CN102834291A - 电动车辆中的无线电力传输 - Google Patents
电动车辆中的无线电力传输 Download PDFInfo
- Publication number
- CN102834291A CN102834291A CN2011800180155A CN201180018015A CN102834291A CN 102834291 A CN102834291 A CN 102834291A CN 2011800180155 A CN2011800180155 A CN 2011800180155A CN 201180018015 A CN201180018015 A CN 201180018015A CN 102834291 A CN102834291 A CN 102834291A
- Authority
- CN
- China
- Prior art keywords
- electric power
- output signal
- conv
- power output
- wireless power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title description 34
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 53
- 230000008859 change Effects 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 10
- 230000002146 bilateral effect Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 5
- 238000007600 charging Methods 0.000 abstract description 88
- 238000010168 coupling process Methods 0.000 abstract description 38
- 238000005859 coupling reaction Methods 0.000 abstract description 38
- 230000008878 coupling Effects 0.000 abstract description 37
- 238000012546 transfer Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 81
- 238000004891 communication Methods 0.000 description 47
- 229910000859 α-Fe Inorganic materials 0.000 description 27
- 230000006870 function Effects 0.000 description 15
- 239000000411 inducer Substances 0.000 description 11
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 11
- 230000002441 reversible effect Effects 0.000 description 11
- 238000013461 design Methods 0.000 description 10
- 230000005855 radiation Effects 0.000 description 10
- 230000005611 electricity Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 230000005672 electromagnetic field Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 101150012579 ADSL gene Proteins 0.000 description 1
- 102100020775 Adenylosuccinate lyase Human genes 0.000 description 1
- 108700040193 Adenylosuccinate lyases Proteins 0.000 description 1
- 241000256844 Apis mellifera Species 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 101100243399 Caenorhabditis elegans pept-2 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000287680 Garcinia dulcis Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005662 electromechanics Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000003733 optic disk Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012857 repacking Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/66—Arrangements of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/122—Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/00714—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/20—AC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
示范性实施例是针对在充电基座CB与电池电动车辆BEV之间的耦合模式区中使用磁性谐振的双向无线电力传送。对于不同配置,可发生从所述CB到所述BEV及从所述BEV到所述CB的所述无线电力传送。
Description
根据35 U.S.C.§119的优先权主张
本申请案根据35 U.S.C.§119(e)主张以下各申请案的优先权:
2010年4月8日申请的题目为“电动车辆背景下的无线电力传输(WIRELESSPOWER TRANSMISSION IN ELECTRIC VEHICLES BACKGROUND)”的第61/322,196号美国临时专利申请案,所述案的揭示内容在此以全文引用的方式并入本文中;
2010年4月8日申请的题目为“用于车辆的无线电力天线对准调整系统(WIRELESSPOWER ANTENNA ALIGNMENT ADJUSTMENT SYSTEM FOR VEHICLES)”的第61/322,214号美国临时专利申请案,所述案的揭示内容在此以全文引用的方式并入本文中;及
2010年4月8日申请的题目为“用于无线电力背景的车辆导引系统(VEHICLEGUIDANCE SYSTEM FOR WIRELESS POWER BACKGROUND)”的第61/322,221号美国临时专利申请案,所述案的揭示内容在此以全文引用的方式并入本文中。
对同在申请中的专利申请案的参考
本申请案还与以下各申请案有关,所述申请案已转让给本受让人且与本申请案在同一天申请,所述申请案的揭示内容以全文引用的方式并入本文中:
2011年4月8日申请的题目为“用于车辆的无线电力天线对准调整系统(WIRELESSPOWER ANTENNA ALIGNMENT ADJUSTMENT SYSTEM FOR VEHICLES)”的美国专利申请案(代理人案号101329),所述案的揭示内容在此以全文引用的方式并入本文中。
技术领域
本发明大体来说涉及无线电力传送,且更具体来说,涉及与到包括电池的车辆的无线电力传送有关的装置、系统及方法。
背景技术
正开发在发射器与耦合到待充电的电子装置的接收器之间使用空中或无线电力传输的方法。这些方法大体上属于两种类别。一种类别是基于发射天线与待充电的装置上的接收天线之间的平面波辐射(也称为远场辐射)的耦合。接收天线收集所辐射的电力且将其整流以用于对电池充电。此方法的缺点为:电力耦合随着天线之间的距离增加而迅速衰退,因此,超过合理距离(例如,小于1到2米)的充电变得困难。另外,由于发射系统辐射平面波,因此如果未经由滤波来进行适当控制,则无意的辐射可干扰其它系统。
无线能量传输技术的其它方法是基于嵌入于(例如)“充电”垫或表面中的发射天线与嵌入于待充电的电子装置中的接收天线(加整流电路)之间的感应耦合。此方法具有以下缺点:发射天线与接收天线之间的间距必须极接近(例如,在几毫米内)。尽管此方法确实具有对同一区域中的多个装置同时充电的能力,但此区域通常极小且需要用户准确地将装置定位到一特定区域。
近来,已引入包括来自电及提供所述电的电池的移动电力的车辆。混合电动车辆包括使用来自车辆制动及传统马达的电力对车辆充电的机载充电器。仅为电动车辆的车辆必须从其它源接收电以用于对电池充电。常规地,提议经由某种类型的有线交流电(AC)(例如,家用或商业AC电源)对这些电动车辆充电。
归因于在无线电力传输过程中发生的损失而使得效率是无线电力传送系统中重要的。由于与有线传送相比较,无线电力传输常常为低效率的,因此效率是无线电力传送环境中受到更大关注的。因此,需要将无线电力提供到电动车辆的方法及设备。
电动车辆的无线充电系统可能需要使发射天线与接收天线在某一程度内对准。电动车辆无线充电系统内的发射天线与接收天线的充分对准可能需要将电动车辆适当地定位于停放空间内,以及在将电动车辆已定位于停放空间内之后精细调谐天线位置。
因此,需要将无线电力提供到电动车辆的方法及设备。
发明内容
附图说明
图1为说明无线充电系统可与多种可更换电池(所述多种可更换电池中的每一者可用于多种电池电动车辆(BEV)中)一起使用的方式的阶层图。
图2说明将装备有无线接收器的BEV停放于无线发射器附近时的BEV的无线充电系统。
图3为BEV的无线电力充电系统的简化框图。
图4为BEV的无线电力充电系统的更详细框图,所述图说明发射天线及接收天线的通信链路、导引链路及对准系统。
图5说明可用于本发明的一些实施例中的用于低电压电力线通信的分配系统的部分。
图6展示可代表用于对可用于BEV中的电池进行充电的锂离子电池的典型充电过程。
图7说明关于可用于BEV中的电池的充电时间的实例。
图8说明展示可用于BEV的无线充电的各种频率的频谱。
图9说明可用于BEV的无线充电中的一些可能的频率及发射距离。
图10说明展示相对于天线的半径的磁场强度的发射及接收环形天线。
图11A及11B说明在环形天线及伴随的铁氧体背衬周围的磁场。
图12为说明针对作为无线电力天线的部分的铁氧体背衬的各种厚度的可能的电感值的曲线图。
图13为说明针对作为无线电力天线的部分的铁氧体背衬的各种厚度的可能的铁氧体损失值的曲线图。
图14展示安置于电池电动车辆(BEV)中的可更换不接触式电池的简化图。
图15A及15B为相对于电池的无线电力天线及铁氧体材料置放的更详细图。
图16为BEV中经装备而以无线方式接收或发射电力的电池系统的部分的简化框图。
图17A及17B分别说明关于使用半桥式串联谐振电路的电力转换系统的简化电路图及波形。
图18A及18B分别说明关于使用全H桥式串联谐振电路的电力转换系统的简化电路图及波形。
图19为电力转换系统的简化电路图,所述图用以说明对无线电力系统中的接收器与发射器两者的调适。
图20为无线电力系统的等效电路图,所述图说明可在开发有效率无线电力系统中变化的一些参数。
图21说明可用以模型化无线电力系统的各种参数的等效电路图。
图22为BEV的无线电力系统的简化框图,所述图说明系统的一些基本组件。
图23为BEV的无线电力系统的简化电路图,所述图说明用于产生无线电力信号的一些可能的电路及波形。
图24为BEV的无线电力系统的简化框图,所述图说明用于将直流电DC转换到合适无线电力频率的可变电力控制块。
图25A到25G为BEV的无线电力系统的简化框图,所述图说明图24的可变电力控制块的各种示范性实施例。
图26为BEV的无线电力系统的简化框图,所述图说明图24到25G中所展示的可变电力控制也可适用于BEV中的负载调适。
图27为BEV的无线电力系统的简化框图,所述图说明可存在于本发明的一些实施例中的在BEV与发射器之间的通信信道。
图28为BEV的无线电力系统的简化框图,所述图说明用于将DC信号转换到合适无线电力频率的可变电力控制块及功率因子校正块。
图29A到29C分别说明在已包括功率因子校正之前的整流器电路、波形及谐波。
图30为整流器与无源功率因子控制块的简化框图。
图31A到31D分别说明关于有源功率因子控制的简化示意图、波形、校正函数及谐波。
图32为说明以下各谐波的曲线图:在无功率因子控制的整流器中存在的谐波、在具有无源功率因子控制的整流器中存在的谐波,及在具有有源功率因子控制的整流器中存在的谐波。
图33为BEV的无线电力系统的简化框图,所述图说明BEV中的电源切换。
图34为BEV的无线电力系统的简化电路图,所述图说明用于功率因子控制的一些可能的电路及波形。
图35A及35B为分别说明在将未经滤波的DC供应到低频(LF)级的情况下在时域及频域中的发射波形的曲线图。
图36为BEV的无线电力系统的简化框图,所述图说明无线电力传输可为双向的。
图37为BEV的无线电力系统的简化电路图,所述图说明在具有中间未经滤波的DC信号的情况下的双向无线电力传送的对称拓扑。
图38为BEV的无线电力系统的简化电路图,所述图说明在无中间未经滤波的DC信号的情况下且使用混频方法的无线电力传送的对称拓扑。
图39A及39B为分别说明在经双边频带(DSB)调制的电力转换的情况下在时域及频域中的发射波形的曲线图。
图40为BEV的无线电力系统的简化框图,所述图说明到导电充电接口的耦合(此情形可减少对额外AC/DC转换器的需要)。
图41为BEV的无线电力系统的简化框图,所述图说明在一些示范性实施例中,可能不需要在BEV充电系统与BEV无线电力系统之间进行通信。
图42A为BEV的无线电力系统的简化框图,所述图说明粗略负载调适。
图42B为BEV的无线电力系统的简化框图,所述图说明精细负载调适。
图43为BEV的无线电力系统的简化框图,所述图说明反向链路负载调适。
图44为说明粗略负载调适的流程图。
图45为说明粗略负载调适的步骤的电压对电流曲线图。
图46为说明精细负载调适的步骤的电压对电流曲线图。
图47为说明针对可用于示范性实施例中的各种固态开关的频率对电流特性的曲线图。
图48说明随着发射器工作循环而变的正规化功率以展示工作循环的相当大范围。
图49为说明在高频下的无线电力系统的一示范性实施例的简化框图。
图50为BEV的无线电力系统的简化电路图,所述图说明无线电力传送的不对称E类拓扑。
图51为BEV的无线电力系统的简化电路图,所述图说明无线电力传送的对称E类拓扑。
图52为说明BEV的无线电力系统中的谐波滤波的简化电路图。
图53为说明BEV的无线电力系统中的谐振调谐的简化电路图。
具体实施方式
下文结合附加图式所阐述的详细描述既定作为对本发明的示范性实施例的描述且既定不表示可实践本发明的仅有实施例。贯穿此描述所使用的术语“示范性”意味着“充当一实例、例子或说明”,且未必应被解释为比其它示范性实施例优选或有利。所述详细描述包括特定细节以用于提供对本发明的示范性实施例的透彻理解的目的。所属领域的技术人员将显而易见,可在无这些特定细节的情况下实践本发明的示范性实施例。在一些例子中,以框图形式展示众所周知的结构及装置以便避免混淆本文中所呈现的示范性实施例的新颖性。
术语“无线电力”在本文中用以意味着在不使用物理电磁导体的情况下从发射器发射到接收器的与电场、磁场、电磁场或其它者相关联的任何形式的能量。
此外,术语“无线充电”在本文中用以意味着将无线电力提供到一个或一个以上电化学电池或包括电化学电池的系统以用于对电化学电池再充电的目的。
术语“电池电动车辆(BEV)”在本文中用以意味着包括(作为其移动能力的部分)从一个或一个以上可再充电电化学电池得到的电力的车辆。作为非限制性实例,一些BEV可为包括使用来自车辆减速及传统马达的电力对车辆充电的机载充电器的混合电动车辆,其它BEV可从电力获得所有移动能力。
本发明的示范性实施例包括将无线电力提供到电动车辆的方法及设备。
图1为说明无线充电系统可与多种可更换电池(所述多种可更换电池中的每一者可用于多种电池电动车辆中)一起使用的方式的阶层图。从顶部开始,可能存在BEV的许多不同模型。然而,车辆模型的群组可经调适以仅使用有限数目个可更换电池单元,例如电动车辆(EV)电池类型A、EV电池类型B及EV电池类型C。作为非限制性实例,可基于电池的所需容量、电池所需的空间、电池的形状因子、无线电力天线的大小及无线电力天线的形状因子而配置这些不同的电池类型。在电池类型有限(特定来说,无线天线的大小、置放及形状因子有限)的情况下,可提供一种将提供到各种电池类型的近场无线耦合的单一无线电力递送解决方案。
电池集成解决方案可使EV制造商容易采用无线充电,这是因为此解决方案将对EV的电气及机械设计仅有微小影响。一旦被广泛接受并得以标准化,便仅需要相对较小数目个EV电池类型在流通中。限制电池类型将简化无线BEV充电解决方案的定制,这是因为电池类型的数目将远远小于未来将引入到市场中的EV模型的数目。
此外,有限的电池类型可使得能够改装现有EV模型以用于无线充电。可通过用新电池更换EV中的常规电池来简单地执行此改装,所述新电池集成无线充电且在其所有其它接口下相当于原始电池。另外,无线电力电池类型可配置有到其余车辆的无线及不接触式充电接口,从而允许容易的电池调换及电池的不接触式再充电,此情形可包括关于可靠性、机械磨损及安全性的一些优点。
图2说明将具备无线充电功能的BEV 102停放于无线充电基座(CB)104附近时的BEV的无线充电系统。说明两辆车辆102在停放区域106中且停放于对应CB 104上。本地分配中心108连接到电力骨干,且经配置以将交流电(AC)或直流电(DC)供应提供到作为CB 104的部分的电力转换系统112。CB 104还包括用于产生或拾取近场辐射的无线电力天线114。每一车辆包括电池、BEV电力转换及充电系统116,及经由近场与CB天线114互动的无线电力天线118。在一些示范性实施例中,可使BEV天线118与CB天线114对准,且因此,通过驾驶员将车辆相对于CB天线114正确地定位而简单地将BEV天线118安置于近场区内。在其它示范性实施例中,可对驾驶员给予视觉反馈、听觉反馈或视觉反馈与听觉反馈的组合,以使驾驶员确定何时适当地置放车辆以用于无线电力传送。在又其它示范性实施例中,可通过自动驾驶系统来定位车辆,所述自动驾驶系统可使车辆来回移动(例如,以锯齿形移动)直到对准误差已达到容许值为止。如果车辆装备有伺服方向盘、周围超音波传感器及人工智能,便可由车辆在无驾驶员干预或仅有最少驾驶员干预的情况下自动地且自主地执行此操作。在再其它示范性实施例中,BEV天线118、CB天线114或其组合可包括用于使所述天线相对于彼此移位及移动以更准确地定向所述天线且在所述天线之间形成更佳近场耦合的装置。
CB 104可位于多种位置中。作为非限制性实例,一些合适位置为车辆拥有者的家的停放区域、仿造常规基于石油的加油站的保留用于BEV无线充电的停放区域,及在其它位置(例如,购物中心及工作地点)的停放坪。
这些BEV充电站可提供众多益处,例如:
●便利性:可在无驾驶员干预及操控的情况下实际上自动地执行充电。
●可靠性:可能不存在暴露的电触点且不存在机械磨损。
●安全性:可能不需要通过电缆及连接器进行的操控,且可能不存在可能在户外环境下暴露到湿气及水的电缆、插塞或插口。
●防止破坏行为:可能不存在既可见也易接近的插口、电缆及插塞。
●可用性:如果BEV将用作用以使电网稳定的分布式存储装置。可用性可随着实现车辆到电网(V2G)能力的便利的衔接到电网解决方案而增加。
●富于美感及无妨碍的:可能不存在对于车辆及/或行人来说可能为妨碍的柱负载(column load)及电缆。
作为V2G能力的进一步解释,可将无线电力发射与接收能力配置为互逆的,以使得CB 104将电力传送到BEV 102且BEV将电力传送到CB 104。此能力可通过允许以下情形而可用于电力分配稳定性:BEV以与可将太阳能电池电力系统连接到电力电网且将过剩电力供应到电力电网的方式类似的方式将电力贡献给整个分配系统。
图3为BEV的无线电力充电系统130的简化框图。本文中所描述的示范性实施例使用形成谐振结构的电容性负载导线回路(即,多匝线圈),在初级结构(发射器)与次级结构(接收器)两者经调谐到一共同谐振频率的情况下,所述谐振结构能够经由磁性近场将能量从初级结构有效率地耦合到次级结构。所述方法也被称为“磁性耦合谐振”及“谐振感应”。
为了使得能够进行无线高电力传送,一些示范性实施例可使用在20kHz到60kHz的范围中的频率。此低频耦合可允许可使用目前技术状态的固态装置而实现的高效率电力转换。另外,可能存在关于无线电系统的较少共存问题(与其它频带相比较)。
在图3中,可为AC或DC的常规电源132将电力供应到CB电力转换模块134(假定能量传送朝向车辆)。CB电力转换模块134驱动CB天线136以发射所要频率信号。如果CB天线136与BEV天线138经调谐到实质上相同的频率且足够接近于处于来自发射天线的近场辐射内,则CB天线136与BEV天线138耦合,以使得可将电力传送到BEV天线138且在BEV电力转换模块140中提取电力。BEV电力转换模块140可接着对BEV电池142充电。电源132、CB电力转换模块134及CB天线136构成整个无线电力系统130的基础结构部分144,基础结构部分144可为固定的且位于多种位置处(如上文所论述)。BEV电池142、BEV电力转换模块140及BEV天线138构成无线电力子系统146,无线电力子系统146为车辆的部分或电池组的部分。
在操作中,假定能量传送朝向车辆或电池,则从电源132提供输入电力,以使得CB天线136产生用于提供能量传送的辐射场。BEV天线138耦合到所述辐射场且产生用于存储或供车辆消耗的输出电力。在示范性实施例中,根据相互谐振关系来配置CB天线136及BEV天线138,且当BEV天线138的谐振频率与CB天线136的谐振频率极接近时,当BEV天线138位于CB天线136的“近场”中时,CB与BEV无线电力子系统之间的发射损失为最小的。
如所陈述,通过将发射天线的近场中的大部分能量耦合到接收天线而非以电磁波形式将大多数能量传播到远场来发生有效率的能量传送。当在此近场中时,可在发射天线与接收天线之间形成耦合模式。可发生此近场耦合的在天线周围的区域在本文中被称作近场耦合模式区。
CB与BEV电力转换模块均可包括用于与无线电力天线的有效率耦合的振荡器、功率放大器、滤波器及匹配电路。振荡器经配置以产生所要频率,所述所要频率可响应于调整信号而加以调整。可由功率放大器以响应于控制信号的放大量来放大振荡器信号。可包括滤波器及匹配电路以滤除谐波或其它不希望的频率且使电力转换模块的阻抗与无线电力天线匹配。
CB及BEV电力转换模块也可包括整流器,及用以产生合适电力输出以对电池充电的切换电路。
示范性实施例中所使用的BEV天线及CB天线可配置为“环形”天线(且更具体来说,多匝环形天线),环形天线在本文中也可被称作“磁性”天线。环形(例如,多匝环形)天线可经配置以包括一空心或一物理心(例如,铁氧体心)。空心环形天线可允许其它组件置放于心区域内。物理心天线可允许形成较强电磁场。
如所陈述,在发射器与接收器之间的匹配或几乎匹配的谐振期间,发生发射器与接收器之间的有效率的能量传送。然而,甚至当发射器与接收器之间的谐振不匹配时,也可以较低效率传送能量。通过将来自发射天线的近场的能量耦合到驻留于建立了此近场的邻域中的接收天线而非将能量从发射天线传播到自由空间中来发生能量传送。
环形天线的谐振频率是基于电感及电容。环形天线中的电感大体上仅为由所述环形建立的电感,而电容大体上添加到环形天线的电感以在所要谐振频率下建立一谐振结构。作为一非限制性实例,可以与天线串联的方式添加电容器以建立一产生磁场的谐振电路。因此,对于较大直径的环形天线来说,诱发谐振所需的电容的大小随着环形的直径或电感增加而减小。应进一步注意,电感也可取决于环形天线的匝数。此外,随着环形天线的直径增加,近场的有效率的能量传送区域增加。当然,其它谐振电路是可能的。作为另一非限制性实例,可将电容器并联地置放于环形天线的两个端子之间(即,并联谐振电路)。
本发明的示范性实施例包括在处于彼此的近场中的两个天线之间耦合电力。如所陈述,近场是在天线周围的区域,在所述区域中,存在电磁场(在本文中也被称作近场辐射)但电磁场不可传播或辐射远离所述天线。近场耦合模式区通常限于接近天线的物理体积的体积(例如,在波长的六分之一的半径内)。在本发明的示范性实施例中,由于与电型天线(例如,小偶极)的电近场相比较,在实际实施例中磁性型天线的磁性近场振幅倾向于较高,因此将例如单匝及多匝环形天线等磁性型天线用于发射与接收两者。此情形允许所述对之间的潜在较高耦合。依赖于实质上磁场的另一原因在于磁场在环境与安全性问题上与不导电电介质材料的低互动。用于无线高电力传输的电天线可涉及极高电压。此外,也预期“电”天线(例如,偶极及单极)或磁性天线与电天线的组合。
图4为BEV的一般无线电力充电系统150的更详细框图,所述图说明用于CB天线158及BEV天线160的通信链路152、导引链路154及对准系统156。如同图3的示范性实施例且假定能量流朝向BEV,在图4中,CB电力转换单元162从CB电力接口164接收AC或DC电力,且在CB天线158的谐振频率或接近CB天线158的谐振频率下激励CB天线158。当BEV天线160处于近场耦合模式区中时,BEV天线160从近场耦合模式区接收能量以在谐振频率或接近谐振频率下振荡。BEV电力转换单元166将来自接收天线160的振荡信号转换成适合于对电池充电的电力信号。
所述一般系统也可分别包括CB通信单元168及BEV通信单元170。CB通信单元168可包括一到其它系统(未图示)(例如,计算机及电力分配中心)的通信接口。BEV通信单元170可包括一到其它系统(未图示)(例如,车辆上的机载计算机、其它电池充电控制器、车辆内的其它电子系统,及远程电子系统)的通信接口。
CB及BEV通信单元可包括用于特定应用的子系统或功能,因此具有单独通信信道。这些通信信道可为单独物理信道或仅单独逻辑信道。作为非限制性实例,CB对准单元172可与BEV对准单元174通信以提供反馈机制,以使CB天线158与BEV天线160自主地或通过操作员辅助而更紧密地对准。类似地,CB导引单元176可与BEV导引单元178通信以提供反馈机制,以导引操作员使CB天线158与BEV天线160对准。另外,可能存在单独通用通信信道152,单独通用通信信道152包括用于在CB与BEV之间传达其它信息的CB通信单元180及BEV通信单元182。此信息可包括关于EV特性、电池特性、充电状态及CB与BEV两者的电力能力的信息,以及维护及诊断数据。这些通信信道可为单独物理通信信道(例如,蓝牙、紫蜂(zigbee)、蜂窝式等等)。
