CN1684760A - 合成中空微球 - Google Patents

合成中空微球 Download PDF

Info

Publication number
CN1684760A
CN1684760A CNA03822626XA CN03822626A CN1684760A CN 1684760 A CN1684760 A CN 1684760A CN A03822626X A CNA03822626X A CN A03822626XA CN 03822626 A CN03822626 A CN 03822626A CN 1684760 A CN1684760 A CN 1684760A
Authority
CN
China
Prior art keywords
precursor
reunion
aforementioned arbitrary
basal component
microballoon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA03822626XA
Other languages
English (en)
Inventor
A·达塔
H·霍扎基
D·L·梅尔米斯
J·A·麦克法雷恩
T·帕姆
N·E·汤普森
张华刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
James Hardie Research Pty Ltd
Original Assignee
James Hardie Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by James Hardie Research Pty Ltd filed Critical James Hardie Research Pty Ltd
Publication of CN1684760A publication Critical patent/CN1684760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/002Hollow glass particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0036Microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1025Alkali-free or very low alkali-content materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S106/00Compositions: coating or plastic
    • Y10S106/01Fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2949Glass, ceramic or metal oxide in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2996Glass particles or spheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Glass Compositions (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing Of Solid Wastes (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种制备合成中空微球的方法,包括步骤:制备团聚前体,所述的团聚前体包括基本组分和起泡剂;将该前体在预先确定的足以使前体的表面密封并使起泡剂活化的温度分布下焙烧,由此制得合成中空微球,其中,这种基本组分包括至少一种铝硅酸盐材料。还描述了用这种方法制得的合成中空微球及其用途。

