CN105340176A - 提高射频电路的线性的信号处理装置 - Google Patents

提高射频电路的线性的信号处理装置 Download PDF

Info

Publication number
CN105340176A
CN105340176A CN201480036976.2A CN201480036976A CN105340176A CN 105340176 A CN105340176 A CN 105340176A CN 201480036976 A CN201480036976 A CN 201480036976A CN 105340176 A CN105340176 A CN 105340176A
Authority
CN
China
Prior art keywords
signal
impedance
capacitor
inductor
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480036976.2A
Other languages
English (en)
Inventor
D.V.格普塔
赖志国
M.S.穆萨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
Newlans Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Newlans Inc filed Critical Newlans Inc
Publication of CN105340176A publication Critical patent/CN105340176A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/38Multiple capacitors, e.g. ganged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • H01L27/0811MIS diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0138Electrical filters or coupling circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/0026Multilayer LC-filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1291Current or voltage controlled filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/03Type of tuning
    • H03H2210/036Stepwise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2240/00Indexing scheme relating to filter banks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components
    • H03H5/003One-port networks comprising only passive electrical elements as network components comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/48Networks for connecting several sources or loads, working on the same frequency or frequency band, to a common load or source

Abstract

一种信号处理器,以小尺寸提供高线性,可跨越广泛的工作频率和带宽应用,同时还适合于优选的集成电路(IC)和印刷电路板技术。在一种实现方式中,信号处理装置(100)包括:输入阻抗变换器(102),用于接收输入信号并且匹配内部装置阻抗;分离器(104),用于提供N个分离信号;多个信号处理电路(110;112-1、…、112-m),用于处理N个分离信号;组合器(120),用于将N个分离信号组合成组合信号;以及输出阻抗变换器(122),用于接收组合信号并且用于将内部装置阻抗与装置的输出阻抗匹配。该装置可以提供滤波、双工和其他射频信号处理功能。可调谐的双工器可以使用具有依赖频率的阻抗变换器的矢量电感器和可调谐的电容器阵列来实现。