另外,可在不使用特定通信天线的情况下经由无线电力链路执行一些通信。换句话说,通信天线与无线电力天线相同。因此,CB的一些示范性实施例可包括用于启用无线电力路径上的键控型协议的控制器(未图示)。通过在预定义时间间隔下根据预定义协议来键控发射功率电平(幅移键控),接收器可检测来自发射器的串行通信。CB电力转换模块162可包括负载感测电路(未图示),所述负载感测电路用于检测在由CB天线158产生的近场附近存在或不存在作用中BEV接收器。以实例说明,负载感测电路监视流动到功率放大器的电流,所述电流受由CB天线158产生的近场附近存在或不存在作用中接收器影响。对功率放大器上的负载改变的检测可由控制器来监视,以用于确定是否启用振荡器用于发射能量、以与作用中接收器通信,或其组合。
BEV电路可包括切换电路(未图示),所述切换电路用于将BEV天线160连接到BEV电力转换单元166及将BEV天线160与BEV电力转换单元166断开。断开BEV天线不仅暂时中止充电,而且还改变如为CB发射器“所见”的“负载”,断开BEV天线可用以“隐匿”BEV接收器以免被发射器见到。如果CB发射器包括负载感测电路,则负载感测电路可检测到这些负载改变。因此,CB具有用于确定BEV接收器何时存在于CB天线的近场中的机制。
图5说明可用于本发明的一些实施例中能够进行低电压电力线通信的电力分配系统200的部分。可经由电力分配182将CB链接到电力线通信系统,以经由支持相关电力线通信(PLC)标准的CB的外部CB-COM接口提供PLC。与外部CB-COM接口通信的PLC节点可集成于电量(能量)计184中。在许多国家且特别在欧洲,PLC可作为自动计量基础结构(AMI)的部分且针对智能型电网应用发挥重要作用。AMI可包括例如以下各者的元素:电、气体、水、热量的自动仪表读取(AMR);能量及水使用分布;需求预测;及需求侧管理。此外,在本发明的示范性实施例的情况下,AMI可包括针对BEV的对V2G的管理。作为一非限制性实例,室内PLC系统可配置为家庭自动化应用的家庭局域网络的部分。PLC节点的一些非限制性频率可在频带B(95 kHz到125 kHz)或频带C(125 kHz到140 kHz)中。
BEV中的无线电力充电可适应于许多不同电池能力及技术。对于一些示范性实施例,关于电池能力及技术的信息可用于确定充电特性及充电概况。电池能力的一些非限制性实例为:电池电荷、电池能量、电池电压、电池容量、电池充电电流、电池充电功率,及充电能力。
许多不同电池及电化学电池技术可用于BEV中。合适电化学电池的一些非限制性实例为锂离子、锂聚合物及铅酸型电池。锂离子电池可归因于高电池组电压(例如,400V)而提供高能量密度。铅酸电池可归因于高电池容量(例如,180 Ah)而提供高能量密度。当前,已存在趋向锂离子电池的趋势,这是因为锂离子电池提供高能量密度及高功率密度。然而,本发明的示范性实施例可用于其它可再充电电化学电池或机电(例如,飞轮)电池中且甚至可用于未来可再充电电化学电池或机电电池中。
图6说明可代表可用于BEV中的电池的锂离子电池的典型充电过程。所述曲线图说明充电电流对充电时间、电池电压及充电容量。在第一阶段期间,当充电容量正以相对较高速率增加时,可将实质上恒定的电流施加到电池。在第二阶段期间,当充电容量接近满量充电时,可施加实质上恒定的电压。图6说明关于在电池的额定容量(常常被称作1C)下对电池充电的实例充电情况。可使用其它快速充电情况,例如比1C快的速率(例如,2C、3C等等)。
图7说明关于可用于BEV中的电池的充电时间的实例。展示25kWh的所存储能量作为BEV中的典型电池的充电容量的一个实例。取决于可用电力,在约21kW的高递送能力下,达成满载容量的充电时间可低达约1.25小时,在约7kW的加速递送能力下,达成满载容量的充电时间可为约3.5小时,在约3kW的常规递送能力下,达成满载容量的充电时间可为约8.5小时,且在约2kW的家用递送能力下,达成满载容量的充电时间可为约12.5小时。图7既定仅作为一实例来展示充电时间的范围及可使充电时间适应于无线电力递送能力的方式。
图8说明展示可为可用的且适合于BEV的无线充电的各种频率的频谱。用于到BEV的无线高电力传送的一些可能频率范围包括:在3kHz到30kHz频带中的VLF、在30kHz到150kHz频带中的较低LF(针对类ISM应用)(其中一些频率排除)、HF 6.78MHz(ITU-RISM-频带6.765MHz到6.795MHz)、HF 13.56MHz(ITU-R ISM-频带13.553到13.567),及HF 27.12MHz(ITU-R ISM-频带26.957到27.283)。
图9说明可用于BEV的无线充电中的一些可能的频率及传输距离。可用于BEV无线充电的一些实例传输距离为约30mm、约75mm及约150mm。一些示范性频率可为VLF频带中的约27kHz及LF频带中的约135kHz。
必须考虑到关于在恰好超出接收天线与发射天线的谐振特性及耦合模式区范围的情况下确定合适频率的许多考虑事项。无线电力频率可能干扰用于其它应用的频率。作为非限制性实例,可能存在关于电力线频率、可听频率及通信频率的VLF/LF共存问题。VLF与LF的共存可为问题的一些非限制性实例为:无线电时钟的频率、用于LW AM广播及其它无线电服务的频率、到ISDN/ADSL及ISDN/xDSL通信信道的交叉耦合、电子车辆固定系统、RFID(射频识别)系统、EAS(电子物品防盗)系统、现场传呼、低电压PLC系统、医学植入物(心脏起搏器等等)、人及动物可感知的音频系统及声发射。
HF频率的共存可为问题的一些非限制性实例为工业、科学及医学(ISM)无线电频带,例如:用于远程控制应用及在连续能量传送的情况下在FDX或HDX模式中的RFID的6.78MHz;用于在连续能量传送的情况下在FDX或HDX模式中的RFID以及便携式装置无线电力的13.56MHz;及用于铁路应用(欧洲查询应答器(Eurobalise)27.095MHz)、民用频带无线电及远程控制(例如,模型、玩具、车库门、计算机鼠标等等)的27.12MHz。
图10说明展示相对于天线的半径的场强度的发射及接收环形天线。对于给定所传送电力,半径大于或小于最佳半径的天线结构在天线附近产生较高场强度。如果天线半径成比例地增加从而始终为最佳的,则H场强度便随着电力传送距离增加且针对给定所传送电力而线性地增加。
图11A及11B说明在环形天线及伴随铁氧体背衬周围的电磁场。发射天线包括导线回路1130(其可包含多匝导线回路),及铁氧体背衬1120,且接收天线包括导线回路1180及铁氧体背衬1170。在VLF及LF频率下,铁氧体背衬可用于强化在天线之间的空间中的磁场1140,从而获得增强的耦合。如图11A中所展示,如果天线线圈1130及1180与铁氧体背衬1120及1170之间的分离减少到0cm,则发射天线与接收天线之间的耦合系数稍微减小。因此,在天线线圈1130及1180与铁氧体背衬1120及1170之间可能存在理想的分离。图11B说明天线线圈1130及1180与铁氧体背衬1120及1170之间的小分离。另外,图11B说明天线线圈1130及1180与其相应铁氧体背衬1120及1170之间的减小的间距。对于较小传输距离(例如,3cm),铁氧体背衬的性能增益可为较小的,这是因为耦合系数已为极高的。
图12为说明针对作为无线电力天线的部分的铁氧体背衬的各种厚度的可能的电感值的曲线图。在图12的示范性实施例中,铁氧体背衬距线圈约0.5cm。可见,电感并不随着约5mm与10mm之间的铁氧体背衬的厚度改变而相当大地改变(即,约5%)。
图13为说明针对作为无线电力天线的部分的铁氧体背衬的各种厚度的可能的铁氧体损失值的曲线图。在图12的示范性实施例中,铁氧体背衬距线圈约0.5cm。可见,损失随着约5mm与10mm之间的铁氧体背衬的厚度改变而迅速地增加(即,约185%)。所得损失可减小Q因子。因此,可能需要在性能相对于例如体积、重量及成本等考虑事项之间作出取舍。
图14展示安置于电池电动车辆(BEV)220中的可更换电池的简化图。在此示范性实施例中,无线能量传送系统的BEV侧为车辆电池单元222的一体式部分。朝向标准化EV电池的当前发展可使得能够在所谓的电池调换(或切换)站中进行容易且快速的更换。如图14中所展示,电池单元222的形状及置放为一个示范性实施例的说明。许多其它配置是可能的。作为一非限制性实例,电池本体可能在后座下方。
然而,对于集成了无线电力接口且可从嵌入于地面中的充电器接收电力的电池单元来说,低电池位置可能为有用的。快速电池更换将有可能继续与有线及无线BEV充电共存,且并不将完全代替任何替代充电解决方案(例如,无线充电)。在电池调换站中,汽车驾驶员可在可能不到一分钟的时间内得到完全再充电电池(比在常规加油站中再加油快),而有线及无线充电将为在家的解决方案且用于在公共及私人停放坪中的机会性充电以增加车辆自主性时间。
归因于高资本支出问题,电池调换站的部署可能主要沿着主运输轴线且在较大城市中进行。关于分散式且特定来说关于便利充电及衔接到电网解决方案的另一较强争议为BEV用于车辆到电网使用的可用性(如上文所解释)。
在图14中,EV可更换电池单元222容纳于特定设计的电池隔室224中。电池单元222还提供无线电力接口226,无线电力接口226可集成整个BEV侧无线电力子系统,整个BEV侧无线电力子系统包含用于在地面嵌入式充电基座(CB)与电动车辆(EV)电池之间进行有效率且安全的无线能量传送所需的谐振磁性天线、电力转换及其它控制及通信功能。
以下情形可能为有用的:使BEV天线与电池单元222的底侧(车辆主体)齐平地集成,以使得不存在突起部分且使得可维持指定的地面到车辆主体间隙。此配置可能需要电池单元中的一些空间专用于无线电力子系统。
在一些示范性实施例中,CB天线与BEV天线固定于适当位置中,且通过将BEV相对于CB的整体置放而使所述天线处于近场耦合区内。然而,为了迅速地、有效率地且安全地执行能量传送,可能需要减少充电基座天线与BEV天线之间的距离以改善磁性耦合。因此,在一些示范性实施例中,可将CB天线与BEV天线部署为可移动的以使其更好地对准。
图14中还说明完全密封且提供不接触式电力及通信接口226、228的电池单元222。图16中说明此示范性实施例的概念框图。
图15A及15B为相对于电池的环形天线及铁氧体材料置放的更详细图。在这些示范性实施例中,电池单元包括作为无线电力接口的部分的不可部署的BEV天线模块。为了防止磁场穿透到电池单元230中且穿透到车辆内部,可能在电池单元与车辆之间存在一导电屏蔽232(例如,铜片)。此外,不导电(例如,塑料)层234可用以保护导电屏蔽232、线圈236及铁氧体材料238不受所有种类的环境影响(例如,机械损坏、氧化等等)。
图15A展示完全铁氧体嵌入式天线线圈236。线圈236自身可(仅举例来说)由绞合漆包线(Litz wire)制成。图15B展示用以增强耦合且减少导电屏蔽232中的涡电流(热耗散)的最佳设定尺寸的铁氧体板(即,铁氧体背衬)。线圈可完全嵌入于不导电非磁性(例如,塑料)材料234中。由于磁性耦合与铁氧体磁滞损失之间的最佳取舍,因此大体上可在线圈与铁氧体板之间存在分离。
图16为BEV中经装备以接收无线电力的电池系统250的部分的简化框图。此示范性实施例说明可在EV系统252、电池子系统254与到CB(未图示)的无线充电接口之间使用的无线电力接口。电池子系统254提供能量传送以及与EV与电池子系统254之间的无线接口的通信两者,此情形实现完全不接触式、闭合并密封的电池子系统254。所述接口可包括用于双向(双程)无线能量传送、电力转换、控制、电池管理及通信的所有所需功能性。
上文中已解释充电器到电池通信接口256及无线电力接口258,且再次应注意,图16展示一般概念。在特定实施例中,无线电力天线260与通信天线可组合成单一天线。此情形也可适用于电池到EV无线接口262。电力转换(LF/DC)单元264将从CB所接收的无线电力转换成DC信号以对EV电池266充电。电力转换(DC/LF)268将电力从EV电池266供应到电池子系统254与EV系统252之间的无线电力接口270。可包括电池管理单元272以管理EV电池充电、电力转换单元(LF/DC及DC/LF)的控制以及无线通信接口。
在EV系统252中,无线天线274从天线276接收电力,且LF/DC电力转换单元278可将DC信号供应到超级电容器缓冲器280。在一些示范性实施例中,LF/DC电力转换单元278可将DC信号直接供应到EV电源接口282。在其它示范性实施例中,不接触式接口可能不能够提供车辆传动系统(例如)在加速期间所需的高电池峰值电流。为了减小源电阻且从而减小如在EV电源端子处“所见”的EV能量存储系统的峰值功率能力,可使用一额外超级电容器缓冲器。可包括EV电气系统控制单元284以管理电力转换单元(LF/DC)278的控制、超级电容器缓冲器280的充电以及到EV及电池子系统254的无线通信接口262。此外,应注意,V2G能力(如上文所描述)可适用于参看图16所描述且在图16中所说明的概念。
到BEV的无线电力递送可能需要大量电力。因此,较低频率可能更适于较高电力的传输。在VLF及LF的较低频率下,电力转换电子设备可为更可用的。出于清晰及简洁的目的,以下论述将参考LF频率。然而,除非另有注释,否则以下论述也可适用于VLF或高于LF的频率。在将DC转换成LF中,发射器(电力转换器)见到反射阻抗,且在DC电源端子处见到DC电阻。
图17A及17B分别说明关于使用半桥式串联谐振电路的电力转换系统的简化电路图及波形。图17A中的半桥式电路300说明发射电力转换电路,所述发射电力转换电路在合适操作频率下将具有电压VDC及电流IDC的DC电力转换成LF电力以供应一具有电压V1及电流I1的串联谐振天线电路(L1,C1),且在基本频率下呈现负载电阻R1L。此负载电阻表示电力接收器(图17A中未展示)所“反射”的阻抗的实部。在半桥式电力转换电路300的DC输入端子处,半桥式电力转换电路300呈现输入电阻RDC。使用在操作频率下切换且配置为半桥的两个主动控制的固态开关S1及S1'来执行电力转换。电容器CDC辅助缓冲DC输入电力并使输入电压稳定,且阻挡切换频率信号传播到DC供应中。图17B中的波形说明实质上为方波的切换电压V1(t)以及切换电压V1(t)的DC分量与基本频率分量V1,0(t)+VDC/2。可展示,在半桥式电力转换的DC输入处的视在电阻RDC为电阻R1L的约四倍。
图18A及18B分别说明关于使用全H桥式串联谐振电路的电力转换系统的简化电路图及波形。图18A中的全桥式电路310说明发射电力转换电路,所述发射电力转换电路在合适操作频率下将具有电压VDC及电流IDC的DC电力转换成LF电力以供应一具有电压V1及电流I1的串联谐振天线电路(L1,C1),且在基本频率下呈现负载电阻R1L。此负载电阻表示电力接收器(图17A中未展示)所“反射”的阻抗的实部。在全桥式电力转换电路的DC输入端子处,全桥式电力转换电路呈现输入电阻RDC。使用配置为全桥的全部在操作频率下切换且处于适当相位的四个主动控制的固态开关S11、S11′、S12及S12'来执行电力转换。电容器CDC辅助缓冲DC输入电力并使输入电压稳定,且阻挡切换频率信号传播到DC供应中。图18B中的波形说明实质上为方波的切换电压V1(t)以及切换电压V1(t)的基本频率分量V1,0(t)。(理想情况下不存在DC分量)。可展示,在全桥式电力转换的DC输入处的视在电阻RDC约等于电阻R1L。
图19为充当半桥式整流器的电力转换系统的简化电路图,所述图用以说明发射电力转换作为接收电力转换的互逆操作。图19中的半桥式整流器电路320说明用于在连接到负载电阻RDC,L时产生具有电压VDC,L及DC电流IDC,L的DC电力的接收电力转换电路。两个固态开关S2及S2'随着由具有电压V2及电流I2的串联谐振天线电路(L2,C2)接收的电力的频率且同相地同步切换。具有电压Vind,2的电压源表示由发射器诱发的电压。在一些示范性实施例中,可主动控制所述固态开关,而在其它示范性实施例中,所述固态开关可能仅为二极管。电容器CDC辅助滤波并缓冲经整流的LF电力。可展示,对于半桥式拓扑,如为接收谐振天线在基本频率下所见的视在负载电阻R2L为连接到接收电力转换的DC输出的DC负载电阻RDC,L的约四分之一。如图19上所注释,示范性实施例还可包括全H桥式拓扑(未图示)且将具有约1:1的阻抗变换比R2L比RDC,L。
图20为无线电力系统的简化等效电路,所述图说明可在开发有效率无线电力系统中变化的一些参数。大体来说,在发射侧上,在电压VS及其等效源阻抗RS下提供LF信号的LF电源实质上为固定的(给定)。这些源阻抗可表示在发射电力转换电路元件及在谐振发射天线之前的任何匹配或滤波电路中所产生的任何损失。大体来说,在接收侧,负载电阻RL及电压VL以及串联电阻Rr实质上为固定的(给定)。串联电阻Rr可表示在接收电力转换电路元件及在谐振接收天线之后的任何匹配或滤波电路中所产生的任何损失。类似地,对于发射天线与接收天线之间的给定空间关系,可将发射天线线圈的无载Q因子Q1及接收天线线圈的无载Q因子Q2以及发射天线线圈与接收天线线圈之间的耦合因子(k)视为固定的(给定),且调适其它电路元件以基于给定Q1、Q2及耦合因子(k)而使电力传送最优化。
针对此设计问题的明智方法首先指定天线/线圈的所需源及负载电压(特定来说,所需电压传送比ΓV,e)及目标Q因子Q1及Q2。接着通过在维持指定的天线无载Q因子Q1及Q2的同时使天线电感L1及L2、串联谐振损失电阻R1及R2、串联谐振电容器C1及C2及其组合发生变化来执行最优化以获得最大传送效率。
此方法假定可在指定Q因子约束下针对任何所要电感来设计天线线圈。线圈设计实践指示Q因子主要是由指定的体积/形状因子约束而非由电感来确定。因此,Q因子约束最终为体积/形状因子约束。
如果发现最佳电感超出由指定的体积/形状因子约束界定的可用范围,则特定天线匹配电路将变得有必要。在强耦合体系中,通常不需要此特定匹配,这是因为将产生实际电感。然而,适度或弱耦合体系通常需要用于天线匹配的特殊规定。
为了找到变量L1及L2的最佳值,可使用两个独立方程式的系统。一个方程式由指定的电压传送比产生,另一方程式由最佳负载电阻产生。
在使用总Q因子的定义的情况下:
关于比率ΓV,e的方程式可表达为:
且最佳负载电阻RL,opt可表达为:
除了强耦合的对称磁性谐振链路(L1=L2)外,对于一般状况及对于强耦合体系,均可能不存在关于L1,opt及L2,opt的简单分析解。因此,支持最优化的数值方法或网络模拟可为找到解的更好方式。
对于强耦合的对称链路,仅获得:
然而,在对称状况下,电压传送比是通过网络对称性来确定且变成:
其中:
且:ηM,e,max为最大可实现的端对端效率。
图21说明可用于模型化无线电力系统的各种参数的等效电路。如果在指定Q下不可实现最佳电感(例如,归因于电压或电流约束),则可能需要特定匹配电路,此情形通常为适度或弱耦合机制下或针对RL的特定值的状况。如图21中所展示,可使用理想变压器(发射侧上的2110及接收侧上的2120)来表示匹配电路。可以许多不同方式来实现此变换,所述方式例如使用到源及/或负载的分路电容、并联谐振、感应耦合环路等等。
在使磁性谐振链路中的总传送效率最大化中必须考虑许多元素。可大体上通过所需总电压传送比及磁性链路内部及外部损失(例如,归因于电力转换)来确定最佳匹配。在强耦合体系中,通常可通过选择在指定Q因子下的一对最佳天线电感(或L-C比)来实现匹配。根据L-C比进行的匹配(如果可能)可为优选的,这是因为此方法最简单且并不引入额外(有损耗)且昂贵的组件。另外,用于发射及/或接收电力转换的电路可用以执行阻抗变换以将视在源电阻及/或负载电阻调适到最佳值。然而,此情形可添加额外损失,此可能不利地变更比率Rr比RL。因此,当耦合为可变的或负载电阻动态地且相当大地改变时,可最佳使用这些方法。
图22为BEV的无线电力系统400的简化框图,所述图说明系统的一些基本组件。应注意,贯穿此描述,可根据在约50Hz下约230伏特的AC的欧洲标准来参考AC供应电压。然而,供应电压可能为DC,及其它AC格式(例如,在60Hz下110伏特的AC及在60Hz下220伏特的AC的美国标准)。出于清晰及简洁的目的,以下描述将参考LF频率。然而,除非另有注释,否则以下论述也可适用于VLF或高于LF的频率。
如果电力输入信号为DC,则DC/LF转换器402将中间DC电压改变成LF范围中的频率以用于驱动无线电力链路的发射天线。
如果电力输入信号为AC,则AC/DC转换器404将AC供应电压改变成中间DC电压,且DC/LF转换器406将中间DC电压改变成LF范围中的频率以用于驱动无线电力链路的发射天线。当接收天线410处于发射天线的耦合模式区中且在与发射天线的频率实质上相同的频率下谐振时,接收天线410与发射天线408耦合。LF/DC转换器412将来自接收天线410的LF信号改变成DC信号以用于对BEV电池414充电。在用于LF/DC转换器412的一些示范性实施例参数下,可用电力(PL,nom)可为约2kW,可用电压(VL,nom)可为约400VDC,且可用电流(IL,nom)可为约5安培。在此状况下,为LF/DC转换器412所见的阻抗可为约80Ω。
图23为BEV的无线电力系统420的简化电路图,所述图说明用于产生无线电力信号的一些可能的电路及波形。在图23的示范性实施例中,二极管D11、D11′、D12及D12连同电容器CDC,1一起形成发射侧上的到中间DC电压的AC/DC转换。晶体管Q14、Q14'、Q24及Q24'使用用以控制晶体管的切换的脉宽调制(PWM)方法来建立DC/LF转换。电容器C1及电感L1表示串联谐振发射天线。在图23的示范性实施例中,可在约50%工作循环下设定PWM控制,以确保仅在谐振天线电流I1(t)通过零时存在切换。当接收天线L2处于提供互感M的发射天线的耦合模式区中且在与发射天线的频率实质上相同的频率下谐振时,接收天线L2与发射天线L1耦合。在接收侧,二极管D21、D21'、D22及D22'连同电容器CDC,2一起形成LF/DC转换器,且将来自接收天线的LF信号整流以在加载有对应DC电阻(如图22中所展示)时建立DC电压及电流、电力。
当然,如果同一充电基座必须支持具有不同充电电力要求的不同BEV类别,那么也可能需要电力控制。此外,出于例如以下各者的原因,电力控制可为有用的:为了调节充电电流,为了使电力平滑地斜升及斜降,及为了在低功率模式下操作系统以获得天线对准,为了发射可用以将BEV导引到充电点的低功率(信标)信号(导引系统),及/或为了使充电基座及/或BEV的无线电力天线对准,及其它调谐及测试目的。
图24为BEV的无线电力系统430的简化框图,所述图说明用于在合适频率下将DC电力转换成无线电力的可变电力控制块。除了发射侧上的DC/LF转换器432现在为可变的以实现电力控制外,图24中的元件类似于图22中的元件。
图25A到25G为BEV的无线电力系统的简化框图,所述图说明图24的可变电力控制块的各种示范性实施例。在图25A中,额外DC/DC转换器442(在本文中也被称作DC/DC转换器)置放于AC/DC转换器444(在本文中也被称作AC/DC转换器)与DC/LF转换器446(在本文中也被称作DC/LF转换器)之间。作为非限制性实例,此DC/DC转换器442可为用于修改DC/LF转换器446的中间DC供应的电压电平的降压式转换器或升压式转换器。还展示,在50%工作循环下驱动DC/LF转换器446以确保零电流切换(如上文参看图23所解释)。
在图25B中,将DC/LF转换器456从50%工作循环修改成更低或更高工作循环,以调整递送到发射天线的电力的量。除50%外的工作循环可能稍微折衷总效率,这是因为不能维持零电流切换,但此方式为用于在不使用额外电路的情况下调整功率电平的简单方式。
在图25C中,通过相对于发射及接收天线的谐振频率改变DC/LF转换器466中的PWM控制信号的频率而使操作频率偏离谐振。PWM频率相对于谐振频率的此偏移将减少所发射电力的量,但也将减少链接效率,这是因为在脱离谐振模式下不能维持零电流切换。
在图25D中,通过将可变电容添加到谐振发射天线电路而使天线的谐振频率解除调谐,此情形将减少在发射天线与接收天线之间所传送的电力的量。作为非限制性实例,可使用具有有源切换组件(如下文参看图53所展示)的电容器组470或通过开关控制的电容/电感技术来实现调谐。
在图25E中,当必须减少电力时,将DC/LF转换器476拓扑从全桥式整流器重配置成半桥式整流器,或当需要恢复最大电力时,将DC/LF转换器476拓扑从半桥式整流器重配置成全桥式整流器。此方法几乎免费达成,这是因为所述方法不需要额外电路且可仅通过改变PWM驱动波形来实现。然而,此方法仅允许两个电平(粗略)的电力控制。
在图25F中,DC/LF转换器486通过谐振发射天线的驱动波形的谐波分量中的一者来激励谐振发射天线。换句话说,DC/LF转换器486在实际发射频率的次谐波频率下操作。此方法允许以根据谐波系列中所含有的等级的等级数目来改变电力。
在图25G中,将DC供应电力提供到DC/LF转换器496的AC/DC转换器490可在经调整到平均电力(电池充电电流)需求的工作循环下间歇操作。结合电池充电的此平均电力控制方法也被称为脉冲充电。
当然,可组合使用图25A到25G中所描述的实施例中的任一者以形成用于电力控制的额外装置且建立用于粗略调整与精细调整两者的装置。
图26为BEV的无线电力系统500的简化框图,所述图说明图24到25G中所展示的用于可变电力控制的装置及方法也可适用于BEV中的负载调适。需要负载调适来将如为无线电力链路所见且特定来说为谐振接收天线所见的负载电阻维持在最佳值以有效率地操作链路。举例来说,如果电池充电电流减少,则此负载电阻可改变,且所述改变可能为发射侧电力控制的直接结果。可以与上文在图25A到25G中所描述的方式类似的方式来配置接收侧上的可变LF/DC转换器502(除了这些方式是用以调节(变换)如为接收天线所见的负载阻抗而非用以控制电力外)。发射侧电力控制及接收侧负载调适可被视为变换比(nTX:1)及(1:nRX)分别为可调整的变压器。此预期展示其关系。举例来说,如果nTX增加以减少电力,则nRX可能必须增加相同量以重新适应于负载。(注意,负载电压VL可为实质上恒定的,其独立于nRX,这是因为负载为实质上为电压源的电池。因此,不能将电力控制及对应负载调适简单地解释为用以维持恒定输出电压的方式,从而并非为不重要的)。
图27为BEV的无线电力系统520的简化框图,所述图说明可存在于本发明的一些实施例中的在BEV与充电基座(CB)之间的通信信道。较早已解释通信信道。在电力控制的情况下,BEV通信单元或BEV侧的其它单元可感测到BEV电池的电压及电流的值,且经由BEV通信单元将反馈提供到CB通信单元。基于所感测的值,发射(CB)侧的可变DC/LF转换器与接收(BEV)侧的可变LF/DC转换器两者可通过上文所论述的方式中的任一者调整变换比,以使电力传送最优化或以其它方式调整电力传送。
