CN114287037A - 在预先确定的编程状态下使用最终烘烤来提高模拟非易失性存储器中读取电流稳定性的方法 - Google Patents

在预先确定的编程状态下使用最终烘烤来提高模拟非易失性存储器中读取电流稳定性的方法 Download PDF

Info

Publication number
CN114287037A
CN114287037A CN202080060960.0A CN202080060960A CN114287037A CN 114287037 A CN114287037 A CN 114287037A CN 202080060960 A CN202080060960 A CN 202080060960A CN 114287037 A CN114287037 A CN 114287037A
Authority
CN
China
Prior art keywords
programmed
memory cells
state
read
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080060960.0A
Other languages
English (en)
Inventor
V·马克夫
A·柯多夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Storage Technology Inc
Original Assignee
Silicon Storage Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Storage Technology Inc filed Critical Silicon Storage Technology Inc
Publication of CN114287037A publication Critical patent/CN114287037A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • G11C29/4401Indication or identification of errors, e.g. for repair for self repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0425Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3404Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3468Prevention of overerasure or overprogramming, e.g. by verifying whilst erasing or writing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/06Acceleration testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50004Marginal testing, e.g. race, voltage or current testing of threshold voltage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50016Marginal testing, e.g. race, voltage or current testing of retention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7206Reconfiguration of flash memory system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7208Multiple device management, e.g. distributing data over multiple flash devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0403Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals during or with feedback to manufacture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0405Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals comprising complete test loop
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0409Online test
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/4402Internal storage of test result, quality data, chip identification, repair information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5002Characteristic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5004Voltage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/24Accessing extra cells, e.g. dummy cells or redundant cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42328Gate electrodes for transistors with a floating gate with at least one additional gate other than the floating gate and the control gate, e.g. program gate, erase gate or select gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Computer Hardware Design (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

一种提高存储器设备稳定性的方法,该存储器设备具有控制器,该控制器被配置成在由最小编程状态和最大编程状态界定的编程状态范围内对多个非易失性存储器单元中的每个非易失性存储器单元进行编程。该方法包括测试存储器单元以确认存储器单元是可操作的,将存储器单元中的每一个存储器单元编程为中间编程状态,以及在将存储器单元编程为该中间编程状态时在高温下烘烤该存储器设备。每个存储器单元在该最小编程状态下编程时具有第一阈值电压,在该最大编程状态下编程时具有第二阈值电压,并且在该中间编程状态下编程时具有第三阈值电压。该第三阈值电压基本上处于该第一阈值电压和该第二阈值电压之间的中点,并且对应于读取电流的实际的对数中点。

Description

在预先确定的编程状态下使用最终烘烤来提高模拟非易失性 存储器中读取电流稳定性的方法
相关专利申请
本申请要求于2019年9月3日提交的美国临时申请号62/895,458和于2020年2月27日提交的美国专利申请号16/803,401的权益。
技术领域
本发明涉及非易失性存储器设备,并且更具体地涉及提高读取操作期间存储器单元电流的稳定性。
背景技术
非易失性存储器设备在本领域中是公知的。参见例如美国专利7,868,375,公开了四栅极存储器单元配置。具体地,本申请的图1示出了具有在硅半导体衬底12中形成的间隔开的源极区14和漏极区16的分裂栅存储器单元10。源极区14可以被称为源极线SL(因为其通常连接到同一行或列中其他存储器单元的其他源极区),并且漏极区16通常通过位线触点28连接到位线。衬底的沟道区18被限定在源极区14/漏极区16之间。浮栅20设置在沟道区18的第一部分上方并且与该第一部分绝缘(并且控制其导电性)(并且部分地位于源极区14上方并且与其绝缘)。控制栅极22设置在浮栅20上方并且与其绝缘。选择栅极24设置在沟道区18的第二部分上方并且与该第二部分绝缘(并且控制其导电性)。擦除栅极26设置在源极区14上方并且与其绝缘,并且与浮栅20侧向相邻。多个此类存储器单元可以按行和列排列以形成存储器单元阵列。
将各种组合的电压施加到控制栅极22、选择栅极24、擦除栅极26和/或源极区14/漏极区16,以对存储器单元进行编程(即,将电子注入到浮栅中)、擦除存储器单元(即,从浮栅移除电子),以及读取存储器单元(即,测量或检测沟道区18的电导率以确定浮栅20的编程状态)。
存储器单元10可以数字方式操作,其中存储器单元被设置为仅两种可能的状态中的一种:编程状态和擦除状态。通过在擦除栅极26上施加高正电压并且可选地在控制栅极22上施加负电压来擦除存储器单元,以引起电子从浮栅20到擦除栅极26的隧穿(使浮栅处于带更多正电荷的状态-擦除状态)。可以通过在控制栅极22、擦除栅极26、选择栅极24和源极区14上施加正电压以及在漏极区16上施加电流来对存储器单元10进行编程。然后,电子将沿沟道区18从漏极区16流向源极区14,其中一些电子变得加速并且变热,由此它们通过热电子注入被注入到浮栅20上(使浮栅处于带更多负电荷的状态-编程状态)。可以通过在选择栅极24(导通选择栅极24下方的沟道区部分)和漏极区16(并且可选地在擦除栅极26和/或控制栅极22上)上施加正电压并且感测流过沟道区18的电流来读取存储器单元10。如果浮栅20带正电(被擦除),则存储器单元将导通,并且电流将从源极区14流动到漏极区16(即,基于所感测的电流感测到存储器单元10处于其擦除“1”状态)。如果浮栅20带负电(被编程),则浮栅下方的沟道区被关断,从而阻止任何电流流动(即,基于无电流而将存储器单元10感测为处于其被编程的“0”状态)。
下表提供了擦除、编程和读取电压的非限制性示例:
表1
WL(SG) BL(漏极) 源极 EG CG
擦除 0V 0V 0V 11.5V 0V
编程 1V 1μA 4.5V 4.5V 10.5V
读取 Vcc 0.6V 0V 0V Vcc
存储器单元10可以另选地以模拟方式操作,其中存储器单元的存储器状态(即,浮栅上的电荷量,诸如电子数)可以从完全擦除状态(浮栅上的电子最少)连续改变到完全编程状态(浮栅上的电子数最多),或者只是该范围的一部分。这意味着单元存储是模拟的,这允许对存储器单元阵列中的每一个存储器单元进行非常精确和单独的调整。另选地,存储器可以被操作为MLC(多级单元),其中该MLC被配置成被编程为许多离散值(诸如16或64个不同值)中的一个离散值。在模拟或MLC编程的情况下,编程电压仅在有限的时间内或作为一系列脉冲施加,直到实现期望的编程状态。在多个编程脉冲的情况下,可以使用编程脉冲之间的中间读取操作来确定期望的编程状态是否已经实现(在这种情况下编程停止)或尚未实现(在这种情况下编程继续)。
以模拟方式或作为MLC操作的存储器单元10可以对噪声和读取电流不稳定性更敏感,这会对存储器设备的准确度产生不利影响。模拟非易失性存储器设备中的读取电流不稳定性的一个来源是栅极氧化物-沟道界面上的电子阱捕获和发射电子。该栅极氧化物是隔离浮栅20和衬底12的沟道区18的绝缘层。当电子在界面阱上被捕获时,它会降低读取操作期间的沟道电导率,从而增加存储器单元的阈值电压Vt(即,导通存储器单元的沟道区以产生一定水平的电流所需的控制栅极上的最小电压,例如1μA)。当控制栅极电压等于或高于阈值电压时,在源极区和漏极区之间形成导电路径。当控制栅极电压低于阈值电压时,不会产生导电路径,并且任何源极/漏极电流都被视为子阈值或漏电流。电子阱再充电的这些单个事件导致1)随机电报噪声(RTN)和2)单向阈值电压(Vt)偏移(还引起读取操作沟道电流的变化),这被称为弛豫或CCI-单元电流不稳定性。