Description

提高射频电路的线性的信号处理装置
技术领域
本专利申请涉及射频电路,并且具体地涉及提供线性、高品质因子和紧凑大小的信号处理装置和方法。
背景技术
对于具有提高的性能和另外的特征的越来越小的电子设备,存在日益增长的需求。智能电话、平板、膝上型计算机以及类似的计算设备现在总是被期望使用诸如3G、4G、长期演进(LTE)和其他蜂窝、无线保真(Wi-Fi)、近场通信(NFC)、全球定位系统(GPS)、蓝牙以及其他这样的很多不同类型的无线网络来通信。实际上,为了向LTE网络提供甚至仅仅全连通性,必须容纳多于40个潜在的射频带。作为容纳所得到的工作频率和宽带宽的范围的需求的结果,存在许多模拟和混合信号设计挑战。
另外,“薄者流行(thinisin)”的需求继续减小可用于提供该连通性所需要的天线和其他射频组件的空间。
深亚微米互补金属氧化物半导体(DeepSub-MicronComplimentaryMetalOxideSemiconductor,DSM-CMOS)集成电路(IC)技术越来越多地被用于实现在这些系统中所需要的混合信号前端。DSM-CMOS提供所需的高密度电路集成,同时减小可用于任何特定电路的工作电压。虽然这提供高频工作和减小的电路面积的双重优点,但是作为更低的电压电平的结果,损害了处理较高功率的需求的能力。因此,混合信号前端保持至少一个区域,其中诸如砷化镓(GaAs)这样的替代的IC技术仍然是有吸引力的选项。
来自数字设计领域的考虑包括朝向使用在基板自身内固有地提供电容的基板的重要设计趋势。这些产品(诸如FaradFlexTM,其可以从纽约的HoosickFalls的OakMitsuiTechnologies获得)基于超薄层压、低阻抗、低电感和高电容基板。这些基板的另一个重要的优点是,它们减少对于离散的旁路电容器的需求,这些离散的旁路电容器在其他情况下可能消耗物理电路板空间的一半或更多。嵌入式电容电路板技术正逐渐成为高频电路的越来越必要的组件。而超薄形状因子还意味着,它们通过被认为最适合于低电压、低功率应用。
许多年来,还已知变换射频电路中的阻抗。被称为Guenella变换器的电路是一种类型的传输线变换器。该变换器的目的是,将承载输入信号的传输线的诸如50欧姆这样的特性阻抗与设备内部的电路的不同的输入阻抗匹配。阻抗匹配对于以最小的反射来提供最大的信号功率传送是必要的。
发明内容
目前,诸如滤波器和双工器这样的射频信号处理电路应当表现出相对高的三阶截取点(Third-orderInterceptPoint,IP3),以便在存在强发射信号时处理弱接收信号,二者对于接收器和干扰传输都是所关心的。
对于射频电路工作在许多不同频带(其每个具有不同的所需带宽)上,存在日益增长的需求。最常见的方法是对每个所期望的工作频带提供诸如滤波器/双工器这样的单独的信号处理电路。然后将单独的滤波器/双工器电路与由选择逻辑控制的开关互连,选择逻辑根据所期望的功能来启用对应的滤波器/双工器中的一个或多个。问题是,这些滤波器/双工器网络体积大、昂贵并且不可容易地重构。
上述以及其他相关问题激发了本发明,一种使得能够实现具有以下属性的敏捷的信号处理电路(诸如滤波器/双工器)的信号处理装置:高的IP3,以便不牺牲在其他情况下将通过使用表面声波(SurfaceAcousticWave,SAW)或薄膜体声波谐振器(ThinFilmBulkAcousticBarResonator,FBAR)技术来获得的所期望的线性性能,以及紧凑大小和可编程性。
关键的革新在于允许高线性同时保持底层信号处理电路的小尺寸和可编程性的信号处理的方法。这里描述的信号处理方法在需要处理跨越广泛的工作频率和带宽的高功率信号同时仍然理想地适合于当前优选的IC技术(诸如DSM-CMOS)和当前优选的嵌入式电容、极薄电路板基板(诸如FaradFlex)的应用中是有利的。
在一种具体的实现方式中,信号处理装置包括:输入阻抗变换器,用于接收输入信号并且将装置的输入阻抗与内部装置阻抗相匹配;分离器,用于将第一阻抗变换器的输出分离成N个分离信号;多个信号处理电路,用于处理N个分离信号;组合器,用于将N个分离信号组合成组合信号;以及输出阻抗变换器,用于接收组合信号并且用于将内部装置阻抗与装置的输出阻抗相匹配。
信号处理电路可以包括滤波器、双工器或者其他射频电路。分离器信号处理电路和组合器可以典型地具有等同于内部装置阻抗的各自的输入和输出阻抗。
在一种布置中,信号处理电路是包括至少一个矢量电感器的谐振器。矢量电感器可以根据多个相互的、紧密耦合的、分层的、电感结构来构造。在其他的布置中,谐振器还包括电容器的阵列;电容器阵列可以是可调谐的,以提供可调谐的滤波器。
在电容器阵列是可调谐的实施例中,在输入和输出处还提供可调谐的、依赖频率(frequencydependent)的阻抗匹配网络可以是优选的。
可调谐的谐振器和/或滤波器的另一种实现方式使用诸如FaradFlex基板这样的适合的印刷电路板基板来实现矢量电感器。然后将作为集成电路芯片实现的一个或多个电容器阵列安装在PC板上。PC板也提供电感器与电容器之间的互连,以实现谐振器和/或滤波器。
附图说明
下面的详细描述参考附图,附图中:
图1是信号处理装置的示意图;
图2A是电感器元件的等距视图;
图2B是图2A的电感器元件的横截面视图;
图3是由堆叠的电感器元件形成的矢量电感器的横截面视图;
图4A和4B示出以1千兆赫(GHz)的16和32层的堆叠层电感器的电感和品质因子;
图5A是反并联电容器元件;
图5B示出图5A的电容器元件的优选工作电压范围;
图6是示出每个均被布置成可编程的阶梯的电容器元件的四个阵列的示意图;
图7A和7B是图6的电容器阵列中的一个的电容和品质因子;
图8A至8D例示与可调谐的滤波器一起使用的依赖频率的匹配网络;
图9、10和11是可调谐的双工器的模拟频率响应;
图12是示例双频带双工器的高级框图;
图13是双频带双工器的更详细的图;
图14示出优选的封装布置;以及
图15和16示出双工器的不同护罩高度的低频带和高频带插入损耗。
具体实施方式
图1是根据在本文中要求保护的本发明的一个优选实施例的信号处理装置100的一个实施例的电路图。信号处理设备100包括输入阻抗变换器102、分离器变换器104、信号处理电路110、组合器变换器120以及输出阻抗变换器122。在图1的示例电路中,信号处理电路110是包含一组M个矢量谐振器112-1、…、112-M的滤波器;然而,应当理解,也可以在装置100中有利地使用诸如带通滤波器、带阻滤波器、双工器、调制器、增频变频器和降频变频器等其他类型的信号处理电路110。
可能具有50欧姆的输入阻抗的输入信号Pin首先被提供给输入阻抗变换器102的输入端子。通过阻抗匹配变换器102对输入信号(其可以例如是射频(RF)发射或接收信号)进行阻抗变换,并且因此,阻抗从50欧姆降至RL欧姆,其中RL小于50。这导致的的电压降。
虽然没有在图1中详细示出,但是在优选的布置中,来自变换器102的输出信号是差模信号(differentialmodesignal),其然后被转递给装置100的剩余元件并且由其处理。
来自阻抗变换器102的信号输出然后由1:N功率分离器104分离成N个单独的轨道。这进一步以1/N的因子来降低每个单独的输出轨道的功率电平(使得每个轨道承载功率Pin/N的信号),并且还以的因子来降低每个单独的输出轨道的电压电平。
功率分离器104也进一步按照在图1中的分离器104的输出处的标记那样将阻抗R变换成RL/N。
对应数量的N个信号处理电路110然后处理所得到的信号。在示出的实施例中,这些N个电路均被实现为一组M个矢量谐振器。示例的一组矢量谐振器112-1、…、112-M对N个信号轨道中的所选择的一个进行滤波;换句话说,可以存在应用于每个信号路径的一系列的M个矢量谐振器。
在矢量谐振器112(或者由信号处理电路110实现的其他处理)之后,所得到的N个信号然后由N:1功率组合器变换器120重新组合。组合器变换器120然后将N个单独的轨道(每个具有Pin/N的功率和RL/N的输入阻抗)组合回到RL欧姆的信号Pin
最后的输出阻抗变换器122在提供输出信号Pout的端子处将电路输出阻抗返回到50欧姆。
可以示出高效的阻抗变换网络102、122以及分离器/组合器104、120的总体效果,相比于输入信号Pin将代替地直接施加给信号处理电路110的情况,其提供
12 * log 10 50 N R L
的线性的提高。因此,在轨道数量N=16并且RL=1欧姆的示例情况下,线性提高大约为17dB。
为了维持信号处理装置100中的紧凑大小和可编程性,某些组件设计对于将提供滤波器和/或双工器信号处理功能的实施例是优选的。在图1所例示的实施例中,这些滤波器/双工器通常指示为由电感器-电容器(LC)谐振器结构112来构建。每个LC谐振器结构112进而优选地由某种类型的矢量电感器和/或矢量电容器阵列来构建。
如本领域中的技术人员所理解的那样,滤波器可以典型地包括若干电感器和电容器,其中,滤波器中电感器和电容器的数量以及它们的具体互连取决于所期望的滤波的类型(带通、低通等)并且也取决于对这样的滤波器所期望的极点(pole)和零点(zero)的数量。下面的讨论不关心滤波器设计的方面,而是关心每个单独的电感器和电容器组件的配置。
简单地说,每个单独的矢量电感器的优选设计使用在印刷电路板基板上形成的紧密耦合的、分层的电感器对。紧密耦合的电感器对应当表现出高度的互感。在一个示例实施例中,具有非常紧密的耦合的电感L的N个互相耦合的电感器被安装在相比于由一个非耦合电感器所占据的大小(值为N*L)、大小为1/N的面积中。这导致每个电感器的大小的N2的总减小因子。因此,对于N=16,大小的减小比非耦合的、未分层的电感器小256倍。
如下面更详细地描述的那样,每个矢量电感器优选地以硅、由每个大小为C的N个电容器的阵列来构造。以深亚微米CMOS形成的电容器阵列的关键益处在于它提供非常小的尺寸。作为一个示例,可以实现多于3:1的电容比,并且通过使用10比特数字字(digitalword)选择电容值来实现可编程性。
图2A和2B例示一对紧密耦合的电感器结构的一种布置。如在图2A的等距视图中所示,电感器212由印刷电路板基板210上的传导材料(例如铜)的补片216形成,印刷电路板基板210可以是FaradFlex或微条基板。补片可以是矩形、具有锥形端部的细长矩形,或者采取其他形状。
如在图2B的横截面详细中最佳地示出的那样,每个电感器212实际上由多个传导补片220-1、220-2形成,其每一个的电感为L,由一层绝缘材料222分开。可以示出,使用该布置,该关系可以模拟所得到的组件行为
V 1 = L d i 2 d t + M d i 2 d t = ( L 2 + M 2 ) d i d t
并且可以推断出:
V 1 = ( L 2 + k L 2 ) d i d t ≈ L d i d t 对于k≈1
其中V1是跨越电感器结构212施加的电压,L是每个补片216的电感,如果M是由下式给出的互感因子
M = k L 1 L 2 = k L 因为L1=L2=L
并且其中M相对高,使得互感M接近0.95或更高。
应当注意,在比较图2A和2B的紧密耦合电感器对体系结构与简单的单一元件电感器时,电感的实数部分减半,而总电感不变。结果是,对于给定的电路面积,品质因子Q加倍,同时总电感保持为近似L。对于如在图2A中示出的单个电感器对212,大约150的Q是可能的。
经由平面补片212传播的射频信号的“集肤效应”使电流通常在补片220的表面上流动,而不是流过铜层的整个厚度。增加铜补片220的厚度对集肤效应将没有影响。集肤效应限制增加单对电感器结构中的Q和总电感的能力。
然而,图2A和2B的电感器对配置可以扩展到在图3中示出的多层“矢量电感器”配置。这里,将数量为P的紧密耦合的电感器对212-1、212-2、……、212-g、……、212-P堆叠在一起。与图2A和2B的实施例一样,将每个电感器元件形成为布置在电介质基板222的任意一侧上的一对传导材料补片220-1、220-2。所得到的2*P传导层220被相对于彼此而垂直地布置,使得电感器元件的传导材料的补片均彼此垂直对齐。以这种方式将多个电感器对212堆叠为矢量电感器除了外部导体层228-1、228-2上的集肤效应之外还强迫至少一些电流流过结构的中间。
粘合剂层223布置在电感器对212的相邻对之间;将粘合剂选取为相对薄并且具有相对低的静态相对电容率(介电常数)εr,使得给定电感器对212-g将表现出紧密耦合到紧挨在其上面(电感器对212-g-1)和下面(电感器对212-g+1)的邻近电感器对。
总体矢量电感器结构的相互耦合由层之间的距离和布置在导体之间的材料的介电常数来确定。对于大约0.66密耳(16.74μm)的内部传导层220厚度和大约0.315密耳(8μm)的电介质基板层222,将优选具有大约3.5的电介质基板的εr和大约2.7的粘合剂层225的εr(如果粘合剂是0.3密耳(7.62μm)厚)。外部导体228-1、228-2可以优选地比内部传导层220的更厚一点,这里,外部导体可以是2.7密耳(67.54μm)厚。