图28为BEV的无线电力系统540的简化框图,所述图说明用于在无线电力的合适频率下将DC信号转换成LF信号的可变电力控制块542及功率因子校正块544。可将功率因子校正定义为AC供应系统的电流中的谐波含量的减少。根据国际或国家标准(例如,IEC 61000-3-2),减少电流谐波含量可能为消耗高于指定限制的电力的电气用具遵守的要求。减少AC电流谐波帮助能量供应者减少电力电网中的过多电力损失且维持干线电压为实质上正弦形。
图29A到29C分别说明在已包括功率因子校正之前的常规整流器电路560、典型电压及电流波形以及电流谐波频谱。在图29A中,通过四个二极管及输出VDC上的负载电容器来说明常规全桥式整流器560。输入电压及电流分别标记为VAC(t)及IAC(t)。
在一些区中可能存在限制这些谐波中的一些谐波的规则,这是因为所述谐波可引起可能记入能量供应者账户的损失。图29B说明常规全桥式整流器的电压及电流波形。电压曲线为正弦波;然而,在于每一AC循环中对DC平滑电容器再充电时二极管切换到导电模式的情况下,电流曲线具有尖峰。在傅立叶分析中,这些电流尖峰将在基本频率下具有最高电平,但其也将产生若干谐波信号,所述谐波信号可具有相当高的振幅,如图29C中所展示。在另一预期中,如为AC电源系统所见的输入电阻为时变的(RAC(t))且可随着AC频率相当大地且周期性地改变。
图30为整流器570与无源功率因子校正块572的简化框图。在图30中,常规整流器570后面跟随有无源装置572,无源装置572为串联插入于整流器与平滑电容器之间的大电感器。所述电感器充当将稍微减少AC输入电流中的谐波含量的扼流器。然而,所述无源扼流器可为很大体积的,且在DC输出上引入电压降,从而造成损失。
图31A到31D分别说明关于有源功率因子校正的简化示意图、电压及电流波形、校正函数及谐波频谱。图31A说明插入于常规整流器582之后的有源功率因子校正模块(PFC)580。作为一非限制性实例,有源PFC 580可配置为以时变AC周期性变换比M(t)(如图31D中所展示)而操作的升压式转换器,其建立可变阻抗且将可变阻抗呈现给整流器。此可变阻抗函数可经配置以使得如在整流器输入处所见且通常为时变的电阻(RAC(t))变成实质上恒定的。因此,在AC输入端子处所见的瞬时电阻实质上为恒定的,且电压与电流波形两者维持实质上正弦形状(如图31B中所展示),从而获得AC输入电流中的低谐波含量(如图31C中所展示)。
图32为说明以下各谐波的曲线图:在无功率因子校正的整流器中存在的谐波、在具有无源功率因子校正的整流器中存在的谐波,及在具有有源功率因子校正的整流器中存在的谐波。曲线3210说明根据一些标准的谐波含量可接受的最大限制。曲线3220说明在无PFC的情况下的全桥式整流器的谐波。曲线3230说明后面跟随有如图30中所说明的简单扼流器的全桥式整流器可产生的较低谐波值。曲线3240说明可通过后面跟随有如图31A中所说明的有源PFC模块的全桥式整流器而实现的甚至更低的谐波电平。
图33为BEV的无线电力系统800的简化框图,所述图说明并不执行功率因子校正而是依赖于可作为BEV的导电充电系统的部分而存在的PFC的变体。此变体假定无线电力系统以交替方式连接到BEV导电充电接口802。也可假定,无线(无绳)充电并不代替经由标准化充电插塞的有线充电,因此将始终存在导电充电接口(CCI)。可包括固态开关或继电器804以在无线充电与有线充电之间切换。有线充电可直接插入到AC供应系统中或可使用用于通过有线连接对BEV充电的其它方式。在此配置的情况下,接收侧上的PFC模块806可能已可用于减少可能必须符合相同标准的导电充电接口处的谐波。因此,在图33的示范性实施例的情况下,BEV充电系统的PFC模块806可用以控制经由无线电力链路返回到充电基座的谐波,以使得可能不需要发射侧PFC。然而,在此状况下,无线电力传输波形将不再为如下文中所展示及解释的恒定包络。应注意,BEV充电系统上的AC/DC转换器808将处于适当位置中以支持来自CCI的AC信号。来自LF/DC转换器810的DC信号可直接通过AC/DC转换器808作为DC信号。因此,可能不需要将来自无线电力链路的LF转换成与CCI兼容的AC,且可使用现有的且更简单的LF/DC转换器810。
图34为BEV的无线电力系统820的简化电路图,所述图说明在AC供应输入处执行固有功率因子校正的一些可能的电路及波形。二极管D11、D11′、D12及D12'将AC输入电力整流以产生实质上未经滤波的DC电力以供应DC/LF转换器。可将DC波形视为经整流的半波或经AC半波调制的DC。因此,DC/LF转换器的输出及发射天线(L1)电流也将经AC半波调制,如图34中所展示。可将电感器LDC与电容器CDC,1组合使用以轻微地使中间DC供应电压平滑,且阻挡可由PWM电路产生的LF传播回到AC供应系统中(在EMI滤波的意义上)。将低频PWM驱动信号展示为方波,所述方波控制经配置为全桥的切换晶体管Q14、Q14'、Q24及Q24'以便将未经滤波的DC供应调制到LF上以在发射天线处产生经调制的AC信号。在BEV侧,二极管D21、D21'、D22及D22'将所接收的经调制AC信号整流以产生也经AC调制的DC输出。电容器CDC,2用以轻微地使DC输出平滑且移除在BEV充电接口处的LF含量(在EMI滤波的意义上)。由于此无线电力系统将为透明的(意味着如在CCI处所见的负载电阻将被反射回到其AC供应输入),因此如在无线电力系统的AC输入处所见的瞬时电阻也将为实质上恒定的且从而具有低谐波电平。
图35A及35B为分别说明将通过图34的示范性实施例(其中将未经滤波的DC供应到低频(LF)级)产生的在时域及频域中的发射波形的曲线图。图35A将时域中的发射天线电流展示为100Hz脉冲AM信号。图35B展示频域中的发射信号以展示在约100Hz下的基本频率及在基本频率的任一侧上的谐波边频带。
图36为说明BEV的包括双向无线电力收发器的双向无线电力系统840的简化框图。双向或双程能量传送意味着可将能量从到电力电网的充电基座朝向BEV传送或从BEV朝向所述充电基座传送。如较早所解释,将需要双向无线电力传送以实现可变成未来智能电网中的重要特征的V2G(车辆到电网)功能性,其中暂时连接到电网的BEV将用作分配能量存储装置854(例如)以补偿经分配再生能量产生中的波动且使电力电网局部地稳定。因此,可通过作为双向电力转换器的CB侧AC/DC转换器842、DC/LF转换器846来配置示范性实施例。类似地,可将BEV侧上的LF/DC转换器、AC/DC转换器及PFC850配置为双向电力转换器。因此,图36的示范性实施例为对称的且能够在跨越无线电力链路的两个方向上传送并控制电力。还应注意,BEV充电系统上的AC/DC转换器848将处于适当位置中以支持来自CCI 852的AC信号。来自LF/DC转换器846的DC信号可直接通过AC/DC转换器848作为DC信号,如上文参看图33所解释。因此,在双向系统中,一些示范性实施例可包括BEV侧上的AC/DC转换。在其它示范性实施例中,当BEV侧上的AC/DC转换器848在相反方向上操作时,BEV侧上的AC/DC转换器848将转换到CCI频率或LF,此取决于选择哪个接口。
图37为BEV的无线电力系统860的简化电路图,所述图说明在具有中间未经滤波的DC供应的情况下的双向无线电力传送的对称拓扑。在下文中,假定无线电力系统在AC下在其两个接口(CB侧及BEV侧)处介接。在CB侧与BEV两者上,存在全桥式PWM模块的级联,所述全桥式PWM模块级联可充当AC/DC转换器(整流器)或DC/AC转换器(变流器,其在本文中也可被称作DC/AC转换器)或充当LF/DC(整流器)或DC/LF转换器(变流器),所述级联分别具有实质上未经滤波的中间DC(假定轻微平滑,如参看图34所描述)。如本文中所参考,作为数/模或模/数操作的转换器在本文中可被称作DC/AC转换器。应注意,对于双向电力传送,当在CB侧上操作的DC/AC (DC/LF)转换器在接收模式中操作时,所述DC/AC (DC/LF)转换器实际上作为整流器操作而非作为变流器操作。类似地,当在BEV侧上的AC/DC转换器在发射模式中操作时,则所述AC/DC转换器实际上作为变流器操作而非作为整流器操作。因此,当桥式电路(即,全桥式及半桥式电路)经配置用于双向电力传送时,桥式电路取决于电力传输的方向而作为整流器且作为变流器操作。因此,双向全桥式电路及半桥式电路在本文中可同义地被称作全桥式变流器/整流器及半桥式变流器/整流器电路。
当将能量从CB发射到BEV时,最左侧的AC输入由作为同步整流器操作的AC/DC转换器(第一全桥Q11、Q11′、Q12、Q12')整流以产生未经滤波的DC供应。同步整流意味着:一旦处于同步模式中,便通过有源开关(晶体管)而非通过无源二极管来执行整流,所述无源二极管也始终并联以保护有源开关免于反向极化。此处在两个方向上操作转换器(即,双向电力转换器)所需的有源切换的使用可带来较低切换损失的额外优点,从而获得较高效率。未经滤波的DC供应作为DC/LF转换器且将经AC调制的LF电流驱动到CB的谐振天线中的以下全桥(Q13、Q13′、Q14、Q14')。因此,在BEV侧上,第三全桥(Q21、Q21'、Q22、Q22')将所接收LF电力同步整流成经AC调制的DC电力,且第四全桥(Q23、Q23'、Q24、Q24')将经AC调制的DC电力再转换成AC电力。在特定应用中,在CB侧输入处可能存在DC供应,在此状况下,第一全桥将在静态模式下操作而无切换。如果BEV侧确实接受DC电力,则此情形同样适用于第四桥。
当从BEV发射到CB时,与上文所描述的使用双向电力转换器的电力转换过程相同的电力转换过程仍然可适用于相反方向,且因此关于BEV侧上或CB侧上或两侧上的可能的DC接口,相同电力转换过程适用。
图38为BEV的无线电力系统870的简化电路图,所述图说明在无中间未经滤波的DC供应的情况下且基于混频方法的无线电力传送的另一对称拓扑。图38的示范性实施例使用由四个双向有源开关单元组成的完全对称全桥拓扑。在发射模式中,此拓扑可作为实际上为双边频带(DSB)调制器的AC/LF增频转换器操作,或在接收模式中,作为为同步DSB解调器的LF/AC降频转换器操作,以将所接收的LF输入电力转换成所需AC电力(例如,50Hz)。如果无线电力系统的一个接口或两个接口为DC接口,则这些电路也可适用。
如同图37的实施例,从CB到BEV的传输从左侧的AC输入进行,经由CB侧上充当DSB调制器的电路,到CB天线、到BEV天线,且经由BEV侧上充当解调器的电路,以在右侧上建立AC或DC输出电力。类似地,从BEV到CB的传输从右侧的AC或DC输入进行,经由BEV侧上充当DSB调制器的电路,到BEV天线、到CB天线,且经由CB侧上充当解调器的电路,以在左侧上建立AC或DC输出电力。
可通过包括反并联的两个晶体管的双向开关单元来实现从调制器功能到解调器功能的转换。在BEV侧上,双向开关单元包括串联有二极管的晶体管Q21,及串联有二极管的交叉耦合晶体管Q22。类似地,在CB侧上,双向开关单元包括串联有二极管的晶体管Q13,及串联有二极管的交叉耦合晶体管Q14。
图39A及39B为分别说明在经双边频带(DSB)调制的电力转换的情况下在时域及频域中的发射波形的曲线图。如图39A中所展示,时域说明在从一个AC半波脉冲到下一AC半波脉冲的信号上存在180°相移。这众所周知为双载频调信号的波形。如图39B中所展示,在频域中,理想地产生原始双边频谱(clean double-frequency spectrum),而无频谱裙摆(spectral skirt)(100Hz谐波的边频带),这是因为此情形为针对图37中所展示的方法的状况。与图37的方法相似,DSB调制器方法关于负载电阻为透明的,从而可能适合于利用可能已存在于BEV充电系统中的PFC(出于符合CCI的原因)。
图40为BEV的无线电力系统880的简化框图,所述图说明用以介接到BEV充电系统且绕过BEV AC/DC转换器以减少电力转换链的长度从而有可能增加无线电力系统880的端对端效率的替代方法。此示范性实施例说明将充电模式开关882从AC/DC的输入移动到PFC 884的输入。在图40中,与图36的实施例(其中AC/DC转换器在开关之后)对比,AC/DC转换器886处于CCI 888与开关882之间。此解决方案避免了在开关的无线电力侧上的到/从AC的转换/再转换。图36的实施例可最佳地用于改装系统,这是因为可容易地将无线电力接口并联添加到现有标准CCI。图40的实施例可更有用于从开始便并入有无线充电的系统,其中可在CCI中更佳地设计无线电力充电且将无线电力充电与CCI集成。
图41为BEV的无线电力系统900的简化框图,所述图说明在一些示范性实施例中,可能不需要在BEV充电系统902与BEV无线电力系统904之间进行通信。在此示范性实施例中,无线电力系统904可作为BEV充电系统902的从属装置而操作。作为从属装置,无线电力系统904可在广泛范围内自主地工作,且系统间通信可能为不必要的,如通过BEV充电系统902与BEV通信单元906之间的通信接口的X标记所说明。可实现此从属装置模式,这是因为(如较早所解释)可通过监视接收侧、发射侧或其组合的电压及电流且有可能在接收侧与发射侧之间传达所测量信息而使无线电力传送最优化。
图42A为BEV的无线电力系统920的简化框图,所述图说明粗略负载调适。在粗略负载调适的情况下,可在全桥式整流与半桥式整流之间修改LF/AC转换器922。另外,可通过改变DC/DC转换器924的负载电阻来修改DC/DC转换器924。
图42B为BEV的无线电力系统940的简化框图,所述图说明精细负载调适。在精细负载调适的情况下,可修改LF/AC转换器942以在精细步骤中使用上文已描述的适当方式(例如,解除调谐及PWM工作循环调整)来调整LF/AC转换器942的变换比。
图43为BEV的无线电力系统960的简化框图,所述图说明反向链路负载调适。如较早所陈述,无线电力系统可在反向链路中操作以将电力从BEV移动到CB。在此状况下,在图43中定义用于管理反向电力流的负载调适及控制策略。如同前向方向,除了可在CB侧上通过AC/LF转换器962(在反向方向上作为LF/AC转换器操作)来执行整流切换外,可通过在全桥式整流与半桥式整流之间切换来执行粗略调适。
当BEV充电接口处的电阻VS/IS显现为负的时,可检测到反向电力模式。假定BEV充电系统964将限制输出电压VS,从而使得在反向模式中由无线电力系统966呈现的负载下降的情况下VS将并不无限地增加(理论上)。
只要电压VS保持高于预定义阈值电压Vmin,到AC干线中的反向电力传输(即,VL、IL、RL)便可维持在最大值(或维持在标称额定值)。如果VS下降到低于Vmin,则反向电力控制可减少电力传输,直到VS再次上升到高于阈值为止。
为了维持最大反向链路效率,可在充电基座子系统中执行AC干线侧负载调适。由于AC干线将展现出准恒定电压(相当于电压源),因此当电力减少时,如所见的到AC干线中的负载电阻将偏离最佳值,从而需要在CB子系统中进行连续负载调适。
此行为与在前向模式中馈入到BEV充电接口中相反。BEV系统可展现出不同行为,且输入电阻可受所提供电压影响。
图44为说明粗略负载调适的流程图1000。
图45为说明粗略负载调适的步骤的电压对电流曲线图。
图46为说明精细负载调适的步骤的电压对电流曲线图。
参看图42到46,将描述粗略负载调适及精细负载调适。可存在使无线电力链路的传送效率最大化的最佳接收器负载电阻。维持此最佳负载电阻或将如由能量汇(例如,电池)呈现的实际负载电阻变换成最佳负载电阻的功能可被称作“负载调适”。如上文已注释,负载调适也可被视为电力控制的反向功能。在无线高电力下,负载调适具有特定重要性,这是因为磁性链路需要在接近100%的效率下操作。
在图45及46的实例中,如果无线电力系统以全桥式配置操作,则当RL=23欧姆时,无线电力系统可得到最佳加载。在标称充电条件下,接收器可输出约230V的标称电压、约10A的标称电流,从而将约2.3kW的标称功率提供到约23欧姆的最佳负载中。现设想BEV充电过程进入电流缓慢衰减的阶段,可使用BEV充电系统的DC/DC转换器来控制所述电流衰减。任何电流/充电电力减少都将在无线电力系统的输出处具有立即影响。无线电力系统将先验地维持VL,从而IL倾向于减小,这是因为BEV的电力需求正减退。因此,RL=VL/IL将日益偏离RL_opt。
现考虑粗略负载调适。为了抵制此错误趋势,无线电力系统将对发射电力稍微节流以使得VL将降低,此又迫使BEV DC/DC转换器降低其输入电阻(IL将增加)以使得如由BEV DC/DC转换器呈现的负载电阻再次变成23欧姆。此情形通过图45中的线4510说明,其中每一线指示在IL继续减小时的粗略负载调整。在VL/IL平面中,可将此控制策略可视化为始终沿着RL,opt=23欧姆线追踪直到达到下限电压为止的操作点。
为了抵制由BEV DC/DC转换器引起的任何其它负载电阻增加,无线电力系统现决定通过将接收拓扑从全桥(即,变换比为约1:1)重配置成半桥(变换比为约1:4)而应用粗略负载调适。在半桥中,需要作为目标的最佳负载电阻为(例如)92欧姆而非23欧姆。VL也将再次增加而接近BEV DC/DC转换器输入范围的上限(从而腾出空间以用于进一步需求减少)。电力节流的过程现仍可以相同方式沿着92欧姆负载线继续,直到最终达到下限VL为止。
现在,考虑如图46中所说明的精细负载调适。如果BEV DC/DC转换器的输入电压容限范围紧紧围绕标称VL,则精细负载调适可为有用的。在此状况下,将需要使用上文所描述的方法(例如,解除调谐、PWM工作循环等等)中的一者来稳定地调适接收器的变换比(1:n)。当电力需求正减退且IL倾向于减小时,无线电力系统将通过稳定地递增变换比n以使得VL可维持于紧密控制带中且同时负载电阻维持处于最佳值来作出响应。在图46的VL/IL曲线图中,操作点仍将追踪最佳负载线,但负载线连续改变其斜率以使得VL停留于指定的紧密容限带中。
当然,当BEV电力需求增加时,可以相同方式颠倒此粗略/精细负载调适过程。此情形也分别在图45及46中通过线4520及4620加以说明。
在粗略负载调适方法中,当BEV DC/DC转换器达到其限制范围时,无线电力系统迫使/刺激BEV DC/DC转换器执行精细负载调适,而无线电力系统自身仅执行粗略负载调适。
在精细负载调适方法中,无线电力系统并不(或仅或多或少地)依赖于BEV DC/DC转换器且单独执行负载调适。
在必须支持反向电力模式(车辆到电网)的系统中,仅精细负载调适将有可能适用于无线电力系统中,这是因为在电网侧上,通常将不存在可被刺激以执行精细负载调适的外部转换器。
图47为说明针对可用于示范性实施例中的各种固态开关的频率对电流特性的曲线图。用于无线BEV充电器中的电力电子设备级的半导体开关可能需要达到某些一般要求,例如:高操作电压(例如,>500V)、中等操作电流(例如,10A)、针对VLF或LF频率的足够切换速度、低接通状态损失,及低切换损失。绝缘栅双极晶体管(IGBT)与电力金属氧化物场效应晶体管(MOSFET)两者可用于大于600V的电压及高达80A的电流。可为重要的其它参数是切换速度与相关切换损失及接通状态损失。IGBT可为针对电压>1000V及针对低电压应用中的低切换速度的装置选择。MOSFET可为针对切换速度>200kHz及极低电压应用的装置选择。
图48说明随着发射器工作循环而变的正规化功率以展示工作循环的相当大范围。对于使用脉宽调制的电力控制,平滑电力控制将取决于可用于脉宽的分辨率。对于图50上所说明的在工作循环的约0.25与0.5之间的“关注范围”内的电力控制,PWM将有可能为最有效的。在此范围的外使用PWM可能将额外谐波及低效率引入系统中。因此,在“关注范围”外,其它电力控制方法(例如,半桥及子谐波驱动)可为更有效的。
图49为说明在高频下的无线电力系统1050的一示范性实施例的简化框图。这些高频(HF)可在3MHz到30MHz的范围中(如较早所解释),且特定来说,为用于RFID及近场通信(NFC)的13.56MHz频率、6.78MHz频率及27.12MHz频率(较早所论述)。如同较早所论述的LF及VLF实施例,AC/DC转换器及DC/HF转换器(而非DC/LF)可经配置成双向的以使得可经由无线电力链路将电力从CB传送到BVE或将电力从BVE传送到CB。
图50为BEV的无线电力系统1060的简化电路图,所述图说明无线电力传送的不对称E类拓扑。CB侧与BEV侧两者上的谐振天线可包括用于阻抗匹配的电感器(分别为LM1及LM2')及电容器(分别为CS1及CS2)。在CB侧上,晶体管Q1可用以产生HF电力。可通过电容器CP1阻挡用于HF信号的DC供应,且电感器LCH1为众所周知的E类电路的部分。当执行接收功能时,晶体管Q1、电容器CP1及电感器LCH1可充当同步整流器以将HF电力再转换成DC电力。在BEV侧上,Q21、电容器CP2及电感器LCH2可分别执行相同的HF电力产生或HF整流,这取决于BEV正在发射还是正在接收。
图51为BEV的无线电力系统1070的简化电路图,所述图说明在HF下的无线电力传送的对称E类拓扑。除了关于发射天线的每一侧上的重复电路与接收天线的每一侧上的重复电路完全对称外,图53的实施例类似于图52的实施例。由于涉及较多有源开关,因此这个拓扑可具有较高电力能力,此外,甚至天线电流中的谐波也理想地消除,因此简化了额外谐波滤波(图51中未展示)。
图52为说明在VLF、LF或甚至更高频率下操作的BEV的无线电力系统1080中的谐波滤波的简化电路图。对于一些频率,轻微谐波滤波可足以实现符合一些标准。在再其它示范性实施例中,可通过上文所论述的示范性实施例执行谐波滤波,且可包括额外谐波滤波(如图52中所展示)。在图52中,将针对全桥式拓扑的状况的谐波滤波说明为CB侧上的方框5210及BEV侧上的方框5220。举例来说,在CB侧上,谐波滤波器5210具有对称的低通结构且可包括电感器LHF1及LHF1'(其中电容器CHF1在电感器LHF1与LHF1'之间)。类似地,在BEV侧上,谐波滤波器5220具有对称的低通结构且可包括电感器LHF2及LHF2'(其中电容器CHF2在电感器LHF2与LHF2'之间)。
图53为说明基于全桥式拓扑的BEV的无线电力系统1090中的谐振调谐的简化电路图。图53的示范性实施例可经配置以对谐振频率作出较小改变。这些较小改变可(例如)有用于补偿来自其它电路的一些不合需要的解除调谐效应且有目的地移动谐振频率以进行电力控制。主全桥式拓扑由固态开关S11、S11′、S12及S12'及主电容器C11形成。可添加若干“小型”半桥与一对应电容器以通过添加电容的递增量而修改全桥的特性。图53中说明“n个”半桥。第一半桥包括固态开关S13、S13′及电容器C12。最后半桥包括固态开关S1n、S1n′及电容器C1n。可使所要数目个半桥与全桥同步切换以添加递增电容且修改归因于额外电容而产生的谐振频率。此调谐网络适用于在发射模式与接收(同步整流)模式两者中操作全桥。
所属领域的技术人员应理解,可使用多种不同技术及技艺中的任一者来表示信息及信号。举例来说,可通过电压、电流、电磁波、磁场或磁粒子、光学场或光学粒子或其任何组合来表示可贯穿上述描述而参考的数据、指令、命令、信息、信号、位、符号及码片。
所属领域的技术人员应进一步了解,结合本文中所揭示的示范性实施例而描述的各种说明性逻辑块、模块、电路及算法步骤可实施为电子硬件、计算机软件或电子硬件与计算机软件两者的组合。为了清楚地说明硬件与软件的此可互换性,各种说明性组件、块、模块、电路及步骤已在上文大体根据其功能性加以描述。此功能性实施为硬件还是软件取决于特定应用及强加于整个系统上的设计约束。所属领域的技术人员可针对每一特定应用以变化的方式来实施所描述的功能性,但这些实施决策不应被解释为会引起偏离本发明的示范性实施例的范围。
可通过通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件或其经设计以执行本文中所描述的功能的任何组合来实施或执行结合本文中所揭示的示范性实施例而描述的各种说明性逻辑块、模块及电路。通用处理器可为微处理器,但在替代例中,处理器可为任何常规处理器、控制器、微控制器或状态机。处理器也可实施为计算装置的组合,例如,DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或一个以上微处理器,或任何其它此配置。
结合本文中所揭示的示范性实施例而描述的方法或算法的步骤可直接以硬件、以由处理器执行的软件模块或以两者的组合来体现。软件模块可驻留于随机存取存储器(RAM)、快闪存储器、只读存储器(ROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)、寄存器、硬盘、可装卸式磁盘、CD-ROM,或此项技术中已知的任何其它形式的存储媒体中。示范性存储媒体耦合到处理器,以使得处理器可从存储媒体读取信息及将信息写入到存储媒体。在替代例中,存储媒体可与处理器成一体。处理器及存储媒体可驻留于ASIC中。ASIC可驻留于用户终端中。在替代例中,处理器及存储媒体可作为离散组件驻留于用户终端中。
在一个或一个以上示范性实施例中,可以硬件、软件、固件或其任何组合来实施所描述的功能。如果以软件来实施,则可将功能作为一个或一个以上指令或代码存储于计算机可读媒体上或经由计算机可读媒体予以传输。计算机可读媒体包括计算机存储媒体与通信媒体两者,通信媒体包括促进将计算机程序从一处传送到另一处的任何媒体。存储媒体可为可由计算机存取的任何可用媒体。以实例说明且非限制,这些计算机可读媒体可包含RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置,或可用以载运或存储呈指令或数据结构的形式的所要程序代码且可由计算机存取的任何其它媒体。又,将任何连接适当地称为计算机可读媒体。举例来说,如果使用同轴电缆、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电及微波等无线技术而从网站、服务器或其它远程源传输软件,则同轴电缆、光纤缆线、双绞线、DSL或例如红外线、无线电及微波等无线技术包括于媒体的定义中。如本文中所使用的磁盘及光盘包括压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)、软性磁盘及蓝光光盘,其中磁盘通常以磁性方式再生数据,而光盘通过激光以光学方式再生数据。上述各者的组合也应包括于计算机可读媒体的范围内。
提供所揭示的示范性实施例的先前描述以使任何所属领域的技术人员能够制作或使用本发明。对于所属领域的技术人员来说,对这些示范性实施例的各种修改将为容易显而易见的,且可在不偏离本发明的精神或范围的情况下将本文中所定义的一般原理应用于其它实施例。因此,本发明既定不限于本文中所展示的实施例,而应被赋予与本文中所揭示的原理及新颖特征一致的最广范围。
Claims (30)
1.一种双向无线电力收发器,其包含:
双向电力转换器,其经配置以:
在配置于发射模式中时在一无线电力操作频率下将电力输入信号转换成交流电AC电力输出信号,及
在配置于接收模式中时在所述无线电力操作频率下将所接收的电力AC信号转换成直流电DC电力输出信号;及
天线,其以可操作方式经配置以:
在配置于发射模式中时在耦合模式区中在所述无线电力操作频率下从所述AC电力输出信号产生电磁近场,及