Description

合成中空微球
技术领域
本发明涉及一种制造合成中空微球的方法以及用这种方法制得的合成中空微球。其开发主要是为了给商业可获的煤胞(cenosphere)提供成本有效的替代物。
发明背景
贯穿本说明书的对现有技术的所有讨论都决不能被认为是承认这些现有技术在该领域中是被广泛所知的,或者已构成了该领域常识的一部分。
煤胞是在燃煤发电厂的粉煤灰副产物中发现的球状无机中空微颗粒(微球)。煤胞一般构成粉煤灰的1-2%左右,收集起来的煤胞是广泛商业可获的。煤胞的成分,形式,尺寸,形状和密度特别有利于配制许多低密度的产品。
煤胞的特征之一是它们特殊的高化学耐用性。这种出色的高化学耐用性被认为是由于在其组成中的碱金属氧化物,尤其是氧化钠的含量非常低。因此,由收集起来的煤胞制成的低密度复合品具有所希望的性能:高的强度重量比和化学惰性。化学惰性在波特兰水泥应用中是尤其重要的,其中,相对的化学惰性在得到高耐用的粘结制品中扮演着重要角色。所以,已经证明,收集起来的煤胞在建筑产品以及一般的其中要与腐蚀环境接触而又希望有高的化学耐用性的应用中是特别有用的。
尽管收集起来的煤胞有这些应用,但其成本和可用性已经在很大程度上限制了它们的广泛应用。从粉煤灰中回收大量煤胞是一种劳动密集的昂贵工艺。尽管可以通过改善收集方法来从粉煤灰中提高煤胞的回收量,提高回收量的所需成本使得这种改善并不是经济上可行的。
还可能通过改变发电厂的燃烧条件,来提高粉煤灰中的煤胞产量。然而,发电厂的燃烧条件是为煤的燃烧而优化的,而不是为了煤胞生产。以煤的燃烧效率为代价来提高煤胞的产量不是经济可行的。
在现有技术中描述了几种生产微球的方法。早期的制造中空玻璃微球的方法包括,将硅酸钠,硼砂和合适的起泡剂混和到一起,干燥,并将该混和物粉碎,调节粉碎后的颗粒尺寸,接着将颗粒焙烧。然而,这种方法需要用到昂贵的起始原料(例如硼砂)。因此,所得到的微球必然是昂贵的。另外,该产品由于在最终的玻璃组成中含有高百分比的氧化钠而具有差的化学耐用性。
US 3752685中描述了一种用Shirasu制造玻璃微球的方法,Shirasu是一种自然生成的火山岩。在加热到800至1000℃之后,粉碎的Shirasu形成中空玻璃微球。然而,这种方法需要Shirasu供应,其并不是一种可以广泛获得的起始原料。
US 3365315中描述了一种通过在大约1200℃的温度并存在水蒸汽的情况下加热玻璃珠来制造玻璃微球的方法。这种方法需要专用的预先制备的无定形玻璃作起始原料。
US 2978340中描述了一种用基本上由碱金属硅酸盐构成的分立的固体颗粒制备玻璃微球的方法。通过将该碱金属硅酸盐在1000-2500°F的温度范围内在存在气化剂,比如尿素或者Na2CO3的情况下加热而制得微球。这种碱金属硅酸盐产物由于高的碱金属氧化物百分比,同样具有差的化学耐用性。
US 2676892中描述了一种通过将Macquoketa粘土页岩颗粒加热到2500-3500°F的温度由Macquoketa粘土页岩来制备微球的方法。所得产物中含有所不希望的开孔结构,导致其在含水的粘结环境中有相对高的吸水性。
US专利申请No.2001/0043996(等同于EP-A-1156021)中描述了一种制备直径1-20微米的中空微球的喷雾燃烧方法。然而,这种方法不适合于制备与已知的煤胞具有相似直径的微球(即大约200微米)。在喷雾干燥工艺中,快速的蒸汽爆破会打碎较大的颗粒,因此阻止了直径大于大约20微米的中空微球的形成。
US专利申请No.2002/0025436中描述了一种用粉煤灰制备固体微球的方法。该方法据说提高了粉煤灰颗粒的球状均匀性,可提供密度大约为1.8g/cm3的粉煤灰球。
希望能够用广泛存在的原料,以一种低成本高产出的方法来制得具有可接受的化学耐用性的微球,从而使得这些材料可以更广泛的用在纤维水泥和其它产品中。
本发明的一个目的就是克服或者改善现有技术的至少一个缺点,或者提供一种有用的替代物。
发明简述
因此,本发明的一个方面是提供一种制备合成中空微球的方法,包括步骤:
(a)制备团聚前体,所述的团聚前体包括基本组分和起泡剂;
(b)将该前体在预先确定的足以使前体表面密封并使起泡剂活化的温度分布下焙烧,由此制得合成中空微球,
其中,该基本组分中包括至少一种铝硅酸盐材料。
贯穿本说明书和权利要求,除非文中明确要求,“包括”,“包含”以及类似的词汇都应该理解成是开放性的,而不是排外性的或者彻底无遗漏的,也就是说,应理解为“包括,但不限于”。
正如这里所用的,“合成中空微球”或者“合成微球”一词指的是作为合成方法的基本目标产物而合成的中空微球。该词不包括,例如,收集起来的煤胞,其仅仅是燃煤发电厂烧煤的副产物。
尽管在本说明书中使用的是“微球”一词,应该理解为该词包括任何基本上是球状的分立的微颗粒,包括那些不是真正的几何意义上球状的微颗粒。
正如这里所用的,“制备团聚前体”指的是通过例如下面描述的方法将各种成分结合到一起,合成制备团聚前体。
正如这里所用的,“基本组分”一词指的是该组分是团聚前体的主要成分,即这种基本组分的量超过了其它成分的量。
有利的,本发明的优选方法提供这样一种方法,其利用广泛存在的廉价起始原料,比如粉煤灰,天然岩石和矿物,大量的生产微球。因此,优选方式的本方法降低了制造微球的总成本,由此增大了它们的使用范围,特别是在建筑工业中,那里,目前可用的煤胞的使用因其高额的成本和低的可用性而受到相当的限制。至今,仍然不相信能够从废铝硅酸盐材料比如粉煤灰中制备出中空微球。
在其优选的形式中,本发明的一个进一步的优点是可以根据具体的目的来对所制得的微球进行调整。例如,根据需要,可以通过改变成分的相对含量,以及/或者制备过程中的温度分布/曝露时间来调节微球的尺寸,密度和组成。
在其优选的形式中,本发明的再一个进一步的优点是所制得的微球具有可接受的高的化学耐用性,并且可以耐受例如pH为12-14的非常苛刻的环境长达48小时。因而,依据本发明的优选形式制得的微球可以耐受含水的粘结环境,比如波特兰水泥净浆。
而且,在多数情况下,纤维水泥产品要在温度高达250℃的反应釜中固化达24小时。依据本发明的优选方式制得的微球,甚至在暴露于苛刻的反应釜环境中之后,在纤维水泥产品中因溶解(例如因氧化硅的浸出)而只有很小的质量丢失,仍保持它们的形状,并继续具有高的机械强度。
本发明的第二个方面是提供一种由上述方法得到的或者可以得到的合成中空微球。
本发明的第三个方面是提供一种包括铝硅酸盐材料的合成中空微球,其中所述微球的平均颗粒尺寸在30-1000微米的范围,所述微球中碱金属氧化物的总含量在占微球总重量的3-10wt.%的范围。
本发明的第四个方面是提供上述合成中空微球在填料应用,改性剂应用,容器应用以及基底应用中的用途。
本发明的第五个方面是提供一种包括上述合成中空微球的纤维水泥建筑产品。
本发明的第六个方面是提供一种适合用来制备合成中空微球的团聚前体,该团聚前体包括基本组分和起泡剂,其中基本组分中包括至少一种铝硅酸盐材料。
本发明的第七个方面是提供一种制备团聚前体的方法,所述的团聚前体适用于制备合成中空微球,包括步骤:
(a)  提供具有预先确定的尺寸的基本组分,所述基本组分中包括至少一种铝硅酸盐材料;
(b)  将该基本组分和起泡剂在水中混和;以及
(c)  将此混和物干燥。
下面更详细的描述本发明所有方面的优选特征。
团聚前体
该团聚前体通常基本上是其构成材料的固相团聚混和物。
优选的,基本组分的量占团聚前体总重量的至少40wt.%,更优选的至少50wt.%,更优选的至少70wt.%,更优选的至少80wt.%,更优选的至少90wt.%。
优选的,起泡剂的量在占团聚前体总重量的0.05-10wt.%,更优选的为0.1-6wt.%,更优选的为0.2-4wt.%。起泡剂的精确含量依赖于基本组分的组成、起泡剂的类型和最终的微球所需要的密度。
基本组分和起泡剂的优选比率依赖于这些成分中每种的组成而变化。一般的,基本组分对起泡剂的比率在1000∶1-10∶1的范围,更优选的为700∶1-15∶1,更优选的为500∶1-20∶1。
优选的,该团聚前体中的水含量少于大约14wt.%,更优选的少于大约10wt.%,更优选的少于大约5wt.%,更优选的大约3wt.%或者更少。发现团聚前体中的水含量为14wt.%或者更多时,团聚体在焙烧过程中会爆裂成细粉。本发明人认为这种爆裂是由在存在太多的水时产生的快速的蒸汽爆裂而引起的。
因此,尽管在用基于溶液的方法(例如,下面描述的一种制备团聚前体的基于溶液的方法)制备的团聚前体中或许存在少量的残余水气,该团聚前体基本上是干的。实际上,少量的水有助于将团聚体中的颗粒粘结在一起,尤其是在团聚前体中的颗粒是水反应性的情况下。而且,在焙烧过程中,少量的水还可以通过释放一些H2O气体起到一部分起泡剂的作用。
优选的,该团聚前体中碱金属氧化物的总量最多约10wt.%,一般在2-10wt.%,3-10wt.%,4-10wt.%或者5-10wt.%的范围。碱金属氧化物的总含量少于大约10wt.%是有利的,因为由这样的团聚前体制得的微球将仍然具有适合于多数应用的高的化学耐用性。
优选的,该团聚体是颗粒状的,具有的平均团聚体颗粒尺寸在10-1000微米的范围,更优选的在30-1000微米,更优选的在40-500微米。
基本组分
优选的,该基本组分是一种低碱材料(low alkali material),“低碱材料”指的是这种材料中的碱金属氧化物含量少于10wt.%,更优选的少于8wt.%,更优选的少于5wt.%。在本发明的这一优选方式中,在基本组分中可仍含有相对的高碱材料。因此,在该基本组分中可以包括碱含量最高达大约15wt.%的废玻璃粉,比如钠钙玻璃(有时称为碎玻璃)。然而,在本发明的这种优选方式中,当结合采用其它低碱的基本组分时,基本组分中总的碱浓度应少于10wt.%。
至今,仍认为在用碱金属硅酸盐制备玻璃微球时,需要相对大量的碱金属氧化物作熔剂(参见,例如,US 3365315)。然而,本发明人已发现,采用本发明的方法,可以采用广泛存在的低碱含量的铝硅酸盐原料来制备合成微球,而不需要大量添加碱金属氧化物。这将在下面进行更详细的描述。
铝硅酸盐材料是被本领域技术人员所熟知的。一般的,其是含有由氧化硅(SiO2)和氧化铝(Al2O3)构成的大组分的材料(即:大于大约50wt.%,优选的大于大约60wt.%)。而本领域技术人员已经了解那些归为“铝硅酸盐”的材料。
在铝硅酸盐材料中的氧化硅和氧化铝的量根据来源而变化,甚至在相同的来源中也会变化。例如,在粉煤灰中,依赖于所用的煤的种类和燃烧条件,会包含不同量的氧化硅和氧化铝。优选的,在本发明所用的铝硅酸盐材料中,氧化硅(SiO2)和氧化铝(Al2O3)的质量比大于大约1。
一般的,可用于本发明的铝硅酸盐材料的组成为:30-85wt.%的SiO2,2-45wt.%(优选的6-45wt.%)的Al2O3;最多大约30wt.%(优选的最多大约15wt.%)的二价金属氧化物(例如MgO,CaO,SrO,BaO);最多大约10wt.%的一价金属氧化物(例如Li2O,Na2O,K2O);以及最多大约20wt.%的其它的金属氧化物,包括在多重氧化态下存在的金属氧化物(例如TiO2,Fe2O3等)。
本发明的方法不局限在任何具体的铝硅酸盐材料来源上。而基本组分中优选的包括选自粉煤灰(例如F型粉煤灰,C型粉煤灰等),底灰,高炉矿渣,纸灰,玄武岩,安山岩,长石,铝硅酸盐粘土(例如高岭土,伊利土,bedalite土,膨润土,瓷料,烧粘土等),铝土,黑曜石,火山灰,火山岩,火山玻璃,无机聚合物(geopolymer)及它们的组合中的至少一种铝硅酸盐材料。更优选的,基本组分中包括粉煤灰,安山岩,玄武岩以及/或者铝硅酸盐粘土。
铝硅酸盐材料可以是经煅烧的,也可以是没煅烧过的。“经煅烧的”一词指的是已将该铝硅酸盐材料在空气中加热到了一个预先确定的煅烧温度煅烧了一段预先确定的时间,使得铝硅酸盐材料中的某种(某些)组分发生了氧化或者发生了预反应。在本发明中,对铝硅酸盐材料进行煅烧是有利的,因为起泡(膨胀)过程对在铝硅酸盐材料中存在的多价氧化物的氧化还原状态敏感。考虑不受理论上的限制,可认为起泡剂的活化受从铝硅酸盐材料中存在的多价氧化物所释放出的氧的影响(例如通过氧化还原反应)。例如,含碳的起泡剂会被氧化铁(Fe2O3)氧化成CO2,氧化铁相应的被还原成氧化亚铁(FeO)。从起泡剂中放出CO2使微球膨胀。因此,通过将铝硅酸盐材料在空气中预煅烧,提高氧化铁的相对含量,其然后用作起泡剂的氧源以生成更多气体,由此降低微球的密度。
另外,煅烧可以促进铝硅酸盐材料中氧化物组分的预反应,和/或引起部分玻璃化,这会有利于制备高质量的微球。
因其低成本和广泛的存在,粉煤灰是一种特别优选的铝硅酸盐基本组分。在本发明的一个优选形式中,基本组分包括的粉煤灰占基本组分总量的至少5wt.%,更优选的至少10wt.%。在另一个优选形式中,基本组分包括的粉煤灰占基本组分总量的至少50wt.%,更优选的至少70wt.%,更优选的至少90wt.%。在本发明的一些实施方案中,基本组分基本上全是粉煤灰。
粉煤灰还可以以粉煤灰无机聚合物的形式使用,当粉煤灰与金属氢氧化物(例如NaOH或者KOH)的水溶液接触时会形成这种无机聚合物。粉煤灰无机聚合物在本领域是熟知的。
优选的,该至少一种的铝硅酸盐材料中包括无定形相,该材料是部分或者完全无定形的。
优选的,这种至少一种的铝硅酸盐材料的平均一次颗粒尺寸在0.01-100微米的范围,更优选的在0.05-50微米,更优选的在0.1-25微米,更优选的在0.2-10微米。优选的颗粒尺寸可以通过适当的研磨和分级得到。在本发明中可以采用在陶瓷工业中使用的各种粉碎,研磨以及整体尺寸缩减技术。不限制使用其它的脆性固体尺寸缩减的方法,依据本发明优选的方法是球磨(湿法或者干法),高能离心磨,喷磨和碾磨。如果采用的是多于一种铝硅酸盐材料,那么,多种成分可以一同粉碎。在本发明的一个方法中,在研磨工艺之前,将起泡剂,以及可选的粘结剂,加入到铝硅酸盐材料中。例如,所有的成分一同粉碎(例如,用湿法球磨),然后再去除含混和水。
一般地,基本组分的主要部分是这种至少一种的铝硅酸盐材料。通常,优选的铝硅酸盐材料的量占基本组分总重量的至少50wt.%,更优选的至少70wt.%,更优选的至少90wt.%。在某些情况下,基本组分包括的基本上全是铝硅酸盐材料。
然而,在本发明的另一个实施方案中,基本组分中除了这种至少一种的铝硅酸盐材料外,还可包括废料以及/或者其它的可形成玻璃的材料。在这种可供选择的实施方案中可使用的典型的废料或者可形成玻璃的材料是废玻璃(例如钠钙玻璃,硼硅酸盐玻璃或者其它的废玻璃),废陶瓷,窑灰,废纤维水泥,混凝土,焚灰,硅藻土,石英砂,硅灰以及它们的组合。废料以及/或者其它可形成玻璃的材料的总量可占基本组分重量的最多大约50wt.%(例如,最多大约40wt.%,最多大约30wt.%,或者最多大约20wt.%)。如上所述,优选的,在这种类型的基本组分混和物中,碱金属氧化物的总量仍然小于大约10wt.%。
起泡剂
在本发明中所用的起泡剂是,当加热时可通过燃烧,蒸发,升华,热分解,气化或者扩散中的一种或多种方式释放起泡气体的物质。该起泡气体可以是例如CO2,CO,O2,H2O,N2,N2O,NO,NO2,SO2,SO3或者它们的混和物。优选的,起泡气体中含有CO2以及/或者CO。
优选的,起泡剂选自煤粉,碳黑,活性炭,石墨,含碳聚合有机物,油,碳水化合物(例如糖,淀粉等),PVA(聚乙烯醇),碳酸盐,碳化物(例如碳化硅,碳化铝,碳化硼等),硫酸盐,硫化物,氮化物(例如氮化硅,氮化铝,氮化硼等),硝酸盐,胺,多元醇类,二醇类或者丙三醇。碳黑,煤粉,糖以及碳化硅是特别优选的起泡剂。
优选的,尤其是当气泡剂是非水溶性的时,起泡剂的平均颗粒尺寸在0.01-10微米的范围,更优选的在0.5-8微米,更优选的在1-5微米。
粘结剂
在本发明的一个优选实施方案中,团聚前体中进一步包括粘结剂(或者结合剂)。粘结剂的基本功能是将团聚体中的颗粒紧密粘合到一起。
在一些例子中,粘结剂起初是在团聚前体的形成过程中起到将团聚体颗粒粘结到一起的作用,然后在后续的焙烧过程中作起泡剂。
通常,可与铝硅酸盐基本组分反应或者/粘附的任何化学物质都可用作粘结剂。粘结剂可以是任何可商业得到的在陶瓷工业中用作粘结剂的材料。
优选的,粘结剂选自碱金属硅酸盐(例如钠硅酸盐),碱金属铝硅酸盐,碱金属硼酸盐(例如四硼酸钠),碱金属或者碱土金属碳酸盐,碱金属或者碱土金属硝酸盐,碱金属或者碱土金属亚硝酸盐,硼酸,碱金属或者碱土金属硫酸盐,碱金属或者碱土金属磷酸盐,碱金属或者碱土金属氢氧化物(例如NaOH,KOH或者Ca(OH)2),碳水化合物(例如糖,淀粉等),胶态二氧化硅,无机硅酸盐水泥,波特兰水泥,高铝水泥,石灰基水泥,磷酸盐基水泥,有机聚合物(例如聚丙烯酸脂类)或者它们的组合。在某些情况下,粉煤灰,例如超细的C型或者F型粉煤灰也可用作粘结剂。
尽管在某些情况下(例如糖,淀粉等),相同的物质可同时具有起泡/粘结剂的性能,但粘结剂和起泡剂一般是彼此不相同的。
这里所用到的“粘结剂”或者“结合剂”包括上面提到的所有粘结剂,以及这些粘结剂与团聚体中的其它组分原位反应的产物。例如,碱金属氢氧化物(比如NaOH)可与铝硅酸盐材料中的至少一部分发生原位反应而生成碱金属铝硅酸盐。当暴露在含CO2的环境气体中时,氢氧化钠还可形成碳酸钠,这一过程的速度在高温(例如400℃)下会升高。所得到的碳酸钠可与铝硅酸盐材料反应生成钠铝硅酸盐。
优选的,粘结剂的量占团聚前体总重量的0.1-50wt.%,更优选的为0.5-40wt.%,更优选的为1-30wt.%。
已经意外的发现,粘结剂的性能,特别是它的熔点,影响所得到的微球的性能。考虑不受理论的限制,本发明人认为是因为在焙烧步骤(b)中,在活化起泡剂的过程中或者之前,粘结剂会在团聚前体的周围形成熔融的外层。因此,在本发明的一个优选形式中,粘结剂的熔点比整个团聚前体的熔点低。优选的,粘结剂的熔点低于1200℃,更优选的低于1100℃,更优选的低于1000℃(例如700-1000℃)。
还意外的发现,在粘结剂相中的结晶度对熔融外层的形成动力学有巨大影响。在一个给定的温度下,结晶度已经由在混和物中,存在的氧化物的相图确定。在一个简单的SiO2和Na2O二元体系中,存在三个共晶点,最低的一个具有的液相线温度大约为790℃,SiO2和Na2O的比率大约为3。当氧化钠的含量提高时,液相线温度急剧升高,在SiO2和Na2O的比率为1∶1时为约1089℃。这可以从图1所示的SiO2-Na2O相图中看到。其它的碱金属氧化物的行为与氧化钠相似。例如,K2O-SiO2体系也有多个共晶点,最低的一个大约为750℃,发生在SiO2和K2O的比率大约为2.1时。相似的,Li2O有多个共晶点,一个在1028℃,比率大约为4.5。
在标准玻璃技术中,氧化钠被认为是一种强的熔剂。其向硅酸盐玻璃中的加入降低了玻璃的熔点和粘度。例如,在一种典型的钠钙玻璃组成中,大约15wt.%的氧化钠会使SiO2的熔点从1700℃降低到低于1400℃。然而,在熔融商用玻璃时,熔体有足够的时间使整个玻璃体达到平衡浓度,一般在几个小时或者更长的数量级。这样,在标准玻璃技术中,加入足够的氧化钠和/或其它的熔剂,使整个熔体具有必需的粘度-温度特性。
然而,考虑不受理论的限制,本发明人认为,在焙烧的快速反应动力学下(升温速率快到2000℃/秒),在团聚前体周围快速形成熔融外层的关键需求是要使粘结剂组分快速熔融。因此,优选的,粘结剂(例如这里的钠硅酸盐或者钠铝硅酸盐)应具有共晶或者近共晶的组成。优选的,粘结剂是SiO2∶Na2O的比率在5∶1-1∶1范围的钠硅酸盐,更优选的SiO2∶Na2O的比率为4∶1-1.5∶1,更优选的为3.5∶1-2∶1。应该明白,在粘结剂中,其它的碱金属氧化物(例如Li2O,K2O)具有相同的效果。然而,因Na2O成本低而是优选的。
意外的发现,当用SiO2∶Na2O的比率为1∶1的钠硅酸盐作粘结剂来配制团聚前体时,所得到的微球相对致密,颗粒密度大约为1.0g/cm3。然而,SiO2∶Na2O的比率为大约3∶1的钠硅酸盐粘结剂所得到的微球具有大约为0.7g/cm3的较低密度。在这两种情况下,Na2O相对于团聚体的总浓度是相同的。在传统的玻璃制造技术原理下,用相同数量的熔剂时,预期最终产物中将几乎没有或者没有差异。然而,本发明人已经发现,在粘结剂中采用共晶或者近共晶的组成,在焙烧过程中可以快速形成熔融外层,并得到低密度的微球,而与团聚体中熔剂的总量无关。
同样没想到的,发现氢氧化钠表现出相同的趋势。当用氧化钠作粘结剂时,其与铝硅酸盐粉末中存在的氧化硅反应形成钠硅酸盐化合物。随着加入的氢氧化钠的增加,氧化硅与氧化钠的比率降低,导致粘结剂具有越来越高的熔点。
而且,合成微球的性能还依赖于团聚体的干燥温度,在某些程度上还依赖于压力。例如,高的干燥温度有利于形成具有较低SiO2∶Na2O比率的钠硅酸盐,由此得到具有更高的熔点的粘结剂。例如,当在大约50℃的温度下干燥团聚体时,大约5wt.%的NaOH对于形成低密度的微球来讲是合适的粘结剂量。然而,当在400℃下干燥团聚体时,同样的配方导致更高密度的微球。惊奇的发现,当团聚体在400℃下干燥时,制得低密度的微球需要更低的NaOH浓度(例如2-3wt.%)。
一般的,认为在玻璃制造技术中采用相对大量的氧化钠(例如15wt.%)作为熔剂是必须的。然而,在本发明中,惊奇的发现相对大量的氧化钠不是优选的。
在团聚前体中还可以包括表面活性剂,其有助于团聚前体组分分散成水溶液或者浆料。表面活性剂可以是阴离子型的,阳离子型的,或者非离子型的表面活性剂。
焙烧条件
优选的,在本发明中采用的温度分布应将前体熔融成熔体,降低熔体的粘度,使前体的表面密封,促进熔体内部膨胀气体的生成以形成气泡。这种温度分布还优选的要使熔体在某温度下保持足够的时间,以使气泡合并形成单一的主气孔。在起泡之后,将这种新膨胀的颗粒迅速冷却,形成中空的玻璃微球。因此,该温度分布优选的由具有一个或者多个温度区的炉子来提供,例如吊管炉(drop tube furnace),涡式炉,流化床炉或者烧油炉,具有向上或者向下的通风气流。在本发明的方法中使用的烧油炉包括如下类型的炉子,其中可直接将团聚前体加入到一个或者多个燃烧区中,引起颗粒的膨胀或者起泡。这是一种优选的炉子类型,因为正如所希望的,这有利于将颗粒直接快速加热到高温。热源可以是电,或者由燃烧矿物燃料来提供,例如天然气或者燃油。然而,优选的加热方法是烧天然气,因为这与电加热相比更经济,也比烧燃油要清洁。
一般的,在焙烧步骤(b)中的峰值焙烧温度在600-2500℃的范围,更优选的在800-2000℃,更优选的在1000-1500℃,更优选的在1100-1400℃。然而应理解,所需要的温度分布依赖于所用的铝硅酸盐基本组分和起泡剂的类型。
优选的,在上述峰值焙烧温度下的暴露时间为0.05-20秒,更优选的为0.1-10秒。
合成中空微球
本发明提供一种包含铝硅酸盐材料的合成中空微球,其中,所述微球的平均颗粒尺寸在30-1000微米的范围,所述微球中碱金属氧化物的总量在占微球总重量的2-10wt.%的范围。
在本发明的合成中空微球中可以含有多种碱金属氧化物,一般是Na2O和K2O的结合,其构成了碱金属氧化物的总量。优选的,碱金属氧化物总量在占微球总重量的3-9wt.%的范围,更优选的在4-8wt.%。在一些实施方案中,合成微球中碱金属氧化物的总量在占微球总重量的4-6wt.%,或者5-8wt.%的范围。
优选的,在合成中空微球中,氧化钠的量在占微球总重量的1-10wt.%的范围,更优选的在2-10wt.%,更优选的在3-9wt.%,更优选的在4-8wt.%,更优选的在4-7wt.%。在合成中空微球中的一部分氧化钠一般来自于含有钠化合物的粘结剂,比如钠硅酸盐或者氢氧化钠。
本发明的合成微球具有几个相对于本领域所知的微球的优点。第一,该微球中包含铝硅酸盐材料。铝硅酸盐便宜,可在世界上广泛存在,例如可取自大量的岩石,粘土和矿物,还可取自废的副产品,尤其是底灰和粉煤灰。尤其有利的是本发明的合成中空微球可由粉煤灰制备。第二,存在适量的碱金属氧化物,使得可用废料,比如粉煤灰来合成制得具有一致性能的微球。第三,只存在适量的碱金属氧化物,意味着微球具有可接受的高的化学耐用性,且可用在与已知煤胞的使用条件相同的条件下。本发明人已发现,对于大多数的煤胞应用来讲,收集起来的煤胞的相当低的碱金属氧化物量以及由此得到的非常高的化学耐用性都不是必要的。依据本发明的优选形式得到的合成中空微球能够耐受很严酪的环境和严酷的反应釜条件。相反,依据现有技术所知的方法制备的合成微球通常含有大量的碱金属氧化物,具有不能接受的低的化学耐用性。
而且,平均颗粒尺寸在30-1000微米是有利的,因为这样的颗粒被认为不是可呼吸的尘埃。
依据本发明的合成中空微球一般包括基本上球形的外壁和封闭壳(空穴)结构。该合成中空微球优选的具有如下一个或者多个特征,这些也是收集起来的煤胞的一般特征:
(i)纵横比在大约0.8-1。
(ii)空穴体积占微球总体积的大约30-95%;
(iii)壁厚大约在微球半径的5-30%之间;
(iv)组成为30-85wt.%的SiO2,2-45wt.%(优选的6-40wt.%)的Al2O3,最多大约30wt.%的二价金属氧化物(例如MgO,CaO,SrO,BaO),2-10wt.%的单价金属氧化物(例如Na2O,K2O),最多大约20wt.%的其它的金属氧化物,包括以多氧化态存在的金属氧化物(例如TiO2,Fe2O3等);
(v)氧化硅与氧化铝的比大于大约1;
(vi)平均直径在30-1000微米之间,更优选的在40-500微米之间;
(vii)外壁厚度在1-100微米之间,优选的在1-70微米之间,更优选的在2.5-20微米之间;
(viii)颗粒密度在0.1-2.0g/cm3之间,更优选的在0.2-1.5g/cm3之间,更优选的在0.4-1.0g/cm3之间;或者
(ix)堆密度小于大约1.4g/cm3,优选的小于大约1.0g/cm3
合成中空微球的用途
依据本发明的合成中空微球可以广泛的用在各种应用中。例如,填料应用,改性剂应用,容器(containment)应用或者基底应用。合成微球的应用范围因其低成本和性能的一致性而比收集起来的煤胞的应用大的多。
依据本发明的合成中空微球可以用在复合材料中作填料,其中,它们带来的性能包括成本降低,重量减轻,工艺改良,性能提高,可机加工性以及/或者可加工性改善。更具体的,这些合成微球可以在聚合物(包括热固性的,热塑性的以及无机聚合物),无机粘结材料(包括含波特兰水泥的材料,石灰水泥,氧化铝基水泥,灰泥,磷酸盐基水泥,氧化镁基水泥以及其它的水硬性粘结剂),混凝土体系(包括精确的混凝土结构,翻起混凝土板,柱,悬挂式混凝土结构等),油灰(例如用于空穴填充以及修补应用),木质复合物(包括颗粒板,纤维板,木材/聚合物复合物以及其它的复合木质结构),粘土以及陶瓷中用作填料。本发明的微球的一个特别优选的应用是用在纤维水泥建筑产品中。
该合成微球还可与其它的材料结合用作改性剂。通过适当的选择尺寸和几何形貌,微球可以与特定的材料一起提供独特的性能,比如提高膜的厚度,改善分布,提高流动性等。典型的改性剂应用包括反光应用(例如公路标志和符号),工业爆炸物,冲击能量吸收结构(例如用于吸收炸弹和爆炸物的能量),涂料以及粉末涂层应用,粉碎和爆破应用,钻土应用(例如用于油井钻探的水泥),粘附剂配方以及隔声或者隔热应用。
该合成微球还可用来容纳并/或储存其它的材料。典型的容器应用包括医学和药学应用(例如药的微容器),放射性或者毒性材料的微容器,以及气体和液体的微容器。
该合成微球还可以在使用表面反应的各种应用中(即基底应用)用来提供特定的表面活性。对该合成微球进行二次处理还可以进一步提高表面活性,例如金属或者陶瓷涂层,酸浸等。典型的基底应用包括离子交换应用(为了去除流体中的污染物),催化剂应用(其中处理微球表面以在化合,转化或者分解反应中用作催化剂),过滤(从气体或者流体流中去除污染物),导电填料或者用于聚合复合物的RF屏蔽填料,以及医学成像。
制备团聚前体的方法
如上所述,本发明还提供一种制备团聚前体的方法。
优选的,基本组分的量占团聚前体干燥总重量的大于大约40wt.%。优选的,起泡剂的量占团聚前体干燥总重量的小于大约10wt.%。基本组分和起泡剂的进一步优选的形式如上所述。
优选的,另外将粘结剂与基本组分和起泡剂在混和步骤(b)中混和。优选的,粘结剂的量在占团聚前体干燥总重量的0.1-50wt.%的范围。粘结剂的进一步优选的形式如上所述。
在混和步骤(b)中可以适当的加入其它添加剂(例如表面活性剂)。表面活性剂可用来辅助颗粒的混和,悬浮和分散。
一般的,混和步骤(b)提供一种水基分散体或者糊状物,其在步骤(c)中干燥。混和可用任何可用来搅拌陶瓷粉末的传统方法进行。优选的混和技术的例子包括,但不限于,搅拌槽,球磨,单螺旋或者双螺旋混和器以及碾磨。
依赖于所使用的干燥技术,干燥可在30-600℃的温度范围内进行,时间可持续最长大约48小时。在本发明中可使用任何类型的在工业中通常用来干燥浆料和糊状物的干燥器。干燥可用例如固定盘或者容器分批处理。可供选择的,干燥可在流化床干燥器,回转干燥器,转动台式干燥器,喷雾干燥器或者闪速干燥器中进行。可供选择的,干燥可在微波炉中进行。应明白优化的干燥周期依赖于所用干燥方法的类型。
当干燥在固定盘或者容器中进行时,优选的,初始干燥温度不要设的太高以避免水的剧烈沸腾,而使固体从干燥容器中喷出。此时,干燥温度(至少在初始时)优选在30-100℃的范围,更优选的在40-80℃,以避免初始的水的快速沸腾。然而,在水初始蒸发之后,干燥温度可以提高到最高大约350℃,这可以更快速的完成干燥步骤。
优选的,制备团聚前体的方法包括进一步的步骤(d)将由步骤(c)得到的干燥混和物粉碎,形成具有预先确定的颗粒尺寸范围的团聚前体颗粒。干燥和粉碎可在同一步进行。
优选的,将干燥混和物粉碎以提供平均颗粒尺寸在10-1000微米范围内的团聚前体颗粒,更优选的在30-1000微米,更优选的在40-500微米,更优选的在50-300微米。
团聚前体的颗粒尺寸将与所得的合成中空微球的颗粒尺寸有关。尽管这种依赖只是近似的。
优选的,本发明提供具有受控尺寸分布的合成中空微球。因此,要将粉碎的团聚前体分级到预先确定的颗粒尺寸分布。可供选择的,可以通过在干燥步骤中使用喷雾干燥来在团聚前体中得到受控的尺寸分布。喷雾干燥的另一个优点是材料的输出量大,干燥时间短。因此,在本发明的一个优选实施方案中,干燥步骤(c)采用喷雾干燥器进行。喷雾干燥器在大量的标准教科书(例如C.M.van’t Land的IndustrialDrying Equipment,Arun S.Mujumbar的Handbook of IndustrialDrying第二版)中有描述,本领域技术人员是熟知的。发现在本发明中使用喷雾干燥器基本上不再需要对团聚前体进行任何的筛分/分级。
优选的,供给到喷雾干燥器中的水基浆料包括20-80wt.%的固相,更优选的为25-75wt.%的固相,更优选的为50-70wt.%的固相。
除了上述团聚体成分之外,该浆料中可以进一步含有工艺助剂或者添加剂以促进在喷雾干燥器中的混和,可流动性或者液滴的形成。适用的添加剂在喷雾干燥技术中是熟知的。这些添加剂的例子是磺酸盐(或酯),二醇醚类,碳氢化合物,纤维素醚类以及其它的类似物。它们在水基浆料中的含量在0-5wt.%的范围。
在喷雾干燥工艺中,一般在预先确定的压力和温度下,将水基浆料泵压进喷雾器中形成浆料液滴。喷雾器可以是,例如,基于旋转盘的喷雾器(离心喷雾),基于压力喷嘴的喷雾器(液压喷雾)或者基于双流体压力喷嘴的喷雾器(气动喷雾),在后者中,浆料与另一种流体混和。喷雾器还可以辅以循环的机械或者声学脉冲处理。
喷雾可以从干燥器腔室的顶部或者底部进行。热的干燥气体可以以与喷雾的方向相同或者相反的方向注入到干燥器中。
浆料的雾化液滴在干燥器中干燥一段预先确定好的时间。一般的,其在干燥器中的停留时间在0.1-10秒的范围,一般的,大于2秒的相对较长的停留时间是更加优选的。
优选的,干燥器的入口温度在300-600℃的范围,出口温度在100-220℃的范围。
附图简述
下面将结合附图用实施例对本发明进行描述:
图1是二元体系Na2O-SiO2的平衡相图,组成以SiO2的重量百分比表示。
图2是由实施例1得到的合成中空微球(样品1)的扫描电镜显微图。
图3是由实施例1得到的合成中空微球(样品2)的扫描电镜显微图。
图4是由实施例1得到的合成中空微球(样品3)的扫描电镜显微图。
图5是由实施例2得到的合成中空微球(样品4)的扫描电镜显微图。
图6是由实施例2得到的合成中空微球(样品5)的扫描电镜显微图。
图7是由实施例2得到的合成中空微球(样品6)的扫描电镜显微图。
图8是由实施例3得到的合成中空微球(样品7)的扫描电镜显微图。
图9是由实施例4得到的合成中空微球(样品12)的扫描电镜显微图。
图10是由实施例4得到的合成中空微球(样品13)的扫描电镜显微图。
图11是由实施例5得到的合成中空微球的扫描电镜显微图。
图12是由实施例5得到的合成中空微球的扫描电镜显微图。
图13是由实施例5得到的合成中空微球的扫描电镜显微图。
图14是由实施例6得到的合成中空微球的扫描电镜显微图。
图15是由实施例6得到的合成中空微球的扫描电镜显微图。
图16是由实施例8得到的合成中空微球(样品14)的扫描电镜显微图。
图17是由实施例8得到的合成中空微球(样品15)的扫描电镜显微图。
图18是由实施例8得到的合成中空微球(样品16)的扫描电镜显微图。
图19是团聚前体的示意图。
优选实施方案详述
实施例1
本实施例阐释用由粉煤灰,硅酸钠和糖构成的配方来制备合成微球的方法。
将F型粉煤灰(研磨至平均尺寸为5.4微米),商业级硅酸钠溶液(SiO2/Na2O是3.22,固相含量为40%),商业级糖和水混和,制得三个样品。各组分的量在表1中列出。粉煤灰的组成在表2中给出。将这些混和物搅拌成均匀的浆料,倒入平盘中,使其在室温下固化大约5分钟。将得到的产品进一步在大约50℃下干燥大约20小时,之后将其粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,对于每个样品,以大约0.14g/min的给料速度将粉末供入到垂直加热管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(表观密度),水浮选百分比以及大致的颗粒尺寸分布进行表征。不同焙烧温度和停留时间得到的结果概括在表3中。图2-4所示的分别是从样品1,2和3得到的产品的横截面。
                      表1
  样品号   粉煤灰   硅酸钠溶液   糖   水
  1   93.1   58.0   3.6   7.0
  2   104.8   29.1   3.6   19.2
  3   108.0   21.0   3.6   21.0
所有质量以克为单位
                                                                  表2
LOI SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 Mn2O3 P2O5 总量
  0.39   50.63   21.14   7.62   12.39   3.61   0.66   0.63   1.27   1.30   0.17   0.14   99.9
所有的量以重量百分比表示
                                   表3
  样品号   温度(℃)   停留时间(秒)   表观密度(g/cm3)   水浮选(%)   微球尺寸(微米)
  1   1300   0.6-1.1   0.64   81   100-275
  1   1300   0.8-1.5   0.78
  2   1300   0.6-1.1   0.87   55   110-240
  3   1300   0.6-1.1   1.05   75-225
表观密度和颗粒密度是相同的。
实施例2
本实施例阐释用由粉煤灰,硅酸钠和碳黑构成的配方来制备合成微球的方法。
将F型粉煤灰(研磨至平均尺寸为5.4微米),商业级硅酸钠溶液(SiO2/Na2O是3.22,固相含量为40%),商业级碳黑和水混和,制得三个样品。各组分的量在表4中列出。粉煤灰的组成在表2中给出。
将每种混和物搅拌成均匀的浆料,倒入平盘中,使其在室温下固化大约5分钟。将得到的产品进一步在大约50℃下干燥大约20小时,之后将其粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,对于每个样品,以大约0.14g/min的给料速度将粉末供入到垂直加热管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(例如表观密度),水浮选百分比以及大致的颗粒尺寸分布进行表征。不同焙烧温度和停留时间得到的结果概括在表5中。图5-7所示的分别是从样品4,5和6得到的产品的横截面。
                     表4
样品号 粉煤灰 硅酸钠溶液 碳黑
 4  95.0  59.0  1.2  7.1
 5  100.8  45.0  1.2  18.4
 6  106.8  30.0  1.2  30.1
所有质量以克为单位
                                  表5
样品号   温度(℃)   停留时间(秒) 表观密度(g/cm3)   水浮选(%)     微球尺寸(微米)
  4   1300   0.6-1.1   0.87   70   100-275
  5   1300   0.6-1.1   0.75   71   100-275
  6   1300   0.6-1.1   0.86   67   110-260
实施例3
本实施例阐释用由粉煤灰,氢氧化钠和碳黑构成的配方来制备合成微球的方法。
将F型粉煤灰(研磨至平均尺寸为5.4微米),商业级固体氢氧化钠(片状),商业级碳黑和水混和,制得三个样品。各组分的量在表6中列出。粉煤灰的组成在表2中给出。将每种混和物搅拌成均匀的浆料,倒入平盘中,使其在室温下固化大约5分钟。将得到的产品进一步在大约50℃下干燥大约20小时,之后将其粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,以大约0.14g/min的给料速度将粉末供入到垂直加热管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(例如表观密度),水浮选百分比以及大致的颗粒尺寸分布进行表征。得到的结果概括在表7中。图8所示的是从样品7得到的产品的横截面。
                 表6
样品号 粉煤灰 氢氧化钠 碳黑
 7  112.8  6.0  1.2  39.5
 8  116.4  2.4  1.2  46.6
 9  117.6  1.2  1.2  47.0
所有质量以克为单位
                                 表7
  样品号   温度(℃)   停留时间(秒)   表观密度(g/cm3)   水浮选(%)   微球尺寸(微米)
  7   1300   0.6-1.1   0.65   77   85-290
  8   1300   0.6-1.1   0.76
  9   1300   0.6-1.1   0.78   66
实施例4
本实施例阐释用由粉煤灰,玄武石,氢氧化钠和碳黑构成的配方来制备合成微球的方法。
将94克的F型粉煤灰和玄武石一起研磨到平均尺寸为3.7微米,将其与5克固体氢氧化钠(片状),1克商业级碳黑和38毫升的水混和。如表8中所示,通过改变玄武石与粉煤灰之间的比率,制得几个样品。粉煤灰和玄武石的组成分别在表2和表9中给出。将每种混和物搅拌成均匀的浆料,倒入平盘中,使其在室温下固化大约5分钟。将得到的产品进一步在大约50℃下干燥大约20小时,之后将其粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,以大约0.14g/min的给料速度将粉末供入到垂直加热管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(例如表观密度),水浮选百分比以及大致的颗粒尺寸分布进行表征。得到的结果概括在表10中。图9和10所示的分别是从样品12和13得到的产品的横截面。
                             表8
  样品号   粉煤灰   玄武石   氢氧化钠   碳黑   水
  10   75.2   18.8   5.0   1.0   38.0
  11   56.4   37.6   5.0   1.0   38.0
  12   37.6   56.4   5.0   1.0   38.0
13 18.8 75.2 5.0 1.0 38.0
所有质量以克为单位
                                                             表9
  LOI   SiO2   Al2O3   Fe2O3   CaO   MgO   SO3   Na2O   K2O   TiO2   Mn2O3   P2O5   总量
  0   46.13   15.81   9.50   9.50   9.60   0   2.78   1.53   2.38   0.25   0.59   98.0
所有的量以重量百分比表示
                                  表10
  样品号   温度(℃)   停留时间(秒)   表观密度(g/cm3)   水浮选(%)   微球尺寸(微米)
  10   1300   0.8-1.5   0.76   62
  11   1300   0.8-1.5   0.77   63
  12   1300   0.8-1.5   0.76   65   100-250
  13   1300   0.8-1.5   1.00   44   100-225
实施例5
本实施例阐释用由玄武石,氢氧化钠和碳化硅构成的配方来制备合成微球的方法。
将93.5克的玄武石研磨到平均尺寸为3.7微米,将其与5克商业级的固体氢氧化钠(片状),1.5克商业级的碳化硅和37.4毫升的水混和。玄武石的组成在表9中给出。将此混和物搅拌成均匀的浆料,倒入平盘中,使其在室温下固化大约5分钟。将得到的产品进一步在大约50℃下干燥大约20小时,之后将其粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,以大约0.14g/min的给料速度将粉末供入到垂直加热管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(例如表观密度),水浮选百分比以及大致的颗粒尺寸分布进行表征。不同焙烧温度和停留时间得到的结果概括在表11中。图11-13所示的分别是在1300℃,1250℃和1200℃所得到的产品的横截面。
                             表11
  温度(℃)   停留时间(秒)   表观密度(g/cm3)   水浮选(%)   微球尺寸(微米)
  1300   0.6-1.1   0.61
  1250   0.6-1.1   0.56   86   130-260
  1200   0.6-1.1   0.59   85-195
  1150   0.6-1.1   1.21   105-240
实施例6
本实施例阐释用由粉煤灰,氢氧化钠和碳化硅构成的配方来制备合成微球的方法。
将93.5克的F型粉煤灰研磨到平均尺寸为3.2微米,与5克固体氢氧化钠(片状),1.5克商业级的碳化硅和37.4毫升的水相混和。粉煤灰的组成在表12中给出。将此混和物搅拌成均匀的浆料,倒入平盘中,使其在室温下固化大约5分钟。将得到的产品进一步在大约50℃下干燥大约20小时,之后将其粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,以大约0.14g/min的给料速度将粉末供入到垂直加热管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(例如表观密度),水浮选百分比以及大致的颗粒尺寸分布进行表征。不同焙烧温度和停留时间得到的结果概括在表13中。图14和15所示的分别是在1300℃和1250℃下得到的产品的横截面。
                                                             表12
  LOI   SiO2   Al2O3   Fe2O3   CaO   MgO   SO3   Na2O   K2O   TiO2   Mn2O3   P2O5   总量
  0.40   61.53   17.91   4.72   7.30   2.91   0.40   2.16   1.39   0.86   0.08   0.28   99.94
所有的量以重量百分比表示
                               表13
  温度(℃)   停留时间(秒)   表观密度(g/cm3)   水浮选(%)   微球尺寸(微米)
  1400   0.6-1.1   0.52   83
  1300   0.6-1.1   0.49   96   130-280
  1250   0.6-1.1   0.58   105-220
实施例7
本实施例阐释用由粉煤灰,氢氧化钠和碳黑构成的配方来制备合成微球的方法。
将94克F型粉煤灰(研磨至平均颗粒尺寸为5.4微米),与5克固体氢氧化钠(片状),1克商业级的碳黑和38毫升的水相混和,制得样品。粉煤灰的组成在表2中给出。将此混和物搅拌成均匀的浆料,倒入凹的表面皿中,然后立即将该表面皿放入家用微波中并用更大的表面皿覆盖。将该浆料在微波中用可控制浆料避免过度受热的间歇式通/断加热程序干燥4分钟。所得产品适合于进行粉碎和进一步的样品制备,然而,如果必要,其可以保持在大约50℃的烘箱中。在干燥之后,将该混和物粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,以大约0.14g/min的给料速度将粉末装入到垂直加热的管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(表观密度)以及大致的颗粒尺寸分布进行表征。将该样品(MW)的结果和用相同的配方但用对流炉在50℃下干燥制得的样品7的结果进行比较。结果总结在表14和15中。
                    表14
  样品号   粉煤灰   氢氧化钠   碳黑   水
  MW   112.8   6.0   1.2   39.5
  7   112.8   6.0   1.2   39.5
                            表15
  样品号   温度(℃)   停留时间(秒)   表观密度(g/cm3)   水浮选(%)   微球尺寸(微米)
  MW   1300   0.6-1.1   0.72
  7   1300   0.6-1.1   0.65   77   85-290
实施例8
本实施例阐释用由绿伊利石,氢氧化钠和碳黑构成的配方来制备合成微球的方法。
将112.86克绿伊利石粉碎到平均尺寸为2微米,与5.94克固体氢氧化钠(片状),1.2克商业级碳黑和86.8毫升的水相混和。绿伊利石的组成在表16中给出。将此混和物搅拌成均匀的浆料,倒入平盘中,使其在室温下固化大约5分钟。将得到的产品进一步在大约50℃下干燥大约20小时,之后将其粉碎并过筛,得到尺寸范围在106-180微米之间的粉末。在下一步骤中,以大约0.14g/min的给料速度将粉末供入到垂直加热的管式炉中。管式炉中的气流为每分钟1升空气加3升氮气。调节炉子的恒温区,使得在峰值焙烧温度下的停留时间为从小于1秒到大约几秒。起泡后的微球用漏斗形的收集装置收集,并用位于炉子底部的细的筛网覆盖。为了有助于收集微球,在漏斗的末端施加轻微的吸力。对产品的颗粒密度(表观密度)以及大致的颗粒尺寸分布进行表征。不同焙烧温度和停留时间得到的结果概括在表17中。图16,17和18所示的分别是样品14,15,16所得到的产品的横截面。
                                                                表16
  LOI   SiO2   Al2O3   Fe2O3   CaO   MgO   SO3   Na2O   K2O   TiO2   Mn2O3   P2O5   总量
  13.14   50.49   13.88   5.16   9.02   2.38   1.05   0.21   3.63   0.75   0.10   0.14   100
                            表17
  样品号   温度(℃)   停留时间(秒)   表观密度(g/cm3)   微球尺寸(微米)
  14   1200   0.8-1.5   1.50   120-240
  15   1300   0.8-1.5   1.51   110-210
  16   1400   0.8-1.5   1.51   90-200
实施例9
将依据本发明的合成微球(“A”和“B”)的组成(重量百分比)与商业可得的收集煤胞的样品相比较。结果如表18中所示。
                    表18
  主要氧化物   收集煤胞  合成微球“A”  合成微球“B”
  SiO2   62.5   58.9   65.8
  Al2O3   25.2   17.1   12.8
  Fe2O3   3.7   4.5   3.3
  CaO   1.1   7.0   5.2
  MgO   1.7   2.8   2.0
  Na2O   1.1   5.2   6.8
  K2O   1.9   1.3   1.0
  SO3   0.5   0.4   0.3
  其它   2.3   2.8   2.8
实施例10
本实施例给出在本发明中用来制造团聚前体的典型的喷雾干燥条件。
干燥器:Bowen Engineering公司的No 1陶瓷干燥器,配有59-BS型双流体喷嘴
气嘴压力:大约20psi
气旋真空:大约4.5
入口/出口温度:大约550℃/120℃
腔室真空:大约1.6
浆料固体:大约50%
采用这些喷雾干燥条件制造的团聚前体具有的平均颗粒尺寸和颗粒尺寸分布适合用来制备合成中空微球。图19是团聚前体的示意图,含有基本组分1,起泡剂2和粘结剂3。
应该明白,通过实施例只是对本发明进行描述,很明显,本领域技术人员可以在本发明的范围之内对其细节进行修改。

Claims (64)

1.一种制备合成中空微球的方法,包括步骤:
(a)制备团聚前体,所述团聚前体中包括基本组分和起泡剂;以及
(b)将该前体在预先确定的足以使该前体的表面密封并使起泡剂活化的温度分布下焙烧,由此制得合成中空微球,
其中该基本组分包括至少一种铝硅酸盐材料。
2.权利要求1中的方法,其中基本组分的量占团聚前体总重量的至少40wt.%。
3.权利要求1或者2中的方法,其中起泡剂的量在占团聚前体总重量的0.05-10wt.%的范围。
4.前述任一权利要求中的方法,其中基本组分和起泡剂的比率在1000∶1-10∶1之间的范围。
5.前述任一权利要求中的方法,其中团聚前体中含水量小于大约14wt.%。
6.前述任一权利要求中的方法,其中团聚前体是颗粒状的,具有的平均团聚颗粒尺寸在30-1000微米的范围。
7.前述任一权利要求中的方法,其中团聚前体中所含的碱金属氧化物总量最高为大约10wt.%。
8.前述任一权利要求中的方法,其中基本组分中包括选自粉煤灰,底灰,高炉矿渣,纸灰,玄武岩,安山岩,长石,铝硅酸盐粘土,铝土,黑曜石,火山灰,火山岩,火山玻璃,无机聚合物及其组合中的至少一种铝硅酸盐材料。
9.前述任一权利要求中的方法,其中该至少一种铝硅酸盐材料是粉煤灰。
10.前述任一权利要求中的方法,其中该至少一种铝硅酸盐材料是经煅烧的。
11.前述任一权利要求中的方法,其中,在该至少一种铝硅酸盐材料中的氧化硅和氧化铝的质量比大于大约1。
12.前述任一权利要求中的方法,其中该至少一种铝硅酸盐材料包括无定形相。
13.前述任一权利要求中的方法,其中该至少一种铝硅酸盐材料所具有的平均一次颗粒尺寸在0.01-100微米的范围。
14.前述任一权利要求中的方法,其中基本组分中进一步包括至少一种废料和/或其它的可形成玻璃的材料。
15.权利要求14中的方法,其中该至少一种的废料和/或其它的可形成玻璃的材料选自废玻璃,废陶瓷,窑灰,废纤维水泥,混凝土,焚灰,硅藻土,石英砂,硅灰或者它们的组合。
16.前述任一权利要求中的方法,其中,起泡剂选自煤粉,碳黑,活性炭,石墨,含碳聚合有机物,油,碳水化合物,PVA,碳酸盐,碳化物,硫酸盐,硫化物,氮化物,硝酸盐,胺,多元醇类,二醇类或者丙三醇。
17.前述任一权利要求中的方法,其中,起泡剂选自碳化硅,煤粉,碳黑或者糖。
18.前述任一权利要求中的方法,其中,起泡剂的平均颗粒尺寸在0.01-10微米的范围。
19.前述任一权利要求中的方法,其中,团聚前体中进一步包括粘结剂。
20.权利要求19中的方法,其中的粘结剂选自碱金属硅酸盐,碱金属铝硅酸盐,碱金属硼酸盐,碱金属或者碱土金属碳酸盐,碱金属或者碱土金属硝酸盐,碱金属或者碱土金属亚硝酸盐,硼酸,碱金属或者碱土金属硫酸盐,碱金属或者碱土金属磷酸盐,碱金属或者碱土金属氢氧化物,碳水化合物,胶态二氢化硅,超细粉煤灰,C型粉煤灰,F型粉煤灰,无机硅酸盐水泥,波特兰水泥,高铝水泥,石灰基水泥,磷酸盐基水泥,有机聚合物或者它们的组合。
21.权利要求19或者20中的方法,其中粘结剂的熔点比团聚前体作为整体的熔点低。
22.权利要求19或21任意之一中的方法,其中粘结剂的熔点在700-1000℃的范围。
23.权利要求19-22任意之一中的方法,其中粘结剂具有共晶或者近共晶的组成。
24.权利要求23中的方法,其中粘结剂中的SiO2与Na2O之比在5∶1-1∶1的范围。
25.权利要求19-24任意之一中的方法,其中粘结剂是硅酸钠。
26.权利要求19-23任意之一中的方法,其中粘结剂是由碱金属氢氧化物和铝硅酸盐材料原位反应生成的碱金属铝硅酸盐。
27.权利要求19-26任意之一中的方法,其中粘结剂的量在占团聚前体总重量的0.1-50wt.%的范围。
28.前述任一权利要求中的方法,其中基本组分,起泡剂和可选的粘结剂一起粉碎,使得团聚前体的所有成分具有基本等同的平均颗粒尺寸。
29.前述任一权利要求中的方法,其中进行焙烧步骤(b)的温度在600-2500℃的范围,持续时间在0.05-20秒的范围。
30.前述任一权利要求中的方法,其中在焙烧步骤(b)中,在前体的周围形成熔融外层。
31.权利要求30中的方法,其中在熔融外层的形成过程中和/或之后,起泡剂被活化。
32.权利要求30或者31中的方法,其中起泡剂包裹在熔融外壳之中。
33.前述任一权利要求中的方法,其中焙烧步骤在流化床反应器,涡流炉,加热垂直管或者烧油炉中进行。
34.一种由依据前述任一权利要求中的方法制得的或者可制得的合成中空微球。
35.一种包括铝硅酸盐材料的合成中空微球,其中,所述微球的平均颗粒尺寸在30-1000微米的范围,并且所述微球中碱金属氧化物的总量在占微球总重量的2-10wt.%的范围。
36.权利要求35中的合成中空微球,其中微球中所含氧化钠的量在1-10wt.%的范围。
37.权利要求34-36任意之一中的合成中空微球,其具有如下一个或者多个特征:
(i)纵横比在大约0.8-1。
(ii)空穴体积在占微球总体积的大约30-95%之间;
(iii)壁厚大约在微球半径的5-30%之间;
(iv)组成为30-85wt.%的SiO2,2-45wt.%的Al2O3,最高为大约30wt.%的二价金属氧化物,2-10wt.%的碱金属氧化物,最高为大约20wt.%的其它金属氧化物,包括以多氧化态存在的金属氧化物;
(v)氧化硅与氧化铝的比大于大约1;
(vi)平均直径在30-1000微米之间;
(vii)外壁厚度在1-50微米之间;
(viii)颗粒密度在0.1-2.0g/cm3之间;或者
(ix)堆密度小于大约1.4g/cm3
38.权利要求34-37任意之一的合成中空微球在填料应用,改性剂应用,容器应用或者基底应用中的用途。
39.权利要求38中的用途,其中填料应用是在选自聚合物,无机粘结材料,混凝土体系,油灰,木质复合物,粘土以及陶瓷中的复合材料中的填料。
40.权利要求38中的用途,其中改性剂应用选自反光应用,工业爆炸物,冲击能量吸收结构,涂料以及粉末涂层应用,粉碎和爆破应用,钻土应用,粘附剂配方以及隔声或者隔热应用。
41.权利要求38中的用途,其中容器应用选自医学和药学应用,放射性或者毒性材料的微容器,以及气体和液体的微容器。
42.权利要求38中的用途,其中基底应用选自离子交换应用,催化应用,过滤,导电填料或者用于聚合复合物的RF屏蔽填料,以及医学成像。
43.权利要求42中的用途,其中合成中空微球进行二次表面处理。
44.一种含有权利要求34-37任意之一中的合成中空微球的纤维水泥建筑产品。
45.一种适用于制备合成中空微球的团聚前体,所述团聚前体中含基本组分和起泡剂,其中基本组分中包括至少一种铝硅酸盐材料。
46.权利要求45中的团聚前体,其由权利要求2-7中的任意一个确定。
47.权利要求45或者46中的团聚前体,其中的基本组分由权利要求8-15中的任意一个确定。
48.权利要求45-47任意之一中的团聚前体,其中的起泡剂由权利要求16-18中的任意一个确定。
49.权利要求45-48任意之一中的团聚前体,进一步包括粘结剂。
50.权利要求49中的团聚前体,其中粘结剂由权利要求19-27中的任意一个确定。
51.一种制备团聚前体的方法,所述团聚前体适合用来制备合成中空微球,该方法包括步骤:
(a)提供具有预先确定的尺寸的基本组分,所述基本组分中包括至少一种铝硅酸盐材料;
(b)将该基本组分与起泡剂在水中混合;并
(c)将此混合物干燥。
52.权利要求51中的方法,其中基本组分占团聚前体干燥总重量的大于大约40wt.%。
53.权利要求51或者52中的方法,其中起泡剂的量占团聚前体干燥总重量的少于大约10wt.%。
54.权利要求51-53任意之一中的方法,其中基本组分由权利要求8-15中的任意一个确定。
55.权利要求51-54任意之一中的方法,其中气泡剂由权利要求16-18中的任意一个确定。
56.权利要求51-55中任意之一中的方法,其中另外将粘结剂在步骤(b)中与基本组分和起泡剂相混和。
57.权利要求56中的方法,其中粘结剂由权利要求19-27中的任意一个确定。
58.权利要求51-57任意之一中的方法,其中干燥步骤(c)包括在30-600℃的温度范围内干燥。
59.权利要求51-58任意之一中的方法,进一步包括步骤:
(d)将从步骤(c)得到的干燥混和物粉碎,形成具有预先确定的颗粒尺寸的团聚前体颗粒。
60.权利要求59中的方法,其中干燥混和物粉碎提供的团聚前体颗粒的平均颗粒尺寸在10-1000微米的范围。
61.权利要求59或者60中的方法,其中干燥和粉碎在同一步进行。
62.权利要求59-61任意之一中的方法,进一步包括步骤(e),将团聚前体颗粒分级,提供具有预先确定的颗粒尺寸分布的团聚前体。
63.权利要求51-58任意之一中的方法,其中干燥步骤(c)采用喷雾干燥器进行。
64.一种采用依据权利要求51-63任意之一中的方法得到的或者可以得到的团聚前体。
CNA03822626XA 2002-08-23 2003-08-21 合成中空微球 Pending CN1684760A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US40579002P 2002-08-23 2002-08-23
US60/405,790 2002-08-23
US47140003P 2003-05-16 2003-05-16
US60/471,400 2003-05-16

Publications (1)

Publication Number Publication Date
CN1684760A true CN1684760A (zh) 2005-10-19

Family

ID=31949902

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA03822626XA Pending CN1684760A (zh) 2002-08-23 2003-08-21 合成中空微球

Country Status (12)

Country Link
US (3) US7878026B2 (zh)
EP (1) EP1549427B1 (zh)
JP (1) JP4490816B2 (zh)
KR (1) KR20050058478A (zh)
CN (1) CN1684760A (zh)
AU (2) AU2003250614B2 (zh)
BR (1) BR0313749A (zh)
CA (1) CA2495696C (zh)
MX (1) MXPA05002057A (zh)
NZ (1) NZ538497A (zh)
TW (1) TW200422276A (zh)
WO (1) WO2004018090A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415481A (zh) * 2011-03-07 2013-11-27 3M创新有限公司 中空微球体
CN103649429A (zh) * 2011-07-07 2014-03-19 3M创新有限公司 包括多组分纤维和中空陶瓷微球的制品及其制备和使用方法
CN104891813A (zh) * 2015-04-15 2015-09-09 周佐石 利用废玻璃制造空心玻璃微珠的方法
CN104891812A (zh) * 2015-04-15 2015-09-09 周佐石 空心玻璃微珠的制造方法
CN106630615A (zh) * 2016-12-28 2017-05-10 郑州圣莱特空心微珠新材料有限公司 一种利用废玻璃制造空心玻璃微珠的方法
CN107098367A (zh) * 2017-06-26 2017-08-29 东北林业大学 一种用于阻尼减振降噪的氧化铝空心球的制备方法
CN112341152A (zh) * 2020-10-08 2021-02-09 内蒙古建能兴辉陶瓷有限公司 用于多用途开孔型发泡陶瓷的制备原料和方法及其应用
CN114014553A (zh) * 2021-12-13 2022-02-08 中南大学 一种提高煤泥漂珠空心成球率的方法

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572697B2 (en) 2000-03-14 2003-06-03 James Hardie Research Pty Limited Fiber cement building materials with low density additives
US6828373B2 (en) * 2001-03-07 2004-12-07 Advanced Ceramics Research, Inc. Water soluble tooling materials for composite structures
US6964809B2 (en) * 2002-02-15 2005-11-15 Pedro M. Buarque de Macedo Large high density foam glass tile
CA2495696C (en) 2002-08-23 2012-01-31 James Hardie International Finance B.V. Synthetic hollow microspheres
US7455798B2 (en) * 2002-08-23 2008-11-25 James Hardie International Finance B.V. Methods for producing low density products
MXPA05003691A (es) 2002-10-07 2005-11-17 James Hardie Int Finance Bv Material mixto de fibrocemento de densidad media durable.
US7155866B2 (en) 2002-11-05 2007-01-02 Certainteed Corporation Cementitious exterior sheathing product having improved interlaminar bond strength
US8136181B2 (en) 2003-01-27 2012-03-20 Emmett James Roepke System and method for retractable furniture unit
EP1641556A4 (en) * 2003-05-16 2008-04-16 James Hardie Int Finance Bv METHOD FOR PRODUCING LOW-DENSITY PRODUCTS
US7311965B2 (en) * 2003-07-22 2007-12-25 Pedro M. Buarque de Macedo Strong, high density foam glass tile having a small pore size
US8453400B2 (en) * 2003-07-22 2013-06-04 Pedro M. Buarque de Macedo Prestressed, strong foam glass tiles
US20090146108A1 (en) * 2003-08-25 2009-06-11 Amlan Datta Methods and Formulations for Producing Low Density Products
US20100192808A1 (en) * 2003-08-25 2010-08-05 Amlan Datta Synthetic Microspheres and Methods of Making Same
US20090156385A1 (en) 2003-10-29 2009-06-18 Giang Biscan Manufacture and use of engineered carbide and nitride composites
EP1547985A1 (de) * 2003-12-23 2005-06-29 Sika Technology AG Trockenes Zusatzmittel für hydraulische Bindemittel
US7607482B2 (en) * 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US7445669B2 (en) * 2005-09-09 2008-11-04 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and additive(s)
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
GB0408113D0 (en) * 2004-04-13 2004-05-19 British Nuclear Fuels Plc Encapsulation of hazardous waste materials
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US7762040B2 (en) 2004-08-12 2010-07-27 Progressive Foam Technologies, Inc. Insulated fiber cement siding
US8844233B2 (en) 2004-08-12 2014-09-30 Progressive Foam Technologies, Inc. Foam insulation board with edge sealer
US8910444B2 (en) 2004-08-12 2014-12-16 Progressive Foam Technologies, Inc. Foam insulation backer board
US8910443B2 (en) 2004-08-12 2014-12-16 Progressive Foam Technologies, Inc. Foam backer for insulation
US8857123B2 (en) 2004-08-12 2014-10-14 Progressive Foam Technologies, Inc. Foam insulation board
US20060068188A1 (en) 2004-09-30 2006-03-30 Morse Rick J Foam backed fiber cement
US7506523B2 (en) * 2004-11-08 2009-03-24 Beck Warren R Method of making hollow inorganic microspheres, and products made thereby
US20060096317A1 (en) * 2004-11-08 2006-05-11 Beck Warren R Method of making hollow glassy and ceramic microspheres, and products made thereby
US7491444B2 (en) * 2005-02-04 2009-02-17 Oxane Materials, Inc. Composition and method for making a proppant
US8012533B2 (en) * 2005-02-04 2011-09-06 Oxane Materials, Inc. Composition and method for making a proppant
WO2006084236A1 (en) * 2005-02-04 2006-08-10 Oxane Materials, Inc. A composition and method for making a proppant
US7867613B2 (en) * 2005-02-04 2011-01-11 Oxane Materials, Inc. Composition and method for making a proppant
CN101160266A (zh) 2005-02-24 2008-04-09 詹姆斯哈迪国际财金公司 耐碱性玻璃组合物
US7700670B2 (en) * 2005-05-13 2010-04-20 Beach Brian A Low-density molding compound
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US7478675B2 (en) * 2005-09-09 2009-01-20 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US7353870B2 (en) * 2005-09-09 2008-04-08 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust and additive(s)
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US7743828B2 (en) * 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US7335252B2 (en) * 2005-09-09 2008-02-26 Halliburton Energy Services, Inc. Lightweight settable compositions comprising cement kiln dust
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US7631692B2 (en) * 2005-09-09 2009-12-15 Halliburton Energy Services, Inc. Settable compositions comprising a natural pozzolan and associated methods
US7395860B2 (en) * 2005-09-09 2008-07-08 Halliburton Energy Services, Inc. Methods of using foamed settable compositions comprising cement kiln dust
US8333240B2 (en) * 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US7789150B2 (en) * 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US7174962B1 (en) * 2005-09-09 2007-02-13 Halliburton Energy Services, Inc. Methods of using lightweight settable compositions comprising cement kiln dust
US7077203B1 (en) * 2005-09-09 2006-07-18 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US7607484B2 (en) * 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles and methods of use
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US7213646B2 (en) * 2005-09-09 2007-05-08 Halliburton Energy Services, Inc. Cementing compositions comprising cement kiln dust, vitrified shale, zeolite, and/or amorphous silica utilizing a packing volume fraction, and associated methods
KR100740281B1 (ko) * 2005-09-14 2007-07-18 (주)선한엠엔티 메조크기 다공성 이산화티탄 박막을 갖는 유리중공구체 및그 제조방법
US7337842B2 (en) * 2005-10-24 2008-03-04 Halliburton Energy Services, Inc. Methods of using cement compositions comprising high alumina cement and cement kiln dust
US7381263B2 (en) * 2005-10-24 2008-06-03 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust
WO2007050078A1 (en) * 2005-10-26 2007-05-03 University Of North Dakota High-yield methods for producing low-density microspheres
WO2007050062A1 (en) * 2005-10-26 2007-05-03 University Of North Dakota Methods for the production of low-density microspheres
US7284609B2 (en) * 2005-11-10 2007-10-23 Halliburton Energy Services, Inc. Methods of using settable spotting compositions comprising cement kiln dust
US7695560B1 (en) 2005-12-01 2010-04-13 Buarque De Macedo Pedro M Strong, lower density composite concrete building material with foam glass aggregate
US8574358B2 (en) * 2005-12-06 2013-11-05 James Hardie Technology Limited Geopolymeric particles, fibers, shaped articles and methods of manufacture
WO2007119121A2 (en) * 2005-12-06 2007-10-25 James Hardie International Finance B.V. Geopoymeric particles, fibers, shaped articles and methods of manufacture
AU2006321786B2 (en) 2005-12-06 2012-05-10 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
US20070131145A1 (en) * 2005-12-09 2007-06-14 Giang Biscan Multi-function composition for settable composite materials and methods of making the composition
EP1832560A3 (de) * 2006-03-07 2010-03-24 Omega Minerals Germany GmbH Verfahren zur Herstellung keramischer oder glasartiger Mikrohohlkugeln
AU2007231558B2 (en) * 2006-03-29 2011-06-23 Zeobond Research Pty Ltd Dry mix cement composition, methods and systems involving same
US7338923B2 (en) * 2006-04-11 2008-03-04 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
KR101067371B1 (ko) * 2006-05-01 2011-09-23 신현오 경량 발포 세라믹체 및 이의 제조방법
WO2008047334A1 (en) * 2006-10-17 2008-04-24 Kingspan Research And Developments Limited An insulating medium
US20080119927A1 (en) * 2006-11-17 2008-05-22 Medtronic Vascular, Inc. Stent Coating Including Therapeutic Biodegradable Glass, and Method of Making
GB2444617B (en) * 2006-12-06 2009-02-04 Dale Windridge Powder coating material
EP1955986A1 (en) * 2007-01-18 2008-08-13 Sika Technology AG Light weight aggregate
KR100890783B1 (ko) * 2007-01-31 2009-03-31 박정도 독성물 중화용 세라믹볼 제조방법
US20090239429A1 (en) 2007-03-21 2009-09-24 Kipp Michael D Sound Attenuation Building Material And System
ES2738525T3 (es) 2007-03-21 2020-01-23 Ash Tech Ind L L C Materiales de uso general que incorporan una matriz de micropartículas
US8445101B2 (en) 2007-03-21 2013-05-21 Ashtech Industries, Llc Sound attenuation building material and system
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US8685903B2 (en) 2007-05-10 2014-04-01 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
WO2009012455A1 (en) 2007-07-18 2009-01-22 Oxane Materials, Inc. Proppants with carbide and/or nitride phases
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
WO2010054029A2 (en) 2008-11-04 2010-05-14 Ashtech Industries, L.L.C. Utility materials incorporating a microparticle matrix formed with a setting system
KR101669634B1 (ko) * 2008-12-17 2016-10-26 다우 코닝 코포레이션 온도 조절 방출을 위한 실리케이트 쉘 마이크로캡슐의 현탁액
WO2010101572A1 (en) * 2009-03-05 2010-09-10 James Hardie Technology Limited Manufacture and use of engineered carbide and nitride composites
JP5454580B2 (ja) * 2009-08-28 2014-03-26 旭硝子株式会社 造粒体の製造方法およびガラス製品の製造方法
TWI395714B (zh) * 2009-09-16 2013-05-11 Univ Nat Chunghsing Inorganic hollow microspheres and its preparation method
US9308511B2 (en) 2009-10-14 2016-04-12 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using thixotropic gels
US9242900B2 (en) 2009-12-01 2016-01-26 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Porous geopolymer materials
AU2010333894B2 (en) 2009-12-22 2014-03-13 Halliburton Energy Services, Inc A proppant having a glass-ceramic material
CN101838108B (zh) * 2010-04-22 2012-02-22 山西太钢不锈钢股份有限公司 一种不锈钢尾渣和粉煤灰的利用方法
US9365691B2 (en) 2010-08-06 2016-06-14 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using intrepenetrating inorganic-organic composite gels
US8617452B2 (en) * 2010-08-13 2013-12-31 Srmz Technical, Inc. Methods of making a construction material with a voltage
CN102173567B (zh) * 2011-01-21 2012-11-07 武汉理工大学 一种纤维增强微晶玻璃保温材料的制备方法
KR102060844B1 (ko) * 2011-09-21 2019-12-30 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 지오폴리머 수지 재료, 지오폴리머 재료, 및 그에 의해 제조된 재료
AU2012318528A1 (en) 2011-10-07 2014-05-22 Boral Ip Holdings (Australia) Pty Limited Inorganic polymer/organic polymer composites and methods of making same
US8864901B2 (en) 2011-11-30 2014-10-21 Boral Ip Holdings (Australia) Pty Limited Calcium sulfoaluminate cement-containing inorganic polymer compositions and methods of making same
US9033040B2 (en) * 2011-12-16 2015-05-19 Baker Hughes Incorporated Use of composite of lightweight hollow core having adhered or embedded cement in cementing a well
JP6272777B2 (ja) * 2011-12-16 2018-01-31 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH 高pH値での制御放出特性を有する活性成分のシェラックコーティングされた粒子、その製造方法、及びその使用
JP5661066B2 (ja) * 2012-05-28 2015-01-28 株式会社 フュー・テクノロジー 放射性物質を含有した焼却灰の処理方法及び処理固形物
WO2014071068A1 (en) * 2012-11-02 2014-05-08 James Hardie Technology Limited Synthetic microparticles
US9662630B2 (en) 2013-03-15 2017-05-30 ADA-ES, Inc. Methods for solidification and stabilization of industrial byproducts
US9701843B2 (en) 2013-05-15 2017-07-11 Reedy International Corporation Colorized micron sized free flowing fillers
US9016090B2 (en) 2013-06-12 2015-04-28 Hamid Hojaji Glass microspheres comprising sulfide, and methods of producing glass microspheres
EP2813480A1 (de) 2013-06-14 2014-12-17 Construction Research & Technology GmbH Zementäres System, umfassend mit quervernetztem Schellack beschichtete Beschleuniger-Teilchen
US10170759B2 (en) 2013-06-21 2019-01-01 Arizona Board Of Regents On Behalf Of Arizona State University Metal oxides from acidic solutions
CN103601430B (zh) * 2013-11-20 2015-03-11 山东理工大学 碳化硅陶瓷微珠制备低密度油井固井水泥试块的方法
CN103819150B (zh) * 2014-03-05 2015-05-06 山东理工大学 碳化钨二氧化硅复合陶瓷微珠制备油井固井水泥试块方法
CN103833286B (zh) * 2014-03-11 2015-10-21 山东理工大学 二硼化锆陶瓷微珠制备低密度油井固井水泥试块的方法
US10809677B2 (en) 2014-06-12 2020-10-20 ADA-ES, Inc. Methods to substantially optimize concentration of materials in an output stream
US10926241B2 (en) 2014-06-12 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Carbon dioxide adsorbents
CN107418173A (zh) 2014-06-27 2017-12-01 赛史品威奥(唐山)结构复合材料有限公司 包括表面改性的微球体的低密度模塑料
US20170198209A1 (en) * 2014-06-27 2017-07-13 Imerys Oilfield Minerals, Inc. Proppant-based chemical delivery system
GB201415005D0 (en) * 2014-08-22 2014-10-08 Univ Nottingham Porous and non-pourous bodies
US10196296B2 (en) 2015-01-17 2019-02-05 Hamid Hojaji Fluid permeable and vacuumed insulating microspheres and methods of producing the same
US10458117B2 (en) * 2015-07-30 2019-10-29 The Board Of Trustees Of The University Of Alabama Microencapsulation of materials using cenospheres
WO2017040900A1 (en) * 2015-09-04 2017-03-09 3M Innovative Properties Company Method of making hollow glass microspheres
US9643876B2 (en) 2015-10-04 2017-05-09 Hamid Hojaji Microspheres and methods of making the same
SI3184494T1 (en) * 2015-12-21 2018-07-31 Adf Materials Gmbh Chemical composition for the production of hollow spherical glass particles with high compressive strength
RU2610615C1 (ru) * 2015-12-31 2017-02-14 Общество с ограниченной ответственностью "Сферастек" Печь для вспенивания гранул
CN106082922B (zh) * 2016-08-23 2018-03-30 张振华 一种颗粒状中空建筑材料及其制备方法
EP3558892A4 (en) 2016-12-23 2020-09-16 Nu-Rock Corporation S.a.r.l. METHOD AND APPARATUS FOR PRODUCING A SHAPED ARTICLE
WO2018136695A1 (en) 2017-01-20 2018-07-26 Seo Dong Kyun Aluminosilicate nanorods
DE102017111849A1 (de) * 2017-05-30 2018-12-06 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Isoliermaterial oder eines isolierenden Produkts für die Feuerfestindustrie, entsprechende Isoliermaterialien und Produkte sowie Verwendungen
US11685683B2 (en) * 2017-06-21 2023-06-27 China University Of Petroleum (East China) High-strength geopolymer hollow microsphere, preparation method thereof and phase change energy storage microsphere
CN107973559B (zh) * 2017-11-22 2021-02-05 广西大学 多孔地质聚合物微球的制备方法及其应用
CN112041285A (zh) * 2018-04-05 2020-12-04 陈创楠 用于由飞灰生产建筑骨料的方法和利用该方法获得的骨料
KR101901684B1 (ko) * 2018-04-12 2018-09-28 흥국산업(주) 석탄 바닥재를 이용한 속성 고강도 지오폴리머의 제조 방법
CN109110771A (zh) * 2018-09-12 2019-01-01 中国科学院山西煤炭化学研究所 一种利用催化气化灰渣制备水玻璃的方法
EP3663268A1 (en) * 2018-12-06 2020-06-10 ImerTech SAS Expanded and expandable granular materials
JP2020117995A (ja) * 2019-01-28 2020-08-06 株式会社米倉社会インフラ技術研究所 ポーラスアスファルト舗装混合物
KR102049466B1 (ko) * 2019-05-15 2019-11-27 서울대학교산학협력단 질소 기체를 이용한 중공 경량 골재의 제조 방법
IL303074A (en) 2019-06-27 2023-07-01 Terra Co2 Tech Holdings Inc Cement-like reagents, methods for their production and their uses
US11161786B2 (en) 2019-06-27 2021-11-02 Terra Co2 Technology Holdings, Inc. Alkali sulfate-activated blended cement
US11964873B2 (en) * 2019-08-28 2024-04-23 Plassein Technologies Ltd Llc Methods for producing hollow ceramic spheres
EP3943464A1 (en) * 2019-10-10 2022-01-26 Khan, Abbas A novel lightweight ceramic sand formulation from lignite fly ash and method of preparation thereof
CN112047674B (zh) * 2020-07-27 2022-02-11 中国港湾工程有限责任公司 挡浪墙用材料
CN116253519A (zh) * 2021-12-02 2023-06-13 财团法人金属工业研究发展中心 中空球体的制造方法及其中空球体

Family Cites Families (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1819093A (en) 1929-08-31 1931-08-18 Hardinge Co Inc Joint seal
GB413294A (en) 1933-01-11 1934-07-11 Roland Herbert Allen Improvements in and relating to the separation of dust and fine material from powdered or granular material especially coal
US2619776A (en) 1948-03-05 1952-12-02 Rudolf H Potters Method and apparatus for producing small diameter glass beads
GB682432A (en) 1950-03-30 1952-11-12 Annexes A L Inst Meurice Chimi New porous materials suitable for use as thermal and acoustic insulators and process for their manufacture
US2782018A (en) 1950-06-05 1957-02-19 Combined Metals Reduction Comp Method of heat processing finely divided materials and furnace therefor
US2746735A (en) 1951-10-04 1956-05-22 Combined Metals Reduction Comp Material mixing burner for processing furnaces
US2762619A (en) 1952-09-11 1956-09-11 Morris A Booth Apparatus for producing hydraulic cement clinker
GB744070A (en) 1953-05-11 1956-02-01 James George Fife A method of inhibiting the evaporation of volatile components of oil
US2797201A (en) 1953-05-11 1957-06-25 Standard Oil Co Process of producing hollow particles and resulting product
GB743866A (en) 1953-05-11 1956-01-25 James George Fife Improvements in or relating to hollow particles
BE521556A (zh) 1953-07-18
US2676892A (en) 1953-11-13 1954-04-27 Kanium Corp Method for making unicellular spherulized clay particles and articles and composition thereof
GB752345A (en) 1954-01-07 1956-07-11 Standard Oil Co A method of inhibiting the evaporation of volatile products
US2947115A (en) 1955-12-01 1960-08-02 Thomas K Wood Apparatus for manufacturing glass beads
US3010177A (en) 1956-12-04 1961-11-28 Thomas Marshall & Company Loxl Method of manufacturing porous refractory insulating materials
NL232500A (zh) 1957-10-22
GB896910A (en) 1958-02-21 1962-05-23 Carborundum Co Bonded abrasive articles
US2945326A (en) 1958-05-09 1960-07-19 Thomas K Wood Apparatus for manufacturing glass beads
US3215505A (en) 1959-09-10 1965-11-02 Metallgesellschaft Ag Apparatus for the continuous cracking of hydrocarbons
SE314938B (zh) 1961-05-18 1969-09-15 Kreidl W
US3081179A (en) 1961-05-29 1963-03-12 Union Carbide Corp Glass fiber composition
US3150947A (en) 1961-07-13 1964-09-29 Flex O Lite Mfg Corp Method for production of glass beads by dispersion of molten glass
NL289029A (zh) 1962-03-27
US3341314A (en) 1963-05-09 1967-09-12 Horizons Inc Glass bead making apparatus
GB1092883A (en) 1963-06-10 1967-11-29 Laporte Titanium Ltd Improvements in and relating to the manufacture of oxides
US3365315A (en) 1963-08-23 1968-01-23 Minnesota Mining & Mfg Glass bubbles prepared by reheating solid glass partiles
US3256105A (en) * 1963-09-26 1966-06-14 Standard Oil Co Ceramic molding composition, articles made from same and process for making such articles
US3293014A (en) 1963-11-18 1966-12-20 Corning Glass Works Method and apparatus for manufacturing glass beads
GB1062410A (en) 1964-02-11 1967-03-22 Du Pont Alumina refractories
US3348956A (en) 1965-12-30 1967-10-24 Johns Manville Refractory fiber composition
US3901720A (en) 1966-07-11 1975-08-26 Nat Res Dev Glass fibres and compositions containing glass fibres
US3495961A (en) 1966-12-27 1970-02-17 Potter Brothers Inc Method and apparatus for vitreous bead manufacture
US3560185A (en) 1968-03-11 1971-02-02 Potter Bros Inc Apparatus for feeding vitreous material
US3560186A (en) 1968-03-11 1971-02-02 Potters Bros Inc Apparatus for producing glass beads with preheating means
US3904377A (en) 1970-03-06 1975-09-09 Agency Ind Science Techn Lightweight composite containing hollow glass microspheres
JPS4817645B1 (zh) * 1970-03-06 1973-05-31
US3838998A (en) * 1971-01-07 1974-10-01 R Carson Process for forming hollow glass micro-spheres from admixed high and low temperature glass formers
US3873475A (en) * 1971-09-01 1975-03-25 Minnesota Mining & Mfg Composition for filling, patching and the like
US3782985A (en) * 1971-11-26 1974-01-01 Cadcom Inc Lightweight,high strength concrete and method for manufacturing the same
US3888957A (en) 1972-02-03 1975-06-10 Philadelphia Quartz Co Method of making hollow spheres by spray drying
US3736162A (en) 1972-02-10 1973-05-29 Ceskoslovenska Akademie Ved Cements containing mineral fibers of high corrosion resistance
US3904424A (en) 1972-06-09 1975-09-09 Nippon Asbestos Company Ltd Alkali resistant glassy fibers
US3924901A (en) 1973-05-03 1975-12-09 Woodrow W Phillips Particle build up suppressor
US4127694A (en) 1974-02-08 1978-11-28 The Procter & Gamble Company Fabric treatment compositions
DE2407538B2 (de) 1974-02-16 1976-04-01 Jenaer Glaswerk Schott & Gen., 6500 Mainz Glaeser auf der basis sio tief 2 - zno als verstaerkungsmittel in beton und zum einbau in leichtbeton
US3909283A (en) 1974-03-04 1975-09-30 Wilbert E Warnke Producing lightweight aggregate
GB1448320A (en) 1974-03-04 1976-09-02 Univ Washington Lightweight inorganic material
US3877918A (en) 1974-03-11 1975-04-15 Potters Industries Inc Apparatus for producing spherical particles
CA1040859A (en) * 1974-05-07 1978-10-24 William R. Matthews Process for forming hollow glass micro-spheres from admixed high and low temperature glass formers
US3954390A (en) 1974-06-28 1976-05-04 Akhundov Alizakir Alikhady Ogl Method for producing aggregate used in hardening compositions, predominantly concretes, a fluidized-bed kiln for calcining mineral stock by means of same method, and an aggregate produced by same method
SE7409542L (sv) 1974-07-23 1976-01-26 Tarkett Ab Elastiskt, mjuk skummaterial och sett for framstellning derav.
US4111713A (en) * 1975-01-29 1978-09-05 Minnesota Mining And Manufacturing Company Hollow spheres
US4002482A (en) 1975-02-14 1977-01-11 Jenaer Glaswerk Schott & Gen. Glass compositions suitable for incorporation into concrete
GB1556993A (en) 1975-07-17 1979-12-05 Sovitec Sa Gas-expansible bodies
US4046548A (en) 1976-04-28 1977-09-06 Potters Industries, Inc. Apparatus for producing spherical particles
US4057908A (en) 1976-05-20 1977-11-15 Grefco, Inc. Method and apparatus for drying damp powder
US4102773A (en) 1976-06-25 1978-07-25 Occidental Petroleum Corporation Pyrolysis with cyclone burner
SE400273C (sv) 1976-07-22 1980-08-18 Rockwool Ab Forfaringssett for framstellning av mineralull
US4347155A (en) 1976-12-27 1982-08-31 Manville Service Corporation Energy efficient perlite expansion process
DE2710548C2 (de) 1977-03-10 1982-02-11 Rudolf 8019 Moosach Hinterwaldner Lagerstabile härtbare Masse und Verfahren zu deren Härtung
US4123367A (en) 1977-04-29 1978-10-31 Dodd Anita A Method of reducing drag and rotating torque in the rotary drilling of oil and gas wells
US4133854A (en) 1977-06-16 1979-01-09 The United States Of America As Represented By The United States Department Of Energy Method for producing small hollow spheres
GB1584175A (en) 1977-08-05 1981-02-11 Potters Industries Inc Apparatus for producing spherical particles
DK143938C (da) 1978-01-02 1982-04-19 Rockwool Int Alkaliresistente,syntetiske mineralfibre og fiberforstaerket produkt paa basis af cement eller calciumsilikat som bindemiddel
EP0003403B1 (en) 1978-01-31 1981-07-29 United Kingdom Atomic Energy Authority Thermally insulating, fire resistant material and its production
JPS5850929B2 (ja) 1978-03-10 1983-11-14 株式会社東芝 炭化ケイ素粉末の製造方法
GB2019386B (en) 1978-03-16 1983-01-19 Cape Insulation Ltd Fibre composition
US4161389A (en) 1978-04-07 1979-07-17 Procedyne, Inc. Fluidized bed calcining system
JPS6054248B2 (ja) 1978-07-08 1985-11-29 日本板硝子株式会社 耐アルカリ性ガラス組成物
US4252193A (en) 1979-06-11 1981-02-24 Standard Oil Company (Indiana) Low density cement slurry and its use
US4637990A (en) 1978-08-28 1987-01-20 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalysts and method of making same
DE2848731C3 (de) 1978-11-10 1982-10-28 Werhahn & Nauen, 4040 Neuss Verfahren zur Herstellung von in alkalischen Medien beständigen Mineralfasern
US4235753A (en) 1979-03-16 1980-11-25 Engelhard Minerals & Chemicals Corporation Zeolitized composite bodies and manufacture thereof
US4234344A (en) 1979-05-18 1980-11-18 Halliburton Company Lightweight cement and method of cementing therewith
US4305758A (en) 1979-06-11 1981-12-15 Standard Oil Company (Indiana) Low density cement slurry and its use
US4217335A (en) 1979-06-14 1980-08-12 Nippon Crucible Co., Ltd. Process for producing β-silicon carbide fine powder
US4303732A (en) 1979-07-20 1981-12-01 Torobin Leonard B Hollow microspheres
ZA807224B (en) 1979-12-07 1982-01-27 Dunlop Ltd Foam composites
US4394346A (en) 1979-12-20 1983-07-19 Tokyo Shibaura Denki Kabushiki Kaisha Water level gauge for a nuclear reactor
US4538530A (en) 1979-12-31 1985-09-03 Whitman John E Burner for the suspension firing of comminuted material
DE3002346A1 (de) 1980-01-23 1981-08-13 Licencia Találmányokat Ertékesítö Vállalat, Budapest Verfahren zur herstellung von geschmolzenen silikatmaterialien
JPS605539B2 (ja) 1980-03-17 1985-02-12 日東紡績株式会社 耐アルカリ性、耐熱性無機質繊維
US4411847A (en) * 1980-06-20 1983-10-25 Pq Corporation Process for surface modified hollow microspheres
GB2081246B (en) 1980-07-25 1984-03-14 Rolls Royce Thermal barrier coating composition
US4307142A (en) * 1980-08-08 1981-12-22 T.C. Manufacturing Company, Inc. Corrosion-resistant coating composition containing hollow microballoons
US4336338A (en) 1980-08-15 1982-06-22 The United States Of America As Represented By The United States Department Of Energy Hollow microspheres of silica glass and method of manufacture
US4292206A (en) 1980-08-22 1981-09-29 American Cyanamid Company Use of hollow glass spheres in conjunction with rehydratable alumina for making low density catalyst support beads
US4370166A (en) 1980-09-04 1983-01-25 Standard Oil Company (Indiana) Low density cement slurry and its use
US4340407A (en) 1981-02-11 1982-07-20 The United States Of America As Represented By The United States Department Of Energy Method of forming cavitated objects of controlled dimension
US4430108A (en) 1981-10-14 1984-02-07 Pedro Buarque De Macedo Method for making foam glass from diatomaceous earth and fly ash
SE8107536L (sv) 1981-12-16 1983-06-17 Yxhult Ab Forfarande for framstellning av porosa granuler for industriella endamal samt anvendning av dylika granuler
DE3151164C2 (de) 1981-12-23 1985-02-07 Deutsche Perlite Gmbh, 4600 Dortmund Vorrichtung zum Blähen von Perlit, Vermiculit und ähnlichem Blähgut
EP0086599A1 (en) 1982-02-12 1983-08-24 Redland Technologies Limited Method and apparatus for the heat processing of particulate materials
US4448599A (en) 1982-03-22 1984-05-15 Atlantic Richfield Company Hollow spheres produced from natural zeolites
US4540629A (en) 1982-04-08 1985-09-10 Pq Corporation Hollow microspheres with organosilicon-silicate walls
NL8202225A (nl) * 1982-06-02 1984-01-02 Anton Mijnster Vliegas gesteente.
GB2121782B (en) 1982-06-08 1986-10-22 Glaverbel Manufacture of rounded vitreous beads
US4519777A (en) 1982-09-08 1985-05-28 Akhtyamov Yakub A Method and apparatus for bloating granular material
US4652535A (en) 1982-09-30 1987-03-24 Ensci Incorporated Alkaline-resistant glass bodies and fibers
DE3314796A1 (de) 1983-04-23 1984-10-25 Mayer-Reiland, geb.Reiland, Eva-Maria, 6710 Frankenthal Ansatz zur herstellung von hochschmelzender schaumkeramik sowie verfahren zu deren herstellung
FI842679A (fi) * 1983-07-11 1985-01-12 Fehlmann Zug Ag Foerfarande foer uppskummning av flygaska.
CH664356A5 (de) 1983-09-13 1988-02-29 Hans Beat Fehlmann Verfahren zur herstellung von geblaehtem mineralischem korngut.
US4504320A (en) 1983-09-26 1985-03-12 Research One Limited Partnership Light-weight cementitious product
JPS60141667A (ja) 1983-12-28 1985-07-26 日本碍子株式会社 セラミックハニカム構造体を接合若しくはコーティングまたは封着するためのセラミック材料組成物
US4501830A (en) 1984-01-05 1985-02-26 Research One Limited Partnership Rapid set lightweight cement product
GB8722451D0 (en) * 1987-09-24 1987-10-28 Ecc Int Ltd Biological support
EP0159173A3 (en) 1984-04-10 1986-10-08 Walt Disney Productions Glass composition
JPS60226422A (ja) 1984-04-20 1985-11-11 Sumitomo Electric Ind Ltd シングルモ−ドフアイバ用中間体の製造方法
AT381136B (de) * 1984-05-07 1986-08-25 Blum Gmbh Julius Scharnier
US4624865A (en) * 1984-05-21 1986-11-25 Carolina Solvents, Inc. Electrically conductive microballoons and compositions incorporating same
US4624798A (en) * 1984-05-21 1986-11-25 Carolina Solvents, Inc. Electrically conductive magnetic microballoons and compositions incorporating same
US4687752A (en) 1984-06-21 1987-08-18 Resco Products, Inc. Medium weight abrasion-resistant castable
US5256180A (en) 1984-06-21 1993-10-26 Saint Gobain Vitrage Apparatus for production of hollow glass microspheres
FR2566384B1 (fr) 1984-06-21 1986-09-05 Saint Gobain Vitrage Perfectionnements aux techniques de production de microspheres en verre
US4623390A (en) * 1984-07-02 1986-11-18 Old Western Paints, Inc. Insulating paint for interior and exterior of buildings and method of making same
DE3428165A1 (de) 1984-07-31 1986-02-06 Dennert, Hans Veit, 8602 Burghaslach Verfahren zum herstellen von schaumglas-formkoerpern
US4629413A (en) 1984-09-10 1986-12-16 Exxon Research & Engineering Co. Low NOx premix burner
FI79086B (fi) 1984-12-21 1989-07-31 Outokumpu Oy Foerfarande foer utnyttjande av slagg med hoeg jaernoxidhalt fraon metallframstaellning.
FI85689B (fi) 1984-12-21 1992-02-14 Outokumpu Oy Saett att utnyttja av ferrolegeringstillverkning.
US4621024A (en) 1984-12-31 1986-11-04 Paper Applications International, Inc. Metal-coated hollow microspheres
GB8515744D0 (en) 1985-06-21 1985-07-24 Glaverbel Vitreous beads
DE3688422T2 (de) 1985-08-07 1993-08-26 Samuel Strapping Systems Ltd Beheizung eines fliessbettofens.
US4643753A (en) 1985-08-07 1987-02-17 Potters Industries, Inc. Method for making spherical particles
US4749398A (en) 1985-08-07 1988-06-07 Potters Industries, Inc. Apparatus for making spherical particles
GB2220666B (en) * 1988-07-13 1992-01-02 Ecc Int Ltd Treated inorganic filler
US4657810A (en) * 1985-10-15 1987-04-14 Minnesota Mining And Manufacturing Company Fired hollow ceramic spheroids
US4769189A (en) 1985-10-15 1988-09-06 Minnesota Mining And Manufacturing Company Process for making hollow, ceramic spheroids
JPS62129000A (ja) 1985-11-27 1987-06-11 Shin Etsu Chem Co Ltd 炭化けい素ウイスカ−の製造方法
US4677022A (en) 1986-01-24 1987-06-30 Potters, Industries, Inc. Process for making lightweight body suitable for use as an additive in an article of manufacture, such lightweight body itself, and composite containing same
US4652433A (en) 1986-01-29 1987-03-24 Florida Progress Corporation Method for the recovery of minerals and production of by-products from coal ash
US4867931A (en) * 1986-02-10 1989-09-19 Materials Technology Corporation Methods for producing fiber reinforced microspheres made from dispersed particle compositions
US4784839A (en) 1986-04-03 1988-11-15 Atochem Method of making metal carbide and nitride powders
EP0242872A1 (de) 1986-04-23 1987-10-28 Helmut Dipl.-Ing. Pieper Verfahren zum Aufschäumen von glasbildenden mineralischen Stoffen, insbesondere Flugaschen etc., sowie Ofen zur Durchführung dieses Verfahrens
MX169258B (es) 1986-05-28 1993-06-28 Pfizer Procedimiento para la preparacion de una fibra de vidrio resistente a alcalis
US4830989A (en) 1986-05-28 1989-05-16 Pfizer Inc. Alkali-resistant glass fiber
US4882302A (en) 1986-12-03 1989-11-21 Ensci, Inc. Lathanide series oxide modified alkaline-resistant glass
US4837069A (en) 1987-01-07 1989-06-06 Minnesota Mining And Manufacturing Company Transparent alumina microspheres
US4767726A (en) 1987-01-12 1988-08-30 Minnesota Mining And Manufacturing Company Glass microbubbles
US5194334A (en) 1987-07-02 1993-03-16 Dsm N.V. Process for the production of sheet metal/duroplast composite elements
GB2206576B (en) 1987-07-09 1991-08-07 Glaverbel Spherulizing furnace and process of manufacturing vitreous beads
GB2206575B (en) 1987-07-09 1992-01-02 Glaverbel Spherulizing furnace and process of manufacturing vitreous beads
FI78446C (fi) 1987-11-27 1989-08-10 Outokumpu Oy Tillsaettning av jaernsilikatsmaelta med ferrolegeringsslagg foer framstaellning av eldfasta och kemiskt bestaendiga fibrer.
US4871495A (en) 1987-12-02 1989-10-03 The Duriron Company, Inc. Process for producing porous ceramic filter for filtering of particulates from diesel exhaust gases
US4928479A (en) 1987-12-28 1990-05-29 Sundstrand Corporation Annular combustor with tangential cooling air injection
SU1650196A1 (ru) 1988-01-26 1991-05-23 В.И.Кореневский, Г.В.Кореневский, Л.Я.Кизипьштейн и А.Л.Шпицглуз Фильтр
US4888057A (en) 1988-06-29 1989-12-19 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Inorganic intumescent fire protective coatings
US4819289A (en) 1988-07-15 1989-04-11 Camillus Cutlery Co. Rifle field service tool
US5002696A (en) 1988-08-01 1991-03-26 Grefco, Inc. Expanded mineral particles and apparatus and method of production
US5217928A (en) 1988-08-24 1993-06-08 Potters Industries, Inc. Hollow glass spheres
US4983550A (en) 1988-08-24 1991-01-08 Potters Industries, Inc. Hollow glass spheres
US5077241A (en) 1988-11-17 1991-12-31 Minnesota Mining And Manufacturing Company Sol gel-derived ceramic bubbles
US5190737A (en) 1989-01-11 1993-03-02 The Dow Chemical Company High yield manufacturing process for silicon carbide
DE3908172A1 (de) 1989-03-13 1990-09-20 Andreas Dipl Ing Gumbmann Poroeses mineralisches leichtzuschlagstoffgranulat sowie verfahren zu seiner herstellung
US5128114A (en) 1989-04-14 1992-07-07 E. I. Du Pont De Nemours And Company Silica microspheres, method of improving attrition resistance
EP0393625B2 (en) 1989-04-18 1999-11-03 Tokai Kogyo Co., Ltd. Glass frit useful for the preparation of glass bubbles, and glass bubbles prepared by using it
GB8914639D0 (en) 1989-06-26 1989-08-16 Shell Int Research Heat processing of particulate material and apparatus therefor
NO178294C (no) * 1989-07-24 1996-02-28 Wiggins Teape Group Ltd Fremgangsmåte for fremstilling av et luftpermeabelt ark av glassfiberarmert, termoplastisk materiale
US5096858A (en) 1989-09-19 1992-03-17 The University Of British Columbia In situ production of silicon carbide reinforced ceramic composites
US5253991A (en) 1989-11-20 1993-10-19 Sumitomo Cement Co., Ltd. Apparatus for producing spheroidal inorganic particulate material
US5022897A (en) 1989-11-22 1991-06-11 Potters Industries, Inc. Method for hazardous waste removal and neutralization
FI89203C (fi) 1990-01-29 1993-08-25 Tampella Oy Ab Foerbraenningsanlaeggning
SU1724613A1 (ru) 1990-03-11 1992-04-07 Украинский Научно-Исследовательский, Проектный И Конструкторско-Технологический Институт "Укрстромниипроект" Стекло дл изготовлени минерального волокна
US5164003A (en) 1990-03-28 1992-11-17 Ceram Tech International, Ltd. Room temperature curable surface coating and methods of producing and applying same
FR2666253B1 (fr) 1990-09-04 1992-10-30 Davidovits Joseph Procede d'obtention d'un liant geopolymerique permettant la stabilisation, la solidification et la consolidation de dechets toxiques.
US5154596A (en) 1990-09-07 1992-10-13 John Zink Company, A Division Of Koch Engineering Company, Inc. Methods and apparatus for burning fuel with low NOx formation
GR1001255B (el) 1990-10-15 1993-06-30 Glaverbel Παρασκεύασμα υαλωδών βερνικιών και κατασκευή σωμάτων βερνικιών.
FR2671072B1 (fr) 1990-11-14 1993-12-03 Saint Gobain Vitrage Internal Verre silico-sodo-calcique, microspheres obtenues a partir de ce verre et procede pour leur fabrication.
DE4040180A1 (de) * 1990-12-15 1992-06-17 Huels Troisdorf Verfahren zur herstellung von feinporigem schaum aus im wesentlichen anorganischen bestandteilen
US5069702A (en) * 1990-12-20 1991-12-03 W. R. Grace & Co.-Conn. Method of making small hollow glass spheres
US5164345A (en) 1991-03-21 1992-11-17 W.R. Grace & Co.-Conn. Al2 O3 /B4 C/SiC composite
US5292690A (en) 1991-03-29 1994-03-08 Nippon Electric Glass Company, Ltd. Glass composition for glass bubbles with increased compressive strength
CA2083676A1 (en) * 1991-12-17 1993-06-18 Paul E. Naton Compositions containing hollow microspheres
US5658656A (en) 1992-01-10 1997-08-19 Minnesota Mining And Manufacturing Company Use of materials comprising microbubbles as acoustical barriers
JPH05294687A (ja) 1992-04-14 1993-11-09 Mitsubishi Materials Corp 球状水硬性物質の製造装置
RU2039019C1 (ru) 1992-04-29 1995-07-09 Научно-исследовательская лаборатория базальтовых волокон Института проблем материаловедения АН Украины Стекло для стекловолокна
US5611833A (en) 1992-08-26 1997-03-18 Mg Industries Method and apparatus for producing spheroidal glass particles
CA2111141A1 (en) 1992-12-11 1994-06-12 Kazuo Sunahara Process for producing crystalline microballoons
GB9308363D0 (en) * 1993-04-22 1993-06-09 Foseco Int Refractory compositions for use in the casting of metals
JP2562788B2 (ja) * 1993-07-06 1996-12-11 株式会社シラックスウ 微粒中空ガラス球状体の製造方法
WO1995007177A1 (en) 1993-09-08 1995-03-16 Pq Corporation Hollow borosilicate microspheres and method of making
US5413628A (en) 1993-09-22 1995-05-09 Savin; Ronald R. Stable inorganic zinc-powder rich coating composition
US5443603A (en) * 1994-01-11 1995-08-22 Washington Mills Ceramics Corporation Light weight ceramic abrasive media
US5455212A (en) 1994-03-15 1995-10-03 The University Of British Columbia In situ production of silicon carbide-containing ceramic composite powders
US5538675A (en) 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
EP0757664B1 (en) 1994-04-25 1998-03-04 Minnesota Mining And Manufacturing Company Compositions comprising fused particulates and methods of making them
JPH07292846A (ja) * 1994-04-27 1995-11-07 Sekisui Chem Co Ltd 外壁パネル及びその製造方法
JP2534831B2 (ja) * 1994-05-20 1996-09-18 工業技術院長 微細中空ガラス球状体の製造方法
US5858083A (en) 1994-06-03 1999-01-12 National Gypsum Company Cementitious gypsum-containing binders and compositions and materials made therefrom
US5676563A (en) 1994-09-26 1997-10-14 Sumitomo Wiring Systems, Ltd. Snow-melting tile wiring unit
US5591684A (en) 1994-10-03 1997-01-07 Nippon Electric Glass Co., Ltd. Glass bubbles for use as fillers in printed circuit board
US5655853A (en) 1994-12-14 1997-08-12 Wormser Systems, Inc. Vertical-shaft airlock
JP3739823B2 (ja) * 1994-12-14 2006-01-25 太平洋セメント株式会社 気泡モルタル空洞充填材料
US5601789A (en) 1994-12-15 1997-02-11 W. R. Grace & Co.-Conn. Raw gas burner and process for burning oxygenic constituents in process gas
US5618173A (en) 1994-12-15 1997-04-08 W.R. Grace & Co.-Conn. Apparatus for burning oxygenic constituents in process gas
JP3746802B2 (ja) * 1994-12-28 2006-02-15 太平洋セメント株式会社 中空焼成体の製造方法
US5611883A (en) 1995-01-09 1997-03-18 Board Of Regents, The University Of Texas System Joining ceramics and attaching fasteners to ceramics by gas phase selective beam deposition
JP3579966B2 (ja) * 1995-06-30 2004-10-20 旭硝子株式会社 微小中空ガラス球状体の製造方法
US5558822A (en) 1995-08-16 1996-09-24 Gas Research Institute Method for production of spheroidized particles
JP3740745B2 (ja) * 1995-08-28 2006-02-01 旭硝子株式会社 微小中空ガラス球状体の製造方法
JPH0977543A (ja) * 1995-09-08 1997-03-25 Chichibu Onoda Cement Corp 人工軽量骨材及びその製造方法
US6254981B1 (en) 1995-11-02 2001-07-03 Minnesota Mining & Manufacturing Company Fused glassy particulates obtained by flame fusion
JPH09255383A (ja) * 1996-03-21 1997-09-30 Nippon Cement Co Ltd 超軽量骨材の製造方法
DE69708362T2 (de) 1996-03-29 2002-08-22 Hitachi Metals, Ltd. Verfahren zur Herstellung von Aluminium-Verbundmaterial mit niedrigem thermischen Ausdehnungskoeffizient und hoher Wärmeleitfähigkeit
JP3633091B2 (ja) * 1996-04-09 2005-03-30 旭硝子株式会社 微小無機質球状中実体の製造方法
DE19616633C1 (de) * 1996-04-26 1997-05-07 Schott Glaswerke Chemisch vorspannbare Aluminosilicatgläser und deren Verwendung
US5932347A (en) 1996-10-31 1999-08-03 Owens Corning Fiberglas Technology, Inc. Mineral fiber compositions
US6048593A (en) 1996-11-08 2000-04-11 Espeland Composite Technology, Inc. Polymer concrete compositions, structures made therefrom, and methods of manufacture
US6027330A (en) 1996-12-06 2000-02-22 Coen Company, Inc. Low NOx fuel gas burner
US5935699A (en) 1996-12-20 1999-08-10 Barber; Robert Frederick Lightweight composite material comprising hollow ceramic microspheres
US5925449A (en) 1996-12-26 1999-07-20 Davidovits; Joseph Method for bonding fiber reinforcement on concrete and steel structures and resultant products
CZ300176B6 (cs) 1996-12-27 2009-03-04 Iberia Ashland Chemical, S. A. Smes pro výrobu jader a kokil, použití této smesi, zpusob výroby jádra nebo kokily za studena a jádro nebo kokila
GB9702171D0 (en) 1997-01-30 1997-03-26 Martinswerk Gmbh Aluminium hydroxide composite glass microspheres
JP3200623B2 (ja) 1997-02-25 2001-08-20 経済産業省産業技術総合研究所長 中空球状ケイ酸塩クラスターの製造方法
US5743393A (en) 1997-05-06 1998-04-28 Webb; H. Richard Protective package for heavy objects
US5967211A (en) 1997-09-24 1999-10-19 The Goodyear Tire & Rubber Company Tire tread for ice traction
US6214309B1 (en) 1997-09-24 2001-04-10 University Of Connecticut Sinterable carbides from oxides using high energy milling
US5899256A (en) 1997-10-03 1999-05-04 Electric Power Research Institute, Inc. Metal-fly ash composites and low pressure infiltration methods for making the same
CN1218014A (zh) 1997-10-07 1999-06-02 住友金属矿山株式会社 人工轻质集料及其制造方法
US5899391A (en) 1997-11-17 1999-05-04 Hudnut Industries Inc. Cyclonic processing system
EP0931778B1 (de) 1998-01-07 2002-04-10 VIESSMANN WERKE GmbH & CO. Feuerfestformkörper
US6258456B1 (en) 1998-01-30 2001-07-10 Black Diamond Granules, Inc. Spheroidal slag particles and apparatus and process for producing spheroidal slag and fly ash particles
US6034155A (en) 1998-03-16 2000-03-07 Ect Incorporated Polymer concrete compositions, structures made therefrom and methods of manufacture
US6582819B2 (en) 1998-07-22 2003-06-24 Borden Chemical, Inc. Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same
JP2000119050A (ja) * 1998-10-09 2000-04-25 Sumitomo Metal Mining Co Ltd 人工軽量骨材の製造方法およびこの方法により得られた人工軽量骨材
US6207077B1 (en) 2000-02-18 2001-03-27 Orion 21 A.D. Pty Ltd Luminescent gel coats and moldable resins
DE19851215A1 (de) 1998-11-06 2000-05-11 Berthold Stilkerieg Duroplastischer Leichtwerkstoff und Verfahren zu seiner Herstellung
JP2000143307A (ja) * 1998-11-12 2000-05-23 Sumitomo Metal Mining Co Ltd 人工軽量骨材の製造方法およびこの方法により得られた人工軽量骨材
EA002938B1 (ru) * 1998-11-13 2002-10-31 Софитек Н.В. Цементирующая композиция и ее применение для цементирования нефтяных скважин или подобных сооружений
JP2000302498A (ja) * 1999-04-16 2000-10-31 Sumitomo Metal Mining Co Ltd 人工軽量骨材の製造方法およびこの方法により得られた人工軽量骨材
WO2001002314A1 (fr) 1999-06-30 2001-01-11 Asahi Glass Company, Limited Fines spheres creuses de verre et procede de preparation associe
US6245700B1 (en) 1999-07-27 2001-06-12 3M Innovative Properties Company Transparent microspheres
FR2796935B1 (fr) 1999-07-29 2001-09-21 Dowell Schlumberger Services Coulis de cimentation des puits petroliers ou analogues a basse densite et basse porosite
DE19937861C2 (de) 1999-08-13 2003-03-20 Heraeus Quarzglas Verfahren für die Herstellung dichter Quarzglas-Körnung
US6506819B1 (en) 1999-11-10 2003-01-14 The Board Of Governors For Higher Education State Of Rhode Island And Providence Plantations Light weight particulate composite materials with cenospheres as reinforcements and method for making the same
JP2001163647A (ja) * 1999-12-08 2001-06-19 Sumitomo Metal Mining Co Ltd ごみ焼却灰を用いた人工骨材の製造方法およびこの方法によって得られた人工骨材
DE19962137A1 (de) 1999-12-22 2001-06-28 Berthold Stilkerieg Schalungselement aus mineralischem Leichtstoff
US6367288B1 (en) 1999-12-29 2002-04-09 Corning Incorporated Method and apparatus for preventing burner-hole build-up in fused silica processes
US6486084B2 (en) 2000-02-21 2002-11-26 Ngk Insulators, Ltd. Composite material and method of producing the same
JP2001240439A (ja) 2000-02-28 2001-09-04 Niijima Bussan Kk 流動層による人工軽量セラミック粒子の製造方法
US6572697B2 (en) * 2000-03-14 2003-06-03 James Hardie Research Pty Limited Fiber cement building materials with low density additives
JP2003528950A (ja) 2000-03-27 2003-09-30 アパーチェ・プロダクツ・カンパニー 耐火性発泡体および発泡体製品、それを作るための方法および分散液
JP2002037645A (ja) * 2000-05-19 2002-02-06 Asahi Glass Co Ltd 微小中空アルミノシリケートガラス球状体およびその製造方法
EP1156021A1 (en) * 2000-05-19 2001-11-21 Asahi Glass Co., Ltd. Hollow aluminosilicate glass microspheres and process for their production
US6630417B2 (en) 2000-05-30 2003-10-07 Kyocera Corporation Porcelain composition, porcelain and method of producing the same, and wiring board and method of producing the same
EP1160212A1 (en) * 2000-05-31 2001-12-05 Asahi Glass Co., Ltd. Hollow glass microspheres and method for producing the same
JP2002087831A (ja) * 2000-05-31 2002-03-27 Asahi Glass Co Ltd 微小中空ガラス球状体およびその製造方法
JP2002003248A (ja) * 2000-06-21 2002-01-09 Sumitomo Metal Mining Co Ltd ごみ焼却灰を用いた人工骨材の製造方法
JP2002037680A (ja) * 2000-07-27 2002-02-06 Yazaki Corp セラミックス発泡体およびその製造方法
JP3796565B2 (ja) 2000-08-15 2006-07-12 信越化学工業株式会社 球状シリカ微粒子の製造方法
JP3685251B2 (ja) 2000-08-31 2005-08-17 信越化学工業株式会社 球状シリカ粉末の製造方法
US6969422B2 (en) 2000-09-20 2005-11-29 Goodrich Corporation Inorganic matrix composition and composites incorporating the matrix composition
DE60138821D1 (de) 2000-09-20 2009-07-09 Ferrotec Ceramics Corp Keramik mit niedriger thermischer expansion und bauteil für belichtungssysteme
JP2002124873A (ja) * 2000-10-18 2002-04-26 Mitsubishi Electric Corp 半導体装置
US6620487B1 (en) 2000-11-21 2003-09-16 United States Gypsum Company Structural sheathing panels
US6444162B1 (en) * 2000-11-27 2002-09-03 The United States Of America As Represented By The United States Department Of Energy Open-cell glass crystalline porous material
JP2002231865A (ja) 2001-02-02 2002-08-16 Toyota Industries Corp ヒートシンク付絶縁基板、接合部材及び接合方法
DE10110730A1 (de) 2001-02-28 2003-01-23 Ego Elektro Geraetebau Gmbh Wärmedämmformkörper
JP2003073756A (ja) 2001-08-27 2003-03-12 Toyota Industries Corp 複合材料およびその製造方法
EP1316540A3 (en) 2001-12-03 2010-06-02 Halliburton Energy Services, Inc. Well cement compositions
US6601647B2 (en) * 2001-12-03 2003-08-05 Halliburton Energy Services, Inc. Methods, well cement compositions and lightweight additives therefor
US6644405B2 (en) * 2002-03-21 2003-11-11 Halliburton Energy Services, Inc. Storable water-microsphere suspensions for use in well cements and methods
CA2495696C (en) 2002-08-23 2012-01-31 James Hardie International Finance B.V. Synthetic hollow microspheres
US7455798B2 (en) 2002-08-23 2008-11-25 James Hardie International Finance B.V. Methods for producing low density products
JP4104945B2 (ja) 2002-09-25 2008-06-18 シャープ株式会社 携帯機器
EP1641556A4 (en) 2003-05-16 2008-04-16 James Hardie Int Finance Bv METHOD FOR PRODUCING LOW-DENSITY PRODUCTS
JP2005062842A (ja) * 2003-07-31 2005-03-10 Toshiba Discrete Technology Kk 光伝送デバイス
US20090156385A1 (en) 2003-10-29 2009-06-18 Giang Biscan Manufacture and use of engineered carbide and nitride composites
FR2870233B1 (fr) 2004-05-14 2006-12-01 Sicat Sarl PROCEDE DE FABRICATION DE PIECES DE FORME A BASE DE BETA-SiC POUR UTILISATION DANS DES MILIEUX AGRESSIFS
AU2006321786B2 (en) 2005-12-06 2012-05-10 James Hardie Technology Limited Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles
EP1891984A1 (en) 2006-08-24 2008-02-27 Graftys Macroporous and highly resorbable apatitic calcium-phosphate cement
US20090076196A1 (en) 2007-09-13 2009-03-19 Hamid Hojaji Shaped particles from settable materials, manufacturing, composition, and composites

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415481A (zh) * 2011-03-07 2013-11-27 3M创新有限公司 中空微球体
CN103415481B (zh) * 2011-03-07 2017-07-11 3M创新有限公司 中空微球体
CN103649429A (zh) * 2011-07-07 2014-03-19 3M创新有限公司 包括多组分纤维和中空陶瓷微球的制品及其制备和使用方法
CN103649429B (zh) * 2011-07-07 2017-07-28 3M创新有限公司 包括多组分纤维和中空陶瓷微球的制品及其制备和使用方法
CN104891813A (zh) * 2015-04-15 2015-09-09 周佐石 利用废玻璃制造空心玻璃微珠的方法
CN104891812A (zh) * 2015-04-15 2015-09-09 周佐石 空心玻璃微珠的制造方法
CN106630615A (zh) * 2016-12-28 2017-05-10 郑州圣莱特空心微珠新材料有限公司 一种利用废玻璃制造空心玻璃微珠的方法
CN106630615B (zh) * 2016-12-28 2019-05-21 郑州圣莱特空心微珠新材料有限公司 一种利用废玻璃制造空心玻璃微珠的方法
CN107098367A (zh) * 2017-06-26 2017-08-29 东北林业大学 一种用于阻尼减振降噪的氧化铝空心球的制备方法
CN112341152A (zh) * 2020-10-08 2021-02-09 内蒙古建能兴辉陶瓷有限公司 用于多用途开孔型发泡陶瓷的制备原料和方法及其应用
CN114014553A (zh) * 2021-12-13 2022-02-08 中南大学 一种提高煤泥漂珠空心成球率的方法
CN114014553B (zh) * 2021-12-13 2022-06-24 中南大学 一种提高煤泥漂珠空心成球率的方法

Also Published As

Publication number Publication date
US20040079260A1 (en) 2004-04-29
EP1549427A1 (en) 2005-07-06
US20040081827A1 (en) 2004-04-29
BR0313749A (pt) 2005-07-19
AU2003250614A1 (en) 2004-03-11
AU2003250614B2 (en) 2010-07-15
US7666505B2 (en) 2010-02-23
US20040080063A1 (en) 2004-04-29
EP1549427B1 (en) 2017-11-01
EP1549427A4 (en) 2008-04-16
US7651563B2 (en) 2010-01-26
AU2003236422A1 (en) 2004-03-11
WO2004018090A1 (en) 2004-03-04
MXPA05002057A (es) 2005-09-12
CA2495696A1 (en) 2004-03-04
JP2005536333A (ja) 2005-12-02
KR20050058478A (ko) 2005-06-16
US7878026B2 (en) 2011-02-01
CA2495696C (en) 2012-01-31
TW200422276A (en) 2004-11-01
NZ538497A (en) 2007-03-30
JP4490816B2 (ja) 2010-06-30

Similar Documents

Publication Publication Date Title
CN1684760A (zh) 合成中空微球
CN1805783A (zh) 生产低密度产品的方法
JP2005536333A5 (zh)
CN100408506C (zh) 一种高强度粉煤灰陶砂的制造方法
JP2009518276A (ja) 凝結性複合材料用の多機能組成物および該組成物の製造方法
US20100192808A1 (en) Synthetic Microspheres and Methods of Making Same
CN1543444A (zh) 用于水泥产品的低密度水合硅酸钙强度促进剂添加剂
CN86107869A (zh) 用含飞灰的材料生产建筑构件的方法及所制成的建筑构件
CN105645794B (zh) 一种大掺量工业废渣硅酸盐水泥制备方法
CN106810291A (zh) 一种钴冶炼废渣基的水处理陶粒及其制备方法
CN111362607A (zh) 一种轻质固废免烧陶粒及其制备方法
CN113955963B (zh) 一种空心免煅烧轻骨料及其制备方法
US9567260B2 (en) Synthetic microparticles
JP2000119050A (ja) 人工軽量骨材の製造方法およびこの方法により得られた人工軽量骨材
CN107793132B (zh) 基于陶瓷抛光渣的陶瓷砖及其制备方法
CN115849751A (zh) 一种岩石类研磨锯泥人造骨料及其制备方法
CN1609046A (zh) 尖晶石系复合氧化物烧制体及其制造方法
US20210363057A1 (en) Novel method of producing improved lightweight ceramic sand and uses thereof
CN109081623B (zh) 一种轻集料及其制备方法
JP3275725B2 (ja) 石炭灰系軽量骨材の製造方法
CN108675736A (zh) 一种蒸压灰砂砖及其制备方法
CN106082984A (zh) 一种抗冲击抗开裂瓷砖及其制备方法
JP2005225717A (ja) 人工軽量骨材の製造方法及び人工軽量骨材
Saad et al. INFLUENCES OF GRINDING PROCESS ON THE PHYSICAL AND MORPHOLOGICAL CHARACTERISTICS OF ULTRAFINE TREATED RICE HUSK ASH
AU2021212051A1 (en) A novel method of producing improved lightweight ceramic sand and uses thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20051019