图3中没有示出可选的、与传导补片的两个或多个边缘相邻地布置并且在电路层之间延伸的传导侧壁。传导侧壁可以进一步帮助激励互感。在多个矢量电感器212将在诸如滤波器这样的电路中实现的一种布置中,在相邻的矢量电感器212之间诸如0.5mm这样的预先确定的间距维持以避免矢量电感器212之间的相互耦合。
图3的堆叠式电感器提供优于其他方法的重要优点。通常,包括值为L的P个独立电感器的结构将消耗比单个电感器L所消耗的空间大P倍的空间。然而,在图3的相互耦合的矢量电感器的情况下,与由单个非耦合电感器(值为P*L)将占据的空间相比,设置有非常紧密的耦合的、大小为L的P个相互耦合的电感器仅需要大小1/P。因此,尺寸的总体减小为P2,其中N是电感器对的数量。因此,如果P等于16,则尺寸的对应的减小比单个电感器的情况小256倍。
由在本文中示出的互感为0.95或更高的紧密耦合层形成的矢量电感器212倾向于提供大于200或更多的可获得的Q因子的极大提高。
图4A和4B分别示出针对对不同的传导补片宽度(以密耳为单位)以及针对两种不同数量的电感器对(P=16和P=32)的、在工作频率为1GHz时提供的模拟电感和品质因子。所例示的曲线假设在外部导体层228-1、228-2的顶部和底部相邻地提供250密耳厚的空气柱。
现在转向讨论在图1的谐振器中使用的电容器结构的优选配置。如先前所讨论的那样,也利用特定的阵列技术。可以考虑以硅来构造电容器;这里优选的DSM-CMOS技术实施例可以以非常小的形状因子来提供相当令人满意的可编程的电容结构。
大多数MOS电容器设计所呈现的典型问题在于它们引入非线性。在针对射频信号处理的实际的实现方式中,这样的电容器通常将表现出振幅随着所施加的信号而变化的交流(AC)效应。为了使该效应最小化,这里优选的矢量电容器结构由每个大小为C的、N个电容器的阵列来构造。DSM-CMOS电容器阵列的关键益处在于它提供非常小的尺寸。可以实现多于3:1的电容比,同时通过使用10比特数字字来选择电容值而实现可编程性。通过在特定范围内操作MOS结,也可以减小非线性效应。
图5A和5B例示矢量电容器阵列中的N个电容元件510的每个的优选布置。这里,一对电容MOS结构512-1、512-2以反并联配置来连接,使得每个电容器的两个端子中的每个的极性连接到另一个电容器的反极性端子。
因此,还选择性地选取偏压,以减小非线性效应。图5B例示针对MOS电容器的电容C对比所施加的偏压V的例示曲线500。大多数电路被设计为使得偏压V在斜率倾向于在通常提供线性并且增加斜率的曲线502的区域中操作的范围内。然后,在这里优选的布置中,将偏压选择为在V1或V2的范围内,其中电容随着电压的变化小得多。虽然这限制由每个单个MOS电容器512提供的可用电容的范围,但是变化的减小提供RF信号存在时的更小变化(这一点通过比较V处的输出正弦506与在V1和/或V2处所产生的减小振幅的正弦507、508是很明显的)。
如果反并联对512-1、512-2的每个元件的电容值相同,则该对的总电容可以表示如下:
V1处的总电容CT1=[C1+ΔC1]+[C1-ΔC1]=2C1
并且同样地,
V2处的总电容CT2=[C2+ΔC2]+[C2–ΔC2]=2C2
因此,作为曲线500的斜率的结果的电容的任何差值ΔC的效应作为反并联配置510的结果而被取消。
图6例示使用图5A的反并联电容器元件结构510的四个不同的矢量电容器阵列601、602、603、604。示例阵列604由以阶梯布置的十(10)个这样电容器元件510-0、……、510-8、510-9来构成。阶梯中的给定电容器元件510提供取决于它的对应的所施加的偏压的可选择的电容量。偏压V1或V2根据10个数字控制输入比特V{0}至V{9}中的对应的一个的值而被施加于每个电容器元件510。因此,元件510-9根据输入V{9}的值来提供可选择的电容512C1或512C2,元件510-8根据输入V{8}的值来提供电容256C1或256C2,以此类推,直至元件510-0,其根据输入V{0}的值来提供输出电容1C1或1C2
在四个阵列601、602、603和604设置在同一芯片基板上的情况下,施加于一个阵列601中的偏置端子的电压可以与施加于其他阵列602、603和604的偏压不同。在诸如智能电话这样的应用中,这允许使用不同的阵列来实现被调谐到不同射频带的不同滤波器。
图7A和7B例示可从矢量电容器阵列获得的典型电容范围和品质因子,矢量电容器阵列被设计提供从2.97pF到9.64pF的可选择的电容,具有10比特控制输入(范围从0至1023的电容码),并且所得到的步长为6.6pF。假设1GHz的输入RF信号来模拟曲线。
如先前所提及的那样,这些电感器和电容器构造可以成对以形成矢量谐振器,其然后可以级联以形成矢量滤波器。当与阻抗变换和功率分离/组合的信号处理革新结合时,得到高度线性、紧凑并且可编程的矢量滤波器。如下面更详细地讨论的那样,也可以使用多个矢量滤波器来构造可编程的双工器。
上面描述的对一般信号处理概念的扩展是为了使用谐振器组件来实现依赖频率的阻抗匹配网络。因此,该方法如图8A中所示,其中,依赖频率的匹配网络902布置在滤波器910-A的输入侧,并且对应的依赖频率的匹配网络922布置在滤波器910-A的输出侧。对于图1电路的情况,输入和输出端子具有预期的阻抗R。然而,依赖频率的匹配网络902、912现在针对如下事实而调整:滤波器910-A自身可以被调谐到不同的频率。
将注意力转到图8B,原始滤波器910-B(其可以是可调谐双工器的发射侧或接收侧)被设计为具有电感Ls和电容Cs以便以中心频率fc谐振。一旦被调谐到不同的频率,滤波器就可以被看作图8C的经频率缩放的滤波器910-C,其被设计为使用电感Ls/α和电容Cs/α以频率αfc谐振。然而,为了利用在本文中讨论的信号处理和组件设计技术,输入阻抗R应当被缩放至αR;并且经缩放的滤波器应当使用等同的固定电感Ls而不是可变电容Cs2来实现。
图9D中的结果是具有依赖频率的输入和输出阻抗αR以及等同的固定电感Ls和可变电容Cs2的可编程滤波器910-D。
因此,在输入侧使用依赖输入频率的匹配网络902以将滤波器的输入阻抗R与阻抗αR匹配;同样,依赖输出频率的匹配网络922将阻抗αR期望的滤波器输出阻抗R匹配。依赖频率的匹配网络902、922可以由也基于期望的工作频率设置谐振器的电容的值Cs的控制电路(没有示出)来控制。通过将依赖频率的匹配网络902、912添加到图1的电路,现在允许在频率缩放下的更一致、甚至更恒定的频率响应。
图9、图10和图11的仿真结果的比较例示使用具有依赖频率的阻抗匹配网络的谐振器的提高的恒定频率响应。结果是即使滤波器的中心频率改变,仍然维持特定的形状因子或百分比带宽的双工器。
图9是发射1010和接收1012滤波器被调谐到对应的发射和接收频带的中心的信道的第一种情况。注意,对应的相应的发射1020和接收1022响应提供干扰信号的良好抑制(即接收带中的发射器信号的谐波和发射带中的接收器的谐波以-55dB到大约-70dB被抑制)。
图10例示发射1010和接收1012滤波器未被恰好调谐到对应的工作频带的中心而是稍微朝向低端时的结果;该配置仍然表现出在接收器侧的发射信号功率的良好抑制以及在发射范围中的接收器带宽的良好抑制。响应1020、1022的形状没有从滤波器位于它们的对应的带的中心的情况中所表现出的那些明显地改变。
当滤波器1010、1012以各自的发射和接收带内相对高的频率为中心时,在图11中示出类似的仿真,对应的响应1020、1022再次没有明显地改变,并且再次观察到谐波的良好抑制。
如上所述,在本文中所讨论的滤波器设计技术在诸如在智能手机中使用的这样的前端双工器中特别有用。仅仅作为一个示例,700MHz至2.7GHz的LTE带可以分成两个子带,一个用于较低频率并且一个用于较高频率,并且可以针对每个子带来构造矢量滤波器。
这样的双工器的示例构造在图12中示出。双工器800被构造为布置在功率放大器801、天线802和接收器803之间的装配。针对高和低频带单独地处理发射和接收带,使四个滤波器成为必要(低带发射821、高带发射822、低带接收831和高带接收832)。将10比特的控制字835-1(用于发射侧)、835-2(用于接收侧)每个应用于矢量谐振器结构内的矢量电容器阵列;因为对应的矢量电感器的阻抗是固定的,所以控制比特进而将每个双工器滤波器调谐到相应的LTE带的一个。
通常已知期望双工器抑制互调产物;电流设计需求也意味着,理想地,双工器跨越宽范围的可选择的中心频率和带宽是可调谐的。双工器还应当表现出相对高的三阶截取点(IP3)。大多数早先的方案针对工作的不同的预期射频带(3G、4G、LTE、Wi-Fi、蓝牙等)实现单独的双工器。针对特定于每个工作频带的多个双工器的需求不仅增加无线设备的总体大小,而是使得引入插入损耗、非线性和其他设计复杂化的射频开关和其他组件的使用成为必要。
使用上面描述的矢量电感器和电容器阵列结构,可以实现通过数字地调节任何给定滤波器821、822、831、832内的任何给定谐振器中的电容量而可调谐的双工器800。该设计方法允许单个双工器800跨越宽范围的射频和带宽地工作。然而,如果谐振器/滤波器的电容改变,但是电感必须保持恒定,则结果是谐振器的整体阻抗改变。
图13是图12中示出的双工器800的一种可能实现方式的更详细的电路图。从RF功率提供的输入发射信号TX被馈送给平衡不平衡转换器(balun)1310。平衡不平衡转换器提供一对不同的输出(OUT+和OUT-)以针对低带821和高带822驱动该对发射滤波器。
第二平衡不平衡转换器1312从每个发射滤波器821、822取得相自的差分输出(VOUT_P和VOU_N)(以及接地基准VOUTGND)并且将这些馈送给天线端子ANT。平衡不平衡转换器1312还提供来自天线端子ANT的差分信号(ANT_P,ANT_N)以驱动包括低带接收滤波器831和高带接收滤波器832的接收滤波器。来自这些接收滤波器831、832的相应的输出被馈送给一对接收平衡不平衡转换器1320、1321中的每个的差分输入(IN_,IN-)并且从那里在各自的输出端子(OUT)处馈送给与每个接收频带相关联的接收器。
图13还示出双工器的每个相应的滤波器是根据在本文中的教导的频率可调节的滤波器。在一种实现方式中,滤波器每个包括四个可调节的谐振器,其中每个谐振器是具有根据图8A的依赖频率的输入和输出匹配网络的固定电感器、可调节电容器谐振器。在一种实现方式中,每个滤波器也可以被设计为更高阶的切比雪夫(Chebyshev)滤波器。示出针对每个滤波器的相应的一组四(4)个、十(10)比特控制输入。这样,具有前缀VCTX_LB的4个数字信号(每个10比特)调谐低带发射侧,具有前缀VCTX_HB的四个数字信号调谐高带发射侧,四个信号VCRX_LB调谐低带接收侧并且VCRX_HB调谐高带接收侧。
图14示出利用上面描述的矢量电感器和阵列电容器技术的信号处理电路的一种可能的封装布置。在该剖面图中,适当的印刷电路板基板1410是先前提及的FaradFlex基板。基板1410被用于实现矢量电感器212-1、212-2、……、212-K,直到期望数量的K个矢量电感器。将一个或多个阵列电容器601-1、601-2、……、601-D实现为集成电路芯片。
因此,基板1410用于实现矢量电感器212以及用作阵列电容器601的物理支撑。如所示那样,电阻组件1420也可以提供在印刷电路板基板1410上或内。连接线1430可以将装置的组件互连,并且整个装配可以以适当的方式由护罩(shield)1440封装。
图15和16进一步例示该机械配置的期望特性。如先前已经简要提及的那样,可取的是在矢量电感器212的上面和/或下面留出空气柱,其中空气柱与每个这样的电感器212的顶部和/或底部外部导体层228-1、228-2相邻。图15中的表格例示针对各种配置维持0.9mm的护罩高度即护罩1440与印刷电路板1410(接地平面)之间的间隔的效果。
表格的第一行示出在护罩1440或基板1410中的任意一个中没有切开的孔的配置的低带和高带滤波器的模拟插入损耗。表格的第二行中的第二配置具有在RF护罩1440中切开的孔1510,但是在基板1410中没有孔。在RF护罩1440中以及在印刷电路板1410两者中有切开的孔的第三实现方式具有在表格的底行中列出的模拟插入损耗。
图16是针对三种所例示的孔配置中的每个(但是具有1.2mm的不同护罩高度)例示高带和低带滤波器两者的类似预测的插入损耗特性的图和表格。
虽然现在已经在附图中具体地示出并且在上面的文字中描述了不同的实施例,但是本领域中的技术人员将理解,可以在其中在形式和细节上做出各种改变,而不背离在本文中的教导的范围。因此,本发明意图仅由所附的权利要求书所限制。

