CN114303199B - 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法 - Google Patents

通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法 Download PDF

Info

Publication number
CN114303199B
CN114303199B CN202080061328.8A CN202080061328A CN114303199B CN 114303199 B CN114303199 B CN 114303199B CN 202080061328 A CN202080061328 A CN 202080061328A CN 114303199 B CN114303199 B CN 114303199B
Authority
CN
China
Prior art keywords
memory cells
group
seconds
programmed
erasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080061328.8A
Other languages
English (en)
Other versions
CN114303199A (zh
Inventor
V·马克夫
A·柯多夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Storage Technology Inc
Original Assignee
Silicon Storage Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Storage Technology Inc filed Critical Silicon Storage Technology Inc
Publication of CN114303199A publication Critical patent/CN114303199A/zh
Application granted granted Critical
Publication of CN114303199B publication Critical patent/CN114303199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • G11C29/4401Indication or identification of errors, e.g. for repair for self repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0425Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3404Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3468Prevention of overerasure or overprogramming, e.g. by verifying whilst erasing or writing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/06Acceleration testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50004Marginal testing, e.g. race, voltage or current testing of threshold voltage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50016Marginal testing, e.g. race, voltage or current testing of retention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7206Reconfiguration of flash memory system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7208Multiple device management, e.g. distributing data over multiple flash devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0403Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals during or with feedback to manufacture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0405Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals comprising complete test loop
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0409Online test
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/4402Internal storage of test result, quality data, chip identification, repair information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5002Characteristic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5004Voltage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/24Accessing extra cells, e.g. dummy cells or redundant cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42328Gate electrodes for transistors with a floating gate with at least one additional gate other than the floating gate and the control gate, e.g. program gate, erase gate or select gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Computer Hardware Design (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

本发明公开了一种具有非易失性存储器单元和控制器的存储器设备。响应于擦除和编程存储器单元的第一组的第一命令,该控制器确定该第一组可以在其擦除后的大致10秒内被编程,擦除该第一组,并且在其擦除后的大致10秒内对该第一组进行编程。响应于擦除和编程存储器单元的第二组的第二命令,该控制器确定该第二组无法在其擦除后的大致10秒内被编程,将该第二组分成存储器单元的子组,每个子组可以在其擦除后的大致10秒内被编程,并且针对子组中的每一个子组,擦除子组并且在其擦除后的大致10秒内对该子组进行编程。