在配置于接收模式中时在所述耦合模式区中在所述操作频率下从所述电磁近场产生所述所接收的电力AC信号。
2.根据权利要求1所述的双向无线电力收发器,其中所述双向电力转换器包含:
双向DC/DC转换器,其以可操作方式耦合于所述电力输入信号与DC电力输出信号之间,以在处于发射模式中时通过相对于所述电力输入信号修改所述DC电力输出信号的DC电压而调整所述无线电力收发器的电力输出信号;及
双向DC/AC转换器,其以可操作方式耦合于所述DC电力输出信号与所述AC电力输出信号之间。
3.根据权利要求1所述的无线电力收发器,其中所述双向电力转换器包含双向DC/AC转换器,所述双向DC/AC转换器以可操作方式耦合于所述DC电力输入信号与所述AC电力输出信号之间,且被配置为具有可调整工作循环的脉宽调制电路以在处于发射模式中时调整所述无线电力收发器的电力输出信号。
4.根据权利要求1所述的无线电力收发器,其中所述双向电力转换器包含双向DC/AC转换器,所述双向DC/AC转换器以可操作方式耦合于所述DC电力输入信号与所述AC电力输出信号之间,且被配置为脉宽调制电路,其中所述脉宽调制电路的频率经配置以在处于发射模式中时调整所述无线电力收发器的所述AC电力输出信号。
5.根据权利要求1所述的无线电力收发器,其中所述双向电力转换器包含:
双向DC/AC转换器,其以可操作方式耦合于所述电力输入信号与所述AC电力输出信号之间且包括全桥式变流器/整流器,所述全桥式变流器/整流器经配置以在处于发射模式中时在全桥式模式与半桥式模式之间切换以调整所述无线电力收发器的所述AC电力输出信号。
6.根据权利要求1所述的无线电力收发器,其中所述双向电力转换器包含:
双向DC/AC转换器,其以可操作方式耦合于所述电力输入信号与DC电力输出信号之间且包含整流器/变流器;
有源功率因子校正PFC电路,其经配置以将准恒定电阻呈现给所述整流器/变流器;及
双向DC/AC转换器,其经配置以用于在处于发射模式中时将所述DC电力输出信号转换成所述AC电力输出信号。
7.根据权利要求1所述的无线电力收发器,其中所述双向电力转换器包含:
双向DC/AC转换器,其以可操作方式耦合于所述电力输入信号与所述AC电力输出信号之间,所述DC/AC转换器包含:
具有大容量电容的主全桥式变流器/整流器;及
多个半桥式变流器/整流器,所述多个半桥式变流器/整流器各自具有微调电容;
其中所述多个半桥式变流器/整流器中的至少一者经配置以在发射模式中与所述主全桥式变流器/整流器同步切换以修改所述天线的谐振频率。
8.根据权利要求1所述的无线电力收发器,其中所述双向转换器进一步包含双向DC/AC转换器,所述双向DC/AC转换器以可操作方式耦合到所述天线且用于在处于接收模式中时将所述所接收的AC电力输入信号转换成DC电力输出信号。
9.根据权利要求8所述的无线电力收发器,其进一步包含:
控制器,其经配置以产生脉宽调制信号;及
双向DC/DC转换器,其以可操作方式耦合于所述双向DC/AC转换器与所述DC电力输出信号之间,且经配置以在处于接收模式中时响应于所述脉宽调制信号而将来自所述双向DC/AC转换器的所述DC电力输出信号转换成在不同电压电平下的DC电力输出信号。
10.根据权利要求9所述的无线电力收发器,其中所述脉宽调制信号经配置以调整所述DC/DC转换器中的脉宽调制电路的工作循环以适应于所述DC电力输出信号处的负载改变。
11.根据权利要求8所述的无线电力收发器,其进一步包含可变电容器,所述可变电容器以可操作方式耦合到所述天线且经配置以在处于接收模式中时修改所述天线的谐振频率以适应于所述DC电力输出信号处的负载改变。
12.根据权利要求8所述的无线电力收发器,其中所述双向DC/AC转换器包括全桥式整流器/变流器及半桥式整流器/变流器,且经配置以在处于接收模式中时在全桥式整流与半桥式整流之间切换以适应于所述DC电力输出信号处的负载改变。
13.根据权利要求8所述的无线电力收发器,其进一步包含:
传感器,其经配置以用于感测DC电力输出信号条件,所述DC电力输出信号条件包含所述DC电力输出信号的电流及所述DC电力输出信号的电压中的一者或一者以上;
控制器,其经配置以用于对所述DC电力输出信号条件进行取样,且将反馈信号提供到所述双向DC/AC转换器以修改所述DC电力输出信号以适应于所述DC电力输出信号上的负载改变。
14.根据权利要求8所述的无线电力收发器,其中所述双向DC/AC转换器包含:
具有大容量电容的全桥式整流器/变流器;及
多个半桥式整流器/变流器,所述多个半桥式整流器/变流器各自具有微调电容;
其中所述多个半桥式整流器/变流器中的至少一者经配置以在接收模式中与所述全桥式整流器/变流器同步切换以修改所述天线的所述谐振频率。
15.根据权利要求8所述的无线电力收发器,其中所述双向转换器进一步包含耦合于所述双向DC/AC转换器与所述直流电DC电力输出信号之间的超级电容器,所述超级电容器经配置以在处于接收模式中时减小如在双向无线电力收发器的DC输出处所呈现的源电阻。
16.根据权利要求1所述的无线电力收发器,其进一步包含:
能量存储装置,其耦合到所述直流电DC电力输出信号;及
第二无线电力接口,其以操作方式耦合于所述能量存储装置与EV电力转换器之间。
17.根据权利要求1所述的无线电力收发器,其中所述AC电力输出信号是通过在一操作频率下将所述电力输入信号转换成所述AC电力输出信号来控制,所述操作频率实质上处于所述天线的谐振频率的次谐波频率。
18.根据权利要求1所述的无线电力收发器,其中所述双向电力转换器在发射模式中被配置为增频转换器且在接收模式中被配置为降频转换器,所述频率转换器在发射模式中为双边频带调制器且在接收模式中为双边频带解调器。
19.一种方法,其包含:
当双向无线电力收发器中的双向电力转换器配置于发射模式中时,在一无线电力操作频率下将电力输入信号转换成交流电AC电力输出信号,及当所述双向电力转换器配置于接收模式中时,在所述无线电力操作频率下将所接收的AC电力信号转换成直流电DC电力输出信号;及
当所述双向电力转换器配置于所述发射模式中时,在天线的耦合模式区中在所述无线电力操作频率下从所述AC电力输出信号产生电磁近场,及当所述双向电力转换器在所述接收模式中时,在所述耦合模式区中在所述无线电力操作频率下从所述电磁近场产生所述所接收的AC电力信号。
20.根据权利要求19所述的方法,其进一步包含具有可调整工作循环的脉冲调制以在处于所述发射模式中时调整所述无线电力收发器的电力输出信号。
21.根据权利要求19所述的方法,其进一步包含响应于脉宽调制所述电力输入信号以使所述无线电力操作频率变化而使所述无线电力操作频率变化,以在处于发射模式中时调整所述无线电力收发器的电力输出信号。
22.根据权利要求19所述的方法,其进一步包含在全桥式整流与半桥式整流之间切换所述电力输入信号,以在处于发射模式中时调整所述无线电力收发器的电力输出信号。
23.根据权利要求19所述的方法,其进一步包含通过在处于发射模式中时在接通与关断之间重复地切换所述电力输入信号而调整电力输出信号。
24.根据权利要求19所述的方法,其进一步包含与所述输入电力信号的频率同步地将准恒定电阻呈现给所述双向电力转换器中的整流器,以主动地对所述输入电力信号进行功率因子校正PFC。
25.根据权利要求19所述的方法,其进一步包含通过在所述双向电力转换器在接收模式中时在全桥式整流与半桥式整流之间切换以适应于所述DC电力输出信号处的负载改变来进行AC/DC转换。
26.根据权利要求19所述的方法,其进一步包含:
感测DC电力输出信号条件,所述DC电力输出信号条件包含所述DC电力输出信号的电流及所述DC电力输出信号的电压中的一者或一者以上;
对所述DC电力输出信号条件进行取样,且将脉宽调制信号提供到所述DC/AC转换器以适应于所述DC电力输出信号上的负载改变;及
通过以下操作执行粗略负载调适:
在所述DC电力输出信号的电压下降到低于下限电压的情况下,从半桥式整流切换到全桥式整流;及
在所述DC输出信号的电压上升到高于所述下限电压的情况下,从所述半桥式整流切换到所述全桥式整流。
27.根据权利要求19所述的方法,其进一步包含在耦合到所述直流电DC输出电力信号的能量存储装置与EV电力转换器之间以无线方式传输电力。
28.根据权利要求19所述的方法,其进一步包含使用实质上处于所述天线的谐振频率的次谐波频率的操作频率将所述电力输入信号转换成所述AC电力输出信号,以控制所述AC电力输出信号的功率电平。
29.根据权利要求19所述的方法,在发射模式中在所述双向电力转换器中进行增频转换及在接收模式中在所述双向电力转换器中进行降频转换,通过在发射模式中使用双边频带调制及在接收模式中使用双边频带解调来转换频率。
30.一种双向无线电力收发器,其包含:
用于转换的装置,所述用于转换的装置在双向无线电力收发器中的双向电力转换器配置于发射模式中时,在一无线电力操作频率下将电力输入信号转换成交流电AC电力输出信号,且在所述双向电力转换器配置于接收模式中时,在所述无线电力操作频率下将所接收的AC电力输出信号转换成直流电DC电力输出信号;及
用于产生的装置,所述用于产生的装置在所述双向电力转换器配置于所述发射模式中时,在天线的耦合模式区中在所述无线电力操作频率下从所述AC电力输出信号产生电磁近场,且在所述双向电力转换器在所述接收模式中时,在所述耦合模式区中在所述无线电力操作频率下从所述电磁近场产生所述所接收的AC电力信号。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410677953.1A CN104477044B (zh) | 2010-04-08 | 2011-04-08 | 电动车辆中的无线电力传输 |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32219610P | 2010-04-08 | 2010-04-08 | |
US32221410P | 2010-04-08 | 2010-04-08 | |
US32222110P | 2010-04-08 | 2010-04-08 | |
US61/322,196 | 2010-04-08 | ||
US61/322,214 | 2010-04-08 | ||
US61/322,221 | 2010-04-08 | ||
US13/082,211 US9561730B2 (en) | 2010-04-08 | 2011-04-07 | Wireless power transmission in electric vehicles |
US13/082,211 | 2011-04-07 | ||
PCT/US2011/031850 WO2011127449A2 (en) | 2010-04-08 | 2011-04-08 | Wireless power transmission in electric vehicles |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410677953.1A Division CN104477044B (zh) | 2010-04-08 | 2011-04-08 | 电动车辆中的无线电力传输 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102834291A true CN102834291A (zh) | 2012-12-19 |
Family
ID=44763584
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410677953.1A Active CN104477044B (zh) | 2010-04-08 | 2011-04-08 | 电动车辆中的无线电力传输 |
CN2011800180155A Pending CN102834291A (zh) | 2010-04-08 | 2011-04-08 | 电动车辆中的无线电力传输 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410677953.1A Active CN104477044B (zh) | 2010-04-08 | 2011-04-08 | 电动车辆中的无线电力传输 |
Country Status (7)
Country | Link |
---|---|
US (4) | US9561730B2 (zh) |
EP (2) | EP2555945A2 (zh) |
JP (2) | JP2013528043A (zh) |
KR (1) | KR101923741B1 (zh) |
CN (2) | CN104477044B (zh) |
TW (1) | TW201223060A (zh) |
WO (1) | WO2011127449A2 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104272600A (zh) * | 2012-03-13 | 2015-01-07 | 雷诺两合公司 | 具有多个多路复用接收器的无线通信系统 |
CN105529795A (zh) * | 2016-01-18 | 2016-04-27 | 河南理工大学 | 感应式电动车充电装置 |
CN105580241A (zh) * | 2013-09-27 | 2016-05-11 | 高通股份有限公司 | 感应电力传递系统中的装置对准 |
CN105846860A (zh) * | 2015-01-29 | 2016-08-10 | 巴鲁夫公司 | 用于非接触式能量和数据传送的系统 |
CN106574949A (zh) * | 2014-07-25 | 2017-04-19 | 高通股份有限公司 | 用于电动车辆无线充电系统的引导和对准系统及方法 |
CN106663528A (zh) * | 2014-07-09 | 2017-05-10 | 奥克兰联合服务有限公司 | 适合于电动车辆的感应式电力系统 |
CN106787254A (zh) * | 2017-03-17 | 2017-05-31 | 宁波微鹅电子科技有限公司 | 无线电能接收端和无线供电系统 |
CN107364355A (zh) * | 2013-08-09 | 2017-11-21 | 高通股份有限公司 | 关于检测和识别电动车辆和充电站的系统、方法和设备 |
CN109795354A (zh) * | 2019-03-07 | 2019-05-24 | 暨南大学 | 一种车载无线充电线圈的自动对准装置及方法 |
CN113949143A (zh) * | 2020-07-16 | 2022-01-18 | 意法半导体研发(深圳)有限公司 | 反向无线充电 |
Families Citing this family (478)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US8115448B2 (en) | 2007-06-01 | 2012-02-14 | Michael Sasha John | Systems and methods for wireless power |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US8482158B2 (en) | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US8461722B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape field and improve K |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US8772973B2 (en) | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US8487480B1 (en) | 2008-09-27 | 2013-07-16 | Witricity Corporation | Wireless energy transfer resonator kit |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8471410B2 (en) | 2008-09-27 | 2013-06-25 | Witricity Corporation | Wireless energy transfer over distance using field shaping to improve the coupling factor |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US8324759B2 (en) | 2008-09-27 | 2012-12-04 | Witricity Corporation | Wireless energy transfer using magnetic materials to shape field and reduce loss |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
US8598743B2 (en) | 2008-09-27 | 2013-12-03 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8461721B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using object positioning for low loss |
US8441154B2 (en) | 2008-09-27 | 2013-05-14 | Witricity Corporation | Multi-resonator wireless energy transfer for exterior lighting |
US8587153B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using high Q resonators for lighting applications |
US8587155B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8692410B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Wireless energy transfer with frequency hopping |
US8686598B2 (en) | 2008-09-27 | 2014-04-01 | Witricity Corporation | Wireless energy transfer for supplying power and heat to a device |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8476788B2 (en) | 2008-09-27 | 2013-07-02 | Witricity Corporation | Wireless energy transfer with high-Q resonators using field shaping to improve K |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US8552592B2 (en) | 2008-09-27 | 2013-10-08 | Witricity Corporation | Wireless energy transfer with feedback control for lighting applications |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US8569914B2 (en) | 2008-09-27 | 2013-10-29 | Witricity Corporation | Wireless energy transfer using object positioning for improved k |
US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8304935B2 (en) | 2008-09-27 | 2012-11-06 | Witricity Corporation | Wireless energy transfer using field shaping to reduce loss |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US8461720B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape fields and reduce loss |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US8466583B2 (en) | 2008-09-27 | 2013-06-18 | Witricity Corporation | Tunable wireless energy transfer for outdoor lighting applications |
JP2012504387A (ja) | 2008-09-27 | 2012-02-16 | ウィトリシティ コーポレーション | 無線エネルギー伝達システム |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
DE102009033235A1 (de) * | 2009-07-14 | 2011-01-20 | Conductix-Wampfler Ag | Energieversorgungseinheit, Landfahrzeug, Austauschstation und Verfahren zum Austausch einer in einem Landfahrzeug enthaltenen Energieversorgungseinheit |
US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
US9561730B2 (en) | 2010-04-08 | 2017-02-07 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
US12081057B2 (en) | 2010-05-21 | 2024-09-03 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell |
US11791647B2 (en) | 2010-05-21 | 2023-10-17 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell |
US11397215B2 (en) | 2010-05-21 | 2022-07-26 | Qnovo Inc. | Battery adaptive charging using battery physical phenomena |
US11397216B2 (en) | 2010-05-21 | 2022-07-26 | Qnovo Inc. | Battery adaptive charging using a battery model |
US9142994B2 (en) | 2012-09-25 | 2015-09-22 | Qnovo, Inc. | Method and circuitry to adaptively charge a battery/cell |
US10389156B2 (en) | 2010-05-21 | 2019-08-20 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell |
US8841881B2 (en) | 2010-06-02 | 2014-09-23 | Bryan Marc Failing | Energy transfer with vehicles |
NZ586526A (en) * | 2010-06-30 | 2012-12-21 | Auckland Uniservices Ltd | Inductive power transfer system with ac-ac converter and two-way power transmission ability |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9444517B2 (en) | 2010-12-01 | 2016-09-13 | Triune Systems, LLC | Coupled inductor power transfer system |
US20120169131A1 (en) * | 2010-12-29 | 2012-07-05 | Choudhary Vijay N | Phase shift power transfer |
US9088307B2 (en) * | 2010-12-29 | 2015-07-21 | National Semiconductor Corporation | Non-resonant and quasi-resonant system for wireless power transmission to multiple receivers |
EP2667481A4 (en) * | 2011-01-19 | 2015-12-02 | Technova Inc | SYSTEM FOR CONTACT-FREE ENERGY TRANSMISSION |
JP5641540B2 (ja) * | 2011-05-13 | 2014-12-17 | 一般財団法人電力中央研究所 | 双方向非接触給電システム |
JP2012257395A (ja) * | 2011-06-09 | 2012-12-27 | Toyota Motor Corp | 非接触受電装置およびそれを備える車両、非接触送電装置、ならびに非接触電力伝送システム |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
JP2013030973A (ja) * | 2011-07-28 | 2013-02-07 | Nippon Soken Inc | 電源装置、非接触送電装置、車両、および非接触電力伝送システム |
JP5857251B2 (ja) * | 2011-08-01 | 2016-02-10 | パナソニックIpマネジメント株式会社 | 非接触給電装置の制御方法及び非接触給電装置 |
JP6148234B2 (ja) | 2011-08-04 | 2017-06-14 | ワイトリシティ コーポレーションWitricity Corporation | 整調可能無線電力アーキテクチャ |
US9631950B2 (en) | 2011-08-05 | 2017-04-25 | Evatran Group, Inc. | Method and apparatus for aligning a vehicle with an inductive charging system |
US20130033224A1 (en) * | 2011-08-05 | 2013-02-07 | Evatran Llc | Method and apparatus for aligning a vehicle with an inductive charging system |
US20130033229A1 (en) * | 2011-08-06 | 2013-02-07 | Delphi Technologies, Inc. | Method and system to electrically charge and discharge a battery using an electrical charging system that electrically communicates with a regenerative braking electrical circuit |
US20160176302A1 (en) * | 2011-08-06 | 2016-06-23 | Delphi Technologies, Inc. | Interconnected wireless battery charging and regenerative braking systems for an electric vehicle |
WO2013036947A2 (en) | 2011-09-09 | 2013-03-14 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US20130062966A1 (en) | 2011-09-12 | 2013-03-14 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US9673638B2 (en) * | 2011-09-28 | 2017-06-06 | Integrated Device Technology, Inc. | Apparatus and method for a switching power converter |
DE102011116057A1 (de) * | 2011-10-18 | 2013-04-18 | Paul Vahle Gmbh & Co. Kg | Netznachbildung im Sekundärkreis der berührungslosenEnergieübertragung |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
WO2013067484A1 (en) | 2011-11-04 | 2013-05-10 | Witricity Corporation | Wireless energy transfer modeling tool |
CN102510116A (zh) * | 2011-11-09 | 2012-06-20 | 天津工业大学 | 电动车智能在线充电系统 |
JP6018380B2 (ja) * | 2011-12-27 | 2016-11-02 | 川崎重工業株式会社 | スマートグリッドシステムのグリッドコントローラ、それを備えたスマートグリッドシステムおよびその制御方法 |
JP2015508987A (ja) | 2012-01-26 | 2015-03-23 | ワイトリシティ コーポレーションWitricity Corporation | 減少した場を有する無線エネルギー伝送 |
US8994224B2 (en) | 2012-01-27 | 2015-03-31 | Building Materials Investment Corporation | Solar roof shingles and underlayment with wireless power transfer |
KR101818036B1 (ko) * | 2012-01-30 | 2018-01-15 | 한국전자통신연구원 | 유무선 에너지 전송 기능을 구비한 에너지 저장 시스템 |
EP2814136B1 (en) * | 2012-02-09 | 2018-03-28 | Technova Inc. | Bidirectional contactless power supply system |
US9018898B2 (en) * | 2012-02-10 | 2015-04-28 | Sandisk Technologies Inc. | Regulation of wirelessly charging multiple devices from the same source |
WO2013122703A1 (en) * | 2012-02-14 | 2013-08-22 | Ut-Battelle, Llc | Wireless power charging using point of load controlled high frequency power converters |
EP2827486B1 (en) * | 2012-03-15 | 2019-05-08 | Panasonic Intellectual Property Management Co., Ltd. | Power feed device of inductive charging device |
US9225391B2 (en) * | 2012-03-19 | 2015-12-29 | Lg Innotek Co., Ltd. | Wireless power transmitting apparatus and method thereof |
JP6376525B2 (ja) * | 2012-03-22 | 2018-08-22 | 三菱重工業株式会社 | 車両、制御方法 |
WO2013146017A1 (ja) * | 2012-03-26 | 2013-10-03 | 株式会社村田製作所 | 電力伝送システム及びそれに用いる送電装置 |
US9641223B2 (en) * | 2012-03-26 | 2017-05-02 | Semiconductor Enegry Laboratory Co., Ltd. | Power receiving device and power feeding system |
US9837203B2 (en) * | 2012-03-29 | 2017-12-05 | Integrated Device Technology, Inc. | Apparatuses having different modes of operation for inductive wireless power transfer and related method |
US10756558B2 (en) | 2012-03-29 | 2020-08-25 | Integrated Device Technology, Inc. | Establishing trusted relationships for multimodal wireless power transfer |
JP5772687B2 (ja) * | 2012-04-04 | 2015-09-02 | 株式会社Ihi | 電力伝送システム、その送電装置及び受電装置、並びに充電設備及び電気自動車 |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US20150326143A1 (en) * | 2014-05-07 | 2015-11-12 | Energous Corporation | Synchronous Rectifier Design for Wireless Power Receiver |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US9859757B1 (en) | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
KR102158288B1 (ko) * | 2012-07-09 | 2020-09-21 | 삼성전자주식회사 | 배터리를 충전하기 위한 방법 및 그 전자 장치 |
KR102099819B1 (ko) * | 2012-07-09 | 2020-04-10 | 엘지전자 주식회사 | 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템 |
EP3185262B1 (en) | 2012-07-09 | 2018-09-12 | Lg Electronics Inc. | Wireless power transfer method, apparatus and system |
US9859755B2 (en) * | 2012-07-16 | 2018-01-02 | Qualcomm Incorporated | Device alignment and identification in inductive power transfer systems |
JP2014030288A (ja) * | 2012-07-31 | 2014-02-13 | Sony Corp | 給電装置および給電システム |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
CN104584372B (zh) | 2012-08-31 | 2017-07-04 | 西门子公司 | 用于给蓄电池无线充电的蓄电池充电系统和方法 |
CN104604077B (zh) * | 2012-09-05 | 2018-10-19 | 瑞萨电子株式会社 | 非接触充电装置以及使用该非接触充电装置的非接触供电系统 |
JP5846085B2 (ja) * | 2012-09-18 | 2016-01-20 | 株式会社豊田自動織機 | 受電機器及び非接触電力伝送装置 |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
US9908426B2 (en) * | 2012-09-27 | 2018-03-06 | Tdk Corporation | Vehicle and mobile body system |
TWI565176B (zh) * | 2012-09-28 | 2017-01-01 | Wow Tech Corp | Non - contact induction transmission equipment |
CN109995149A (zh) | 2012-10-19 | 2019-07-09 | 韦特里西提公司 | 无线能量传输系统中的外来物检测 |
KR101844409B1 (ko) | 2012-10-23 | 2018-04-03 | 삼성전자주식회사 | 무선 에너지 전송 장치 및 방법, 무선 에너지 전송 시스템 |
WO2014070025A2 (en) | 2012-10-29 | 2014-05-08 | Powerbyproxi Limited | A receiver for an inductive power transfer system and a method for controlling the receiver |
JP6091262B2 (ja) * | 2012-11-01 | 2017-03-08 | 矢崎総業株式会社 | 給電部、受電部及び給電システム |
US10211720B2 (en) * | 2012-11-09 | 2019-02-19 | Integrated Device Technology, Inc. | Wireless power transmitter having low noise and high efficiency, and related methods |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
KR101767276B1 (ko) * | 2012-12-03 | 2017-08-10 | 한국전자통신연구원 | 무선 전력 전송을 이용하는 배터리 충전 방법 및 시스템 |
US10044228B2 (en) * | 2012-12-03 | 2018-08-07 | WIPQTUS Inc. | Wireless power system with a self-regulating wireless power receiver |
TWI493824B (zh) * | 2012-12-18 | 2015-07-21 | 國立成功大學 | 以寬度與波形調變之無線傳能系統 |
JP6160083B2 (ja) * | 2013-01-08 | 2017-07-12 | 株式会社Ihi | 異物検知装置 |
US20140197691A1 (en) * | 2013-01-14 | 2014-07-17 | Mitsubishi Electric Research Laboratories, Inc | Wireless Energy Transfer for Misaligned Resonators |
US20160001662A1 (en) * | 2013-02-25 | 2016-01-07 | Ut-Battelle, Llc | Buffering energy storage systems for reduced grid and vehicle battery stress for in-motion wireless power transfer systems |
US9819228B2 (en) * | 2013-03-01 | 2017-11-14 | Qualcomm Incorporated | Active and adaptive field cancellation for wireless power systems |
US9461492B1 (en) | 2013-04-19 | 2016-10-04 | Qnovo Inc. | Method and circuitry to adaptively charge a battery/cell using a charge-time parameter |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US9496746B2 (en) | 2013-05-15 | 2016-11-15 | The Regents Of The University Of Michigan | Wireless power transmission for battery charging |
US9381821B2 (en) * | 2013-05-15 | 2016-07-05 | Qualcomm Incorporated | Systems, methods, and apparatus related to electric vehicle wired and wireless charging |
JP6111139B2 (ja) * | 2013-05-21 | 2017-04-05 | 株式会社テクノバ | 双方向非接触給電装置 |
EP2808976A1 (de) * | 2013-05-29 | 2014-12-03 | Brusa Elektronik AG | Schaltungsanordnung für den Primärteil eines Systems zur kontaktlosen Energieübertragung, sowie Übertragerelement |
US9770991B2 (en) * | 2013-05-31 | 2017-09-26 | GM Global Technology Operations LLC | Systems and methods for initializing a charging system |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US20140361742A1 (en) * | 2013-06-07 | 2014-12-11 | Hong Kong Productivity Council | Electric vehicle charger |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
JP6245859B2 (ja) | 2013-06-26 | 2017-12-13 | キヤノン株式会社 | 送電装置、送電装置の制御方法、プログラム |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
WO2015004778A1 (ja) | 2013-07-11 | 2015-01-15 | 株式会社Ihi | 電力伝送システム |
KR102110824B1 (ko) * | 2013-07-17 | 2020-05-14 | 삼성전자주식회사 | 무선 전력 전송 시스템에서의 네트워크 통신 방법 및 장치 |
JP6111160B2 (ja) * | 2013-07-18 | 2017-04-05 | 本田技研工業株式会社 | 電動車両 |
KR102083563B1 (ko) * | 2013-07-22 | 2020-03-03 | 삼성전자주식회사 | 무선 전력 전송 시스템에서의 간섭 제어 방법 및 장치 |
KR102042662B1 (ko) * | 2013-07-22 | 2019-11-11 | 삼성전자주식회사 | 무선 전력 전송 시스템에서의 통신 전력 전송 방법 및 장치 |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
EP3039770B1 (en) | 2013-08-14 | 2020-01-22 | WiTricity Corporation | Impedance tuning |
DE102013219534A1 (de) * | 2013-09-27 | 2015-04-02 | Siemens Aktiengesellschaft | Ladestation für ein elektrisch antreibbares Fahrzeug |
DE102013219536A1 (de) * | 2013-09-27 | 2015-04-02 | Siemens Aktiengesellschaft | Ladestation zum drahtlosen energietechnischen Koppeln eines elektrisch antreibbaren Fahrzeugs |
DE102013219538A1 (de) * | 2013-09-27 | 2015-04-02 | Siemens Aktiengesellschaft | Ladestation für ein elektrisch antreibbares Fahrzeug |
KR102199469B1 (ko) | 2013-12-09 | 2021-01-06 | 한화디펜스 주식회사 | 전기차량에서 외부 차량과 상호 전력 공급을 수행하는 방법 및 장치 |
US20150180264A1 (en) * | 2013-12-20 | 2015-06-25 | Cambridge Silicon Radio Limited | Antenna for wireless charging |
WO2015097806A1 (ja) * | 2013-12-26 | 2015-07-02 | 三菱電機エンジニアリング株式会社 | 共振型電力伝送アンテナ装置 |
JP5937631B2 (ja) | 2014-01-31 | 2016-06-22 | トヨタ自動車株式会社 | 非接触電力伝送システムおよび充電ステーション |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
WO2015133843A1 (ko) | 2014-03-07 | 2015-09-11 | 엘지전자(주) | 무선 전력 송신 장치 및 방법 |
KR101961218B1 (ko) * | 2014-03-07 | 2019-03-22 | 고쿠리츠다이가쿠호우진 도쿄다이가쿠 | 인휠 모터 시스템 |
US9772401B2 (en) * | 2014-03-17 | 2017-09-26 | Qualcomm Incorporated | Systems, methods, and apparatus for radar-based detection of objects in a predetermined space |
DE102014205427A1 (de) * | 2014-03-24 | 2015-09-24 | Robert Bosch Gmbh | Verfahren zum Laden oder Entladen einer Batterie |
TWI511402B (zh) * | 2014-03-28 | 2015-12-01 | Generalplus Technology Inc | 具有無線充電發射功能與無線充電接收功能之電路及其裝置 |
US20150311724A1 (en) * | 2014-03-31 | 2015-10-29 | Evatran Group, Inc. | Ac inductive power transfer system |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
WO2015161035A1 (en) | 2014-04-17 | 2015-10-22 | Witricity Corporation | Wireless power transfer systems with shield openings |
DE102014207719A1 (de) * | 2014-04-24 | 2015-10-29 | Bayerische Motoren Werke Aktiengesellschaft | Skalierbare induktive Ladestation |
DE102014207854A1 (de) * | 2014-04-25 | 2015-10-29 | Robert Bosch Gmbh | Übertragungssystem, Verfahren und Fahrzeuganordnung |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
WO2015196123A2 (en) | 2014-06-20 | 2015-12-23 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10574079B1 (en) * | 2014-06-20 | 2020-02-25 | Qnovo Inc. | Wireless charging techniques and circuitry for a battery |
JP2016010284A (ja) * | 2014-06-26 | 2016-01-18 | 株式会社豊田自動織機 | 送電機器及び非接触電力伝送装置 |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
JP2016019366A (ja) * | 2014-07-08 | 2016-02-01 | 株式会社豊田自動織機 | 送電機器及び非接触電力伝送装置 |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
CN104079079B (zh) * | 2014-07-14 | 2018-02-23 | 南京矽力杰半导体技术有限公司 | 谐振型非接触供电装置、集成电路和恒压控制方法 |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9656563B2 (en) * | 2014-07-31 | 2017-05-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Modular wireless electrical system |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US9276413B1 (en) | 2014-09-25 | 2016-03-01 | Navitas Semiconductor, Inc. | Soft switched single stage wireless power transfer |
KR101655555B1 (ko) * | 2014-10-31 | 2016-09-22 | 현대자동차주식회사 | 태양전지 활용 시스템 및 방법 |
JP6830890B2 (ja) | 2014-11-05 | 2021-02-17 | アップル インコーポレイテッドApple Inc. | 誘導電力受信機 |
US9744870B2 (en) | 2014-11-11 | 2017-08-29 | Empire Technology Development Llc | Wirelessly charging vehicles moving in vehicle convoy |
KR102332621B1 (ko) * | 2014-11-21 | 2021-12-01 | 삼성전자주식회사 | 신호 송수신 회로 및 이를 포함하는 전자 장치 |
DE102014118040B4 (de) * | 2014-12-05 | 2017-08-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Regelschaltung für eine Basisstation zum Übertragen einer Energie auf einen Empfänger mittels eines elektrischen Schwingkreises, Auswerteeinrichtung, Verfahren und Computerprogramm |
US10046659B2 (en) * | 2014-12-19 | 2018-08-14 | Qualcomm Incorporated | Systems, apparatus and method for adaptive wireless power transfer |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
TWI553995B (zh) * | 2015-01-19 | 2016-10-11 | 茂達電子股份有限公司 | 雙向無線充電裝置及雙向無線充電系統 |
US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
US20180034324A1 (en) * | 2015-02-13 | 2018-02-01 | Powerbyproxi Limited | Inductive power receiver |
EP3065152A1 (de) | 2015-03-06 | 2016-09-07 | Brusa Elektronik AG | Primärteil eines induktiven ladegeräts |
DE102015004752A1 (de) * | 2015-04-10 | 2016-10-13 | Universität Stuttgart | Empfangseinheit, Sendeeinheit und Positioniersystem zur Positionierung eines Elektrofahrzeugs, diesbezügliches Elektrofahrzeug |
DE102015208254A1 (de) * | 2015-05-05 | 2016-11-10 | Robert Bosch Gmbh | Akkuinduktivladevorrichtung |
KR102353272B1 (ko) * | 2015-06-10 | 2022-01-19 | 삼성전자주식회사 | 무선 전력 송수신기 |
CN104901439B (zh) * | 2015-06-30 | 2017-08-08 | 京东方科技集团股份有限公司 | 磁共振式无线充电电路 |
DE102015111553A1 (de) * | 2015-07-16 | 2017-01-19 | Ipt Technology Gmbh | Vorrichtung und Verfahren zur induktiven Übertragung elektrischer Energie |
US9819215B2 (en) * | 2015-07-17 | 2017-11-14 | Hon Hai Precision Industry Co., Ltd. | Wireless charging system |
GB2557443B (en) * | 2015-07-21 | 2019-07-10 | Dyson Technology Ltd | Battery charger |
US10256676B2 (en) | 2015-07-31 | 2019-04-09 | Cameron International Corporation | Systems and methods for inductively coupled power transfer and bidirectional communication |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
CN106571692B (zh) * | 2015-10-09 | 2019-06-04 | 纽艾吉科技有限公司 | 无线受电装置及其解调方法 |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
WO2017070009A1 (en) | 2015-10-22 | 2017-04-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
JP6548554B2 (ja) * | 2015-11-06 | 2019-07-24 | 国立大学法人 東京大学 | 受電装置 |
US10461583B2 (en) * | 2015-11-10 | 2019-10-29 | Samsung Electronics Co., Ltd. | Electronic device and method for wireless charging in electronic device |
US10128660B1 (en) | 2015-11-13 | 2018-11-13 | X Development Llc | Wireless solar power delivery |
US10317963B1 (en) | 2015-11-13 | 2019-06-11 | X Development Llc | Modular mechanism enabled by mid-range wireless power |
US10389140B2 (en) | 2015-11-13 | 2019-08-20 | X Development Llc | Wireless power near-field repeater system that includes metamaterial arrays to suppress far-field radiation and power loss |
US10135257B1 (en) | 2015-11-13 | 2018-11-20 | X Development Llc | Extending the distance range of near-field wireless power delivery |
US10153644B2 (en) | 2015-11-13 | 2018-12-11 | X Development Llc | Delivering and negotiating wireless power delivery in a multi-receiver system |
US10181729B1 (en) | 2015-11-13 | 2019-01-15 | X Development Llc | Mobile hybrid transmit/receive node for near-field wireless power delivery |
US9866039B2 (en) | 2015-11-13 | 2018-01-09 | X Development Llc | Wireless power delivery over medium range distances using magnetic, and common and differential mode-electric, near-field coupling |
US10029551B2 (en) | 2015-11-16 | 2018-07-24 | Kubota Corporation | Electric work vehicle, battery pack for electric work vehicle and contactless charging system |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
KR101851995B1 (ko) * | 2015-11-20 | 2018-04-25 | 숭실대학교산학협력단 | 무선 충전기용 공진 컨버터 및 그 구현방법 |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10141771B1 (en) | 2015-12-24 | 2018-11-27 | Energous Corporation | Near field transmitters with contact points for wireless power charging |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10164478B2 (en) | 2015-12-29 | 2018-12-25 | Energous Corporation | Modular antenna boards in wireless power transmission systems |
US10759281B2 (en) * | 2016-01-19 | 2020-09-01 | Ford Global Technologies, Llc | Controlling operation of electrified vehicle travelling on inductive roadway to influence electrical grid |
JP6956728B2 (ja) | 2016-02-02 | 2021-11-02 | ワイトリシティ コーポレーションWitricity Corporation | ワイヤレス電力伝送システムの制御 |
AU2017218337A1 (en) | 2016-02-08 | 2018-08-09 | Witricity Corporation | PWM capacitor control |
US9899879B2 (en) * | 2016-02-15 | 2018-02-20 | Motorola Solutions, Inc. | Systems and methods for controlling wireless power transfer |
US10097046B2 (en) | 2016-03-18 | 2018-10-09 | Global Energy Transmission, Co. | Wireless power assembly |
RU2731628C2 (ru) * | 2016-03-18 | 2020-09-07 | Глобал Энерджи Трансмишн, Ко. | Системы и способы для беспроводной передачи энергии |
CN106571665A (zh) * | 2016-04-06 | 2017-04-19 | 中兴新能源汽车有限责任公司 | 无线充电接收装置、电动汽车和无线充电系统 |
WO2017178401A1 (en) * | 2016-04-13 | 2017-10-19 | Robert Bosch Gmbh | Smart dc microgrid parking structures using power line communications |
CN107437823B (zh) | 2016-05-27 | 2022-03-08 | 松下知识产权经营株式会社 | 电力传送系统 |
US9660487B1 (en) * | 2016-06-13 | 2017-05-23 | Megau LLC | Intelligent wireless power transferring system with automatic positioning |
US10239415B2 (en) | 2016-06-24 | 2019-03-26 | Qualcomm Incorporated | Base side vehicle identification using vehicle controller switching frequency |
EP3263390B1 (en) * | 2016-07-01 | 2020-05-06 | Hyundai Motor Company | Wireless power transfer method for electric vehicle based on auxiliary battery status and electric vehicle for the same |
GB201611532D0 (en) * | 2016-07-01 | 2016-08-17 | Dukosi Ltd | Electric batteries |
KR102622053B1 (ko) * | 2016-07-18 | 2024-01-08 | 삼성전자주식회사 | 전자장치, 디스플레이 장치 및 그 장치들의 구동방법 |
DE102016114941A1 (de) | 2016-08-11 | 2018-02-15 | Technische Hochschule Ingolstadt | System und Verfahren zur induktiven Energieübertragung |
KR101915008B1 (ko) * | 2016-08-12 | 2018-11-06 | (주)그린파워 | 전기 자동차용 유무선 겸용 충전 시스템 |
TWI614967B (zh) * | 2016-08-16 | 2018-02-11 | 飛宏科技股份有限公司 | 雙槍充電系統之智慧型能量分配方法 |
US10727697B2 (en) | 2016-09-14 | 2020-07-28 | Witricity Corporation | Power flow controller synchronization |
CN106451818B (zh) * | 2016-10-25 | 2018-12-11 | 哈尔滨工业大学 | 基于磁耦合谐振的轮毂电机无线供电系统 |
US10355532B2 (en) | 2016-11-02 | 2019-07-16 | Apple Inc. | Inductive power transfer |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
US10447090B1 (en) | 2016-11-17 | 2019-10-15 | Apple Inc. | Inductive power receiver |
KR20220008939A (ko) | 2016-12-12 | 2022-01-21 | 에너저스 코포레이션 | 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법 |
FR3060230B1 (fr) * | 2016-12-14 | 2019-01-25 | Renault S.A.S | Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride. |
CN106936325A (zh) * | 2016-12-21 | 2017-07-07 | 蔚来汽车有限公司 | 多功能车载功率变换器和包含其的电动汽车 |
US10243415B1 (en) | 2016-12-29 | 2019-03-26 | X Development Llc | Mobile power transmitter |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US10919401B2 (en) | 2017-01-12 | 2021-02-16 | Ford Global Technologies, Llc | Integrated wireless power transfer system |
JP6565943B2 (ja) * | 2017-01-23 | 2019-08-28 | トヨタ自動車株式会社 | 送電装置及び電力伝送システム |
CN106740238B (zh) * | 2017-02-20 | 2023-08-25 | 华南理工大学 | 一种电动汽车无线充电电路及其控制方法 |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
EP3462564A4 (en) * | 2017-04-07 | 2019-05-08 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | WIRELESS LOADING SYSTEM, DEVICE AND METHOD AND DEVICE TO BE LOADED |
EP3493361B1 (en) | 2017-04-07 | 2023-04-26 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless charging system, method, and device to be charged |
US10308123B2 (en) * | 2017-04-19 | 2019-06-04 | Witricity Corporation | Vehicle-side beacon mode for wireless electric vehicle charging |
CN107097670A (zh) * | 2017-05-03 | 2017-08-29 | 南京农业大学 | 一种多原边绕阻并联的电动汽车无线充电装置 |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
JP6390808B1 (ja) * | 2017-05-19 | 2018-09-19 | オムロン株式会社 | 非接触給電装置 |
WO2018212074A1 (ja) * | 2017-05-19 | 2018-11-22 | オムロン株式会社 | 非接触給電装置 |
JP7003445B2 (ja) * | 2017-05-19 | 2022-02-04 | オムロン株式会社 | 非接触給電装置 |
WO2018217941A1 (en) * | 2017-05-23 | 2018-11-29 | Kruszelnicki Martin | Charging station system and method |
US10686336B2 (en) | 2017-05-30 | 2020-06-16 | Wireless Advanced Vehicle Electrification, Inc. | Single feed multi-pad wireless charging |
JP6399244B1 (ja) * | 2017-06-02 | 2018-10-03 | オムロン株式会社 | 非接触給電装置及び異常停止方法 |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
WO2019020710A1 (en) * | 2017-07-28 | 2019-01-31 | Abb Schweiz Ag | WIRELESS CHARGING SYSTEM |
US10483836B2 (en) | 2017-07-31 | 2019-11-19 | Lear Corporation | Method of early hard switching detection and protection for inductive power transfer |
CN107618388B (zh) * | 2017-09-26 | 2023-10-31 | 伽行科技(北京)有限公司 | 一种电动汽车无线充电系统 |
DE102017123453A1 (de) | 2017-10-10 | 2019-04-11 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Vorrichtung und Verfahren zum Laden eines Batteriesystems |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US10714985B2 (en) * | 2017-10-11 | 2020-07-14 | Spark Connected LLC | Wireless power transfer system and method |
CN109687560A (zh) * | 2017-10-18 | 2019-04-26 | 江苏卡威汽车工业集团股份有限公司 | 一种车载无线感应充电电源系统 |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
US11462943B2 (en) | 2018-01-30 | 2022-10-04 | Wireless Advanced Vehicle Electrification, Llc | DC link charging of capacitor in a wireless power transfer pad |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
JP7003708B2 (ja) * | 2018-02-07 | 2022-01-21 | オムロン株式会社 | 非接触給電装置 |
US20210091436A1 (en) * | 2018-03-03 | 2021-03-25 | Thomas Haring | Battery storage system |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
JP6919612B2 (ja) * | 2018-03-27 | 2021-08-18 | オムロン株式会社 | 非接触給電装置 |
US10797506B2 (en) | 2018-04-05 | 2020-10-06 | Witricity Corporation | DC to AC power conversion using a wireless power receiver |
US20200274398A1 (en) * | 2018-05-01 | 2020-08-27 | Global Energy Transmission, Co. | Systems and methods for wireless power transferring |
US10211796B1 (en) * | 2018-05-24 | 2019-02-19 | Nxp B.V. | Common mode voltage ramping in Class-D amplifiers minimizing AM band emissions in passive keyless entry systems |
KR101935570B1 (ko) * | 2018-06-08 | 2019-01-07 | (주)그린파워 | 전기차용 비접촉 급전장치 |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
KR102205046B1 (ko) * | 2018-09-20 | 2021-01-19 | 주식회사 하벤 | 로봇청소장치용 무선충전장치 |
JP2020065388A (ja) | 2018-10-18 | 2020-04-23 | セイコーエプソン株式会社 | 制御装置、送電装置、無接点電力伝送システム、受電装置及び電子機器 |
KR102601708B1 (ko) * | 2018-11-02 | 2023-11-10 | 니치콘 가부시키가이샤 | 무선 급전장치 |
WO2020091042A1 (ja) * | 2018-11-02 | 2020-05-07 | ニチコン株式会社 | 無線給電装置 |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
DE102018131610A1 (de) * | 2018-12-10 | 2020-06-10 | Phoenix Contact E-Mobility Gmbh | Ladestecker mit einer Rastverbindungsdetektion |
ES2926686T3 (es) * | 2019-01-02 | 2022-10-27 | Abb E Mobility B V | Estación de carga con red de distribución de alta frecuencia |
US11539243B2 (en) | 2019-01-28 | 2022-12-27 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
WO2020163574A1 (en) | 2019-02-06 | 2020-08-13 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
US10923959B2 (en) | 2019-04-03 | 2021-02-16 | Apple Inc. | Wireless power system with reconfigurable rectifier circuitry |
JP7414405B2 (ja) * | 2019-05-23 | 2024-01-16 | キヤノン株式会社 | 制御システムおよび制御方法 |
CN114364570A (zh) * | 2019-08-16 | 2022-04-15 | 奥克兰大学服务有限公司 | 车辆-电网-家庭电力接口 |
JP7383131B2 (ja) * | 2019-08-26 | 2023-11-17 | ワイトリシティ コーポレーション | 無線電力システムのアクティブ整流の制御 |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
US11411441B2 (en) | 2019-09-20 | 2022-08-09 | Energous Corporation | Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers |
WO2021055900A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
CN112542897B (zh) | 2019-09-23 | 2023-03-28 | 伏达半导体(合肥)股份有限公司 | H-桥栅极控制设备 |
JP6849778B1 (ja) * | 2019-12-05 | 2021-03-31 | パナソニック株式会社 | 無線送電器、および無線受電器 |
EP4073905A4 (en) | 2019-12-13 | 2024-01-03 | Energous Corporation | CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE |
KR102437818B1 (ko) | 2019-12-20 | 2022-08-30 | 위트리시티 코포레이션 | 무선 전기 차량 충전을 위한 무선 네트워크 페어링 |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
DE102021201584A1 (de) * | 2020-02-26 | 2021-08-26 | Apple Inc. | Drahtloses leistungssystem |
JP2021141757A (ja) * | 2020-03-06 | 2021-09-16 | キヤノン株式会社 | 無線装置 |
CN111250767B (zh) * | 2020-03-27 | 2021-07-13 | 南京航空航天大学 | 一种用于数控铣床的变频超声振动加工系统 |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
US20210323433A1 (en) | 2020-04-21 | 2021-10-21 | Toyota Motor North America, Inc. | Transport charge offload management |
US11571984B2 (en) | 2020-04-21 | 2023-02-07 | Toyota Motor North America, Inc. | Load effects on transport energy |
DE102020113289A1 (de) | 2020-05-15 | 2021-11-18 | Link Gmbh | Kontaktlose Energie- und/oder Datenübertragung |
US11180048B1 (en) | 2020-07-01 | 2021-11-23 | Toyota Motor North America, Inc. | Transport-based exchange of electrical charge and services |
US11999247B2 (en) | 2020-07-01 | 2024-06-04 | Toyota Motor North America, Inc. | Providing transport to transport energy transfer |
US11374440B2 (en) | 2020-07-31 | 2022-06-28 | Renesas Electronics America Inc. | Wireless power charging |
KR20230125168A (ko) * | 2020-09-15 | 2023-08-29 | 다나아 레졸루션 인크. | 전력 전달 시스템 및 방법 |
US20230292424A1 (en) * | 2020-10-06 | 2023-09-14 | Connector Technologies Pty Ltd | Intrinsically safe electrical connector |
CN114421542A (zh) * | 2020-10-28 | 2022-04-29 | Oppo广东移动通信有限公司 | 无线充电装置及无线充电方法 |
EP4033650A1 (en) * | 2020-12-09 | 2022-07-27 | Contemporary Amperex Technology Co., Limited | Power converter control method, device, and system |
US20220392700A1 (en) * | 2021-06-04 | 2022-12-08 | The Florida State University Research Foundation, Inc. | Systems and methods for leadless power coupling for cryogenic environments |
CN113659734B (zh) * | 2021-08-13 | 2023-07-21 | 福州大学 | 基于方波调制的分离信道式双向无线电能与信号同步传输系统 |
US11949330B2 (en) * | 2021-10-19 | 2024-04-02 | Volvo Car Corporation | Integrated power conversion topology for electric vehicles |
US11942802B2 (en) * | 2021-11-19 | 2024-03-26 | Rivian Ip Holdings, Llc | Devices, structures, and methods for wirelessly powering external accessories |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
US11862993B1 (en) * | 2022-07-01 | 2024-01-02 | Utah State University | High-power reflexive field containment circuit topology for dynamic wireless power transfer systems |
WO2024147091A1 (en) * | 2023-01-03 | 2024-07-11 | B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University | System and method for wireless power factor corrected ac power delivery without an active grid-side converter |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4800328A (en) | 1986-07-18 | 1989-01-24 | Inductran Inc. | Inductive power coupling with constant voltage output |
US5162963A (en) * | 1989-03-14 | 1992-11-10 | Hughes Aircraft Company | Surge eliminator for switching converters |
JPH0454804A (ja) | 1990-06-20 | 1992-02-21 | Matsushita Electric Ind Co Ltd | 移動ロボット |
CA2050068A1 (en) * | 1990-09-27 | 1992-03-28 | Richard Wayne Glaser | Power factor improving arrangement |
US5982645A (en) * | 1992-08-25 | 1999-11-09 | Square D Company | Power conversion and distribution system |
FR2695266B1 (fr) | 1992-09-02 | 1994-09-30 | Cableco Sa | Ensemble pour recharger les batteries d'accumulateurs d'un véhicule automobile électrique. |
DE4236286A1 (de) | 1992-10-28 | 1994-05-05 | Daimler Benz Ag | Verfahren und Anordnung zum automatischen berührungslosen Laden |
GB2285717B (en) | 1993-06-30 | 1998-04-01 | Motorola Inc | Electronic device for controlling application of a charging current thereto |
JP3319062B2 (ja) | 1993-08-24 | 2002-08-26 | 松下電器産業株式会社 | 移動ロボット |
US5515285A (en) | 1993-12-16 | 1996-05-07 | Car Trace, Incorporated | System for monitoring vehicles during a crisis situation |
US5573090A (en) | 1994-05-05 | 1996-11-12 | H. R. Ross Industries, Inc. | Raodway-powered electric vehicle system having onboard power metering and communication channel features |
JPH08103039A (ja) | 1994-09-30 | 1996-04-16 | Mitsubishi Electric Corp | 電波給電装置 |
US5568036A (en) | 1994-12-02 | 1996-10-22 | Delco Electronics Corp. | Contactless battery charging system with high voltage cable |
US7315151B2 (en) * | 1995-01-11 | 2008-01-01 | Microplanet Inc. | Method and apparatus for electronic power control |
US5659240A (en) * | 1995-02-16 | 1997-08-19 | General Electric Company | Intelligent battery charger for electric drive system batteries |
US5617003A (en) | 1995-03-24 | 1997-04-01 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Method and apparatus for charging a battery of an electric vehicle |
US20070205881A1 (en) | 2000-09-08 | 2007-09-06 | Automotive Technologies International, Inc. | Energy Harvesting Systems and Methods for Vehicles |
JPH0918222A (ja) | 1995-06-28 | 1997-01-17 | Nippon Sheet Glass Co Ltd | 窓ガラスアンテナ装置 |
JPH09200115A (ja) | 1996-01-23 | 1997-07-31 | Toshiba Corp | 無線通信システムにおける無線基地局のアンテナ指向性制御方法および可変指向性アンテナ |
EP1061631A1 (en) | 1996-01-30 | 2000-12-20 | Sumitomo Wiring Systems, Ltd. | Connection system and connection method for an electric automotive vehicle |
JP3586955B2 (ja) | 1996-02-02 | 2004-11-10 | 住友電装株式会社 | 電気自動車用充電システム |
JPH1014124A (ja) | 1996-06-19 | 1998-01-16 | Tdk Corp | 非接触電力伝送装置 |
JPH10136588A (ja) | 1996-10-28 | 1998-05-22 | Sanyo Electric Co Ltd | 電動車両の充電システム |
US5959410A (en) * | 1997-01-29 | 1999-09-28 | Matsushita Electric Works R&D Laboratory, Inc. | Charge pump power factor correction circuit for power supply for gas discharge lamp |
JP3840765B2 (ja) * | 1997-11-21 | 2006-11-01 | 神鋼電機株式会社 | 非接触給電搬送システムにおける1次給電側電源装置 |
JPH11252810A (ja) * | 1998-03-03 | 1999-09-17 | Toyota Autom Loom Works Ltd | バッテリ車の車載側充電装置 |
JP3985390B2 (ja) | 1999-06-17 | 2007-10-03 | 日産自動車株式会社 | 電力マネジメントシステム |
JP4332276B2 (ja) | 2000-02-28 | 2009-09-16 | 株式会社センテクリエイションズ | 表情変化装置 |
JP5041626B2 (ja) | 2000-04-14 | 2012-10-03 | ソニー株式会社 | 復号装置、復号方法、およびプログラム |
AUPQ750400A0 (en) | 2000-05-15 | 2000-06-08 | Energy Storage Systems Pty Ltd | A power supply |
JP4403648B2 (ja) | 2000-09-07 | 2010-01-27 | 日産自動車株式会社 | 電力マネジメントシステム |
US6330176B1 (en) * | 2000-11-15 | 2001-12-11 | Powerware Corporation | Multi-input power transfer and uninterruptible power supply apparatus and methods of operation thereof |
DE10109967A1 (de) * | 2001-03-01 | 2002-09-12 | Philips Corp Intellectual Pty | Konverter |
US6465990B2 (en) * | 2001-03-15 | 2002-10-15 | Bensys Corporation | Power factor correction circuit |
JP2002286456A (ja) | 2001-03-27 | 2002-10-03 | Mitsubishi Electric Corp | 車両位置認識装置 |
JP3531624B2 (ja) | 2001-05-28 | 2004-05-31 | 株式会社村田製作所 | 伝送線路、集積回路および送受信装置 |
US6738024B2 (en) | 2001-06-22 | 2004-05-18 | Ems Technologies Canada, Ltd. | Mechanism for differential dual-directional antenna array |
JP3870315B2 (ja) | 2001-08-08 | 2007-01-17 | 株式会社日立製作所 | 移動体システム |
US6548985B1 (en) * | 2002-03-22 | 2003-04-15 | General Motors Corporation | Multiple input single-stage inductive charger |
JP3751574B2 (ja) | 2002-04-23 | 2006-03-01 | 三菱電機株式会社 | 目標位置探知方法および目標位置探知システム |
US6960968B2 (en) | 2002-06-26 | 2005-11-01 | Koninklijke Philips Electronics N.V. | Planar resonator for wireless power transfer |
WO2004009397A1 (en) * | 2002-07-19 | 2004-01-29 | Ballard Power Systems Corporation | Apparatus and method employing bi-directional converter for charging and/or supplying power |
US7307595B2 (en) | 2004-12-21 | 2007-12-11 | Q-Track Corporation | Near field location system and method |
US7525217B1 (en) * | 2002-11-15 | 2009-04-28 | Sprint Communications Company L.P. | Rectifier-super capacitor device for use in a power system for a telecommunication facility |
US8183827B2 (en) | 2003-01-28 | 2012-05-22 | Hewlett-Packard Development Company, L.P. | Adaptive charger system and method |
DE10325246B3 (de) | 2003-06-03 | 2004-11-18 | Huf Hülsbeck & Fürst Gmbh & Co. Kg | Elektronische Zugangskontrollvorrichtung |
US7057376B2 (en) * | 2004-01-14 | 2006-06-06 | Vanner, Inc. | Power management system for vehicles |
US20050243522A1 (en) * | 2004-04-30 | 2005-11-03 | Motorola, Inc. | Combined packaging and storage apparatus having added functionality |
JP2006003116A (ja) | 2004-06-15 | 2006-01-05 | Hitachi Metals Ltd | 磁気センサ |
US7782633B2 (en) * | 2004-08-27 | 2010-08-24 | Hokushin Denki Co., Ltd. | Non-contact power transmission device |
US7327113B2 (en) * | 2004-11-15 | 2008-02-05 | General Electric Company | Electric starter generator system employing bidirectional buck-boost power converters, and methods therefor |
US20060103355A1 (en) * | 2004-11-16 | 2006-05-18 | Joseph Patino | Method and system for selectively charging a battery |
TWI283097B (en) * | 2004-12-31 | 2007-06-21 | Jason Auto Technology Co Ltd | Method and device for battery charger and diagnosis with detectable battery energy barrier |
JP2006234581A (ja) | 2005-02-24 | 2006-09-07 | Aichi Micro Intelligent Corp | 電子コンパス及び方位測定方法 |
US20060260355A1 (en) * | 2005-05-19 | 2006-11-23 | Roberts Mark J | Integrated NGL recovery and liquefied natural gas production |
US7451839B2 (en) * | 2005-05-24 | 2008-11-18 | Rearden, Llc | System and method for powering a vehicle using radio frequency generators |
US7382112B2 (en) * | 2005-08-16 | 2008-06-03 | The Board Of Trustees Of The University Of Illinois | Methods and devices for input waveform control in switching power supplies |
US20070042729A1 (en) * | 2005-08-16 | 2007-02-22 | Baaman David W | Inductive power supply, remote device powered by inductive power supply and method for operating same |
US7375994B2 (en) * | 2005-10-11 | 2008-05-20 | Texas Instruments Incorporated | Highly efficient isolated AC/DC power conversion technique |
TWI320257B (en) * | 2005-11-21 | 2010-02-01 | Power adapter | |
US8072220B2 (en) | 2005-12-16 | 2011-12-06 | Raytheon Utd Inc. | Positioning, detection and communication system and method |
CN2891442Y (zh) * | 2005-12-29 | 2007-04-18 | 比亚迪股份有限公司 | 电动汽车便携式充电器 |
NZ545664A (en) | 2006-02-28 | 2008-07-31 | Auckland Uniservices Ltd | Single phase power supply for inductively coupled power transfer systems |
NZ547604A (en) | 2006-05-30 | 2008-09-26 | John Talbot Boys | Inductive power transfer system pick-up circuit |
DE102006025975B4 (de) * | 2006-06-02 | 2008-08-28 | Siemens Ag Österreich | Wechselrichterschaltung und Verfahren zum Betreiben der Wechselrichterschaltung |
GB0615562D0 (en) * | 2006-08-04 | 2006-09-13 | Ceres Power Ltd | Power supply control for power |
TWI320626B (en) * | 2006-09-12 | 2010-02-11 | Ablerex Electronics Co Ltd | Bidirectional active power conditioner |
US9129741B2 (en) * | 2006-09-14 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for wireless power transmission |
US7679943B2 (en) * | 2007-01-08 | 2010-03-16 | Maxvision Corporation | Uninterruptable power supply |
US7602142B2 (en) * | 2007-04-02 | 2009-10-13 | Visteon Global Technologies, Inc. | System for inductive power transfer |
JP2008278592A (ja) * | 2007-04-26 | 2008-11-13 | Ntt Docomo Inc | 複数携帯デバイス用の充電装置 |
KR102172339B1 (ko) * | 2007-05-10 | 2020-11-02 | 오클랜드 유니서비시즈 리미티드 | 멀티 전력을 공급받는 전기 자동차 |
GB0710057D0 (en) | 2007-05-25 | 2007-07-04 | Splashpower | Power system |
JP5121307B2 (ja) | 2007-05-28 | 2013-01-16 | ソニーモバイルコミュニケーションズ株式会社 | 無接点電力伝送コイルユニット、携帯端末、送電装置、及び、無接点電力伝送システム |
US20090007388A1 (en) | 2007-07-05 | 2009-01-08 | Villeneuve Bruce W | Magnetic shirt pocket eyeglass retaining clip system |
US7990117B2 (en) * | 2007-07-06 | 2011-08-02 | Northem Power Systems, Inc. | Low-loss control of DC-DC converters in an energy storage system |
US7839023B2 (en) * | 2007-07-18 | 2010-11-23 | Raytheon Company | Methods and apparatus for three-phase inverter with reduced energy storage |
GB0716679D0 (en) * | 2007-08-28 | 2007-10-03 | Fells J | Inductive power supply |
US8368348B2 (en) | 2007-09-20 | 2013-02-05 | Semaconnect, Inc. | Automated recharging system |
WO2009042214A1 (en) | 2007-09-26 | 2009-04-02 | Governing Dynamics, Llc | Self-charging electric vehicles and aircraft, and wireless energy distribution system |
US7889524B2 (en) * | 2007-10-19 | 2011-02-15 | Illinois Institute Of Technology | Integrated bi-directional converter for plug-in hybrid electric vehicles |
US20090108677A1 (en) | 2007-10-29 | 2009-04-30 | Linear Technology Corporation | Bidirectional power converters |
JP4794533B2 (ja) | 2007-11-01 | 2011-10-19 | 三菱電機株式会社 | 誘導加熱装置 |
US8228025B2 (en) * | 2007-11-09 | 2012-07-24 | City University Of Hong Kong | Electronic control method for a planar inductive battery charging apparatus |
CN101874340A (zh) | 2007-11-26 | 2010-10-27 | 皇家飞利浦电子股份有限公司 | 功率因数控制电路和市电电源 |
JP5086043B2 (ja) | 2007-11-30 | 2012-11-28 | 日立アプライアンス株式会社 | 電力変換装置および電力変換装置の制御方法 |
FR2925769B1 (fr) | 2007-12-21 | 2010-05-21 | Thales Sa | Dispositif d'acheminement de signaux pour positionneur d'antenne mobile. |
CN103259344B (zh) * | 2007-12-21 | 2016-08-10 | 捷通国际有限公司 | 用于感应功率传输的电路 |
JP4407753B2 (ja) * | 2008-01-15 | 2010-02-03 | トヨタ自動車株式会社 | 電動車両の充電システム |
JP2010022183A (ja) | 2008-02-08 | 2010-01-28 | Suri-Ai:Kk | 電気自動車及びそれに好適な車両用誘導送電装置 |
US8855554B2 (en) | 2008-03-05 | 2014-10-07 | Qualcomm Incorporated | Packaging and details of a wireless power device |
JP2009251895A (ja) | 2008-04-04 | 2009-10-29 | Sony Corp | 電力交換装置、電力交換方法、プログラム、および電力交換システム |
JP4665991B2 (ja) | 2008-04-15 | 2011-04-06 | トヨタ自動車株式会社 | 無線エネルギ伝送装置及び無線エネルギ伝送方法 |
JP4968159B2 (ja) * | 2008-04-15 | 2012-07-04 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
US20110050164A1 (en) * | 2008-05-07 | 2011-03-03 | Afshin Partovi | System and methods for inductive charging, and improvements and uses thereof |
US8878393B2 (en) | 2008-05-13 | 2014-11-04 | Qualcomm Incorporated | Wireless power transfer for vehicles |
US8466654B2 (en) | 2008-07-08 | 2013-06-18 | Qualcomm Incorporated | Wireless high power transfer under regulatory constraints |
US8847719B2 (en) * | 2008-07-25 | 2014-09-30 | Cirrus Logic, Inc. | Transformer with split primary winding |
US8432070B2 (en) * | 2008-08-25 | 2013-04-30 | Qualcomm Incorporated | Passive receivers for wireless power transmission |
KR101088401B1 (ko) | 2008-08-29 | 2011-12-01 | 안동대학교 산학협력단 | 무선전력전송장치 |
US8947041B2 (en) * | 2008-09-02 | 2015-02-03 | Qualcomm Incorporated | Bidirectional wireless power transmission |
JP4911148B2 (ja) | 2008-09-02 | 2012-04-04 | ソニー株式会社 | 非接触給電装置 |
US8650411B2 (en) * | 2008-09-07 | 2014-02-11 | Schweitzer Engineering Laboratories Inc. | Energy management for an electronic device |
WO2010027559A1 (en) | 2008-09-07 | 2010-03-11 | Schweitzer Engineering Laboratories, Inc. | Energy management for an electronic device |
US8532724B2 (en) | 2008-09-17 | 2013-09-10 | Qualcomm Incorporated | Transmitters for wireless power transmission |
US8006793B2 (en) | 2008-09-19 | 2011-08-30 | Better Place GmbH | Electric vehicle battery system |
EP2330716B1 (en) | 2008-09-19 | 2018-09-05 | Toyota Jidosha Kabushiki Kaisha | Noncontact power receiving apparatus and vehicle including the same |
JP5390818B2 (ja) | 2008-09-19 | 2014-01-15 | 矢崎総業株式会社 | ワイヤレス電力伝送装置の通信コイル構造 |
GB2463548B8 (en) | 2008-09-22 | 2011-08-10 | Responsiveload Ltd | Smart responsive electrical load |
US8482945B2 (en) | 2008-09-26 | 2013-07-09 | Merstech, Inc. | Power converter with magnetic recovery switch |
JP4438887B1 (ja) * | 2008-09-26 | 2010-03-24 | トヨタ自動車株式会社 | 電動車両及び電動車両の充電制御方法 |
JP2010081736A (ja) * | 2008-09-26 | 2010-04-08 | Tdk Corp | Ac/dcコンバータ |
US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
KR20100045671A (ko) * | 2008-10-24 | 2010-05-04 | 주식회사 필룩스 | 전자식 형광등 안정기 |
US8020011B2 (en) * | 2008-10-27 | 2011-09-13 | Sercomm Corporation | Shared interface device for selectively using power supply over ethernet (POE) card and wireless network module |
US20100110741A1 (en) * | 2008-10-31 | 2010-05-06 | University Of Florida Research Foundation, Inc. | Miniature high voltage/current ac switch using low voltage single supply control |
US20110089904A1 (en) * | 2008-12-04 | 2011-04-21 | Thomas Allan Ward | Current clamping parallel battery charging system to supplement regenerative braking in electric vehicle |
JP5135204B2 (ja) * | 2008-12-26 | 2013-02-06 | 株式会社日立製作所 | 非接触電力伝送システム、および該非接触電力伝送システムにおける負荷装置 |
US9873347B2 (en) | 2009-03-12 | 2018-01-23 | Wendell Brown | Method and apparatus for automatic charging of an electrically powered vehicle |
US8033349B2 (en) | 2009-03-12 | 2011-10-11 | Ford Global Technologies, Inc. | Auto-seek electrical connection for a plug-in hybrid electric vehicle |
WO2010111433A2 (en) * | 2009-03-25 | 2010-09-30 | Powergetics, Inc. | Bidirectional energy converter |
US20100259458A1 (en) | 2009-04-14 | 2010-10-14 | Qualcomm Incorporated | Dual-angle adjustment of a satellite-tracking antenna with a single motor |
EP2431214B1 (en) * | 2009-05-14 | 2019-02-27 | Toyota Jidosha Kabushiki Kaisha | Vehicle charging unit |
WO2010131348A1 (ja) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | 車両用充電装置 |
WO2010131346A1 (ja) * | 2009-05-14 | 2010-11-18 | トヨタ自動車株式会社 | 非接触受電装置およびそれを備える車両 |
US8655272B2 (en) * | 2009-07-07 | 2014-02-18 | Nokia Corporation | Wireless charging coil filtering |
US8259423B2 (en) * | 2009-07-14 | 2012-09-04 | Ford Global Technologies, Llc | Automotive vehicle charge port with fault interrupt circuit |
US8013570B2 (en) * | 2009-07-23 | 2011-09-06 | Coulomb Technologies, Inc. | Electrical circuit sharing for electric vehicle charging stations |
US8290463B2 (en) * | 2009-09-14 | 2012-10-16 | ConvenientPower HK Ltd. | Universal demodulation and modulation for data communication in wireless power transfer |
US20110082621A1 (en) | 2009-10-02 | 2011-04-07 | Eric Berkobin | Method and system for predicting battery life based on vehicle battery, usage, and environmental data |
US9132741B2 (en) * | 2009-10-08 | 2015-09-15 | Ford Global Technologies, Llc | Method and system for controlling current flow through a power distribution circuit |
US20110133726A1 (en) | 2009-12-09 | 2011-06-09 | Alexander Ballantyne | Precision alignment system |
CN102111008A (zh) * | 2009-12-29 | 2011-06-29 | 台达电子工业股份有限公司 | 电动汽车的高压电池充电系统架构 |
TWI577109B (zh) * | 2010-01-05 | 2017-04-01 | 通路實業集團國際公司 | 電動車之動態偵測系統、感應充電系統及其支撐結構 |
TWI610512B (zh) | 2010-02-05 | 2018-01-01 | 半導體能源研究所股份有限公司 | 受電裝置 |
WO2011106506A2 (en) * | 2010-02-25 | 2011-09-01 | Evatran Llc | Method and apparatus for inductively transferring ac power between a charging unit and a vehicle |
US8478452B2 (en) * | 2010-04-06 | 2013-07-02 | Battelle Memorial Institute | Grid regulation services for energy storage devices based on grid frequency |
US20110244817A1 (en) * | 2010-04-06 | 2011-10-06 | Qualcomm Incorporated | Forward link signaling |
US9561730B2 (en) | 2010-04-08 | 2017-02-07 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
CN102299548B (zh) * | 2010-06-24 | 2014-02-05 | 海尔集团公司 | 电子装置及其供电方法以及无线供电系统 |
KR101194485B1 (ko) * | 2010-10-19 | 2012-10-24 | 삼성전기주식회사 | 가변 주파수 역률 제어 충전 장치 |
CN102457193B (zh) * | 2010-10-27 | 2015-08-19 | 台达电子工业股份有限公司 | 具有单级转换器的电源供应器 |
US9827861B2 (en) * | 2010-11-05 | 2017-11-28 | Ford Global Technologies, Llc | System and method for vehicle battery charging |
DE102011056516B4 (de) * | 2010-12-16 | 2022-10-13 | Denso Corporation | Leistungsversorgungsvorrichtung für Fahrzeuge |
JP5445481B2 (ja) * | 2011-02-01 | 2014-03-19 | 村田機械株式会社 | 非接触給電装置 |
JP6880172B2 (ja) * | 2016-08-08 | 2021-06-02 | ワイトリシティ コーポレーションWitricity Corporation | 磁束消去のための共有材料を有するインダクタシステム |
-
2011
- 2011-04-07 US US13/082,211 patent/US9561730B2/en active Active
- 2011-04-08 CN CN201410677953.1A patent/CN104477044B/zh active Active
- 2011-04-08 KR KR1020127028938A patent/KR101923741B1/ko active IP Right Grant
- 2011-04-08 CN CN2011800180155A patent/CN102834291A/zh active Pending
- 2011-04-08 JP JP2013504008A patent/JP2013528043A/ja active Pending
- 2011-04-08 TW TW100112338A patent/TW201223060A/zh unknown
- 2011-04-08 EP EP11719386A patent/EP2555945A2/en not_active Withdrawn
- 2011-04-08 WO PCT/US2011/031850 patent/WO2011127449A2/en active Application Filing
- 2011-04-08 EP EP15150222.6A patent/EP2889177B1/en active Active
-
2015
- 2015-07-08 JP JP2015136860A patent/JP6140220B2/ja active Active
-
2017
- 2017-02-03 US US15/424,640 patent/US10493853B2/en active Active
-
2019
- 2019-10-23 US US16/661,911 patent/US20200094696A1/en not_active Abandoned
-
2022
- 2022-07-25 US US17/814,806 patent/US20220363146A1/en not_active Abandoned
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104272600A (zh) * | 2012-03-13 | 2015-01-07 | 雷诺两合公司 | 具有多个多路复用接收器的无线通信系统 |
CN107364355A (zh) * | 2013-08-09 | 2017-11-21 | 高通股份有限公司 | 关于检测和识别电动车辆和充电站的系统、方法和设备 |
CN105580241A (zh) * | 2013-09-27 | 2016-05-11 | 高通股份有限公司 | 感应电力传递系统中的装置对准 |
CN105580241B (zh) * | 2013-09-27 | 2018-10-12 | 高通股份有限公司 | 感应电力传递系统中的装置对准 |
CN106663528A (zh) * | 2014-07-09 | 2017-05-10 | 奥克兰联合服务有限公司 | 适合于电动车辆的感应式电力系统 |
CN106574949B (zh) * | 2014-07-25 | 2019-08-09 | 韦特里西提公司 | 用于电动车辆无线充电系统的引导和对准系统及方法 |
CN106574949A (zh) * | 2014-07-25 | 2017-04-19 | 高通股份有限公司 | 用于电动车辆无线充电系统的引导和对准系统及方法 |
CN105846860A (zh) * | 2015-01-29 | 2016-08-10 | 巴鲁夫公司 | 用于非接触式能量和数据传送的系统 |
CN105846860B (zh) * | 2015-01-29 | 2018-08-21 | 巴鲁夫公司 | 用于非接触式能量和数据传送的系统 |
CN105529795A (zh) * | 2016-01-18 | 2016-04-27 | 河南理工大学 | 感应式电动车充电装置 |
CN106787254A (zh) * | 2017-03-17 | 2017-05-31 | 宁波微鹅电子科技有限公司 | 无线电能接收端和无线供电系统 |
CN109795354A (zh) * | 2019-03-07 | 2019-05-24 | 暨南大学 | 一种车载无线充电线圈的自动对准装置及方法 |
CN109795354B (zh) * | 2019-03-07 | 2023-08-15 | 暨南大学 | 一种车载无线充电线圈的自动对准装置及方法 |
CN113949143A (zh) * | 2020-07-16 | 2022-01-18 | 意法半导体研发(深圳)有限公司 | 反向无线充电 |
Also Published As
Publication number | Publication date |
---|---|
JP2013528043A (ja) | 2013-07-04 |
EP2889177A1 (en) | 2015-07-01 |
WO2011127449A2 (en) | 2011-10-13 |
CN104477044A (zh) | 2015-04-01 |
US20200094696A1 (en) | 2020-03-26 |
EP2889177B1 (en) | 2022-03-09 |
WO2011127449A3 (en) | 2012-07-12 |
JP2015213432A (ja) | 2015-11-26 |
KR20130042483A (ko) | 2013-04-26 |
US20110254377A1 (en) | 2011-10-20 |
CN104477044B (zh) | 2017-05-03 |
TW201223060A (en) | 2012-06-01 |
US20220363146A1 (en) | 2022-11-17 |
US9561730B2 (en) | 2017-02-07 |
JP6140220B2 (ja) | 2017-05-31 |
US10493853B2 (en) | 2019-12-03 |
EP2555945A2 (en) | 2013-02-13 |
KR101923741B1 (ko) | 2018-11-29 |
US20170267110A1 (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102834291A (zh) | 电动车辆中的无线电力传输 | |
EP2959568B1 (en) | Modular inductive power transfer power supply and method of operation | |
US9994114B2 (en) | Systems and methods for bi-state impedance conversion in wireless power transfer | |
CN107107777B (zh) | 用于自适应无线功率传输的系统、装置和方法 | |
KR101760632B1 (ko) | 적응형 무선 에너지 전송 시스템 | |
EP2984730B1 (en) | Primary power supply tuning network for two coil device and method of operation | |
US9859956B2 (en) | Power supply control in wireless power transfer systems | |
EP2873132B1 (en) | Tuning circuit and method for wireless power transfer systems | |
Kavitha et al. | Electrical Vehicles (EVs)—An Application of Wireless Power Transfer (WPT) System | |
Tiwari et al. | Wireless power transfer-based next-generation electric vehicle charging technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121219 |