Claims (30)

1.一种装置,包括:
第一阻抗变换器,用于接收输入信号,并且将装置的输入阻抗与内部装置阻抗相匹配;
分离器,用于将第一阻抗变换器的输出分离成N个分离信号;
多个信号处理电路,用于处理N个分离信号;
组合器,用于将N个分离信号组合成组合信号;以及
第二阻抗变换器,用于接收组合信号,并且用于将内部装置阻抗与装置的输出阻抗相匹配。
2.根据权利要求1所述的装置,其中,分离器、信号处理电路和组合器具有等同于内部装置阻抗的各自的输入和输出阻抗。
3.根据权利要求1所述的装置,其中,多个信号处理电路中的所选择的一个被耦合,以对N个分离信号中的对应的一个进行滤波。
4.根据权利要求1所述的装置,其中,信号处理电路是滤波器电路。
5.根据权利要求1所述的装置,其中,信号处理电路提供还包括高带和低带滤波器电路的双工器。
6.根据权利要求4所述的装置,其中,滤波器还包括谐振器。
7.根据权利要求6所述的装置,其中,谐振器还包括至少一个矢量电感器。
8.根据权利要求7所述的装置,其中,至少一个矢量电感器包括多个、即M个相互的、紧密耦合的、分层的、电感结构。
9.根据权利要求6所述的装置,其中,谐振器中的至少一个还包括电容器的阵列。
10.根据权利要求1所述的装置,其中,输入阻抗是K欧姆,内部阻抗是R欧姆,并且第一阻抗变换器以因子进一步减小输入信号的电压。
11.根据权利要求10所述的装置,其中,分离器以因子进一步降低电压电平。
12.一种处理输入信号的方法,包括:
阻抗变换的第一步骤,变换输入阻抗以匹配内部阻抗;
将阻抗变换的第一步骤的输出分离成N个分离信号;
对N个分离信号进行信号处理;
将N个分离信号组合成组合信号;以及
阻抗变换的第二步骤,用于将内部阻抗与输出阻抗相匹配,并且提供输出信号。
13.根据权利要求12所述的方法,其中,分离、信号处理和组合步骤提供等同于内部阻抗的各自的输入和输出阻抗。
14.根据权利要求12所述的方法,其中,多个信号处理步骤中的所选择的一个执行对N个分离信号中的对应的一个的滤波。
15.根据权利要求12所述的方法,其中,信号处理步骤执行双工功能。
16.根据权利要求15所述的方法,其中,滤波功能还包括谐振器。
17.根据权利要求15所述的方法,其中,谐振器还包括至少一个矢量电感器。
18.根据权利要求17所述的方法,其中,至少一个矢量电感器包括多个、即M个相互的、紧密耦合的、分层的、电感结构。
19.根据权利要求16所述的方法,其中,谐振器中的至少一个还包括电容器的阵列。
20.根据权利要求12所述的方法,其中,输入阻抗是K欧姆,内部阻抗是R欧姆,并且阻抗变换的第一步骤以因子进一步减小输入信号的电压。
21.根据权利要求20所述的方法,其中,分离步骤以因子进一步降低电压电平。
22.根据权利要求9所述的装置,其中,至少一个谐振器通过改变电容器阵列的电容而是可调谐的。
23.根据权利要求22所述的装置,其中,谐振器还包括依赖频率的匹配网络,以允许在频率调节下的恒定的频率响应。
24.根据权利要求23所述的装置,其中,依赖频率的匹配网络适应于作为电容器阵列的电容的变化的结果的装置的内部阻抗的变化。
25.根据权利要求8所述的装置,其中,矢量电感器还包括:
多个、即M个电感器元件,被布置为对应的多个电路层,电感器元件每个被形成为传导材料的补片,并且电路层相对于彼此垂直布置,使得电感器元件的传导材料的补片彼此垂直对齐;
多个绝缘材料层,布置在承载电感器元件的电路层的相应的对之间;以及
其中,每个相应的电感器元件紧密地耦合到布置在相应的电感器元件上面和/或下面的电路层中的一个或多个相邻电感器元件。
26.根据权利要求25所述的装置,其中,每个电感器元件形成为传导材料的一般矩形补片。
27.根据权利要求25所述的装置,其中,每个电感器的电路层和绝缘材料层形成在微带电路板上。
28.根据权利要求25所述的装置,其中,谐振器中的至少一个还包括:
提供可调节电容的阵列电容器,阵列电容器由多个电容单元形成,每个电容单元进一步耦合在第一和第二端子之间,每个单位电容单元包括一对无源的、两端子电容器组件,每个电容器组件具有阳极端子和阴极端子以及偏压输入端子,该对电容器反并联地连接,使得第一电容器的阳极连接到第二电容器的阴极,并且第二电容器的阳极连接到第一电容器的阴极。
29.根据权利要求28所述的装置,其中,阵列电容器形成在半导体芯片基板上。
30.根据权利要求29所述的装置,其中,阵列电容器半导体芯片安装到提供矢量电感器结构的印刷电路板。
CN201480036976.2A 2013-05-28 2014-02-26 提高射频电路的线性的信号处理装置 Pending CN105340176A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361828107P 2013-05-28 2013-05-28
US61/828,107 2013-05-28
US201361857446P 2013-07-23 2013-07-23
US61/857,446 2013-07-23
US14/025,069 2013-09-12
US14/025,069 US9449749B2 (en) 2013-05-28 2013-09-12 Signal handling apparatus for radio frequency circuits
PCT/US2014/018555 WO2014193501A1 (en) 2013-05-28 2014-02-26 Signal handling apparatus for improving linearity of radio frequency circuits

