JP2010022183A - 電気自動車及びそれに好適な車両用誘導送電装置 - Google Patents

電気自動車及びそれに好適な車両用誘導送電装置 Download PDF

Info

Publication number
JP2010022183A
JP2010022183A JP2008215347A JP2008215347A JP2010022183A JP 2010022183 A JP2010022183 A JP 2010022183A JP 2008215347 A JP2008215347 A JP 2008215347A JP 2008215347 A JP2008215347 A JP 2008215347A JP 2010022183 A JP2010022183 A JP 2010022183A
Authority
JP
Japan
Prior art keywords
vehicle
core
power transmission
power
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008215347A
Other languages
English (en)
Inventor
Shoichi Tanaka
正一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SURI AI KK
Suri Ai KK
Original Assignee
SURI AI KK
Suri Ai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SURI AI KK, Suri Ai KK filed Critical SURI AI KK
Priority to JP2008215347A priority Critical patent/JP2010022183A/ja
Publication of JP2010022183A publication Critical patent/JP2010022183A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

【課題】構成が簡素であり、送電効率に優れた車両用誘導送電装置を提供すること。
【解決手段】地上側に埋設されたH形又は梯子形の磁性コアである固定コア1の横バー13に送電コイル14を巻回し、車両底面から降下して固定コア1のバー11、12に接する移動コア2の横バー23に受電コイル24を巻回する。移動コア2は、車両進行方向へ延在する固定コア1のバー11、12に接する男性及び軟磁性をもつ車輪状の磁束入力コア21、22と、これら磁束入力コア21、22を磁気的に結合する車軸状の横バー23とをもつ。これにより、簡素な構成で送電効率が優れた車両用誘導送電装置を実現することができる。
【選択図】 図2

Description

本発明は、電磁誘導により地上側から走行中又は停車中又は駐車中の車両に電力エネルギーを送電する車両用誘導送電装置に関する。本発明の車両用誘導送電装置は、道路、パーキングスペース又は屋内に設置されて電動車両に走行電力を給電する。なお、本発明の電気自動車は、道路側から電磁誘導給電される他に、たとえばエンジンや燃料電池のごとき搭載エネルギー発生手段により走行エネルギーを発生することもできる。
電磁誘導により地上側から走行中の車両に電力エネルギーを送電する車両用誘導送電装置が、工場内の自動搬送車への給電、道路走行電気自動車への給電、駐車中の自動車への給電に採用される。この車両用誘導送電装置の採用により、特に電動車両の小型軽量化及び製造コスト低減とエネルギー消費の節約を実現する。更に、車載蓄電装置の小型化は、走行モータを含む車両重量を軽減して車輪摩擦抵抗の低減と、走行必要エネルギーの節約も実現する。その他、充電の手間が要らず、大容量蓄電装置の安全性確保問題及びその劣化問題も軽減できる効果も期待することができる。
走行自動車に対する車両用誘導送電装置が下記の特許文献1に記載されている。この特許文献1は、道路に多数の送電コイルを一列に配置し、受電コイルを通過する車両の下の送電コイルに選択給電することを提案している。停車する自動車に対する車両用誘導送電装置が、下記の特許文献2に記載されている。この特許文献2は、交差点近傍に停車する車両の受電コイルに道路埋設スパイラルコイルを通じて誘導給電する。道路の延長方向に配置されたケーブルの磁界により車両に給電する方式が下記の特許文献3に記載されている。列車の側面に沿いつつ進行方向に延設される高周波ケーブルに軟磁性の固定コアを設け、この固定コアに所定ギャップを隔てて対面する軟磁性の移動コアを車両に設ける方式が鉄道技術において提案されている。車両側の受電コイルを車輪により垂直移動可能に支持することにより、受電コイルと道路側の給電コイルとの間に一定幅のギャップを確保すること下記の特許文献4に記載されている。
従来の車両用誘導送電装置として、磁性コアを用いないコアレス方式と、磁性コアを用いるコア方式とが知られている。コア方式として、車両側に磁性コアを設ける移動コア方式、固定側に磁性コアを設ける固定コア、固定側に固定コアを車両側に移動コアを設けるダブルコア方式が知られている。ダブルコア方式はエアギャップ長を短縮できるため、無効電力やスイッチング損失を減らして電力伝送効率を向上することができる。
USP5431264 特開2005−73313号公報 特開平07−170612号公報 実公平7−22961号公報
しかしながら、従来のダブルコア方式は、固定コア及び移動コアの対抗面に磁束を集中させるため、固定コアと移動コアとの水平方向の位置ずれが大きくなると、送電効率が大幅に減少してしまうという問題があった。一般の車両の走行軌跡は、列車のそれとは異って水平面内におけるバリエーションが大きいため、車両の走行軌跡の変化により送電効率は大幅に低下してしまう。この効率低下を防ぐためには、固定コア及び移動コアの水平面積を増大すればよいが、この場合には、固定コア及び移動コアの使用量及びコイル導体の総延長が大幅に増大し、また漏れインダクタンスの増加により励磁損失も増大し、銅損も増大してしまう。コアレス方式は、給電コイルと受電コイルとの電磁結合係数が低下して伝送効率の向上が容易ではないと言う問題があった。
本発明は上記問題点に鑑みなされたものであり、簡素な構造と良好な送電効率をもつ車両用誘導送電装置を開発することをその目的としている。
また、上記車両用誘導送電装置により走行する電気自動車において、たとえば田舎へのドライブなど道路やパーキングスペースに車両用誘導送電装置が設備されていない地域では、電気自動車が走行不能となってしまう可能性があった。といって、電気自動車に大容量の蓄電装置を搭載することは、上記車両用誘導送電装置の利点の大部分が消えてしまい、車両が大型大重量となってしまうという問題があった。
本発明は上記問題点に鑑みなされたものであり、小型の蓄電装置を搭載するにもかかわらず車両用送電装置の設備が無い地域の走行も可能な電気自動車を提供することをその目的としている。
上記目的を達成するために、車両用誘導送電装置に関する複数の発明が下記に記載される。車両用誘導送電装置に関する各発明は12個の独立発明とこの車両用誘導送電装置の利用が好適な電気自動車に関する2つの独立発明を含む。これらは、一緒に実施されることが好適であるためこの明細書にまとめて記載される。
各発明の車両用誘導送電装置は、走路に固定された軟磁性の固定コアと、固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、車両に設けられて固定コアに対面する軟磁性の移動コアと、移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置に適用される。この種の車両用誘導送電装置は、たとえば上記特許文献4に記載されるように、公知となっている。なお、ここで言う固定コアと移動コアとの対面は、両コア間で磁束を授受できるなら、小ギャップを隔てての対面でもよく、接触状態の対面でもよい。
第1発明の車両用誘導送電装置において、受電ユニットは、走路又は前記固定コア上を回転走行する車輪を有するとともに移動コア及び受電コイルを移動させる受電車と、走路幅方向へ相対移動可能かつ走路高さ方向へ相対移動可能に車両と受電車の底部とを連結するとともに車両と固定コアとの間の走路幅方向位置ずれ量よりも受電車と固定コアとの間の走路幅方向位置ずれ量を減少させる向きに受電車を付勢する受電車支持機構とを有し、受電車支持機構は、受電車と車両との間の高さ方向距離を変更することなく受電車を車両に対して少なくとも車両の幅方向へ相対移動させることができ、かつ、車両に対して受電車を走路平行方向に相対移動することなく受電車を車両に対して走路高さ方向へ相対変位させることができる連結構造を有し、連結構造により前記車両に連結されることを特徴としている。
端的に言えば、この発明は、受電車を車両に対して水平移動可能かつ垂直移動可能に車両の底部に連結し、かつ、受電車を固定コアに近接する向きに付勢する手段をもつ。このようにすれば、車両が固定コアに対して走路幅方向へずれても、受電車は固定コアの直上を走行することができる。したがって、固定コア及び移動コアの走路幅方向の幅が狭くても良好な電力伝送効率を確保することができる。また、固定コア及び移動コアの走路幅方向の幅を狭くできるため、給電コイル及び受電コイルを小型化することができ、それらの漏れインダクタンスも小さくできるので、製造コストの低減と、励磁損失の低減とを実現することができる。また、車両の自由な操縦も可能となる。更に、本発明によれば、走路の傾斜や凹凸により車両が高さ方向に変位しても、固定コアと移動コアとの間の垂直方向ギャップの距離を安定かつ良好を維持することができるので、高い電力伝送効率を維持することができる。
なお、「車両と固定コアとの間の走路幅方向位置ずれ量よりも受電車と固定コアとの間の走路幅方向位置ずれ量を減少させる向きに受電車を付勢する」受電車支持機構としては、パッシブ方式とアクティブ方式とが可能である。パッシブ方式では、送電コイルへの通電により生じる固定コアの磁気吸引力が利用される。すなわち、軟磁性の移動コアは、固定コア近傍において強く固定コアに吸引されるため、この移動コアは、上記「車両と固定コアとの間の走路幅方向位置ずれ量よりも受電車と固定コアとの間の走路幅方向位置ずれ量を減少させる向きに受電車を付勢する」を構成することができる。その他、アクティブ方式では、受電車を走路幅方向へ直線移動させたり、受電車を水平面で旋回させたりするモータやリニアアクチエータが採用される。上記したパッシブ方式においてもアクティブ方式においても、受電車は、走路幅方向に変位自在に車両に連結される必要がある。
好適な態様において、前記受電車は、進行方向へ配列された前記移動コアと、前記移動コアを垂直移動可能に支持するフレームと、前記フレームを支持する車輪とを有し、前記車輪は、前記移動コアの下端と前記固定コアの上端との間のギャップを所定量確保する径を有する。このようにすれば、移動コアが上下方向に移動可能であるため、固定コア上に異物が有ったり、固定コアの上面が平坦でない場合でも移動コアの下面と固定コアの上面との摩擦を低減することができる。
好適態様において、移動コアは、前後方向に配列された複数の小ブロックに区分され、これらの小ブロックに一つの受電コイルが巻装され、各小ブロックは独立に上下変位可能となっている。これにより、上記異物によるギャップ増加の悪影響を低減することができる。
好適な態様において、移動コアの左右側面に溝が形成され、この溝に上下変位可能に移動コア支持用のフックが挿入される。これにより、移動コアを簡素な機構により上下変位可能に支持することができる。
好適な態様において、受電車は、進行方向へ配列された複数の移動コアを個別に支持するとともに互いに高さ方向へ相対変位可能に進行方向へ連結される複数の小型受電車からなる受電列車により構成されている。このようにすれば、固定コア又は走路がその延在方向へ凹凸を有している場合や、障害物が存在する場合でも、各小型受電車は良好に受電することができる。また、固定コアが水平面内にて湾曲していても良好に受電することができる。
好適な態様において、受電車支持機構は、受電車と車両の底部とを連結して車両後方かつ下方へ斜めに延在する連結バーを有し、受電車は、連結バーの先端部に水平回動自在に連結され、連結バーは、車両の底部に水平回動自在かつ垂直回動自在に連結される。このようにすれば、車両が固定コアから車両幅方向に位置ずれしても、移動コアと固定コアとの間の良好な電磁誘導を確保することができる。特に、車両方向が固定コアの延在方向に対してずれても受電車の姿勢を良好に固定コアの延在方向に合わせることが可能となる。更に、走路が上下方向に傾斜したり、車両が障害物を踏んだり、タイヤ圧が変動しても受電車と固定コアとの間の垂直方向ギャップを良好に維持することができる。受電車支持機構は、車両と固定コアとの間の走路幅方向位置ずれ量よりも受電車と固定コアとの間の走路幅方向位置ずれ量を減少させる向きに受電車を付勢する。一例において、この付勢力は、受電車に固定されて固定コアに対して磁気吸引力を発生する永久磁石又は電磁石からなる。又は、後述する受電車横移動装置によりこの付勢力を発生させても良い。
好適な態様において、受電車支持機構は、受電車を昇降させる受電車昇降装置を有する。このようにすれば、給電ユニットが存在しない場合に受電車を上昇させて無駄な損失を低減することができる。
好適な態様において、受電車支持機構は、受電車を車両幅方向へ移動させる受電車横移動装置を有する。好ましくは、この受電車横移動装置は連結バーを水平回動させるモータ、又は、連結バーを車両幅方向へ移動させるリニアアクチエータとされる。このようにすれば、車両が車両進行方向に対して直角な水平方向すなわち左右方向にずれても、この受電車横移動装置が受電車を逆向きに移動させることができるので、良好な電力伝送効率を確保することができる。
好適な態様において、受電車支持機構は、固定コアに対する移動コアの走路幅方向の位置ずれ量を検出する横ずれ検出センサを有し、受電車横移動装置は、検出した位置ずれ量に応じて受電車を位置ずれを解消する向きに付勢する。このようにすれば、受電車を正確に固定コアの直上に保持することができる。
好適な態様において、横ずれ検出センサは、固定コアに対する移動コアの走路幅方向の距離を磁気的に検出する磁気センサからなる。すなわち、車両用誘導送電装置の固定コアは、透磁率が高いため、磁気センサにより正確に横ずれ量を検出することができる。
好適な態様において、磁気センサは、移動コアに巻装された位置ずれ検出用のコイルと、位置ずれ検出用のコイルの電圧に基づいて位置ずれ量を検出する横ずれ検出回路とを有する。コイルには高周波の交流電流が通電される。この交流電圧としては、送電コイルから出力される送電電力により位置ずれ検出用コイルに誘導される電力であってもよい。このようにすれば、位置ずれ量を良好に検出することができる。
好適な態様において、受電コイルは、位置ずれ検出用のコイルを兼ねるか又は位置ずれ検出用コイルと同軸に巻装される。このようにすれば、構成を簡素化することができる。たとえば、受電コイルは、給電コイルからの受電により誘導電圧がその両端に生じるので、この誘導電圧の大きさにより位置ずれ量を推定することができる。
好適な態様において、固定コアは、走路に露出する左右一対の磁束出力コアを有し、移動コアは、下端が一対の磁束出力コアに個別に近接乃至接触する左右一対の磁束入力コアと、一対の磁束入力コアを磁気的に接続するとともに受電コイルが巻回されたコイル巻装コアとを有し、一対の磁束入力コアは、軟磁性材料により車輪状に形成されて一対の磁束出力コアの上面に接触しつつ回転し、コイル巻装コアは、軟磁性材料により車輪状に形成されて一対の磁束出力コアを磁気的に連結する。このようにすれば、固定コアと移動コアとが相対回転速度を減らしつつ接触させることができるので、励磁電流を低減し、かつ、摩擦、摩耗も低減することができる。更に、固定コアと移動コアとの磁気吸引力を受電車支持機構の位置ずれ低減力として利用することができる。
好適な態様において、車輪状の磁束入力コアは、電動車の車輪を兼ねる。これにより構造を簡素化することができる。
好適な態様において、車輪状の磁束入力コアは、輪板状の軟磁性鋼板を軸方向に積層されて構成されている。これにより、径方向への磁束通過を可能とするとともに、簡素な構造にて鉄損及び車輪の摩耗を減らすことができる。
好適な態様において、車軸状のコイル巻装コアの両端部は、径外方向へ延在して磁束入力コアの内周面に密着するスポーク部(232)を有する。このようにすれば、車軸状のコイル巻装コアと車輪状の磁束入力コアとの磁束授受を低鉄損にて行うことができる。
好適な態様において、固定コアは、走路に露出する左右一対の磁束出力コアを有し、移動コアは、プレート状に形成されて前後方向へ延在するとともに小ギャップを隔てて一対の磁束出力コアの上面に対面する。このようにすれば、低鉄損にて移動コアと固定コアとの磁束授受を実現することができる。
好適な態様において、固定コアは、走路に露出する左右一対の磁束出力コアを有し、移動コアは、下端が一対の磁束出力コアに個別に接触する左右一対の車輪状の磁束入力コア(592)と、車輪状の一対の磁束入力コア(592)に小ギャップを隔てて対面する左右一対の縦バー(511)と、左右一対の縦バー(511)を磁気的に連結する横バー(514)とを有し、受電コイル(24)は、横バー(514)に巻装されている。このようにすれば、走路に露出する一対の磁束出力コアと車輪状の磁束入力コアとの間の磁気抵抗を減らすとともに、一対の車輪状の磁束入力コア間に円滑に磁束を流通させることができる。
好適な態様において、車輪状の磁束入力コア(592)は、輪板状の軟磁性板を軸方向に積層して構成され、左右一対の縦バー(511)は、前記磁束入力コア(592)の外周面に小ギャップを隔てて対面する。このようにすれば、鉄損を低減することができる。
第2発明の車両用誘導送電装置は、固定コアが、上端面が走路の一部を構成するとともに互いに所定間隔を隔てて走路延在方向へ平行に延設される一対の磁束出力コアと、走路に埋設されて一対の磁束出力コアの所定部位同士を磁気的に接続するとともに送電コイルが巻装された一つ又は複数のコイル巻装コアとを有し、移動コアは、下端が一対の磁束入力コアに個別に近接乃至接触する一対の磁束入力コアと、一対の磁束入力コアを磁気的に接続するとともに受電コイルが巻回されたコイル巻装コアとを有していることを特徴としている。
端的に言えば、この発明の固定コアと移動コアとは、走路方向に長い略H形又は梯子形に形成され、給電コイルと受電コイルとは、走路幅方向に延在する横バーである磁束出力コアに巻装されている。
給電コイルが固定コアの横バー(コイル巻装コア)に形成した磁束は、走路方向へ長く延在する磁束出力コアを通じて走路方向へ流れる。この磁束は、走路方向へ長く延在する磁束入力コアを通じて移動コアの横バー(コイル巻装コア)に流れて受電コイルに誘導電圧を発生させる。これにより、固定コア及び移動コアを小型とし、給電コイル及び受電コイルを小型化し、かつ、車両を走路方向へ移動しても、給電コイルと受電コイルとの間で必要量の磁束と鎖交することができる。
鉄損及び銅損を無視して理想的に考えた場合、受電コイルの誘導電圧Eは、受電コイルのターン数をN、周波数をf、両コイルと鎖交する最大磁束量をΦmとする時、N・2πf・Φに比例する。受電コイルの負荷抵抗をrとし、受電コイルの電気抵抗等を無視する時、受電コイルの出力電力は、N・N・4・π・π・f・f・Φm・Φm/rとなる。つまり、電力伝送量を増大するためには、磁束量Φm、周波数f、ターン数Nのどれかを増大すればよい。周波数及びターン数を材料が許容する範囲で増大することにより、送電電力あたりの最大磁束量を減らし、出力あたりの各種損失を減らすことができる。周波数の2乗に比例して鉄損が増大するが、送電電力も周波数の2乗に略比例して増大する。送電電力あたりの軟磁性材料の重量は、周波数の2乗に逆比例して減少する。周波数は1〜数十kHzとすることができる。固定コアの磁束出力コアは走路表面(路面)に露出してすることが好適である。なお、互いに平行に3本以上の磁束出力コアを設けることも可能である。
好適な態様において、一対の磁束出力コアは、固定コアのコイル巻装コアよりも走路延在方向へ長く形成されている。これにより、固定コアの励磁のための給電回路数を減らすことができる。
好適な態様において、磁束入力コアは、移動コアのコイル巻装コアよりも長く形成されている。このようにすれば、受電コイル及び移動コアを大型化することなく、固定コアと移動コアとの対面面積を増大することができる。
好適な態様において、磁束出力コアは、磁束入力コアよりも走路延在方向へ長く形成されている。これにより、給電コイル及び給電回路を減らすことができる。
好適な態様において、磁束出力コアの上面は粗面化されている。これにより、車両のタイヤがスリップするのを防止することができる。
これにより、磁束出力コアは、多数の軟磁性鋼板を走路幅方向へ積層してなる。これにより、磁束出力コアの摩耗を低減し、また、鉄損を低減し、磁束出力コアの上面を粗面化することができる。
好適な態様において、コイル巻装コアは、多数の軟磁性鋼板を走路延在方向へ積層してなる。これにより、鉄損を低減することができる。
好適な態様において、コイル巻装コアの端部は、磁束出力コアの走路延在方向中間部に磁気的に接続される。ここで言う走路延在方向(走路方向)中間部とは、磁束出力コアの走路方向中央位置から磁束出力コア前後へそれぞれ30%の範囲を言うものとする。これにより、固定コアのコイル巻装コアから磁束出力コアに流れた磁束は、短い磁路長にて移動コアのコイル巻装コアに到達することができるので、鉄損を低減することができる。
好適な態様において、一対の磁束出力コアは、走路延在方向へ所定間隔隔てて配置された複数のコイル巻装コアにより磁気的に接続され、固定コアの複数のコイル巻装コアに別々に巻回された複数の給電コイルは同じ方向へ磁束を発生する。これにより、磁束出力コアを長くしても上記磁束の流れる距離を減らして鉄損を減らすことができ、磁束出力コアの磁束直角断面積を低減することができる。
好適な態様において、固定コアのコイル巻装コアは、一対の磁束出力コアの下面に接している。このようにすれば、給電コイルを走路に埋設しつつ、磁束出力コアの上面を走路表面に露出することができる。
好適な態様において、磁束入力コアは、多数の軟磁性鋼板を進行方向に対して直角方向へ積層してなる。これにより、磁束入力コアを長くしても鉄損を減らすことができる。
好適な態様において、一対の磁束入力コアは、走路延在方向へ所定間隔隔てて配置された複数のコイル巻装コアにより磁気的に接続され、移動コアの複数のコイル巻装コアに別々に巻回された複数の受電コイルは、二次電圧加算方向へ直列接続されている。これにより、受電コイルと鎖交する磁束量を確保しつつ移動コアを小型軽量化することができ、磁路長を短縮して鉄損を低減することができる。
好適な態様において、移動コアのコイル巻装コアの下面は、一対の磁束入力コアの上面に接している。このようにすれば、磁束入力コアを磁束出力コアにギャップを隔てて対面させつつ、移動コアのコイル巻装コアに受電コイルを巻回することができる。
好適な態様において、一対の磁束入力コアは、コイル巻装コアの一部をなす車軸により連結された軟磁性の車輪を有し、受電コイルは、車軸に相対回転可能に巻装される。このようにすれば、移動コアの磁束入力コアと磁束出力コアとの間の摩擦を減らしつつ、両者間のギャップを無くして磁気抵抗を減らすことができるので、励磁損失を低減することができる。また、車輪形状の磁束入力コアは、磁気吸引力により磁束出力コアに吸着するため、磁束入力コアを磁束出力コアに安定して接触させることができる。なお、この磁気吸引力が大きすぎる場合には、磁束入力コアをスプリングなどにより上方に付勢すればよい。また、車軸をなす移動コアのコイル巻装コアが回転しても、受電コイルを静止させることができる。
好適な態様において、磁束入力コアをなす車輪が弾性及び軟磁性を有するので、車輪の外周面が弾性変形して磁束出力コアの上面に広く密着するため、磁束入力コアと磁束出力コアとの接触面積を増大することができるので、磁束量を増大することができる。
好適な態様において、車輪内に軟磁性粉末とゴムが充填されている。このようにすれば、良好に弾性をもつ車輪を実現することがてきる。
好適な態様において、車輪内に軟磁性粉末と圧縮空気とが充填されている。このようにすれば、良好に弾性をもつ車輪を実現することがてきる。
好適な態様において、車輪の側面は多重リング状の凹凸を有する軟磁性金属板により構成されている。このようにすれば、車輪の外周面から車軸へ磁束を流しつつ、車輪の弾性を向上することができる。
好適な態様において、車輪は、進行方向へ一列に配列された複数の車輪を有する。このようにすれば、車輪を大型化することなく、車輪である磁束入力コアと磁束出力コアとの接触面積を増大することができる。
好適な態様において、複数の車輪は、互いに高さ方向変位自在に支持される。たとえば各車輪はスプリングにより支持される。このようにすれば、異物が存在したりして一部の車輪が浮きあがっても、他の車輪により磁束を受電コイルに流すことができる。
第3発明の車両用誘導送電装置は、走路側に設置されて車両と通信する固定側通信回路と、車両に装備されて固定側通信回路と通信する車両側通信回路とを有し、車両は、受電コイルの受電電力の積算値を計測する積算回路を有し、車両側通信回路は、固定側通信回路に積算値を送信することを特徴としている。
すなわち、この発明は、各給電ユニットから受電ユニットへ順次給電された実際の送電電力量を受電ユニット側で積算するので、車両が受け取った電力量を正確に積算することができ、料金計算が正確となる。
好適な態様において、車両側通信回路は、積算値と自己を特定するアドレスとを固定側通信回路に送信する。これにより、一列に配列された多数の送電ユニット群上に多数の車両が存在しても、各車両の受電電力量を正確かつ個別に固定側通信回路で把握することができる。
好適な態様において、車両側通信回路は、自己を特定するアドレスを固定側通信回路へ送信し、固定側通信回路は、受信した車両のアドレスが予め許可された番号である場合に車両に送電するための送電コイルを作動させる給電回路、又は、車両の受電コイル前記受電コイルが受電する電力エネルギーの量を制御するパワーコントローラに、電力伝送を許可する信号を出力する。このようにすれば、たとえば料金不払いの車両などへの給電を回避することができる。
第4発明の車両用誘導送電装置は、地上側に固定されて送電ユニットに対する車両の近接の有無を検出する車両センサと、車両センサの検出情報に基づいて車両が近接する場合に送電ユニットへ送電する給電回路とを備え、車両センサは、磁束出力コアに巻回された車両位置検出用のコイルと、車両位置検出用のコイルのインピーダンス変化に 基づいて車両近接の有無を検出することを特徴としている。
すなわち、この発明は、送電ユニット上の車両有無の検出結果に基づいて送電ユニットへの給電を開始するので、送電ユニットの無駄な励磁電流損失を低減することができる。
好適な態様において、給電コイルは、車両位置検出用のコイルを兼ねる。すなわち、給電コイルに僅かな交流電流を通電しておけば、送電ユニット上に受電ユニットが位置する場合に、この給電コイルのコイルインピーダンスが低下するので、簡素な回路で容易に車両を検出することができる。
第5発明の車両用誘導送電装置は、給電回路が、送電コイルと並列共振するキャパシタを有する並列共振回路と、並列共振回路と直列接続されて並列共振回路への入力電流を制御する電流制御回路とを有し、電流制御回路が、並列共振回路に交流電流を給電するフルブリッジインバータと、並列共振回路の電流位相に合わせてフルブリッジインバータのスイッチング素子を断続制御するコントローラとを有する。このようにすれば、シンプルな磁気回路及び電子回路により、必要な交流電力を受電ユニットに供給することができ、損失を低減することができる。
第6発明の車両用誘導送電装置は、車両が、走行用の電力エネルギーを蓄電する蓄電装置と、受電コイルが受電する電力エネルギーの量を制御するパワーコントローラと、商用電力エネルギーを受電してパワーコントローラに供給する商用電力受電用のアダプタとを有することを特徴としている。すなわち、この発明の車両は、走路から受電するとともに、たとえば自宅に帰った後、自宅のコンセントから商用電力を受電することもできるので、経済的に蓄電を行うことができる。また、車両用誘導送電装置が設備されていない地域においても、簡単に商用電力設備から受電することができる。アダプタは、簡単には単なるコンセントとされる。他の態様において、アダプタは、商用電力を整流する整流装置を内蔵することができる。
好適な態様において、パワーコントローラは、蓄電装置の充電レベルに基づいてアダプタ又は受電コイルからの受電電力のレベルを制御する。つまり、蓄電装置への充電電力を制御するパワーコントローラを車両用誘導送電装置とアダプタとで共用することができるため、回路構成を簡素化することができる。
第7発明の車両用誘導送電装置は、移動コアに巻装されたリニアモータ用の電機子コイルと、電機子コイルに給電する駆動回路とを有し、受電コイルは、受電した電力を前記駆動回路に出力することを特徴としている。すなわち、車両用誘導送電装置の固定コアと移動コアとの間のギャップは狭いため、それらを利用してリニアモータを構成することができる。このようにすれば、車両用誘導送電装置を用いて走行スラストを発生することができるため、走行モータを小型化又は省略することができる。
好適な態様において、固定コアの上面及び移動コアの下面は、その延在方向へ所定ピッチで磁気的な突極部を有し、リニアモータは、リラクタンスリニアモータからなる。このようにすれば、走路に設ける固定コアを簡素化することができる。
第8発明の車両用誘導送電装置は、車両に固定されて固定コアに対する車両の相対位置を検出して車両の操舵制御装置に送信する車両位置センサを有し、操舵制御装置は、入力された車両位置に基づいて車両の操舵を行って、固定コアに対する車両の走路幅方向のずれを所定値以下に制御する。このようにすれば、設備投資を抑制しつつ、車両の自動操舵を実現することができる。
第9発明の車両用誘導送電装置は、移動コアの前面に設けられて固定コアの上面の異物を走路幅方向へ付勢する異物付勢機構を有することを特徴としている。このようにすれば、異物が移動コアと固定コアとの間のギャップ増大させて電力伝送効率が低下するのを簡素な構造により防止することができる。一例において、異物付勢機構はブラシにより構成されている。他例において、異物付勢機構は、車両走行風を固定コアの磁束出力コアの上面に吹き付ける構造とすることができる。
第10発明の車両用誘導送電装置は、受電ユニットが、走路又は固定コア上を回転走行する車輪を有する受電車と、移動コアと固定コアとの間のギャップ幅を検出するギャップ幅検出部と、受電車に支持されて移動コアの高さを調節する移動コア昇降部と、検出したギャップ幅に基づいて移動コア昇降部を制御することによりギャップ幅を所定の目標値に保持するギャップ幅制御部とを有することを特徴としている。
すなわち、この発明は、受電車に搭載されて道路側の固定コアの上面に所定のギャップを隔てて対面する移動コアをもつ車両用誘導送電装置において、この小ギャップの幅(高さ方向)を検出し、それが好適な目標値となるように移動コアの高さを調節するので、走路に対する固定コア上面の高さ、及び、この走路に接する車輪により支持される移動コアの下面の高さが種々変化しても、これら両コアの間のギャップを良好な目標値に維持することができる。
たとえば、走路、固定コア、車輪及び移動コアの高さ方向の位置は、摩耗などにより変化する。この変化は、ギャップの幅を変化させる。比較的低周波数(10kH以下)の磁気回路では、励磁電流の低減のためにギャップ幅を小さく保持することは重要である。この発明によれば、移動コアを昇降する機構を通じて固定コアを電動車に支持しているため、走路、固定コア、車輪及び移動コアの摩耗や走路の高さ変化などが生じても良好にギャップ幅を小さく(たとえば5mm以下)に保持することができるため、高周波数の使用による鉄損増大を抑止しつつ、高い送電効率を実現することができる。
好適な態様において、ギャップ幅検出部は、電動車の車輪の走路面を基準とする固定コアの上面の高さと、車輪を基準とする移動コアの下面の高さとを検出し、検出したデータに基づいてギャップ幅を算出する。好適な態様において、ギャップ幅検出部は、移動コアより前方に配置される。たとえば電動車の前端部に位置して固定コア上方にギャップ幅を検出するセンサが配置される。この種の高さセンサとしては、種々の公知の形式のセンサを採用することができる。たとえば超音波式距離センサ、光学式距離センサなどの他、固定コアの上方に配置された磁気センサを利用しても良い。固定コアまでの距離の増大により、この磁気センサの検出する磁界強度は低下するため、磁気センサから固定コア上面までの距離を検出することができることは明白である。磁気センサとしては、磁気センサ側から交流磁界を形成するいわゆるピックアップコイルを採用できることはもちろんである。移動コア昇降部は、高速走行可能とするために移動コアを急速かつ高精度に昇降できることが好ましい。ステッピングモータなどの採用はこの用途において好適である。
移動コアが固定コアに対して車両方向に長く延在する場合、走路の高さ変化に応じて変化する固定コアの傾斜に応じて移動コアの前端と後端との間の高さの差を調節できることも好適である。このために、移動コアの前端部と後端部とを独立に高さ調節してもよい。一個の移動コアの前後方向の長さが短い場合には、移動コアの前端部と後端部とを連動して高さ調節してもよい。好適な態様において、ギャップ幅制御部は、外部からの入力信号に基づいて目標値を変更する。この外部からの入力信号としては、たとえば、雪や雨や埃などの状態の検出が考えられる。雪や雨や埃が多い環境では、固定コア上面に存在する水や埃の層よりも高く移動コアの下面を保持することが好ましい。固定コア上面のこれらの異物の層の厚さは公知の種々のセンサにより検出することができる。
第11発明の車両用誘導送電装置は、固定コアの少なくとも移動コアに対面する部分が、走路に着脱可能に固定されていることを特徴としている。車輪の走行などにより、固定コアの上面は摩耗する。本発明では、固定コアを構成する各軟磁性部材のうち、移動コアに対面する固定コアの上面部分を含む軟磁性部材は、路面から着脱可能とされる。このようにすれば、固定コアの上面が摩耗しても定期的な交換により、固定コアの上面と走路の上面との差の変化を低減することができる。もちろん、通常においては、移動コアによる磁気的な吸引などにより、固定コアは、走路から着脱しないように走路に固定される。
好適な態様において、上端開口の溝部を有して走路に固定された固定コア固定部材を有し、固定コアは、固定コア固定部材の溝部に上方へ抜き出し可能に収容される。このようにすれば、摩耗した固定コアをこの固定コア固定部材から上方へ抜き出し、新しい固定コアをこの溝部に挿入することにより、固定コアの交換作業を容易とすることができる。
第12発明の車両用誘導送電装置は、固定コアの上面の凍結状態を検出する凍結検出部と、検出された凍結状態に応じて送電コイルに交流通電することにより固定コアを加熱する固定コア加熱制御部とを有する。凍結検出部は、たとえば湿度と気温とにより固定コア上面に形成された霜層や雪層の厚さを推定することができる。固定コア上面の霜層や雪層の推定厚さ又は検出厚さが所定値を超えると推定される場合、送電コイルに通電される交流電流の平均値は所定以上とされる。これにより、固定コアの鉄損や送電コイルの銅損が固定コアに与える熱により、霜層や雪層の厚さを低減することができる。その他、固定コアを熱絶縁性を有する固定コア固定部材の溝部に収容し、更に、地中深く(たとえば数メートル)まで良熱伝導性の部材を挿入し、良熱伝導性の部材の上端をこの固定コアに熱的に接触させてもよい。このようにすれば、1年中、温度変化が小さい地熱により固定コア上の霜層や雪層を減らすことができる。
好適な態様において、車両は、走行動力を発生する走行モータと、蓄電装置と、前記受電ユニットの受電電力を制御することにより蓄電装置の蓄電状態を制御するコントローラとを搭載する電動自動車である。すなわち、この態様では、上記した車両用誘導送電装置が電気自動車に搭載される。これにより、従来のエンジン自動車が排出する二酸化炭素や廃熱や排気ガスや騒音を大幅に低減することができるため、居住環境を大幅に向上することができる。
好適な態様において、車両は、たとえばエンジンとこのエンジンにより駆動される発電機からなる発電ユニットを搭載し、コントローラは、蓄電装置の蓄電状態及び走行動力に応じて発電ユニットの作動を制御するとともに車両用誘導送電装置からの受電が可能かどうかを検出し、可能な場合には発電ユニットの発電よりも車両用誘導送電装置からの受電を優先する。これにより、車両用誘導送電装置が装備していないたとえば都市内ではエンジンで走行し、装備されているたとえば郊外では車両用誘導送電装置で走行することができるため、二酸化炭素や廃熱や排気ガスや騒音を大幅に低減することができ、資源の節約も実現でき、車両用誘導送電装置の利用効率も向上することができる。
第13発明の電気自動車は、走行モータと、蓄電装置と、蓄電装置の蓄電電力を走行モータに給電するモータコントローラとを搭載する電気自動車において、蓄電装置は、チタン酸材料を主成分として1000V以上の耐圧をもつ誘電層を有し、絶縁油入りのケースに収容されたセラミックキャパシタにより構成されていることを特徴としている。セラミックキャパシタとしては、好適には優れた絶縁耐圧と誘電率とをもつチタン酸バリウムやチタン酸ストロンチウムなどが好適である。
本発明によれば、高い耐電圧と大きな被誘電率ももつため大きな蓄電エネルギーを蓄積できるにもかかわらず非常に脆い材料であるため、高速走行時などにおける車両衝突時に発生する衝突衝撃力により破損が懸念されるチタン酸バリウムなどの高エネルギー蓄電型のセラミックキャパシタを絶縁油槽に収容している。このため、衝突衝撃力によりセラミックキャパシタが破損したり、飛散しても、大きな静電エネルギーを蓄電する破片が、車室外に飛び出すことがなく、大きな絶縁性能をもつ絶縁油に囲まれてその放電も抑制されるため、漏電被害を最小限とすることができる。また、絶縁油は、セラミックキャパシタの沿面放電も良好に防止することができ、かつ、絶縁油を循環させるなどしてそのセラミックキャパシタの冷却も行うことができる。
好適な態様において、蓄電装置は、セラミックキャパシタにより構成されて絶縁油入りのケースに少なくとも前後方向移動可能に収容され、絶縁油は、セラミックキャパシタの前後方向移動における流体抵抗を発生する。このようにすれば、衝突時にセラミックキャパシタの慣性エネルギーによりセラミックキャパシタが移動する際の絶縁油の流体抵抗がこの慣性エネルギーを吸収するため、もろいセラミックを用いたキャパシタが車両衝突時の衝撃により破損するのを良好に防止することができる。
第14発明は、走行モータと、蓄電装置と、蓄電装置の蓄電電力を走行モータに給電するモータコントローラとを搭載する電気自動車車両において、車両が、長距離走行用の追加蓄電装置を着脱可能に追加蓄電装置固定装置が設けられた荷物積載室を有することを特徴としている。このようにすれば、小容量の蓄電装置を装備する電動車両がたまに車両用誘導送電装置が設けられていない遠距離走行する場合でも、安全に長距離走行することができる。また、近距離走行を行う場合には、追加蓄電装置を取り外して車室を荷物積載などに有効に利用することができる。なお、追加蓄電装置は、レンタルとすることもできる。
本発明の車両用誘導送電装置の好適な実施形態を以下に参照して説明する。なお、下記の説明は、道路に設けられた車両用誘導送電装置を説明するが、この車両用誘導送電装置をパーキングスペースに設けたり、屋内に設けたりしても良い。
(実施形態1)
実施形態1の車両用誘導送電装置を説明する。
(固定コア1)
図1は、道路Rの走行レーン(走路)の部分的平面図である。Lは車両進行方向、Wは走行レーンの幅方向である。走行レーンには、H形に形成された軟磁性の固定コア1が埋設されている。固定コア1は、L方向へ互いに平行に延設される一対のバー(磁束出力コア)11、12と、バー11、12のL方向中間位置にてバー11、12に結合された軟磁性の横バー(コイル巻装コア)13とからなる。W0はバー11、12の間の間隔、W1はバー11、12の幅である。送電コイル14が横バー13に巻回されている。固定コア1及び送電コイル14は、この送電コイル14に所定周波数の交流電流を給電する図略の給電回路とともに、送電ユニットを構成している。送電コイル14は公知の正弦波発振回路である給電回路の一部を構成している。固定コア1の垂直断面を図2に示す。バー11、12の平坦な上面111、112は路面の一部を構成している。横バー13は図2に示すようにコ字状に形成され、横バー13の両端部の上面は、バー11、12の下面に密着している。
(移動コア2)
図2においてHは高さ方向である。移動コア2は、それぞれ車輪状に形成された軟磁性部材である一対の磁束入力コア21、22と、車軸状に形成された軟磁性の横バー(コイル巻装コア)23とからなる。横バー23には受電コイル24がギャップを隔てて巻回されている。W2は車輪状の磁束入力コア21、22の幅である。W2はW1よりも大きく、W0よりも小さく形成されている。ただし、W2はW1より小さく形成されても良い。移動コア2の横バー23の両端部は、車輪状の磁束入力コア21、22の径方向中心部に固定されている。磁束入力コア21の外周面下部分は、固定コア1のバー11の上面に接している。磁束入力コア22の外周面下部分は、固定コア1のバー12の上面に接している。これにより、送電コイル14及び受電コイル24は、バー11、12、横バー23、磁束入力コア21、22及び横バー23からなる閉磁気回路と鎖交してトランスを構成する。移動コア2と受電コイル24とは車両に対して相対的に水平移動、垂直移動可能な受電回路である受電車を構成している。
31、32は車軸状の横バー23の両端部を相対回転自在に支持する軸受けであり、軸受け31、32は、車両の前方方向斜め上方へ延在する縦バー33の二股状の下端部34に固定されている。縦バー33の前端部は、図3に示すように、車体100の底面101に固定された回動支持部35に垂直面内にて回動自在に支持されている。回動支持部35は車体100に固定された図略の減速モータにより軸心Mの回りに回動可能に支持されている。これにより、移動コア2は、垂直方向にも左右方向にも移動可能となっている。なお、車軸状の横バー23がW方向を維持するように、回動支持部35を車体に対して左右方向(すなわち車両の幅方向)に直線移動するようにしてもよぃ。
36は、図略のエアシリンダ又は油圧シリンダのロッドであり、ロッド36はこのシリンダに駆動されて垂直方向に昇降する。ロッド36の下端は、縦バー33に固定されている。このシリンダを駆動することにより、縦バー33を上昇させたり、下降させたりすることができる。なお、ロッド36は、縦バー33を図略のスプリングにより弾性支持している。これにより、路面の凹凸を吸収することができる。受電の必要性が無い場合には、縦バー33を上昇させることにより、移動コア2を路面の固定コア1から離して車体100の下部に収容する。
(磁束入力コア22)
磁束入力コア21と磁束入力コア22とは同形であるので、車輪状の磁束入力コア21の詳細を図4を参照して詳しく説明する。磁束入力コア21は、軟磁性粉末が多く充填されたゴム材料からなるタイヤ状部材211と、タイヤ状部材211が嵌着される軟磁性の円柱部材213とからなる。タイヤ状部材211は弾性変形可能であって、磁気吸引力と重力とにより、図3に示すように、その接地面積は所定値以上確保されている。これにより、移動コア2と固定コア1との間の磁気抵抗が低減される。なお、下面が路面又はバー11、12の上面に広い接地面積で密着可能な他の構造により、磁束入力コア21、22を構成しても良い。タイヤ状部材211を構成する軟磁性材料としては、樹脂コート鉄粉、フェライト粉、鉄線、鉄板、アモルファス鉄粉など、鉄損低減が可能で外周面から円柱部材213に磁束を伝達可能な軟磁性部材を採用することができる。
円柱部材213の径方向中心部に形成された貫通孔には、車軸状の横バー(磁束入力コア)23が貫通、固定されている。円柱部材213は、鉄損低減のために輪板状の軟磁性部材を径方向に積層して構成することができる。また、また、鉄損を減らすために、横バー23をフェライト粉末や絶縁膜コート鉄粉などの軟磁性粉末を成形して構成することができる。更に、筒状部材の内部に低鉄損の軟磁性粉末を充填して横バー23を構成しても良い。この筒状部材は強度を確保するための部材である。軟磁性のファイバーを束ねて横バー23を構成してもよい。また、円柱部材213と横バー23とを一体に形成しても良い。横バー23は、左右一対の円柱部材213間に磁束を流す部材である。図4では、横バー23は、小径に形成されているが、軸受け部分を除いて径を拡大することになにも問題はない。その他、固定コア1のバー11、12に接する磁束入力コア21を軟磁性粉末充填ゴム車輪により構成し、このゴム車輪の外周面に耐摩耗性に優れ、良好な軟磁性をもつ薄肉の円筒部を嵌めてもよい。
(給電回路及び受電回路)
給電回路15及び受電回路25について図5を参照して説明する。給電回路は、商用交流電力を整流して直流電力とする整流回路と、この直流電力を商用周波数よりも高い所定周波数の交流電力に変換して送電コイル14に送電するインバータとを内蔵しているが、インバータは発振回路でもよい。この発振回路は、共振型の正弦波発振回路により構成されることができる。この種の整流回路及びインバータ自体は周知であるため、説明は省略する。受電コイル24は、受電した交流電力を整流して車載の電池に送電する受電回路25を有するが、この整流回路の説明も省略する。
(位置ずれ検出装置)
磁束入力コア21、22と固定コア1のバー11、12とのW方向の位置ずれの検出とその修正技術を図6を参照して説明する。
102、103はキャパシタ、104は発振回路、105は抵抗素子、106はマイコン内蔵の位置ずれコントローラである。発振回路104はキャパシタ102、103を通じて給電回路15の周波数よりも高い周波数の交流電圧を受電コイル24に印加し、その電流による電圧降下を抵抗素子105により検出して位置ずれコントローラ106のA/Dコンバータに出力する。磁束入力コア21、22とバー11、12との接触面積が減少すると、発振回路104の負荷インピーダンスが減少して電流が増大するため、この電流により位置ずれを検出することができる。それに応じて図略の減速モータを一方向に駆動して、図3に示す回動支持部35を軸心Mの回りの一方向に回動させる。この回動により更に電流が増大すれば、上記接触面積が更に減少したことを意味するため、逆方向に回動させる。これにより、減速モータの制御により上記電流が最小値となる位置を保持することができる。
都合の良いことに、移動コアと固定コアとの磁気吸引力は、両者間の水平方向の位置ずれを縮小する方向に働く。なお、受電コイル24のインピーダンス(特にインダクタンス)を検出するために他の公知の種々の回路を採用しても良い。また、送電コイル14から受電コイル24に送られる交流電力により変化する受電コイル24の端子電圧の大きさにより、上記と同様に位置ずれを検出しても良い。また、位置ずれに応じて車両の操舵角を制御してもよい。その他、縦バー33は、垂直面での回動だけを行わせ、磁束入力コア21、22を縦バー33に対してW方向へ移動させてもよい。
(送電制御)
送電コントローラ200が行う送電制御を図7を参照して説明する。図7において、4つの送電ユニット300がその車両進行方向Lへ順番に道路に埋設されている。各送電ユニット300のバー11、12の長さは2〜20メートルとされている。
4つの送電ユニット300の給電回路15の給電動作は、道路に埋設されたコントローラ200により制御される。コントローラ200は、各送電ユニット300の送電コイル14のインピーダンスが、既述した受電コイル24のそれを検出するのと同じ方法にて検出する。これにより、バー11、12上に車両が存在する送電ユニット300を検出する。受電ユニットの存在の有無により送電コイル14のインピーダンスは大きく変化する。この車両位置検出のために、正常な給電よりも所定周波数の小電流が各給電回路15に送られる。車両が存在する送電コイル14のインピーダンスは小さいため、容易に車両位置を検出することができる。
コントローラ200による送電制御を図8に示すフローチャートを参照して説明する。まず、ステップS100において、上記方法により車両が存在する送電ユニット300の番号を検出する。ここではN番目の送電ユニット300上に車両が存在しているとする。次に、この車両が存在するN番目の送電ユニット300よりも車両進行方向Lの向きに先行するα番目までの送電ユニット300に給電を指令する。これは、給電回路15のインダクタンスによる送電遅れを考慮したものである。更に、もはや車両が存在しないN−1番目までの送電ユニット300への送電停止を指令する。これにより、車両への送電が不要な送電ユニット300の無効電力を減らすことができる。
次に、各送電ユニット300のうち、送電コイル14のインピーダンスが所定時間ΔTth(たとえば1時間)以上、所定値(たとえば50%)以下に低下している送電ユニット300が存在するか否かを判定し(S105)、もし存在すれば、これは何らかの異常が生じたものとしてこの送電ユニット300への送電を禁止し、警報を発生する。なお、この異常状態としては、たとえば車両からの鋼材などの落下などが考えられる。
(変形態様1)
固定コア1や移動コア2として用いる軟磁性材料、たとえばバー11、12として用いる軟磁性材料として、図9に示すように、細い軟鉄線400を磁束方向に束ねたものを用いることができる。当然、この軟鉄線400は絶縁被覆されるべきである。この軟鉄線400はたとえばコンクリートにより固めることができる。このようにすれば、耐摩耗性に優れ、表面の摩擦係数も確保することができ、鉄損も減らせ、高い透磁率も確保することができる。
(変形態様2)
W方向に延設されてバー11、12を磁気的に結合する横バー13は、図10に示すように、一対のバー11、12に対して複数配置することができる。同じバー11、12に結合される各横バー13、13にはそれぞれ送電コイル14は磁束形成方向が同じ向きとなるように直列接続されることが抵抗損失低減の点で好適である。もちろん、一対のバー11、12を更に多数の横バー13により結合しても良く、この場合には固定コア1は梯子状に形成されることになる。
(変形態様3)
上記実施形態では、通常の内燃機関自動車が走行する一般道路又は高速道路を走行する電気自動車への誘導送電について説明した。これにより、電気自動車の搭載バッテリは大幅に小型化することができる。その他、この一般道路又は高速道路を走行するバス走行レーンにこの装置を設ければ、バスの小型軽量化、環境汚染低減、経済走行を安全に実現することができる。その他、この装置は、パーキングスペースに設けることができる。また、道路に設置する場合、特に信号機を有する交差点進入エリアに設置することも好適である。これにより信号停止中の車両に給電することができる。その他、この実施形態の車両用誘導送電装置は、工場内や各種施設内に設置することができる。
(実施形態2)
実施形態2の車両用誘導送電装置を説明する。図11は、この車両用誘導送電装置の側面図である。この車両用誘導送電装置は、図3に示す実施形態1の車両用誘導送電装置の移動コア2において、車輪状に形成された軟磁性部材である磁束入力コア21、22を8対、走路延在方向へ配置した点にその特徴がある。なお、図11では、磁束入力コア21は磁束入力コア22の裏側にあるため図示されていない。磁束入力コア21、22は、実施形態1と同じく車軸状に形成された軟磁性の横バー(コイル巻装コア)により連結され、この横バーには受電コイルが巻装されている。横バー及び受電コイルの配置は実施形態1と同じである。横バーの両側の先端部230は、走路延在方向へ延在する一対の支持プレート501に回転自在に支持されている。一対の支持プレート501は、支持枠502に固定されている。503は、支持枠502の上端に設けられた連結部である。連結部503は、連結バーである縦バー33の後端部に水平回動自在かつ垂直回動自在に連結されている。縦バー33の前端部は、車体100の底面101に固定された回動支持部35に回動自在かつ垂直回動自在に連結されている。回動支持部35は車体100に固定された図略の減速モータにより軸心Mの回りに回動可能に支持されている。504は車両に設置されたモータにより受電車500を昇降させるワイヤである。受電車500の車輪は、磁束入力コア21、22(21は図略)により構成されている。
このように構成された受電車500は、多数対の車輪状の磁束入力コア21、22をもつため、固定コア1のバー11、12との間の磁気抵抗を小さくすることができる。
移動コア2の軸方向半断面を図12を参照して説明する。図12は、図4の移動コア2の変形態様を示す。移動コア2は、車軸状の横バー23の両端に個別に嵌着、固定された車輪状の磁束入力コア21、22を有する。磁束入力コア21は図示省略されている。磁束入力コア22は、ドーナツ状の軟鉄リング505と、この軟鉄リング505内に充填された軟磁性粉末506とからなる。軟鉄リング505の外周面は円筒面であり、バー12の上面に接している。軟鉄リング505の内周面は円筒面であり、車軸状の横バー23に嵌められている。軟鉄リング505の両側面は、図12に示すように同軸リング状の凹凸リング形状となっている。これにより、軟鉄リング505は径方向に弾性変形容易となっている。軟鉄リング505内には圧縮空気が注入されて密閉されており、これにより、軟鉄リング505の弾性が強化されている。507は、受電コイル24が巻かれたコイルボビンである。
(実施形態3)
実施形態3の車両用誘導送電装置を説明する。図13は、この車両用誘導送電装置の側面図である。この車両用誘導送電装置は、受電車500を縦バー(連結バー)33の後端部に連結したものである。縦バー33の前端部は、実施形態1、2と同じく、図略の車両の底部に垂直回動、水平回動自在に連結されている。この実施形態の特徴は、受電車500の構造にある。
受電車500は、車両前後方向へ一列に配列された複数の小受電車511により構成されている。512は、小受電車510の前後、左右に回転自在に設けられた合計4つの車輪である。小受電車510は、4つの車輪512により支持された左右一対の磁束入力コア511、511と、この一対の磁束入力コア511、511と結合されたコイル巻装コア514とを有する。ただし、図13では、磁束入力コア511は片側だけ図示されている。磁束入力コア511は車両前後方向へ延在する軟磁性ブロックであり、コイル巻装コア514は、受電コイル24が巻回された車両幅方向へ延在する軟磁性ブロックである。503は、先頭の小受電車510を縦バー33の後端部を連結するユニバーサルジョイントである。515は前後2つの小受電車510を水平回動自在に連結するジョイントである。ジョイント515をワイヤ又はチエインに変更しても良い。各小受電車510の磁束入力コア511及びコイル巻装コア514は、本発明で言う移動コアを構成している。左右一対の磁束入力コア511、511は、固定コア1のバー11、12の上面に小電磁ギャップgを隔てて個別に対面している。これにより、送電コイル14と受電コイル24とは電磁的に結合される。
(変形態様)
変形態様を図14、図15を参照して説明する。この変形態様は、図13の縦バー(連結バー)33を変更したものである。縦バー33の下面は、固定コア1のバー11、12の上面に密着するブラシ330をもつ。このブラシ330は、バー11、12の上面のゴミを走路幅方向外側へ排除する。また、縦バー33の後端部331は、図15に示すように、後方に向かうにつれて左右に広がっている。このようにすれば、車両走行風などによりバー11、12の上面のゴミを走路幅方向外側へ排除することができる。
(実施形態4)
図16、図17を参照して実施形態4の車両用誘導送電装置のコア構造を説明する図である。図16は、この車両用誘導送電装置の走路延在方向に見た断面図、図17はこの車両用誘導送電装置を走路幅方向に見た断面図である。車輪などの図示は省略されている。
固定コア1のバー11、12は図16に示すように走路幅方向に積層された電磁鋼板により構成され、横バー(コイル巻装コア)13は図17に示すように走路延在方向に積層された電磁鋼板により構成されている。横バー13の下面はバー11、12の上面に密着している。移動コア2の磁束入力コア511、511は図16に示すように走路幅方向に積層された電磁鋼板により構成され、コイル巻装コア514は図17に示すように走路延在方向に積層された電磁鋼板により構成されている。コイル巻装コア514の下面は磁束入力コア511、511の上面に密着している。このようにすれば、比較的安価な電磁鋼板を用いて磁気回路を構成することができる。
(実施形態5)
実施形態5の車両用誘導送電装置を図18を参照して説明する。図18は、この車両用誘導送電装置の受電側の回路図である。
車両側の受電回路520は、受電コイル24と、ダイオード全波整流回路521と、受電電流制御用のスイッチング素子522と、バッテリ523と、位置ずれ検出用コイル524と、ダイオード全波整流回路525と、コントローラ526とを有している。527は、縦バー(連結バー)33を水平回動させる減速モータを駆動するモータ駆動回路である。受電コイル24に誘導された交流電圧は、ダイオード全波整流回路521により整流されてバッテリ523に印加される。コントローラ526は、入力されるバッテリ523の電圧が所定の目標電圧値に収束するようにスイッチング素子522を断続する。スイッチング素子522はダイオード全波整流回路521からバッテリ523に流れる受電電流を断続制御する。
位置ずれ検出用コイル524は、受電コイル24の上に同軸に巻かれている。位置ずれ検出用コイル524に誘導された電圧は、ダイオード全波整流回路525により整流されて直流電圧Vsとなる。この直流電圧Vsはコントローラ526に入力される。コントローラ526はこの直流電圧Vsが最大となるようにモータ駆動回路527を通じて上記減速モータによる縦バー33の水平回動を制御する。つまり、縦バー33を旋回させた状態にて直流電圧Vsが増大している場合にはこの旋回を継続し、直流電圧Vsが低下したら旋回の中止乃至逆旋回を行う。これにより、車両運動にかかわらず、受電車の移動コアと固定コアとを位置合わせすることができ、高い電力伝送効率を維持することができる。
(実施形態6)
実施形態6の車両用誘導送電装置を図19を参照して説明する。図19は、この車両用誘導送電装置の受電側の一部回路図である。この実施形態は、固定コア1のバー11、12の存在のために、バー11、12に対する車両の走路幅方向位置ずれを磁気的に高感度に検出できることを利用して車両の操舵制御を行う点にその特徴とがある。図19において、いわゆるピックアップコイルである位置ずれ検出用コイル528、529は、受電コイル24とは別の位置に設けられる。位置ずれ検出用コイル528、529は車両底部から下方に突出する図略の軟磁性コアに設けられる。位置ずれ検出用コイル528は車両の幅方向中央よりも少し左側に設けられ、位置ずれ検出用コイル529は車両の幅方向中央よりも少し左側に設けられる。この実施形態では、位置ずれ検出用コイル528、529の車両幅方向の幅は、バー11、12の幅よりも大きくされている。
バー(磁束出力コア)11、12は、大きな交流磁束を発生するため、十分な大きさの二次電圧が位置ずれ検出用コイル528、529に誘導される。位置ずれ検出用コイル528、529の誘導電圧は、ダイオード530、531により整流されて信号処理回路532によりデジタル位置ずれ信号Vr、Vlに変換される。信号処理回路532は、入力される2つの整流電圧を別々に平滑化した後、その大きさに等しい信号Vr、Vlを出力する。車両が固定コア1から走路幅方向一方側にずれると、信号Vr、Vlの一方が大きくなり、他方が小さくなる。533は、信号Vr、Vlの大きさに基づいて固定コアに対する車両の走路幅方向の位置ずれの量すなわち横ずれ量を算出する横ずれ量算出回路であり、マイクロコンピュータにより構成されている。横ずれ量算出回路533は、算出した車両の横ずれ量を操舵コントローラ534に出力する。図20に示すように、操舵コントローラ534は、入力したこの横ずれ量を解消するために必要な操舵角度を算出し、算出した操舵角を図略の操舵モータ駆動用の駆動回路に出力する。これにより、自動操舵を実現することができる。
なお、位置ずれ検出用コイル528、529の他に更に多数の位置ずれ検出用コイルを設けてもよい。これらの位置ずれ検出用コイルは、車両幅方向に配列されるが、車両長さ方向に配列してもよい。
(実施形態7)
実施例7の車両用誘導送電装置を図21を参照して説明する。図21は、この車両用誘導送電装置の回路図である。この実施例は、車両側にて受電電力を積算し、その結果を移動コアと固定コアとの電磁結合を通じて給電回路側に送信する点をその特徴とする。
図21において、固定コア11,12のペアが走路延在方向へ2つ図示されている。C1は送電コイル14と並列接続されたキャパシタである。キャパシタC1は、供給される一次電流の周波数に対して送電コイル14と並列共振回路を構成している。
受電車は、それぞれ受電コイル24が巻かれた2つの移動コア2をもつ受電回路520を有している。2つの受電コイル24は、直列接続されて整流回路521に誘導交流電圧を出力する。なお、2つの受電コイル24は互いに異なる整流回路521に誘導交流電圧を出力し、これら2つの整流回路521が整流した整流電圧を直列加算又は並列加算して出力してもよい。
C2は受電コイル24と並列接続されたキャパシタであり、キャパシタC2は、移動コア2が固定コア11、12と良好な電磁結合状態をもつ場合に、誘導交流電圧に対して受電コイル24と並列共振回路を構成している。図21に示す受電車の位置では、2つの受電コイル24は、互いに異なる固定コア11、12を通じて互いに異なる給電コイル14と電磁結合している。整流回路521で整流された整流電流は、平滑キャパシタC3で平滑されて図略の蓄電装置を充電し、かつ、図略の電気負荷に給電される。522は、受電電流制御用のスイッチング素子であり、整流回路521の出力電流を制御する。
540は整流回路521の出力電流を検出する電流センサであり、検出した出力電流はコントローラ541に送信される。コントローラ541は、整流回路521の出力電流と出力電圧との積により出力電力を算出し、この出力電力を積分して積算電力量を算出する。更に、コントローラ541は、この積算電力量の大きさを示す積算電力量信号を形成し、この積算電力量信号を、受電回路520側の通信コイル542から移動コア2に交流磁束として出力する。通信コイル542と受電コイル24とは同軸に巻かれても良い。積算電力量信号は、たとえば給電コイル14に流れる交流電流と異なる周波数を搬送波とするAM信号又はFM信号とすることができる。C4は通信コイル542と並列共振するキャパシタである。この並列共振周波数は、上記電力伝送用の周波数よりも更に高い値に設定される。
543は、固定コア1のたとえばコイル巻装コアに巻かれた給電回路側の通信コイルであって、移動コア2及び固定コア1を通じて通信コイル542から交流電圧を受け取る。C5は通信コイル543と並列共振するキャパシタである。この並列共振周波数は、通信コイル542とキャパシタC4の並列共振周波数に等しく設定される。通信コイル543の受信電圧は固定側のコントローラ544に入力される。コントローラ544は、入力された受信電圧から受電回路520の積算電力量信号を抽出する。
この実施形態によれば、給電回路15側ではなく、受電回路520側にて有効に送電された電力量を給電回路15側に送信するので、給電コイル14と受電コイル24との間の電磁結合度の低下などによる無効電力などをカウントすることがない。なお、この積算電力量信号の送信は、必要に応じて又はコントローラ544からの要求により行われることができる。
(変形態様)
変形態様を図21を参照して説明する。この変形態様では、受電車は、自己の存在を示す所定周波数の信号電流を給電回路15側に出力し、給電回路15はこの信号電流を検出して、給電コイル14への送電を行う。つまり、コントローラ541は、所定周波数の受電車存在信号としての交流電流を受電回路520側の通信コイル542に給電する。給電回路15は、給電コイル14又はこの給電コイル14と同軸に巻かれたコイルによりこの受電車存在信号を検出した場合に、給電コイル14を通じて受電コイル24に送電する。このようにすれば、給電回路15は、受電車の接近による給電コイル14のインダクタンス変化を常時モニタするための交流電流を給電コイル14に流す必要がないため、損失を低減することができる。
(変形態様)
固定コアに直流磁界を形成する永久磁石を受電車に取り付けても良い。固定コア側にこの直流磁界又はその変化を検出する磁気センサを設けることにより、受電車の接近を検出することができる。
(変形態様)
変形態様を図22を参照して説明する。図22は、コントローラ541の動作を示すフローチャートである。この変形態様は、コントローラ541が、積算電力量信号とともに自己のアドレスを送信する点にその特徴がある。このようにすれば、複数の給電回路15が、複数の受電回路520に給電する場合でも、各受電車が受電した有効積算電力量を各受電車ごとに検出することができ、料金請求を正確に行うことができる。なお、この料金請求は、たとえば1月ごとに行われる。なお、図22に記載したAhは積算電力量を意味し、Adressは、受電車を特定するアドレスである。
(変形態様)
変形態様を図23を参照して説明する。図23は、コントローラ544の動作を示すフローチャートである。この変形態様は、コントローラ544が、たとえば料金不支払の車両への送電を停止する点にその特徴がある。まず、コントローラ544は、コントローラ541からの給電要求とそのアドレスとを受信し、受信したアドレスを外部のデータベースに送って。給電してもよいかどうかを問い合わせる。このデータベースには契約車のアドレスと料金不支払車両のアドレスとが記憶されている。コントローラ544は、データベースからの情報に基づいて給電OKの場合にはコントローラ541に給電OKの信号を送信し、そうでない場合には給電NOの信号を送信する。コントローラ541は、受信した信号内容に基づいて、給電OKの場合には受電電流制御用のスイッチング素子522のオンを許可し、そうでない場合には受電電流制御用のスイッチング素子522のオンを禁止する。このようにすれば、契約車でかつ料金滞納していない車両にのみ給電することができる。また、車両が移動しても、給電に支障が生じない。
(変形態様)
上記実施形態では、給電の許可、不許可を受電回路520内で実施していたが、給電回路15側で実施することも可能である。すなわち、給電OKの場合には該当する受電車が位置する給電回路15への送電を許可し、そうでない場合には該当する受電車が位置する給電回路15への送電を禁止する。
なお、多数の給電回路15のどれに該当する受電車が存在するかは、コントローラ543は、各給電回路15ごとに通信コイル543を巻回しておけば容易に判別することができる。受電車が固定コア11、12上に存在するか否かは、給電回路15に小さい交流電流を通電しておき、給電回路15の端子電圧の変化を検出するのが簡単である。受電車が給電回路15から交流電流を電磁誘導により吸収すると、給電回路15の等価インピーダンスが低下し、給電電流が増大するため、受電車の存在の有無は容易に判定することができる。
(実施形態8)
実施形態8の車両用誘導送電装置を図24を参照して説明する。図24は、この車両用誘導送電装置の給電回路15の一例を示す回路図である。
給電回路15は、商用交流電源550から受電した交流電力を整流して正母線552と負母線553との間に出力する整流器551と、正母線552と負母線553から直流電圧が印加されるフルブリッジ(Hブリッジ)構成のインバータ554と、給電回路15の給電を制御するコントローラ559とを有している。
インバータ554は、上アームのパワースイッチング素子555,556と、下アームのパワースイッチング素子557,558からなる周知の構成をもつ。パワースイッチング素子555,557からなるハーフブリッジ561の交流出力点と、パワースイッチング素子556,558からなるハーフブリッジ562の交流出力点との間には、3つの送電コイル14と1つのキャパシタC6とを並列接続してなる並列共振回路が接続されている。この並列共振回路は、この3つの送電コイル14の合成インダクタンスとキャパシタC6の静電容量とにより決定される所定の共振周波数値をもつ。
3つの送電コイル14は、同一の移動コア1の互いに並列磁路となる3つのコイル巻装コア514に個別かつ同一向きに巻かれている。この実施形態によれば、並列共振用のキャパシタC6を1個とすることができるとともに、インバータ554の個数を減らすことができる。
この実施形態によれば、給電回路15を簡素な回路構成とすることがができる。コントローラ559は、パワースイッチング素子555〜558のスイッチングを制御して、インバータ554から並列共振回路への給電を制御する。
更に具体的に説明すると、コントローラ559は、インバータ554を構成する2つのハーフブリッジ561、562の交流出力点の電位を検出し、この2つの交流出力点の相対的な電位関係又は、3つの送電コイル14と1つのキャパシタC6とを並列接続してなる上記並列共振回路の端子電圧の位相に基づいてパワースイッチング素子555〜558をスイッチング制御する。たとえば、ハーフブリッジ561の交流出力点の電位がハーフブリッジ562の交流出力点の電位より高い場合には、送電コイル14にはハーフブリッジ561側からハーフブリッジ562側へ電流が流れるので、この電流をアシストするべく、パワースイッチング素子555、558がオンされる。逆に、ハーフブリッジ561の交流出力点の電位がハーフブリッジ562の交流出力点の電位より低い場合には、送電コイル14にはハーフブリッジ562側からハーフブリッジ561側へ電流が流れるので、この電流をアシストするべく、パワースイッチング素子556、557がオンされる。また、コントローラ559は、必要な電流が並列共振回路に給電されるように、たとえばその電流の大きさに応じてインバータ554をPWM制御することができる。また、周波数が設定周波数値からずれないように、インバータ554のスイッチングを制御する。
(実施形態9)
実施形態9の車両用誘導送電装置を図25を参照して説明する。図25は、この車両用誘導送電装置の受電回路520の一例を示す回路図である。この受電回路520は、受電コイル24とキャパシタC2とからなる並列共振回路570と、スイッチ522、571と、整流回路521と、コントローラ541と、コンセントプラグ(アダプタ)573とを有している。572は蓄電装置である。
この実施形態5は、受電コイル24を通じて道路又は一般のパーキングスペースの給電コイルから電磁誘導により受電するとともに、コンセントプラグ(アダプタ)573を建物のコンセントに差し込んで商用交流電源から直接受電する形態を示す。並列共振回路570の両端に誘導される交流電圧は、スイッチ571を通じて整流回路521に印加される。また、コンセントプラグ(アダプタ)573の両端子の電圧も同じ整流回路521に印加される。コンセントプラグ(アダプタ)573の電力が給電コイル24により消費されるのを防止するために、スイッチ571はコンセントプラグ(アダプタ)573をコンセントに差し込まれる前に手動により又は自動的にオフされることが好適である。
整流回路521から出力される直流電圧は蓄電装置572に印加される。コントローラ541は、蓄電装置572の電圧と予め設定されている目標電圧とを比較し、蓄電装置572の電圧が目標電圧を上回る場合にスイッチ522をオフする。この実施形態によれば、2種類の外部交流電源に対して共通の整流回路を利用することができるので、回路構成を簡素化し、特に車両用誘導送電装置が設備されていない地域での充電が容易となる。また、コンセントプラグ(アダプタ)573を用いてあらかじめ充電を完了しておくことにより、車両用誘導送電装置の負担を軽減することができる。
(実施形態10)
実施形態10の車両用誘導送電装置を図26を参照して説明する。図26は、この車両用誘導送電装置を走路幅方向に見た側面図である。この車両用誘導送電装置は、リニアモータを兼ねる点にその特徴がある。
道路には固定コアの一対のバー(磁束出力コア)581、581が走路延在方向へ延設されている。このバー581、581は既述したバー11、12と同様に走路幅方向へ所定間隔隔てて平行に配置されている。横バー13は、一対のバー581、581の下面に接して走路幅方向へ配置されている。横バー(コイル巻装コア)13には送電コイル14が巻回されている。なお、一対のバー581、581のうち紙面裏側のバー581は隠れている。一対のバー581、581の上方には小さい電磁ギャップgを隔てて移動コアが配置されている。この移動コアは、一対のバー581、581に個別に対面する一対のバー(磁束入力コア)584、584を有している。横バー(コイル巻装コア)514は、一対のバー584、584の上面に接して走路幅方向へ配置されている。横バー514には受電コイル24が巻回されている。なお、一対のバー584、584のうち紙面裏側のバー584は隠れている。いままで説明した固定コア及び移動コアは、既述した固定コア及び移動コアと同じである。送電コイル14に高周波交流電力を給電すると、受電コイル24に高周波交流電力が誘導される。
この実施形態の固定コアのバー(磁束出力コア)581、581の上面、及び、移動コアのバー(磁束入力コア)584、584の下面は、凹凸が形成されている。更に詳しく説明すると、バー581、581の上面には、磁気突極部となる凸部583が長手方向一定ピッチで設けられ、凹部582には、コンクリートのような非磁性の無機材料が充填されている。バー584、584の下面には、磁気突極部となる凸部585が長手方向一定ピッチで設けられ、凸部585の間の凹部586にはリニアモータの電機子コイル587が巻かれている。
相対移動するバー581、581とバー584、584は、それぞれ磁気突極をもち、リニアスイッチドリラクタンスモータを構成している。すなわち、電機子コイル587により形成される磁界による磁気吸引力によりバー584、584はバー581、581に対して進行方向へのスラストを発生する。なお、図26では、バー584、584の6個の磁気突極あたりバー581、581が4個の磁気突極をもつ、電機子コイル587が3相コイルからなる周知のスイッチドリラクタンスモータ構造が採用されているが、その他、種々公知のスイッチドリラクタンスモータ構造を採用することができる。このリニアスイッチドリラクタンスモータ兼車両用誘導送電装置は、固定コアと移動コアとの間の電磁ギャップg及び軟磁性部材を共用できるため、簡素な構造のリニアモータを実現することができる。また、従来のリニアモータにおいて、製造コストの多くを示す固定コア側の電機子コイルを省略することもできる。
図26のリニアスイッチドリラクタンスモータ兼車両用誘導送電装置の回路を図27に示す。給電回路15の送電コイル14と電磁結合する受電回路520の受電コイル24は整流器551に高周波電圧を印加する。整流器551は、公知のスイッチドリラクタンスモータ駆動用の駆動回路588に直流電源電圧を印加し、駆動回路588は3相の電機子コイル587に3相電圧を印加する。
(実施形態11)
実施形態11の電気自動車を図28を参照して説明する。図28は、いままで説明した車両用誘導送電装置を装備する電気自動車の模式断面側面図である。
この電気自動車の欠点は、道路に給電回路15及び移動コアが設けられていない道路、地域において、電気自動車に給電できないことである。たとえば、休日に田舎にドライブする場合、この電気自動車は不適当である。この実施形態はこの問題を解決するためになされたものである。
図28において、電気自動車590は、インホィールモータを内蔵するホイールを4つ有している。591は、電気自動車590の後部に設けられた荷物室である。荷物室591の床面には四角枠594が固定されている。四角枠594の厚さはたとえば数センチメートルとされている。四角枠594は、1メートル×1メートルとされている。四角枠594に囲まれた荷物室591の床面595には、着脱タイプの追加バッテリ593がセットされている。四角枠594には、四角檻596の底部が固定されている。角枠596は着脱式又は折り畳み式であり、図28の状態では追加バッテリ593の上面を押さえている。四角檻596の上には、更に荷物を積むことができる。
この実施形態では、電気自動車590の通常の使用において追加バッテリ593は取り外され、四角枠594も取り外される。ロングドライブを行う場合には、荷物室591の四角枠594内に追加バッテリ593がセットされ、四角檻596が固定される。これにより、電気自動車590は、常時、追加バッテリ593をもたないので、走行コストを低減するとともに、荷物室591を広く使うことができる。また、追加バッテリ593のセットにより、ロングドライブも可能となる。この追加バッテリ593は、電気自動車590の所有者が保有する必要はなく、たとえば、道路に沿って所定間隔で設けられた給電ステーション又は自動販売機によりレンタルすることもできる。たとえば、この自動販売機から追加バッテリ593を借り出したドライバーは最寄りの自動販売機にこの追加バッテリ593を返すことができ、この時、自動販売機は、レンタル時間に応じた料金を差し引いた金額をドライバーに返却する。
(実施形態12)
実施形態12の車両用誘導送電装置を図29を参照して説明する。図29は、図13に示す小受電車510の変形態様を示す。小受電車510は、図略の電気自動車の車体底面に水平移動可能かつ垂直変位可能に連結されている。
この小受電車510は、互いに平行に配置されて前後方向へ延在する一対の磁束入力コア511と、左右方向に延設されて一対の磁束入力コア511を磁気的に結合するコイル巻装コア514とからなる移動コアを有している。この移動コアは、図29に示す車輪512と同様に走路(GL)上を走行可能に配置された図略の車輪に支持されている。受電コイル24がコイル巻装コア514に巻かれている。移動コアと受電コイル24とは受電ユニットを構成している。12は走路前後方向に延設される固定コアの軟磁性のバーである。バー12の裏側に位置してバー11がバー12と平行に配置されている。13はバー11、12を磁気的に結合する横バー(磁束出力コア、コイル巻装コア)であり、14は横バー13に巻かれた送電コイルである。バー11、12及び横バー13は固定コアを構成している。
この実施形態では、小受電車510は、受電ユニットの上方に位置して角枠状の移動コア支持フレーム600を有している。移動コア支持フレーム600は、上記した図略の車輪に支持されている。601は磁束入力コア511の前端部を支持する支持バー、602は磁束入力コア511の後端部を支持する支持バーである。支持バー601、602は、移動コア支持フレーム600と磁束入力コア511との両方に合計4本の枢支ピン603により垂直回動自在に支持されている。これにより、左右一対の磁束入力コア511は、支持バー601、602に高さ方向変位可能かつ前後方向へ変位可能に支持されている。
604は、支持バー601を前方に押し出すリニアアクチエータ(移動コア昇降部)であり、605は前後方向へ進退するリニアアクチエータ604のロッド、606はロッド605の前端部である。ロッド605の前端部606は、支持バー601に結合されていない。607は、移動コア支持フレーム600の下面に固定されてバー12の上面までの垂直距離を検出する非接触タイプの距離センサ(ギャップ幅検出部)である。距離センサ607が検出した距離Dは、小受電車510に搭載されたコントローラ(ギャップ幅制御部)608に送信され、コントローラ608は、入力される距離Dからギャップgを差し引いた垂直距離が、磁束入力コア511の下面高さとなるようにロッド605の押し出し量を決定し、この押し出し量だけロッド605を押し出す。このフィードバック制御により、支持バー601の上端部が前方に倒れ、支持バー601の下端部が後方へ移動し、磁束入力コア511が後方へ移動するとともに、ギャップgが増大する。
走行中に、磁束入力コア511が前方の障害物に衝突する場合には、磁束入力コア511が後方へ変位するとともに上方へ移動する。この時、支持バー601の上端部は、ロッド605の前端部606から離れる。障害物が無くなれば、磁束入力コア511は自己の重量により又は図略のスプリングにより元の位置に戻る。
この実施形態において、コントローラ604は、外気温度及び外気湿度を検出するセンサ(着霜検出部)609からの信号に基づいて、バー11、12の上面の霜層の厚さを推定し、この霜層の推定値に基づいてギャップgの目標値を変更する。つまり、霜層(雨水層又は埃層でもよい)の推定厚さが大きい場合にギャップgの目標値を増大させる。これにより、磁束入力コア511とバー11、12との摩擦を減らすことができる。
(実施形態13)
実施形態13の固定コアの構造を図30、図31を参照して説明する。図30は図2に示す固定コアの構造の変形態様を示す垂直断面図、図31は固定コアの模式平面図である。
この実施形態では、固定コア1のバー11,12は既述したように左右方向に積層される積層電磁鋼板により構成されている。620は、コンクリート製の固定コア固定部材であり、走路と一体に構成されても良い。走路に互いに平行に配置されて前後方向へ延在する一対の固定コア固定部材621、622は、図30に示すように上端開口の溝部620をもつ。固定コア固定部材621の溝部620にはバー11が、下側中間部材623及び上側中間部材624とともに収容されている。固定コア固定部材622の溝部620にはバー12が、下側中間部材623及び上側中間部材624とともに収容されている。下側中間部材623はチャンネル断面をもつ樹脂成型体である。上側中間部材624は、下側中間部材623の上端部に隣接して配置されたセラミック製の板状部材である。下側中間部材623はバー11、12の底面と左右側面の下部を包み、バー11、12を熱絶縁している。上側中間部材624はバー11、12の左右側面の上部に隣接配置されている。バー11、12は、下側中間部材623及び上側中間部材624とともに固定コア固定部材621、622の溝部620内に圧入されている。固定コア固定部材621、622は、図31に示すように横バー13が存在するエリアには配置されていない。固定コア固定部材621、622は走路すなわち道路に固定されている。このようにすれば、バー11、12の上面が摩耗した場合に、固定コア固定部材621、622からバー11、12を上方へ抜き出して新しいバー11、12と容易に交換することができる。
(変形態様)
バー11,12の上部と、下部とを別の軟磁性部材により構成し、バー11、12の上部が摩耗した場合に、この上部だけを交換してもよい。特に、アモルファス軟磁性部材は耐摩耗性に優れるので、バー11、12の特に上端部分に採用することが好適である。
(実施形態14)
実施形態14を図32を参照して説明する。図32は、既述した車両用誘導送電装置をハイブリッド自動車への給電に用いた例を示すブロック回路図である。上記実施形態では、電気自動車給電用の車両用誘導送電装置が説明された。この実施形態は、この電気自動車給電用の車両用誘導送電装置の受電ユニットをハイブリッド自動車に装備した点にその特徴がある。
図32において、701はエンジン、702は発電機である。703は、受電ユニットの受電コイル24が出力する二次電圧を整流する整流回路、704は昇圧チョッパ回路、705はチタン酸バリウムを主成分とするセラミックキャパシタ、706は3相インバータ回路、707は走行動力発生用の3相交流モータである。
エンジン701により駆動される発電機702の発電電圧は、発電機702に内蔵された整流回路(図示せず)により整流されて直流正母線708と直流負母線709との間に印加される。車両用誘導送電装置の受電コイル24に誘導された二次電圧は整流回路703により整流されて直流正母線708と直流負母線709との間に印加される。昇圧チョッパ回路704は、直流正母線708と直流負母線709との間に印加される直流電圧VLを昇圧してセラミックキャパシタ(蓄電装置)705を充電する。3相インバータ回路706は、セラミックキャパシタ705の蓄電電圧VHを33相交流電圧に変換して3相交流モータ707に出力し、3相交流モータ707は走行動力を発生させる。
710は、昇圧チョッパ回路704及び3相インバータ回路706を制御するコントローラである。コントローラ710は、検出したセラミックキャパシタ705の端子電圧や自己の電流に基づいて昇圧チョッパ回路704のデューティ比を制御し、セラミックキャパシタ705の蓄電電圧を好適範囲に維持する。昇圧チョッパ回路704及び3相インバータ回路706の構成とその制御自体は周知であるため、説明を省略する。
この実施形態では、昇圧チョッパ回路704は、セラミックキャパシタ705を3500Vまで充電する。この実施形態では、セラミックキャパシタ705の蓄電電圧の低下とともに、3相インバータ回路706の電源電圧Vが低下するが、コントローラ710は、3相交流モータ707の必要電力Pを算出し、この必要電力Pと電源電圧Vとに基づいて3相インバータ回路706のデューティを制御する。つまり、必要電力Pの増大又は電源電圧Vの低下に応じて、3相インバータ回路706のスイッチング素子のPWMデューティが増大される。
コントローラ711は、直流正母線708と直流負母線709との間に出力される発電機702の出力電流、及び、整流回路703の出力電流を制御する。具体的には、コントローラ711は、受電コイル24の出力電圧又は整流回路703の入力電圧又は出力電圧をモニタすることにより、それらが所定値以上であれば車両用誘導送電装置から受電可能であることを認識し、エンジン701及び発電機702を停止させる。これにより、たとえば都市内にては、既述した車両用誘導送電装置からの受電電力で走行し、車両用誘導送電装置が敷設されていない郊外ではエンジンで走行する。このようにすれば、セラミックキャパシタ705の必要容量を減らすことができる。
なお、昇圧チョッパ回路704を双方向昇降圧チョッパ回路とすれば、3相インバータ回路706を直流正母線708と直流負母線709との間に配置してもよい。その他、種々公知のハイブリッド車にも既述の車両用誘導送電装置からの受電電力を用いて、エンジン稼働期間を短縮できることは明白である。また、都市内におけるエンジン廃熱や排出ガスの滞留を低減できるため、都市環境の改善に有益である。
(変形態様)
コントローラ711は、整流回路703を優先動作させるとともに、エンジン701及び発電機702を、直流正母線708と直流負母線709との間の電圧VLが所定値以下となる場合に運転するようにしてもよい。
(実施形態15)
実施形態15を図33を参照して説明する。図33は、実施形態14で説明したセラミックキャパシタ705の好適な構造を示す模式縦断面図である。
このセラミックキャパシタ705は、車体底板801上に固定された角箱状の外側ケース802と、外側ケース802内に挿入された内側ケース803と、内側ケース803内に収容されたセラミックキャパシタ705とを有している。外側ケース802は金属製であり、内側ケース803は樹脂製である。内側ケース803は密閉箱状に形成されており、その上板には+電極端子804と−電極端子805とが設けられている。806は+電極端子804の周囲に設けられた電気絶縁セラミック製の電極ホルダ、807は−電極端子805の周囲に設けられた電気絶縁セラミック製の電極ホルダである。電極ホルダ806、807は、内側ケース803の上板に固定されている。
セラミックキャパシタ705は、チタン酸バリウムを主成分とする高誘電率のセラミック誘電体層と、電極層とを前後方向へ多数積層して構成された積層型キャパシタである。前後方向に配列された多数の電極板のうち、奇数番目の電極板は、セラミックキャパシタ705の上方に配置された+集電バー(図略)に電気的に接続されている。偶数番目の電極板は、セラミックキャパシタ705の上方に配置された−集電バー(図略)に電気的に接続されている。+集電バーは、銅ケーブル808により+電極端子804に接続されている。−集電バーは、銅ケーブル809により−電極端子805に接続されている。これらの銅ケーブル808、809は、セラミックキャパシタ705の所定距離の水平変位特にその前後方向変位を許容可能な長さをもつ。
セラミックキャパシタ705は、内側ケース803の底板上面に水平移動可能にセットされている。810はスプリングである。スプリング810の基端は、内側ケース803の側面に支持され、スプリング810の先端は、セラミックキャパシタ705の側面を水平方向へ付勢している。セラミックキャパシタ705の周囲に設けられた多数のスプリング810により、セラミックキャパシタ705は内側ケース803の底板中央部に保持されている。811は、内側ケース803内に充填された絶縁油である。
絶縁油811は、セラミックキャパシタ705の電気絶縁機能と、放熱機能とをもつ。絶縁油811は種々の冷却手段により冷却されることが好適である。
この実施形態では、セラミックキャパシタ705を絶縁油811内に水平変位可能に配置した点にその特徴がある。これにより、車両衝突が生じ、セラミックキャパシタ705に水平方向へ大きな慣性力が作用した場合、セラミックキャパシタ705は、スプリング810を圧縮して水平変位する。この時、絶縁油811は大きな粘性をもつため、セラミックキャパシタ705の水平変位における抵抗力を発生させ、その結果、セラミックキャパシタ705の慣性運動エネルギーの一部は熱として消費される。これにより、脆いセラミック材料からなるセラミックキャパシタ705に大きな衝突衝撃力が作用して、セラミックキャパシタ705が破壊されたり、その絶縁耐圧が低下して大きな蓄電エネルギーが短期間で放電されるのを良好に防止することができる。また、非常に大きい衝突衝撃力が生じて、セラミックキャパシタ705が多数の破片に破損する場合でも、これら破片が車体内部に飛散することなく絶縁油811内に安全に保持されるとともに、これら破片内の蓄電エネルギーの放出が絶縁油811により阻害されるため、安全性を更に一層向上することができる。
(実施形態16)
実施形態16を図34を参照して説明する。この実施形態は、既述した車両用誘導送電装置において固定コアのバー11、12の上面に形成される凍結層(霜層や雪層や氷層)を融解除去する態様を示す。図34はこの凍結層融解装置を示すブロック回路図である。
給電回路15は、たとえばフルブリッジインバータからなる単相インバータ回路であって、所定周波数で発振してバー11、12に交流磁束を供給する。91は外気温や湿度に基づいてバー11、12の上面の凍結層の厚さを推定する凍結センサである。なお、バー11、12の上面に形成された凍結層の厚さを検出する凍結センサ91としては、公知の種々の方式を採用することができる。凍結センサ(凍結検出部)91が検出したバー11、12上の凍結層の厚さはコントローラ(固定コア加熱制御部)92に出力される。コントローラ92は凍結層の厚さが所定値を超える場合に車両の接近の有無にかかわらず給電回路(固定コア加熱制御部)15に融解指令を出力する。給電回路15に電源電圧を給電する直流正母線93と直流負母線94との間には、図略の商用交流電源から商用交流電圧が印加されている。融解指令を受け取った給電回路15は、送電コイル14に交流電圧を出力し、これにより、バー11、12は鉄損により発熱して凍結層を融解させる。なお、車両への給電により、バー11,12は発熱するため、車両への給電時間に応じて融解指令持続時間を減らしたり、送電コイル14の融解用の励磁電流を減らしたりしてもよい。図30に示すように、バー11、12と固定コア固定部材621、622の間に熱絶縁層を設けることにより、融解用の加熱エネルギーを減らすことができる。凍結センサ91として、バー11、12の温度を検出する温度センサとしてもよい。送電コイル14の交流インピーダンスは、温度の関数であるため、送電コイル14の交流インピーダンスを検出することにより、バー11、12の温度を推定してもよい。
(実施形態17)
実施形態17を図35、図36を参照して説明する。この実施形態の移動コア2は、図1とそれと同様の形状をもつ。すなわち、この移動コア2は、それぞれ車輪状に形成された軟磁性部材である一対の磁束入力コア21、22と、車軸状に形成された軟磁性の横バー(コイル巻装コア)23とからなる。横バー23には受電コイル24がギャップを隔てて巻回されている。230は、回転軸であり、軸受け31、32により回転自在に支持されている。
この実施例の第1の特徴は、磁束入力コア21、22が、図35、図36に示すように、たとえば電磁鋼板のような輪板状の軟磁性板を軸方向に積層して構成されている点にある。これにより、磁束入力コア21、22の渦電流を低減し、その外周面の摩耗も低減することができ、必要な機械的強度も確保することができる。この実施例の第2の特徴は、横バー23が、受電コイル24の内側を軸方向に延在する軸部231と、軸部231の両端から径方向外側へ延在するスポーク部232とからなる点である。この実施例では、図4に示すように、4つの横バー23が互いに90度離れて配置されている。各スポーク部232の径方向外端は、車輪状の磁束入力コア21、22の内周面に密着、固定されている。4つの横バー23はそれぞれ、たとえば電磁鋼板のような輪板状の軟磁性板を周方向(正確には接線方向)へ積層して構成されている。これにより、横バー23は、磁束入力コア21、22に対して低鉄損で磁束を授受することができる。4つのスポーク部232の径方向内端は、回転軸230の外周面に直接又はリング状の中間部材を介して固定されている。これにより、スポーク部232は、車輪状の磁束入力コア21、22と回転軸230とを機械的に接続する機能をもつことができる。
(実施形態18)
実施形態18を図37を参照して説明する。図37において、移動コア2は、左右一対の軟磁性車輪592と、前後方向に延在する左右一対の縦バー511と、横バー514とからなる。横バー514には受電コイル24が巻装されている。図37は、前後に3つの軟磁性車輪592が図示されている。
図37に示される第1の軟磁性車輪592は固定コア1の縦バー11上に配置され、図37において第1の軟磁性車輪592の裏側に隠れている第2の軟磁性車輪592は固定コア1の縦バー12上に配置されている。591は、軟磁性車輪592の非磁性の回転軸であり、図略の軸受けにより縦バー511に支持されている。左右一対の縦バー511は、軟磁性板を軸方向に積層して構成されている。横バー514は、左右一対の縦バー511の上端に固定されて、左右一対の縦バー511間に磁束を流す。
この実施形態の特徴は、縦バー511に軟磁性車輪592の外周面に対して小ギャップ(約1〜2mm)を隔てて対面する凹部5110が形成されている点にある。このようにすれば、磁束出力コアの縦バー11、12から軟磁性車輪592に出入する束は、上記小ギャップを隔てて縦バー511と磁束を授受し、磁束は一対の縦バー511の一方から横バー514を通じて他方の縦バー512に流れる。この実施形態では、軟磁性車輪592と縦バー11、12との間の磁気抵抗を減らすことができる。また、軟磁性車輪592と縦バー511との間の対面面積が大きいため、両者間の磁気抵抗も減らすことができる。これにより、縦バー511と縦バー11、12との間の垂直ギャップDを大きくすることができる。
(実施形態19)
実施形態19の車両用誘導送電装置を図38〜図40を参照して説明する。固定コア1は他の実施形態と同じである。図38は車両用誘導送電装置を前後方向に見た正面図、図39はこの車両用誘導送電装置の模式側面図、図40はこの車両用誘導送電装置の模式平面図である。
受電車500は、軟磁性の移動コア1000と、移動コア1000に巻かれた受電コイル24と、車輪1001〜1004と、車輪軸1005、1006と、車輪軸1005、1006に固定されたフック1007、1008と、車輪軸1005、1006を一体に支持するフレーム1009を有している。
移動コア1000は、図38に示すように、垂直方向に平行に延びる一対の脚部1000A、1000Bと、左右方向に延在して脚部1000A、1000Bの上端部を磁気的に連結するヨーク部1000Cとからなり、電磁鋼板を前後方向に積層して形成されたコ字状ブロックからなる。移動コア1000は、図39、図40に示すように、互いに隣接して前後に配列された5つの小ブロック1011〜1015に分割されている。脚部1000Aの下面はバー11の上面に小ギャップgを介して対面し、脚部1000Bの下面はバー12の上面に小ギャップgを介して対面している。
車輪1001、1002は、移動コア1000を挟んで車輪軸1005に回転自在に固定されている。車輪軸1005は、移動コア1000の上方に位置して左右に延在している。同様に、車輪1003、1004も、移動コア1000を挟んで車輪軸1006に回転自在に固定されている。車輪軸1006も、移動コア1000の上方に位置して左右に延在している。図40に示すように、車輪1001、1002は、車輪1003、1004の内側に配置されている。車輪軸1005は移動コア1000の前端上方に配置され、車輪軸1006は移動コア1000の後端上方に配置されている。
フレーム1009は、車輪軸1005、1006を一体化している。フレーム1009は、図略のバーを通じて車両底部に水平方向及び高さ方向に移動自在に連結されている。フック1007、1008は、移動コア1000の左右に近接して車輪軸1005、1006(又はフレーム1009)から下方に垂下している。フック1007、1008の下端部1007A、1008Aは、直角に曲げられている。フック1007の下端部1007Aは、移動コア1000をなす5つの小ブロック1011〜1015の左側面に凹設された溝1000Dに挿入されている。フック1008の下端部1008Aは、移動コア1000をなす5つの小ブロック1011〜1015の右側面に凹設された溝1000Eに挿入されている。これにより、5つの小ブロック1011〜1015は、フック1007、1008に吊り下げられている。これにより、ギャップgが確保されている。溝1000D、1000Eの高さ方向の幅は、下端部1007A、1008Aの高さ方向の高さよりも所定幅だけ大きくされている。これにより、5つの小ブロック1011〜1015は、互いに独立に上方へ変位可能となっている。小ブロック1011〜1015のこの上方変位により、ギャップgが増大するため、異物がバー11、12上に存在しても乗り越えることができる。
なお、受電コイル24は、フレーム1009に固定されて小ブロック1011〜1015が上下に変位可能な高さ方向の高さ方向内幅をもつ。図39、図40ではフック1007、1008及びフレーム1009の図示は省略され、図40では、受電コイル24の図示は省略されている。
(その他の態様)
図13では、小受電車510の車輪512を左右一対の磁束入力コア511、511の更に左右外側に配置したが、車輪512を左右一対の磁束入力コア511、511の前後に配置してもよい。更に、左右一対の磁束入力コア511、511の更に左右外側と、左右一対の磁束入力コア511、511の前後に車輪を配置してもよい。更に、左右一対の磁束入力コア511、511の前後に配置した車輪を、たとえば図2に示す接触トランス型の車輪としてもよい。このようにすれば、左右一対の磁束入力コア511、511と磁束出力コア(一次コア)のバー12との間のギャップを最適な保持ができるとともに、電力伝送量を増大することができる。
上記実施形態では、一対のバー11、12を平行に前後方向へ延設したが、更に多数のバーを互いに平行に前後方向に延設してもよい。電動車の移動コアの前方に位置して、針金や釘のような小磁性部材を吸着する装置を設けて、これらの小磁性部材が移動コアに吸着されるのを防止してもよい。
上記実施形態では、固定コアのバー11、12はそれぞれ一本の縦バーにより構成された。その代わりに、バー11,12をそれぞれ左右方向に所定間隔を隔てて平行に配置される複数本と縦バーによりそれぞれ構成してもよい。
実施形態の装置を採用する走行レーンの部分的平面図である。 この実施形態の誘導式車両送電装置の進行方向に見た模式縦断面図である。 この実施形態の誘導式車両送電装置の幅行方向に見た模式側面図である。 磁束受容コアの軸方向断面図である。 給電回路及び受電回路を示すブロック回路図である。 位置ずれ修正回路を示すブロック回路図である。 道路に車両進行方向に順番に配置された複数の地上側送電ユニットを示す模式平面図である。 送電制御例を示すフローチャートである。 変形態様の固定コアのバーを示す模式斜視図である。 梯子形の固定コアをもちいた変形例を示す模式平面図である。 実施形態2の車両用誘導送電装置の側面図である。 移動コアの軸方向半断面図である。 実施形態3の車両用誘導送電装置の側面図である。 変形態様を示す側面図である。 変形態様を示す平面図である。 実施形態4の車両用誘導送電装置の走路延在方向に見た断面図である。 図16の車両用誘導送電装置を走路幅方向に見た断面図である。 実施形態5の車両用誘導送電装置の受電側の回路図である。 実施形態6の車両用誘導送電装置の受電側の一部回路図である。 操舵制御動作を示すフローチャートである。 実施例7の車両用誘導送電装置の回路図である。 変形態様を示すフローチャートである。 変形態様を示すフローチャートである。 実施形態8の車両用誘導送電装置の給電回路の一例を示す回路図である。 実施形態9の車両用誘導送電装置の受電回路の一例を示す回路図である。 実施形態10の車両用誘導送電装置を走路幅方向に見た側面図である。 図25の装置の回路図である。 実施形態11の電気自動車の模式断面側面図である。 実施形態12の車両用誘導送電装置を示す模式側面図である。 実施形態13の固定コアの構造を示す垂直断面図である。 図30の固定コアの模式平面図である。 実施形態14の車両用誘導送電型のハイブリッド自動車のブロック回路図である。 電気自動車の蓄電装置を構成するセラミックキャパシタの模式縦断面図である。 実施形態16の氷層融解機能をもつ車両用誘導送電装置のブロック回路図である。 実施形態17の車両用誘導装置の断面図である。 図16の装置の断面図である。 実施形態18の車両用誘導装置の断面図である。 実施形態19の車両用誘導送電装置を前後方向に見た正面図である。 図38の装置の模式側面図である。 図38の装置の模式平面図である。
符号の説明
1は固定コア、2は移動コア、11、12はバー、13は横バー、14は送電コイル、15は給電回路、21、22は磁束入力コア、23は横バー、24は受電コイル、25は受電回路、33は縦バー(連結バー)、34は下端部、35は回動支持部、36はロッド、91は凍結センサ、92はコントローラ、93は直流正母線、94は直流負母線、
100は車体、101は底面、104は発振回路、105は抵抗素子、106はコントローラ、111は上面、200はコントローラ、211はタイヤ状部材、213は円柱部材、300は送電ユニット、330はブラシ、331は縦バーの後端部(異物付勢機構)、400は軟鉄線、500は受電車、501は支持プレート、502は支持枠、503は連結部(ユニバーサルジョイント)、回動支持部35、505は軟鉄リング、506は軟磁性粉末、507はコイルボビン、510は小受電車、511は磁束入力コア、512は車輪、514はコイル巻装コア、520は受電回路、521は全波整流回路、522はスイッチング素子、523はバッテリ、524は位置ずれ検出用コイル、525は全波整流回路、526はコントローラ、527はモータ駆動回路、528、529は位置ずれ検出用コイル、530、531はダイオード(整流器)、532は信号処理回路、533は横ずれ量算出回路、534は操舵コントローラ、540は電流センサ、541はコントローラ、542、543は通信コイル、コントローラ544、550は商用交流電源、551は整流器、552は正母線、553は負母線、554はインバータ、559はコントローラ、555〜559はパワースイッチング素子、561、562はハーフブリッジ、559はコントローラ、570は並列共振回路、572は蓄電装置、571はスイッチ、573はコンセントプラグ(アダプタ)、581はバー(磁束出力コア)、583は凸部、584はバー(磁束入力コア)、585は凸部、586は凹部、587は電機子コイル、588は駆動回路、590は電気自動車590、591は荷物室、593は追加バッテリ、594は四角枠、596は四角檻、600は移動コア支持フレーム、601は支持バー、603は枢支ピン、604はコントローラ、604はリニアアクチエータ、605はリニアアクチエータのロッド、606はロッドの前端部、607は距離センサ、608はコントローラ、620は溝部、621は固定コア固定部材、622は固定コア固定部材、623は下側中間部材、624は上側中間部材、701はエンジン、702は発電機、703は整流回路、704は昇圧チョッパ回路、705はセラミックキャパシタ、706は3相インバータ回路、707は3相交流モータ、708は直流正母線、709は直流負母線、710はコントローラ、711はコントローラ、801は車体底板、802は外側ケース、803は内側ケース、804は+電極端子、805は−電極端子、806は電極ホルダ、808、809は銅ケーブル、810はスプリング、811は絶縁油

Claims (54)

  1. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記受電ユニットは、
    前記走路又は前記固定コア上を回転走行する車輪を有するとともに、前記移動コア及び前記受電コイルを移動させる受電車と、
    走路幅方向へ相対移動可能かつ走路高さ方向へ相対移動可能に前記車両と前記受電車の底部とを連結するとともに、前記車両と前記固定コアとの間の走路幅方向位置ずれ量よりも前記受電車と前記固定コアとの間の走路幅方向位置ずれ量を減少させる向きに前記受電車を付勢する受電車支持機構と、
    を有し、
    前記受電車支持機構は、前記受電車と前記車両との間の高さ方向距離を変更することなく前記受電車を前記車両に対して少なくとも車両の幅方向へ相対移動させることができ、かつ、前記車両に対して前記受電車を走路平行方向に相対移動することなく前記受電車を前記車両に対して走路高さ方向へ相対変位させることができる連結構造を有し、前記連結構造により前記車両に連結されることを特徴とする車両用誘導送電装置。
  2. 前記受電車は、進行方向へ配列された前記移動コアと、前記移動コアを垂直移動可能に支持するフレームと、前記フレームを支持する車輪とを有し、
    前記車輪は、前記移動コアの下端と前記固定コアの上端との間のギャップを所定量確保する径を有する請求項1記載の車両用誘導送電装置。
  3. 前記受電車は、進行方向へ配列された複数の前記移動コアを個別に支持するとともに互いに高さ方向へ相対変位可能に進行方向へ連結される複数の小型受電車からなる受電列車により構成されている請求項1記載の車両用誘導送電装置。
  4. 前記受電車支持機構は、前記受電車と前記車両の底部とを連結して車両後方かつ下方へ斜めに延在する連結バーを有し、
    前記受電車は、前記連結バーの先端部に水平回動自在に連結され、
    前記連結バーは、前記車両の底部に水平回動自在かつ垂直回動自在に連結される請求項1記載の車両用誘導送電装置。
  5. 前記受電車支持機構は、前記受電車を昇降させる受電車昇降装置を有する請求項1記載の車両用誘導送電装置。
  6. 前記受電車支持機構は、前記受電車を車両幅方向へ移動させる受電車横移動装置を有する請求項1記載の車両用誘導送電装置。
  7. 前記受電車支持機構は、前記固定コアに対する前記移動コアの走路幅方向の位置ずれ量を検出する横ずれ検出センサを有し、
    前記受電車横移動装置は、検出した前記位置ずれ量に応じて前記受電車を前記位置ずれを解消する向きに付勢する請求項6記載の車両用誘導送電装置。
  8. 前記横ずれ検出センサは、前記固定コアに対する前記移動コアの走路幅方向の距離を磁気的に検出する磁気センサからなる請求項7記載の車両用誘導送電装置。
  9. 前記磁気センサは、前記移動コアに巻装された位置ずれ検出用のコイルと、前記位置ずれ検出用のコイルの電圧に基づいて前記位置ずれ量を検出する横ずれ検出回路とを有する請求項8記載の車両用誘導送電装置。
  10. 前記受電コイルは、前記位置ずれ検出用のコイルを兼ねるか又は同軸に巻装される請求項8記載の車両用誘導送電装置。
  11. 前記固定コアは、走路に露出する左右一対の磁束出力コアを有し、
    前記移動コアは、下端が前記一対の磁束出力コアに個別に近接乃至接触する左右一対の磁束入力コアと、前記一対の磁束入力コアを磁気的に接続するとともに前記受電コイルが巻回されたコイル巻装コアとを有し、
    前記一対の磁束入力コアは、軟磁性材料により車輪状に形成されて前記一対の磁束出力コアの上面に接触しつつ回転し、
    前記コイル巻装コアは、軟磁性材料により車輪状に形成されて前記一対の磁束出力コアを磁気的に連結する請求項1記載の車両用誘導送電装置。
  12. 前記車輪状の磁束入力コアは、前記電動車の車輪を兼ねる請求項11記載の車両用誘導送電装置。
  13. 前記車輪状の磁束入力コアは、輪板状の軟磁性鋼板を軸方向に積層されて構成されている請求項11記載の車両用誘導送電装置。
  14. 前記車軸状のコイル巻装コアの両端部は、径外方向へ延在して前記磁束入力コアの内周面に密着するスポーク部を有する請求項13記載の車両用誘導送電装置。
  15. 前記固定コアは、走路に露出する左右一対の磁束出力コアを有し、
    前記移動コアは、プレート状に形成されて前後方向へ延在するとともに小ギャップを隔てて前記一対の磁束出力コアの上面に対面する請求項1記載の車両用誘導送電装置。
  16. 前記固定コアは、走路に露出する左右一対の磁束出力コアを有し、
    前記移動コアは、下端が一対の前記磁束出力コアに個別に接触する左右一対の車輪状の磁束入力コア(592)と、前記車輪状の一対の磁束入力コア(592)に小ギャップを隔てて対面する左右一対の縦バー(511)と、前記左右一対の縦バー(511)を磁気的に連結する横バー(514)とを有し、
    前記受電コイル(24)は、前記横バー(514)に巻装されている請求項1記載の車両用誘導送電装置。
  17. 前記車輪状の磁束入力コア(592)は、輪板状の軟磁性板を軸方向に積層して構成され、
    前記左右一対の縦バー(511)は、前記磁束入力コア(592)の外周面に小ギャップを隔てて対面する請求項16記載の車両用誘導送電装置。
  18. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記固定コアは、上端面が前記走路の一部を構成するとともに互いに所定間隔を隔てて走路延在方向へ平行に延設される一対の磁束出力コアと、前記走路に埋設されて前記一対の磁束出力コアの所定部位同士を磁気的に接続するとともに前記送電コイルが巻装された一つ又は複数のコイル巻装コアとを有し、
    前記移動コアは、下端が前記一対の磁束入力コアに個別に近接乃至接触する一対の磁束入力コアと、前記一対の磁束入力コアを磁気的に接続するとともに前記受電コイルが巻回されたコイル巻装コアとを有していることを特徴とする車両用誘導送電装置。
  19. 前記磁束出力コアは、前記固定コアの前記コイル巻装コアよりも走路延在方向へ長く形成されている請求項18記載の車両用誘導送電装置。
  20. 前記磁束入力コアは、前記移動コアの前記コイル巻装コアよりも長く形成されている請求項18記載の車両用誘導送電装置。
  21. 前記磁束出力コアは、前記磁束入力コアよりも走路延在方向へ長く形成されている請求項18記載の車両用誘導送電装置。
  22. 前記磁束出力コアの上面は、粗面化されている請求項18記載の車両用誘導送電装置。
  23. 前記磁束出力コアは、多数の軟磁性鋼板を走路幅方向へ積層してなる請求項22記載の車両用誘導送電装置。
  24. 前記コイル巻装コアは、多数の軟磁性鋼板を走路延在方向へ積層してなる請求項18記載の車両用誘導送電装置。
  25. 前記コイル巻装コアの端部は、前記磁束出力コアの走路延在方向中間部に磁気的に接続される請求項18記載の車両用誘導送電装置。
  26. 前記一対の磁束出力コアは、走路延在方向へ所定間隔隔てて配置された複数の前記コイル巻装コアにより磁気的に接続され、
    前記固定コアの複数のコイル巻装コアに別々に巻回された前記複数の給電コイルは、同じ方向へ磁束を発生する請求項18記載の車両用誘導送電装置。
  27. 前記固定コアのコイル巻装コアは、前記一対の磁束出力コアの下面に接している請求項18記載の車両用誘導送電装置。
  28. 前記磁束入力コアは、多数の軟磁性鋼板を進行方向に対して直角方向へ積層してなる請求項18記載の車両用誘導送電装置。
  29. 前記一対の磁束入力コアは、走路延在方向へ所定間隔隔てて配置された複数の前記コイル巻装コアにより磁気的に接続され、
    前記移動コアの複数のコイル巻装コアに別々に巻回された前記複数の受電コイルは、二次電圧加算方向へ直列接続されている請求項18記載の車両用誘導送電装置。
  30. 前記移動コアのコイル巻装コアは、前記一対の磁束入力コアの上面に接している請求項18記載の車両用誘導送電装置。
  31. 前記一対の磁束入力コアは、前記コイル巻装コアの一部をなす車軸により連結された軟磁性の前記車輪を有し、
    前記受電コイルは、前記車軸に相対回転可能に巻装される請求項18記載の車両用誘導送電装置。
  32. 前記車輪は、弾性及び軟磁性を有する請求項31記載の車両用誘導送電装置。
  33. 前記車輪の側面は多重リング状の凹凸を有する軟磁性金属板により構成されている請求項32記載の車両用誘導送電装置。
  34. 進行方向へ一列に配列された複数の前記車輪を有する請求項31記載の車両用誘導送電装置。
  35. 前記複数の車輪は、互いに高さ方向へ独立に変位可能に構成されている請求項34記載の車両用誘導送電装置。
  36. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記走路側に設置されて前記車両と通信する固定側通信回路と、前記車両に装備されて前記固定側通信回路と通信する車両側通信回路とを有し、
    前記車両は、前記受電コイルの受電電力の積算値を計測する積算回路を有し、
    前記車両側通信回路は、前記固定側通信回路に前記積算値を送信することを特徴とする車両用誘導送電装置。
  37. 前記車両側通信回路は、前記積算値と自己を特定するアドレスとを固定側通信回路へ送信する請求項36記載の車両用誘導送電装置。
  38. 前記車両側通信回路は、自己を特定するアドレスを前記固定側通信回路へ送信し、
    前記固定側通信回路は、受信した前記車両のアドレスが予め許可された番号である場合に前記車両に送電するための送電コイルを作動させる給電回路、又は、前記車両の受電コイル前記受電コイルが受電する電力エネルギーの量を制御するパワーコントローラに、電力伝送を許可する信号を出力する請求項36記載の車両用誘導送電装置。
  39. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    地上側に固定されて前記送電ユニットに対する前記車両の近接の有無を検出する車両センサと、
    前記車両センサの検出情報に基づいて前記車両が近接する場合に前記送電ユニットへ送電する給電回路と、
    を備え、
    前記車両センサは、前記磁束出力コアに巻回された車両位置検出用のコイルと、前記車両位置検出用のコイルのインピーダンス変化に基づいて前記車両近接の有無を検出することを特徴とする車両用誘導送電装置。
  40. 前記給電コイルは、前記車両位置検出用のコイルを兼ねる請求項39記載の車両用誘導送電装置。
  41. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記給電回路は、前記送電コイルと並列共振するキャパシタを有する並列共振回路と、
    前記並列共振回路と直列接続されて前記並列共振回路への入力電流を制御する電流制御回路とを有し、
    前記電流制御回路は、前記並列共振回路に交流電流を給電するフルブリッジインバータと、前記並列共振回路の電流位相に合わせて前記フルブリッジインバータのスイッチング素子を断続制御するコントローラとを有することを特徴とする車両用誘導送電装置。
  42. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記車両は、走行用の電力エネルギーを蓄電する蓄電装置と、前記受電コイルが受電する電力エネルギーの量を制御するパワーコントローラと、商用電力エネルギーを受電して前記パワーコントローラに供給する商用電力受電用のアダプタとを有することを特徴とする車両用誘導送電装置。
  43. 前記パワーコントローラは、前記蓄電装置の充電レベルに基づいて前記アダプタ又は前記受電コイルからの受電電力のレベルを制御する請求項42記載の車両用誘導送電装置。
  44. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記移動コアに巻装されたリニアモータ用の電機子コイルと、前記電機子コイルに給電する駆動回路とを有し、前記受電コイルは、受電した電力を前記駆動回路に出力することを特徴とする車両用誘導送電装置。
  45. 前記固定コアの上面及び前記移動コアの下面は、その延在方向へ所定ピッチで磁気的な突極部を有し、前記リニアモータは、リラクタンスリニアモータからなる請求項44記載の車両用誘導送電装置。
  46. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記車両に固定されて前記固定コアに対する前記車両の相対位置を検出して前記車両の操舵制御装置に送信する車両位置センサを有し、
    前記操舵制御装置は、入力された前記車両位置に基づいて前記車両の操舵を行って、前記固定コアに対する前記車両の走路幅方向のずれを所定値以下に制御することを特徴とする車両用誘導送電装置。
  47. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記移動コアの前面に設けられて前記固定コアの上面の異物を走路幅方向へ付勢する異物付勢機構を有することを特徴とする車両用誘導送電装置。
  48. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記受電ユニットは、前記走路又は前記固定コア上を回転走行する車輪を有する受電車と、前記移動コアと前記固定コアとの間のギャップ幅を検出するギャップ幅検出部と、前記受電車に支持されて前記移動コアの高さを調節する移動コア昇降部と、前記検出したギャップ幅に基づいて前記移動コア昇降部を制御することにより前記ギャップ幅を所定の目標値に保持するギャップ幅制御部とを有することを特徴とする車両用誘導送電装置。
  49. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    上端開口の溝部を有して前記走路に固定された固定コア固定部材を有し、
    前記固定コアは、前記固定コア固定部材の前記溝部に上方へ抜き出し可能に収容されていることを特徴とする車両用誘導送電装置。
  50. 走路に固定された軟磁性の固定コアと、前記固定コアに巻装された送電コイルとを有して走路延在方向へ配列される複数の送電ユニットと、
    車両に設けられて前記固定コアに対面する軟磁性の移動コアと、前記移動コアに巻装された受電コイルとを有する受電ユニットとを備える車両用誘導送電装置において、
    前記固定コアの上面の凍結状態を検出する凍結検出部と、
    検出された前記凍結状態に応じて前記送電コイルに交流通電することにより前記固定コアを加熱する固定コア加熱制御部とを有することを特徴とする車両用誘導送電装置。
  51. 前記車両は、発電ユニットを搭載し、
    前記コントローラは、前記蓄電装置の蓄電状態及び走行動力に応じて前記発電ユニットの作動を制御するとともに前記車両用誘導送電装置からの受電が可能かどうかを検出し、可能な場合には前記発電ユニットの発電よりも前記車両用誘導送電装置からの受電を優先する請求項1乃至44のいずれか一つ記載の車両用誘導送電装置。
  52. 走行モータと、蓄電装置と、前記蓄電装置の蓄電電力を前記走行モータに給電するモータコントローラとを搭載する電気自動車において、
    前記蓄電装置は、チタン酸材料を主成分として1000V以上の耐圧をもつ誘電層を有し、絶縁油入りのケースに収容されたセラミックキャパシタにより構成されていることを特徴とする電気自動車。
  53. 前記蓄電装置は、セラミックキャパシタにより構成されて絶縁油入りのケースに少なくとも前後方向移動可能に収容され、
    前記絶縁油は、前記セラミックキャパシタの前後方向移動における流体抵抗を発生する請求項51記載の電気自動車。
  54. 走行モータと、蓄電装置と、前記蓄電装置の蓄電電力を前記走行モータに給電するモータコントローラとを搭載する電気自動車において、
    前記車両は、長距離走行用の追加蓄電装置を着脱可能に追加蓄電装置固定装置が設けられた荷物積載室を有することを特徴とするで気自動車。

JP2008215347A 2008-02-08 2008-08-25 電気自動車及びそれに好適な車両用誘導送電装置 Pending JP2010022183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215347A JP2010022183A (ja) 2008-02-08 2008-08-25 電気自動車及びそれに好適な車両用誘導送電装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008029094 2008-02-08
JP2008154942 2008-06-13
JP2008215347A JP2010022183A (ja) 2008-02-08 2008-08-25 電気自動車及びそれに好適な車両用誘導送電装置

Publications (1)

Publication Number Publication Date
JP2010022183A true JP2010022183A (ja) 2010-01-28

Family

ID=41706526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215347A Pending JP2010022183A (ja) 2008-02-08 2008-08-25 電気自動車及びそれに好適な車両用誘導送電装置

Country Status (1)

Country Link
JP (1) JP2010022183A (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151351A (ja) * 2009-12-21 2011-08-04 Nok Corp 非接触給電装置
JP2011166931A (ja) * 2010-02-09 2011-08-25 Toyota Motor Corp 受電装置およびそれを備える車両
KR101192370B1 (ko) 2010-07-23 2012-10-17 유한회사 한림포스텍 무선 전력 통신 시스템, 그리고 그에 사용되는 무선 전력 공급기 및 수신기
CN102848928A (zh) * 2012-10-15 2013-01-02 长春中信光电科技发展有限公司 电动汽车、电动摩托车的无线供电驱动方法及装置
KR101230535B1 (ko) 2011-08-18 2013-02-06 한국철도기술연구원 병렬식 선형유도전동기와 공극유지장치를 적용한 지하철도차량
JP2013514928A (ja) * 2009-12-21 2013-05-02 ボンバルディール・トランスポーテイション・ゲゼルシヤフト・ミット・ベシュレンクテル・ハフツング エネルギーを乗り物に転送するためのシステム及びこのシステムを稼働させる方法
JP2013528043A (ja) * 2010-04-08 2013-07-04 クアルコム,インコーポレイテッド 電気自動車での無線電力送信
JP2013172548A (ja) * 2012-02-21 2013-09-02 Furukawa Electric Co Ltd:The 無接点電力伝送装置の埃除去装置
JP2013535841A (ja) * 2010-08-06 2013-09-12 オークランド ユニサービシズ リミテッド 誘導性電力受信機装置
WO2013145647A1 (ja) * 2012-03-30 2013-10-03 株式会社デンソー 非接触給電装置
JP5374657B1 (ja) * 2013-03-21 2013-12-25 東亜道路工業株式会社 舗装構造体及び舗装構造体の施工方法
JP5374658B1 (ja) * 2013-03-21 2013-12-25 東亜道路工業株式会社 トラフ、舗装構造体、及び舗装構造体の施工方法
EP2704292A1 (en) * 2011-04-26 2014-03-05 Korea Advanced Institute Of Science And Technology Feed apparatus, current collector, and power transfer apparatus of the magnetic induction type, considering lateral deviation
JP2014514897A (ja) * 2011-03-18 2014-06-19 インゲニュールビュロー ドゥシュル 誘導エネルギー伝送のための装置
JP2014180166A (ja) * 2013-03-15 2014-09-25 Toshiba Corp 共振子および無線電力伝送装置
WO2014200024A1 (ja) * 2013-06-13 2014-12-18 矢崎総業株式会社 給電装置及び給電システム
JP2015002570A (ja) * 2013-06-13 2015-01-05 矢崎総業株式会社 給電装置及び給電システム
JP2015002571A (ja) * 2013-06-13 2015-01-05 矢崎総業株式会社 給電装置及び給電システム
KR101535284B1 (ko) * 2013-11-01 2015-07-09 한국철도기술연구원 무선 전력 전송 시스템
DE102014226044A1 (de) * 2014-12-16 2016-06-16 Siemens Aktiengesellschaft Verfahren und Anordnung zum Abtauen von sich zwischen einem Elektrofahrzeug und einer Ladestation eines induktiven Ladesystems für Elektrofahrzeuge befindendem zumindest teilweise gefrorenem Wasser
KR101634650B1 (ko) * 2015-06-01 2016-07-01 한국철도기술연구원 대전력의 무선 급전을 위한 급집전 코일의 최적화 설계 방법 및 장치
EP2887498A4 (en) * 2012-08-16 2016-07-06 Ihi Corp MOVABLE PARKING AID
DE102015000437A1 (de) * 2015-01-14 2016-07-14 Audi Ag Ladevorrichtung zur induktiven Übertragung von elektrischer Energie und Verfahren zum Betreiben der Ladevorrichtung
JP2016208793A (ja) * 2015-04-28 2016-12-08 株式会社オプトエレクトロニクス 表示システムおよび電力供給方式
JP2017041934A (ja) * 2015-08-18 2017-02-23 ニチユ三菱フォークリフト株式会社 無人搬送車および給電システム
DE102016203933A1 (de) * 2016-03-10 2017-09-14 Bayerische Motoren Werke Aktiengesellschaft Induktionsaufladesystem für Fahrzeug sowie Verwendung
JP2017175720A (ja) * 2016-03-22 2017-09-28 Tdk株式会社 給電装置およびワイヤレス電力伝送装置
KR101821104B1 (ko) 2015-04-07 2018-01-22 닛산 지도우샤 가부시키가이샤 비접촉 수전 장치의 온도 추정 장치 및 온도 추정 방법
KR101829211B1 (ko) 2016-04-11 2018-03-29 이진국 차선이탈방지 기능이 구비된 전기자동차의 충전장치
KR20180056054A (ko) * 2016-11-18 2018-05-28 기아자동차주식회사 차량, 차량 충전 장치, 차량 충전 시스템 및 차량의 충전 방법
JPWO2017051460A1 (ja) * 2015-09-24 2018-07-05 株式会社Fuji 非接触給電用コイルおよび非接触給電システム
CN108407664A (zh) * 2018-05-14 2018-08-17 中国电力科学研究院有限公司 一种电动汽车动态无线充电系统及充电方法
JP2019054697A (ja) * 2017-09-19 2019-04-04 株式会社神戸製鋼所 産業機械
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
JP2019122159A (ja) * 2018-01-05 2019-07-22 Tdk株式会社 ワイヤレス電力伝送装置およびワイヤレス電力伝送システム
WO2019229805A1 (ja) * 2018-05-28 2019-12-05 日産自動車株式会社 送電装置の解凍方法、非接触給電システム、及び送電装置
JP2020080636A (ja) * 2014-09-05 2020-05-28 モーメンタム ダイナミックス コーポレーション 静的および動的共鳴誘導無線充電での使用を対象とする近距離全二重データリンクを提供する方法および装置
US10826565B2 (en) 2014-09-05 2020-11-03 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
CN112977102A (zh) * 2021-04-19 2021-06-18 国网黑龙江省电力有限公司电力科学研究院 一种电动汽车动态谐振式磁耦合无线充电系统
US11121740B2 (en) 2014-09-05 2021-09-14 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
CN114683858A (zh) * 2022-04-29 2022-07-01 中车青岛四方机车车辆股份有限公司 一种磁悬浮列车的受流器及其供电系统、控制方法和装置

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514928A (ja) * 2009-12-21 2013-05-02 ボンバルディール・トランスポーテイション・ゲゼルシヤフト・ミット・ベシュレンクテル・ハフツング エネルギーを乗り物に転送するためのシステム及びこのシステムを稼働させる方法
JP2011151351A (ja) * 2009-12-21 2011-08-04 Nok Corp 非接触給電装置
JP2011166931A (ja) * 2010-02-09 2011-08-25 Toyota Motor Corp 受電装置およびそれを備える車両
US11491882B2 (en) 2010-04-08 2022-11-08 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US11938830B2 (en) 2010-04-08 2024-03-26 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
JP2013528043A (ja) * 2010-04-08 2013-07-04 クアルコム,インコーポレイテッド 電気自動車での無線電力送信
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US10493853B2 (en) 2010-04-08 2019-12-03 Witricity Corporation Wireless power transmission in electric vehicles
KR101192370B1 (ko) 2010-07-23 2012-10-17 유한회사 한림포스텍 무선 전력 통신 시스템, 그리고 그에 사용되는 무선 전력 공급기 및 수신기
JP2013535841A (ja) * 2010-08-06 2013-09-12 オークランド ユニサービシズ リミテッド 誘導性電力受信機装置
US9685812B2 (en) 2011-03-18 2017-06-20 Ingenieurburo Duschl Device for inductive energy transfer
JP2014514897A (ja) * 2011-03-18 2014-06-19 インゲニュールビュロー ドゥシュル 誘導エネルギー伝送のための装置
KR101727785B1 (ko) * 2011-03-18 2017-04-17 인겐뉘르뷔로 데우스첼 유도에너지전달장치
EP2704292A1 (en) * 2011-04-26 2014-03-05 Korea Advanced Institute Of Science And Technology Feed apparatus, current collector, and power transfer apparatus of the magnetic induction type, considering lateral deviation
EP2704292A4 (en) * 2011-04-26 2015-06-24 Korea Advanced Inst Sci & Tech Feeding device, current collector and current transfer device with magnetic induction taking account of side deviations
KR101230535B1 (ko) 2011-08-18 2013-02-06 한국철도기술연구원 병렬식 선형유도전동기와 공극유지장치를 적용한 지하철도차량
JP2013172548A (ja) * 2012-02-21 2013-09-02 Furukawa Electric Co Ltd:The 無接点電力伝送装置の埃除去装置
JP2013211466A (ja) * 2012-03-30 2013-10-10 Denso Corp 非接触給電装置
WO2013145647A1 (ja) * 2012-03-30 2013-10-03 株式会社デンソー 非接触給電装置
EP2887498A4 (en) * 2012-08-16 2016-07-06 Ihi Corp MOVABLE PARKING AID
US9662993B2 (en) 2012-08-16 2017-05-30 Ihi Corporation Parking facility
CN102848928A (zh) * 2012-10-15 2013-01-02 长春中信光电科技发展有限公司 电动汽车、电动摩托车的无线供电驱动方法及装置
JP2014180166A (ja) * 2013-03-15 2014-09-25 Toshiba Corp 共振子および無線電力伝送装置
WO2014147857A1 (ja) * 2013-03-21 2014-09-25 東亜道路工業株式会社 トラフ、舗装構造体、及び舗装構造体の施工方法
JP5374658B1 (ja) * 2013-03-21 2013-12-25 東亜道路工業株式会社 トラフ、舗装構造体、及び舗装構造体の施工方法
WO2014147860A1 (ja) * 2013-03-21 2014-09-25 東亜道路工業株式会社 舗装構造体及び舗装構造体の施工方法
EP2977513A4 (en) * 2013-03-21 2016-11-02 Toa Road Corp TROG, PAVED STRUCTURE AND CONSTRUCTION PROCESSES FOR THE PAVED STRUCTURE
US9873333B2 (en) 2013-03-21 2018-01-23 Toa Road Corporation Paved structure and construction method for paved structure
US9855847B2 (en) 2013-03-21 2018-01-02 Toa Road Corporation Trough, paved structure, and construction method for paved structure
JPWO2014147857A1 (ja) * 2013-03-21 2017-02-16 東亜道路工業株式会社 トラフ、舗装構造体、及び舗装構造体の施工方法
KR101790422B1 (ko) 2013-03-21 2017-10-25 도아 로드 코포레이션 포장 구조체 및 포장 구조체의 시공 방법
KR101786282B1 (ko) 2013-03-21 2017-10-17 도아 로드 코포레이션 트로프, 포장 구조체, 및 포장 구조체의 시공 방법
JP5374657B1 (ja) * 2013-03-21 2013-12-25 東亜道路工業株式会社 舗装構造体及び舗装構造体の施工方法
JP2015002571A (ja) * 2013-06-13 2015-01-05 矢崎総業株式会社 給電装置及び給電システム
WO2014200024A1 (ja) * 2013-06-13 2014-12-18 矢崎総業株式会社 給電装置及び給電システム
JP2015002570A (ja) * 2013-06-13 2015-01-05 矢崎総業株式会社 給電装置及び給電システム
KR101535284B1 (ko) * 2013-11-01 2015-07-09 한국철도기술연구원 무선 전력 전송 시스템
US11121740B2 (en) 2014-09-05 2021-09-14 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
JP2020080636A (ja) * 2014-09-05 2020-05-28 モーメンタム ダイナミックス コーポレーション 静的および動的共鳴誘導無線充電での使用を対象とする近距離全二重データリンクを提供する方法および装置
US10826565B2 (en) 2014-09-05 2020-11-03 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
US11671145B2 (en) 2014-09-05 2023-06-06 Inductev Inc. Near field, full duplex data link for resonant induction wireless charging
DE102014226044A1 (de) * 2014-12-16 2016-06-16 Siemens Aktiengesellschaft Verfahren und Anordnung zum Abtauen von sich zwischen einem Elektrofahrzeug und einer Ladestation eines induktiven Ladesystems für Elektrofahrzeuge befindendem zumindest teilweise gefrorenem Wasser
DE102015000437B4 (de) * 2015-01-14 2021-05-20 Audi Ag Ladevorrichtung zur induktiven Übertragung von elektrischer Energie und Verfahren zum Betreiben der Ladevorrichtung
DE102015000437A1 (de) * 2015-01-14 2016-07-14 Audi Ag Ladevorrichtung zur induktiven Übertragung von elektrischer Energie und Verfahren zum Betreiben der Ladevorrichtung
US10340710B2 (en) 2015-01-14 2019-07-02 Audi Ag Charging device for the inductive transmission of electrical energy and method for operating the charging device
KR101821104B1 (ko) 2015-04-07 2018-01-22 닛산 지도우샤 가부시키가이샤 비접촉 수전 장치의 온도 추정 장치 및 온도 추정 방법
JP2016208793A (ja) * 2015-04-28 2016-12-08 株式会社オプトエレクトロニクス 表示システムおよび電力供給方式
KR101634650B1 (ko) * 2015-06-01 2016-07-01 한국철도기술연구원 대전력의 무선 급전을 위한 급집전 코일의 최적화 설계 방법 및 장치
JP2017041934A (ja) * 2015-08-18 2017-02-23 ニチユ三菱フォークリフト株式会社 無人搬送車および給電システム
JPWO2017051460A1 (ja) * 2015-09-24 2018-07-05 株式会社Fuji 非接触給電用コイルおよび非接触給電システム
DE102016203933A1 (de) * 2016-03-10 2017-09-14 Bayerische Motoren Werke Aktiengesellschaft Induktionsaufladesystem für Fahrzeug sowie Verwendung
US11267348B2 (en) 2016-03-10 2022-03-08 Bayerische Motoren Werke Aktiengesellschaft Inductive charging system for a vehicle, and use
JP2017175720A (ja) * 2016-03-22 2017-09-28 Tdk株式会社 給電装置およびワイヤレス電力伝送装置
KR101829211B1 (ko) 2016-04-11 2018-03-29 이진국 차선이탈방지 기능이 구비된 전기자동차의 충전장치
US10661660B2 (en) 2016-11-18 2020-05-26 Hyundai Motor Company Vehicle, vehicle charging device, vehicle charging system and method for charging vehicle
KR101961146B1 (ko) 2016-11-18 2019-03-25 현대자동차주식회사 차량, 차량 충전 장치, 차량 충전 시스템 및 차량의 충전 방법
KR20180056054A (ko) * 2016-11-18 2018-05-28 기아자동차주식회사 차량, 차량 충전 장치, 차량 충전 시스템 및 차량의 충전 방법
JP2019054697A (ja) * 2017-09-19 2019-04-04 株式会社神戸製鋼所 産業機械
JP2019122159A (ja) * 2018-01-05 2019-07-22 Tdk株式会社 ワイヤレス電力伝送装置およびワイヤレス電力伝送システム
CN108407664A (zh) * 2018-05-14 2018-08-17 中国电力科学研究院有限公司 一种电动汽车动态无线充电系统及充电方法
WO2019229805A1 (ja) * 2018-05-28 2019-12-05 日産自動車株式会社 送電装置の解凍方法、非接触給電システム、及び送電装置
CN112977102A (zh) * 2021-04-19 2021-06-18 国网黑龙江省电力有限公司电力科学研究院 一种电动汽车动态谐振式磁耦合无线充电系统
CN114683858A (zh) * 2022-04-29 2022-07-01 中车青岛四方机车车辆股份有限公司 一种磁悬浮列车的受流器及其供电系统、控制方法和装置
CN114683858B (zh) * 2022-04-29 2023-09-15 中车青岛四方机车车辆股份有限公司 一种磁悬浮列车的受流器及其供电系统、控制方法和装置

Similar Documents

Publication Publication Date Title
JP2010022183A (ja) 電気自動車及びそれに好適な車両用誘導送電装置
US8220568B2 (en) Systems and methods for powering a vehicle
US8833533B2 (en) Ultra slim power supply device and power acquisition device for electric vehicle
US8561770B2 (en) Systems and methods for distributing energy in a roadway
US9156364B2 (en) Wireless power charging using point of load controlled high frequency power converters
US8807308B2 (en) Power supply device, power acquisition device and safety system for electromagnetic induction-powered electric vehicle
US8499910B2 (en) Device for transmitting electrical energy
KR102230175B1 (ko) 멀티 전력을 공급받는 전기 자동차
US5669470A (en) Roadway-powered electric vehicle system
KR20180073425A (ko) 조절 가능한 플럭스 각도를 갖는 전기 자동차를 위한 무선 충전 시스템
JP2013501665A (ja) 道路から電気エネルギーを得る電気車両システム
JP2011061942A (ja) 中継方式の非接触給電装置
US20130214706A1 (en) Apparatus and Method for Inductive Power Transfer on an Electrified Roadway Using a Rotating Secondary Inductor
KR102227018B1 (ko) 유도 장치 및 전기 자동차에 설치하기 위한 2차 공진기 장치
WO2010116566A1 (en) Inductive power supply apparatus
JP2010057286A (ja) 電力回生機能を有する車両のバッテリの充電方法及び充電システム
JP3768982B2 (ja) 間歇給電式電気車両システムおよび電気車両
JP2006335289A (ja) 電気駆動車への給電方法及び装置
KR20050089673A (ko) 전기 차량의 전원급전용 비접촉 집전 시스템
WO2013080861A1 (ja) 非接触給電装置
KR20050106313A (ko) 무접촉 급전방식을 이용한 전기 차량의 배터리 충전 시스템
JP4774066B2 (ja) 充電システム
JP2004104979A (ja) 電気車輌駆動装置