Description

通过限制擦除和编程之间的时间间隙来提高模拟非易失性存 储器中的读取电流稳定性的方法
相关专利申请
本申请要求于2019年9月3日提交的美国临时申请号62/895,458和于2020年2月27日提交的美国专利申请号16/803,418的权益。
技术领域
本发明涉及非易失性存储器设备,并且更具体地涉及提高读取操作期间存储器单元电流的稳定性。
背景技术
非易失性存储器设备在本领域中是公知的。参见例如美国专利7,868,375,其公开了四栅极存储器单元配置。具体地,本申请的图1示出了具有在硅半导体衬底12中形成的间隔开的源极区14/漏极区16的分裂栅存储器单元10。源极区14可以被称为源极线SL(因为其通常连接到同一行或列中其他存储器单元的其他源极区),并且漏极区16通常通过位线触点28连接到位线。衬底的沟道区18被限定在源极区14/漏极区16之间。浮栅20设置在沟道区18的第一部分上方并且与其绝缘(并且控制其导电性)(并且部分地位于源极区14上方并且与其绝缘)。控制栅极22设置在浮栅20上方并且与其绝缘。选择栅极24设置在沟道区18的第二部分上方并且与其绝缘(并且控制其导电性)。擦除栅极26设置在源极区14上方并且与其绝缘,并且与浮栅20侧向相邻。多个此类存储器单元可以按行和列排列以形成存储器单元阵列。
将各种组合的电压施加到控制栅极22、选择栅极24、擦除栅极26和/或源极区14/漏极区16,以对存储器单元进行编程(即,将电子注入到浮栅中)、擦除存储器单元(即,从浮栅移除电子),以及读取存储器单元(即,测量或检测沟道区18的电导率以确定浮栅20的编程状态)。
存储器单元10可以数字方式操作,其中存储器单元被设置为仅两种可能的状态中的一种:编程状态和擦除状态。通过在擦除栅极26上施加高正电压并且可选地在控制栅极22上施加负电压来擦除存储器单元,以引起电子从浮栅20到擦除栅极26的隧穿(使浮栅处于带更多正电荷的状态-擦除状态)。可以通过在控制栅极22、擦除栅极26、选择栅极24和源极区14上施加正电压以及在漏极区16上施加电流来对存储器单元10进行编程。然后,电子将沿沟道区18从漏极区16流向源极区14,其中电子变得加速并且变热,由此它们中的一些通过热电子注入被注入到浮栅20上(使浮栅处于带更多负电荷的状态-编程状态)。可以通过在选择栅极24(导通选择栅极24下方的沟道区部分)和漏极区16(并且可选地在擦除栅极26和/或控制栅极22上)上施加正电压并且感测流过沟道区18的电流来读取存储器单元10。如果浮栅20带正电(存储器单元被擦除),则存储器单元将导通,并且电流将从源极区14流动到漏极区16(即,基于所感测的电流感测到存储器单元10处于其擦除的“1”状态)。如果浮栅20带负电(存储器单元被编程),则浮栅下方的沟道区被关断,从而防止任何电流(即,基于无电流而将存储器单元10感测为处于其被编程的“0”状态)。
表1提供了擦除、编程和读取电压的非限制性示例,其中Vcc是电源电压或另一个正电压,例如2.5V。
表1
WL(SG) BL(漏极) 源极 EG CG
擦除 0V 0V 0V 11.5V 0V
编程 1V 1μA 4.5V 4.5V 10.5V
读取 Vcc 0.6V 0V 0V Vcc
存储器单元10可以另选地以模拟方式操作,其中存储器单元的存储器状态(即,浮栅上的电荷量,诸如电子数)可以从完全擦除状态(浮栅上的电子最少)连续改变到完全编程状态(浮栅上的电子数最多),或者只是该范围的一部分。这意味着单元存储是模拟的,这允许对存储器单元阵列中的每一个存储器单元进行非常精确和单独的调整。另选地,存储器可以被操作为MLC(多级单元),其中该MLC被配置为被编程为许多离散值(诸如16或64个不同值)中的一个离散值。在模拟或MLC编程的情况下,编程电压仅在有限的时间内或作为一系列脉冲施加,直到实现期望的编程状态。在多个编程脉冲的情况下,可以使用编程脉冲之间的中间读取操作来确定期望的编程状态是否已经实现(在这种情况下编程停止)或尚未实现(在这种情况下编程继续)。
以模拟方式或作为MLC操作的存储器单元10可以对噪声和读取电流不稳定性更敏感,这会对存储器设备的准确度产生不利影响。模拟非易失性存储器设备中的读取电流不稳定性的一个来源是栅极氧化物-沟道界面上的电子阱捕获和发射电子。栅极氧化物是隔离浮栅20和衬底12的沟道区18的绝缘层。当电子在界面阱上被捕获时,它会降低读取操作期间的沟道电导率,从而增加存储器单元的阈值电压Vt(即,导通存储器单元的沟道区以产生一定水平的电流所需的控制栅极上的最小电压,例如1μA)。当控制栅极电压等于或高于阈值电压时,在源极区和漏极区之间形成导电路径。当控制栅极电压低于阈值电压时,不会产生导电路径,并且任何源极/漏极电流都被视为子阈值或漏电流。在界面阱上捕获的电子可以从阱发射,这降低了存储器单元的Vt,从而增加了读取操作期间的沟道电导率。这些电子捕获和发射的单电子事件导致1)随机电报噪声(RTN)和2)单向Vt偏移(还导致读取电流的单向变化),这被称为弛豫或CCI-单元电流不稳定性。