Publications (1)

Publication Number Publication Date
CN105340176A true CN105340176A (zh) 2016-02-17

Family

ID=51984439

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201480036976.2A Pending CN105340176A (zh) 2013-05-28 2014-02-26 提高射频电路的线性的信号处理装置
CN201480037474.1A Pending CN105453424A (zh) 2013-05-28 2014-02-26 具有提供高品质因数的多个互耦金属化层的矢量电感器
CN201480030574.1A Pending CN105359409A (zh) 2013-05-28 2014-02-26 高线性可变电容器阵列
CN201480039717.5A Pending CN105379114A (zh) 2013-05-28 2014-05-27 可变电容器阵列的装置和方法
CN201480041033.9A Pending CN105408971A (zh) 2013-05-28 2014-05-27 用于矢量电感器的装置和方法

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN201480037474.1A Pending CN105453424A (zh) 2013-05-28 2014-02-26 具有提供高品质因数的多个互耦金属化层的矢量电感器
CN201480030574.1A Pending CN105359409A (zh) 2013-05-28 2014-02-26 高线性可变电容器阵列
CN201480039717.5A Pending CN105379114A (zh) 2013-05-28 2014-05-27 可变电容器阵列的装置和方法
CN201480041033.9A Pending CN105408971A (zh) 2013-05-28 2014-05-27 用于矢量电感器的装置和方法

Country Status (5)

Country Link
US (3) US9570222B2 (zh)
EP (5) EP3005557A1 (zh)
JP (5) JP2016521931A (zh)
CN (5) CN105340176A (zh)
WO (5) WO2014193501A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570222B2 (en) 2013-05-28 2017-02-14 Tdk Corporation Vector inductor having multiple mutually coupled metalization layers providing high quality factor
CN110518345A (zh) * 2019-08-26 2019-11-29 深圳迈睿智能科技有限公司 具有接地点的微波探测器及其制造方法
CN110677139A (zh) * 2019-09-25 2020-01-10 北京中石正旗技术有限公司 一种数控带通滤波模块
CN115513628A (zh) * 2020-06-30 2022-12-23 苹果公司 电平衡双工器、使用其的方法以及电子设备

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324490B2 (en) 2013-05-28 2016-04-26 Tdk Corporation Apparatus and methods for vector inductors
US9086709B2 (en) 2013-05-28 2015-07-21 Newlans, Inc. Apparatus and methods for variable capacitor arrays
US9461610B2 (en) 2014-12-03 2016-10-04 Tdk Corporation Apparatus and methods for high voltage variable capacitors
US9735752B2 (en) 2014-12-03 2017-08-15 Tdk Corporation Apparatus and methods for tunable filters
US9671812B2 (en) * 2014-12-17 2017-06-06 Tdk Corporation Apparatus and methods for temperature compensation of variable capacitors
US10014692B2 (en) * 2014-12-18 2018-07-03 Intel Corporation Apparatuses, methods, and systems with cross-coupling noise reduction
US9362882B1 (en) 2015-01-23 2016-06-07 Tdk Corporation Apparatus and methods for segmented variable capacitor arrays
US9680426B2 (en) 2015-03-27 2017-06-13 Tdk Corporation Power amplifiers with tunable notches
US10382002B2 (en) 2015-03-27 2019-08-13 Tdk Corporation Apparatus and methods for tunable phase networks
US10073482B2 (en) 2015-03-30 2018-09-11 Tdk Corporation Apparatus and methods for MOS capacitor structures for variable capacitor arrays
US9595942B2 (en) 2015-03-30 2017-03-14 Tdk Corporation MOS capacitors with interleaved fingers and methods of forming the same
US10042376B2 (en) 2015-03-30 2018-08-07 Tdk Corporation MOS capacitors for variable capacitor arrays and methods of forming the same
US9973155B2 (en) 2015-07-09 2018-05-15 Tdk Corporation Apparatus and methods for tunable power amplifiers
US9502586B1 (en) * 2015-09-14 2016-11-22 Qualcomm Incorporated Backside coupled symmetric varactor structure
US9859357B1 (en) * 2016-07-14 2018-01-02 International Business Machines Corporation Magnetic inductor stacks with multilayer isolation layers
KR20180048244A (ko) * 2016-10-31 2018-05-10 삼성전기주식회사 체적 음향 공진기를 포함하는 필터
US10812033B2 (en) * 2017-12-29 2020-10-20 Lam Research Corporation High-power radio-frequency spiral-coil filter
CN108259021A (zh) * 2018-01-10 2018-07-06 广西师范大学 一种cmos宽带分布式可调带通滤波器
JP2020195115A (ja) * 2019-05-30 2020-12-03 株式会社村田製作所 高周波回路および通信装置
CN112444767A (zh) * 2019-08-30 2021-03-05 通用电气精准医疗有限责任公司 用于磁共振成像的射频功率变换器和射频发射系统
JP7395978B2 (ja) * 2019-11-14 2023-12-12 株式会社レゾナック 磁気センサ
US11201602B1 (en) 2020-09-17 2021-12-14 Analog Devices, Inc. Apparatus and methods for tunable filtering
US20220109220A1 (en) * 2020-10-01 2022-04-07 Mobix Labs, Inc. Power splitter-combiner circuits in 5g mm-wave beamformer architectures
US11201600B1 (en) 2020-10-05 2021-12-14 Analog Devices, Inc. Apparatus and methods for control and calibration of tunable filters
CN112383057B (zh) * 2020-11-27 2022-08-09 佛山市广诚电气安装有限公司 基于电网潮流的电力耦合系统互感和自感设计方法
US11876384B2 (en) * 2020-12-15 2024-01-16 Otis Elevator Company Wireless power transfer device
CN114326898B (zh) * 2021-12-27 2023-07-18 苏州云芯微电子科技有限公司 电容电压系数的补偿方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420626A (zh) * 2001-11-16 2003-05-28 松下电器产业株式会社 功率放大器、功率放大方法和无线电通信装置
WO2006099419A1 (en) * 2005-03-11 2006-09-21 Merrimac Industries, Inc. Circuitry module
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
US20120193771A1 (en) * 2011-01-27 2012-08-02 Fujitsu Limited Transmission line, impedance transformer, integrated circuit mounted device, and communication device module
US20130039228A1 (en) * 2009-12-03 2013-02-14 Rf Micro Devices, Inc. Duplexer with active temperature compensation
US20130090080A1 (en) * 2011-10-05 2013-04-11 Lothar Schmidt Filter arrangement
US20130099864A1 (en) * 2010-06-21 2013-04-25 Panasonic Corporation Power amplifier

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110339Y2 (zh) * 1979-01-16 1986-04-03
US4363009A (en) 1980-05-08 1982-12-07 Wavetek Indiana, Inc. L-C Filter with impedance transformers
JPS5761313A (en) 1980-09-30 1982-04-13 Matsushita Electric Ind Co Ltd Band-pass filter for ultra-high frequency
US4456895A (en) 1982-05-25 1984-06-26 Rockwell International Corporation Band selectable tunable bandpass filter
JPS6280421U (zh) * 1985-11-08 1987-05-22
US4754242A (en) * 1986-03-04 1988-06-28 Murata Manufacturing Co., Ltd. Resonator
US4878151A (en) 1987-04-10 1989-10-31 National Semiconductor Corporation Anti-parallel capacitor
JPS63308366A (ja) 1987-06-10 1988-12-15 Nec Corp 半導体集積回路
US4918454A (en) * 1988-10-13 1990-04-17 Crystal Semiconductor Corporation Compensated capacitors for switched capacitor input of an analog-to-digital converter
US5208597A (en) 1988-10-13 1993-05-04 Crystal Semiconductor Compensated capacitors for switched capacitor input of an analog-to-digital converter
KR930000414B1 (ko) 1989-08-01 1993-01-18 티이디이케이 가부시기사이샤 자기(自己)유도성 인덕터와 수동유도성 인덕터를 포함하는 복합 권선형 적층 인덕터 및 그 제조방법, 그리고 두줄 권선형 적층변성기
JPH04103209A (ja) * 1990-08-22 1992-04-06 Tdk Corp 磁界結合型ディプレクサ
CA2059864C (en) * 1991-01-23 1995-10-17 Mitsunobu Esaki Lc filter
FR2674385A1 (fr) 1991-03-22 1992-09-25 Alsthom Gec Dispositif d'isolement galvanique pour signaux electriques continus ou susceptibles de comporter une composante continue.
JP2575368Y2 (ja) * 1992-02-10 1998-06-25 株式会社村田製作所 積層型lcフィルタ
FR2694450B1 (fr) 1992-07-30 1994-10-21 Sgs Thomson Microelectronics Condensateur en technologie CMOS.
JPH06140250A (ja) * 1992-10-29 1994-05-20 Kyocera Corp 基板内層型コイル
JP3089666B2 (ja) 1993-08-27 2000-09-18 株式会社村田製作所 高周波伝送線路、高周波共振器、高周波フィルタ及び高周波帯域除去フィルタ
US5330931A (en) 1993-09-22 1994-07-19 Northern Telecom Limited Method of making a capacitor for an integrated circuit
US5621366A (en) 1994-08-15 1997-04-15 Motorola, Inc. High-Q multi-layer ceramic RF transmission line resonator
KR100231356B1 (ko) 1994-09-12 1999-11-15 모리시타요이찌 적층형 세라믹칩 인덕터 및 그 제조방법
US5543751A (en) 1995-07-21 1996-08-06 Motorola, Inc. Power combiner for use in a radio frequency system and a method of constructing a power combiner
US5760456A (en) 1995-12-21 1998-06-02 Grzegorek; Andrew Z. Integrated circuit compatible planar inductors with increased Q
JPH10144526A (ja) * 1996-11-05 1998-05-29 Murata Mfg Co Ltd 積層チップインダクタ
JPH10163028A (ja) * 1996-11-26 1998-06-19 Murata Mfg Co Ltd 積層コイル装置
EP0862218B1 (en) 1997-02-28 2007-02-28 Telefonaktiebolaget LM Ericsson (publ) An improved-q inductor with multiple metalization levels
JPH1197963A (ja) * 1997-09-19 1999-04-09 Murata Mfg Co Ltd Lcバンドパスフィルタ
US6069050A (en) * 1997-10-20 2000-05-30 Taiwan Semiconductor Manufacturing Company Cross-coupled capacitors for improved voltage coefficient
JP3399409B2 (ja) * 1998-09-11 2003-04-21 株式会社村田製作所 複合回路基板、非可逆回路素子、共振器、フィルタ、デュプレクサ、通信機装置、回路モジュール、ならびに複合回路基板の製造方法と非可逆回路素子の製造方法
US6885275B1 (en) 1998-11-12 2005-04-26 Broadcom Corporation Multi-track integrated spiral inductor
EP1498913B1 (en) 1998-12-11 2006-05-31 Matsushita Electric Industrial Co., Ltd. High-Q inductor for high frequency
KR20010101647A (ko) 1999-01-25 2001-11-14 메리 이. 보울러 폴리사카라이드 섬유
US6198374B1 (en) * 1999-04-01 2001-03-06 Midcom, Inc. Multi-layer transformer apparatus and method
JP3680627B2 (ja) * 1999-04-27 2005-08-10 富士電機機器制御株式会社 ノイズフィルタ
US6211745B1 (en) 1999-05-03 2001-04-03 Silicon Wave, Inc. Method and apparatus for digitally controlling the capacitance of an integrated circuit device using mos-field effect transistors
JP4763192B2 (ja) 1999-06-29 2011-08-31 コクレア リミテッド 標準cmosプロセスの高電圧保護回路
US7060584B1 (en) 1999-07-12 2006-06-13 Zilog, Inc. Process to improve high performance capacitor properties in integrated MOS technology
JP3446681B2 (ja) 1999-09-28 2003-09-16 株式会社村田製作所 積層インダクタアレイ
US6351020B1 (en) * 1999-11-12 2002-02-26 Motorola, Inc. Linear capacitor structure in a CMOS process
US6410954B1 (en) 2000-04-10 2002-06-25 Koninklijke Philips Electronics N.V. Multilayered capacitor structure with alternately connected concentric lines for deep sub-micron CMOS
US6885081B2 (en) * 2000-11-13 2005-04-26 Sharp Kabushiki Kaisha Semiconductor capacitor device having reduced voltage dependence
JP2002158135A (ja) 2000-11-16 2002-05-31 Tdk Corp 電子部品
US20020158305A1 (en) 2001-01-05 2002-10-31 Sidharth Dalmia Organic substrate having integrated passive components
US6657509B1 (en) 2001-01-25 2003-12-02 National Semiconductor Corporation Differentially controlled varactor
TW480770B (en) * 2001-02-22 2002-03-21 Ind Tech Res Inst Miniaturized trisection cross-coupled bandpass filter structure
JP2002289490A (ja) 2001-03-27 2002-10-04 Toshiba Corp 半導体装置
JP2002374138A (ja) * 2001-06-15 2002-12-26 Alps Electric Co Ltd ノイズ吸収素子ならびにその製造方法
JP5073136B2 (ja) * 2001-08-24 2012-11-14 ルネサスエレクトロニクス株式会社 半導体装置
US6674321B1 (en) 2001-10-31 2004-01-06 Agile Materials & Technologies, Inc. Circuit configuration for DC-biased capacitors
US6635948B2 (en) * 2001-12-05 2003-10-21 Micron Technology, Inc. Semiconductor device with electrically coupled spiral inductors
US6700472B2 (en) 2001-12-11 2004-03-02 Intersil Americas Inc. Magnetic thin film inductors
JP2003304118A (ja) * 2002-04-09 2003-10-24 Mitsubishi Electric Corp Lc発振回路
JP2004056818A (ja) * 2002-07-16 2004-02-19 Matsushita Electric Ind Co Ltd 発振器、pll回路、通信機器、発振方法
US6930562B2 (en) 2002-07-16 2005-08-16 Matsushita Electric Industrial Co., Ltd. Oscillation with multiple series circuits in parallel
JP4370838B2 (ja) 2002-08-21 2009-11-25 株式会社村田製作所 ノイズフィルタ
US7199640B2 (en) 2002-10-29 2007-04-03 Dxp B.V. Bi-directional double NMOS switch
KR100466542B1 (ko) 2002-11-13 2005-01-15 한국전자통신연구원 적층형 가변 인덕터
US7212789B2 (en) 2002-12-30 2007-05-01 Motorola, Inc. Tunable duplexer
US7263336B2 (en) * 2002-12-31 2007-08-28 Marvell International Ltd. Device, system and method to provide different bias voltages and common tuning voltage
US20050116797A1 (en) 2003-02-05 2005-06-02 Khosro Shamsaifar Electronically tunable block filter
US6882548B1 (en) 2003-02-24 2005-04-19 Tyco Electronics Power Systems, Inc. Auxiliary active clamp circuit, a method of clamping a voltage of a rectifier switch and a power converter employing the circuit or method
US6765778B1 (en) 2003-04-04 2004-07-20 Freescale Semiconductor, Inc. Integrated vertical stack capacitor
US6903628B2 (en) * 2003-07-18 2005-06-07 Chi Mei Communication Systems, Inc. Lowpass filter formed in multi-layer ceramic
US7161516B2 (en) 2003-07-22 2007-01-09 Maxim Integrated Products, Inc. Layout of dummy and active cells forming capacitor array in integrated circuit
JP2005064691A (ja) 2003-08-08 2005-03-10 Sony Ericsson Mobilecommunications Japan Inc 共振回路および電圧制御発振器
US7042307B2 (en) * 2003-09-10 2006-05-09 Merrimac Industries, Inc. Coupler resource module
JP4325337B2 (ja) * 2003-09-19 2009-09-02 日立化成工業株式会社 樹脂組成物、それを用いたプリプレグ、積層板及び多層プリント配線板
WO2005029516A1 (ja) * 2003-09-22 2005-03-31 Minebea Co.,Ltd. 信号弁別器
US6940386B2 (en) 2003-11-19 2005-09-06 Scintera Networks, Inc Multi-layer symmetric inductor
KR100552482B1 (ko) 2003-11-28 2006-02-15 삼성전자주식회사 Rf 듀플렉서
KR100551477B1 (ko) 2004-02-20 2006-02-14 삼성전자주식회사 커패시터 뱅크 회로 및 그것을 구비한 전압제어 오실레이터
US7255801B2 (en) 2004-04-08 2007-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Deep submicron CMOS compatible suspending inductor
US7012484B2 (en) * 2004-04-26 2006-03-14 Integrated System Solution Corp. Filter using multilayer ceramic technology and structure thereof
TWI296159B (en) 2004-07-06 2008-04-21 Realtek Semiconductor Corp Mos varactor and method for making the same
US7683433B2 (en) 2004-07-07 2010-03-23 Semi Solution, Llc Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors
US20060017084A1 (en) * 2004-07-22 2006-01-26 Feng Gao Integrated semiconductor metal-insulator-semiconductor capacitor
JP2006066647A (ja) * 2004-08-26 2006-03-09 Kyocera Corp 可変コンデンサ
US20060077020A1 (en) 2004-10-13 2006-04-13 Cyntec Company Circuits and manufacturing configurations of compact band-pass filter
JP2006128468A (ja) 2004-10-29 2006-05-18 Seiko Epson Corp 半導体装置
US7199651B2 (en) 2004-11-18 2007-04-03 Agere Systems Inc. Frequency selection using capacitance multiplication
EP2445107B1 (en) 2004-12-09 2019-02-20 Wispry, Inc. Pole-zero elements and related systems and methods
US20060125121A1 (en) 2004-12-15 2006-06-15 Chih-Hsin Ko Capacitor-less 1T-DRAM cell with Schottky source and drain
DE112005001053B4 (de) 2005-01-11 2015-04-16 Murata Mfg. Co., Ltd. Abstimmbarer Filter, Duplexer und Kommunikationsvorrichtung
KR20070108229A (ko) 2005-03-05 2007-11-08 이노베이션 엔지니어링, 엘엘씨 전자적 가변 커패시터 어레이
EP1889359B1 (en) * 2005-06-08 2013-01-16 The Regents of the University of California Linear variable voltage diode capacitor and adaptive matching networks
JPWO2006134916A1 (ja) * 2005-06-13 2009-01-08 太陽誘電株式会社 積層フィルタ
US7245519B2 (en) 2005-08-22 2007-07-17 Freescale Semiconductor, Inc. Digitally programmable capacitor array
FR2890257A1 (fr) * 2005-08-23 2007-03-02 St Microelectronics Sa Element de circuit a capacite variable
US7280001B2 (en) 2005-09-14 2007-10-09 Silicon Laboratories Inc. Capacitor array segmentation
EP2392382A1 (en) 2005-11-11 2011-12-07 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US7528667B1 (en) 2005-11-16 2009-05-05 Marvell International Ltd. T-network capbank
JP4170337B2 (ja) * 2005-12-20 2008-10-22 日本電信電話株式会社 電界通信システム
RU2401987C2 (ru) * 2006-03-29 2010-10-20 Роузмаунт Инк. Цепь емкостного датчика
US7576627B2 (en) 2006-04-24 2009-08-18 Bradley University Electronically tunable active duplexer
US7586389B2 (en) 2006-06-19 2009-09-08 Maxim Integrated Products, Inc. Impedance transformation and filter using bulk acoustic wave technology
KR100792705B1 (ko) * 2006-07-21 2008-01-11 인티그런트 테크놀로지즈(주) 병렬 바랙터를 이용한 커패시터
KR100821126B1 (ko) 2006-07-31 2008-04-11 한국전자통신연구원 선형적인 정전용량 변화를 갖는 가변 캐패시터 회로를구비한 장치
JP4691163B2 (ja) 2006-08-03 2011-06-01 パナソニック株式会社 周波数可変音響薄膜共振器、フィルタ、及びそれを用いた通信装置
US7948055B2 (en) 2006-08-31 2011-05-24 United Microelectronics Corp. Inductor formed on semiconductor substrate
US7825745B1 (en) 2006-09-12 2010-11-02 Rf Magic Inc. Variable bandwidth tunable silicon duplexer
TW200822528A (en) 2006-11-07 2008-05-16 Univ Nat Taiwan Science Tech Multi-phase voltage-control osillator
US8289103B2 (en) * 2006-11-20 2012-10-16 Panasonic Corporation Filter device having attenuation poles
CN101212198B (zh) * 2006-12-30 2011-06-15 北京六合万通微电子技术股份有限公司 压控振荡器
JP2008205794A (ja) 2007-02-20 2008-09-04 Renesas Technology Corp 半導体集積回路装置および高周波電力増幅モジュール
US7719383B2 (en) 2007-04-30 2010-05-18 Zeji Gu High isolation electronic multiple pole multiple throw switch
TW200908430A (en) 2007-05-18 2009-02-16 Murata Manufacturing Co Stacked bandpass filter
JP4518103B2 (ja) 2007-05-21 2010-08-04 Tdk株式会社 コモンモードチョークコイル
JP2009010599A (ja) * 2007-06-27 2009-01-15 Panasonic Corp デジタル制御発振回路、周波数シンセサイザ、それを用いた無線通信機器及びその制御方法
US7656251B1 (en) 2007-07-09 2010-02-02 Rf Micro Devices, Inc. Split band duplexer
JP2009064860A (ja) * 2007-09-05 2009-03-26 Renesas Technology Corp 半導体装置
US20090128992A1 (en) 2007-11-19 2009-05-21 Broadcom Corporation Mos capacitor structure and linearization method for reduced variation of the capacitance
US7728427B2 (en) 2007-12-07 2010-06-01 Lctank Llc Assembling stacked substrates that can form cylindrical inductors and adjustable transformers
US7777369B2 (en) 2007-12-22 2010-08-17 At&T Intellectual Property I, L.P. Apparatus, system and methods for enabling linearity improvement in voltage controlled variable capacitors
US7838383B2 (en) 2008-01-04 2010-11-23 Freescale Semiconductor, Inc. Methods for forming MOS capacitors
US7724117B2 (en) * 2008-01-11 2010-05-25 Northrop Grumman Systems Corporation Multilayer passive circuit topology
US7679473B2 (en) 2008-01-15 2010-03-16 California Micro Devices Low pass filter incorporating coupled inductors to enhance stop band attenuation
EP2760136B1 (en) 2008-02-28 2018-05-09 Peregrine Semiconductor Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US20090243743A1 (en) 2008-03-31 2009-10-01 International Business Machines Corporation Varactor bank switching based on anti-parallel branch configuration
US8073414B2 (en) 2008-06-27 2011-12-06 Sirf Technology Inc. Auto-tuning system for an on-chip RF filter
US7852152B2 (en) 2008-08-28 2010-12-14 Menara Networks Nth order tunable low-pass continuous time filter for fiber optic receivers
US8204031B2 (en) 2008-09-24 2012-06-19 Rockstar Bidco, LP Duplexer/multiplexer having filters that include at least one band reject filter
US7821290B2 (en) 2008-09-26 2010-10-26 Vitesse Semiconductor Corporation Differential voltage mode driver and digital impedance caliberation of same
CN102197482B (zh) 2008-10-27 2013-09-18 Nxp股份有限公司 对铁电mim电容器的非对称电容滞后的产生和使用
JP2010246075A (ja) * 2009-03-16 2010-10-28 Tdk Corp 電子部品の実装構造
US9231630B2 (en) 2009-05-05 2016-01-05 San Diego, CA Radio device having dynamic intermediate frequency scaling
US8729666B2 (en) * 2009-09-23 2014-05-20 X-Fab Semiconductor Foundries Ag Ultra-low voltage coefficient capacitors
US8143941B2 (en) 2009-11-12 2012-03-27 Qualcomm, Incorporated Active analog filter having a MOS capacitor device with improved linearity
US8098110B2 (en) 2009-11-20 2012-01-17 Qualcomm Incorporated Phase locked loop apparatus with selectable capacitance device
CN102087995A (zh) 2009-12-04 2011-06-08 中芯国际集成电路制造(上海)有限公司 集成电路电感及其制作方法
CN102231313B (zh) 2009-12-08 2014-04-16 上海华虹宏力半导体制造有限公司 利用金属并联的多层堆叠电感
EP2337038B1 (en) 2009-12-21 2014-03-12 Nxp B.V. Inductor
KR101244902B1 (ko) 2010-01-19 2013-03-18 가부시키가이샤 무라타 세이사쿠쇼 안테나 장치 및 통신단말장치
WO2011122718A1 (ko) 2010-03-30 2011-10-06 한국과학기술연구원 장갑형 액추에이터 장치를 이용한 촉감 전달 시스템 및 방법
US8395880B2 (en) 2010-03-30 2013-03-12 Medtronic, Inc. High density capacitor array patterns
US8461897B2 (en) 2010-06-07 2013-06-11 Skyworks Solutions, Inc. Apparatus and method for well buffering
JP5632663B2 (ja) 2010-06-29 2014-11-26 ルネサスエレクトロニクス株式会社 半導体装置
US8995944B2 (en) 2010-12-09 2015-03-31 Rf Micro Devices, Inc. Radio frequency switch for suppressing intermodulation
US9391650B2 (en) 2011-02-11 2016-07-12 Qualcomm Incorporated Front-end RF filters with embedded impedance transformation
US8345498B2 (en) 2011-02-17 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Sense amplifier
CN103748646B (zh) 2011-08-19 2017-05-10 卡文迪什动力有限公司 用于rf应用的mems可变电容器的布线
US9048805B2 (en) 2011-10-04 2015-06-02 Rf Micro Devices, Inc. Tunable duplexer architecture
US9083311B2 (en) 2011-12-30 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Apparatus having double phase-matched configuration for reducing magnitude of intermodulation products
JP5451791B2 (ja) * 2012-02-08 2014-03-26 太陽誘電株式会社 積層インダクタ
KR101350461B1 (ko) 2012-04-03 2014-01-09 주식회사 하이딥 튜너블 커패시터
US9276570B2 (en) 2012-07-07 2016-03-01 Skyworks Solutions, Inc. Radio-frequency switch having gate node voltage compensation network
US9190994B2 (en) 2012-08-29 2015-11-17 Newport Fab, Llc RF switch branch having improved linearity
US9362883B2 (en) 2013-03-13 2016-06-07 Tdk Corporation Passive radio frequency signal handler
WO2014145662A2 (en) 2013-03-15 2014-09-18 Wispry, Inc. Tunable filter systems, devices and method
CN105210292B (zh) 2013-03-15 2018-03-23 维斯普瑞公司 调谐系统、装置以及方法
US8760241B1 (en) 2013-03-15 2014-06-24 Wilson Electronics, Llc Circuit isolation using a signal splitter/combiner
US9324490B2 (en) 2013-05-28 2016-04-26 Tdk Corporation Apparatus and methods for vector inductors
US9086709B2 (en) 2013-05-28 2015-07-21 Newlans, Inc. Apparatus and methods for variable capacitor arrays
US9570222B2 (en) 2013-05-28 2017-02-14 Tdk Corporation Vector inductor having multiple mutually coupled metalization layers providing high quality factor
US9312221B2 (en) 2013-06-13 2016-04-12 Taiwan Semiconductor Manufacturing Co., Ltd. Variable capacitance devices
US9640532B2 (en) 2014-02-14 2017-05-02 Qualcomm Incorporated Stacked metal oxide semiconductor (MOS) and metal oxide metal (MOM) capacitor architecture
US9735752B2 (en) 2014-12-03 2017-08-15 Tdk Corporation Apparatus and methods for tunable filters
US9461610B2 (en) 2014-12-03 2016-10-04 Tdk Corporation Apparatus and methods for high voltage variable capacitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1420626A (zh) * 2001-11-16 2003-05-28 松下电器产业株式会社 功率放大器、功率放大方法和无线电通信装置
WO2006099419A1 (en) * 2005-03-11 2006-09-21 Merrimac Industries, Inc. Circuitry module
US20130039228A1 (en) * 2009-12-03 2013-02-14 Rf Micro Devices, Inc. Duplexer with active temperature compensation
US20130099864A1 (en) * 2010-06-21 2013-04-25 Panasonic Corporation Power amplifier
US20120193771A1 (en) * 2011-01-27 2012-08-02 Fujitsu Limited Transmission line, impedance transformer, integrated circuit mounted device, and communication device module
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
US20130090080A1 (en) * 2011-10-05 2013-04-11 Lothar Schmidt Filter arrangement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570222B2 (en) 2013-05-28 2017-02-14 Tdk Corporation Vector inductor having multiple mutually coupled metalization layers providing high quality factor
CN110518345A (zh) * 2019-08-26 2019-11-29 深圳迈睿智能科技有限公司 具有接地点的微波探测器及其制造方法
CN110518345B (zh) * 2019-08-26 2023-09-08 深圳迈睿智能科技有限公司 具有接地点的微波探测器及其制造方法
CN110677139A (zh) * 2019-09-25 2020-01-10 北京中石正旗技术有限公司 一种数控带通滤波模块
CN115513628A (zh) * 2020-06-30 2022-12-23 苹果公司 电平衡双工器、使用其的方法以及电子设备
CN115513628B (zh) * 2020-06-30 2024-02-02 苹果公司 电子设备、发射数据的方法和接收数据的方法

Also Published As

Publication number Publication date
CN105379114A (zh) 2016-03-02
WO2014193846A1 (en) 2014-12-04
US9449749B2 (en) 2016-09-20
JP2016526300A (ja) 2016-09-01
JP2016524816A (ja) 2016-08-18
CN105359409A (zh) 2016-02-24
EP3005561A1 (en) 2016-04-13
US20140354377A1 (en) 2014-12-04
CN105453424A (zh) 2016-03-30
EP3005558A1 (en) 2016-04-13
WO2014193845A3 (en) 2015-03-05
EP3005560A1 (en) 2016-04-13
WO2014193501A1 (en) 2014-12-04
US9019007B2 (en) 2015-04-28
WO2014193503A1 (en) 2014-12-04
EP3005557A1 (en) 2016-04-13
CN105408971A (zh) 2016-03-16
JP2016521931A (ja) 2016-07-25
EP3005382A2 (en) 2016-04-13
US9570222B2 (en) 2017-02-14
WO2014193845A2 (en) 2014-12-04
JP2016527705A (ja) 2016-09-08
US20140355172A1 (en) 2014-12-04
US20140354370A1 (en) 2014-12-04
WO2014193502A1 (en) 2014-12-04
JP2016523446A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
CN105340176A (zh) 提高射频电路的线性的信号处理装置
US6803835B2 (en) Integrated filter balun
US7825746B2 (en) Integrated balanced-filters
US9735752B2 (en) Apparatus and methods for tunable filters
Xu et al. Single-and dual-band LTCC filtering switch with high isolation based on coupling control
US10027306B2 (en) Non-reciprocal, tunable notch amplifying RF front-ends based on distributedly modulated capacitors (DMC)
CN109192726A (zh) 用于多模滤波器的电路和方法
US8299869B2 (en) Setting of a balun
Ko et al. A 1.4–2.3-GHz tunable diplexer based on reconfigurable matching networks
US10243539B2 (en) Radio frequency transmit filter with integrated impedance matching network
CN108899158B (zh) 可调谐电感器装置、收发器、方法和计算机程序
US9324490B2 (en) Apparatus and methods for vector inductors
JP2013085076A (ja) 伝送線路共振器、帯域通過フィルタ及び分波器
Wong et al. Reconfigurable bandstop and bandpass filters with wideband balun using IPD technology for frequency agile applications
CN113889735A (zh) 威尔金森功率组合器、通信单元以及其方法
Zhu et al. Novel tunable isolation network used in ring-type single-to-balanced, power-dividing, and single-ended filter with arbitrary power-division ratios
De Luis et al. A tunable asymmetric notch filter using RFMEMS
EP2892151B1 (en) Filter device and duplexer
Sim et al. A compact lumped-element lowpass filter using low temperature cofired ceramic technology
WO2014159172A1 (en) Passive radio frequency signal handler
Borah et al. Ultra-compact balanced multiband fully reconfigurable bandstop filter
Ni Development of tunable and miniature microwave filters for modern wireless communications
CN108493529B (zh) 双频滤波器
WO2010071248A1 (en) Enhanced chireix combiner
Psychogiou et al. Miniaturized Signal-Interference Bandpass Filters Using Resonant RF Signal Paths

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160325

Address after: Tokyo, Japan, Japan

Applicant after: TDK Corp.

Address before: Massachusetts, USA

Applicant before: NEWLANS INC.

WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160217

WD01 Invention patent application deemed withdrawn after publication