在存储器单元长时间保持在室温下或者在一种状态下在高温下烘烤然后改变为不同状态之后,已经检测到这种弛豫。弛豫表现为存储器单元新状态向前一状态的小的漂移。例如,如果存储器单元在其擦除状态下保持一段时间(其特征在于读取操作期间的低阈值电压Vt和高沟道电流),随后被编程到其编程状态(其特征在于读取操作期间的高阈值电压Vt和低沟道电流),则在相同的读取条件下,随着时间的推移,发现阈值电压Vt略微下降,并且发现读取操作期间的读取电流略微增加。当与以数字方式操作的存储器单元的1和0状态之间的典型单元电流操作窗口相比时,Vt和读取电流偏移相对较小。然而,对于作为MLC(多级单元)或以模拟方式操作的存储器单元,这些偏移可能不可忽略。
需要减少非易失性存储器设备中的读取电流不稳定性。
发明内容
上述问题和需求通过提高存储器设备稳定性的方法来解决,该存储器设备包括多个非易失性存储器单元和控制器,该控制器被配置成在由最小编程状态和最大编程状态界定的编程状态范围内对存储器单元中的每一个存储器单元进行编程。该方法包括测试存储器单元以确认存储器单元是可操作的,将存储器单元中的每一个存储器单元编程为中间编程状态,以及在将存储器单元编程为中间编程状态时在高温下烘烤存储器设备。对于存储器单元中的每一个存储器单元,当在最小编程状态下编程时存储器单元具有第一阈值电压,当在最大编程状态下编程时存储器单元具有第二阈值电压,并且当在中间编程状态下编程时存储器单元具有第三阈值电压,其中该第三阈值电压基本上处于第一阈值电压和第二阈值电压之间的中点。
一种提高存储器设备稳定性的方法,该存储器设备包括多个非易失性存储器单元和控制器,每个非易失性存储器单元至少包括设置在半导体衬底的沟道区上方并且与其绝缘的浮栅和设置在浮栅上方并且与其绝缘的控制栅极,该控制器被配置成在由最小编程状态和最大编程状态界定的编程状态范围内对存储器单元中的每一个存储器单元进行编程,并且使用施加到控制栅极的读取电压来读取存储器单元中的每一个存储器单元。该方法包括测试存储器单元以确认存储器单元是可操作的,将存储器单元中的每一个存储器单元编程为中间编程状态,以及在将存储器单元编程为中间编程状态时在高温下烘烤存储器设备。对于存储器单元中的每一个存储器单元,当在最小编程状态下编程时,存储器单元使用施加到控制栅极的读取电压在读取操作期间产生第一读取电流,当在最大编程状态下编程时,存储器单元使用施加到控制栅极的读取电压在读取操作期间产生第二读取电流,并且当在中间编程状态下编程时,存储器单元使用施加到控制栅极的读取电压在读取操作期间产生第三读取电流,其中该第三读取电流基本上处于第一读取电流和第二读取电流之间的对数中点。
通过查看说明书、权利要求书和附图,本发明的其他目的和特征将变得显而易见。
附图说明
图1是现有存储器单元的侧面剖视图。
图2是示出存储器设备的部件的图。
图3是示出在子阈值操作范围内关于读取电流和阈值电压Vt的存储器单元操作范围的图。
图4是示出对存储器单元进行编程和烘烤的步骤的流程图。
图5是示出操作范围内的存储器单元的I-V特性的示例的图。
具体实施方式
本发明是一种用于稳定图1的类型的非易失性存储器单元的读取电流以提高读取操作准确度和存储器保持寿命的技术。读取稳定技术涉及在执行最终高温烘烤过程之前将完成的和可操作的存储器单元编程为预先确定的编程状态。具体地,在存储器设备测试过程中,设备中的存储器阵列可以各种数据模式经历许多热操作。然而,一旦存储器设备测试完成,所有存储器单元随后就被编程为预先确定的中间编程状态,然后对存储器设备进行最终的高温烘烤。已经发现,通过在存储器单元被编程为中间编程状态时执行该最终的高温烘烤,存储器单元阈值电压(Vt)随时间推移而偏移,从而减小读取操作电流随时间推移的漂移。
期望的中间编程状态是存储器阵列的控制器配置的函数,从图2所示的示例性存储器设备的架构可以更好地理解这一点。存储器设备包括非易失性存储器单元10的阵列50,该阵列可以被分隔成两个单独的平面(平面A 52a和平面B 52b)。存储器单元10可以是图1中所示的类型的存储器单元,可以形成在单个芯片上,可以在半导体衬底12中按多行和多列布置。与非易失性存储器单元阵列相邻的是地址解码器(例如,XDEC 54)、源极线驱动器(例如,SLDRV 56)、列解码器(例如,YMUX 58)、高压行解码器(例如,HVDEC 60)和位线控制器(BLINHCTL 62),它们用于在所选择的存储器单元的读取、编程和擦除操作期间对地址进行解码并且向各种存储器单元栅极和区提供各种电压。列解码器58包括读出放大器,该读出放大器包含用于在读取操作期间测量位线上的电流的电路。控制器66(包含控制电路)控制各种设备元件以实施目标存储器单元上的每个操作(编程、擦除、读取)。电荷泵CHRGPMP 64提供用于在控制器66的控制下读取、编程和擦除存储器单元的各种电压。控制器66被配置成操作存储器设备以对存储器单元10进行编程、擦除和读取。
正是控制器66指定了在正常用户操作期间可用的存储器单元的最小编程状态和最大编程状态。最小编程状态是存储器单元中的每一个存储器单元在正常用户操作期间在控制器66的控制下可被编程到的编程状态(即,最多擦除状态),对于该编程状态,最低数量的电子位于浮栅20上并且存储器单元在正常读取操作期间产生最高(最大)源极/漏极电流。最大编程状态是存储器单元中的每一个存储器单元在正常用户操作期间在控制器66的控制下可以被编程到的编程状态,对于该编程状态,最高数量的电子位于浮栅20上并且存储器单元在正常读取操作期间产生最低(最小)源极/漏极电流。
在最终的设备高温烘烤操作期间使用的中间编程状态优选地是这样一种编程状态,其中在读取操作期间产生读取电流,该读取电流是由控制器66指定的定义的编程操作范围的最大编程状态和最小编程状态分别的最小读取电流和最大读取电流之间的对数实际中点。可以通过阈值电压Vt或读取电流作为参数来确定中间编程状态。存储器单元是MOSFET晶体管,并且因此Vt和读取电流经由基本晶体管方程直接相关,因此,可以根据读取电流或Vt来确定存储器单元的操作范围。表明Vt和读取电流之间的关系的存储器单元电流-电压(I-V)特性的示例如图3所示,其中两条曲线分别表示存储器单元的最小编程状态和最大编程状态的I-V特性。在该非限制性示例中,在控制栅极上施加等于或高于阈值电压的电压将导致读取操作期间的读取电流(在源极区和漏极区之间)为1μA或更大,在该示例中,这被认为是指示在源极区/漏极区之间形成导电路径的电流量。图3中电流-电压(I-V)曲线在1μA处的向右拐点指示这是在控制栅极上的电压达到阈值电压Vt时实现的读取电流。
在图3的示例中,右侧曲线(曲线A)是示例性存储器单元在其模拟操作范围的最大编程状态下的I-V曲线,并且左侧曲线(曲线B)是示例性存储器单元在其模拟操作范围的最小编程状态下的I-V曲线。该存储器单元的控制器被配置成使用1.2V的控制栅极上的读取电压,这意味着该存储器单元在子阈值状态下被读取(即,使用子阈值电流来检测存储器单元的编程状态)。考虑到最大编程状态和最小编程状态的两条I-V曲线,控制器操作的该存储器单元的读取电流的操作范围介于100nA和100pA之间。编程状态的范围对应于约0.3V的Vt范围(介于约1.3V和约1.6V之间)。经编程的存储器单元的读取不稳定性可以用Vt变化或读取操作期间的读取电流变化来表示。如下所述,Vt或读取电流可用作量化读取电流波动降低的解决方案的参数。因此,中间编程状态被定义为关于在正常操作期间可实现的最小编程状态和最大编程状态的Vt基本上对应于其一半的编程状态,并且对应于最大编程状态和最小编程状态分别的最小读取电流和最大读取电流之间的对数实际中点。
实现这种读取稳定技术分为三个主要阶段,如图4所示。首先(步骤1),包括存储器单元10和它们的控制器66的存储器设备被测试到它们是可操作的并且不需要进一步的高温烘烤操作来完成设备的测试。其次(步骤2),所有存储器单元10被编程为基本上中间编程状态。最后(步骤3),包括被编程为中间编程状态的所有存储器单元10的存储器设备经历最终的高温烘烤过程。图5示出了上文关于图3描述的被编程为基本上中间编程状态的存储器单元的存储器单元I-V特性曲线(曲线C)的示例。其阈值电压Vt为约1.48V,基本上处于最小编程状态和最大编程状态分别的Vt_min和Vt_max之间的中点(即,中点阈值电压基本上在Vt_min和Vt_max的中间)。类似地,在读取操作期间将1.2V的读取电压施加在控制栅极上时,存储器单元的读取电流为约3nA,这是最小编程状态和最大编程状态分别的100nA和100pA之间的对数实际中点(即,中点读取电流在对数标度上基本上在100nA和100pA之间)。
高烘烤温度是超过存储器设备在正常使用期间所承受的最高操作温度的升高的温度。例如,如果产品在用户条件下的最高操作温度规范为150℃,则最终的高温烘烤过程可以包括在175℃下烘烤存储器设备24小时。最小烘烤时间取决于烘烤温度,并且在较高温度下可能较短。优选地,对于图1所示的存储器单元,在175℃的烘烤温度下烘烤时间可长达24小时。一般来讲,烘烤时间越长,对降低读取不稳定性的改善效果越好。作为实际示例,如果所选择的封装允许此类高温处理,则可以将组装好的零件设置为在175℃下烘烤一天。一旦存储器设备、封装和最终测试和烘烤完成,存储器设备就将在用户条件下以更高的读取稳定性操作。
应当理解,本发明不限于上述的和在本文中示出的实施方案,而是涵盖在任何权利要求书的范围内的任何和所有变型形式。举例来说,本文中对本发明的提及并不意在限制任何权利要求书或权利要求术语的范围,而是仅参考可由这些权利要求中的一项或多项权利要求涵盖的一个或多个特征。上文所述的材料、工艺和数值的示例仅为示例性的,而不应视为限制权利要求书。另外,如从权利要求和说明书中显而易见的,除非另有说明,否则并非所有方法步骤都可能需要按所示或所要求的具体顺序执行。

Claims (6)

1.一种提高存储器设备稳定性的方法,所述存储器设备包括多个非易失性存储器单元和控制器,所述控制器被配置成在由最小编程状态和最大编程状态界定的编程状态范围内对所述存储器单元中的每一个存储器单元进行编程,所述方法包括:
测试所述存储器单元以确认所述存储器单元是可操作的;
将所述存储器单元中的每一个存储器单元编程为中间编程状态;以及
当所述存储器单元被编程为所述中间编程状态时,在高温下烘烤所述存储器设备;
其中,对于所述存储器单元中的每一个存储器单元:
当在所述最小编程状态下编程时,所述存储器单元具有第一阈值电压,
当在所述最大编程状态下编程时,所述存储器单元具有第二阈值电压,并且
当在所述中间编程状态下编程时,所述存储器单元具有第三阈值电压,
其中所述第三阈值电压基本上处于所述第一阈值电压与所述第二阈值电压之间的中点。
2.根据权利要求1所述的方法,其中所述存储器单元中的每一个存储器单元包括:
间隔开的源极区和漏极区,所述间隔开的源极区和漏极区形成于半导体衬底中,其中所述衬底的沟道区在所述源极区和所述漏极区之间延伸,
浮栅,所述浮栅竖直地设置在所述沟道区的第一部分上方并且与所述第一部分绝缘,
选择栅极,所述选择栅极竖直地设置在所述沟道区的第二部分上方并且与所述第二部分绝缘,以及
控制栅极,所述控制栅极竖直地设置在所述浮栅上方并且与其绝缘。
3.根据权利要求2所述的方法,其中所述存储器单元中的每一个存储器单元还包括:
设置在所述源极区上方并且与其绝缘的擦除栅。
4.一种提高存储器设备稳定性的方法,所述存储器设备包括多个非易失性存储器单元和控制器,每个非易失性存储器单元至少包括设置在半导体衬底的沟道区上方并且与其绝缘的浮栅和设置在所述浮栅上方并且与其绝缘的控制栅极,所述控制器被配置成在由最小编程状态和最大编程状态界定的编程状态范围内对所述存储器单元中的每一个存储器单元进行编程,并且使用施加到所述控制栅极的读取电压来读取所述存储器单元中的每一个存储器单元,所述方法包括:
测试所述存储器单元以确认所述存储器单元是可操作的;
将所述存储器单元中的每一个存储器单元编程为中间编程状态;以及
当所述存储器单元被编程为所述中间编程状态时,在高温下烘烤所述存储器设备;
其中,对于所述存储器单元中的每一个存储器单元:
当在所述最小编程状态下编程时,所述存储器单元使用施加到所述控制栅极的所述读取电压在读取操作期间产生第一读取电流,
当在所述最大编程状态下编程时,所述存储器单元使用施加到所述控制栅极的所述读取电压在读取操作期间产生第二读取电流,并且
当在所述中间编程状态下编程时,所述存储器单元使用施加到所述控制栅极的所述读取电压在读取操作期间产生第三读取电流,
其中所述第三读取电流基本上处于所述第一读取电流和所述第二读取电流之间的对数中点。
5.根据权利要求4所述的方法,其中所述存储器单元中的每一个存储器单元包括:
间隔开的源极区和漏极区,所述间隔开的源极区和漏极区形成于半导体衬底中,其中所述衬底的所述沟道区在所述源极区和所述漏极区之间延伸,
浮栅,所述浮栅竖直地设置在所述沟道区的第一部分上方并且与所述第一部分绝缘,
选择栅极,所述选择栅极竖直地设置在所述沟道区的第二部分上方并且与所述第二部分绝缘。
6.根据权利要求5所述的方法,其中所述存储器单元中的每一个存储器单元还包括:
设置在所述源极区上方并且与其绝缘的擦除栅。
CN202080060960.0A 2019-09-03 2020-03-11 在预先确定的编程状态下使用最终烘烤来提高模拟非易失性存储器中读取电流稳定性的方法 Pending CN114287037A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962895458P 2019-09-03 2019-09-03
US62/895,458 2019-09-03
US16/803,401 2020-02-27
US16/803,401 US11017866B2 (en) 2019-09-03 2020-02-27 Method of improving read current stability in analog non-volatile memory using final bake in predetermined program state
PCT/US2020/022191 WO2021045799A1 (en) 2019-09-03 2020-03-11 Method of improving read current stability in analog non-volatile memory using final bake in predetermined program state

Publications (1)

Publication Number Publication Date
CN114287037A true CN114287037A (zh) 2022-04-05

Family

ID=74679154

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202080060960.0A Pending CN114287037A (zh) 2019-09-03 2020-03-11 在预先确定的编程状态下使用最终烘烤来提高模拟非易失性存储器中读取电流稳定性的方法
CN202080060971.9A Pending CN114303198A (zh) 2019-09-03 2020-08-25 通过筛选存储器单元改进模拟非易失性存储器中的读取电流稳定性的方法
CN202080061328.8A Active CN114303199B (zh) 2019-09-03 2020-08-25 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202080060971.9A Pending CN114303198A (zh) 2019-09-03 2020-08-25 通过筛选存储器单元改进模拟非易失性存储器中的读取电流稳定性的方法
CN202080061328.8A Active CN114303199B (zh) 2019-09-03 2020-08-25 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法

Country Status (7)

Country Link
US (3) US11017866B2 (zh)
EP (3) EP4026127B1 (zh)
JP (3) JP7238207B2 (zh)
KR (3) KR102641648B1 (zh)
CN (3) CN114287037A (zh)
TW (3) TWI721873B (zh)
WO (3) WO2021045799A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4348651A1 (en) * 2021-06-02 2024-04-10 Silicon Storage Technology Inc. Method of improving read current stability in analog non-volatile memory by post-program tuning for memory cells exhibiting random telegraph noise
WO2022260692A1 (en) * 2021-06-08 2022-12-15 Silicon Storage Technology, Inc. Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells
US11769558B2 (en) 2021-06-08 2023-09-26 Silicon Storage Technology, Inc. Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268659A1 (en) * 2007-04-27 2008-10-30 Macronix International Co., Ltd. High temperature methods for enhancing retention characteristics of memory devices
CN102077292A (zh) * 2008-06-27 2011-05-25 桑迪士克3D公司 用于非易失性存储器的具有电流限制的反向设置
CN103814409A (zh) * 2011-07-28 2014-05-21 桑迪士克科技股份有限公司 使用以二进制格式和多状态格式写入的数据的比较的非易失性存储器中的写入后读取
CN103988281A (zh) * 2011-11-09 2014-08-13 硅存储技术公司 一种测试具有浮动栅极的非易失性存储器单元的数据保持的方法
US20140301142A1 (en) * 2013-04-03 2014-10-09 Western Digital Technologies, Inc. Systems and methods of write precompensation to extend life of a solid-state memory
US20150262970A1 (en) * 2014-03-13 2015-09-17 Kabushiki Kaisha Toshiba Semiconductor memory device manufacturing method and semiconductor memory device
US20160055910A1 (en) * 2014-08-20 2016-02-25 Sandisk Technologies Inc. Storage Module and Method for Using Healing Effects of a Quarantine Process
US20160172044A1 (en) * 2014-12-10 2016-06-16 Sandisk Technologies Inc. Method To Recover Cycling Damage And Improve Long Term Data Retention
CN106205698A (zh) * 2015-04-17 2016-12-07 旺宏电子股份有限公司 改良非易失性存储器的数据保留与读取性能的方法与装置
CN110140174A (zh) * 2019-03-26 2019-08-16 长江存储科技有限责任公司 用于通过施加多个位线偏置电压在非易失性存储器器件中编程的方法

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856366A (ja) * 1981-09-30 1983-04-04 Hitachi Ltd 半導体記憶装置のスクリ−ニング方法
JPS6417300A (en) * 1987-07-09 1989-01-20 Nippon Electric Ic Microcomput Semiconductor storage device
US5029130A (en) 1990-01-22 1991-07-02 Silicon Storage Technology, Inc. Single transistor non-valatile electrically alterable semiconductor memory device
US5583810A (en) 1991-01-31 1996-12-10 Interuniversitair Micro-Elektronica Centrum Vzw Method for programming a semiconductor memory device
JPH07201191A (ja) * 1993-12-28 1995-08-04 Toshiba Corp 不揮発性半導体メモリ装置
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
JP3613072B2 (ja) * 1999-06-02 2005-01-26 株式会社デンソー 不揮発性半導体メモリの電荷保持寿命評価方法
US6349062B1 (en) 2000-02-29 2002-02-19 Advanced Micro Devices, Inc. Selective erasure of a non-volatile memory cell of a flash memory device
US6618290B1 (en) 2000-06-23 2003-09-09 Advanced Micro Devices, Inc. Method of programming a non-volatile memory cell using a baking process
US6727545B2 (en) 2000-09-20 2004-04-27 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling
JP2002100192A (ja) * 2000-09-22 2002-04-05 Toshiba Corp 不揮発性半導体メモリ
JP2002150783A (ja) 2000-11-10 2002-05-24 Toshiba Corp 半導体記憶装置およびそのメモリセルトランジスタのしきい値の変化を判別する方法
US6815231B2 (en) * 2001-06-11 2004-11-09 Hitachi, Ltd. Method of testing and manufacturing nonvolatile semiconductor memory
KR20030001607A (ko) * 2001-06-25 2003-01-08 주식회사 하이닉스반도체 플래쉬 메모리 소자의 테스트 방법
CN1220986C (zh) * 2001-08-17 2005-09-28 旺宏电子股份有限公司 非易失性内存的可靠性测试方法与电路
JP4034971B2 (ja) 2002-01-21 2008-01-16 富士通株式会社 メモリコントローラおよびメモリシステム装置
US6747310B2 (en) 2002-10-07 2004-06-08 Actrans System Inc. Flash memory cells with separated self-aligned select and erase gates, and process of fabrication
JP3721159B2 (ja) 2002-11-28 2005-11-30 株式会社東芝 不揮発性半導体記憶装置
US7324374B2 (en) 2003-06-20 2008-01-29 Spansion Llc Memory with a core-based virtual ground and dynamic reference sensing scheme
TWI273600B (en) 2003-07-21 2007-02-11 Macronix Int Co Ltd Integrated circuit and manufacturing method thereof, memory cell and manufacturing method thereof, method for programming memory cell and method for programming memory array multiple times
EP1503384A3 (en) 2003-07-21 2007-07-18 Macronix International Co., Ltd. Method of programming memory
US7177199B2 (en) 2003-10-20 2007-02-13 Sandisk Corporation Behavior based programming of non-volatile memory
JP4349886B2 (ja) 2003-11-07 2009-10-21 三洋電機株式会社 不揮発性メモリ装置
JP4322686B2 (ja) 2004-01-07 2009-09-02 株式会社東芝 不揮発性半導体記憶装置
US7209389B2 (en) 2004-02-03 2007-04-24 Macronix International Co., Ltd. Trap read only non-volatile memory (TROM)
US20050262970A1 (en) 2004-05-27 2005-12-01 Chih-Ching Hsien Reinforcement teeth for ratchet tools
US7315056B2 (en) 2004-06-07 2008-01-01 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with program/erase and select gates
US7251158B2 (en) 2004-06-10 2007-07-31 Spansion Llc Erase algorithm for multi-level bit flash memory
US7325177B2 (en) 2004-11-17 2008-01-29 Silicon Storage Technology, Inc. Test circuit and method for multilevel cell flash memory
TWI297154B (en) * 2005-01-03 2008-05-21 Macronix Int Co Ltd Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
JP5130646B2 (ja) 2005-06-06 2013-01-30 ソニー株式会社 記憶装置
JP4551284B2 (ja) * 2005-06-22 2010-09-22 シャープ株式会社 不揮発性半導体記憶装置
JP4764723B2 (ja) 2006-01-10 2011-09-07 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US7508693B2 (en) 2006-03-24 2009-03-24 Macronix International Co., Ltd. One-time-programmable (OTP) memory device and method for testing the same
KR100816162B1 (ko) 2007-01-23 2008-03-21 주식회사 하이닉스반도체 낸드 플래시 메모리 장치 및 셀 특성 개선 방법
CN101779249B (zh) 2007-06-14 2013-03-27 桑迪士克科技股份有限公司 半导体存储器中的可编程芯片使能和芯片地址
US20090039410A1 (en) 2007-08-06 2009-02-12 Xian Liu Split Gate Non-Volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing
JP2010176750A (ja) * 2009-01-29 2010-08-12 Oki Semiconductor Co Ltd 不揮発性半導体メモリ及びそのリーク不良検出方法
US20100259979A1 (en) * 2009-04-10 2010-10-14 James Yingbo Jia Self Limiting Method For Programming A Non-volatile Memory Cell To One Of A Plurality Of MLC Levels
US10229746B2 (en) * 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
JP5856366B2 (ja) 2010-09-30 2016-02-09 フジモリ産業株式会社 貼付体用セパレータ及びこれを用いた貼付体
JP5702573B2 (ja) * 2010-10-20 2015-04-15 スパンション エルエルシー 不揮発性半導体記憶装置およびそのデータ書き込み方法
US8842469B2 (en) 2010-11-09 2014-09-23 Freescale Semiconductor, Inc. Method for programming a multi-state non-volatile memory (NVM)
KR101190742B1 (ko) * 2010-12-06 2012-10-12 에스케이하이닉스 주식회사 메모리의 콘트롤러 및 이를 포함하는 스토리지 시스템, 메모리의 수명 측정 방법
US8427877B2 (en) * 2011-02-11 2013-04-23 Freescale Semiconductor, Inc. Digital method to obtain the I-V curves of NVM bitcells
US8711636B2 (en) 2011-05-13 2014-04-29 Silicon Storage Technology, Inc. Method of operating a split gate flash memory cell with coupling gate
US8726104B2 (en) 2011-07-28 2014-05-13 Sandisk Technologies Inc. Non-volatile memory and method with accelerated post-write read using combined verification of multiple pages
KR101635695B1 (ko) * 2012-01-24 2016-07-01 애플 인크. 아날로그 메모리 셀들을 위한 적응적 프로그래밍 및 소거 기법들
WO2013112332A1 (en) * 2012-01-24 2013-08-01 Apple Inc. Enhanced programming and erasure schemes for analog memory cells
US9195586B2 (en) 2012-02-23 2015-11-24 Hgst Technologies Santa Ana, Inc. Determining bias information for offsetting operating variations in memory cells based on wordline address
US8953398B2 (en) 2012-06-19 2015-02-10 Sandisk Technologies Inc. Block level grading for reliability and yield improvement
US9299459B2 (en) 2012-09-07 2016-03-29 Macronix International Co., Ltd. Method and apparatus of measuring error correction data for memory
US9123401B2 (en) 2012-10-15 2015-09-01 Silicon Storage Technology, Inc. Non-volatile memory array and method of using same for fractional word programming
KR102210961B1 (ko) 2013-06-12 2021-02-03 삼성전자주식회사 불휘발성 메모리 장치를 포함하는 메모리 시스템 및 그것의 동적 접근 방법
US9202815B1 (en) * 2014-06-20 2015-12-01 Infineon Technologies Ag Method for processing a carrier, a carrier, and a split gate field effect transistor structure
US9569120B2 (en) 2014-08-04 2017-02-14 Nvmdurance Limited Adaptive flash tuning
CN105448346B (zh) * 2014-08-22 2018-09-25 中芯国际集成电路制造(上海)有限公司 存储单元可靠性的测试方法
US9830219B2 (en) 2014-09-15 2017-11-28 Western Digital Technologies, Inc. Encoding scheme for 3D vertical flash memory
US9990990B2 (en) * 2014-11-06 2018-06-05 Micron Technology, Inc. Apparatuses and methods for accessing variable resistance memory device
US10503431B2 (en) 2014-12-22 2019-12-10 Sandisk Technologies Llc Trade-off adjustments of memory parameters based on memory wear or data retention
US9842662B2 (en) 2015-02-16 2017-12-12 Texas Instruments Incorporated Screening for data retention loss in ferroelectric memories
US9899102B2 (en) 2015-03-31 2018-02-20 SK Hynix Inc. Semiconductor device and operating method thereof
TWI594239B (zh) 2015-05-27 2017-08-01 旺宏電子股份有限公司 改良非揮發性記憶體裝置之資料保留與讀取性能之方法與裝置
JP6417300B2 (ja) 2015-09-02 2018-11-07 株式会社中電工 指定範囲監視システム
US9558846B1 (en) 2015-11-04 2017-01-31 Texas Instruments Incorporated Feedback validation of arbitrary non-volatile memory data
TWI571882B (zh) * 2016-02-19 2017-02-21 群聯電子股份有限公司 平均磨損方法、記憶體控制電路單元及記憶體儲存裝置
EP3459114B1 (en) * 2016-05-17 2022-01-26 Silicon Storage Technology, Inc. Array of three-gate flash memory cells with individual memory cell read, program and erase
JP6716022B2 (ja) * 2016-05-17 2020-07-01 シリコン ストーリッジ テクノロージー インコーポレイテッドSilicon Storage Technology, Inc. 個々のメモリセルが読み出し、プログラミング、及び消去される3ゲートフラッシュメモリセルアレイ
KR102097568B1 (ko) 2016-06-06 2020-04-06 도레이 카부시키가이샤 메모리 어레이, 메모리 어레이의 제조 방법, 메모리 어레이 시트, 메모리 어레이 시트의 제조 방법 및 무선 통신 장치
US10008277B2 (en) * 2016-09-12 2018-06-26 Sandisk Technologies Llc Block health monitoring using threshold voltage of dummy memory cells
US10134479B2 (en) 2017-04-21 2018-11-20 Sandisk Technologies Llc Non-volatile memory with reduced program speed variation
JP6414297B1 (ja) * 2017-08-18 2018-10-31 富士通株式会社 メモリコントローラ、情報処理システム、及び不揮発性メモリの不良判断方法
US10515008B2 (en) 2017-10-25 2019-12-24 Western Digital Technologies, Inc. Performance based memory block usage
US10515694B2 (en) * 2017-11-03 2019-12-24 Silicon Storage Technology, Inc. System and method for storing multibit data in non-volatile memory
US10354729B1 (en) * 2017-12-28 2019-07-16 Micron Technology, Inc. Polarity-conditioned memory cell write operations
US10838652B2 (en) 2018-08-24 2020-11-17 Silicon Storage Technology, Inc. Programming of memory cell having gate capacitively coupled to floating gate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268659A1 (en) * 2007-04-27 2008-10-30 Macronix International Co., Ltd. High temperature methods for enhancing retention characteristics of memory devices
CN102077292A (zh) * 2008-06-27 2011-05-25 桑迪士克3D公司 用于非易失性存储器的具有电流限制的反向设置
CN103814409A (zh) * 2011-07-28 2014-05-21 桑迪士克科技股份有限公司 使用以二进制格式和多状态格式写入的数据的比较的非易失性存储器中的写入后读取
CN103988281A (zh) * 2011-11-09 2014-08-13 硅存储技术公司 一种测试具有浮动栅极的非易失性存储器单元的数据保持的方法
US20140301142A1 (en) * 2013-04-03 2014-10-09 Western Digital Technologies, Inc. Systems and methods of write precompensation to extend life of a solid-state memory
US20150262970A1 (en) * 2014-03-13 2015-09-17 Kabushiki Kaisha Toshiba Semiconductor memory device manufacturing method and semiconductor memory device
US20160055910A1 (en) * 2014-08-20 2016-02-25 Sandisk Technologies Inc. Storage Module and Method for Using Healing Effects of a Quarantine Process
US20160172044A1 (en) * 2014-12-10 2016-06-16 Sandisk Technologies Inc. Method To Recover Cycling Damage And Improve Long Term Data Retention
CN106205698A (zh) * 2015-04-17 2016-12-07 旺宏电子股份有限公司 改良非易失性存储器的数据保留与读取性能的方法与装置
CN110140174A (zh) * 2019-03-26 2019-08-16 长江存储科技有限责任公司 用于通过施加多个位线偏置电压在非易失性存储器器件中编程的方法

Also Published As

Publication number Publication date
US11017866B2 (en) 2021-05-25
US20210065837A1 (en) 2021-03-04
EP4026129A1 (en) 2022-07-13
KR20220024934A (ko) 2022-03-03
EP4026127B1 (en) 2024-01-24
KR102641648B1 (ko) 2024-02-28
TW202119422A (zh) 2021-05-16
JP7238207B2 (ja) 2023-03-13
JP2022546088A (ja) 2022-11-02
US10991433B2 (en) 2021-04-27
JP7121220B1 (ja) 2022-08-17
EP4026126A1 (en) 2022-07-13
JP2022536213A (ja) 2022-08-12
EP4026127A1 (en) 2022-07-13
CN114303198A (zh) 2022-04-08
KR20220019820A (ko) 2022-02-17
EP4026126B1 (en) 2023-07-26
TW202127458A (zh) 2021-07-16
US11205490B2 (en) 2021-12-21
TWI766357B (zh) 2022-06-01
TWI721873B (zh) 2021-03-11
TW202111694A (zh) 2021-03-16
US20210065817A1 (en) 2021-03-04
KR102641647B1 (ko) 2024-02-28
US20210065811A1 (en) 2021-03-04
CN114303199B (zh) 2022-12-27
WO2021045799A1 (en) 2021-03-11
WO2021045934A1 (en) 2021-03-11
TWI750793B (zh) 2021-12-21
KR20220024937A (ko) 2022-03-03
WO2021045933A1 (en) 2021-03-11
JP2022545740A (ja) 2022-10-28
CN114303199A (zh) 2022-04-08
JP7236592B2 (ja) 2023-03-09
KR102668445B1 (ko) 2024-05-22
EP4026129B1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
CN114303199B (zh) 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法
JP7474876B2 (ja) ランダムテレグラフノイズを呈するメモリセルのプログラム調整による、アナログ不揮発性メモリにおける読み出し電流の安定性を改善する方法
US11769558B2 (en) Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells
US20220392543A1 (en) Method of improving read current stability in analog non-volatile memory by post-program tuning for memory cells exhibiting random telegraph noise
CN117321689A (zh) 通过对表现出随机电报噪声的存储器单元进行编程后调谐来提高模拟非易失性存储器中的读取电流稳定性的方法
WO2022260692A1 (en) Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells
KR20230172027A (ko) 랜덤 텔레그래프 잡음을 나타내는 메모리 셀들에 대한 프로그래밍-후 튜닝에 의한 아날로그 비휘발성 메모리에서 판독 전류 안정성을 개선하는 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination