外,与对由多层膜构成的防止溶解膜进行成膜的情况相比,可简易地成膜。
<42>利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的多层膜构成了所述第1防止溶解构件的<40>中记载的曝光装置。
按照所述<42>中记载的曝光装置,由于光学元件的前端不被液体侵蚀,故没有必要为了更换被侵蚀了的光学元件而停止曝光装置的工作,可高效地生产最终制品。此外,由于本发明的光学元件不被侵蚀,光学特性稳定,故利用安装了本发明的光学元件的曝光装置生产的最终制品的品质是稳定的。
<43>利用从MgF2、LaF3、SrF2、YF3、LuF3、HfF4、NdF3、GdF3、YbF3、DyF3、AlF3、Na3AlF6、5NaF·3AlF6、Al2O3、SiO2、TiO2、MgO、HfO2、Cr2O3、ZrO2、Ta2O5和Nb2O5构成的一组中选择的至少一种形成了所述第1防止溶解构件的<40>中记载的曝光装置。
按照所述<43>中记载的曝光装置,由于可选择在光学元件中被形成的防止溶解构件,故可根据光学元件的基体材料、设置光学元件的环境、在投影光学系统与基板的表面之间被充满了的液体的种类等来选择最佳的防止溶解构件。
<44>所述多层膜由n层构成,其中n是整数,且具有从由下述层结构(第1层/第2层/.../第n层)构成的一组中选择的层结构的<42>中记载的曝光装置:
(i)LaF3/MgF2
(ii)MgF2/SiO2
(iii)MgF2/SiO2/SiO2
(iv)LaF3/MgF2/SiO2
(v)LaF3/MgF2/Al2O3
(vi)LaF3/MgF2/Al2O3/SiO2
(vii)LaF3/MgF2/LaF3/MgF2
(viii)LaF3/MgF2/LaF3/SiO2
(ix)LaF3/MgF2/LaF3/MgF2/SiO2、以及
(x)LaF3/MgF2/LaF3/Al2O3/SiO2
按照所述<44>中记载的曝光装置,由于所述多层膜在规定的期间内具备所述保护功能,故例如可在10年间保护曝光装置使之不受作为浸液的水的影响。因而,使用液浸法可提供解像度高、聚焦深度深的高性能的投影曝光装置的光学元件,同时可提供在规定的期间内没有因液体导致的侵蚀的具有稳定的光学特性的曝光装置。
<45>所述第1防止溶解构件具备由利用湿式成膜方法形成的氧化物构成的膜的<40>中记载的曝光装置。
按照所述<45>中记载的曝光装置,由于利用以高的均质性和对于孔的高的填埋性为特征的湿式成膜方法在投影光学系统的基板一侧的透过光学元件的表面上形成防止对液体的溶解用的氧化物防止溶解膜,故可防止在基板的表面与投影光学系统之间介入的规定的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
再有,在利用具有平滑地被研磨了的表面的萤石形成了透过光学元件的情况下,为了提高透过光学元件与氧化物防止溶解膜的密接力,优选以不使投影光学系统的光学性能恶化的程度在透过光学元件中进行使透过光学元件的表面变得粗糙以使透过光学元件的表面积增大的表面处理。
<46>所述多层膜具备利用干式成膜方法形成的第1膜和由利用湿式成膜方法形成的氧化物构成的第2膜的<42>中记载的曝光装置。
按照所述<46>中记载的曝光装置,在投影光学系统的基板一侧的透过光学元件上形成的第1膜和第2膜不会从透过光学元件剥离,由于透过光学元件不因在投影光学系统的前端部与基板之间被充满了的液体而溶解,故可维持曝光装置的性能,可在最佳的状态下持续进行曝光。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<47>利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的薄板构成了所述第1防止溶解构件,以能在所述光学元件的表面上拆卸的方式接合了所述薄板的<40>中记载的曝光装置。
按照所述<47>中记载的曝光装置,由于光学元件的前端不被液体侵蚀,故没有必要为了更换被侵蚀了的光学元件而停止曝光装置的工作,可高效地生产最终制品。此外,由于本发明的光学元件不被侵蚀,光学特性稳定,故利用安装了本发明的光学元件的曝光装置生产的最终制品的品质是稳定的。
<48>在所述投影光学系统的所述基板一侧的透过光学元件的侧面上还具备第2防止溶解构件的<40>中记载的曝光装置。
按照所述<48>中记载的曝光装置,由于在光学元件的基板一侧的表面(前端面)和光学元件的侧面(锥形面)、即曝光束不通过的部分上形成了第2防止溶解构件,故由于光学元件不会因在投影光学系统的前端部与基板之间被充满了的液体而溶解。因而,没有必要频繁地更换透过光学元件,故可维持曝光装置的高的生产能力。再者,由于光学元件不因液体而溶解,故可维持投影光学系统的光学性能,可在最佳的状态下持续进行曝光。
<49>使用同一材料形成所述第1防止溶解构件和所述第2防止溶解构件的<48>中记载的曝光装置。
按照所述<49>中记载的曝光装置,由于可一次性地形成光学元件的基板一侧的表面和光学元件的侧面的防止溶解膜,故可利用简易的工序形成防止溶解膜。
<50>所述第2防止溶解构件具备具有保护所述光学元件使之不受所述液体的影响的保护功能的金属制防止溶解膜的<48>中记载的曝光装置。
按照所述<50>中记载的曝光装置,由于在光学元件的基板一侧的透过光学元件的侧面上形成不溶于在基板的表面与投影光学系统之间介入了的规定的液体的金属制防止溶解膜,故可防止液体对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,在将该透过光学元件使用于液浸型的曝光装置的情况下,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<51>所述第2防止溶解构件还具备在所述光学元件的侧面与所述金属制防止溶解膜之间形成的密接力强化膜的<50>中记载的曝光装置。
按照所述<51>中记载的曝光装置,由于在投影光学系统的基板一侧的透过光学元件的侧面上形成的密接力强化膜的表面上形成金属制防止溶解膜,故可使金属制防止溶解膜密接到透过光学元件上。因而,可防止在基板的表面与投影光学系统之间介入了的规定的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。此外,由于金属制防止溶解膜不从透过光学元件剥离,透过光学元件不因液体而溶解,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<52>所述第2防止溶解构件还具备在所述金属制防止溶解膜的表面上形成的金属制防止溶解膜保护膜的<50>中记载的曝光装置。
按照所述<52>中记载的曝光装置,由于在投影光学系统的基板一侧的透过光学元件的侧面上形成的金属制防止溶解膜上形成金属制防止溶解膜保护膜,故可防止柔软的耐擦伤性低的金属制防止溶解膜的损伤,可保护金属制防止溶解膜。因而,可防止在基板的表面与投影光学系统之间介入了的规定的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。此外,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
<53>利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属制防止溶解膜的<50>中记载的曝光装置。
按照所述<53>中记载的曝光装置,在投影光学系统的基板一侧的透过光学元件的侧面(锥形面)、即曝光束不通过的部分上形成利用由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr中的至少一种形成的膜构成的金属制防止溶解膜。因而,金属制防止溶解膜不对曝光束进行遮光,可在最佳的状态下持续进行曝光。
<54>利用从由SiO2、Y2O3、Nd2F3、Cr2O3、Ta2O5、Nb2O5、TiO2、ZrO2、HfO2和La2O3构成的一组中选择的至少一种形成了所述金属制防止溶解膜保护膜的<52>中记载的曝光装置。
按照所述<54>中记载的曝光装置,由于可选择在透过光学元件上形成的金属制防止溶解膜的表面上成膜的金属制防止溶解膜保护膜,故可根据透过光学元件的基体材料、设置透过光学元件的环境、在基板的表面与投影光学系统之间介入了的规定的液体的种类等来选择最佳的金属制防止溶解膜保护膜。
<55>所述第2防止溶解构件具备遮光膜的<48>中记载的曝光装置。
<56>利用金属膜或金属氧化物膜形成了所述遮光膜的<55>中记载的曝光装置。
<57>利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO2和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜的<56>中记载的曝光装置。
按照所述<55>~<57>中的任一项中记载的光学元件,利用遮光膜可防止曝光束和来自晶片的曝光束反射光照射到在投影光学系统的基板一侧的透过光学元件的侧面(锥形面)的周边部上设置了的密封构件上,可防止密封构件的性能恶化。
<58>还具备在所述光学元件的表面上经所述第1防止溶解构件用光学接触的方式接合的光学构件的<40>中记载的曝光装置。
按照所述<58>中记载的曝光装置,由于利用装入了达到了优良的光学接触的光学构件的投影光学系统,故可进行能在长时间内维持高的性能的液浸型的曝光处理。
<59>所述曝光束是ArF激光,所述光学元件是利用萤石形成的元件,所述光学元件的所述表面的结晶方位是(111)面的<40>中记载的曝光装置。
按照所述<59>中记载的曝光装置,由于是射出ArF激光作为所述曝光束的曝光装置,故可得到性能高的解像度。此外,由于所述光学元件是用萤石形成的,故即使是ArF激光那样的短波长的激光器,也能使用这样的光学元件。此外,在用萤石形成了所述光学元件的情况下,紫外光等的透过性是良好的,对于紫外光等的耐久性也是良好的。再者,通过在结晶方位为(111)面的萤石的成膜面上成膜,以异质外延的方式生长被成膜的防止溶解膜、特别是氟化镧。因而,形成的防止溶解膜非常致密,而且成为缺陷少的结晶结构。
<60>一种曝光装置,用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,其特征在于:
具备在所述投影光学系统的所述基板一侧的透过光学元件的侧面上形成的遮光膜。
<61>利用金属膜或金属氧化物膜形成了所述遮光膜的<60>中记载的曝光装置。
<62>利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜的<61>中记载的曝光装置。
按照所述<60>~<62>中的任一项中记载的光学元件,利用遮光膜可防止曝光束和来自晶片的曝光束反射光照射到在投影光学系统的基板一侧的透过光学元件的侧面(锥形面)的周边部上设置了的密封构件上,可防止密封构件的性能恶化。
附图的简单的说明
图1是示出在实施形态1中被使用的投影曝光装置的概略结构的图。
图2是示出实施形态1的光学元件的结构的图。
图3是示出图1中示出的投影光学系统中的光学元件的前端部与X方向用的排出喷嘴和流入喷嘴的位置关系的图。
图4是示出图1中示出的投影光学系统中的光学元件的前端部与Y方向用的排出喷嘴和流入喷嘴的位置关系的图。
图5是示出对图1中示出的投影光学系统中的光学元件与晶片W之间的液体的供给和回收的状况的主要部分的放大图。
图6是示出实施形态3的光学元件的结构的图。
图7是示出实施形态6的光学元件的结构的图。
图8是示出实施形态6的光学元件的ArF受激准分子激光器中的反射率与射出角的关系的图。
图9是示出实施形态7的光学元件的结构的图。
图10是示出实施形态7的光学元件的ArF受激准分子激光器中的反射率与射出角的关系的图。
图11是示出实施形态8的光学元件的结构的图。
图12是示出实施形态8的光学元件的ArF受激准分子激光器中的反射率与射出角的关系的图。
图13是示出在实施形态8的光学元件中第2层的膜厚减半了时的光学元件的ArF受激准分子激光器中的反射率与射出角θ的关系的图。
图14是示出实施形态9的光学元件的结构的图。
图15是示出实施形态9的光学元件的ArF受激准分子激光器中的反射率与射出角的关系的图。
图16是示出实施形态10的光学元件的结构的图。
图17是示出实施形态10的光学元件的ArF受激准分子激光器中的反射率与射出角的关系的图。
图18是示出实施形态11的光学元件的结构的图。
图19是示出实施形态11的光学元件的ArF受激准分子激光器中的反射率与射出角的关系的图。
图20是示出实施形态12的光学元件的结构的图。
图21是示出实施形态12的光学元件的ArF受激准分子激光器中的反射率与射出角的关系的图。
图22是示出在实施形态14中被使用的光学构件的结构的图。
图23是示出图22的光学接触界面的角度反射特性的图。
图24是示出在实施形态15中被使用的光学构件的结构的图。
图25是示出在实施形态16中使用了的光学元件的结构的图。
图26是示意性地示出图25中示出的光学元件4的制造工序的第1工序的图。
图27是示意性地示出图25中示出的光学元件4的制造工序的第2工序的图。
图28是示意性地示出图25中示出的光学元件4的制造工序的第3工序的图。
图29是示意性地示出图25中示出的光学元件4的制造工序的第4工序的图。
图30是示出在实施形态17中被使用的投影曝光装置的概略结构的图。
图31是示出图30中示出的投影光学系统中的光学元件的前端部与X方向用的排出喷嘴和流入喷嘴的位置关系的图。
图32是示出图30中示出的投影光学系统中的光学元件的前端部与Y方向用的排出喷嘴和流入喷嘴的位置关系的图。
图33是示出与实施形态33有关的曝光装置的概略结构的图。
图34是示出与实施形态1有关的光学元件的结构的图。
图35是示出光入射到萤石上时的被反射的状况的图36。
图36是示出光入射到萤石基板上时的萤石的残存反射率的图。
图37是示出与实施例1有关的实验装置的结构的图。
图38是示出与实施例2有关的光学元件的结构的图。
图39是示出与比较例1有关的实验装置的结构的图。
图40是示出比较例1、实施例1和实施例2中的光学元件的实验后被测定了的台阶的测定结果的图。
图41是示出与实施例3有关的透过光学元件的结构的图。
图42是示出与实施例3有关的试验器的结构的图。
图43是示出与实施例4有关的透过光学元件的结构的图。
图44是示出与实施例5有关的透过光学元件的结构的图。
图45是示出与实施例6有关的透过光学元件的结构的图。
图46是示出与实施例7有关的透过光学元件的结构的图。
图47是示出与实施例6有关的样品1的结构的图。
图48是示出与实施例7有关的样品2的结构的图。
图49是示出与参考例1有关的样品3的结构的图。
图50是示出与实施例6~7和参考例1有关的实验装置的结构的图。
图51是示出实施例6~7和参考例1中的实验结果的图。
图52是示出实验后的样品3的状态的图。
图53是示出与实施例8有关的透过光学元件的结构的图。
图54是示出与实施例10有关的透过光学元件的结构的图。
图55是示出与实施例11有关的透过光学元件的结构的图。
图56是示出与参考例2有关的透过光学元件的结构的图。
图57是示出光从媒质入射到与实施例10和参考例2有关的透过光学元件上的情况下的角度反射特性的图。
用于实施发明的最佳形态
以下,参照附图,说明本发明的合适的实施形态。
〔实施形态1〕
以下,参照附图,进行与本发明的第1实施形态有关的投影曝光装置的说明。图1是示出与第1实施形态有关的“步进和重复”方式的投影曝光装置的概略结构的图。此外,在以下的说明中,设定图1中示出的XYZ正交坐标系,一边参照该XYZ正交坐标系,一边说明各构件的位置关系。关于XYZ正交坐标系,将X轴和Y轴设定为对于晶片W平行,将Z轴设定为对于晶片W正交的方向。关于图中的XYZ正交坐标系,实际上将XY平面设定为与水平面平行的面,将Z轴设定为垂直上方向。
与该实施形态有关的投影曝光装置,如图1中所示,包含作为曝光光源的ArF受激准分子激光器光源,具备由光积分器(均质器)、视野光阑、聚光透镜等构成的照明光学系统1。由从光源射出的波长193nm的紫外脉冲光构成的曝光的光(曝光束)IL通过照明光学系统1,对设置在中间掩模(掩模)R上的图形进行照明。通过了中间掩模R的光经两侧(或只在晶片W一侧)远心投影光学系统PL以规定的投影倍率β(例如,β为1/4、1/5等)在涂敷了光致抗蚀剂的晶片(基板)W上的曝光区域上进行缩小投影曝光。
再有,也可使用KrF受激准分子激光(波长248nm)、F2激光(波长157nm)或水银灯的i线(波长356nm)等作为曝光的光IL。
此外,将中间掩模R保持在中间掩模台RST上,在中间掩模台RST中装入了在X方向、Y方向和旋转方向上使中间掩模R微动的机构。利用中间掩模激光干涉计(未图示)实时地检测且控制中间掩模台RST的X方向、Y方向和旋转方向的位置。
此外,晶片W经晶片座(未图示)被固定在Z台9上。Z台9被固定在沿着与投影光学系统PL的像面实质上平行的XY平面移动的XY台10上,控制晶片W的聚焦位置(Z方向的位置)和倾斜角。利用采用了位于Z台9上的移动镜12的晶片激光干涉计13实时地检测且控制Z台9的X方向、Y方向和旋转方向的位置。此外,XY台10被放置在基座11上,控制晶片W的X方向、Y方向和旋转方向。
在该投影曝光装置中具备的主控制系统14根据利用中间掩模激光干涉计检测了的检测值进行中间掩模R的X方向、Y方向和旋转方向的位置的调整。即,主控制系统14对装入中间掩模台RST中的机构发送控制信号,通过使中间掩模台RST微动来进行中间掩模R的位置调整。
此外,为了利用自动聚焦方式和自动找平方式使晶片W上的表面与投影光学系统PL的像面一致,主控制系统14进行晶片W的聚焦位置(Z方向的位置)和倾斜角的调整。即,主控制系统14对晶片台驱动系统15发送控制信号,通过利用晶片台驱动系统15驱动Z台9,进行晶片W的聚焦位置和倾斜角的调整。再者,主控制系统14根据利用中间掩模激光干涉计13检测了的检测值进行晶片W的X方向、Y方向和旋转方向的位置的调整。即,主控制系统14对晶片台驱动系统15发送控制信号,通过利用晶片台驱动系统15驱动XY台10,进行晶片W的X方向、Y方向和旋转方向的位置调整。
在曝光时,主控制系统14对晶片台驱动系统15发送控制信号,通过利用晶片台驱动系统15驱动XY台10,使晶片W上的各拍摄区域依次以步进方式移动到曝光位置上。即,利用”步进和重复”方式重复在晶片W上对中间掩模R的图形像进行曝光的工作。
在该投影曝光装置中,为了实质上缩短曝光波长且提高解像度,应用了液浸法。在此,在应用了液浸法的液浸型的投影曝光装置中,至少在将中间掩模R的图形像转印到晶片W上的期间内,在晶片W的表面与投影光学系统PL的晶片W一侧的透过光学元件4之间充满了规定的液体7。投影光学系统PL具备容纳多个构成投影光学系统PL的利用石英或萤石形成的光学元件的镜筒3。在该投影光学系统PL中,利用萤石形成了最靠近晶片W一侧的透过光学元件4,只将透过光学元件4的表面(晶片W一侧的前端部4A和锥形面4B(参照图2))构成为与液体7接触。由此,防止了由金属构成的镜筒3的腐蚀。
在此,图2中示出的透过光学元件4的基体材料是萤石,该萤石的成膜面的结晶方位是(111)面。此外,在透过光学元件4的晶片W一侧的前端部4A、即曝光的光透过的部分上利用真空蒸镀法形成了氟化镁(MgF2)膜F1和二氧化硅(SiO2)膜F2,作为防止溶解膜,再者,利用湿式制膜法,形成了二氧化硅(SiO2)膜F3。
此外,在透过光学元件4的锥形面4B、即曝光的光不透过的部分上利用溅射法形成了钽(Ta)膜F5(F4),作为金属制防止溶解膜(兼作密接力强化膜)。在金属制防止溶解膜(防止溶解膜)F5的表面上,与二氧化硅(SiO2)膜F3同时地利用湿式制膜法形成了二氧化硅(SiO2)膜F6,作为保护金属制防止溶解膜用的金属制防止溶解膜保护膜(防止溶解膜保护膜)。在此,在透过光学元件4的锥形面4B上形成的金属制防止溶解膜(防止溶解膜)F5的对纯水的溶解度小于等于2ppt,充填密度大于等于95%。此外,因在透过光学元件4的前端部4A上形成的防止溶解膜F1~F3导致的曝光束的射出角度为50度时的平均反射率小于等于2%。
再有,例如如下述那样来制造图2中示出的透过光学元件4。
(i)在透过光学元件4的晶片W一侧的前端部4A、即曝光的光透过的部分上粘贴掩模片,以免粘上在透过光学元件4的锥形面4B、即曝光的光不透过的部分上形成的金属制防止溶解膜F5。
(ii)在透过光学元件4的锥形面4B上使用溅射法形成200nm的钽(Ta)膜,以形成金属制防止溶解膜(兼作密接力强化膜)F5。
(iii)剥离在透过光学元件4的晶片W一侧的前端部4A上被粘贴了的掩模片。
(iv)在透过光学元件4的晶片W一侧的前端部4A上使用真空蒸镀法形成15nm的氟化镁(MgF2)膜F1和300nm的二氧化硅(SiO2)膜F2。
(v)在作为透过光学元件4的锥形面4B上成膜了的金属制防止溶解膜的钽(Ta)膜F5和在透过光学元件4的晶片W一侧的前端部4A上成膜了的二氧化硅(SiO2)膜F2上使用湿式成膜法同时形成130nm的二氧化硅(SiO2)膜F3、F6,在160℃下加热烧结。
(vi)在作为金属制防止溶解膜的钽(Ta)膜F5上利用湿式成膜法形成的二氧化硅(SiO2)膜F6起到保护金属制防止溶解膜用的金属制防止溶解膜保护膜的功能。
此外,作为液体7,使用了在半导体制造工厂等中能容易大量得到的纯水。再有,由于纯水的杂质含有量极低,故可有清洗晶片W的表面的作用。
图3是示出投影光学系统PL的透过光学元件4的晶片W一侧的前端部4A和锥形面4B以及晶片W和在X方向上将该晶片W一侧的前端部4A和锥形面4B夹在中间的2对排出喷嘴和流入喷嘴的位置关系的图。此外,图4是示出投影光学系统PL的透过光学元件4的晶片W一侧的前端部4A和锥形面4B以及晶片W和在Y方向上将该晶片W一侧的前端部4A和锥形面4B夹在中间的2对排出喷嘴和流入喷嘴的位置关系的图。与该实施形态有关的投影曝光装置具备控制液体7的供给的液体供给装置5和控制液体7的排出的液体回收装置6。
液体供给装置5由液体7的罐(未图示)、加压泵(未图示)、温度控制装置(未图示)等构成。此外,如图3中所示,在液体供给装置5上经供给管21连接了在晶片W一侧的前端部4A和锥形面4B的+X方向一侧具有细的前端部的排出喷嘴21a,经供给管22连接了在晶片W一侧的前端部4A和锥形面4B的-X方向一侧具有细的前端部的排出喷嘴22a。此外,如图4中所示,在液体供给装置5上经供给管27连接了在晶片W一侧的前端部4A和锥形面4B的+Y方向一侧具有细的前端部的排出喷嘴27a,经供给管22连接了在晶片W一侧的前端部4A和锥形面4B的-Y方向一侧具有细的前端部的排出喷嘴28a。液体供给装置5利用温度控制装置调整液体7的温度,从排出喷嘴21a、22a、27a、28a中的至少1个排出喷嘴经供给管21、22、27、28中的至少1个供给管向晶片W上供给被进行了温度调整的液体7。再有,利用温度控制装置例如将液体7的温度设定为与容纳了与本实施形态有关的投影曝光装置的容器内的温度为同等程度。
液体回收装置6由液体7的罐(未图示)、吸引泵(未图示)等构成。如图3中所示,在液体回收装置6上经回收管23连接了在锥形面4B的-X方向一侧具有宽的前端部的流入喷嘴23a、23b,经回收管24连接了在锥形面4B的+X方向一侧具有宽的前端部的流入喷嘴24a、24b。再有,以相对于通过晶片W一侧的前端部4A的中心且与X轴平行的轴呈扇状展开的形状配置了流入喷嘴23a、23b、24a、24b。此外,如图4中所示,在液体回收装置6上经回收管29连接了在锥形面4B的-Y方向一侧具有宽的前端部的流入喷嘴29a、29b,经回收管30连接了在锥形面4B的+Y方向一侧具有宽的前端部的流入喷嘴30a、30b。再有,以相对于通过晶片W一侧的前端部4A的中心且与Y轴平行的轴呈扇状展开的形状配置了流入喷嘴29a、29b、30a、30b。
液体回收装置6从流入喷嘴23a和23b、24a和24b、29a和29b、30a和30b中的至少1个流入喷嘴经回收管23、24、29、30中的至少1个回收管从晶片W上回收液体7。
其次,说明液体7的供给和回收方法。在图3中,在用实线示出的箭头25A的方向(-X)上使晶片W以步进方式移动时,液体供给装置5经供给管21和排出喷嘴21a对透过光学元件4的晶片W一侧的前端部4A和锥形面4B与晶片W之间供给液体7。液体回收装置6经回收管23和流入喷嘴23a、23b从晶片W上回收利用液体供给装置5供给到晶片W一侧的前端部4A和锥形面4B与晶片W之间的液体7。在该情况下,液体7在箭头25B的方向(-X)上流过晶片W上,利用液体7稳定地充满晶片W与透过光学元件4之间。
另一方面,在图3中,在用虚线示出的箭头26A的方向(+X)上使晶片W以步进方式移动时,液体供给装置5经供给管22和排出喷嘴22a对透过光学元件4的晶片W一侧的前端部4A和锥形面4B与晶片W之间供给液体7。液体回收装置6经回收管24和流入喷嘴24a、24b从晶片W上回收利用液体供给装置5供给到透过光学元件4的晶片W一侧的前端部4A和锥形面4B与晶片W之间的液体7。在该情况下,液体7在箭头26B的方向(+X)上流过晶片W上,利用液体7稳定地充满晶片W与透过光学元件4之间。
此外,在Y方向上使晶片W以步进方式移动时,从Y方向进行液体7的供给和回收。即,在图4中,在用实线示出的箭头31A的方向(-Y)上使晶片W以步进方式移动时,液体供给装置5经供给管27和排出喷嘴27a供给液体7。液体回收装置6经回收管29和流入喷嘴29a、29b回收利用液体供给装置5供给到透过光学元件4的晶片W一侧的前端部4A和锥形面4B与晶片W之间的液体7。在该情况下,液体7在箭头31B的方向(-Y)上流过曝光区域上,利用液体7稳定地充满晶片W与透过光学元件4之间。
此外,在+Y方向上使晶片W以步进方式移动时,液体供给装置5经供给管28和排出喷嘴28a供给液体7。液体回收装置6经回收管30和流入喷嘴30a、30b回收利用液体供给装置5供给到透过光学元件4的晶片W一侧的前端部4A与晶片W之间的液体7。在该情况下,液体7在+Y方向上流过曝光区域上,利用液体7稳定地充满晶片W与透过光学元件4之间。
再有,不仅可设置从X方向或Y方向进行液体7的供给和回收用的喷嘴,也可例如设置从倾斜的方向进行液体7的供给和回收用的喷嘴。
其次,说明液体7的供给量和回收量的控制方法。图4是示出在构成投影光学系统PL的光学元件4与晶片W之间供给和回收液体7的状态的图。如图4中所示,在晶片W在箭头25A的方向(-X)上移动了的情况下,从排出喷嘴21a供给了的液体7在箭头25B的方向(-X)上流动,利用流入喷嘴23a、23b回收。即使是晶片W在移动中,为了使在光学元件4与晶片W之间被充填的液体7的量保持为恒定,也使液体7的供给量Vi(m3/s)与回收量Vo(m3/s)相等。此外,根据XY台10(晶片W)的移动速度v来调整液体7的供给量Vi与回收量Vo。即,根据数学式1来计算液体7的供给量Vi与回收量Vo。
(数学式1)
Vi=Vo=D·v·d
在此,D如图1中所示,是光学元件4的前端部4A的直径(m),v是XY台10的移动速度(m/s),d是投影光学系统PL的工作距离(m)。由于由主控制系统14设定了使XY台10以步进方式移动时的速度v,预先输入了D和d,故通过根据数学式1计算、调整液体7的供给量Vi与回收量Vo,在光学元件4与晶片W之间始终充满液体7。
再有,为了在光学元件4与晶片W之间使液体7稳定地存在,优选使投影光学系统PL的工作距离d尽可能窄。例如,将投影光学系统PL的工作距离d设定为约2mm。
按照与该第1实施形态有关的投影曝光装置,由于在光学元件的表面上形成了防止溶解膜,故可防止光学元件的溶解。因而,由于光学元件不会因投影光学系统的前端部与基板之间被充满了的液体而溶解,故没有必要频繁地更换光学元件,故可维持曝光装置的高的生产能力。此外,没有必要为了更换溶解了的光学元件而停止曝光装置的工作,可高效地生产最终制品。再者,由于光学元件不因液体而溶解,可维持投影光学系统的光学性能,故可使被生产的最终制品的品质变得稳定,可在最佳的状态下持续进行曝光。
此外,按照与该第1实施形态有关的投影曝光装置,由于在投影光学系统PL的晶片W一侧的透过光学元件4的锥形面4B上形成了兼作密接力强化膜的金属制防止溶解膜,故可使金属制防止溶解膜密接到透过光学元件4上。此外,由于在金属制防止溶解膜的表面上形成了二氧化硅(SiO2)膜,故可防止柔软的耐擦伤性低的金属制防止溶解膜的损伤,可保护金属制防止溶解膜。因而,可防止在晶片W的表面与投影光学系统PL之间介入了的液体7的对透过光学元件的浸透和侵蚀,可维持投影光学系统PL的光学性能。此外,由于透过光学元件4不因液体7而溶解,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件4,故可将曝光装置的生产能力维持得较高。
此外,由于在透过光学元件4的锥形面4B、即曝光的光IL不通过的部分上形成了金属制防止溶解膜,故在透过光学元件4的表面上形成的金属制防止溶解膜不对曝光的光IL进行遮光,可在最佳的状态下持续进行曝光。
此外,对于波长约200nm的曝光的光的纯水的折射率n约1.44,由于波长为193nm的ArF受激准分子激光在晶片W上其波长缩短为1/n、即134nm,故可得到高的解像度。再者,由于聚焦深度与空气中相比扩大为约n倍、即约1.44,故在能确保与空气中使用的情况为相同程度的聚焦深度即可的情况下,可进一步增加投影光学系统PL的数值孔径,即使在这一点上,解像度也提高了。
此外,按照与该第1实施形态有关的投影曝光装置,由于具备在X方向和Y方向上互相反转了的2对排出喷嘴和流入喷嘴,故即使在使晶片在+X方向、-X方向、+Y方向、-Y方向上移动的情况下,也可利用液体稳定地持续充满晶片与光学元件之间。
此外,由于液体在晶片上流动,故即使是异物附着于晶片上的情况,也可利用液体冲掉该异物。此外,由于利用液体供给装置将液体调整为规定的温度,故晶片表面的温度也为恒定的,可防止因在曝光时产生的晶片的热膨胀导致的对准精度的下降。因而,即使是如EGA(增强总体对准)方式的对准那样在对准与曝光中存在时间差的情况,也可防止因晶片的热膨胀导致的对准精度的下降。
此外,按照与该第1实施形态有关的投影曝光装置,由于液体在与使晶片移动的方向相同的方向上流动,故可利用液体回收装置回收吸收了异物或热的液体而不使其在透过光学元件的表面的正下方的曝光区域上滞留。
再有,在所述各实施形态中,使用了氟化镁(MgF2)和二氧化硅(SiO2)作为防止溶解膜,但也可代之以使用氟化镧(LaF3)、氟化锶(SrF2)、氟化钇(YF3)、氟化镥(LuF3)、氟化铪(HfF4)、氟化钕(NdF3)、氟化钆(GdF3)、氟化镱(YbF3)、氟化镝(DyF3)、氟化铝(AlF3)、冰晶石(Na3AlF6)、锥冰晶石(5NaF·3AlF3)、氧化铝(Al2O3)、二氧化硅(SiO2)、氧化钛(TiO2)、氧化镁(MgO)、氧化铪(HfO2)、氧化铬(Cr2O3)、氧化锆(ZrO2)、五氧化二钽(Ta2O5)和五氧化二铌(Nb2O5)中的至少一种作为防止溶解膜。
此外,在所述的各实施形态中,在光学元件上利用真空蒸镀法形成了由氟化镁(MgF2)和二氧化硅(SiO2)形成的防止溶解膜,但也可代之以利用离子束辅助蒸镀法、气体团离子束辅助蒸镀法、离子喷镀法、离子束溅射法、磁控管溅射法、偏压溅射法、ECR溅射法、RF溅射法、热CVD法、等离子CVD法和光CVD法中的至少一种成膜方法来成膜。
再有,在形成氟化物来作为光学元件的防止溶解膜的情况下,优选真空蒸镀法、离子束辅助蒸镀法、气体团离子束辅助蒸镀法、离子喷镀法。但是,关于氟化镁(MgF2)和氟化钇(YF3),也可利用溅射法来成膜。此外,在形成氧化物来作为光学元件的防止溶解膜的情况下,可使用所述的全部的成膜方法。
此外,被成膜的防止溶解膜、特别是氟化镧(LaF3),在将结晶方位为(111)面的萤石作成了光学元件的基体材料的情况下,通过在其成膜面上成膜而以异质外延的方式生长。在该情况下,形成的防止溶解膜非常致密,而且成为缺陷少的结晶结构。
再者,在与第1实施形态有关的投影曝光装置中,使用了由利用钽(Ta)形成的膜构成的金属膜作为金属制防止溶解膜(防止溶解膜),但也可使用由利用金(Au)、铂(Pt)、银(Ag)、镍(Ni)、钨(W)、钯(Pd)、钼(Mo)、钛(Ti)和铬(Cr)中的至少一种形成的膜构成的金属膜。
此外,在与该第1实施形态有关的投影曝光装置中,使用了由利用钽(Ta)形成的膜构成的密接力强化膜,但也可使用由利用铬(Cr)形成的膜构成的密接力强化膜。
此外,在与该第1实施形态有关的投影曝光装置中,使用了由利用二氧化硅(SiO2)形成的膜构成的金属制防止溶解膜保护膜,但也可使用由利用氧化钇(Y2O3)、氟化钕(Nd2F3)、氧化铬(Cr2O3)、五氧化二钽(Ta2O5)、五氧化二铌(Nb2O5)、二氧化钛(TiO2)、二氧化锆(ZrO2)、二氧化铪(HfO2)和氧化镧(La2O3)中的至少一种形成的膜构成的金属制防止溶解膜保护膜。即,由于能选择金属制防止溶解膜保护膜,故可根据透过光学元件的基体材料、设置透过光学元件的环境、在基板的表面与投影光学系统之间介入了的液体的种类等来选择最佳的金属制防止溶解膜保护膜(防止溶解膜保护膜)。
此外,在与该第1实施形态有关的投影曝光装置中,利用湿式成膜法形成了兼作防止溶解膜和金属制防止溶解膜保护膜的二氧化硅(SiO2)膜,但也可利用溅射法等的干式成膜法来成膜。
此外,在与该第1实施形态有关的透过光学元件的锥形面上形成了金属制防止溶解膜(兼作密接力强化膜)和金属制防止溶解膜保护膜,但也可只形成金属制防止溶解膜(密接力强化膜)。此外,也可将密接力强化膜与金属制防止溶解膜分开地,形成密接力强化膜和金属制防止溶解膜或密接力强化膜、金属制防止溶解膜和金属制防止溶解膜保护膜。
此外,在与该第1实施形态有关的投影曝光装置中,利用萤石形成了最靠近晶片W一侧的透过光学元件4,在其锥形面上形成了密接力强化膜、金属制防止溶解膜(防止溶解膜)和金属制防止溶解膜保护膜(防止溶解膜保护膜),但也可利用石英玻璃形成最靠近晶片W一侧的透过光学元件4,在其锥形面上形成所述的这些膜。
此外,在所述的实施形态中,利用液体充满了晶片的表面与投影光学系统的晶片一侧的利用萤石形成的光学元件之间,但也可使液体介入到晶片的表面与投影光学系统的晶片一侧的利用萤石形成的光学元件之间的一部分中。
此外,在所述的实施形态中,使用了纯水作为液体7,但作为液体不限于纯水,也可使用具有对于曝光的光的透过性、折射率尽可能高、对于投影光学系统或在晶片表面上被涂敷了的光致抗蚀剂稳定的液体(例如雪松油等)。
〔实施形态2〕
除了在光学元件4的前端部4A、即与液体7接触的部分上利用真空蒸镀法形成氟化镁(MgF2)作为由单层膜构成的防止溶解膜以外,与第1实施形态同样地构成了投影曝光装置。
按照与该第2实施形态有关的投影曝光装置,由于在光学元件的表面上形成由单层膜构成的防止溶解膜,故可防止光学元件的溶解。此外,在与多层膜比较的情况下,由于可减少界面,故可尽可能抑制因液体从作为防止溶解膜的保护层的界面侵入的情况下容易引起的化学反应导致的不良影响。此外,与形成由多层膜构成的防止溶解膜进行成膜的情况相比,可简易地成膜。
此外,在将光学元件的表面浸在液体中的情况下,通过形成单层防止溶解膜,使得光学元件的折射率成为与该液体的折射率一样或比其低的折射率,可得到与利用多层成膜了的光学元件相同的光学性能。
〔实施形态3〕
除了如图6和以下那样变更了透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
(i)在透过光学元件4的晶片W一侧的前端部4A、即曝光的光透过的部分上利用真空蒸镀法形成由单层膜构成的氟化镁(MgF2)膜F1。
(ii)在透过光学元件4的锥形面4B、即曝光的光不透过的部分上使用溅射法形成钽(Ta)膜,作为密接力强化膜F4。密接力强化膜F4提高透过光学元件4的锥形面4B与后述的金属制防止溶解膜(防止溶解膜)F5的密接力。
(iii)在密接力强化膜F4的表面上利用溅射法以150nm的厚度形成利用金(Au)构成的金属膜,作为防止在液体7中的溶解用的金属制防止溶解膜(防止溶解膜)F5。
(iv)在金属制防止溶解膜(防止溶解膜)F5的表面上使用真空蒸镀法形成二氧化硅(SiO2)膜F2,作为保护金属制防止溶解膜(防止溶解膜)用的金属制防止溶解膜保护膜(防止溶解膜保护膜)。在此,在透过光学元件4的锥形面4B上形成的金属制防止溶解膜(防止溶解膜)F5的对于纯水的溶解度小于等于2ppt,充填密度大于等于95%。
按照与该第3实施形态有关的投影曝光装置,由于在投影光学系统PL的晶片W一侧的透过光学元件4的锥形面4B上形成的密接力强化膜的表面上形成了金属膜,故可使金属膜密接到透过光学元件4上。此外,由于在金属膜的表面上形成了二氧化硅(SiO2)膜,故可防止柔软的耐擦伤性低的金属膜的损伤,可保护金属膜。因而,可防止在晶片W的表面与投影光学系统PL之间介入了的液体7的对透过光学元件4的浸透和侵蚀,可维持投影光学系统PL的光学性能。此外,由于透过光学元件4不因液体7而溶解,故可维持投影曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件4,故可将投影曝光装置的生产能力维持得较高。
〔实施形态4〕
除了在光学元件4的前端部4A和侧面部(锥形部)4B、即与液体7接触的部分上形成氟化镁(MgF2)来作为防止溶解膜以外,与第1实施形态同样地构成了投影曝光装置。
按照与该第4实施形态有关的投影曝光装置,由于在光学元件的基板一侧的表面和光学元件的侧面上形成了防止溶解膜,故可防止光学元件的溶解。此外,由于对光学元件的基板一侧的表面和光学元件的侧面形成了使用了同一材质的防止溶解膜,故可一次性地形成防止溶解膜,可利用简易的工序进行防止溶解膜的成膜。
〔实施形态5〕
除了如下述那样变更了透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
(i)在透过光学元件4的晶片W一侧的前端部4A、即曝光的光透过的部分上利用作为干式成膜方法的溅射法形成二氧化硅(SiO2)膜,作为第1膜。
(ii)在第1膜的表面上利用作为湿式成膜方法的旋转涂敷法形成二氧化硅(SiO2)膜,作为第2膜。
(iii)为了使其表面的粗糙度和表面积增大,例如用#2000的砂轮研磨透过光学元件4的锥形面4B、即曝光的光不透过的部分,在通过用砂轮研磨进行了表面处理的锥形面4B上利用作为湿式成膜方法的旋转涂敷法形成二氧化硅(SiO2)膜,作为氧化物防止溶解膜。
按照与该第5实施形态有关的投影曝光装置,在投影光学系统的最靠近晶片一侧的透过光学元件的晶片W一侧的前端部上利用溅射法形成二氧化硅(SiO2)膜,作为第1膜。此外,在第1膜的表面上利用旋转涂敷法形成二氧化硅(SiO2)膜,作为第2膜。因而,可使第1膜密接到利用萤石形成的透过光学元件上,可使第1膜起到使透过光学元件与第2膜密接的密接力强化膜的功能。
此外,由于利用以高的均质性和对于孔的高的填埋性为特征的湿式成膜方法形成第2膜,第2膜进入到第1膜的孔中来消除孔,故可防止在晶片表面与投影光学系统之间介入的液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。此外,由于第1膜和第2膜都是(SiO2)膜,故利用溅射法形成的第1膜与利用旋转涂敷法形成的第2膜的结合力被强化,可更加牢固地密接第1膜与第2膜。因而,由于第1膜和第2膜不会从透过光学元件剥离,透过光学元件不因液体而溶解,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
此外,为了使其表面的粗糙度和表面积增大,例如用#2000的砂轮研磨了投影光学系统的最靠近晶片一侧的透过光学元件的锥形面,在该锥形面上利用旋转涂敷法形成二氧化硅(SiO2)膜,作为氧化物防止溶解膜。由于利用以高的均质性和对于孔的高的填埋性为特征的湿式成膜方法形成氧化物防止溶解膜,故可防止液体的对透过光学元件的浸透和侵蚀,可维持投影光学系统的光学性能。因而,由于透过光学元件不因液体而溶解,故可维持曝光装置的性能。此外,由于没有必要频繁地更换透过光学元件,故可将曝光装置的生产能力维持得较高。
再有,在与该第5实施形态有关的投影曝光装置中,在透过光学元件4的晶片W一侧的前端部4A、即曝光的光透过的部分上利用干式成膜方法形成二氧化硅(SiO2)膜,作为第1膜,在第1膜的表面上利用湿式成膜方法形成二氧化硅(SiO2)膜,作为第2膜,但也可在透过光学元件4的晶片W一侧的前端部4A上只利用湿式成膜方法形成二氧化硅(SiO2)膜,作为氧化物防止溶解膜。在该情况下,为了提高透过光学元件4与液化气防止溶解膜的密接力,对透过光学元件4的前端部4A进行投影光学系统PL的光学性能不恶化的程度的表面处理。即,例如用#2000的砂轮研磨前端部4A的表面等,使前端部4A的粗糙度和表面积增大。
此外,在与该第5实施形态有关的投影曝光装置中,在透过光学元件4的锥形面4B、即曝光的光不透过的部分上只利用湿式成膜方法形成二氧化硅(SiO2)膜,作为氧化物防止溶解膜,但也可在锥形面4B上利用干式成膜方法形成二氧化硅(SiO2)膜,作为第1膜,在第1膜的表面上利用湿式成膜方法形成二氧化硅(SiO2)膜,作为第2膜。
〔实施形态6〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
即,图7是示出在本发明的实施形态6中被使用的光学元件的结构的图。在此,光学元件1由光学基板101和多层膜100的结构构成。使用了萤石作为光学基板101。此外,多层膜100是从光学基板101起按顺序第一层102形成氟化镧(以下记为LaF3)、第2层103形成氟化镁(以下记为MgF2)、第3层104形成氧化铝(以下记为Al2O3)、第4层105形成氧化硅(以下记为SiO2)的4层结构。浸液108是水,基板107是涂敷了抗蚀剂的硅。
第4层(SiO2)105或第3层(Al2O3)104的对于水的溶解度显示出测定器的下限值1.0×10-7g/水100g。因而,第4层(SiO2)105或第3层(Al2O3)104是对于水不溶解的物质,利用这些物质作成了的膜具有对于水的保护功能。
在此,关于成膜方法,用真空蒸镀法来进行。再有,成膜方法不限于该方法,也可以是能制作致密的结构的各种溅射法、离子束辅助法、离子喷镀法。
在表1中示出第1层(LaF3)102、第2层(MgF2)103、第3层(Al2O3)104、第4层(SiO2)105的折射率和以λ为设计主波长的光学的膜厚。
〔表1〕
  物质名   折射率   光学的膜厚
  浸液   水   1.44   -
  第4层   SiO2   1.55   0.12λ
  第3层   Al2O3   1.85   0.54λ
  第2层   MgF2   1.43   0.66λ
  第1层   LaF3   1.69   0.60λ
  光学基板   萤石   1.50   -
如表1中所示可知,作为第奇数的层的第1层102和第3层104的折射率比邻接的萤石基板101、第2层103和第4层105的折射率高。通过以表1中示出了的顺序在光学基板101上形成多层膜100,作为整体,多层膜100可具有防止反射功能。
图8是示出在本发明的实施形态1中被使用的光学元件的波长193nm中的角度反射特性的图。在此,使用了ArF(波长193nm)受激准分子激光器。如从图8可明白的那样,由入射光20产生的S偏振光Rs和P偏振光Rp的平均反射率Ra即使在射出角θ=40度中,也约小于等于0.3%,在射出角θ=50度中,也约小于等于0.5%,显示出非常良好的特性,可充分地使用。
〔实施形态7〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图9是示出在本发明的光学元件1的结构的图。光学元件1由光学基板101和多层膜100的结构构成。多层膜100由在光学基板101上按顺序第一层102形成氟化镧(以下记为LaF3)、第2层103形成氟化镁(以下记为MgF2)、第3层104形成氧化铝(以下记为Al2O3)形成的3层结构构成。浸液108是水,基板107是涂敷了抗蚀剂的硅。
在表2中示出第1层(LaF3)102、第2层(MgF2)103、第3层(Al2O3)104的折射率和以λ为设计主波长的光学的膜厚。
〔表2〕
  物质名   折射率   光学的膜厚
  浸液   水   1.44   -
  第3层   Al2O3   1.85   0.54λ
  第2层   MgF2   1.43   0.66λ
  第1层   LaF3   1.69   0.60λ
  光学基板   萤石   1.50   -
如表2中所示可知,第1层102的LaF3的折射率比邻接的光学基板101、第2层103的MgF2的折射率高。通过作成这样的配置的折射率,作为整体,多层膜100可具有防止反射功能。
图10是示出在本发明的实施形态7中被使用的光学元件的波长193nm中的角度反射特性的图。在此,使用了ArF(波长193nm)受激准分子激光器。如从图10可明白的那样,由入射光20产生的S偏振光Rs和P偏振光Rp的平均反射率Ra即使在射出角θ=40度中,也约小于等于0.3%,在射出角θ=50度中,也约小于等于0.8%,显示出非常良好的特性,可充分地使用。
〔实施形态8〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图11是示出在本发明的光学元件1的结构的图。光学元件1由光学基板101和多层膜100的结构构成。多层膜100由在光学基板101上按顺序第1层102形成氟化镧(以下记为LaF3)、第2层103形成氟化镁(以下记为MgF2)的2层结构构成。浸液108是水,基板107是涂敷了抗蚀剂的硅。
在表1中示出第1层(LaF3)102、第2层(MgF2)103的折射率和以λ为设计主波长的光学的膜厚。
〔表3〕
  物质名   折射率   光学的膜厚
  浸液   水   1.44   -
  第2层   MgF2   1.43   0.66λ
  第1层   LaF3   1.69   0.55λ
  光学基板   萤石   1.50   -
如表3中所示可知,第1层102的折射率比邻接的光学基板101、第2层103的MgF2的折射率高。通过以表1中示出的顺序在光学基板101上形成多层膜100,作为整体,多层膜100可具有防止反射功能。
图12是示出在本发明的实施形态8中被使用的光学元件的波长193nm中的角度反射特性的图。在此,使用了ArF(波长193nm)受激准分子激光器。如从图12可明白的那样,由入射光20产生的S偏振光Rs和P偏振光Rp的平均反射率Ra在射出角θ=40度中,约小于等于0.3%,在射出角θ=50度中,约小于等于2%,可充分地使用。
由于第2层(MgF2)103对于水具有一些溶解度(文献值:2×10-4g/水100g),故通过长期间的使用而逐渐地溶出,但在本发明的实施形态8中,由于浸液是水(折射率=1.44),故即使第2层(MgF2)103溶出,也具有光学性能的变化比较小的优点。
图13是示出在第2层(MgF2)103的膜厚减半(0.3λ)了时的光学元件的ArF(波长193nm)受激准分子激光10中的反射率与射出角θ的关系的图。如从图13可明白的那样,由入射光20产生的S偏振光Rs和P偏振光Rp的平均反射率Ra几乎不变化,可充分地使用。因而,通过将MgF2103的膜厚成膜为约400nm,大体可使用10年。
再有,在图11中,使用并记载了第1层(LaF3)102、第2层(MgF2)103的2层的多层膜100,但也可使用交替地层叠第1层(LaF3)102、第2层(MgF2)103的4层结构的多层膜。
〔实施形态9〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图14是示出在本发明的光学元件1的结构的图。该光学元件1是在萤石基板101上层叠了多层膜100的结构。多层膜100是2层结构,是从在萤石基板101起按顺序层叠了MgF2作为第1层102、层叠了SiO2作为第2层103的结构。浸液108是水,基板107是涂敷了抗蚀剂的硅。
在此,如果将第1层(MgF2)102、第2层(SiO2)103的折射率和各层102、...的光学的膜厚、膜厚范围定为以λ为设计主波长,则如以下所述。
〔表4〕
  物质名   折射率   光学的膜厚   膜厚范围
  浸液   水   1.44
  第2层   SiO2   1.55   2.50λ   1.50~4.00λ
  第1层   MgF2   1.43   0.10λ   0.03~0.10λ
  光学基板   萤石   1.50
关于成膜方法,用真空蒸镀法来进行。再有,成膜方法不限于该方法,也可以是能制作致密的结构的各种溅射法、离子束辅助法、离子喷镀法。
图15是示出在本发明的实施形态9的光学元件1的ArF(波长193nm)受激准分子激光器中的反射率与射出角的关系的图。如从图15可明白的那样,S偏振光和P偏振光的平均反射率即使在射出角θ=40度中,也约小于等于0.6%,即使在射出角θ=60度中,约小于等于1%,显示出良好的特性,可充分地使用。
如表4中所示可知,第1层(MgF2)102的折射率比邻接的光学基板101、第2层(SiO2)103的MgF2的折射率低。通过作成这样的配置,作为整体,多层膜100可具有防止反射功能。
〔实施形态10〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图16是示出在本发明的光学元件1的结构的图。该光学元件1是在萤石基板101上层叠了多层膜100的结构。该多层膜100的第1层102是MgF2,第2层103是SiO2,再者,该第2层103被2分割了,按顺序层叠了利用干式成膜法成形了的分割第1层103a和利用湿式成膜法成形了的分割第2层103b。浸液108是水,基板107是涂敷了抗蚀剂的硅。
在此,如果将第1层102的MgF2、分割第1层103a的干式成膜SiO2、分割第2层103b的湿式成膜SiO2的折射率和各层102、...的光学的膜厚、膜厚范围定为以λ为设计主波长,则如以下所述。
〔表5〕
  物质名   折射率   光学的膜厚   膜厚范围
  浸液   水   1.44
  第2层(分割第2层)   湿式成膜SiO2   1.55   0.40λ   0.40(恒定)λ
  第2层(分割第1层)   干式成膜SiO2   1.55   2.10λ   1.15~3.60λ
  第1层   MgF2   1.43   0.10λ   0.03~0.10λ
  光学基板   萤石   1.50
在此,关于第1层102和分割第1层103a,用真空蒸镀法来进行,但不限于该方法,也可以是各种溅射法、离子束辅助法、离子喷镀法等的其它的干式成膜法。
对于该干式成膜法来说,已知薄膜的结构根据基板加热温度或成膜速度等的条件而改变。在致密性不充分的结构的情况下,水通过膜中到达萤石基板101的危险性高。由于萤石对于水溶解,故因对水的浸渍而丧失所优选的光学性能的危险性高。一般来说,已知基板加热温度低的真空蒸镀法的SiO2膜使水或水蒸气通过。
在该情况下,通过设置分割第2层103b的湿式成膜SiO2层,由于湿式成膜SiO2进入到干式成膜SiO2的空隙中来消除空隙,故可防止在基板107的表面与投影光学系统PL之间介入了的规定的浸液108的对光学元件1的浸透和侵蚀,可维持投影光学系统PL的光学性能。因而,在将该光学元件1使用于液浸型的投影曝光装置的情况下,由于本发明的多层膜100不从萤石基板101剥离,光学元件1不因液体而溶解,故可维持投影曝光装置的性能。再者,由于没有必要频繁地更换光学元件1,故可将投影曝光装置的生产能力维持得较高。
关于该分割第2层103b的湿式成膜SiO2层,进行了一般的SiO2溶解液的旋转涂敷。使用溶胶凝胶用氧化硅液作为SiO2溶解液,以旋转数1000~2000旋转/分使萤石基板101旋转来进行涂敷。由于因涂敷产生的膜厚依赖于SiO2溶解液的浓度、旋转涂敷中的萤石基板101旋转数、温湿度等的条件,故如果事先以浓度为参数作成了对于膜厚的测量线,则其后可得到所优选的膜厚。
在此,将分割第2层103b的湿式成膜SiO2层的膜厚定为0.40λ(50nm),但不限定于此。但是,例如在涂敷大于等于1.2λ(150nm)这样的膜厚的情况下,必须注意因膜应力导致的裂纹的发生。此外,作为后处理,在分割第2层103b的湿式成膜SiO2层的涂敷后进行了大气下160℃/2小时的退火。这样做的目的是使作为SiO2溶解液的主溶媒的乙醇蒸发和使湿式成膜了的SiO2层本身烧结。
图17是示出在本发明的实施形态5的光学元件1的ArF(波长193nm)受激准分子激光中的反射率与射出角的关系的图。如从图17可明白的那样,S偏振光和P偏振光的平均反射率即使在射出角θ=40度中,也约小于等于0.6%,即使在射出角θ=60度中,约小于等于1%,显示出良好的特性,可充分地使用。
此外,如在所述表5中所示可知,第1层(MgF2)102的折射率比邻接的光学基板101、第2层(SiO2)103的MgF2的折射率低。通过作成这样的配置,作为整体,多层膜100可具有防止反射功能。再有,由利用干式成膜法成形了的分割第1层103a和利用湿式成膜法成形了的分割第2层103b构成了第2层(SiO2)103,但由于是相同的材质,故在光学上看,可看作1层。
〔实施形态11〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图18是示出在本发明的光学元件1的结构的图。该光学元件1是在萤石基板101上层叠了多层膜100的结构。多层膜100是4层结构,是从在萤石基板101起按顺序层叠了LaF3作为第1层102、层叠了MgF2作为第2层103、层叠了LaF3作为第3层104、层叠了SiO2作为第4层105的结构。浸液108是水,基板107是涂敷了抗蚀剂的硅。
在此,如果将第1层102的LaF3、第2层103的MgF2、第3层104的LaF3、第4层105的SiO2的折射率和各层102、...的光学的膜厚、膜厚范围定为以λ为设计主波长,则如以下所述。
〔表6〕
  物质名   折射率   光学的膜厚   膜厚范围
  浸液   水   1.44
  第4层   SiO2   1.55   0.37λ   0.15~1.50λ
  第3层   LaF3   1.69   0.70λ   0.40~0.90λ
  第2层   MgF2   1.43   0.10λ   0.03~0.15λ
  第1层   LaF3   1.69   0.11λ   0.03~0.20λ
  光学基板   萤石   1.50
关于在此的成膜方法,用真空蒸镀法来进行。再有,成膜方法不限于该方法,也可以是能制作致密的结构的各种溅射法、离子束辅助法、离子喷镀法。
图19是示出在本发明的实施形态11的光学元件1的ArF(波长193nm)受激准分子激光中的反射率与射出角的关系的图。如从图19可明白的那样,S偏振光和P偏振光的平均反射率即使在射出角θ=50度中,也约小于等于0.3%,即使在射出角θ=60度中,约小于等于0.5%,显示出非常良好的特性,可充分地使用。
如表6中所示可知,第1层(LaF3)102的折射率比邻接的光学基板101、第2层(MgF2)103的MgF2的折射率高。此外,可知第3层(LaF3)104的折射率比邻接的第2层(MgF2)103和第4层(SiO2)105的折射率高。通过作成这样的配置,作为整体,多层膜100可具有防止反射功能。
在本实施形态11中,利用真空蒸镀法形成了第4层105的SiO2膜,但也可如实施形态5中记载的分割第2层103b那样利用湿式成膜法来成膜。在该情况下,通过设置湿式成膜SiO2层,由于湿式成膜SiO2进入到由干式成膜法形成的第3层(LaF3)104的空隙中来消除空隙,故可防止在基板107的表面与投影光学系统PL之间介入了的规定的浸液108的对光学元件1的浸透和侵蚀,可维持投影光学系统PL的光学性能。因而,在将该光学元件1使用于液浸型的投影曝光装置的情况下,由于本发明的多层膜100不从萤石基板101剥离,光学元件1不因液体而溶解,故可维持投影曝光装置的性能。再者,由于没有必要频繁地更换光学元件1,故可将投影曝光装置的生产能力维持得较高。
〔实施形态12〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图20是示出在本发明的光学元件1的结构的图。该光学元件1是在萤石基板101上层叠了多层膜100的结构。该多层膜100是5层结构,是从在萤石基板101起按顺序层叠了LaF3作为第1层102、层叠了MgF2作为第2层103、层叠了LaF3作为第3层104、层叠了MgF2作为第4层105、层叠了SiO2作为第5层106的结构。浸液108是水,基板107是涂敷了抗蚀剂的硅。
在此,如果将第1层102的LaF3、第2层103的MgF2、第3层104的LaF3、第4层105的MgF2、第5层106的SiO2的折射率和各层102、...的光学的膜厚、膜厚范围定为以λ为设计主波长,则如以下所述。
〔表7〕
  物质名   折射率   光学的膜厚   膜厚范围
  浸液   水   1.44
  第5层   SiO2   1.55   0.20λ   0.05~0.35λ
  第4层   MgF2   1.43   0.10λ   0.03~0.18λ
  第3层   LaF3   1.69   0.70λ   0.55~0.82λ
  第2层   MgF2   1.43   0.10λ   0.03~0.18λ
  第1层   LaF3   1.69   0.11λ   0.03~0.20λ
  光学基板   萤石   1.50
在此,关于成膜方法,用真空蒸镀法来进行,但成膜方法不限于该方法,也可以是能制作致密的结构的各种溅射法、离子束辅助法、离子喷镀法。
图21是示出在本发明的实施形态12的光学元件1的ArF(波长193nm)受激准分子激光中的反射率与射出角的关系的图。如从图21可明白的那样,S偏振光和P偏振光的平均反射率即使在射出角θ=50度中,也约小于等于0.3%,即使在射出角θ=60度中,约小于等于0.5%,显示出非常良好的特性,可充分地使用。
如所述表7中所示可知,第1层(LaF3)102的折射率比邻接的光学基板101、第2层(MgF2)103的MgF2的折射率高。此外,可知第3层(LaF3)104的折射率比邻接的第2层(MgF2)103和第4层(MgF2)105的折射率高。通过作成这样的配置,作为整体,多层膜100可具有防止反射功能。
在本实施形态12中,利用真空蒸镀法形成第5层106的SiO2膜,但也可如实施形态10中记载的分割第2层103b那样利用湿式成膜法来成膜。在该情况下,通过设置湿式成膜SiO2层,由于湿式成膜的SiO2进入到由干式成膜法形成的第4层(MgF2)105的空隙中来消除空隙,故可防止在基板107的表面与投影光学系统PL之间介入了的规定的浸液108的对光学元件1的浸透和侵蚀,可维持投影光学系统PL的光学性能。因而,在将该光学元件1使用于液浸型的投影曝光装置的情况下,由于本发明的多层膜100不从萤石基板101剥离,光学元件1不因液体而溶解,故可维持投影曝光装置的性能。再者,由于没有必要频繁地更换光学元件1,故可将投影曝光装置的生产能力维持得较高。
〔实施形态13〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
如果该实施形态13与实施形态12比较,则第4层105的材质不同。即,在该实施形态13中,形成Al2O3膜来作为第4层105。
在此,如果将第1层102的LaF3、第2层103的MgF2、第3层104的LaF3、第4层105的Al2O3、第5层106的SiO2的折射率和各层102、...的光学的膜厚、膜厚范围定为以λ为设计主波长,则如以下所述。
〔表8〕
  物质名   折射率   光学的膜厚   膜厚范围
  浸液   水   1.44
  第5层   SiO2   1.55   0.37λ   0.28~0.55λ
  第4层   Al2O3   1.85   0.10λ   0.03~0.18λ
  第3层   LaF3   1.69   0.51λ   0.38~0.65λ
  第2层   MgF2   1.43   0.10λ   0.03~0.20λ
  第1层   LaF3   1.69   0.11λ   0.03~0.25λ
  光学基板   萤石   1.50
在此,关于成膜方法,用真空蒸镀法来进行,但成膜方法不限于该方法,也可以是能制作致密的结构的各种溅射法、离子束辅助法、离子喷镀法。
该实施形态13也与实施形态12同样,S偏振光和P偏振光的平均反射率即使在射出角θ=50度中,也约小于等于0.3%,即使在射出角θ=60度中,约小于等于0.5%,显示出非常良好的特性,可充分地使用。
如所述表8中所示可知,第1层(LaF3)102的折射率比邻接的光学基板101、第2层(MgF2)103的MgF2的折射率高。此外,可知第3层(LaF3)104的折射率比邻接的第2层(MgF2)103和第4层(Al2O3)105的折射率高。通过作成这样的配置,作为整体,多层膜100可具有防止反射功能。
在本实施形态13中,利用真空蒸镀法形成第5层106的SiO2膜,但也可如实施形态10中记载的分割第2层103b那样利用湿式成膜法来成膜。在该情况下,通过设置湿式成膜SiO2层,由于湿式成膜SiO2进入到由干式成膜法形成的第4层(Al2O3)105的空隙中来消除空隙,故可防止在基板107的表面与投影光学系统PL之间介入了的规定的浸液108的对光学元件1的浸透和侵蚀,可维持投影光学系统PL的光学性能。因而,在将该光学元件1使用于液浸型的投影曝光装置的情况下,由于本发明的多层膜100不从萤石基板101剥离,光学元件1不因液体而溶解,故可维持投影曝光装置的性能。再者,由于没有必要频繁地更换光学元件1,故可将投影曝光装置的生产能力维持得较高。
按照与以上已说明的第6~13实施形态有关的投影曝光装置,在所述光学元件的表面上形成多层膜,由于该多层膜具备保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束(入射光)被反射的防止反射功能,故可提供没有液体侵蚀的稳定的光学元件。因而,使用液浸法可提供能实现解像度高、聚焦深度深的高性能的投影曝光装置的光学元件。此外,由于所述多层膜在规定的期间内具备所述保护功能,故例如可在10年间保护曝光装置使之不受作为浸液的水的影响。因而,使用液浸法可提供能实现解像度高、聚焦深度深的高性能的投影曝光装置的光学元件,同时可在规定的期间内提供没有液体侵蚀的稳定的光学元件。
〔实施形态14〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图22是示出在本发明的实施形态14中被使用的光学构件的结构的图。光学构件1是在使用了萤石的光学元件101上接合了石英玻璃薄板102的结构。在此,浸液是水103。基板是涂敷了抗蚀剂的硅104。关于接合方法,在曝光波长是ArF激光那样的紫外光的情况下,使接合面相互间成为平坦面,进行了光学接触。所谓光学接触,是若使互相平坦的面密接则由于分子间力宛如接合固体的现象。在光学上说,只存在固体与固体的界面。
在光学接触的两界面的面精度差而不能得到所优选的密接力的情况下,也可在界面间涂敷不侵蚀光学元件101的表面的程度的一层薄薄的纯水以提高密接力。光学元件101和石英玻璃薄板102的的折射率分别是1.50和1.55。
图23是示出图22的光学接触(石英玻璃/萤石)界面的角度反射特性的图。如从图23可明白的那样,由入射光20产生的S偏振光Rs和P偏振光Rp的平均反射率Ra在射出角θ=60度中,约小于等于0.3%,显示出良好的特性,可充分地使用。
作为光学基板,不用石英玻璃来制作光学元件101本身的原因是,存在石英玻璃薄板102因激光照射而发生压缩的可能性,是不理想的。此外,之所以作成石英玻璃薄板102,是由于即使假定发生所述压缩,也可使影响成为最小限度。
按照与以上已说明的第14实施形态有关的投影曝光装置,由于石英玻璃薄板102对水的溶解度非常小,故可消除因侵蚀导致的性能恶化来使用,通过在液浸法中使用该元件,可成为没有光学方面的性能恶化的液浸光学系统。
〔实施形态15〕
除了使用以下说明的透过光学元件4以外,与第1实施形态同样地构成了投影曝光装置。
图24是示出在本发明的实施形态15中被使用的光学构件的结构的图。光学构件1是在由萤石构成的光学元件101上接合了结晶氟化镁(以下称为MgF2)薄板105的结构。在此,浸液是水103。基板是涂敷了抗蚀剂的硅104。用折射率差小的液体(内插溶液)106充满了光学元件101与MgF2薄板105之间。如果该内插溶液106对于各自的基板折射率差小于等于0.2,则残存反射小,可良好地使用。
由于MgF2对于水有一些溶解度(文献值:2×10-4g/水100g),故因长时间使用而溶出。如果溶出持续地进行,则存在破坏投影透镜的透过波面的危险。在光学元件101上以不适当的膜厚直接涂敷氟化镁(以下MgF2)的情况下,存在因溶出而破坏透过波面的可能性,此时,由于必须更换光学元件101本身,故容易使涉及的工作量较大。特别是在将光学元件101作成透镜形状的情况下,在更换时必须进行与投影透镜的光轴的调整,是不容易的。在本发明的实施形态2的情况下,由于可只更换薄板,故可在将对成像性能的影响抑制为最小限度的情况下来更换。
在本发明的实施形态15中,作成了结晶氟化镁(MgF2)薄板,但氟化镁(MgF2)也可以是烧结体。此外,也可使用被氟化镁(MgF2)覆盖了的萤石薄板或非常薄的PTFE(特富隆(登录商标)薄板)。作为该情况下的涂敷方法,不仅可以是真空蒸镀法,而且可以是离子喷镀法或各种溅射法等,其方法不作特别的选择。
再有,用于实施本发明用的最佳形态中被记载了的薄板可以是平行平板那样的形状。
按照与以上已说明的第15实施形态有关的投影曝光装置,投影光学系统的前端部不被液体侵蚀。因而,由于不会因更换被水侵蚀了的光学构件1而停止投影曝光装置的工作,故可高效地生产最终制品。此外,由于本发明的光学构件1在使投影曝光装置工作的规定的期间内不被侵蚀,故光学特性是稳定的,因安装了本发明的投影曝光装置的缘故,所生产的最终制品的品质是稳定的。
以上,就实施形态1~15进行了说明,但本发明不限定于所述实施形态1~15。例如,在实施形态4等中,作为防止溶解膜,在投影光学系统的基板一侧的光学元件的基板一侧的表面和侧面上形成了使用了氟化镁(MgF2)的防止溶解膜,但也可在投影光学系统的基板一侧的光学元件的基板一侧的表面上形成使用了亲水性的氧化硅(SiO2)的防止溶解膜形成,在投影光学系统的基板一侧的光学元件的基板一侧的侧面上形成由烷基乙烯酮二聚物构成的疏水性的防止溶解膜。
在此,在光学元件的侧面上形成的防止溶解膜与在光学元件的基板一侧的表面上形成的防止溶解膜比较,是在疏水性能方面优良的防止溶解膜,在基板一侧的表面上形成的防止溶解膜与在光学元件的侧面上形成的防止溶解膜比较,是在亲水性能方面优良的防止溶解膜。因为在光学元件的侧面上形成的防止溶解膜是疏水性的防止溶解膜,故容易使在光学元件的侧面上附着了的液体绕回到基板一侧,因为在光学元件的表面上形成的防止溶解膜是亲水性的防止溶解膜,故可用液体始终充满光学元件的基板一侧表面与基板之间。
此外,在所述的实施形态5等中,在透过光学元件中利用溅射法形成了二氧化硅(SiO2)膜的第1膜,但也可代之以利用真空蒸镀法或CVD法的干式成膜方法来成膜。
再者,在所述的实施形态5等中,利用干式成膜方法形成二氧化硅(SiO2)膜,作为第1膜,利用湿式成膜方法形成二氧化硅(SiO2)膜,作为第2膜,但也可利用干式成膜方法形成氟化镁(MgF2)膜,作为第1膜,利用湿式成膜方法形成二氧化硅(SiO2)膜,作为第2膜。
此外,在所述的实施形态中,利用液体充满了晶片的表面与投影光学系统的晶片一侧的利用萤石形成的光学元件之间,但也可使液体介入到晶片的表面与投影光学系统的晶片一侧的利用萤石形成的光学元件之间的一部分上。
再者,在所述的实施形态中,使用了纯水作为液体,但作为液体,不限于纯水,也可使用具有对于曝光的光的透过性、折射率尽可能高、对于投影光学系统或在晶片表面上被涂敷了的光致抗蚀剂稳定的液体(例如雪松油等)。在使用F2激光作为曝光的光的情况下,作为液体,使用F2激光可透过的例如氟类油或过氟化聚醚(PFPE)等的氟类的液体即可。
此外,在所述的实施形态中,与本发明有关的光学元件作成了透镜形状,但不限于此,也可在以前的萤石透镜与液体之间作成覆盖玻璃,在萤石的板状基板上成膜,作成与本发明有关的光学元件。
再者,在所述的实施形态14至15中,举出将一层薄薄的纯水涂敷在接合两界面中的情况为例进行了说明,但也可应用作为氟类溶剂的PFC(全氟化碳)、HFE(氢化氟醚)、PFPE(全氟化聚醚)。
此外,在实施形态中使用的喷嘴的数目或形状不作特别限定,例如也可对于前端部4A的长边用2对喷嘴进行液体的供给或回收。再有,在该情况下,由于可从-X方向或+X方向的任一方向进行液体的供给或回收,故可在上下并排地配置排出喷嘴和流入喷嘴。
〔实施形态16〕
除了如下所述那样使用了经膜与光学构件进行了光学接触的光学元件以外,与第1实施形态同样地构成了投影曝光装置。
与该实施形态16有关的”步进和重复”方式方式的投影曝光装置,如图1中所示,具备:照明中间掩模(掩模)R的照明光学系统1;支撑中间掩模R的中间掩模台RST;支撑晶片(基板)的晶片台装置;驱动晶片台装置并以三维方式使晶片W移动的晶片台驱动系统15;将在中间掩模R上形成的图形像投影到晶片W上的投影光学系统PL;向投影光学系统PL与晶片W之间供给液体的液体循环装置;以及统一地控制投影曝光装置的整体的工作的主控制系统14。
照明光学系统1由包含作为曝光光源的ArF受激准分子激光器光源,由光积分器(均质器)、视野光阑、聚光透镜等构成。由从光源射出了的波长193nm的紫外脉冲光构成的曝光的光IL经过照明光学系统1射出,对在中间掩模R中被设置了图形像进行照明。通过了中间掩模R的像光经投影光学系统PL投影到被涂敷了光致抗蚀剂的晶片W上的曝光区域上。再有,作为曝光的光IL,也可使用KrF受激准分子激光(波长248nm)、F2激光(波长157nm)或水银灯的i线(波长356nm)等。
中间掩模台RST在保持了中间掩模R的状态下,可调节其位置或姿势。即,在中间掩模台装置中装入了在相对于投影光学系统PL的光轴AX实质上垂直的X方向或Y方向或在围绕光轴AX的旋转方向上使中间掩模R微动的机构。利用中间掩模激光干涉计(未图示)实时地检测了中间掩模R的X方向、Y方向和旋转方向的位置,利用中间掩模台驱动系统(未图示)进行了控制。
晶片台装置在保持了晶片W的状态下,可调节其位置或姿势。如果说明具体的结构,则晶片W经晶片座被固定在Z台9上,该Z台9可进行晶片W的聚焦位置、即相对于光轴AX实质上平行的Z方向的位置和对于该位置的倾斜角的调整。Z台9被固定在XY台10上,该XY台10被支撑在基座11上。XY台10可沿相对于投影光学系统PL的像面实质上平行的XY平面使晶片座移动,可进行晶片W上的拍摄区域的变更等。再有,利用在晶片座上被设置了的移动镜12和对移动镜12供给检测光的晶片激光干涉计13实时地检测Z台9的X方向、Y方向和旋转方向的位置。
晶片台驱动系统15根据来自主控制系统14的控制信号而工作,既可将晶片W的姿势保持为所优选的状态,又可在适当的时机使晶片W移动到目的位置上。
投影光学系统PL具备容纳通过对石英或萤石进行加工形成的透镜等的多个光学元件或光学部件的镜筒3。该投影光学系统PL是两侧远心或只在晶片W一侧远心的成像光学系统,中间掩模R的图形像经投影光学系统PL以例如1/4、1/5等的规定的投影倍率β在晶片W的拍摄区域上进行缩小投影曝光。
再有,该投影光学系统PL成为在与晶片W之间充满了规定的液体的状态下被使用的液浸光学系统。即,在该投影曝光装置中,为了实质上缩短曝光波长而且提高解像度而应用了液浸法。在这样的液浸型的投影曝光装置中,在至少将中间掩模R的图形像转印到晶片W上的期间内,在晶片W的表面与投影光学系统PL的晶片W一侧露出的光学元件4的前端面之间充满了液体7。作为液体7,使用了在半导体制造工厂等中能容易地大量地得到的纯水。再有,由于纯水的杂质含有量极低,故可有清洗晶片W的表面的作用。再有,在曝光中,由于被构成为只是投影光学系统PL中光学元件4的晶片W一侧的前端部与液体7接触,故防止了由金属构成的镜筒3的腐蚀等。
图25是示意性地说明在本实施形态中使用了的投影光学系统PL的在晶片W一侧凸起的光学元件4的结构的侧剖面图。
从图25可明白的那样,通过使作为用萤石形成的光学元件的基板材料201与用合成石英形成的基板材料构成的光学构件202互相进行光学接触(光学粘接)形成了光学元件4。在该投影光学系统PL中,只是光学元件4中前端一侧的光学构件202与作为纯水等的液体7接触,里面一侧的基板材料201不与液体7直接接触。这样,利用光学构件202覆盖了投影光学系统PL的前端的原因是,考虑了由萤石构成的光学元件4对于作为纯水等的液体7具有微量的可溶性,利用由具有高的耐水性的合成石英构成的光学构件202来保护光学元件4。
在利用光学接触使光学构件202保持、固定在光学元件4上的情况下,必须提高光学元件4与光学构件202之间的接合强度,以免光学构件202相对于光学元件4发生位置偏移或脱落。因此,在光学元件4的基板材料201的用于光学接触的一侧的表面上形成了由氧化物构成的薄的覆盖膜203。另一方面,在光学构件202的用于光学接触的一侧的表面上未特别形成覆盖膜。这样,通过在光学元件4的基板材料201与光学构件202之间介入覆盖膜203,提高了光学元件4与光学构件202之间的接合强度。
以下,简单地说明提高光学元件4与光学构件202之间的接合强度的原因。作为影响光学接触的接合强度的因素,如在特开平9-221342号公报中示出的那样,已知有接合面的面粗糙度。但是,最近了解了,在进行光学接触时,除了面粗糙度外,化学的因素有影响,本发明者发现了,通过控制这样的化学的因素,可提高构成投影光学系统PL前端的光学元件4的基板材料201与光学构件202之间的接合强度。
在以前进行了的氧化物光学材料相互间的光学接触中,由于在用于接合的表面的两者中以高密度存在氢氧基(-OH),故通过使这两者密接,产生因氢键接合或脱水缩合引起的共价键接合,可得到牢固的接合。另一方面,在本实施形态的光学元件4中,由于构成光学元件4的基板材料201的氟化物(具体地说,是CaF2)的表面与氧化物表面比较氢氧基密度低,故可认为即使按原样与光学构件202密接,也不能得到牢固的接合。因此,通过利用由氧化物构成的覆盖膜203覆盖基板材料201的氟化物表面,在接合面中导入充分的量的氢氧基。由此,在基板材料201和光学构件202相互间可达到牢固的光学接触。具体地说,利用真空蒸镀,在基板材料201上均匀地淀积了由二氧化硅(SiO2)构成的薄的覆盖膜203。
此外,由于在由萤石构成的基板材料201上用真空蒸镀法形成由二氧化硅构成的覆盖膜203,故可抑制在覆盖膜203中发生裂纹等。即,由于在萤石的热膨胀系数与二氧化硅的热膨胀系数之间没有大的差别,故即使在加热了的状态的基板材料201上形成覆盖膜203后将基板材料201等冷却到常温,也可防止在覆盖膜203中发生裂纹或残存应力变形的情况。再有,在石英上形成氟化物膜的情况下,起因于热膨胀系数差约为1个数量级的情况,容易发生裂纹。
图26~图29是简单地说明图25中示出的光学元件4的制造工序的图。如图26中所示,首先,加工萤石(CaF2),准备作为具有规定的光学面OS1的光学元件的基板材料201。其次,如图27中所示,一边加热基板材料201,一边在光学面OS1上淀积SiO2层,作成覆盖膜203。由此,可准备形成了覆盖膜203的基板材料201。此时,通过利用真空蒸镀,可形成对于基板材料201密接性良好的、高密度的覆盖膜203。其次,如图28中所示,加工合成石英(SiO2),准备具有规定的光学面OS2的光学构件202。最后,如图29中所示,贴合基板材料201和光学构件202,在基板材料201的覆盖膜203的表面OS3与光学构件202的光学面OS2之间形成光学接触,完成光学元件4。
在具体的制作例中,将构成光学元件4的基板材料201的萤石(CaF2)的射出侧的光学面OS1加工为平坦面。此外,用真空蒸镀成膜时加热基板材料201,使所形成的覆盖膜203的膜厚约为10nm。另一方面,对于光学构件202来说,加工合成石英的基板,作成了1mm厚的平行平板。其后,在不利用粘接剂的情况下,贴合光学元件4的基板材料201的光学接触面与光学构件202的光学接触面来接合。为了确认这样形成的光学元件4的光学接触的强度,进行了以下的实验。
即,为了进行光学元件4的透射率评价,用紫外测定用分光光度计进行了波长193.4mm中的透射率(%)的测定。此外,为了进行光学元件4的强度评价,进行了精密万能材料试验机的拉伸加重试验。再有,在拉伸加重试验时,在从光学元件4的基板材料201剥离光学构件202的方向、即对于光学接触面垂直的方向给予使之分离的拉伸加重,将光学构件202剥离了的加重值定为剥离加重(Kgf/cm2)。为了比较起见,准备没有覆盖膜203的基板材料201,也准备直接使该基板材料201与光学构件202进行了光学接触的比较样品。结果如以下的表9中所示。
〔表9〕
  透射率(%)   剥离加重(Kgf/cm2)
  实施例(有SiO2层)   91.5   31.8
  比较例(无SiO2层)   91.5   10.3
从以上的表9可明白,在本实施形态的光学元件4(实施例:有SiO2层)中,关于光学接触,与比较样品(比较例:没有SiO2层)的光学元件相比,可得到大于等于几倍的耐剥离强度,关于曝光的光的波长的光量损耗也是同等的,不逊色。
返回到图1,液体循环装置具备液体供给装置5和液体回收装置6。其中,液体供给装置5由液体7用的罐、加压泵、温度控制装置等构成,经供给管21和排出喷嘴21a对晶片W与光学元件4的前端部之间供给温度被控制了的状态的液体7。此外,液体回收装置6由液体7用的罐、吸引泵等构成,经回收管23和流入喷嘴23a、23b回收在晶片W与光学元件4的前端部之间的液体7。将利用这样的液体循环装置循环的液体7的温度设定为例如与容纳了本实施形态的投影曝光装置的容器内的温度为相同的程度。再有,纯水对于波长约为200nm的曝光的光的折射率n约1.44,由于波长193nm的ArF受激准分子激光在晶片W上其波长缩短为1/n、即在表观上波长缩短为134nm,故可得到高的解像度。
图3是示出图1的排出喷嘴21a和流入喷嘴23a、23b中关于X方向的配置关系的平面图,图4是示出图1的排出喷嘴21a和流入喷嘴23a、23b中关于Y方向的配置关系的平面图。
如图4(a)中所示,在+X方向一侧配置了具有细的前端部的第1排出喷嘴21a,在-X方向一侧配置了具有细的前端部的第2排出喷嘴22a,使它们将作为投影光学系统的前端的光学元件4的前端部4A夹在中间。将该第1和第2排出喷嘴21a、22a分别经第1和第2供给管21、22连接到液体供给装置5上。此外,在+X方向一侧配置了前端部扩展了的一对第1流入喷嘴23a,在-X方向一侧配置了前端部扩展了的一对第2流入喷嘴24a,使它们将光学元件4的前端部4A夹在中间。将该第1和第2流入喷嘴23a、24a分别经第1和第2回收管23、24连接到液体回收装置6上。
在使晶片W以步进方式在用实线示出的箭头25A(-X方向)上移动时,经第1供给管21和第1排出喷嘴21a向光学元件4的前端部4A与晶片W之间供给液体7。与其同步地,经第2回收管24和第2流入喷嘴24a回收被供给到光学元件4的前端部4A与晶片W之间的液体7。另一方面,在使晶片W以步进方式在用点线示出的箭头26A(+X方向)上移动时,经第2供给管22和第2排出喷嘴22a向光学元件4的前端部4A与晶片W之间供给液体7。与其同步地,经第1回收管23和第1流入喷嘴23a回收被供给到光学元件4的前端部4A与晶片W之间的液体7。
如图4中所示,在+Y方向一侧配置了具有细的前端部的第3排出喷嘴27a,在-Y方向一侧配置了具有细的前端部的第4排出喷嘴28a,使它们将光学元件4的前端部4A夹在中间。将该第3和第4排出喷嘴27a、28a分别经第3和第4供给管27、28连接到液体供给装置5上。此外,在+Y方向一侧配置了前端部扩展了的一对第3流入喷嘴29a,在-Y方向一侧配置了前端部扩展了的一对第4流入喷嘴30a,使它们将光学元件4的前端部4A夹在中间。将该第3和第4流入喷嘴29a、30a分别经第3和第4回收管29、30连接到液体回收装置6上。
在±Y方向上使晶片W以步进方式移动的情况也与±X方向的步进移动是同样的,转换第3和第4供给管27、28用第3和第4排出喷嘴27a、28a中对应的一方使液体7喷出,转换第3和第4回收管29、30用第3和第4流入喷嘴29a、30a中对应的一方使液体7吸引。
再有,不仅可如上所述那样设置从X方向或Y方向进行液体7的供给和回收的喷嘴23a~30a,也可例如设置从倾斜的方向进行液体7的供给和回收用的喷嘴。
返回到图1,主控制系统14对在中间掩模台RST中被装入了的驱动机构发送控制信号,通过使中间掩模台微动,进行中间掩模R的位置或姿势的调整。此时,利用未图示的中间掩模激光干涉计进行中间掩模R的X方向、Y方向和旋转方向的位置的检测。
此外,主控制系统14对晶片台驱动系统15发送控制信号,通过经晶片台驱动系统15驱动Z台9,进行晶片W的聚焦位置和倾斜角的调整。此外,主控制系统14对晶片台驱动系统15发送控制信号,通过经晶片台驱动系统15驱动XY台10,进行晶片W的X方向、Y方向和旋转方向的位置调整。此时,利用晶片激光干涉计13进行晶片W的X方向、Y方向和旋转方向的位置的检测。
在曝光时,主控制系统14对晶片台驱动系统15发送控制信号,通过经晶片台驱动系统15驱动XY台10,使晶片W上的各拍摄区域以步进方式依次移动到曝光位置上。即,利用”步进和重复”方式重复将中间掩模R的图形像在晶片W上曝光的工作。
主控制系统14在曝光中或其前后使由液体供给装置5和液体回收装置6构成的液体循环装置适当地工作,对于在晶片W的移动中的投影光学系统PL下端与晶片W之间被充填的液体7进行供给量和回收量的控制。参照图5,在晶片W的移动例如是沿箭头25A的-X方向的情况下,从第1排出喷嘴21a供给了的液体7在箭头25A的方向(-X方向)上流动,被第2流入喷嘴23a、23b回收。在此,为了使晶片W在移动中在光学元件4与晶片W之间被充填的液体7的量保持为恒定,使液体7的供给量Vi(m3/s)与回收量Vo(m3/s)相等。此外,为了避免液体7的过剩的循环或不充分的循环,根据XY台10即晶片W的移动速度v来调整液体7的供给量Vi和回收量Vo的总量。例如,根据以下的式(1),可计算液体LQ的供给量Vi和回收量Vo。
Vi=Vo=D·v·d    ...(1)
在此,D是光学元件4的前端部4A的直径(m),v是由XY台10产生的晶片W的移动速度(m/s),d是投影光学系统PL的工作距离(m)。主控制系统14控制了XY台10的步进移动,通过根据与XY台10的步进移动对应的式(1)计算液体7的供给量Vi和回收量Vo,可在光学元件4与晶片W之间始终稳定了的状态下充满液体7。通过这样控制液体7的供给量Vi和回收量Vo,可防止液体7从光学元件4不必要地溢出或光学元件4前端的光学构件202浸在液体7中。于是,可防止光学元件4的侵蚀或与光学构件202之间的光学接触的损伤,可在长时间内维持光学元件4的性能。即,可降低光学元件4的更换频度,可将晶片W的曝光处理的生产能力维持得较高,于是,能以稳定的品质高效地生产最终制品。
以上所述是关于使晶片W在±X方向上移动的情况,但在使晶片W在±Y方向上移动的情况下,也利用同样的控制可稳定地维持在光学元件4与晶片W之间被保持的液体7的量。
再有,为了在光学元件4与晶片W之间使液体7稳定地存在,优选使投影光学系统PL的工作距离d尽可能地窄。例如,将投影光学系统PL的工作距离d设定为约2mm。
从以上的说明可明白,按照本实施形态的投影曝光装置,由于通过利用优良的光学接触牢固地接合光学元件4与光学构件202,并且使用了装入具有高的透射率的光学元件4的投影光学系统PL,可进行能在长时间内维持高的性能的液浸型的曝光处理。
以上就实施形态16进行了说明,但本发明不限定于所述实施形态16。例如,作为光学元件4的基板材料201的材料,根据使用波长来决定,但可使用氟化钡(BaF2)、氟化镁(MgF2)等来代替萤石。
此外,作为光学元件4的基板材料201的材料,根据使用波长来决定,但可使用氧化铝(Al2O3)等来代替二氧化硅(SiO2)。再有,覆盖膜203不限于单一的组成的膜,可作成层叠了多个种类的大于等于2层的膜的结构,在该情况下,优选最上层作成二氧化硅等的氧化膜。
此外,作为光学构件202的材料,根据使用波长来决定,但可使用蓝宝石等来代替石英。再者,也可将在氟化物玻璃等的表面上淀积了二氧化硅(SiO2)等的薄膜的结构定为光学构件202。
此外,光学元件4的基板材料201或光学构件202的形状不限于所述实施形态的形状。例如,光学元件4或光学构件202的用于光学接触的面不限于平面,可作成具有各种各样的曲率的曲面。
此外,在所述实施形态中,利用真空蒸镀法在基板材料201上形成了二氧化硅(SiO2)膜,但可使用离子束辅助蒸镀法、气体团离子束辅助蒸镀法、离子喷镀法、离子束溅射法、磁控管溅射法、偏压溅射法、ECR溅射法、RF溅射法、热CVD法、等离子CVD法和CVD法等的任一种成膜方法。
此外,在所述实施形态中,利用液体7充满了光学元件4的前端部4A与晶片W的薄膜的间隙空间的全体,但也可使液体7介入到这样的间隙空间的一部分中。
此外,在所述实施形态中,使用了纯水作为液体7,但也可使用具有对于曝光的光的透过性、折射率尽可能高、对于投影光学系统或在晶片表面上被涂敷了的光致抗蚀剂稳定的各种液体(例如雪松油等)。再有,在使用F2激光作为曝光的光的情况下,作为液体7,可使用F2激光可透过的例如氟类油或过氟化聚醚(PFPE)等的氟类的液体。
此外,所述实施形态的喷嘴等的配置或个数是例示,可根据晶片W的尺寸或移动速度等适当地变更喷嘴的配置或个数。
〔实施形态17〕
其次,参照附图,说明与实施形态17有关的投影曝光装置。图30是示出与实施形态17有关的”步进和扫描”方式的投影曝光装置的投影光学系统PLA的下部、液体供给装置5和液体回收装置6等的正面图。此外,在以下的说明中,设定图30中示出的XYZ正交坐标系,一边参照该XYZ正交坐标系,一边说明各构件的位置关系。关于XYZ正交坐标系,将X轴和Y轴设定为对于晶片W平行,将Z轴设定为对于晶片W正交的方向。关于图中的XYZ正交坐标系,实际上将XY平面设定为与水平面平行的面,将Z轴设定为垂直上方向。再有,在图30中,对于与本实施形态有关的投影曝光装置相同的结构,附以与在实施形态1中使用了的符号相同的符号来进行说明。
在该投影曝光装置中,投影光学系统PLA的镜筒3A的最下端的透过光学元件32的晶片W一侧的前端部32A只留下在扫描曝光中必要的部分,在Y方向(非扫描方向)上被削减为细长的矩形。在扫描曝光时,将中间掩模(未图示)的一部分的图形像投影到晶片W一侧的前端部32A的正下方的矩形的曝光区域上,对于投影光学系统PLA,与中间掩模(未图示)在-X方向(或+X方向)上以速度V移动同步地,晶片W经XY台10在+X方向(或-X方向)上以速度β·V(β是投影倍率)移动。然后,在对1个拍摄区域的曝光结束后,利用晶片W的步进,下一个拍摄区域移动到扫描开始位置上,以下以”步进和扫描”方式依次进行对各拍摄区域的曝光。
在该实施形态中,将与在实施形态1中使用了的透过光学元件4(参照图2)同样的透过光学元件用作透过光学元件32。即,透过光学元件32的基体材料是萤石,该萤石的成膜面的结晶方位是(111)面。此外,在透过光学元件32的晶片W一侧的前端部32A、即曝光的光透过的部分上,利用真空蒸镀法形成氟化镁(MgF2)膜F1和二氧化硅(SiO2)膜F2,作为防止溶解膜,再者,利用湿式制膜法,形成二氧化硅(SiO2)膜F3。
此外,在透过光学元件32的锥形面32B、即曝光的光不透过的部分上利用溅射法形成钽(Ta)膜F5(F4)作为金属制防止溶解膜(兼作密接力强化膜)。在金属制防止溶解膜(防止溶解膜)F5的表面上,与二氧化硅(SiO2)膜F3同时地利用湿式制膜法形成二氧化硅(SiO2)膜F6,作为保护金属制防止溶解膜用的金属制防止溶解膜保护膜(防止溶解膜保护膜)。在此,在透过光学元件32的锥形面32B上形成的金属制防止溶解膜(防止溶解膜)F5的对纯水的溶解度小于等于2ppt,充填密度大于等于95%。此外,因在透过光学元件32的前端部32A上形成的防止溶解膜F1~F3使曝光束的射出角度为50度时的平均反射率小于等于2%。
即使在该实施形态17中,也与实施形态1同样,由于应用液浸法,故在扫描曝光中在透过光学元件32与晶片W之间充满液体7。作为液体7,使用了纯水。分别利用液体供给装置5和液体回收装置6进行液体7的供给和回收。
图31是示出投影光学系统PLA的透过光学元件32的表面(晶片W一侧的前端部32A和锥形面32B)和在X方向上供给和回收液体7用的排出喷嘴和流入喷嘴的位置关系的图。如图31中所示,液体供给装置5经供给管21在Y方向上呈细长的矩形状的前端部32A和锥形面32B的+X方向一侧连接了3个排出喷嘴21a~21c,在前端部32A和锥形面32B的-X方向一侧连接了3个排出喷嘴22a~22c。此外,如图31中所示,液体回收装置6经回收管23在前端部32A和锥形面32B的-X方向一侧连接了2个流入喷嘴23a、23b,经回收管24在前端部32A和锥形面32B的+X方向一侧连接了2个流入喷嘴24a、24b。
在使晶片W在用实线的箭头示出的扫描方向(-X方向)上移动进行扫描曝光的情况下,液体供给装置5经供给管21和排出喷嘴21a~21c向透过光学元件32的前端部32A和锥形面32B与晶片W之间供给液体7。液体回收装置6经回收管23和流入喷嘴23a、23b回收利用液体供给装置5向透过光学元件32的锥形面32B与晶片W之间供给了的液体7。在该情况下,液体7在-X方向上流过晶片W上,利用液体7充满透过光学元件32与晶片W之间。
此外,在使晶片W在用2点划线的箭头示出的方向(+X方向)上移动进行扫描曝光的情况下,液体供给装置5经供给管22和排出喷嘴22a~22c向透过光学元件32的前端部32A与晶片W之间供给液体7。液体回收装置6经回收管24和流入喷嘴24a、24b回收利用液体供给装置5向透过光学元件32的前端部32A与晶片W之间供给了的液体7。在该情况下,液体7在+X方向上流过晶片W上,利用液体7充满光学元件32与晶片W之间。
此外,利用以下的数学式2来计算液体7的供给量Vi和回收量Vo。
(数学式2)
Vi=Vo=DSY·v·d
在此,DSY是光学元件32的前端部32A的X方向的长度(m)。由于预先输入了DSY,故通过根据数学式2计算、调整液体7的供给量Vi(m3/s)和回收量Vo(m3/s),即使在扫描曝光中,液体7也稳定地充满光学元件32与晶片W之间。
此外,在使晶片W在Y方向上以步进方式移动时,利用与实施形态1相同的方法从Y方向进行液体7的供给和回收。
图32是示出投影光学系统PLA的光学元件32的前端部32A和Y方向用的排出喷嘴和流入喷嘴的位置关系的图。如图32中所示,在使晶片W在与扫描方向正交的非扫描方向(-Y方向)上以步进方式移动的情况下,使用在Y方向上排列了的排出喷嘴27a和流入喷嘴29a、29b进行液体7的供给和回收。此外,在使晶片W在+Y方向上以步进方式移动的情况下,使用在Y方向上排列了的排出喷嘴28a和流入喷嘴30a、30b进行液体7的供给和回收。在该情况下,利用数学式3来计算液体7的供给量Vi和回收量Vo。
(数学式3)
Vi=Vo=DSX·v·d
在此,DSX是光学元件32的前端部32A的Y方向的长度(m)。与实施形态1同样,在+Y方向上以步进方式移动时,也通过根据晶片W的移动速度v来调整液体7的供给量,利用液体7持续充满光学元件32与晶片W之间。
按照与该实施形态17有关的投影曝光装置,起到与实施形态1同样的作用和效果。
即,首先,由于在光学元件的表面上形成防止溶解膜,故可防止光学元件的溶解。因而,由于光学元件不会因在投影光学系统的前端部与基板之间被充满了的液体而溶解,故没有必要频繁地更换光学元件,故可维持投影曝光装置的高的生产能力。此外,没有必要为了更换溶解了的光学构件1而停止曝光装置的工作,可高效地生产最终制品。再者,由于光学元件不因液体而溶解,故因为可维持投影光学系统的光学性能,故可使所生产的最终制品的品质变得稳定,可在最佳的状态下持续进行曝光。
此外,按照与该实施形态17有关的投影曝光装置,由于在投影光学系统PLA的晶片W一侧的透过光学元件32的锥形面32B上形成兼作密接力强化膜的金属制防止溶解膜,故可使金属制防止溶解膜密接到透过光学元件32上。此外,由于在金属制防止溶解膜的表面上形成二氧化硅(SiO2)膜,故可防止柔软的耐擦伤性低的金属制防止溶解膜的损伤,可保护金属制防止溶解膜。因而,可防止在晶片W的表面与投影光学系统PLA之间介入了的液体7的对透过光学元件32的浸透和侵蚀,可维持投影光学系统PLA的光学性能。此外,由于透过光学元件32不因液体7而溶解,故可维持曝光装置的性能。再者,由于没有必要频繁地更换透过光学元件32,故可将投影曝光装置的生产能力维持得较高。
〔实施形态18~31〕
除了分别将与在实施形态2~15中使用了的透过光学元件4同样的元件用作透过光学元件32外,与实施形态17同样地构成了实施形态18~31的投影曝光装置。
按照这样被构成了的实施形态18~31的投影曝光装置,分别起到与实施形态2~15中被构成了的投影曝光装置同样的作用和效果。
〔实施形态32〕
除了使用如以下那样光学构件经膜进行了光学接触的光学元件以外,与实施形态17同样地构成了投影曝光装置。再有,部分地变更了实施形态16的投影曝光装置,使之用”步进和扫描”方式进行曝光,对于与实施形态16共同的部分,引用同一符号,省略重复说明。
在图30中示出的实施形态32的投影曝光装置中,从投影光学系统PLA的镜筒3A的最下端突出的光学元件32的前端部32B只留下在扫描曝光中必要的部分,在Y方向(非扫描方向)上被削减为细长的矩形。在扫描曝光时,将中间掩模的一部分的图形像投影到前端部32B的正下方的矩形的曝光区域上,对于投影光学系统PLA,与中间掩模(未图示)在-X方向(或+X方向)上以速度V移动同步地,晶片W经XY台10在+X方向(或-X方向)上以速度β·V(β是投影倍率)移动。然后,在对1个拍摄区域的曝光结束后,利用晶片W的步进,下一个拍摄区域移动到扫描开始位置上,以下以”步进和扫描”方式依次进行对各拍摄区域的曝光。
在该实施形态32中,也与实施形态16同样,由于应用液浸法,故在扫描曝光中,将纯水等的液体7充满在光学元件32的下面与晶片W表面之间。再有,光学元件32与实施形态16的情况同样,由萤石制的基板材料201和石英制的光学构件202构成(参照图25)。而且,在该光学元件32中,在光学元件32的基板材料201上均匀地淀积由二氧化硅(SiO2)构成的薄的覆盖膜203,实现了牢固的光学接触,由萤石构成的基板材料201保护光学元件32使之不受液体7的影响,可提高光学元件32乃至投影光学系统PLA的耐久性。
图31是示出在投影光学系统PLA正下方供给和回收液体用的排出喷嘴和流入喷嘴的位置关系的图。液体供给装置5经供给管21在前端部32A的+X方向一侧连接了3个排出喷嘴21a~21c,经供给管22在前端部32A的-X方向一侧连接了3个排出喷嘴22a~22c。此外,在液体回收装置6上经回收管23在前端部32A的+X方向一侧连接了2个流入喷嘴23a、23b,经回收管24在前端部32A的-X方向一侧连接了2个流入喷嘴24a、24b。
在使晶片W在用实线的箭头示出的扫描方向(-X方向)上移动进行扫描曝光的情况下,液体供给装置5经供给管21和排出喷嘴21a~21c向透过光学元件32的前端部32A与晶片W之间供给液体7。液体回收装置6经回收管23和流入喷嘴23a、23b回收在前端部32A与晶片W之间被保持了的液体7。在该情况下,液体7在-X方向上流过晶片W上,利用液体7常时地充满光学元件32与晶片W之间。
此外,在使晶片W在用一点划线的箭头示出的方向(+X方向)上移动进行扫描曝光的情况下,液体供给装置5经供给管22和排出喷嘴22a~22c向透过光学元件32的前端部32A与晶片W之间供给液体7。液体回收装置6经回收管24和流入喷嘴24a、24b回收在前端部32A与晶片W之间被保持了的液体7。在该情况下,液体7在+X方向上流过晶片W上,利用液体7始终充满光学元件32与晶片W之间。
再有,在使晶片W在±Y方向上移动时在使液体7光学元件32与晶片W之间循环用的排出喷嘴和流入喷嘴的配置等大致与实施形态16的情况是同样的。
根据实施形态32的扫描型投影曝光装置,通过利用优良的光学接触牢固地接合光学元件32与光学构件202,同时使用装入了具有高的透射率的光学元件32的投影光学系统PLA,故可进行能在长时间内维持高的性能的曝光处理。
〔实施形态33〕
参照附图,说明与本发明的实施形态33有关的曝光装置。与本实施形态有关的曝光装置是为了在实质上缩短曝光波长以提高解像度的同时实质上扩展聚焦深度而应用了液浸法的液浸曝光装置。图33是示出构成与本实施形态有关的曝光装置的投影光学系统PL的利用多个萤石构成的光学元件中最接近于投影光学系统PL的像面的第1光学元件LS1和在第1光学元件LS1的其次接近于投影光学系统PL的像面的第2光学元件LS2等的图。
该曝光装置具备用第1液体LQ1充满构成投影光学系统PL的多个光学元件中最接近于投影光学系统PL的像面的第1光学元件LS1的下面T1与基板P之间的第1液浸机构。在投影光学系统PL的像面一侧设置了基板P,将第1光学元件LS1的下面T1配置成与基板P的表面对置。第1液浸机构具备向第1光学元件LS1的下面T1与基板P之间供给第1液体LQ1的第1液体供给机构90和回收用第1液体供给机构90供给了的第1液体LQ1的第1液体回收机构91。
此外,该曝光装置具备用第2液体LQ2充满第1光学元件LS1与在第1光学元件LS1的其次接近于投影光学系统PL的像面的第2光学元件LS2之间用的第2液浸机构。在第1光学元件LS1的上方配置了第2光学元件LS2,将第1光学元件LS1的上面T2配置成与第2光学元件LS2的下面T3对置。第2液浸机构具备向第1光学元件LS1与第2光学元件LS2之间供给第2液体LQ2的第2液体供给机构92和回收用第2液体供给机构92供给了的第2液体LQ2的第2液体回收机构93。
在镜筒PK中设置了与第1光学元件LS1的上面T2的周边区域对置的对置面89。而且,在上面T2的周边区域与对置面89之间设置了第1密封构件94。例如利用密封圈(例如,デユポンダ公司制「カルレツツ」)或C环构成了第1密封构件94。利用第1密封构件94防止了在上面T2上被配置了的第2液体LQ2的朝向上面T2的外侧的漏出、以及朝向镜筒PK的外侧的漏出。此外,在第2光学元件LS2的侧面C2与镜筒PK的内侧面PKC之间设置了第2密封构件95。例如利用V环构成了第2密封构件95。利用第2密封构件95来限制在镜筒PK的内侧第2液体LQ2、由第2液体LQ2发生了的潮湿的气体朝向第2光学元件LS2的上方流通。
此外,在第1光学元件LS1的侧面C1与镜筒PK的内侧面PKC之间设置了第3密封构件96。例如利用V环构成了第3密封构件96。利用第3密封构件96来限制在镜筒PK的内侧第1液体LQ1、由第1液体LQ1发生了的潮湿的气体朝向第1光学元件LS1的上方流通。
在第1光学元件LS1的侧面(锥形面)C1和第2光学元件LS2的侧面(锥形面)C2上形成了150nm的膜厚的金(Au)的遮光膜。因而,利用遮光膜可防止曝光的光和来自晶片的曝光的光反射光照射到在投影光学系统的基板一侧的透过光学元件的锥形面的周边部上被设置了的第1密封构件94、第2密封构件95和第3密封构件96上。可防止密封构件的性能恶化。
再有,在所述的第33实施形态中,在第1光学元件LS1的侧面(锥形面)C1和第2光学元件LS2的侧面(锥形面)C2上形成了由使用了金(Au)的金属膜构成的遮光膜,但也可利用由金(Au)、铂(Pt)、银(Ag)、镍(Ni)、钽(Ta)、钨(W)、钯(Pd)、钼(Mo)、钛(Ti)和铬(Cr)中的至少一种形成的膜构成。此外,也可利用金属氧化物膜构成遮光膜。在该情况下,利用由二氧化锆(ZrO2)、二氧化铪(HfO2)、二氧化钛(TiO2)、五氧化钽(Ta2O5)、氧化硅(SiO)和氧化铬(Cr2O3)中的至少一种形成的膜构成。
在以上已说明的实施形态1~33中,采用了用液体局部地充满投影光学系统PL与基板P之间的曝光装置,但也可将本发明应用于在特开平6-124873号公报中被公开了的那样的在液槽中使保持了曝光对象的基板的台移动的液浸曝光装置或在特开平10-303114号公报中被公开了的那样的在台上形成规定的深度的液体槽并在其中保持基板的液浸曝光装置。
再者,本发明也可应用于如在特开平10-163099号公报、特开平10-214783号公报、特表2000-505958号公报等中被公开了的那样具备分别放置晶片等的被处理基板并在XY方向上可独立地移动的2个台的双台型的曝光装置。
除了所述的说明外,在本说明书中列入了记载了可应用于本发明的曝光装置的结构的所述的国际公开公报WO2004/019128号、国际公开公报WO2004/053950号、国际公开公报WO2004/0053951号作为参考文献。
实施例
以下,根据实施例和比较例更具体地说明本发明,但本发明不限定于以下的实施例。
〔实施例1〕
图34是示出本发明的光学元件50的结构的图。如图34中所示,在成膜面52a的结晶方位为(111)面的萤石52的基板上通过使用RF溅射法将作为萤石52的防止溶解膜的氧化硅54作成0.55λ(λ=193nm)的光学的膜厚来成膜,形成了光学元件50。在此,在如图35中所示那样光从实线箭头56的方向入射到萤石52上并被萤石52在虚线箭头58的方向反射的情况下,为了抑制因从萤石52的基板上被残存反射的光所发生的重像现象,必须限制氧化硅膜的光学的膜厚。即,图36是示出光入射到萤石基板上时的萤石的残存反射率的图。在图36的实线60中示出在萤石基板上未形成氧化硅膜的时的萤石的残存反射率。此外,在图36的虚线62中示出在萤石基板上形成氧化硅膜的情况的萤石的残存反射率。如图36中所示那样,将氧化硅膜的光学的膜厚设定为在光入射到萤石基板上的入射角度为60°时的萤石的残存反射率小于等于0.5%。
使用光学元件50进行了实验。图37是示出与该实施例有关的实验装置的结构的图。在用相对于光学元件50的体积为充分大的聚醚醚酮(PEEK)作成了的水槽64中放入70℃的纯水66。在纯水66中投入特富隆(登录商标)制的搅拌器68。如图37中所示那样,将光学元件50投入到纯水66中,只使一半的光学元件50浸在纯水66中。将包含光学元件50、纯水66、搅拌器68的水槽64放入恒温槽70中,将温度保持为恒定。
在此,对于水槽64来说,为了减小因纯水66的蒸发导致的液面变化,使用相对于光学元件50的体积为充分大的水槽64。此外,即使在光学元件50溶解于纯水66而生成了缓冲溶液的情况下,为了使溶解度保持为恒定,也使用搅拌器68。在将光学元件50浸在纯水66中的状态下经过了3小时后,用分辨率0.5nm的台阶差测定器测定了未浸在纯水66中的部分的光学元件50和浸在纯水66中的部分的光学元件50的台阶差时,未发生台阶差。
〔实施例2〕
图38是示出本发明的光学元件74的结构的图。如图38中所示,在成膜面76a的结晶方位为(111)面的萤石76的基板上通过使用真空蒸镀法将作为萤石76的防止溶解膜的氟化镧78作成0.68λ(λ=193nm)的光学的膜厚来成膜,形成了光学元件74。已知萤石76的结晶方位(111)面上的氟化镧78反映了萤石76的结晶方位并在(111)面上以异质外延方式生长的事实(参照WO 03/009015)。因而,形成的氟化镧78是非常致密的,形成缺陷非常少的结晶结构。
使用光学元件74进行了实验。由于与该实施例有关的实验装置的结构与图37中示出的与实施例1有关的实验装置的结构是相同的,故对相同的结构附以与实施例1相同的符号来进行说明。
首先,在相对于光学元件74的体积为充分大的水槽64中放入70℃的纯水66。在纯水66中投入搅拌器68。将光学元件74投入到纯水66中,只使一半的光学元件74浸在纯水66中。将包含光学元件74、纯水66、搅拌器68的水槽64放入恒温槽70中,将温度保持为恒定。在将光学元件74浸在纯水66中的状态下经过了3小时后,用分辨率0.5nm的台阶差测定器测定了未浸在纯水66中的部分的光学元件74和浸在纯水66中的部分的光学元件74的台阶差时,未发生台阶差。
再有,在所述的实施例中,为了制作致密的防止溶解膜的结构,使用了真空蒸镀法作为防止溶解膜的成膜方法,但也可使用溅射法或CVD法形成防止溶解膜。
〔比较例1〕
对于未形成防止溶解膜的萤石的基板进行了实验。图39是示出与该比较例有关的实验装置的结构的图。在该比较例中,使用萤石基板72代替实施例1的光学元件50。由于与该比较例有关的另一实验装置的结构和与实施例1有关的实验装置的结构是相同的,故对相同的结构附以与实施例1相同的符号来进行说明。
首先,在相对于萤石基板72的体积为充分大的水槽64中放入70℃的纯水66。在纯水66中投入搅拌器68。将萤石基板72投入到纯水66中,只使一半的萤石基板72浸在纯水66中。将包含萤石基板72、纯水66、搅拌器68的水槽64放入恒温槽70中,将温度保持为恒定。在将萤石基板72浸在纯水66中的状态下经过了3小时后,用分辨率0.5nm的台阶差测定器测定了未浸在纯水66中的部分的萤石基板72和浸在纯水66中的部分的萤石基板72的台阶差。由于浸在纯水66中的部分的萤石基板72溶解了,故被测定出有50nm的台阶差。
按照与实施例1和实施例2有关的光学元件,在和与比较例1有关的光学元件比较的情况下,可使对于纯水的溶解度小于等于1/50。图40是示出在与比较例1、实施例1和实施例2有关的光学元件的实验后用台阶差测定器测定了的台阶差的测定结果的图。如图40中所示,由于将氧化硅或氟化镧作为防止溶解膜成膜的萤石不溶解于纯水,故不发生因溶解引起的台阶差。因而,在将光学元件安装在采用了液浸法的投影曝光装置的与液体接触的部分上的情况下,可维持投影曝光装置的投影光学系统的透过波面。
〔实施例3〕
图41是示出与实施例3有关的透过光学元件50的结构的图。如图41中所示,在萤石52的基板上使用溅射法形成10nm的钽(Ta)膜,形成密接力强化膜53。密接力强化膜53起到提高萤石52与在密接力强化膜53的表面上形成的金属膜54的密接力的功能。此外,为了强化密接力所必要的膜厚大于等于10nm,但即使是3~5nm的膜厚,也能得到作为密接力的效果。
其次,在密接力强化膜53的表面上使用溅射法形成200nm的由金(Au)构成的金属膜54,作为防止对于水的溶解用的防止溶解膜。
在此,可从X线衍射的临界角求出金属膜54的密度,在利用溅射法形成的情况下,金属膜54的充填密度大于等于97%。此外,在利用溅射法形成的情况下,金属膜54的对于水的溶解度小于等于1ppt。
其次,在金属膜54的表面上使用溅射法形成50nm的二氧化硅(SiO2)膜55,作为提高金属膜54的机械强度用的防止溶解膜保护膜。
使用透过光学元件50进行了实验。图42是与该实施例有关的试验器80的结构的图。如图42中所示,试验器80由样品座81、循环泵82、重水供给装置83和缓冲罐84构成。样品座81的一面被开放了,在该开放面上具备密封圈85。在样品座81的开放面上利用密封圈85密封了透过光学元件50的形成密接力强化膜53、金属膜54、二氧化硅(SiO2)膜55的面。利用循环泵82经缓冲罐84在样品座81的内部流过从重水供给装置83供给了的重水。在此,将缓冲罐84设置成使循环泵82的振动不传递到样品座81上。此外,通过流过重水(D2O)而不是纯水(H2O),在耐水性试验后可检测重水从透过光学元件50的表面向深度方向浸透的量。
在试验器80中将透过光学元件50上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。其结果,在透过光学元件50的表面上形成的膜未剥离,在透过光学元件50的外观上不能看到变化。此外,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件50的表面向深度方向浸透的结果,重水未浸透到金属膜54中。
〔实施例4〕
图43是示出与实施例4有关的透过光学元件58的结构的图。如图43中所示,在萤石59的基板上使用溅射法形成200nm的由金(Au)构成的金属膜60,作为防止对于水的溶解用的防止溶解膜。在此,可从X线衍射的临界角求出金属膜60的密度,在利用溅射法形成的情况下,金属膜60的充填密度大于等于97%。此外,在利用溅射法形成的情况下,金属膜60的对于水的溶解度小于等于1ppt。
其次,在金属膜60的表面上使用溅射法形成50nm的二氧化硅(SiO2)膜61,作为提高金属膜60的机械强度用的防止溶解膜保护膜。
使用透过光学元件58进行了实验。与实施例3同样,在图42中示出的试验器80中将透过光学元件58上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。其结果,在透过光学元件58的表面上形成的膜未剥离,在透过光学元件58的外观上不能看到变化。此外,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件58的表面向深度方向浸透的结果,重水未浸透到金属膜60中。
〔实施例5〕
图44是示出与实施例5有关的透过光学元件65的结构的图。如图44中所示,在萤石66的基板上使用溅射法形成10nm的钽(Ta)膜,形成密接力强化膜67。密接力强化膜67起到提高萤石66与在密接力强化膜67的表面上形成的金属膜68的密接力的功能。此外,为了强化密接力所必要的膜厚大于等于10nm,但即使是3~5nm的膜厚,也能得到作为密接力的效果。
其次,在密接力强化膜67的表面上使用溅射法形成200nm的由金(Au)构成的金属膜68,作为防止对于水的溶解用的防止溶解膜。
在此,可从X线衍射的临界角求出金属膜68的密度,在利用溅射法形成的情况下,金属膜68的充填密度大于等于97%。此外,在利用溅射法形成的情况下,金属膜68的对于水的溶解度小于等于1ppt。
使用透过光学元件65进行了实验。与实施例3同样,在图42中示出的试验器80中将透过光学元件65上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。其结果,在透过光学元件65的表面上形成的膜未剥离,在透过光学元件65的外观上不能看到变化。此外,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件65的表面向深度方向浸透的结果,重水未浸透。
再有,在所述各实施例中,使用了溅射法作为成膜方法,也可使用真空蒸镀法或CVD法对密接力强化膜、金属膜、防止溶解膜保护膜进行成膜。
〔实施例6〕
图45是示出与本实施例有关的光学元件50的结构的图。如图45中所示,在利用萤石形成的投影光学系统的前端部的光学构件51的基板一侧的表面51A和光学构件51的侧面51B上使用喷涂法进行湿式成膜,形成由氟化镁(MgF2)构成的防止溶解膜52。再有,在光学构件51的基板一侧的表面51A上以0.65λ(λ=193nm)的光学膜厚形成由利用氟化镁(MgF2)构成的防止溶解膜。在此,所谓湿式成膜,是使打算成膜的物质分散在某个溶媒中并涂敷在成膜面上、在涂敷后干燥除去溶媒的成膜法。被使用的溶媒不使打算成膜的物质凝缩、沉淀等、在均匀的状态下分散在溶媒中即可,可使用乙醇或有机溶剂等。
在利用湿式成膜法形成氟化镁(MgF2)的情况下,最好使用以下示出的3种反应工艺。
(i)氢氟酸/醋酸镁法
(ii)氢氟酸/醇盐法
(iii)三氟醋酸/醇盐法
在这些工艺中,在调整了溶液后,作为前处理,最好进行有机热处理或氢化热处理。此时,可进行加压或加热烧成的某一种或两种。由于在美国专利5,835,275号中公开了所述湿式法的细节,故可予以参照。作为溶胶溶液的在基板上的涂敷方法,可使用从旋转涂敷法、浸渍法、弯月形法、喷镀法和印刷法中选择了的某一种或一种以上的方法。在溶胶溶液的涂敷后,进行加热,除去有机物,形成膜。必须利用该被形成的膜无间隙地保护了利用萤石构成的光学构件51的基板一侧的表面51A和侧面51B。
用湿式成膜法形成的膜与以真空蒸镀或溅射法为代表的一般的干式成膜法形成的膜相比,机械的耐久性非常低。因此,为了提高机械的耐久性,必须进行加热退火。特别是在利用萤石构成的光学构件上用湿式成膜法形成的情况下,如果进行急剧的温度上升的退火,则因萤石的线膨胀系数的缘故发生面变化或极端的情况下,存在萤石破裂的危险性。为了避免这一点,必须以低速进行升温。
在本实施例中,使用了氟化镁(MgF2)作为防止溶解膜,但不限于此,当然也可使用采用了二氧化硅(SiO2)的湿式成膜。
〔实施例7〕
图46是示出与本实施例有关的光学元件53的结构的图。如图46中所示,在利用萤石形成的投影光学系统的前端部的光学构件54的基板一侧的表面54A上使用离子束溅射法形成由利用光学膜厚0.65λ(λ=193nm)的二氧化硅(SiO2)构成的防止溶解膜55。其后,在光学构件54的侧面54B上在加热了的状态下在溶液状态下涂敷烷基乙烯酮二聚物(AKD)。如果使液状的烷基乙烯酮二聚物结晶化,则成为在凹凸形状中显示出重复的小的凹凸形状的不可分图形结构,成为接触角大于等于160°的超疏水膜56。
如果将接触角θ的物质成为表面积r倍的不可分图形结构时的接触角定为θf,则因为扩展了young的式的以下的式成立,故可理解这一点。
(数学式)
cos &theta; f = r ( &gamma; S - &gamma; SL ) &gamma; L = r cos &theta;
在此,γS是固体的表面张力,γL是液体的表面张力,γSL是固体/液体的界面张力。如该式中所示那样,在cosθ为正(θ>90°)时,接触角更大,即液体成为更弹性的状态,在cosθ为负(θ<90°)时,接触角更小,即对于液体成为更润湿的状态。
在此,使用了具有不可分图形结构的烷基乙烯酮二聚物作为侧面防止溶解膜,但即使用一般的疏水处理、列入用硅烷偶合剂(1H,1H,2H,2H-全氟化辛基三氯化硅烷)等进行疏水处理,也能得到侧面溶解防止效果。此外,也可使用由一般的无电解镀进行的疏水处理等。
以下示出与实施例6、实施例7有关的光学元件的验证结果。
在图47中示出的那样的直方体的萤石光学元件的底面上利用喷镀法进行湿式成膜,形成氟化镁(MgF2),作为防止溶解膜,在侧面上利用喷镀法进行湿式成膜,形成氟化镁(MgF2),作为防止溶解膜。在图47中示出的光学元件57中,形成了与实施例6的防止溶解膜相同的防止溶解膜。将该图47中示出的光学元件定为样品1。
在图48中示出的那样的直方体的萤石光学元件的底面上利用离子束溅射法形成二氧化硅(SiO2)膜,作为防止溶解膜,在侧面上涂敷烷基乙烯酮二聚物溶液并使其干燥,作为防止溶解膜。在图48中示出的光学元件58中,形成了与实施例7的防止溶解膜相同的防止溶解膜。将该图48中示出的光学元件定为样品2。
在图49中示出的那样的直方体的萤石光学元件的底面上利用喷镀法进行湿式成膜,形成氟化镁(MgF2),作为防止溶解膜,在侧面上不进行涂敷。将该图49中示出的光学元件59定为样品3(参考例1)。
对于样品1、2、3进行了以下的实验。图50是示出实验装置的结构的图。在用相对于光学元件57、58、59的体积为充分大的聚醚醚酮(PEEK)作成了的水槽64中放入70℃的纯水66。在纯水66中投入特富隆(登录商标)制的搅拌器68。如图50中所示,以光学元件57、58、59的底面部浸在纯水66中的方式投入到纯水66中。将包含光学元件57、58、59、纯水66、搅拌器68的水槽64放入恒温槽70中,将温度保持为恒定。
在此,对于水槽64来说,为了减小因纯水66的蒸发导致的液面变化,使用相对于光学元件57、58、59的体积为充分大的水槽64。此外,即使在光学元件50溶解于纯水66而生成了缓冲溶液的情况下,为了使溶解度保持为恒定,也使用搅拌器68。在将光学元件57、58、59浸在纯水66中的状态下经过了3小时后,用分辨率0.5nm的台阶差测定器测定了因光学元件57、58、59的底面部、侧面部中的溶解引起的台阶差。
如图51中所示,对于光学元件57(样品1)、光学元件58(样品2)来说,底面部、侧面部都完全未溶解。与此不同,在光学元件59(样品3)中,侧面部被侵蚀了约50nm。此外,光学元件59(样品3)的底面部的中央附近未变化,但因周边的侧面被侵蚀了,如图52中所示,一部分底面的防止溶解膜被破坏了。
〔实施例8〕
图53是示出与实施例8有关的光学元件50的结构的图。如图53中所示,在萤石52的基板上使用溅射法形成200nm的二氧化硅(SiO2)膜54。
其次,在利用溅射法在萤石52的基板上形成的二氧化硅(SiO2)膜54的表面上使用旋转涂敷的湿式成膜方法形成50nm的二氧化硅(SiO2)膜56。即,以基板旋转数1000~2000旋转/分涂敷市场上出售的湿式成膜用的溶胶-凝胶氧化硅液。再有,由于用湿式成膜方法得到的二氧化硅(SiO2)膜56的膜厚依赖于溶胶-凝胶氧化硅液的浓度、粘度、旋转涂敷中的基板旋转数和温湿度等,故必须预先以溶胶-凝胶氧化硅液的浓度和粘度为参数作成湿式成膜用溶胶-凝胶氧化硅液的浓度和粘度对于二氧化硅(SiO2)膜56的膜厚的测量线。此外,为了尽可能减少膜的拉伸应力,将由湿式成膜方法得到的二氧化硅(SiO2)膜56的膜厚定为50nm,如果将二氧化硅(SiO2)膜56的膜厚定为大于等于150nm,则由于存在因应力缓和在膜中发生裂纹的情况,故必须加以注意。
其次,为了使作为湿式成膜用溶胶-凝胶氧化硅液的主溶媒的乙醇蒸发且对湿式成膜了的二氧化硅(SiO2)膜56进行烧结,在大气下对二氧化硅(SiO2)膜56进行160℃/2小时的退火。由于在大气下进行退火,萤石52的基板整体被均等地加热,故不产生破损或面形状变化。
使用图42中示出的试验器80对于透过光学元件50进行了实验。如图42中所示,试验器80由样品座81、循环泵82、重水供给装置83和缓冲罐84构成。样品座81的一面被开放了,在该开放面上具备密封圈85。在样品座81的开放面上利用密封圈85密封了透过光学元件50的形成二氧化硅(SiO2)膜54、56的面。利用循环泵82经缓冲罐84在样品座81的内部流过从重水供给装置83供给了的重水。在此,将缓冲罐84设置成使循环泵82的振动不传递到样品座81上。此外,通过流过重水(D2O)而不是纯水(H2O),在耐水性试验后可检测重水从透过光学元件50的表面向深度方向浸透的量。
在试验器80中将透过光学元件50上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。其结果,在透过光学元件50的表面上形成的膜未剥离,在透过光学元件50的外观上不能看到变化。此外,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件50的表面向深度方向浸透的结果,重水未浸透。
再有,在实施例8中,使用了溅射法作为干式成膜方法,但也可使用真空蒸镀法或CVD法形成防止透过光学元件的溶解用的膜。
〔实施例9〕
其次,说明与实施例9有关的透过光学元件。在加热了的萤石的基板上使用真空蒸镀法形成70nm的氟化镁(MgF2)膜。再有,为了在真空中形成氟化镁(MgF2)膜而加热时,为了防止因热膨胀率大的萤石基板的热冲击引起的破损或面形状变化,均匀地加热萤石基板整体。此外,在使萤石基板加热或冷却的情况下,必须用低速进行加热或冷却。
其次,在利用真空蒸镀法在萤石的基板上形成的氟化镁(MgF2)膜的表面上,使用旋转涂敷的湿式成膜方法,形成50nm的二氧化硅(SiO2)膜。即,以基板旋转数1000~2000旋转/分涂敷市场上出售的湿式成膜用的溶胶-凝胶氧化硅液。再有,由于用湿式成膜方法得到的二氧化硅(SiO2)膜的膜厚依赖于溶胶-凝胶氧化硅液的浓度、粘度、旋转涂敷中的基板旋转数和温湿度等,故必须预先以溶胶-凝胶氧化硅液的浓度和粘度为参数作成湿式成膜用溶胶-凝胶氧化硅液的浓度和粘度对于二氧化硅(SiO2)膜的膜厚的测量线。此外,为了尽可能减少膜的拉伸应力,将由湿式成膜方法得到的二氧化硅(SiO2)膜的膜厚定为50nm,如果将二氧化硅(SiO2)膜的膜厚定为大于等于150nm,则由于存在因应力缓和在膜中发生裂纹的情况,故必须加以注意。
其次,为了使作为湿式成膜用溶胶-凝胶氧化硅液的主溶媒的乙醇蒸发且对湿式成膜了的二氧化硅(SiO2)膜进行烧结,在大气下对二氧化硅(SiO2)膜进行160℃/2小时的退火。由于在大气下进行退火,萤石52的基板整体被均等地加热,故不产生破损或面形状变化。
使用与实施例9有关的透过光学元件进行了实验。与实施例8同样,在图42中示出的试验器80中将与实施例9有关的透过光学元件上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。其结果,在透过光学元件的表面上形成的膜未剥离,在透过光学元件的外观上不能看到变化。此外,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件的表面向深度方向浸透的结果,重水未浸透。
再有,在实施例9中,使用了真空蒸镀法作为干式成膜方法,但也可使用溅射法或CVD法形成防止透过光学元件的溶解的膜。
〔实施例10〕
图54是示出在与实施例10有关的在中心波长193.4nm中具有反射防止效果的透过光学元件58的结构的图。如图54中所示,在加热了的萤石(CaF2)59的基板上用电阻加热并利用真空蒸镀法形成第1层的氟化镧(LaF3)膜60、第2层的氟化镁(MgF2)膜61、第3层的氟化镧(LaF3)膜62。用电子枪加热并利用真空蒸镀法形成作为第4层的一部分的二氧化硅(SiO2)膜63,直到光学膜厚为0.08,从真空槽取出形成了第1层至第4层的一部分膜的萤石59。其次,在二氧化硅(SiO2)膜63上使用旋转涂敷的湿式成膜方法,以光学膜厚0.04涂敷作为第4层的一部分的第2膜的二氧化硅(SiO2)膜64。其次,为了对湿式成膜了的二氧化硅(SiO2)膜64的膜进行烧结,在大气下对二氧化硅(SiO2)膜64进行160℃/2小时的退火。以下示出构成透过光学元件58的基板和氧化物膜等的对于中心波长193.4nm的光束的折射率n和对于中心波长193.4nm的光束的光学膜厚nd。
基板:CaF2(n=1.50)
第一层:LaF3(n=1.69,nd=0.60)
第二层:MgF2(n=1.43,nd=0.66)
第三层:LaF3(n=1.69,nd=0.52)
第四层:SiO2(n=1.55,nd=0.12)
媒质:H2O(n=1.44)
使用透过光学元件58进行了实验。与实施例8同样,在图42中示出的试验器80中将与实施例9有关的透过光学元件58上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。其结果,在透过光学元件58的表面上形成的膜未剥离,在透过光学元件58的外观上不能看到变化。此外,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件58的表面向深度方向的浸透的结果,重水未浸透。
〔实施例11〕
图55是示出与实施例11有关的光学元件65的结构的图。如图55中所示,在萤石66的基板上进行表面处理。即,为了增大该萤石66的表面的粗糙度和表面积,用#2000的砂轮研磨。此外,在通过用砂轮研磨被进行了表面处理的萤石66的基板上使用旋转涂敷的湿式成膜方法,将作为防止溶解的氧化物膜的二氧化硅(SiO2)膜67涂敷到膜厚100nm。其次,为了对湿式成膜了的二氧化硅(SiO2)膜67的膜进行烧结,在大气下对二氧化硅(SiO2)膜67进行160℃/2小时的退火。
使用透过光学元件65进行了实验。与实施例8同样,在图42中示出的试验器80中将与实施例9有关的透过光学元件65上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。其结果,在透过光学元件65的表面上形成的膜未剥离,在透过光学元件65的外观上不能看到变化。此外,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件65的表面向深度方向浸透的结果,重水未浸透。
〔参考例2〕
图56是示出与参考例2有关的在中心波长193.4nm中具有反射防止效果的透过光学元件73的结构的图。如图56中所示,在加热了的萤石(CaF2)74的基板上用电阻加热并利用真空蒸镀法形成第1层的氟化镧(LaF3)膜75、第2层的氟化镁(MgF2)膜76、第3层的氟化镧(LaF3)膜77。其次用电子枪加热并利用真空蒸镀法形成第4层的二氧化硅(SiO2)膜78。
再有,构成与参考例2有关的透过光学元件73的第1层的氟化镧(LaF3)膜75、第2层的氟化镁(MgF2)膜76、第3层的氟化镧(LaF3)膜77具有与构成与实施例1有关的透过光学元件58的第1层的氟化镧(LaF3)膜60、第2层的氟化镁(MgF2)膜61、第3层的氟化镧(LaF3)膜62的对于中心波长193.4nm的光束的折射率和光学膜厚相同的折射率和光学膜厚。此外,第4层的二氧化硅(SiO2)膜78具有与构成与实施例9有关的第4层的二氧化硅(SiO2)膜63和二氧化硅(SiO2)膜64的对于中心波长193.4nm的光束的折射率和光学膜厚相同的折射率和光学膜厚。
使用透过光学元件73进行了实验。与实施例8同样,在图42中示出的试验器80中将与实施例9有关的透过光学元件73上的重水的移动速度设定为50cm/秒,进行了30天间的耐水试验。在耐水试验后,在用二次离子质量分析法(SIMS)评价了重水从透过光学元件73的表面向深度方向浸透的结果,从透过光学元件73的表面上形成的第4层的二氧化硅(SiO2)膜78的内部或在与第3层的氟化镧(LaF3)膜77的界面附近检测出了重水。
按照与实施例10有关的透过光学元件,在和与参考例2有关的透过光学元件比较了的情况下,其光学特性不变化,可防止重水的浸透和侵蚀。图57是示出光从媒质(纯水)入射到与实施例10和参考例2有关的透过光学元件上的情况下的角度反射特性的图。图57的实线90示出了入射到与实施例10和参考例2有关的透过光学元件上的光的S偏振光分量的角度反射特性。此外,图57的虚线91示出了入射到与实施例10和参考例2有关的透过光学元件上的光的P偏振光分量的角度反射特性。如图57中所示,入射到与实施例10和参考例2有关的透过光学元件上的光的S偏振光分量和P偏振光分量的角度反射特性是相同的,显示出与实施例10和参考例2有关的透过光学元件的光学特性是相同的。
产业上利用的可能性
按照以上已说明的本发明,在应用了液浸法的情况下,可得到投影光学系统的前端部不被液体侵蚀的光学元件。因而,按照本发明,可得到充分地防止光学元件的溶解、在长时间内维持投影光学系统的光学性能的曝光装置。

Claims (62)

1.一种用于曝光装置的光学元件,所述曝光装置用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,所述光学元件的特征在于:
在所述投影光学系统的所述基板一侧的透过光学元件的表面上具备第1防止溶解构件。
2.如权利要求1中所述的光学元件,其特征在于:
利用具有保护所述光学元件使之不受所述液体的影响的保护功能的单层膜构成了所述第1防止溶解构件。
3.如权利要求2中所述的光学元件,其特征在于:
所述单层膜对于纯水的溶解度小于等于1.0×10-7g/水100g。
4.如权利要求1中所述的光学元件,其特征在于:
利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的多层膜构成了所述第1防止溶解构件。
5.如权利要求4中所述的光学元件,其特征在于:
至少所述多层膜的最表层对于纯水的溶解度小于等于1.0×10-7g/水100g,而且,在所述曝光束的射出角度为50度时平均反射率小于等于2%。
6.如权利要求4中所述的光学元件,其特征在于:
所述多层膜由n层构成,其中n是整数;
从所述光学元件一侧起依次为第1层、第2层、...、最表层为第n层,第奇数的层是具有与邻接的所述光学元件或邻接的第偶数的层的折射率相比为高折射率的膜,所述第1层至所述第n层作为整体具备所述防止反射功能。
7.如权利要求4中所述的光学元件,其特征在于:
所述多层膜由n层构成,其中n是整数;
从所述光学元件一侧起依次为第1层、第2层、...、最表层为第n层,第奇数的层是具有与邻接的所述光学元件或邻接的第偶数的层的折射率相比为低折射率的膜,所述第1层至所述第n层作为整体具备所述防止反射功能。
8.如权利要求1中所述的光学元件,其特征在于:
利用从MgF2、LaF3、SrF2、YF3、LuF3、HfF4、NdF3、GdF3、YbF3、DyF3、AlF3、Na3AlF6、5NaF·3AlF3、Al2O3、SiO2、TiO2、MgO、HfO2、Cr2O3、ZrO2、Ta2O5和Nb2O5构成的一组中选择的至少一种形成了所述第1防止溶解构件。
9.如权利要求4中所述的光学元件,其特征在于:
所述多层膜由n层构成,其中n是整数;
具有从由下述层结构(第1层/第2层/.../第n层)构成的一组中选择的层结构:
(i)LaF3/MgF2
(ii)MgF2/SiO2
(iii)MgF2/SiO2/SiO2
(iv)LaF3/MgF2/SiO2
(v)LaF3/MgF2/Al2O3
(vi)LaF3/MgF2/Al2O3/SiO2
(vii)LaF3/MgF2/LaF3/MgF2
(viii)LaF3/MgF2/LaF3/SiO2
(ix)LaF3/MgF2/LaF3/MgF2/SiO2、以及
(x)LaF3/MgF2/LaF3/Al2O3/SiO2
10.如权利要求1中所述的光学元件,其特征在于:
利用从真空蒸镀法、离子束辅助蒸镀法、气体团离子束辅助蒸镀法、离子喷镀法、离子束溅射法、磁控管溅射法、偏压溅射法、ECR溅射法、RF溅射法、热CVD法、等离子CVD法和CVD法构成的一组中选择的至少一种成膜方法形成了所述第1防止溶解构件。
11.如权利要求1中所述的光学元件,其特征在于:
所述第1防止溶解构件具备由利用湿式成膜方法形成的氧化物构成的膜。
12.如权利要求4中所述的光学元件,其特征在于:
所述多层膜具备利用干式成膜方法形成的第1膜和由利用湿式成膜方法形成的氧化物构成的第2膜。
13.如权利要求4中所述的光学元件,其特征在于:
至少所述多层膜的表层为利用湿式成膜方法形成的SiO2膜。
14.如权利要求13中所述的光学元件,其特征在于:
在利用湿式成膜方法形成的SiO2膜的所述光学元件一侧还具备利用干式成膜方法形成的SiO2膜。
15.如权利要求1中所述的光学元件,其特征在于:
利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的薄板构成了所述第1防止溶解构件,以能拆卸的方式在所述光学元件的表面上接合了所述薄板。
16.如权利要求15中所述的光学元件,其特征在于:
用光学接触的方式将所述薄板接合到所述光学元件的表面上,在所述曝光束的射出角度为50度时平均反射率小于等于2%。
17.如权利要求15中所述的光学元件,其特征在于:
利用从由氟化物、氧化物和树脂构成的一组中选择的至少一种形成了所述薄板。
18.如权利要求15中所述的光学元件,其特征在于:
所述薄板是从由石英玻璃薄板、氟化镁薄板、萤石薄板和聚四氟乙烯薄板构成的一组中选择的至少一种。
19.如权利要求1中所述的光学元件,其特征在于:
在所述投影光学系统的所述基板一侧的透过光学元件的侧面上还具备第2防止溶解构件。
20.如权利要求19中所述的光学元件,其特征在于:
所述第1防止溶解构件和所述第2防止溶解构件具备使用同一材料形成的膜。
21.如权利要求20中所述的光学元件,其特征在于:
使用所述同一材料形成的膜是利用湿式成膜方法形成的膜。
22.如权利要求20中所述的光学元件,其特征在于:
所述同一材料是MgF2或SiO2
23.如权利要求19中所述的光学元件,其特征在于:
所述第1防止溶解构件具备亲水性的防止溶解膜,所述第2防止溶解构件具备疏水性的防止溶解膜。
24.如权利要求19中所述的光学元件,其特征在于:
所述第2防止溶解构件具备具有保护所述光学元件使之不受所述液体的影响的保护功能的金属制防止溶解膜。
25.如权利要求24中所述的光学元件,其特征在于:
所述第2防止溶解构件还具备在所述光学元件的侧面与所述金属制防止溶解膜之间形成的密接力强化膜。
26.如权利要求24中所述的光学元件,其特征在于:
所述第2防止溶解构件还具备在所述金属制防止溶解膜的表面上形成的金属制防止溶解膜保护膜。
27.如权利要求24中所述的光学元件,其特征在于:
所述金属制防止溶解膜对于纯水的溶解度小于等于2ppt,充填密度大于等于95%。
28.如权利要求24中所述的光学元件,其特征在于:
利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属制防止溶解膜。
29.如权利要求25中所述的光学元件,其特征在于:
利用从由Ta和Cr构成的一组中选择的至少一种形成了所述密接力强化膜。
30.如权利要求26中所述的光学元件,其特征在于:
利用从由SiO2、Y2O3、Nd2F3、Cr2O3、Ta2O5、Nb2O5、TiO2、ZrO2、HfO2和La2O3构成的一组中选择的至少一种形成了所述金属制防止溶解膜保护膜。
31.如权利要求19中所述的光学元件,其特征在于:
所述第2防止溶解构件具备遮光膜。
32.如权利要求31中所述的光学元件,其特征在于:
利用金属膜或金属氧化物膜形成了所述遮光膜。
33.如权利要求32中所述的光学元件,其特征在于:
利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜。
34.如权利要求1中所述的光学元件,其特征在于:
还具备在所述光学元件的表面上经所述第1防止溶解构件用光学接触的方式接合的光学构件。
35.如权利要求34中所述的光学元件,其特征在于:
所述第1防止溶解构件是利用SiO2形成的膜,所述光学构件是利用石英形成的构件。
36.如权利要求1中所述的光学元件,其特征在于:
所述曝光束是ArF激光,所述光学元件是利用萤石形成的元件,所述光学元件的所述表面的结晶方位是(111)面。
37.一种用于曝光装置的光学元件,所述曝光装置用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,所述光学元件的特征在于:
在所述投影光学系统的所述基板一侧的透过光学元件的侧面上具备遮光膜。
38.如权利要求37中所述的光学元件,其特征在于:
利用金属膜或金属氧化物膜形成了所述遮光膜。
39.如权利要求38中所述的光学元件,其特征在于:
利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜。
40.一种曝光装置,用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,其特征在于:
具备在所述投影光学系统的所述基板一侧的透过光学元件的表面上形成的第1防止溶解构件。
41.如权利要求40中所述的曝光装置,其特征在于:
利用具有保护所述光学元件使之不受所述液体的影响的保护功能的单层膜构成了所述第1防止溶解构件。
42.如权利要求40中所述的曝光装置,其特征在于:
利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的多层膜构成了所述第1防止溶解构件。
43.如权利要求40中所述的曝光装置,其特征在于:
利用从MgF2、LaF3、SrF2、YF3、LuF3、HfF4、NdF3、GdF3、YbF3、DyF3、AlF3、Na3AlF6、5NaF·3AlF3、Al2O3、SiO2、TiO2、MgO、HfO2、Cr2O3、ZrO2、Ta2O5和Nb2O5构成的一组中选择的至少一种形成了所述第1防止溶解构件。
44.如权利要求42中所述的曝光装置,其特征在于:
所述多层膜由n层构成,其中n是整数;
具有从由下述层结构(第1层/第2层/.../第n层)构成的一组中选择的层结构:
(i)LaF3/MgF2
(ii)MgF2/SiO2
(iii)MgF2/SiO2/SiO2
(iv)LaF3/MgF2/SiO2
(v)LaF3/MgF2/Al2O3
(vi)LaF3/MgF2/Al2O3/SiO2
(vii)LaF3/MgF2/LaF3/MgF2
(viii)LaF3/MgF2/LaF3/SiO2
(ix)LaF3/MgF2/LaF3/MgF2/SiO2、以及
(x)LaF3/MgF2/LaF3/Al2O3/SiO2
45.如权利要求40中所述的曝光装置,其特征在于:
所述第1防止溶解构件具备由利用湿式成膜方法形成的氧化物构成的膜。
46.如权利要求42中所述的曝光装置,其特征在于:
所述多层膜具备利用干式成膜方法形成的第1膜和由利用湿式成膜方法形成的氧化物构成的第2膜。
47.如权利要求40中所述的曝光装置,其特征在于:
利用具有保护所述光学元件使之不受所述液体的影响的保护功能和防止所述曝光束被反射的防止反射功能的薄板构成了所述第1防止溶解构件,以能拆卸的方式在所述光学元件的表面上接合了所述薄板。
48.如权利要求40中所述的曝光装置,其特征在于:
还具备在所述投影光学系统的所述基板一侧的透过光学元件的侧面上形成的第2防止溶解构件。
49.如权利要求48中所述的曝光装置,其特征在于:
使用同一材料形成了所述第1防止溶解构件和所述第2防止溶解构件。
50.如权利要求48中所述的曝光装置,其特征在于:
所述第2防止溶解构件具备具有保护所述光学元件使之不受所述液体的影响的保护功能的金属制防止溶解膜。
51.如权利要求50中所述的曝光装置,其特征在于:
所述第2防止溶解构件还具备在所述光学元件的侧面与所述金属制防止溶解膜之间形成的密接力强化膜。
52.如权利要求50中所述的曝光装置,其特征在于:
所述第2防止溶解构件还具备在所述金属制防止溶解膜的表面上形成的金属制防止溶解膜保护膜。
53.如权利要求50中所述的曝光装置,其特征在于:
利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属制防止溶解膜。
54.如权利要求52中所述的曝光装置,其特征在于:
利用从由SiO2、Y2O3、Nd2F3、Cr2O5、Ta2O5、Nb2O5、TiO2、ZrO2、HfO2和La2O3构成的一组中选择的至少一种形成了所述金属制防止溶解膜保护膜。
55.如权利要求48中所述的曝光装置,其特征在于:
所述第2防止溶解构件具备遮光膜。
56.如权利要求55中所述的曝光装置,其特征在于:
利用金属膜或金属氧化物膜形成了所述遮光膜。
57.如权利要求56中所述的曝光装置,其特征在于:
利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜。
58.如权利要求40中所述的曝光装置,其特征在于:
还具备在所述光学元件的表面上经所述第1防止溶解构件用光学接触的方式接合的光学构件。
59.如权利要求40中所述的曝光装置,其特征在于:
所述曝光束是ArF激光,所述光学元件是利用萤石形成的元件,所述光学元件的所述表面的结晶方位是(111)面。
60.一种曝光装置,用曝光束照明掩模并经投影光学系统将所述掩模的图形转印到基板上,且使规定的液体介入到所述基板的表面与所述投影光学系统之间,其特征在于:
具备在所述投影光学系统的所述基板一侧的透过光学元件的侧面上形成的遮光膜。
61.如权利要求60中所述的曝光装置,其特征在于:
利用金属膜或金属氧化物膜形成了所述遮光膜。
62.如权利要求61中所述的曝光装置,其特征在于:
利用从由Au、Pt、Ag、Ni、Ta、W、Pd、Mo、Ti和Cr构成的一组中选择的至少一种形成了所述金属膜,利用从ZrO2、HfO2、TiO2、Ta2O5、SiO和Cr2O3构成的一组中选择的至少一种形成了所述金属氧化物膜。
CNB2004800243243A 2003-08-26 2004-08-26 光学元件和曝光装置 Expired - Fee Related CN100440432C (zh)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
JP2003302122 2003-08-26
JP302122/2003 2003-08-26
JP303432/2003 2003-08-27
JP2003302519 2003-08-27
JP2003303432 2003-08-27
JP302519/2003 2003-08-27
JP2003336162 2003-09-26
JP336162/2003 2003-09-26
JP2004042157 2004-02-18
JP2004041848 2004-02-18
JP042157/2004 2004-02-18
JP041848/2004 2004-02-18
JP2004042752 2004-02-19
JP042752/2004 2004-02-19
JP2004044229 2004-02-20
JP044229/2004 2004-02-20
PCT/JP2004/012296 WO2005020298A1 (ja) 2003-08-26 2004-08-26 光学素子及び露光装置

Publications (2)

Publication Number Publication Date
CN1842892A true CN1842892A (zh) 2006-10-04
CN100440432C CN100440432C (zh) 2008-12-03

Family

ID=34222734

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800243243A Expired - Fee Related CN100440432C (zh) 2003-08-26 2004-08-26 光学元件和曝光装置

Country Status (10)

Country Link
US (5) US7697111B2 (zh)
EP (3) EP1670038B1 (zh)
JP (2) JP4474652B2 (zh)
KR (2) KR101171809B1 (zh)
CN (1) CN100440432C (zh)
HK (2) HK1092586A1 (zh)
IL (2) IL173860A (zh)
SG (3) SG133589A1 (zh)
TW (4) TW200513805A (zh)
WO (1) WO2005020298A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482986B (zh) * 2006-12-28 2015-05-01 Zeiss Carl Smt Gmbh 具防水塗層之浸入微影光學裝置、含此之投影曝光裝置以及用於浸入微影的方法

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081278B2 (en) * 2002-09-25 2006-07-25 Asml Holdings N.V. Method for protection of adhesives used to secure optics from ultra-violet light
TW200421444A (en) * 2002-12-10 2004-10-16 Nippon Kogaku Kk Optical device and projecting exposure apparatus using such optical device
JP4582089B2 (ja) 2003-04-11 2010-11-17 株式会社ニコン 液浸リソグラフィ用の液体噴射回収システム
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
KR101171809B1 (ko) 2003-08-26 2012-08-13 가부시키가이샤 니콘 광학소자 및 노광장치
EP2261740B1 (en) * 2003-08-29 2014-07-09 ASML Netherlands BV Lithographic apparatus
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
JP4907596B2 (ja) * 2003-12-15 2012-03-28 カール・ツァイス・エスエムティー・ゲーエムベーハー 屈折性投影対物レンズ
US7460206B2 (en) * 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
DE602005019689D1 (de) 2004-01-20 2010-04-15 Zeiss Carl Smt Ag Belichtungsvorrichtung und messeinrichtung für eine projektionslinse
US20070103661A1 (en) * 2004-06-04 2007-05-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP1768169B9 (en) * 2004-06-04 2013-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US20070222959A1 (en) * 2004-06-10 2007-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3067749B1 (en) * 2004-06-10 2017-10-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2006030848A1 (ja) 2004-09-16 2006-03-23 Nikon Corporation 非晶質酸化珪素バインダを有するMgF2光学薄膜、及びそれを備える光学素子、並びにそのMgF2光学薄膜の製造方法
JP2006179759A (ja) * 2004-12-24 2006-07-06 Nikon Corp 光学素子及び投影露光装置
US7710653B2 (en) 2005-01-28 2010-05-04 Nikon Corporation Projection optical system, exposure system, and exposure method
SG158922A1 (en) * 2005-01-28 2010-02-26 Nikon Corp Projection optical system, exposure system, and exposure method
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006257170A (ja) * 2005-03-15 2006-09-28 Hokkaido Univ 微細多孔構造の形成方法およびその利用
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101504765B1 (ko) 2005-05-12 2015-03-30 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
WO2006121008A1 (ja) * 2005-05-12 2006-11-16 Nikon Corporation 投影光学系、露光装置、および露光方法
JP4720293B2 (ja) * 2005-05-30 2011-07-13 株式会社ニコン 露光装置、及びデバイスの製造方法
JP2006332530A (ja) * 2005-05-30 2006-12-07 Nikon Corp 投影光学系、露光装置、及びデバイスの製造方法
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7242843B2 (en) * 2005-06-30 2007-07-10 Corning Incorporated Extended lifetime excimer laser optics
JP4984747B2 (ja) * 2005-08-31 2012-07-25 株式会社ニコン 光学素子、それを用いた露光装置及びマイクロデバイスの製造方法
US7812926B2 (en) * 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
TWI450044B (zh) * 2005-08-31 2014-08-21 尼康股份有限公司 An optical element, an exposure apparatus using the same, an exposure method, and a manufacturing method of the micro-element
US7495743B2 (en) * 2005-09-30 2009-02-24 International Business Machines Corporation Immersion optical lithography system having protective optical coating
KR20080068013A (ko) * 2005-11-14 2008-07-22 가부시키가이샤 니콘 액체 회수 부재, 노광 장치, 노광 방법, 및 디바이스 제조방법
JP4514225B2 (ja) 2005-11-16 2010-07-28 キヤノン株式会社 露光装置及びデバイス製造方法
JP4957058B2 (ja) * 2006-04-12 2012-06-20 大日本印刷株式会社 回折光学素子、および該素子を備えた露光装置
DE102006021797A1 (de) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optische Abbildungseinrichtung mit thermischer Dämpfung
DE102006043548B4 (de) * 2006-09-12 2008-06-26 Carl Zeiss Smt Ag Optische Messvorrichtung
EP2062098B1 (en) * 2006-09-12 2014-11-19 Carl Zeiss SMT GmbH Optical arrangement for immersion lithography
CN102540766A (zh) * 2006-09-12 2012-07-04 卡尔蔡司Smt有限责任公司 用于浸入式光刻的光学装置及包含该装置的投影曝光设备
JP5022654B2 (ja) * 2006-09-25 2012-09-12 パナソニック株式会社 光学素子及びその製造方法
US20080100909A1 (en) * 2006-10-30 2008-05-01 Nikon Corporation Optical element, liquid immersion exposure apparatus, liquid immersion exposure method, and method for producing microdevice
US7843548B2 (en) 2006-11-13 2010-11-30 Asml Netherlands B.V. Conduit system for a lithographic apparatus, lithographic apparatus, pump, and method for substantially reducing vibrations in a conduit system
SG143137A1 (en) * 2006-11-13 2008-06-27 Asml Netherlands Bv Conduit system for a lithographic apparatus, lithographic apparatus, pump, and method for substantially reducing vibrations in a conduit system
JP5473200B2 (ja) * 2006-11-21 2014-04-16 村原 正隆 光学部品の接着方法および素子製作装置
JP4884180B2 (ja) * 2006-11-21 2012-02-29 東京エレクトロン株式会社 基板処理装置および基板処理方法
CN101222667B (zh) * 2007-01-08 2010-08-18 中兴通讯股份有限公司 一种在高速分组数据网传递1x网络的寻呼的方法
US7969555B2 (en) * 2007-03-16 2011-06-28 Industry-Academic Cooperation Foundation, Yonsei University Lens structure, optical system having the same, and lithography method using the optical system
US7837466B2 (en) * 2007-04-08 2010-11-23 Griffith Richard J Orthodontic apparatus and method
NL1035757A1 (nl) * 2007-08-02 2009-02-03 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL1035908A1 (nl) 2007-09-25 2009-03-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
NL1036579A1 (nl) * 2008-02-19 2009-08-20 Asml Netherlands Bv Lithographic apparatus and methods.
DE102008000931A1 (de) * 2008-04-02 2009-10-08 Wacker Chemie Ag Wachsartige ß-Ketocarbonyl-funktionelle Organosiliciumverbindungen
US8421993B2 (en) * 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
EP2131241B1 (en) * 2008-05-08 2019-07-31 ASML Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
ATE548679T1 (de) * 2008-05-08 2012-03-15 Asml Netherlands Bv Lithografische immersionsvorrichtung, trocknungsvorrichtung, immersionsmetrologievorrichtung und verfahren zur herstellung einer vorrichtung
WO2009143879A1 (en) * 2008-05-28 2009-12-03 Carl Zeiss Smt Ag An element, in particular an optical element, for immersion lithography
US8399110B2 (en) * 2008-05-29 2013-03-19 Corning Incorporated Adhesive, hermetic oxide films for metal fluoride optics and method of making same
NL2003392A (en) * 2008-09-17 2010-03-18 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
JP2010251745A (ja) * 2009-04-10 2010-11-04 Asml Netherlands Bv 液浸リソグラフィ装置及びデバイス製造方法
NL2004497A (en) 2009-05-01 2010-11-02 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
GB2470049B (en) 2009-05-07 2011-03-23 Zeiss Carl Smt Ag Optical imaging with reduced immersion liquid evaporation effects
NL2006506A (en) * 2010-04-28 2011-10-31 Asml Netherlands Bv A component of an immersion system, an immersion lithographic apparatus and a device manufacturing method.
US9158207B2 (en) 2011-08-09 2015-10-13 Carl Zeiss Smt Gmbh Optical component comprising radiation protective layer
DE102011054837A1 (de) * 2011-10-26 2013-05-02 Carl Zeiss Laser Optics Gmbh Optisches Element
CN103765485B (zh) * 2011-12-02 2015-09-30 阿塞桑电子莎娜依和提卡瑞特有限公司 光学屏蔽系统
DE102011088846A1 (de) 2011-12-16 2013-06-20 Carl Zeiss Smt Gmbh Optische Anordnung und optisches Element für die Immersionslithographie
US9482790B2 (en) * 2012-05-31 2016-11-01 Corning Incorporated Silica-modified-fluoride broad angle anti-reflection coatings
WO2016086983A1 (de) 2014-12-03 2016-06-09 Carl Zeiss Smt Gmbh Optische anordnung mit einem wärmeleitenden bauelement
KR102564481B1 (ko) * 2016-10-25 2023-08-04 코낙스 테크놀로지스 내침식성/내부식성 배리어 코팅
JP6995491B2 (ja) * 2017-04-21 2022-01-14 キヤノン株式会社 光学薄膜、光学素子、光学素子の製造方法
US11550234B2 (en) 2018-10-01 2023-01-10 Asml Netherlands B.V. Object in a lithographic apparatus
KR20210070995A (ko) 2018-10-05 2021-06-15 에이에스엠엘 네델란즈 비.브이. 냉각 후드 상에서의 빠른 온도 제어를 위한 가스 혼합
US11561391B2 (en) * 2020-07-31 2023-01-24 Immervision, Inc. Optical system with dynamic distortion using freeform elements

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3573975A (en) * 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
GB1292717A (en) * 1970-02-04 1972-10-11 Rank Organisation Ltd Improvements relating to anti-reflection coatings
EP0023231B1 (de) 1979-07-27 1982-08-11 Tabarelli, Werner, Dr. Optisches Lithographieverfahren und Einrichtung zum Kopieren eines Musters auf eine Halbleiterscheibe
FR2474708B1 (fr) 1980-01-24 1987-02-20 Dme Procede de microphotolithographie a haute resolution de traits
US4534614A (en) * 1980-07-01 1985-08-13 Plantronics, Inc. Aspherical lens for concentrating diffuse optical radiation
DE3028044C1 (de) * 1980-07-24 1981-10-08 Vdo Adolf Schindling Ag, 6000 Frankfurt Lötfähiges Schichtensystem
JPS5754317A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Method and device for forming pattern
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4390273A (en) * 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
JPS57153433A (en) 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
DD206607A1 (de) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech Verfahren und vorrichtung zur beseitigung von interferenzeffekten
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
US4488776A (en) * 1982-09-30 1984-12-18 M.U. Engineering & Manufacturing Inc. Plastic lens cell
DD242880A1 (de) 1983-01-31 1987-02-11 Kuch Karl Heinz Einrichtung zur fotolithografischen strukturuebertragung
NL8301824A (nl) * 1983-05-24 1984-12-17 Philips Nv Optisch element bestaande uit een doorzichtig substraat en een antireflectieve bekleding voor het golflengtegebied in het nabije infrarood.
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
US4592816A (en) * 1984-09-26 1986-06-03 Rohm And Haas Company Electrophoretic deposition process
DE3537626A1 (de) 1984-10-26 1986-04-30 Merck Patent Gmbh, 6100 Darmstadt Beschichtungsloesungen
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS62121417A (ja) 1985-11-22 1987-06-02 Hitachi Ltd 液浸対物レンズ装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
US5040020A (en) * 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
JP2506924B2 (ja) * 1988-04-20 1996-06-12 日本パーカライジング株式会社 アルミニウム製熱交換器
US4989960A (en) * 1988-08-18 1991-02-05 Itt Corporation Reducing stray light in lensed optical systems
JPH03209479A (ja) 1989-09-06 1991-09-12 Sanee Giken Kk 露光方法
US5067781A (en) * 1989-11-21 1991-11-26 Raytheon Company Optical elements and method of manufacture
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
US5139879A (en) * 1991-09-20 1992-08-18 Allied-Signal Inc. Fluoropolymer blend anti-reflection coatings and coated articles
US5494743A (en) * 1992-08-20 1996-02-27 Southwall Technologies Inc. Antireflection coatings
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
US5648860A (en) * 1992-10-09 1997-07-15 Ag Technology Co., Ltd. Projection type color liquid crystal optical apparatus
JP2753930B2 (ja) 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP2520833B2 (ja) 1992-12-21 1996-07-31 東京エレクトロン株式会社 浸漬式の液処理装置
US5610689A (en) * 1992-12-28 1997-03-11 Canon Kabushiki Kaisha Image forming apparatus having failure diagnosing function
US5882773A (en) * 1993-10-13 1999-03-16 The Regents Of The University Of California Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US5703724A (en) * 1995-05-16 1997-12-30 Fuji Photo Film, Co., Ltd. Objective lens system for endoscope
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5661092A (en) * 1995-09-01 1997-08-26 The University Of Connecticut Ultra thin silicon oxide and metal oxide films and a method for the preparation thereof
US5942363A (en) * 1995-12-15 1999-08-24 Ricoh Company, Ltd. Electrophotographic photoconductor and aromatic polycarbonate resin for use therein
JPH09221342A (ja) 1996-02-09 1997-08-26 Nikon Corp 光学部材の接着方法、及び、これを用いて接着された光学部品
JPH1020195A (ja) 1996-06-28 1998-01-23 Nikon Corp 反射屈折光学系
WO1998009278A1 (en) * 1996-08-26 1998-03-05 Digital Papyrus Technologies Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
US6219113B1 (en) * 1996-12-17 2001-04-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for driving an active matrix display panel
DE69735016T2 (de) 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
JP3612920B2 (ja) 1997-02-14 2005-01-26 ソニー株式会社 光学記録媒体の原盤作製用露光装置
JPH10255319A (ja) 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
US5993898A (en) * 1997-05-19 1999-11-30 Nikon Corporation Fabrication method and structure for multilayer optical anti-reflection coating, and optical component and optical system using multilayer optical anti-reflection coating
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
US5900354A (en) * 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
JP3445120B2 (ja) * 1997-09-30 2003-09-08 キヤノン株式会社 露光装置及びデバイスの製造方法
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
JP3495583B2 (ja) 1997-12-12 2004-02-09 株式会社リコー 光学装置
WO1999031717A1 (fr) 1997-12-12 1999-06-24 Nikon Corporation Procede d'exposition par projection et graveur a projection
WO1999035644A1 (fr) * 1998-01-12 1999-07-15 Hitachi Maxell, Ltd. Procede et dispositif de reproduction magneto-optique
US6073354A (en) * 1998-01-20 2000-06-13 Levelite Technology, Inc. Plumb laser beam generator with floating telescope
JPH11264903A (ja) 1998-03-17 1999-09-28 Canon Inc 反射防止膜およびその製造方法
AU2747999A (en) * 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
US6084846A (en) * 1998-06-03 2000-07-04 Seagate Technology, Inc. Liquid immersion lens for optical data storage
US6166855A (en) * 1998-06-05 2000-12-26 Fuji Photo Film Co., Ltd. Anti-reflection film and display device having the same
CA2243090A1 (en) * 1998-07-10 2000-01-10 Timothy M. Richardson Inverted darkfield contrast microscope and method
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
JP2000131503A (ja) 1998-10-22 2000-05-12 Nikon Corp 光学部材
JP3720609B2 (ja) 1999-01-11 2005-11-30 キヤノン株式会社 反射防止膜及びそれを施した光学系
TWI242111B (en) * 1999-04-19 2005-10-21 Asml Netherlands Bv Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus
DE19929403A1 (de) * 1999-06-26 2000-12-28 Zeiss Carl Fa Objektiv, insbesondere Objektiv für eine Halbleiter-Lithographie-Projektionsbelichtungsanlage und Herstellungverfahren
JP4504479B2 (ja) 1999-09-21 2010-07-14 オリンパス株式会社 顕微鏡用液浸対物レンズ
AU7451600A (en) * 1999-09-30 2001-04-30 Nikon Corporation Optical device with multilayer thin film and aligner with the device
US7187503B2 (en) 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US20010015939A1 (en) * 2000-02-08 2001-08-23 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens for optical pick-up
JP2001272604A (ja) * 2000-03-27 2001-10-05 Olympus Optical Co Ltd 液浸対物レンズおよびそれを用いた光学装置
US6466365B1 (en) * 2000-04-07 2002-10-15 Corning Incorporated Film coated optical lithography elements and method of making
US20020005990A1 (en) 2000-07-11 2002-01-17 Nikon Corporation Optical element formed with optical thin film and exposure apparatus
TW591653B (en) * 2000-08-08 2004-06-11 Koninkl Philips Electronics Nv Method of manufacturing an optically scannable information carrier
WO2002018982A1 (fr) * 2000-08-30 2002-03-07 Nikon Corporation Formation d'un film optique mince et element optique dote d'un tel film
JP3619141B2 (ja) * 2000-11-10 2005-02-09 キヤノン株式会社 投影露光装置及びデバイス製造方法
KR100866818B1 (ko) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
JP2002244035A (ja) 2000-12-11 2002-08-28 Nikon Corp 投影光学系および該投影光学系を備えた露光装置
WO2002063664A1 (fr) * 2001-02-06 2002-08-15 Nikon Corporation Systeme et procede d'exposition et procede de production de dispositif
JP2002323652A (ja) * 2001-02-23 2002-11-08 Nikon Corp 投影光学系,該投影光学系を備えた投影露光装置および投影露光方法
WO2002091078A1 (en) * 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
EP1390783A2 (de) 2001-05-15 2004-02-25 Carl Zeiss Objektiv mit fluorid-kristall-linsen
JP2002373852A (ja) * 2001-06-15 2002-12-26 Canon Inc 露光装置
DE10133841A1 (de) * 2001-07-18 2003-02-06 Zeiss Carl Objektiv mit Kristall-Linsen
EP1411375A4 (en) 2001-07-18 2007-03-21 Nikon Corp OPTICAL ELEMENT COMPRISING A LANTHANE FLUORIDE FILM
US6600547B2 (en) * 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
CN1791839A (zh) * 2001-11-07 2006-06-21 应用材料有限公司 光点格栅阵列光刻机
JP4006226B2 (ja) 2001-11-26 2007-11-14 キヤノン株式会社 光学素子の製造方法、光学素子、露光装置及びデバイス製造方法及びデバイス
JP4096565B2 (ja) * 2002-01-28 2008-06-04 富士ゼロックス株式会社 マイクロレンズアレーの製造方法、それに用いる電解液および製造装置
US20050145821A1 (en) 2002-03-06 2005-07-07 French Roger H. Radiation durable organic compounds with high transparency in the vaccum ultraviolet, and method for preparing
DE10210899A1 (de) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
DE10229818A1 (de) * 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
JP4132937B2 (ja) 2002-04-17 2008-08-13 シャープ株式会社 液晶表示装置およびその製造方法
US7129009B2 (en) * 2002-05-14 2006-10-31 E. I. Du Pont De Nemours And Company Polymer-liquid compositions useful in ultraviolet and vacuum ultraviolet uses
US7362508B2 (en) 2002-08-23 2008-04-22 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
DE60335595D1 (de) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
JP3953460B2 (ja) * 2002-11-12 2007-08-08 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ投影装置
SG2010050110A (en) * 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
CN101470360B (zh) 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420302A1 (en) 2002-11-18 2004-05-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG131766A1 (en) * 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI255971B (en) * 2002-11-29 2006-06-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
AU2003297669A1 (en) * 2002-12-06 2004-06-30 Newport Corporation High resolution objective lens assembly
DE10258718A1 (de) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives
KR101157002B1 (ko) 2002-12-10 2012-06-21 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4352874B2 (ja) 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
KR101036114B1 (ko) 2002-12-10 2011-05-23 가부시키가이샤 니콘 노광장치 및 노광방법, 디바이스 제조방법
TW200421444A (en) * 2002-12-10 2004-10-16 Nippon Kogaku Kk Optical device and projecting exposure apparatus using such optical device
WO2004053952A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
AU2003289272A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Surface position detection apparatus, exposure method, and device porducing method
EP1429190B1 (en) 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
JP4595320B2 (ja) 2002-12-10 2010-12-08 株式会社ニコン 露光装置、及びデバイス製造方法
KR20110086130A (ko) 2002-12-10 2011-07-27 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4232449B2 (ja) 2002-12-10 2009-03-04 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
DE10257766A1 (de) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Verfahren zur Einstellung einer gewünschten optischen Eigenschaft eines Projektionsobjektivs sowie mikrolithografische Projektionsbelichtungsanlage
WO2004053951A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光方法及び露光装置並びにデバイス製造方法
SG150388A1 (en) 2002-12-10 2009-03-30 Nikon Corp Exposure apparatus and method for producing device
SG152063A1 (en) 2002-12-10 2009-05-29 Nikon Corp Exposure apparatus and method for producing device
EP1573730B1 (en) 2002-12-13 2009-02-25 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
EP1732075A3 (en) 2002-12-19 2007-02-21 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
EP1579435B1 (en) 2002-12-19 2007-06-27 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6781670B2 (en) * 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
JP4604452B2 (ja) 2003-02-26 2011-01-05 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
US20040230592A1 (en) * 2003-03-28 2004-11-18 Solutia Inc. Methods and structure for integrated management and presentation of pharmaceutical development information
CN104597717B (zh) * 2003-04-10 2017-09-05 株式会社尼康 包括用于沉浸光刻装置的真空清除的环境系统
JP4582089B2 (ja) * 2003-04-11 2010-11-17 株式会社ニコン 液浸リソグラフィ用の液体噴射回収システム
DE10324477A1 (de) 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Mikrolithographische Projektionsbelichtungsanlage
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP3862678B2 (ja) 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
CN102854755A (zh) 2003-07-09 2013-01-02 株式会社尼康 曝光装置
US7932020B2 (en) * 2003-07-10 2011-04-26 Takumi Technology Corporation Contact or proximity printing using a magnified mask image
US7326522B2 (en) * 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7393469B2 (en) * 2003-07-31 2008-07-01 Ramazan Benrashid High performance sol-gel spin-on glass materials
US7700267B2 (en) * 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
KR101171809B1 (ko) 2003-08-26 2012-08-13 가부시키가이샤 니콘 광학소자 및 노광장치
US8149381B2 (en) * 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US6961186B2 (en) * 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
US7924397B2 (en) 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
US7545481B2 (en) * 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005189850A (ja) 2003-12-15 2005-07-14 Carl Zeiss Smt Ag 液浸リソグラフィー用屈折性投影対物レンズ
US7460206B2 (en) 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7088422B2 (en) 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
US7050146B2 (en) * 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4370992B2 (ja) 2004-02-18 2009-11-25 株式会社ニコン 光学素子及び露光装置
JP4510494B2 (ja) * 2004-03-29 2010-07-21 キヤノン株式会社 露光装置
US7710653B2 (en) * 2005-01-28 2010-05-04 Nikon Corporation Projection optical system, exposure system, and exposure method
US7812926B2 (en) * 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482986B (zh) * 2006-12-28 2015-05-01 Zeiss Carl Smt Gmbh 具防水塗層之浸入微影光學裝置、含此之投影曝光裝置以及用於浸入微影的方法

Also Published As

Publication number Publication date
IL173860A0 (en) 2006-07-05
US20100220305A1 (en) 2010-09-02
EP2278402B1 (en) 2013-03-06
SG133590A1 (en) 2007-07-30
EP2284615A3 (en) 2011-05-04
EP2278402A2 (en) 2011-01-26
US20060291060A1 (en) 2006-12-28
SG195534A1 (en) 2013-12-30
EP2284615B1 (en) 2013-01-16
TW201300970A (zh) 2013-01-01
JP4771300B2 (ja) 2011-09-14
TW201239552A (en) 2012-10-01
WO2005020298A1 (ja) 2005-03-03
US7993008B2 (en) 2011-08-09
JP2010118678A (ja) 2010-05-27
US8189170B2 (en) 2012-05-29
EP2284615A2 (en) 2011-02-16
IL215923A0 (en) 2011-12-29
TW201324062A (zh) 2013-06-16
IL173860A (en) 2013-05-30
KR101171809B1 (ko) 2012-08-13
KR101094114B1 (ko) 2011-12-15
US20140043592A1 (en) 2014-02-13
HK1092586A1 (en) 2007-02-09
KR20110061623A (ko) 2011-06-09
US7697111B2 (en) 2010-04-13
IL215923A (en) 2015-09-24
US20090103070A1 (en) 2009-04-23
JP4474652B2 (ja) 2010-06-09
HK1152117A1 (en) 2012-02-17
JPWO2005020298A1 (ja) 2007-11-01
TW200513805A (en) 2005-04-16
EP1670038A4 (en) 2008-07-23
EP2278402A3 (en) 2011-05-04
TWI439823B (zh) 2014-06-01
TWI536121B (zh) 2016-06-01
SG133589A1 (en) 2007-07-30
EP1670038B1 (en) 2012-06-06
TWI471705B (zh) 2015-02-01
EP1670038A1 (en) 2006-06-14
KR20060120618A (ko) 2006-11-27
CN100440432C (zh) 2008-12-03
US10175584B2 (en) 2019-01-08
US20120206705A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
CN1842892A (zh) 光学元件和曝光装置
CN1276306C (zh) 加工方法及半导体器件的制造方法
CN1052339C (zh) 半导体基体材料的制作方法
CN1573404A (zh) 投影光学系统、曝光装置及器件的制造方法
CN1042375C (zh) 半导体基体材料的制作方法
CN1885160A (zh) 基板处理装置
CN1668984A (zh) 投影光学系统、微影方法、曝光装置及使用此装置的方法
CN1639644A (zh) 用于浸液式光刻的折射投影物镜
CN1926460A (zh) 激光聚光光学系统
CN1248048C (zh) 光掩模的制造方法
CN1535392A (zh) 折射反射光学系统和具有该折射反射光学系统的曝光装置
CN1122864C (zh) 投影透镜和使用投影透镜的图像放大投影系统、投影仪和多画面系统
CN1940631A (zh) 高变焦比的变焦透镜系统
CN1812050A (zh) 基板处理装置
CN1751268A (zh) 菲涅尔光学元件及其投影式显示装置
CN1784623A (zh) 投影光学系统、曝光装置及曝光方法
CN1684236A (zh) 真空装置、其颗粒监控方法、程序以及颗粒监控用窗口部件
CN1723542A (zh) 曝光设备和器件制造法
CN101067678A (zh) 变焦透镜系统和具有该系统的图像拾取设备
CN1580834A (zh) 可变光学性质元件
CN1940629A (zh) 变焦透镜系统
CN1335528A (zh) 光扫描设备和使用该光扫描设备的成像装置
CN1519588A (zh) 基底及其制造方法、微透镜基底、透射屏和后投射器
CN1220089C (zh) 摄像透镜单元和摄像装置及其制造方法
CN1653359A (zh) 具有晶体透镜的物镜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1092586

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1092586

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081203

Termination date: 20200826

CF01 Termination of patent right due to non-payment of annual fee