在存储器单元长时间保持在室温下或者在一种状态下在高温下烘烤然后改变为不同状态之后,已经检测到这种弛豫。弛豫表现为存储器单元新状态向前一状态的小的有限漂移。例如,如果存储器单元在其擦除状态下保持一段时间(其特征在于读取操作期间的低Vt和高沟道电流),随后被编程到其编程状态(其特征在于读取操作期间的高Vt和低沟道电流),则在相同的读取条件下,随着时间的推移,发现Vt略微下降,并且发现读取操作期间的读取电流略微增加。当与以数字方式操作的存储器单元的“1”和“0”状态之间的典型单元电流操作窗口相比时,Vt和读取电流偏移相对较小。然而,对于作为MLC(多级单元)或以模拟方式操作的存储器单元,这些偏移可能不可忽略。
需要减少非易失性存储器设备中的读取电流不稳定性。
发明内容
具有多个非易失性存储器单元和控制器的存储器设备解决了上述问题和需求。控制器被配置为接收用于擦除和编程存储器单元的第一组的第一命令,确定存储器单元的第一组可以在擦除存储器单元的第一组后的大致10秒内被编程,在组擦除操作中擦除存储器单元的第一组,在组擦除操作后的大致10秒内对存储器单元的第一组进行编程,接收用于擦除和编程存储器单元的第二组的第二命令,确定无法在擦除存储器单元的第二组后的大致10秒内对存储器单元的第二组进行编程,将存储器单元的第二组分成存储器单元的多个子组,其中每个子组可以在擦除存储器单元的相应的一个子组后的大致10秒内被编程,并且针对存储器单元的子组中的每一个子组,在子组擦除操作中擦除存储器单元的子组,并且在子组擦除操作后的大致10秒内对存储器单元的子组进行编程。
一种操作具有多个非易失性存储器单元的存储器设备的方法包括:接收用于擦除和编程存储器单元的第一组的第一命令,确定存储器单元的第一组可以在擦除存储器单元的第一组后的大致10秒内被编程,在组擦除操作中擦除存储器单元的第一组,在组擦除操作后的大致10秒内对存储器单元的第一组进行编程,接收用于擦除和编程存储器单元的第二组的第二命令,确定无法在擦除存储器单元的第二组后的大致10秒内对存储器单元的第二组进行编程,将存储器单元的第二组分成存储器单元的多个子组,其中每个子组可以在擦除存储器单元的相应的一个子组后的大致10秒内被编程,并且针对存储器单元的子组中的每一个子组,在子组擦除操作中擦除存储器单元的子组,并且在子组擦除操作后的大致10秒内对存储器单元的子组进行编程。
通过查看说明书、权利要求书和附图,本发明的其他目的和特征将变得显而易见。
附图说明
图1是现有存储器单元的侧面剖视图。
图2是示出存储器设备的部件的图。
图3是示出擦除和编程存储器单元的步骤的流程图。
具体实施方式
本发明是一种用于稳定图1的类型的非易失性存储器单元,优选的是以模拟方式操作的非易失性存储器单元的读取电流的技术,以提高读取操作的准确性和存储器保持寿命。以模拟方式操作的存储器单元可以仅使用编程状态的模拟操作范围,该模拟操作范围仅是完全擦除(浮栅上的电子数最小)(在本文中定义为在编程状态的模拟操作范围之外)和完全编程(浮栅上的电子数最大)之间编程状态的完整操作范围的一部分,如上所述。即,在存储器设备的使用寿命期间,存储器设备可以被配置为使得存储器单元主要保持在该模拟操作范围内。在模拟编程之前,存储器单元阵列被擦除,使得擦除的存储器单元的Vt远低于模拟操作范围。然后通过对每个存储器单元的单独调整来对存储器单元进行编程,使得经过编程的存储器单元的Vt在模拟操作范围内。读取稳定技术涉及配置存储器设备的控制器,使得在正常操作期间,每当擦除存储器单元,然后将其编程为模拟操作范围内的Vt值时,存储器单元擦除和存储器单元编程之间的时间被限制为大致10秒或更短。本发明人已经确定,如果擦除存储器单元和编程存储器单元之间的延迟为大致10秒或更短,则将减少或消除后续读取操作期间沟道电流的不期望的偏移(弛豫)。
从如图2所示的示例性存储器设备的架构可以更好地理解存储器阵列的擦除和编程。存储器设备包括非易失性存储器单元10的阵列50,该阵列可以被分隔成两个单独的平面(平面A 52a和平面B 52b)。存储器单元10可以是图1中所示的类型的存储器单元,可以形成在单个芯片上,可以在半导体衬底12中按多行和多列布置。与非易失性存储器单元阵列相邻的是地址解码器(例如,XDEC 54)、源极线驱动器(例如,SLDRV 56)、列解码器(例如,YMUX 58)、高压行解码器(例如,HVDEC 60)和位线控制器(例如,BLINHCTL 62),它们用于在所选择的存储器单元的读取、编程和擦除操作期间对地址进行解码并且向各种存储器单元栅极和区提供各种电压。列解码器58包括读出放大器,该读出放大器包含用于在读取操作期间测量位线上的电流的电路。控制器66(包含控制电路)控制各种设备元件以实施目标存储器单元上的每个操作(编程、擦除、读取)。电荷泵CHRGPMP 64提供用于在控制器66的控制下读取、编程和擦除存储器单元的各种电压。控制器66被配置为操作存储器设备以对存储器单元10进行编程、擦除和读取。作为这些操作的一部分,控制器66被提供对传入数据的访问,该传入数据是待编程到存储器单元的数据(并且可以包括在提供数据之前、期间或之后在相同或不同行上提供的擦除/编程命令)。还可以提供单独的读取和擦除命令。从存储器阵列读取的数据被提供为传出数据。
为了效率,存储器设备优选地被配置为在单个擦除操作中同时擦除多个存储器单元。例如,可以同时擦除存储器单元的整行或列。或者,可以同时擦除整个块的行和列。因此,控制器66被配置为针对任何给定的擦除/编程操作选择要同时擦除的存储器单元的数量,使得那些擦除的存储器单元的后续编程可以在擦除后的大致10秒内完成。例如,对于任何一组被同时擦除的存储器单元,从该存储器单元的组的擦除完成到该组中最后一个存储器单元的编程完成,测量到10秒。如果特定的擦除/编程操作涉及无法在10秒内擦除和编程的给定数量的存储器单元,则控制器66被配置为一次一组地对这些存储器单元的组进行操作(擦除和编程),以确保所有存储器单元在从它们被擦除之时起大致10秒或更短的时间内被编程。
例如,如果控制器66在擦除操作之后对X存储器单元进行编程大致需要10秒,则涉及Y(其中Y大于X)存储器单元的任何擦除/编程操作将导致控制器将Y存储器单元分成两组或更多个组,每一组不超过X存储器单元,从而一次一组地对每一组应用擦除/编程操作,使得每一组中的所有存储器单元的编程可以在该存储器单元的组被擦除后的大致10秒或更短的时间内完成。因此,对于每个擦除/编程操作,控制器执行该操作,使得任何给定数量的存储器单元的所有编程在那些相同存储器单元的擦除完成后的大致10秒内完成。
图3示出了本发明的步骤。在步骤1中,控制器66接收(第一)命令以对在组中具有Y存储器单元的存储器单元的组进行擦除和编程。在步骤2中,控制器66确定Y是否大于X,其中X是可以在擦除完成后的大致10秒内编程的存储器单元的最高数量(即,最大限值)。该步骤确定是否可以在擦除Y存储器单元后的大致10秒内对Y存储器单元进行编程。如果Y不大于X,则可以在擦除Y数量的存储器单元后的大致10秒内对Y数量的存储器单元进行编程,并且因此在步骤3中,控制器66(优选地,但不一定同时)擦除组中的所有Y数量的存储器单元,并且在步骤4中,控制器66在擦除后的大致10秒内对组中的Y数量的存储器单元进行编程。然而,如果在步骤2中确定Y大于X,则无法在擦除Y数量的存储器单元后的大致10秒内对Y数量的存储器单元进行编程,并且因此在步骤5中,控制器将Y存储器单元的组分成存储器单元的多个子组,每个子组不超过X。然后,控制器66在步骤6中(优选地,但不一定同时)擦除存储器单元的第一子组,并且在步骤7中在擦除后的大致10秒内对存储器单元的第一子组进行编程。然后,在步骤8中,控制器66针对存储器单元的其他子组中的每一个子组重复步骤6和步骤7。每次接收到擦除/编程命令(即,第二命令、第三命令等)时,重复该过程。利用这种技术,无论擦除和编程命令针对多少个存储器单元,所有存储器单元都在被擦除后的大致10秒内被编程。
为了说明上述技术,非限制性示例可以为8Mbit数字NOR闪存存储器设备,其中每个字节(8位)由具有10μs持续时间的单个脉冲以数字方式编程。在该示例中,该设备的总编程时间至少需要10秒。然而,数据的精确模拟编程可能需要较长的时间来在编程算法中包括多个编程和读取验证步骤。例如,满足模拟编程所需的精度可能需要100个编程脉冲,每个脉冲为0.9μs,并且编程脉冲之间的读取验证持续时间为0.1μs。在该示例中,100万字节的总模拟编程时间至少需要100秒。因此,在这种情况下,模拟编程之前执行的擦除操作不会对整个闪存存储器设备执行,而是仅针对闪存存储器设备内的阵列的最多十分之一的存储器单元块执行,使得用于刚擦除的块的编程时间将不超过大致10秒。
应当注意,通过防止任何存储器单元停留在其擦除状态超过大致10秒来实现本发明的优点。因此,根据本发明,对于被擦除的任何存储器单元的组,该组中的每个存储器单元在大致10秒内经历至少一些编程,但存储器单元中的一些存储器单元不打算利用数据进行编程。例如,如果被擦除的单元组中的存储器单元不打算利用任何数据进行编程,则存储器单元可以被完全编程或深度过度编程以便在模拟操作范围之外,从而有效地最小化在读取同一位线上的其他存储器单元时该存储器单元可能增加到位线电流的任何贡献。因此,无论什么数据被编程到经历擦除的存储器单元的组,该组中的所有存储器单元都被编程为使得不存在处于擦除状态超过大致10秒的存储器单元(参见图3的步骤4或步骤7至步骤8)。如本文所用,对一组或多个存储器单元进行编程意味着该组或多个存储器单元中的每一个存储器单元经历至少一些编程(即,至少一些电子注入到浮栅上)。
应当理解,本发明不限于上述的和在本文中示出的实施方案,而是涵盖在任何权利要求书的范围内的任何和所有变型形式。例如,本文中对本发明的提及并不意在限制任何权利要求书或权利要求术语的范围,而是仅与可由这些权利要求中的一项或多项权利要求涵盖的一个或多个特征相关。上文所述的材料、工艺和数值的示例仅为示例性的,而不应视为限制权利要求书。另外,如从权利要求和说明书中显而易见的,除非另有说明,否则并非所有方法步骤都需要按所示或所要求的具体顺序执行。

Claims (12)

1.一种存储器设备,所述存储器设备包括:
多个非易失性存储器单元;
控制器,所述控制器被配置为:
接收用于擦除和编程所述存储器单元的第一组的第一命令,
确定所述存储器单元的所述第一组能够在擦除所述存储器单元的所述第一组后的大致10秒内被编程,
在组擦除操作中擦除存储器单元的所述第一组,
在所述组擦除操作后的大致10秒内对存储器单元的所述第一组进行编程,
接收用于擦除和编程所述存储器单元的第二组的第二命令,
确定所述存储器单元的所述第二组无法在擦除所述存储器单元的所述第二组后的大致10秒内被编程,
将所述存储器单元的所述第二组分成所述存储器单元的多个子组,其中所述子组中的每一个子组能够在擦除所述存储器单元的相应的一个子组后的大致10秒内被编程,以及
针对所述存储器单元的所述子组中的每一个子组:
在子组擦除操作中擦除存储器单元的所述子组,以及
在所述子组擦除操作后的大致10秒内对存储器单元的所述子组进行编程。
2.根据权利要求1所述的设备,其中所述控制器被进一步配置为在所述组擦除操作中同时擦除所述存储器单元的所述第一组中的至少所有所述存储器单元。
3.根据权利要求1所述的设备,其中针对所述存储器单元的所述子组中的每一个子组,所述控制器被进一步配置为在所述子组擦除操作中同时擦除所述存储器单元的所述子组中的至少所有所述存储器单元。
4.根据权利要求1所述的设备,其中所述控制器被配置为基于所述存储器单元的所述第一组中的所述存储器单元的数量不超过预先确定的数量,确定所述存储器单元的所述第一组能够在擦除所述存储器单元的所述第一组后的大致10秒内被编程,并且基于所述存储器单元的所述第二组中的所述存储器单元的数量确实超过所述预先确定的数量,确定无法在擦除所述存储器单元的所述第二组后的大致10秒内对所述存储器单元的所述第二组进行编程。
5.根据权利要求1所述的设备,其中所述存储器单元中的每一个存储器单元包括:
间隔开的源极区和漏极区,所述间隔开的源极区和漏极区形成于半导体衬底中,其中所述衬底的沟道区在所述源极区和所述漏极区之间延伸,
浮栅,所述浮栅竖直地设置在所述沟道区的第一部分上方并且与其绝缘,
选择栅极,所述选择栅极竖直地设置在所述沟道区的第二部分上方并且与其绝缘,以及
控制栅极,所述控制栅极竖直地设置在所述浮栅上方并且与其绝缘。
6.根据权利要求5所述的设备,其中所述存储器单元中的每一个存储器单元还包括:
设置在所述源极区上方并且与其绝缘的擦除栅。
7.一种操作具有多个非易失性存储器单元的存储器设备的方法,所述方法包括:
接收用于擦除和编程所述存储器单元的第一组的第一命令,
确定所述存储器单元的所述第一组能够在擦除所述存储器单元的所述第一组后的大致10秒内被编程,
在组擦除操作中擦除存储器单元的所述第一组,
在所述组擦除操作的大致10秒内对存储器单元的所述第一组进行编程,
接收用于擦除和编程所述存储器单元的第二组的第二命令,
确定所述存储器单元的所述第二组无法在擦除所述存储器单元的所述第二组后的大致10秒内被编程,
将所述存储器单元的所述第二组分成所述存储器单元的多个子组,其中所述子组中的每一个子组能够在擦除所述存储器单元的相应的一个子组后的大致10秒内被编程,以及
针对所述存储器单元的所述子组中的每一个子组:
在子组擦除操作中擦除存储器单元的所述子组,以及
在所述子组擦除操作后的大致10秒内对存储器单元的所述子组进行编程。
8.根据权利要求7所述的方法,其中所述擦除存储器单元的所述第一组还包括同时擦除所述存储器单元的所述第一组中的至少所有所述存储器单元。
9.根据权利要求7所述的方法,其中针对所述存储器单元的所述子组中的每一个子组,所述擦除所述存储器单元的所述子组还包括同时擦除所述存储器单元的所述子组中的至少所有所述存储器单元。
10.根据权利要求7所述的方法,其中确定所述存储器单元的所述第一组能够在擦除所述存储器单元的所述第一组后的大致10秒内被编程是基于所述存储器单元的所述第一组中的所述存储器单元的数量不超过预先确定的数量,并且确定无法在擦除所述存储器单元的所述第二组后的大致10秒内对所述存储器单元的所述第二组进行编程是基于所述存储器单元的所述第二组中的所述存储器单元的数量确实超过所述预先确定的数量。
11.根据权利要求7所述的方法,其中所述存储器单元中的每一个存储器单元包括:
间隔开的源极区和漏极区,所述间隔开的源极区和漏极区形成于半导体衬底中,其中所述衬底的沟道区在所述源极区和所述漏极区之间延伸,
浮栅,所述浮栅竖直地设置在所述沟道区的第一部分上方并且与其绝缘,
选择栅极,所述选择栅极竖直地设置在所述沟道区的第二部分上方并且与其绝缘,以及
控制栅极,所述控制栅极竖直地设置在所述浮栅上方并且与其绝缘。
12.根据权利要求11所述的方法,其中所述存储器单元中的每一个存储器单元还包括:
设置在所述源极区上方并且与其绝缘的擦除栅。
CN202080061328.8A 2019-09-03 2020-08-25 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法 Active CN114303199B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962895458P 2019-09-03 2019-09-03
US62/895,458 2019-09-03
US16/803,418 US10991433B2 (en) 2019-09-03 2020-02-27 Method of improving read current stability in analog non-volatile memory by limiting time gap between erase and program
US16/803,418 2020-02-27
PCT/US2020/047833 WO2021045933A1 (en) 2019-09-03 2020-08-25 Method of improving read current stability in analog non-volatile memory by limiting time gap between erase and program

Publications (2)

Publication Number Publication Date
CN114303199A CN114303199A (zh) 2022-04-08
CN114303199B true CN114303199B (zh) 2022-12-27

Family

ID=74679154

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202080060960.0A Pending CN114287037A (zh) 2019-09-03 2020-03-11 在预先确定的编程状态下使用最终烘烤来提高模拟非易失性存储器中读取电流稳定性的方法
CN202080061328.8A Active CN114303199B (zh) 2019-09-03 2020-08-25 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法
CN202080060971.9A Pending CN114303198A (zh) 2019-09-03 2020-08-25 通过筛选存储器单元改进模拟非易失性存储器中的读取电流稳定性的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202080060960.0A Pending CN114287037A (zh) 2019-09-03 2020-03-11 在预先确定的编程状态下使用最终烘烤来提高模拟非易失性存储器中读取电流稳定性的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202080060971.9A Pending CN114303198A (zh) 2019-09-03 2020-08-25 通过筛选存储器单元改进模拟非易失性存储器中的读取电流稳定性的方法

Country Status (7)

Country Link
US (3) US10991433B2 (zh)
EP (3) EP4026127B1 (zh)
JP (3) JP7238207B2 (zh)
KR (2) KR102641648B1 (zh)
CN (3) CN114287037A (zh)
TW (3) TWI721873B (zh)
WO (3) WO2021045799A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230172027A (ko) * 2021-06-02 2023-12-21 실리콘 스토리지 테크놀로지 인크 랜덤 텔레그래프 잡음을 나타내는 메모리 셀들에 대한 프로그래밍-후 튜닝에 의한 아날로그 비휘발성 메모리에서 판독 전류 안정성을 개선하는 방법
US11769558B2 (en) 2021-06-08 2023-09-26 Silicon Storage Technology, Inc. Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells
WO2022260692A1 (en) * 2021-06-08 2022-12-15 Silicon Storage Technology, Inc. Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121248A (zh) * 1993-12-28 1996-04-24 株式会社东芝 非易失性半导体存储装置
CN109328385A (zh) * 2016-05-17 2019-02-12 硅存储技术公司 采用单独存储器单元读取、编程和擦除的三栅极闪存存储器单元阵列

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856366A (ja) * 1981-09-30 1983-04-04 Hitachi Ltd 半導体記憶装置のスクリ−ニング方法
JPS6417300A (en) * 1987-07-09 1989-01-20 Nippon Electric Ic Microcomput Semiconductor storage device
US5029130A (en) 1990-01-22 1991-07-02 Silicon Storage Technology, Inc. Single transistor non-valatile electrically alterable semiconductor memory device
US5583810A (en) 1991-01-31 1996-12-10 Interuniversitair Micro-Elektronica Centrum Vzw Method for programming a semiconductor memory device
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6349062B1 (en) 2000-02-29 2002-02-19 Advanced Micro Devices, Inc. Selective erasure of a non-volatile memory cell of a flash memory device
US6618290B1 (en) 2000-06-23 2003-09-09 Advanced Micro Devices, Inc. Method of programming a non-volatile memory cell using a baking process
US6727545B2 (en) 2000-09-20 2004-04-27 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling
JP2002100192A (ja) * 2000-09-22 2002-04-05 Toshiba Corp 不揮発性半導体メモリ
JP2002150783A (ja) 2000-11-10 2002-05-24 Toshiba Corp 半導体記憶装置およびそのメモリセルトランジスタのしきい値の変化を判別する方法
US6815231B2 (en) * 2001-06-11 2004-11-09 Hitachi, Ltd. Method of testing and manufacturing nonvolatile semiconductor memory
KR20030001607A (ko) * 2001-06-25 2003-01-08 주식회사 하이닉스반도체 플래쉬 메모리 소자의 테스트 방법
JP4034971B2 (ja) 2002-01-21 2008-01-16 富士通株式会社 メモリコントローラおよびメモリシステム装置
US6747310B2 (en) 2002-10-07 2004-06-08 Actrans System Inc. Flash memory cells with separated self-aligned select and erase gates, and process of fabrication
JP3721159B2 (ja) 2002-11-28 2005-11-30 株式会社東芝 不揮発性半導体記憶装置
US7324374B2 (en) 2003-06-20 2008-01-29 Spansion Llc Memory with a core-based virtual ground and dynamic reference sensing scheme
EP1503384A3 (en) 2003-07-21 2007-07-18 Macronix International Co., Ltd. Method of programming memory
TWI273600B (en) 2003-07-21 2007-02-11 Macronix Int Co Ltd Integrated circuit and manufacturing method thereof, memory cell and manufacturing method thereof, method for programming memory cell and method for programming memory array multiple times
US7177199B2 (en) 2003-10-20 2007-02-13 Sandisk Corporation Behavior based programming of non-volatile memory
JP4349886B2 (ja) * 2003-11-07 2009-10-21 三洋電機株式会社 不揮発性メモリ装置
JP4322686B2 (ja) * 2004-01-07 2009-09-02 株式会社東芝 不揮発性半導体記憶装置
US7209389B2 (en) 2004-02-03 2007-04-24 Macronix International Co., Ltd. Trap read only non-volatile memory (TROM)
US20050262970A1 (en) 2004-05-27 2005-12-01 Chih-Ching Hsien Reinforcement teeth for ratchet tools
US7315056B2 (en) 2004-06-07 2008-01-01 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with program/erase and select gates
US7251158B2 (en) 2004-06-10 2007-07-31 Spansion Llc Erase algorithm for multi-level bit flash memory
US7325177B2 (en) 2004-11-17 2008-01-29 Silicon Storage Technology, Inc. Test circuit and method for multilevel cell flash memory
TWI297154B (en) * 2005-01-03 2008-05-21 Macronix Int Co Ltd Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
JP5130646B2 (ja) 2005-06-06 2013-01-30 ソニー株式会社 記憶装置
JP4551284B2 (ja) * 2005-06-22 2010-09-22 シャープ株式会社 不揮発性半導体記憶装置
JP4764723B2 (ja) * 2006-01-10 2011-09-07 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US7508693B2 (en) 2006-03-24 2009-03-24 Macronix International Co., Ltd. One-time-programmable (OTP) memory device and method for testing the same
KR100816162B1 (ko) 2007-01-23 2008-03-21 주식회사 하이닉스반도체 낸드 플래시 메모리 장치 및 셀 특성 개선 방법
US7839695B2 (en) * 2007-04-27 2010-11-23 Macronix International Co., Ltd. High temperature methods for enhancing retention characteristics of memory devices
CN101779249B (zh) 2007-06-14 2013-03-27 桑迪士克科技股份有限公司 半导体存储器中的可编程芯片使能和芯片地址
US20090039410A1 (en) 2007-08-06 2009-02-12 Xian Liu Split Gate Non-Volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing
US7869258B2 (en) * 2008-06-27 2011-01-11 Sandisk 3D, Llc Reverse set with current limit for non-volatile storage
US20100259979A1 (en) * 2009-04-10 2010-10-14 James Yingbo Jia Self Limiting Method For Programming A Non-volatile Memory Cell To One Of A Plurality Of MLC Levels
US10229746B2 (en) * 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
JP5856366B2 (ja) 2010-09-30 2016-02-09 フジモリ産業株式会社 貼付体用セパレータ及びこれを用いた貼付体
JP5702573B2 (ja) * 2010-10-20 2015-04-15 スパンション エルエルシー 不揮発性半導体記憶装置およびそのデータ書き込み方法
US8842469B2 (en) 2010-11-09 2014-09-23 Freescale Semiconductor, Inc. Method for programming a multi-state non-volatile memory (NVM)
US8711636B2 (en) 2011-05-13 2014-04-29 Silicon Storage Technology, Inc. Method of operating a split gate flash memory cell with coupling gate
US8726104B2 (en) 2011-07-28 2014-05-13 Sandisk Technologies Inc. Non-volatile memory and method with accelerated post-write read using combined verification of multiple pages
US20130031431A1 (en) * 2011-07-28 2013-01-31 Eran Sharon Post-Write Read in Non-Volatile Memories Using Comparison of Data as Written in Binary and Multi-State Formats
US8576648B2 (en) * 2011-11-09 2013-11-05 Silicon Storage Technology, Inc. Method of testing data retention of a non-volatile memory cell having a floating gate
US9195586B2 (en) 2012-02-23 2015-11-24 Hgst Technologies Santa Ana, Inc. Determining bias information for offsetting operating variations in memory cells based on wordline address
US8953398B2 (en) 2012-06-19 2015-02-10 Sandisk Technologies Inc. Block level grading for reliability and yield improvement
US9299459B2 (en) 2012-09-07 2016-03-29 Macronix International Co., Ltd. Method and apparatus of measuring error correction data for memory
US9123401B2 (en) 2012-10-15 2015-09-01 Silicon Storage Technology, Inc. Non-volatile memory array and method of using same for fractional word programming
US9013920B2 (en) * 2013-04-03 2015-04-21 Western Digital Technologies, Inc. Systems and methods of write precompensation to extend life of a solid-state memory
KR102210961B1 (ko) 2013-06-12 2021-02-03 삼성전자주식회사 불휘발성 메모리 장치를 포함하는 메모리 시스템 및 그것의 동적 접근 방법
US20150262970A1 (en) * 2014-03-13 2015-09-17 Kabushiki Kaisha Toshiba Semiconductor memory device manufacturing method and semiconductor memory device
US9202815B1 (en) * 2014-06-20 2015-12-01 Infineon Technologies Ag Method for processing a carrier, a carrier, and a split gate field effect transistor structure
US9569120B2 (en) 2014-08-04 2017-02-14 Nvmdurance Limited Adaptive flash tuning
US9455038B2 (en) 2014-08-20 2016-09-27 Sandisk Technologies Llc Storage module and method for using healing effects of a quarantine process
US9830219B2 (en) 2014-09-15 2017-11-28 Western Digital Technologies, Inc. Encoding scheme for 3D vertical flash memory
US9990990B2 (en) * 2014-11-06 2018-06-05 Micron Technology, Inc. Apparatuses and methods for accessing variable resistance memory device
US9378832B1 (en) * 2014-12-10 2016-06-28 Sandisk Technologies Inc. Method to recover cycling damage and improve long term data retention
US10114584B2 (en) 2014-12-22 2018-10-30 Sandisk Technologies Llc Removing read disturb signatures for memory analytics
US9842662B2 (en) 2015-02-16 2017-12-12 Texas Instruments Incorporated Screening for data retention loss in ferroelectric memories
US9899102B2 (en) 2015-03-31 2018-02-20 SK Hynix Inc. Semiconductor device and operating method thereof
US20160307636A1 (en) * 2015-04-17 2016-10-20 Macronix International Co., Ltd. Method and apparatus for improving data retention and read-performance of a non-volatile memory device
TWI594239B (zh) 2015-05-27 2017-08-01 旺宏電子股份有限公司 改良非揮發性記憶體裝置之資料保留與讀取性能之方法與裝置
JP6417300B2 (ja) 2015-09-02 2018-11-07 株式会社中電工 指定範囲監視システム
US9558846B1 (en) 2015-11-04 2017-01-31 Texas Instruments Incorporated Feedback validation of arbitrary non-volatile memory data
TWI571882B (zh) * 2016-02-19 2017-02-21 群聯電子股份有限公司 平均磨損方法、記憶體控制電路單元及記憶體儲存裝置
KR102384654B1 (ko) * 2016-05-17 2022-04-11 실리콘 스토리지 테크놀로지 인크 개별 메모리 셀 판독, 프로그래밍, 및 소거를 갖는 3-게이트 플래시 메모리 셀들의 어레이
JP6350757B2 (ja) 2016-06-06 2018-07-04 東レ株式会社 メモリアレイ、メモリアレイの製造方法、メモリアレイシート、メモリアレイシートの製造方法および無線通信装置
US10008277B2 (en) * 2016-09-12 2018-06-26 Sandisk Technologies Llc Block health monitoring using threshold voltage of dummy memory cells
US10134479B2 (en) 2017-04-21 2018-11-20 Sandisk Technologies Llc Non-volatile memory with reduced program speed variation
JP6414297B1 (ja) * 2017-08-18 2018-10-31 富士通株式会社 メモリコントローラ、情報処理システム、及び不揮発性メモリの不良判断方法
US10515008B2 (en) 2017-10-25 2019-12-24 Western Digital Technologies, Inc. Performance based memory block usage
US10515694B2 (en) * 2017-11-03 2019-12-24 Silicon Storage Technology, Inc. System and method for storing multibit data in non-volatile memory
US10354729B1 (en) * 2017-12-28 2019-07-16 Micron Technology, Inc. Polarity-conditioned memory cell write operations
US10838652B2 (en) 2018-08-24 2020-11-17 Silicon Storage Technology, Inc. Programming of memory cell having gate capacitively coupled to floating gate
CN110140174B (zh) * 2019-03-26 2021-02-19 长江存储科技有限责任公司 用于通过施加多个位线偏置电压在非易失性存储器器件中编程的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121248A (zh) * 1993-12-28 1996-04-24 株式会社东芝 非易失性半导体存储装置
CN109328385A (zh) * 2016-05-17 2019-02-12 硅存储技术公司 采用单独存储器单元读取、编程和擦除的三栅极闪存存储器单元阵列

Also Published As

Publication number Publication date
US10991433B2 (en) 2021-04-27
US11017866B2 (en) 2021-05-25
KR20220024934A (ko) 2022-03-03
EP4026126A1 (en) 2022-07-13
TWI766357B (zh) 2022-06-01
CN114303198A (zh) 2022-04-08
TW202127458A (zh) 2021-07-16
US20210065817A1 (en) 2021-03-04
US11205490B2 (en) 2021-12-21
WO2021045933A1 (en) 2021-03-11
EP4026129A1 (en) 2022-07-13
EP4026127B1 (en) 2024-01-24
CN114287037A (zh) 2022-04-05
KR20220019820A (ko) 2022-02-17
WO2021045934A1 (en) 2021-03-11
KR102641647B1 (ko) 2024-02-28
JP2022546088A (ja) 2022-11-02
US20210065837A1 (en) 2021-03-04
JP2022545740A (ja) 2022-10-28
EP4026129B1 (en) 2024-02-28
TWI750793B (zh) 2021-12-21
CN114303199A (zh) 2022-04-08
JP7238207B2 (ja) 2023-03-13
EP4026126B1 (en) 2023-07-26
JP2022536213A (ja) 2022-08-12
TWI721873B (zh) 2021-03-11
JP7236592B2 (ja) 2023-03-09
US20210065811A1 (en) 2021-03-04
WO2021045799A1 (en) 2021-03-11
KR102641648B1 (ko) 2024-02-28
KR20220024937A (ko) 2022-03-03
JP7121220B1 (ja) 2022-08-17
EP4026127A1 (en) 2022-07-13
TW202119422A (zh) 2021-05-16
TW202111694A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN114303199B (zh) 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法
JP7474876B2 (ja) ランダムテレグラフノイズを呈するメモリセルのプログラム調整による、アナログ不揮発性メモリにおける読み出し電流の安定性を改善する方法
KR102668445B1 (ko) 소거와 프로그램 사이의 시간 갭을 제한함으로써 아날로그 비휘발성 메모리에서 판독 전류 안정성을 개선하는 방법
US11769558B2 (en) Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells
JP7496040B1 (ja) 不揮発性メモリにおけるランダムテレグラフノイズをメモリセルのグループ化及びスクリーニングによって低減する方法
US20220392543A1 (en) Method of improving read current stability in analog non-volatile memory by post-program tuning for memory cells exhibiting random telegraph noise
WO2022260692A1 (en) Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells
CN117321689A (zh) 通过对表现出随机电报噪声的存储器单元进行编程后调谐来提高模拟非易失性存储器中的读取电流稳定性的方法
JP2024520275A (ja) ランダムテレグラフノイズを呈するメモリセルに対するプログラム後調整によってアナログ不揮発性メモリにおける読み出し電流安定性を改善する方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant